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ABSTRACT 

Keywords: high-resolution, spectral, texture, standard classification, quality assessment. 

 
With the advance in sensor technology in the field of remote sensing from space, new 
challenges emerge. The high-resolution images offer a wide range of new applications, but 
at the same pace, the interpretation requires new approaches, from pure spectral 
interpretation to a more holistic one. This thesis focuses only on a small aspect of that sort 
of interpretation and on one specific application, which has been gaining increasing 
importance nowadays, where the carbon dioxide balance has become an issue. Forests are 
important CO2 sinks, and therefore, it makes sense to concentrate on the interpretation of 
forest stands, in this case in the area of central Europe. Thus, the principal objective of this 
investigation is to focus on forest classification and to interpret different types of forest 
stands in high-resolution satellite images. 

The used images have been captured by Pléiades 1B satellites, whose spatial resolution 
provides quite good textural information, which may be utilized to distinguish between 
different types of forest patches. Together with the spectral information, one may expect 
even an improvement of the classification quality compared to the interpretation of sole 
multispectral object properties. Therefore, this research concentrates on assessing standard 
strategies for image classification if the spectral and textural information is to be taken into 
consideration. 

The key for characterizing texture in forest areas was found in using a set of Haralick 
textural features known already for many decades, therefore for the special purpose a 
thorough investigation of generating suitable textural features has been carried out and 
their properties have been studied.  

One of the standard classification algorithms in remote sensing is the Maximum Likelihood 
classification. The question arises of course, whether the Maximum Likelihood classification 
would be appropriate enough for the textural classification. Therefore, the distribution of 
the classes in the feature space for the textural parameters has been investigated and then 
the decision has been made to use the Maximum Likelihood for classifying the multispectral 
as well as for textural parameters, from which Mean, Contrast, and Entropy delivered 
promising results, which have proved of value in previous research with other satellite data. 

Further, the quality assessment of the data has been made, where the resulted accuracies 
are quite high, around 80%, and lie in the expected range, although a significant 
improvement by including textural features cannot be observed. 

In the frame of these investigations, commercial software (ENVI Image Analysis (the 
Environment for Visualizing Images)),  open source products, and a few other minor tools 
have been used for visualization, analysis, and processing, besides own software 
developments. 

There are still a few open issues for future work, whose investigation would have exceeded 
the effort for a diploma thesis, in particular, the influence of combining various Haralick 
features and of varying the parameters for their generation. 
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KURZFASSUNG 
Schüsselworde: hochauflösend, spektral, Textur, Standardklassifikation, Qualitätbeurteilung 

 

Mit den Fortschritten in der Sensortechnologie auf dem Gebiet der Fernerkundung aus dem 
Weltraum tauchen neue Herausforderungen auf. Die hochauflösenden Bilder eröffnnen 
einen weiten neuen Anwendungsbereich, aber im gleichen Tempo erfordert die 
Interpretation neue Ansätze, von reiner spektralen Interpretation hin zu einer mehr 
ganzheitlichen. Diese Arbeit stellt nur einen kleinen Aspekt der Interpretationsart in den 
Mittelpunkt und nur eine spezielle Anwendung, welche heute wichtig geworden ist, wo die 
Kohlendioxid-Bilanz ein Anliegen wurde. Wälder sind wichtige CO2 Verbraucher und deshalb 
ist es sinnvoll sich auf die Interpretation von Waldbeständen zu konzentrieren, in diesem 
Fall auf ein Gebiet in Mitteleuropa. Der Hauptzweck dieser Untersuchung richtet sich auf die 
Waldklassifizierung und auf die Interpretation von verschiedenen Arten von Waldbeständen 
aus hochauflösenden Satellitenbildern. 

Die verwendeten Bilder wurden durch den Satelliten Pléiades 1B aufgenommen, der für 
eine gute Texturinterpretation geeignete räumliche Auflösung bietet, mit deren Hilfe man 
zwischen verschiedenen Waldbereichen unterscheiden kann. Zusammen mit der spektralen 
Information erwartet man sogar eine Verbesserung der Klassifizierungsqualität im Vergleich 
zur Interpretation der reinen multispektralen Objekteigenschaften. Daher befasst sich diese 
Studie mit der Beurteilung von Standardstrategien der Bildinterpretation, wenn sowohl 
spektrale auch texturale Information berücksichtigt wird. 

Der Schlüssel für die Texturcharakterisierung von Forstgebieten wurde in den Haralick 
Texturmerkmale gefunden, die seit Jahrzehnten bekannt sind, daher wurde für den  
speziellen Zweck eine gründliche Untersuchung durchgeführt in Bezug auf die Ableitung 
geeigneter Texturmerkmale und das Studium ihrer Eigenheiten. 

Einer der Standardklassifizierungsalgorithmen ist die Maximum Likelihood Klassifikation. 
Natürlich stellt sich die Frage, ob die Maximum Likelihood Klassifikation für 
Texturklassifikation gut genug wäre. Daher wurde die Verteilung der Klassen im 
Merkmalsraum der Texturmerkmale untersucht und es wurde dann entschieden, Maximum 
Likelihood für die Klassifizierung sowohl der multispektralen als auch der texturalen 
Parameter zu verwenden, von denen Mean, Contrast und Entropy vielversprechende 
Ergebnisse lieferten, welche auch schon in früheren Forschungen mit anderen 
Satellitendaten sich als wertvoll erwiesen. 

Des Weiteren wurde eine Qualitätsbeurteilung der Daten  durchgeführt, bei welcher die 
erhaltenen Genauigkeiten recht hoch waren, um die 80%, und im erwarteten Rahmen lagen, 
wenn auch eine signifikante Verbesserung der Genauigkeiten durch Einbeziehung der 
Texturinformation nicht beobachtet werden konnte. 

Für diese Untersuchungen wurde kommerzielle Software (ENVI Bildanalyse (The 
Environment for Vizualizing Images)), Open Source Produkte und andere kleinere 
Werkzeuge für die Visualisierung, Analyse und Prozessierung verwendet nebst selbst 
entwickelter Software. 



V 
 

Es gibt noch ein paar offene Fragen für zukünftige Forschung, deren Untersuchung den 
Rahmen einer Diplomarbeit gesprengt hätte, und zwar den Einfluss bei der Kombination 
verschiedener Haralick-Merkmale und beim Variieren der Parameter für deren Herleitung. 
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1 Introduction 
Along with the important technological developments in recent years, imaging devices and 
general purpose computing systems have become more and more powerful and prevalent. 

Naturally, the desire to have autonomous systems gets increasingly in the focus of current 
developments. Solutions which have looked unrealistic in the past, suddenly begin to 
dominate many fields of our every day’s life. Just looking at satellite imaging, the task of 
preparing big data for optimal visualization and automated interpretation has gradually 
moved to optimal automatic analysis, interpretation, and understanding. Image processing 
and analysis include a set of techniques and methods of acquisition, storage, visualization, 
modification, and exploitation of visual information contained in images. In particular, image 
analysis refers to the ability to describe, understand and recognize scenes, scene objects, 
and links between them. From a functional point of view, image analysis transforms an input 
image into a description.  

The work on this thesis is targeting at the satellite image analysis from a  spectral and 
textural perspective, as well as on the quality evaluation of the classification result. 

The visual interpretation of remotely sensed data has always relied on spatial image 
properties to separate image components into similar groups (Lillesand T. M., and Kiefer R. 
W., 2000). This visual process takes advantage of an interpreter’s ability to perceive spatial 
and tonal differences rapidly (for instance such as texture and color) and group areas with 
similar spatial structure with little ambiguity (Franklin S.E. et al., 2001). Image texture is a 
complex visual perception (Coburn C. A., and Roberts A. C. B., 2004). 

For a long time, neither in remote sensing nor in photogrammetry, textural interpretation 
has not been used in image interpretation tasks. In the 90's, all these investigations, and 
classifications appear with the introduction of the digital workstations and powerful digital 
imaging systems. That was the time when in photogrammetry, where digital high-resolution 
imagery increasingly became standard, texture analysis, and feature detection has begun to 
emerge in order to automatize the sometimes rather cumbersome 3D object restitution 
tasks. 

On the other hand, in remote sensing, this objective occurred earlier, because digital 
imaging became standard in early 1970 when space-borne digital acquisition systems 
commenced their successful area. Due to their fairly low spatial resolution at the very 
beginning, the interpretation mainly focused on multispectral properties. 

Landsat satellite imaging may be the most important episode in the history of remote 
sensing and Earth observation. In 1972, Landsat satellite imaging systems had a resolution 
of 60 to 80 meters, which means, that the textural properties of objects were rarely an issue 
and hence in general the interpretation of textural characteristics could easily be ignored. 

With the appearance of the second Landsat generation in 1980, the imaging system 
Thematic Mapper was introduced and more object details become visible and in one or the 
other case one could even think of taking texture into consideration. Nevertheless, the 
multispectral interpretation was still more important, but  appropriate sophisticated 
interpretation methods became more established in practice. Since then, digital imaging 
systems rapidly became more powerful as far as the spatial, the radiometric, and the 
spectral resolutions are concerned. In the meantime, many space-borne sensors deliver 
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spatial resolutions up to several decimeters and radiometric resolutions far beyond the 
typical 8-bit intensity range. 

As a consequence, the importance of traditional spectral interpretation decreased slightly 
because of the disturbing effects of minor elements like, for instance, micro shadows. 
Suddenly textural aspects started to become more important, but due to missing reliable 
and powerful software in remote sensing and in particular in photogrammetry, the human 
interpreter could not entirely be replaced, although theoretical research has been carried 
out for many decades and practical approaches for special applications implemented in 
dedicated hardware, especially for military and surveillance purposes and in manufacturing, 
already existed. 

In remote sensing texture issues become more and more important with the occurrence of 
high-resolution satellite imaging systems. These high-resolution satellite images show a lot 
of detail, thus being able to recognize much more characteristics of a certain object class so 
that, not only the color but also textural properties started to play an increasingly important 
role. One may define the begin of high resolution in remote sensing with the launch of the 
French satellite SPOT1 in 1986, which carried a panchromatic sensor on board providing an 
image with a ground resolution of 10m. In 1996 the Indian Satellite IRC-1C had a Pan sensor 
on board providing an amazing spatial resolution of 6m (though at the cost of radiometric 
resolution). But the panchromatic images of IKONOS(2) are considered to mark the real 
milestone of high-resolution satellite imaging. Their senor footprint has a size of some 80 cm 
to 1 m. Then shortly one after the other, systems have been launched reaching high-
resolution of 50 cm and less nowadays. Finest object details and precision, together with a 
rapid and reliable data distribution system cover practical interests in many fields of every 
day`s life, such as environmental observations, precision farming, monitoring urban sprawl, 
forest inventory and many others ([1] http://www.landinfo.com/products_satellite.htm). 

Haralick R.M. was one of the first who has introduced texture in image processing. From his 
perspective, color alone is not that what is important and therefore he has been taking into 
consideration texture as well. Hence he created the Grey-Level-Co-occurrence Matrix 
(abbreviated GLCM) where the neighborhood of intensity values in images are analyzed. 
Traditionally, texture has been defined as the spatial variation in image tones or colors 
(Haralick R.M.et al., 1973). 

Hall-Beyer M. (2017) writes:  “Texture as defined visually has long been an important 
element in visual image interpretation, allowing operators to separate spectrally similar 
image regions. In visible and infrared-wavelength remotely sensed images, texture provides 
information that is independent of spectral reflectance values.“ [...] 

“Haralick’s texture measures remain widely implemented in software and are able to 
incorporate multiple elements of texture.“ [...] 

“As noted by Wang L. et al. (2016), the primary improvements in GLCM since the 1970s have 
resulted in faster calculation algorithms, rather than changes in the statistics themselves“. 

1.1 Goal of the research 

In the context of the thesis it is intended to evaluate the applicability of standard digital 
image processing methods by including spectral information together with the textural 
information in order to improve the quality of the classification result. 
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Choosing and acquiring satellite imagery is one of the most important phases of a project 
based on remote sensing. This step is the most important because the final results are 
influenced by the quality of the input data. A cloudless view with maximum visibility can be 
considered a very good source. Secondly, it is very important to keep in mind the purpose 
for which satellite images are used, because many types of images and sensors have 
different spectral and spatial features. There are many types of platforms on which a 
remote sensor can be built or mounted. 

The discussions in the following chapters will focus on commercial platforms and known 
sensors used in remote sensing applications and available to the public. Thereby, in this 
study processing of the digital images acquired by the Pléiades satellites 
([2] https://directory.eoportal.org/web/eoportal/satellite-missions/p/pleiades) are 
evaluated with the concentration on the assessment of areas covered by forests. This is 
justified because forests are the green lungs on Earth and, hence their state of health, 
distribution, and composition plays a very important role for estimating the carbon dioxide 
balance in the context of climate change issues. 

The main objective of this research is to investigate whether standard classification 
methods, which have proved to deliver good results in the case of multispectral images, are 
able to be utilized with channels of textural features or in combination with spectral bands 
so that the quality of the final result may be improved. In the course of this investigation, 
Haralick’s approach is analyzed in the context of forest classification, in order to obtain 
deeper understanding and better know-how for further similar projects. 

All these being said, the reason for choosing this subject is, beside curiosity, a challenge and 
has been formed and developed from the interest of finding out more details about the 
impact of texture on the interpretation of high-resolution satellite images.  On the basis of 
all these principle examinations, it has been considered that it would be very stimulating to 
find out more information about the texture analysis. 

1.2 State of the art 

In the past, many approaches, which focus on segmentation or classification of texture in 
remote sensing applications, have been developed and/or investigated. In the following, a 
concise collection of different approaches will briefly be presented in order to prove that 
Haralick`s features are important but they are by far not the only way of including texture in 
classifications. Even though the current thesis concentrates on utilizing Haralick`s concept, 
other approaches must not be overseen and they may even be the primary choice for other 
research. 

Standard texture classification techniques have been proposed by Grigorescu S.E. et al., 
2002, where the Gabor filters are taken into consideration. Gabor energy, complex 
moments, and grating cell operator features are examined. In order to produce distinct 
feature vector clusters for different textures, two methods are presented: the Fisher 
criterion (Fisher A., 1923) and the classification result comparison. The results are 
satisfactory, the grid cell operator is the only one that selectively reacts only to the texture 
and does not give the false response to the non-texture characteristics, such as the contours 
of the object, accordingly, the best discrimination and segmentation result is provided by 
the cell grills. 

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.S.E.%20Grigorescu.QT.&newsearch=true
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Another Textural Approach for Land Cover Classification of Remotely Sensed Image is 
presented by Jenicka S. and Suruliandi A., 2014, describing the Local binary pattern (LBP). In 
the described study, texture models should be capable of capturing and discriminating even 
minute pattern differences. A multivariate texture model is introduced with four discrete 
output levels for efficient analysis of land covers. Land cover classification of the remotely 
sensed image has been achieved using the multivariate texture model MDLTP (Multivariate 
Discrete Local Texture Pattern) and Support Vector Machine (SVM) classifier. Hence, the 
classification accuracy of the classified image obtained is found to be 93.46%. 

Kerroum M.A. et al., 2009, discuss “A method based on the Gaussian mixture model (GMM) 
in calculating Shannon`s mutual information between multiple features and the output class 
labels“. This is applied to a textural feature selection algorithm for multispectral image 
classification. The extracted features are from an HRV-SPOT image of a forest area in 
Morocco, using Wavelet Packet Transform (WPT) and the Gray Level Co-occurrence Matrix 
(GLCM), and the purposed classifier is the Support Vector Machine (SVM). The concluded 
results show that the selected textural features are more beneficial to the classification 
accuracy than the ones provided by mutual information between individual variables and 
the use of spectral information delivers poor performances. 

Haralick R.M. et al.,1973, describe a method  with a technique for computing texture 
features using the GLCM and is well summarized by Puetz A.M. and Olsen R.C., 2006 in 
“Haralick Texture Features Expanded Into The Spectral Domain“. A gray- scale image is being 
quantized by the standard GLCM in a limited number of discrete gray-level bins, and the 
gray-levels in an image are statistically analyzed. Accordingly, the GLCM`s technique result is 
a gray-scale image with values correlated to the intensity of the statistical measure. 

Two different approaches are described. The first one is determined using the Haralick 
Texture Method, while in the second approach, the Spectral Texture Method is adopted. In 
the Haralick Texture Method, the quantization range is defined as the range of reflectance 
values in a particular spectral band. In the Spectral Texture Method, a spectral image is 
quantized based on discrete spectral angle ranges. Both texture approaches provide good 
results when creating a classified image that characterizes land cover types, but the Spectral 
Texture Method provides an increase over the Haralick Texture Method. 

An important issue in classifying images from a textural point of view is using different sizes 
of the processing window. Coburn C.A. and Roberts A.C.B., 2004, “discuss a multiscale 
approach to image texture where first and second-order statistical measures were derived 
from different sizes of processing windows and were used as additional information in 
supervised classification“. Different window sizes (from 5 x 5 to 15 x 15) were used for a 
single spectral band, thus, the classification accuracy increased. The results are improved 
when this multi-scale approach is adopted, compared to the current single-band approach 
to analyzing image texture. 

Regions were classified based on using color information alone to using texture and color 
texture information by Vansteenkiste E. et al., 2004. In this paper, the effect of color space 
reduction and a 2D and 3D extension of the co-occurrence matrix is being evaluated, along 
with the parameters derived from them. Despite the fact that color features achieve best in 
the simple classification exercise, very high-resolution classification rates are collected using 
color texture features and the fragmentation degree in the classified areas is smaller. 
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Zhao P. et al., 2016 apply three different classifiers when they classify SPOT satellite images 
of forest. The three classifiers are: the support vector machine (SVM), the k-nearest 
neighbor algorithm (KNN), and the classification and regression tree (CART). Like others, for 
texture information they use GLCM and Haralick features, but together with features 
derived from Grey Level Difference Vectors (GLDV), which represent normalized 1D-
histograms (i.e. vectors) of grey value differences between pairs rather than 2D-histograms 
(i.e. matrices) of grey values pairs as it is the case in GLCM. The best classifier applied to the 
forest classifications and analysis was the SVM, providing an Overall Accuracy of 78% and a 
Kappa coefficient of 0.737. This paper presents a fast and simple method to forest 
classification and lays the foundation for forest management and forest resource surveys. 

Summarizing the aforementioned publications, one can see that heaps of methods 
concerning textural parameters have been proposed, but perhaps the most popular of these 
is the utilization of the GLCM and therefrom derived features. 

The central focus of this study is on applying GLCM`s features, and the main objective of this 
investigation is to develop a strategy by taking into account the textural classification using 
the Haralick textural features with the intention to find out a possible advantage when 
classifying high-resolution imagery. 

Although there has been ample research regarding the analysis and inclusion of texture in 
high-resolution images, these investigations should concentrate on the utilization of the 
widely implemented classification methods, which have become standard for multispectral 
classification in medium resolution satellite images. Eventually, two questions arise: 

 Firstly, is it appropriate to apply these classic methods, in particular, the Maximum 
Likelihood algorithm, to datasets of textural features either alone or in combination 
with spectral information?  

 Secondly, is it possible to improve, hopefully significantly, the quality of a pure 
multispectral classification by adding textural features or by combining textural and 
multispectral classification results?  
 

These are the major questions, which should be answered at the end. 
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2 Study area and description of satellite data 

2.1 Study area 

The study areas have been selected in a mainly forested region some 60 km south of 
Vienna, in the Rosalia, the eastern low foothills of the Alps. Their elevation ranges from 
some 500 m to 700 m a.s.l. To a great part, the vegetation cover consists of a mixed forest 
of coniferous (dominated by spruce, pine, and larch) and deciduous trees (dominated by 
beech and oak) ([3] https://pannatura.at/wald/daten-und-fakten/).  

The first test area is situated in the central part of the Austrian province Burgenland, while 
the second test area lies some 5 km apart in the north-westerly direction almost entirely in 
the province of Lower Austria, only a few kilometers south-east of the city of Wiener 
Neustadt (see figure 1). 

         
 

 
Fig.1: Study area (LU: true color composite of full scene, RU: study areas marked in red, 

LL: study area S-E, RL: study area N-W, both as color-infrared composites 
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In addition, Rosalia region is an area that offers many wonderful opportunities for relaxation 
to tourists due to its beautiful natural park, but there are also interesting offers that 
introduce tourists to aspects of ecological and cultural education, ([4] http://region-
rosalia.at). The selected areas have been acquired by high-resolution satellite sensors and 
two areas (area North-West and area South-East) have been chosen, which seem to be best 
suited for the planned investigations. 

2.2 Satellite data 

2.2.1 Pléiades Satellite imagery  

Nowadays a great number of satellites with highly resolving instruments on board are in 
orbit. Among them are two Pléiades Satellites, called Pléiades 1A and Pléiades 1B, which 
complement each other. The image used in the case study has been acquired by 1B on 24 
September 2014 at 9:59 local time. Both satellites belong to a greater number of satellites 
which are operated by the Airbus Defence and Space company. Figure 2 shows an overview 
of these Earth observation satellites. Among them are the well-known SPOT satellites, which 
have been playing an important role in Earth observation since the mid-eighties. In fact, the 
very last SPOT satellites 6 and 7 are part of a quartet whose remaining players are the 
Pléiades. 

 

 
Fig.2: Spacecraft fleet operated by Airbus Defense and Space 

(image credit: Airbus Defence and Space) eoPortal 2017 
([2] https://directory.eoportal.org/web/eoportal/satellite-missions/p/pleiades) 

 
The Pléiades program was initiated and managed by the French Space Agency - Centre 
National d’Etudes Spatiales. The technical part of the space segment is Airbus Defence and 
Space (formerly EADS). Partners of the Pléiades program are the space-agencies of France, 
Sweden, Belgium, Spain and Austria, and therefore, for Austria special conditions apply for 
data order. 

Both satellites were launched from the Kourou Space Center in French Guyana: Pléiades 1A 
on 17 December 2011, Pléiades 1B on 1 December 2012. The planned duration of the 
mission was 5 years. Figure 3 shows an artist`s view of a Pléiades satellite. 

Pléiades 1A and Pléiades 1B operate on the same orbit, 180° apart from each other, and on 
the same orbit as Spot 6 and Spot 7, which are positioned exactly in between. It is an orbit 
with an average altitude of 695 km and an inclination of 98.2°. All four satellites offer 
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various acquisition modes, even with tilted instruments so that this constellation, with four 
satellites at a distance of 90° in orbit, provides a double daily revisit over the same point on 
Earth in high-resolution (SPOT) and very high-resolution (Pléiades), respectively. 

The technical performances of the Pléiades satellites are as follows: 

 Geometric resolution: 50 cm 

 Spectral bands: 
a. Pan: 470-830 nm; 
b. Blue (B): 430-550 nm; 
c. Green (G): 500-620 nm; 
d. Red (R): 590-710 nm; 
e. Near Infrared: 740-940 nm. 

([5] http://www.intelligence-
airbusds.com/files/pmedia/public/r49228_9_pleiades_product.pdf) 

Terrestrial receiving stations provide a direct connection and data delivery. Two military 
stations are used for receiving data, one in France and one in Spain, and two civilian 
stations, from Toulouse (France) and Kiruna (Sweden). Upon request, additional regional 
stations are installed. Pléiades images can be obtained in less than 6 hours after purchase.  

 

 
Fig.3: Artist's conception of the Pléiades spacecraft in orbit (image credit: CNES) 

ESA 2000 - 2018 
([6] https://earth.esa.int/web/eoportal/satellite-missions/p/pleiades) 

 

2.2.2 Panchromatic images 

Panchromatic images have monochrome continuous tone characteristics. They are recorded 
over a wider range of wavelengths in the electromagnetic spectrum, typically including a 
large portion of the visible spectrum and even a portion of the near infrared. Due to this 
wide range in the spectrum, a high amount of energy arrives at the sensor. Therefore, 
panchromatic images can be exposed to rather small sensor elements with sufficient 
signal/noise ratio, thus enabling the collection of, as it is called, very high-resolution images. 
Since the advantage is not given for multispectral images with their narrow spectral bands, 
their resolution is worse.  

2.2.3 Multispectral images 

By the term multispectral image, we usually understand a set of images of generally the 
same geometric behavior acquired through a set of spectral filters. Each image of this set, 
therefore, represents the reflectance or emittance properties of the observed objects. This 
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narrow definition has been a bit extended in the meantime, in particular since high-
resolution panchromatic images have become state of the art. SPOT 1 in 1986 and Landsat 7 
in 1999 began to include, in addition to narrow spectral bands, also one geometrically 
higher resolving wide panchromatic band, which is treated as part of the multispectral 
dataset. In the meantime, all modern high-resolution satellite missions acquire both, the 
narrow spectral bands and one wide panchromatic band. So do the Pleiades, which are used 
in this investigation. 

According to a commonly used definition of multispectral images, the original image 
contains the reflectance or emittance properties of the imaged objects so that by analyzing 
the multispectral datasets and by knowing true object properties it should be possible to 
immediately classify the image with respect to the classes of the observed objects. 
Unfortunately, there are a series of reasons why this is not so easy at all. 

 Firstly, the sensors provide only a selection of more or less narrow spectral bands 
without the guarantee that they represent the typical spectral object behaviors. 
Hyperspectral sensors exist which try to avoid this drawback, not without introducing 
another drawback with regard to geometric resolution. For the investigations in this 
thesis, one needs not to take care of a possible lack of spectral bands. The typical bands 
for vegetation studies, i.e. green, red and near infrared, exist in the Pleiades data. 

 Secondly, the illuminating radiation passes through the atmosphere twice on the way 
from the sun to the Earth surface and back to the satellite. The radiation also interacts 
with the contents of the atmosphere causing scattering (air light, skylight, extinction) 
and absorption effects. Scattering is especially present in the short wavelength range 
towards the blue spectrum and ultraviolet, and not taking it into account would easily 
lead to wrong interpretations. Scattering in this study could be an issue, but the most 
important bands are red and near infrared which are least influenced by scattering, and 
they are not significantly influenced by absorption either. 

 Thirdly, the shape of observed object surfaces causes varying incidence and exitance 
angles of the illuminating sun rays thus producing shades and shadows. Dependent on 
the bi-directional reflectance properties of the object materials shading effects are more 
or less dominant. Dominant, in particular in high-resolution images, are cast shadows. 
Satellite images can never be taken at a diffuse lighting condition, which would be the 
optimum illumination and which in the real world exists only at overcast skies. Satellite 
images require cloudless sky, thus producing significant cast shadowing. Shades and 
shadows are an issue in this investigation. Without regard to effects caused by the shape 
of the terrain, they, on the one hand, provide us with nicely shaded forest canopies and 
therefore with typical textures for certain forest varieties, on the other hand, in less 
dense forests they produce cast shadows of trees which negatively influence both the 
spectral and the textural interpretation. Since there is no feasible and sound possibility 
to take into consideration this illumination effect, one has to live with it. An acceptable 
workaround is a classification into different classes of same object varieties with 
different illumination effects and the fusion of those intermediate classes into one 
object class in a post-processing step. 

The Pléiades collect together with the panchromatic images (in PA mode) also multi-spectral 
images (in XS mode). A multispectral Pléiades image consists of four data bands. For digital 
classification algorithms and if appropriate, these four bands can be used simultaneously, 
but as soon as visual interpretation is involved, color composites of three selected bands 
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must be created. Two sorts of composites may be considered: first, by assigning the blue, 
green and red channel to the respective display colors, a natural color image is generated, 
and second, by assigning the green, red and near-infrared channel to the blue, green and 
red display colors, a color infrared image is generated. While the first is compliant with our 
real-world experience, the latter is the preferred composite if vegetation studies are to be 
carried out, like in our studies. Due to the unusual color impression, one must be familiar 
with the spectral reflectance properties of the object under investigation in order to avoid 
misinterpretation and, as a possible consequence, wrong classification results. In the case of 
digital analysis, the entire spectral information content of the image is used in 
interpretation. In order to improve the visual quality, the panchromatic images are 
frequently used to artificially enhance the resolution of the multispectral bands through 
merging algorithms. New sensors, like that of the Pléiades, acquire panchromatic and 
multispectral images simultaneously and therefore resolution merging has become standard 
for these sort of satellite images. Merged images are offered as own products. In practice, 
resolution merged products have become by far more important than the original 
panchromatic image (Kidiyo K. et al., 2014). 

2.2.4 Pan-Sharpened Data 

As mentioned afore, very highly resolving panchromatic images may be merged with the 
less resolving multispectral images in order to make them look like highly resolving 
products. This process is commonly called pan-sharpening (also known as “image fusion“ 
and “resolution merging“, the first a bit confusing and misleading, the latter quite 
appropriate). It has become a terminus technicus for various methods in the field of digital 
imaging, in particular for airborne and spaceborne imagery. Figure 4 shows an example of 
pan-sharpening. A variety of algorithms have been developed in recent years for data from 
different sensors and with different resolutions and with different effects on the original 
multispectral information (Buntilov V.M., 2013). One should be aware that pan-sharpening 
never produces an image whose spectral information is equivalent to an original high-
resolution multispectral image. The spectral property has been deteriorated in a more or 
less significant way, dependent on the merging algorithm. To express it a bit negatively, one 
could call these data pseudo-multispectral. If the spectral reflectance properties of objects 
play the central role in an interpretation task, pan-sharpened products are certainly not the 
first choice. The Pleiades image used here belong to this sort of images. For the 
investigations planned in this study, the focus is more on texture and color and, therefore, 
pan-sharpened images are well suited. 
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Fig.4: An example for Pan-sharpening 

([7] http://desktop.arcgis.com/en/arcmap/latest/manage-data/raster-and-
images/fundamentals-of-panchromatic-sharpening.htm) 

 

2.2.5 Image resolution 

The availability of large and very high-resolution satellite imagery has led to the 
development of applications unimagined some decades ago. The quality of satellite imagery 
can be summed up to spatial, spectral, radiometric and temporal resolutions. In addition, 
radiometric, topographic or atmospheric corrections may be applied to improve the results. 

The Pléiades satellite mission provides optical images for civil use at VHR (very-high-
resolution) of any point of the Earth surface. Each of the two Pléiades satellites carries a 
CCD (charge-coupled device) camera, named HiRi, which is a Korsch telescope with an 
aperture diameter of 65 cm and a focal length of 12.9 m. Each HiRi acquires images in 
pushbroom mode using 5x6000 pixel arrays and 20 integration lines (for TDI forward-motion 
compensation) for the panchromatic band (480–830 nm) and 5x1500 pixel arrays for the 
multispectral bands (blue, green, red and near-infrared). The native resolution of Pléiades 
1A and 1B is 0.7 m in the panchromatic and 2.8 m in the multispectral mode in the vertical 
direction, which in the orthorectified products are resampled to 0.5 m and 2.0 m, 
respectively (Poli D. et.al., 2015). 

Featuring a daily revisit to any location on the planet, the Pléiades constellation separates 
itself from the competitors for site monitoring and projects requiring rapid imagery 
acquisitions, ([8] https://apollomapping.com/imagery/high-resolution-imagery/pleiades-1) 
Figure 5 shows the first image from Pléiades 1B. 
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Fig.5: First image from France's Pléiades 1B high-resolution imaging satellite 
([8] https://apollomapping.com/imagery/high-resolution-imagery/pleiades-1) 

 
It has been mentioned that the Pleiades sensors are very high resolution instruments. This 
statement is not unambiguous, since various kinds of resolutions may be found in the 
specifications of an image sensor. To the term resolution a bit more attention needs to be 
paid, and therefore, in the following more detailed explanations should be provided and 
related to the Pléiades sensors. 

 

 Spatial resolution is defined by the ability to just recognize neighboring small objects 
as two different objects. The spatial resolution also depends on the respective 
intensities of the neighboring objects. Therefore, the spatial resolution cannot be 
defined by a unique value but by the Modulation Transfer Function, which relates a 
recognized spatial wavelength to its amplitude. In practice, however, the spatial 
resolution simply represents the linear dimension of the smallest object in the field 
present in an image. It can also be considered as the line width separating two small 
neighboring objects in a picture such as a car and a building. In digital images, 
commonly the spatial resolution corresponds to the field size of a pixel's side, the 
smallest element constituting that image 
([9] https://www.sciencedirect.com/topics/earth-and-planetary-sciences/spatial-
resolution). As for the panchromatic orthorectified images the spatial resolution is 
0.5 m. In other words, by one pixel an area on ground of 0.5 m x 0.5 m is covered. 

 Spectral resolution may be defined in two ways. Once it is the spectral range or 
wavelength range (i.e. the band width) within which an image has been recorded. 
The narrower the band width, the higher the spectral resolution. And secondly, in 
the case of multispectral images, the spectral resolution is expressed equally by the 
number of bands or spectral intervals in which images of the same terrain surface 
were simultaneously acquired. The more bands, the higher the spectral resolution. A 
great number of bands allows the identification of an object or phenomenon in the 
field through the reflected electromagnetic radiation, even if its spectral signature is 
rather complex. There is a loose dependence between bandwidth and number of 
bands. If a great number of bands can be recorded by an instrument, only very 
narrow bandwidths make sense ([10] https://www.sciencedirect.com/topics/earth-
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and-planetary-sciences/spectral-resolution). As for the Pléiades sensor, the 
panchromatic one has a poor spectral resolution, i.e. a very wide band width of 
roughly 400 nm ranging from visible to near infrared, and only one band. The 
multispectral resolution is better with four bands and an average band width of 
some 100 nm. 

 Radiometric resolution refers to the dynamic range of the recording, that is, to the 
possible number of distinguishable different intensity values (often referred to as 
noise-equivalent reflectance (or radiance) difference (NeDL, where DL stands for 
“delta radiance“) for recording the radiometric response between the just 
recognizable lowest intensity (where the signal-to-noise ratio approaches 1.0) to the 
maximum just not overexposing intensity (where the signal-to-noise ratio reaches its 
maximum). In digital images also the number of bits to store intensity values are 
often referred to as radiometric resolution of the sensor, though not correct in the 
sense of instrument specification. Again there is a sort of relationship between 
radiometric sensor resolution and number of bits reserved to store an intensity 
value. For a highly resolving sensor a great number of bits should be provided in 
order not to lose captured information, while for a poorly resolving sensor a high 
number of bits would not make sense and would just increase the amount of data 
without contributing to image information. As for the Pléiades sensor no reliable 
physical specification of NeDL could be found. The data are delivered with 16 
bits/intensity value allowing to store 65536 different intensity values. In practice 
only maximal 12 bits are used, resulting in 4096 different shades of intensities. Still, 
concluding from this value to the actual radiometric resolution of the sensor 
hardware is not possible. ([11] https://www.sciencedirect.com/topics/earth-and-
planetary-sciences/radiometric-resolution). 

 Temporal resolution refers to the frequency of revisits over a site, depending on the 
orbitography of the platform or satellite on which the sensor is located, and on the 
geographic latitude of the investigated area. Before flying over the same area at the 
same image shooting conditions (26 days for Pléiades), the satellite has to go 
through a number of orbits (that is, a complete revolution around the Earth). The 
temporal resolution is defined by the duration of an orbital cycle or the number of 
revolutions required before returning to the starting point. With the emergence of 
the agile satellites, such as Pléiades satellites, which can tilt the viewing angle in any 
directions, the revision period can be reduced, making it possible to get the image of 
the same geographical area before the end of the full orbital cycle. The images 
obtained may show strong geometric disparities due to different imaging angles, 
even if the pictured area is the same.The acquisition conditions are different as far as 
geometry as well as radiometry are concerned. The Pléiades satellite is able to lower 
the revisit period to about 7 days above the equator if someone tolerates a viewing 
angle of the sensor of  20 °. With the existence of two equivalent satellites and 
instrumentsin orbit, Pléiades 1A and 1B, the temporal resolution can even be further 
increased. ([12] https://www.sciencedirect.com/topics/earth-and-planetary-
sciences/temporal-resolution).
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3 Characteristics of spectral signatures 
The notion of “spectral signature“ in remote sensing covers an area where very complex 
phenomena are involved. All objects of the environment reflect and emit energy flux in the 
form of electromagnetic radiation. The relative variation of the reflected or emitted energy 
as a function of the wavelength is what we call the spectral signature of the considered 
object. Thus a given object, in a certain state, must correspond to a unique spectrum. This 
spectrum can be used to identify the object and its state. For a satellite that makes 
measurements in a certain number of bands, the spectral signature of an object 
corresponds to different radiometric levels, levels recorded in each band. 

The spectral signatures of vegetation vary dependent on the plants` vitality due to seasonal 
influences, diseases or environmentally induced damage. As a typical example, where 
seasonal changes play the major role, are the changes in the deciduous forest. During winter 
time the trees are without leaves, their reflection in near-infrared does not exist, during 
spring the young leaves are sprouting with very high vitality, the reflection in near-infrared 
slowly reaches a maximum, in summer the vitality is stable until autumn approaches, where 
the near infrared reflection goes down dramatically. This sort of variation may be typical for 
certain varieties and may be utilized in multi-temporal data acquisition. Similar variations 
apply for agricultural crops, pastures, meadows, etc. The term spectro-temporal phenology 
is often used when the seasonal variations of reflection play a major role for classification. 
Unfortunately, in practice, spectral signatures of natural and anthropogenic objects are 
overlaid by effects due to illumination parameters, observation angle, atmospheric 
conditions, and others. 

As the following investigations concentrate on forest classification, suited satellite images 
may be captured during the growing season, i.e. between late spring and early autumn (with 
a certain dependency on the geographic location), even though an acquisition in early 
summer is preferred due to the high elevation of the sun. As for illumination and 
observation influences the users have not many degrees of freedom for their decision. Even 
the possible time of the day depends very much on the satellite`s orbit parameters, and 
weather conditions are further reasons for limited acquisition possibilities. The image used 
in this study has been captured in late September almost at the end of the optimum period. 
Due to the long vegetation period in the Rosalia area, this image is still well suited. 

3.1 Interpretation of spectral signature regarding vegetation 

The spectral signatures of vegetation leaves, independent of the actual plant, whether grass 
or bushes or tress, even coniferous trees, show a typical and similar shape with a small local 
maximum in the green portion of the spectrum and a significant maximum in the near 
infrared, and further local maxima in the mid-infrared around 1.6 µm and 2.2 µm. The 
signatures of vegetation objects mainly differ just by their amplitude in three typical regions 
of the spectrum, in visible light, in near-infrared and mid-infrared. 
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Factors that can influence the spectral response of vegetation are: 

 Type, anatomy or phenological phase of vegetation (flowering, fructification, etc.); 

 Age of vegetation; 

 The condition in which plants are found in terms of water; 

 Deficiency of minerals; 

 Reflection from the ground or other nearby object within the sensor`s footprint. 

If the vitality of the plant or the concrete species were in the focus of the investigation, 
these items would be of interest. What is needed is a rough classification of the vegetation, 
in particular in forests, independent of their health conditions. Therefore, one just needs to 
know the major differences between the classes deciduous and coniferous forest, other 
vegetation and something else. In other words, it is good to know about the differences in 
reflectance behavior, but it is not necessary to investigate in detail the fine difference of the 
vegetation object in the area of interest. The texture is at least as important if classes of 
forest stands have to be found with the help of digital image analysis. 

3.2 The spectral signature in the acquired image 

In the previous section, the spectral signature as object properties has been explained. It is 
derived in situ or in the laboratory and it provides valuable information for reference 
catalogues. Remote sensing is the science of capturing and analyzing object properties by 
not getting in physical contact with the object. The analyses and classifications in remote 
sensing rely on the analysis of images and, therefore, for the image interpreter usually not 
the real world`s spectral signature is on the first position, but the spectral signature as it has 
been mapped into the image during the capturing process. The following list gives an 
overview of what sort of influences impair the real object properties on its way to the digital 
image: 

 The incidence angle of illuminating rays on the object surface, causing shading 
effects, a significant parameter! 

 The observation angle of the object surface, i.e. the exitance angle of the reflected 
ray, a less significant parameter! 

 The atmospheric condition, such like haze and other microscopic particles in the air, 
causing various sorts of scattering, commonly known as skylight and air light, may be 
quite significant and dependent on the wavelength, i.e. the spectral band! 

 Mutual illumination, a less significant influence, which may be ignored in practice! 

 Cast shadows, i.e. areas with no direct illumination due to light hided by large or very 
small objects or by clouds. Shadowed areas may just be illuminated by the skylight or 
marginally by mutual illumination by nearby bright objects. Cast shadow can be quite 
dominant and annoying in satellite images due to the bright direct sun illumination! 

 Influences which happen as soon as the ray enters the imaging system, such as 
transparency of the optical system, influences in the electric system, i.e. the 
detector's, and the amplifier's, and digital-analogue converter's performance. It may 
be ignored in practice because of today's excellent sensor quality and a priori 
internal calibration procedures! 

The first two items are also largely determined by the shape of the terrain where the objects 
grow on, or in detail, by the shape of the forest canopy or individual tree crowns. The 
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difference between the objects’ real spectral signature and the imaged spectral signature is 
modelled by the bi-direction reflectance distribution function, the BRDF. The BRDF is a very 
complex mapping function, which may in part be determined in the laboratory. The 
theoretically ideal BRDF models the ray from the illumination source, usually the sun, via the 
object surface to the sensor element for each illumination and observation angle. For 
applications in practice, one has to significantly simplify this function. In many cases, even a 
BRDF is not considered at all. When analyzing the image, apparent shading is taken into 
consideration by introducing intermediate classes like objects in cast shadow, in heavily 
shaded areas, in slightly shaded areas, and in sunlit areas. After the classification objects in 
the just mentioned classes are combined in respective one object classes. This study does 
not apply a BRDF and if it would have turned out necessary the just explained simplified 
approach would have been used. Taking into consideration cast shadows through modelling 
would even be more complicated, because it needed, in addition to illumination and 
observation angles, careful ray tracing based on a very accurate surface model.  



 

19 
 

 

4 Introductory remarks on texture and the Gray Level 
Co-occurrence Matrix (GLCM) 

4.1 Introductory remarks on texture 

“There is no precise definition for the notion of texture because natural textures have 
contradictory properties (regularity to disorder, homogeneity, distortion) that are very 
difficult to describe in a unitary way“ (Sidhu A.S. and Dillon T.S., 2009). 

Texture is an important help in interpreting visual images, especially in high resolution space 
imagery. Texture is not a pixel related property, since one individual pixel never forms a 
texture. Texture parameters may be stored in an individual pixel, but they need to be 
derived from a more or less large surrounding area. In this sense, an image which represents 
the textural context on a pixel bases may be seen as the result of a moving texture-
describing filter. In digital image processing one tries to characterize the textural aspects 
from a numerical point of view, using algorithms for the discrimination of different textures 
by deriving numerical characteristics, which are assumed to be able to sufficiently describe 
certain types of texture. 

Texture is described in linguistic terms by roughness, contrast, fineness, regularity, terms 
whose mathematical translation is not clear. 

One can easily recognize an image with texture, but it is difficult to give a rigorous texture 
definition. If the elements that make up the texture are identical and precisely ordered, 
then the texture is called deterministic. If the elements are not identical, but they are 
similar, and their arrangement is based on certain statistical laws, then it is called random 
texture. Intermediary, between the deterministic model and the random model, there is an 
observable texture pattern. In general, uniform textures exist, which contain a large number 
of uniform small spots (primitive elements), arranged according to a placement rule, and 
the forms of this spots and their positions are governed by random variables. An important 
step in building mathematical models for textures is to identify the perceptible qualities of 
the texture. 

 
In order to appreciate the fact that there is texture in an image, a number of properties 
have to be intuitively assessed. The most important properties of the textures are the 
following: 

 the texture is a domain property; 

 the texture involves a spatial distribution of the gray levels. Texture existence must 
involve changes in gray or color values in image windows. The size of these windows 
depends on the type of texture or the size of primitives that define the texture, and, 
on the one hand, they must be large enough to represent the typical spatial pattern 
of a texture, on the other hand, they should be small enough not to include an 
unnecessary amount of redundant data at the cost of resolution; 

 the texture of an image can be seen at various resolutions of the image; 
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 a region of the image is perceived as having a texture when the number of 
elementary (primitive) objects adjacent and grouped in the region is very large  
(Chen C.H. et al., 1998). 

There is much literature available for texture analysis and texture classification and for all 
who wants to go closer in this topic the book: “Texture Analysis“ by Chen C.H., et al., (1998), 
In The Handbook of Pattern Recognition and Computer Vision (2nd Edition), is 
recommended. 

Texture analysis means extracting features and image coding. The extraction of features 
refers to identifying and selecting a set of distinctive and sufficient features to characterize a 
texture. Thus, image coding leads to a compact description of the texture of the selected 
characteristics. Automatic texture processing is possible if a complex texture is represented 
by a small number of parameters. In recent years, different texture analysis methods have 
been proposed. Among the available methods are the geometric method, model-based and 
signal processing methods (Sidhu A.S. and Dillon T.S., 2009). 

There are two main ways of describing the texture:  

 descriptive method - derives a quantitative description of a texture with respect to a 
range of manageable property measures 

 generic method - creates a geometric or probabilistic model for texture description 
(Sidhu A.S. and Dillon T.S., 2009). 

Sidhu A.S. and Dillon T.S., 2009, wrote with regard to texture the following, which is 
summarized in the item list below: 

(1) “Moreover, the descriptive approach can be divided into statistical and spectral 
methods, due to the techniques used in the selection of the characteristics. 
Statistical methods use spatial image signal statistics as feature descriptors. The 
most commonly used statistics are 1D histograms, moments, gray co-occurrence 
matrices (GLCM), etc“. 

(2) “Typically, inferior image statistics, especially first and second order statistics, are 
used in texture analysis. First-order statistics (average, standard deviation, and high-
order histogram moments) work with the individual pixel properties“. 

(3) “Second order statistics also account for spatial interdependence or the co-
occurrence of two pixels at specific positions“. 

(4) “Grayscale co-occurrence matrices, gray level differences, auto-correlation function, 
and local binary model operator are the most commonly applied second-order 
texture descriptors“. 

(5) “The Haralick features derived from the GLCM, is one of the most popular feature 
set“. 

The texture may contain important information about the surfaces and describe the 
relationship between the analyzed area and the environment. 

Textural properties include granulation, contrast, direction, linearity, regularity, and relief 
(asperity). Texture description is primarily based on the interpretation of pixel values as the 
achievements of randomly correlated processes. The descriptions will therefore be of the 
type of distribution of some features (value, energy, variation) in the spatial image area or in 
the frequency domain (spectral characterization). 
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The four major categories of texture algorithms are as follows: 

 statistical techniques - characterize textures according to the different gray levels of 
pixels that make up a surface. 

 geometric techniques - characterize textures as being composed of simple primitives 
in structural units, called textures, placed on a surface on a regular basis. 

 spectral techniques - based on Fourier spectrum properties to describe the overall 
periodicity of gray levels on a surface by identifying high energy points. 

 model-based techniques - use statistical distribution approaches based on random 
pixel parameters (Markov random fields). 

There are different methods for texture analysis and texture classification, these approaches 
are very well described in Digital Image Processing, by Gonzales R.C. and Woods R.E., 2001.  

This previous paragraph regarding introductory remarks on texture stands here only as a 
sort of introduction, but the following, the Gray Level Co-occurrence Matrix is the main 
focus used in this investigation. 

4.2 The interpretation of textural signatures regarding forest 

In the case of the textural approach, class names have been chosen to get a rough idea of 
the kind of texture. The intention was to provide distinct classes names rather than accurate 
descriptions. Therefore, for better understanding, a translation table has been created, that 
references the class names to terms and descriptions used in forestry (see table 1): 

 

 
Table 1: Translation table 

 
Further information about forest stands, crown closure as well as crown cover can be found 
under ([13] https://en.wikipedia.org/wiki/Stand_level_modelling) and 
([14] https://en.wikipedia.org/wiki/Crown_closure). 

4.3 The Gray Level Co-occurrence Matrix (GLCM) and the 
textural features 

The Gray Level Co-occurrence Matrix consists of second-order spatial relationship (since 
usually the matrix is normalized, its elements are also referred to as probabilities of the 
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appearance of some pairs of gray values in the texture). The elements of the GLCM(c,r) are 
the number of color pairs (i,j) taken from a reference pixel (with color i) and a partner pixel 
(with color j), which are separated by a given distance d, along a given direction a, more 
generally expressed by pixel pairs at a given neighborhood H(d,a). Thus, the term 
neighborhood in this context is related not only to immediate pixel neighbors, but also to 
distant neighbors. In the end, this descriptor will be a square matrix of size equal to the 
number N of possible distinct pixel values. Hence, the number of columns c=N is equal to 
the number of rows r=N, with the column index i ε [1,N=imax] and the row index j ε [1,N=jmax] 
The concept of co-occurrence matrix can also be applied to color pairs, not just to images 
with gray levels, using different levels of color space quantization. One term in the context 
of GLCMs should be briefly explained here. One may come across the attributes symmetric 
and non-symmetric. The following formulas are valid for the both kinds of a GLCM, but it 
must be mentioned here, that the column and row related values for Mean and Variance 
are usually different. In the case of symmetric GLCMs the column and row values are always 
identical. A GLCM is called non-symmetric if the neighbourhood is counted in a given 
direction, it is called symmetric if it is counted also in the opposite direction. There is, for 
instance, a non-symmetric GLCM for 0°and another one for 180°, but there is only one 
symmetric GLCM for 0° because the calculation also includes the direction 180°. 

In practice, to reduce calculations and even to make them more reliable, the number of gray 
levels N in the original image is reduced usually to 8, 16, 32 or 64 by an appropriate gray-
scaling techniques, often called quantization. One should be aware, that there is not only 
one unique GLCM for a certain texture. 

For the same texture, the eventually obtained co-occurrence matrix depends on the size and 
orientation of the region considered, the translation vector, and the degree of reduction 
expressed by the gray level quantization factor.  

The distinction between different textures can be done primarily by inspecting the 2-
dimensional co-occurrence matrix which contains in its elements the frequencies of the 
respective pairing of gray value i and j. In other words, a GLCM could also be called a 2-
dimensional frequency histogram of gravalue pairs. In general the frequencies are 
normalized, i.e. the sum of the frequencies over the entire matrix yields 1.0. In the 
following, therefore, Pi,j is to be interpreted as normalized frequency, where i defines the 
matrix column, j the matrix row. The normalized frequencies are sometimes also called 
probabilities. A series of statistical indices have been defined by Haralick (1973), also known 
as Haralick features, that characterize the distribution within the co-occurrence matrix. In 
the formulas below, which show a selection of textural features, the following definitions of 
the variables apply: 

Pi,j is the probability of values in GLCM element i and j; 

i and j are the labels of the columns and rows (respectively) of the GLCM. Because of the 
construction of the GLCM, i refers to the digital number (=gray value) of a target (or 
reference) pixel, and j is the digital number of the partner pixel whose neighbourhood has 
been defined by direction and distance. 

μ is the mean and σ the standard deviation, both as defined by the equations for GLCM 
Mean and GLCM Variance in the list of equations below; 
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N is the number of rows or columns, which is identical to the number of gray levels in the 
image: 

● Mean :  

Represents the mean column i or row j by applying as weight the pairing frequencies of the 
GLCM projected onto the column axis i and the row axis j, respectively. As mentioned above, 
in case of symmetric GLCMs both means are identical.  

 

           

   

   

                        

   

   

 

   

   

   

   

 

 

Equation 1. Mean of Column and Mean of Row 

 
● Contrast: 

Similar to the later mentioned feature Dissimilarity the GLCM elements are weighted by 
their distance from the diagonal. While Dissimilarity uses the linear distance, Contrast 
applies the square distance. Diagonal elements do not contribute to Contrast. There is a 
strong reverse relationship to Homogeneity, as one can easily see later on: 

          
  

   

     

 

Equation 2. Contrast 

● Entropy: 

As defined in digital image processing, the entropy represents the information contents of 
the GLCM. The more different values within a GLCM the higher the entropy. Due to the fact 
that the content of symmetric and asymmetric GLCMs are different, also the Entropies must 
be different.  

 
 

               

   

     

 

 

Equation 3. Entropy 
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● Variance of Columns and Variance of Rows: 

Describes the scattering of GLCM values around the mean values. As with the Mean, the 
variances with respect to column and rows are identical in case of symmetric GLCMs.  

  
             

   

   

     

 

  
             

    

   

     

 

 

Equation 4. Variance 
 

● Correlation:  

Shows the correlation between the rows and columns. The correlation is positively high (i.e. 
close to +1) if the filled elements in the GLCM are ordered along the positive GLCM 
diagonal, is low (i.e. close to 0) if the filled elements are spread out over the entire GLCM, is 
negatively high (i.e. -1) if the filled elements are ordered along the negative GLCM diagonal. 

 

      
            

     
 

   

     

 

 

Equation 5. Correlation 

 
● Homogeneity:  

The GLCM elements are weighted by the reciprocal of their squared distance from the 
matrix diagonal, where i equals j. The Homogeneity is the higher the closer the GLCM 
elements gather around the matrix diagonal. As a certain contrast to Homogeneity see 
Dissimilarity. 

 
    

        
 

   

     

 

 

Equation 6. Homogeneity 
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● Dissimilarity:  

The GLCM elements are weighted by their distance from the matrix diagonal, where i equals 
j, i.e. where a gray value is identical to its partner, where the pairs have the hightest 
similarity. The higher the difference between the column/row index the higher the weight 
and the higher the dissimilarity. The Dissimilarity ranges from 0 to dmax. It is 0 if reference 
and partner are equal. dmax is the greatest grey value difference. Dissimilarity reaches dmax if 
the GLCM contains only one element located in the last column of the first row or in the last 
row of the first column.: 

           

   

     

 

 

Equation 7. Dissimilarity 

 
 
● Angular Second Moment (also known as Energy or Uniformity):  

Energy needs a few more words of explanation: In several publications, Energy is defined as 
square root of Angular Second Moment. Both, Angular Second Moment (often abbreviated 
as ASM) and Energy need Pi,j as a weight for themselves. When the window is very orderly, 
ASM and Energy yield high values. The ASM and Energy are always less or equal 1.0. There is 
only one case, where it reaches 1.0. There must be only one single non-zero element in the 
GLCM, and if this is the case it must be located in the matrix diagonal, or in other words, if 
all gray values in the original image window are identical. The less used term Uniformity 
becomes understandable. In practice, the Energy is always significantly less than 1.0. As for 
Entropy, the Angular Second Moment yields different results for symmetric and asymmetric 
GLCMs. 

Energy =      
 

Equation 8: Angular Second Moment and Energy or Uniformity 

 

     
  

   

     

 

 

Equation 9: Angular Second Moment 

 
For further detailed explanations of calculations regarding the Gray Level Co-occurrence 
Matrix, see Hall-Beyer M., 2017 and Gonzales R.C. and Woods R.E., 2001. 

4.4 Parameters for deriving GLCM and texture images  

For the extraction of the Haralick features , from the Gray Level Co-occurrence Matrix 
(GLCM) four important parameters need to be considered: 

 the grayscale quantization levels; 
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 the size of the window moved over the image to be analysed; 

 the orientation angle for the direction of neighborhood analysis; 

 the distance of neighborhood. 

 
1. The grayscale quantization levels: 
Images as they are acquired by high quality imaging systems contain an overabundance  of 
tonal shades of gray or colours. Quite often ranges of several thousands or even ten 
thousands of intensity values may be available. In general digital images are stored as 
positive integer values within a certain value range, thus representing a discrete 
quantisation of the natural continuous grey scale. High resolution satellite imagery may 
provide a range from 0 to 4095 (i.e. 12 bit representation) or even more. 

As mentioned afore, the size of a GCLM depends on the range of intensities of the image 
under investigation. In the case of a 12-bit image, the GLCM would end up in a size of 4096 
by 4096 elements, by far too big to be feasibly processed. Therefore, a re-quantisation is 
usually applied, which in the software tools is set by a parameter just called “quantisation“. 
The quantisation in this sense is a rescaling of the intensity range to a smaller range, quite 
often to 6 bits (64 intensity values), 5 bits (32 intensity values), or 4 bits (16 intensity 
values). The question arises, what the optimum quantisation setting would be. In the 
following a few basic considerations should be listed. 

If the full image information is preserved, very likely many neighbourhood relationships do 
not appear at all in large GLCMs, which eventually leads to a statistically less reliable 
sparsely filled huge matrix. On the other hand, the smaller the range after the quantization, 
the more information gets lost in the image under investigation. Minor variations in textures 
are erased and there are no variations in the distribution within the GLCM, everything is 
compressed (grey values of neighbouring pixels become identical). The information content 
is getting smaller, the more the level of quantization is reduced. Though the matrix 
elements are not empty, the information is gone. 

 
2. The size of a window moved over the image: 
A GLCM may be derived for the whole image. For texture classification this would not make 
much sense, therefore a moving window is shifted over the image, and in each window a 
GLCM is generated, which in the following is used to calculate Haralick features. This 
process can be called non-linear texture filtering in spatial domain. A parameter of filtering 
in spatial domain is the size of the moving window. In the following are a few considerations 
with regard to finding an optimum window size: 

 The smaller the size of the window, the less information exists about the 
neighborhood and therefore, less information about the characteristics of a texture, 
but due to the small window size the process is sensitive to spatially changing 
texture characteristic. Boundaries between different textures could be detected 
more reliably.  

 The larger the size of the window, the more information exists for describing the 
texture and therefore, unfortunately, the process is less sensitive to boundaries 
between different textures. In other words, smaller windows deliver sharper results 
and larger windows deliver greater transition zones between changes of texture. 
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 When small window sizes are applied, coarser textures, i.e. textures with a longer 
repetition wavelength, cannot be analysed and, hence, are not detected, while for 
detecting high frequency texture small windows are well suited. 

 If coarse texture frequently appears in an image, larger window sizes are a must, at 
the cost of good boundary detection. On the other hand, it is likely that boundaries 
between coarse textures are not so well defined anyway. 

 If all sorts of textures, fine as well as coarse ones, are present in images, one should 
consider separate analyses by applying different window sizes (there are suggestions 
in literature (e.g. Coburn C.A. and Roberts A.C.B., 2004)), or as an alternative 
approach, it possible to analyse several levels in image pryramids. One should be 
aware, that larger windows and coarser pyramid levels may deliver similar results, 
but they are not equivalent, although the size of the GLCM may be equal. 

In the figure below (figure 6) a sample from Pléiades 1B has been tested, where the Haralick 
texture features Mean, Contrast and Entropy have been applied, with a quantisation of 64 
gray levels, using three different window sizes, i.e. a) 7x7, b) 15x15 and c) 21x21. One may 
watch the tooth-like pink feature right in the centre of the image. The shape in the image a) 
clearly shows two extensions, the boundaries to the neighbouring textures are sharp. In 
image b) the boundaries are already blurred, while in image c) the original shape has been 
significantly generalized; the two extensions are separated by only a narrow gap. On the 
other hand, in image a) the forested cyan-blue dotted area below the above mentioned pink 
feature appears to be rather noisy. Obviously small image details are extracted as individual 
textures. As a matter of fact, the entire region has a more coarse texture. If one compares 
this region with the feature extracted in image c) a by far more uniform cyan patch can be 
recognized, which seems to represent more accurately the type of texture in this area. This 
example already indicates, that the combination of textural images derived with different 
parameters may render possible a more accurate classification of textured objects. 

 

 
a) 
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b) 

 
c) 

Fig.6: Haralick texture measures: Mean, Contrast and Entropy 
Image with: a) Window Size: 7x7, Quantization Level: 64 

b) Window Size: 15x15, Quantization Level: 64 
c) Window Size: 21x21, Quantization Level: 64 

 
3. The orientation angle for the direction of neighborhood analysis: 
A matrix has eight major directions, which can be expressed by 0°, 45°, 90°, 135°, 180°, 225°, 
270°, 315°, in other words, along rows, columns, and along diagonals, all in both directions, 
yielding a total of eight directions for analysis. In non-symmetric GLCMs these eight 
directions deliver different results, in symmetric GLCMs only the four main directions are 
relevant. The direction is an essential parameter of the GLCM in cases of non-isotropic 
textures, for instance, when in farmlands crops are arranged in lines in various directions, or 
in reforestation areas where trees may be restocked in certain patterns.  
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4. The distance of neighborhood: 
Another major parameter that influences the discrimination capabilities of the GLCM is the 
separation distance between pixels. If the neighbourhood distance is equal to 1, it means 
that the partner pixel is the immediate neighbour of the reference pixel. It is likely that the 
immediate neighbour contains a gray value that is very close to that of the reference pixel, 
therefore in the GLCM the elements along the (i=j)-diagonal are more frequently filled and 
eventually contain great values. The feature Correlation is positive and might lie close to 1.0. 
In the case that the distance value is increased, it tends to reflect a decreasing degree of 
correlation between distant pixels. Therefore, it would be advisable before the texture 
analysis and classification starts, to calculate the GLCM for different partners in different 
distances, like for five or even ten pixels distance. 

An example of an asymmetric GLCM (figure 7), with a 4x4 pixel neighbourhood, direction 0° 
(row left to right) and 45° (left lower corner to right upper corner) and distance 1 is 
illustrated below (reference coordinate = row number, partner coordinate = column 
number): 

 

1 2 3 4 

1 2 3 0 

4 3 4 1 

0 1 2 3 

(a) 
 

 
0 1 2 3 4 

0 0 1 0 0 0 

1 0 0 3 0 0 

2 0 0 0 3 0 

3 1 0 0 0 2 

4 0 1 0 1 0 

(b) 
 

 
0 1 2 3 4 

0 0 0 0 1 0 

1 0 0 1 0 1 

2 0 1 0 1 0 

3 0 0 0 1 1 

4 1 0 1 0 0 

(c) 
Fig.7: (a): original image; 

(b): GLCM in 0°, distance 1; 
(c): GLCM in 45 °, distance 1 
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In this study, different processing windows and grayscale quantization levels were 
investigated. In regard to the direction and distance, as in the previous case, several 
directions and distances have been tested, but in all cases, very small differences were 
noticed. Therefore, varying the parameters is of minor importance, and it has been decided 
to select a fixed setting of a 45 direction and the distance 1 in order to perform the further 
analysis. 
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5 Image classification 
Image classification is a task of image analysis to assign distinct object classes to parts of the 
image by spatial subdivision according to typical local image characteristics, such as texture, 
colour, geometric shape, etc. The resulting classified image is a thematic dataset whose 
elements bear the name of the respective class. In the huge field of image interpretation 
and image understanding, classification is a basic process, and therefore, a great many 
approaches and algorithms have been developed in the past and standard procedures exist. 
In the field of remote sensing, the classification of multispectral or multichannel images 
have belonged to the core procedures of each image processing system from the very 
beginning. The multispectral images of the Landsat series and their successors led to 
standard procedures, which have proved successful and which are still widely used, 
although the challenges of modern high-resolution imagery captured from space platforms 
require more sophisticated approaches. Both texture and colour are going to play a major 
role. Whether the well-known algorithms, like Maximum Likelihood, Minimum Distance, k-
Means or Isodata, are able to yield satisfying results, need more detailed investigation. The 
current work is not intended to provide a general answer. 

5.1 Supervised and unsupervised classification 

To start with classification, first, two widely used terms for characterizing classification 
approaches should be explained: the supervised and the unsupervised classifications. 

The classification process may be supported by the user who is responsible for teaching the 
algorithm what sort of image characteristics should be searched for by providing training or 
ground truth samples. These samples may be taken from a sample library, but quite often 
the samples are extracted from the image under investigation by selecting regions of 
interest (widely known as ROIs) for each class. In this case, the approach is called supervised 
classification. 

To perform a supervised classification, one must follow rigorously certain steps. 

These are:  

 adopting a classification scheme; 

 selecting representative test areas (samples);  

 statistical analysis of the samples of the spectral data must be carried out;  

 a suitable classification algorithm must be selected; 

 the accuracy of the classification must be statistically assessed by validating the 
classified result against the samples of “field data“. 

More sophisticated approaches leave it to the algorithm to find regions of identical or at 
least very similar data characteristics. A priori analysis and learning are carried out without 
or with minor interaction by a user. This group of approaches is called unsupervised 
classification. 
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The unsupervised classification does not need too much knowledge about the data in 
advance, though each algorithm needs some initial settings and these settings need to be 
estimated. As an example, the k-Means algorithm asks for an estimated number of classes 
to be classified. If this number is not realistic at all, because it is too high or too low, the 
result may not be very useful. The Isodata algorithm, on the other hand, is an extension of k-
Means and the user has to provide a few further settings which control an automatic joining 
or splitting in order to lead to an extension or reduction of an a priori estimated number of 
classes. Basically, the algorithms are based on finding clusters, i.e. areas of high point 
density, in the multichannel feature space followed by their statistic analysis. Clusters are 
expected to represent prominent classes in the original data set.  

Besides the fact, that there exists a great number of very different algorithms for both 
approaches, there is no clear indication, which tells a user, which approach should be 
preferred. One just needs to be aware, that a supervised approach always needs a sort of 
human visual interpretation in advance. After classification, at least, the pixels of the 
classified image are already assigned the classes which the user has provided. One should 
keep in mind, that only classes can be found for which ground truth samples exist. Classes 
which obviously are present in an image but have not been selected for training are either 
assigned to the next best ground truth class or are rejected into a not classifiable 
background class. In cases of multichannel images, such as multispectral images, it is quite 
difficult to visually find sufficient and well separable class samples. The classified result may 
then be incomplete or inaccurate.  

On the contrary, a good unsupervised algorithm is capable of finding by far more classes, 
because it analyses the complete image for distinct characteristics even in a multichannel 
image. The resulting classified image does not have assigned class names, just category 
numbers. The assignment of class names according to the real world’s objects has to be 
done manually in an independent post-processing step by the user, what would need a 
quite cumbersome process. If the parameters of the unsupervised classification algorithm 
were not optimally set, the number of resulting categories could be rather high, i.e. the 
separation criteria were too sensitive, or the number of categories might be rather low, i.e. 
the separation criteria were too insensitive. Finding the optimum number of classes can 
usually be set by adjusting the initial parameters of the algorithm, possibly in a trial and 
error feedback loop.  

Though at a first sight, the unsupervised approach looks more convenient and even more 
reliable, the supervised approach might be superior in cases where the classes looked for 
are very limited and where the image has only a few channels so that classes are visually 
well separable during the training phase. Additionally, it has to be emphasized, that the 
major difference between a supervised and an unsupervised approach is the way of finding 
the class representatives in the multichannel feature space. The eventual subdivision of the 
space into class relevant portions may be carried out by the same algorithms, for instance, 
by Maximum Likelihood, Minimum Distance, Support Vector Machine, etc. 

5.2 Choosing a supervised approach 

For all following investigations, a supervised approach has been chosen in order to facilitate 
the comparison between the computer assisted classification and human based 
interpretation. The operator has to select ground truth data, first, for training and, second, 
for quality assessment. Since the ground truth areas are known, they can, in a separate step, 
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easily been investigated with respect to their multi-channel characteristics. This is 
particularly important for getting more information about the behaviour and nature of 
textural parameters. In the unsupervised approach, where the software makes its class 
assignment independently, investigations of that kind would be more cumbersome or even 
not possible at all. 

5.2.1 Selecting the classification algorithm 

Numerous classification methods can be used to assign a pixel to a particular class. Choosing 
a custom grading classification method depends on the nature of the input data and desired 
data.  

Some of the most used classifications in remote sensing so far are: Parallelepiped 
classification; Minimum Distance classification; Maximum Likelihood classification and 
Mahalanobis Distance. Common for all these classification methods is that the typical class 
representation is given by the mean value of the cloud. The Mahalanobis Distance and 
Maximum Likelihood are approximately the same, it is just a matter of scaling the distances. 
The cloud is statistically represented by a mean value and a normal distribution. The 
Parallelepiped classification uses the Gaussian curves as representatives for the distribution 
of each channel individually, while the Minimum Distance analysis just dependents on 
Euclidean distances from the mean to a pixel to be classified. Accordingly, it means that the 
Mahalanobis Distance and Maximum Likelihood algorithm have very similar prerequisites. 
These two classifications assume that the distributions of the classes in the multi-channel 
feature space, come close to a normal distribution. Parallelepiped and Minimum Distance 
even assume that clouds form an isotropic distribution. 

Maximum Likelihood is a very often implemented algorithm, therefore it would be very 
interesting to investigate, whether this type of classification would be successfully 
applicable for fused textural and spectral information. For this reason, in this investigation 
the Maximum Likelihood algorithm plays an important role and since it is installed more or 
less in all image processing systems dedicated to remote sensing applications (also in the 
ENVI software which is used for this investigation), minor a priori implementations were 
necessary and the work could concentrate on the image analysis almost immediately. 

5.2.2 Maximum Likelihood classification (ML classification) 

A powerful and commonly used method of supervised classification in remote sensing is the 
Maximum Likelihood, which assumes that a pixel is assigned to a class depending on the 
probability density of a particular class whose mean and variance-covariance behavior can 
be described by a normal distribution in the multispectral feature space. In other words, the 
Maximum Likelihood decision rule is based on probability density and therefore, it`s 
procedure assumes that each class in each band are normally distributed. Training data with 
bimodal or n-modal histograms in a single band are not ideal. In such cases, the individual 
modes probably represent unique classes that should be trained upon individually and 
labeled as separate classes. A set of m classes is calculated, and the pixel is then assigned to 
the class for which the probability density is the highest.  

In the 1-dimensional case the normal distribution is represented by the well-known Bell 
Curve, which can be defined by the two parameters mean and the standard deviation. In the 
N-dimensional case mean and standard deviation are replaced by the N-dimensional mean 
vector and by the NxN-dimensional variance-covariance matrix. 
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“This approach to classification is extremely useful and flexible and, under certain 
conditions, provides what is probably the most effective means of classification given the 
constraints of supervised classification“ (Richards J.A., 1999). 

As already mentioned above, this classification method is based on the use of probability 
theory to compare the spectral values of each pixel in part with the statistical “footprint“ in 
each sample chosen during the classification preparation phase. The higher the probability 
density for a certain point, the more likely that point belongs to the respective class.  

Calculations are slower due to the complexity of the used algorithms. Depending on the 
importance of the project and the precision required for classification, it is recommended to 
choose this classification method, because it is based on a sound statistical theory. It needs 
more computer resources than the more simpler approaches, but with nowaday’s powerful 
hardware this is not a limitation any more. In nature, the areas to be classified show a 
certain variation in spectral responses. In addition, occlusions, cast shadow, topographic 
shading, system noise, and mixed pixel effect increase this variability. 

Nevertheless, the classification needs careful preparation by the user. If the ground truth 
samples are not well selected with respect to the method`s requirements, the final quality 
will certainly not fulfill the high expectations independent of the theoretically high quality of 
the algorithm.   

ENVI operator also allows to select a probability threshold. “This means that if the 
probability that the test pixel is below the operator input value then the pixel will remain 
unclassified“ (Richards J.A., 1999). No probability threshold has been chosen in this work, 
which means that all pixels are classified into one of the reference classes and no pixel 
remains unclassified. 
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6 Investigation methodology 
In order to obtain results which allow a qualitatively sound assessment of the investigation’s 
objective, a strategy has been put together, which eventually allows various comparisons. 
Therefore, three basic processing lines have been worked out to be evaluated: Classification 
with spectral data alone, classification with textural features alone, and finally, as a sort of 
fusion, classification with both spectral data and textural features together. The processing 
framework is illustrated below in figure 8. 

 

 

Fig.8: A general framework of the investigation methodology 

 

6.1 Selection of ground truth areas 

Ground truth areas are those regions in the image of which one knows the object class in 
the real world. Ground truth is usually gathered by visual interpretation of the image under 
investigation. Areas (often called Regions of Interest, or ROIs) need to be defined, from 
which the interpreter is sure to know the class of the real world object below. Ground truth 
samples, in the ideal case, must contain only one class and therefore their collection must 
be carried out very carefully. They are needed in two cases:  

1. If a supervised classification is to be applied, ground truth provides information for 
teaching the algorithm the typical spectral properties of the classes to be classified. 
These ground truth areas are often called “training areas“. 

2. The quality assessment of a classification is based on the comparison of the 
classification result with ground truth data. There exist several strategies for that 
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comparison. One would be the comparison of the classes at randomly selected 
points. At each selected point the user has to interpret the class in the original image 
or in any other appropriate dataset. Another way would be the use of ground truth 
areas of the same type as they have been used by the algorithm for learning. As they 
must not be geometrically the same areas as the training areas, they may be called 
“checking areas“. 

The current classification of multispectral images is very automated. In many cases, the 
choice of  ground truth areas is both scientific and intuitive. The interaction between analyst 
and image data is needed. Substantial references and good knowledge of the geographic 
area to which data is applied are also needed.  

6.2 Image texture measures 

Haralick famously proposed a technique for evaluating textural features, that are divided 
into two categories, namely occurrence texture measures and co-occurrence texture 
measures. For this investigation, the co-occurrence-based filters have been tested and 
employed. 

As for the important textures measures, there is a total number of five occurrence 
measures, these are: data range, mean, variance, entropy and skewness and eight co-
occurrence filters, namely: mean, variance, homogeneity, contrast, dissimilarity, entropy, 
second moment respectively correlation. 

“Occurrence measures use the number of occurrences of each gray level within the 
processing window for the texture calculations“ (Anys H. et al., 1994). These measures are 
also known as 1st order statistics. 

“Co-occurrence measures use a gray-tone spatial dependence matrix to calculate texture 
values. This is a matrix of relative frequencies with which pixel values occur in two 
neighboring processing windows separated by a specified distance and direction. It shows 
the number of occurrences of the relationship between a pixel and its specified neighbor“ 
(Haralick R.M. et al., 1973). These measures are also known as 2nd order statistics. 

The occurrence measures are based on statistical moving window filters in the spatial 
domain. They are not directly sensitive to neighborhood variations and to directional 
behavior of textures and therefore it has been decided, not to use them in the current 
investigation, and to concentrate on co-occurrence measures only. 



 

37 
 

6.3 Separability analysis 

Before the classification is carried out, there are a few possibilities for estimating the 
expected quality of the classification result. Among the most important ones is the analysis 
of the separability of the classes. There exist several approaches, among them the well-
known Jeffries-Matusita Distance (JMD). Like the Maximum Likelihood Classification itself, 
the calculation of the separability is based on class samples which can be represented by a 
normal distribution in feature space, i.e. by representative mean values and associated 
variance-co-variance functions. The JMD is a sort of probability estimation rather than a 
distance in feature space. It is derived from a multiplicative comparison of normalized 
distributions. The separability is always carried out between two classes only. If there are 
more than two classes, all class combinations are evaluated separately. In case of n classes, 
n(n-1)/2 separabilities must be calculated. The JMD cannot exceed a maximum value. A bit 
dependent on the actual implementation this theoretical maximum is 2.000. The worst 
separability is given if the two normal distributions overlap 100% yielding a separability 
0.000. If the two distributions form distinct clouds, the separability reaches 2.000. One 
should be aware, that the JMD is rather sensitive, in other words, only values close to 2.000 
indicate a good separability. ENVI suggests interpreting values greater than 1.9 as excellent 
separability. The threshold in practice is somewhere at 1.5. In particular values below 1.000 
indicate a not acceptable separability and a thorough check of the samples must be carried 
out. By analyzing the JMD for the dataset of the samples, one can easily find which classes 
will not be separable by the classification, thus causing wrong class assignments. As a 
consequence, the ground truth samples need to be revisited and its boundaries edited. In 
some cases, a bad separability may even be accepted, for instance, if the two classes are not 
distinct classes in the real world, but two subclasses, which at the end will be combined, 
anyway. As mentioned before, there are other separability measures used in remote 
sensing. Mausel et al. (1990) investigate several of them in order to find the optimal band 
for supervised classification of multispectral data.  

6.4 Maximum Likelihood classification process 

For classification, the supervised Maximum Likelihood approach has been selected. It has 
been one of the standard procedures in multispectral remote sensing from the very 
beginning of image processing and thus, it is implemented in almost all dedicated remote 
sensing software tools. It is also available in ENVI, the toolbox of our choice, as already 
mentioned earlier. The question arises whether the Maximum Likelihood approach is well 
suited for the particular investigation. As already mentioned in section 5.2.2 certain 
preconditions apply for successful use. As for texture classification and the combined 
classification of texture and multispectral data, it will, therefore, be necessary to check 
whether these conditions are fulfilled. 

6.5 Quality assessment 

The accuracy assessment analyzes the comparison with the help of confusion matrix 
between two sorts of information:  

 pixels or polygons from a classification map derived from remotely sensed data and  

 ground reference test information, i.e. checking information (Jensen J.R., 2005). 
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A confusion matrix is a table that compares the relationship between the two sets of 
information. From a confusion matrix, the following can be determined: the Overall 
Accuracy, Producer’s Accuracy, Omission Errors, User’s Accuracy and Commission Errors. It 
contains rows and columns, and in order to create it, we need classes of interest. Since it is 
not generally defined, in the following the confusion matrices are written in the way ENVI 
does: the columns include the reference data while the rows are composed of the classified 
information. “The intersection of the rows and columns summarize the number of sample 
units (i.e. pixels, clusters of pixels, or polygons) assigned to a particular category (class) 
relative to the actual category as verified in the field“ (Jensen J.R., 2005). Along the diagonal 
of the matrix, the numbers represent the number of pixels, or samples which have been 
correctly classified, while the numbers in the non-diagonal matrix elements are considered 
as erroneous. 

The Overall Accuracy is a figure that expresses the percentage of the correctly classified 
pixels. The Overall Accuracy includes all classes at once. From the confusion matrix, it is 
derived by dividing the sum of the diagonal elements by the sum of all matrix elements. The 
disadvantage of the Overall Accuracy is obvious: it does not show the classification quality of 
the individual classes. Therefore, the Producer’s Accuracy and the User’s Accuracy provide a 
more detailed quality assessment. 

The Producer’s Accuracy (PA) is a statistical figure that expresses for each class the 
percentage of pixels of the ground reference data that have been correctly classified. In 
practice, there are certain ground reference pixels that have incorrectly been classified. 
These pixels are missing for a correct coverage. Therefore, the percentage of the omitted 
pixels is called “Error of Omission“ (EoO). It is the complement of the Producer’s Accuracy, 
thus EoO=1-PA. PA for a certain class is calculated by dividing the respective diagonal 
element by the all pixels of the reference class under investigation. 

The User’s Accuracy (UA) is a figure which is intended as information for the data user. It is 
derived from the classification result and it provides information of what percentage for 
each classified class may be assumed as correctly classified. In practice, there will certainly 
be more pixels in each class. Those are incorrect since they have erroneously been assigned. 
The percentage of erroneous pixels of a certain class is therefore called the “Error of 
Commission“ (EoC). It is the complement of the User’s Accuracy. Thus, EoC=1-UA. UA for a 
certain class is calculated by dividing the respective diagonal element by all pixels of the 
classified class under investigation. 

The Kappa coefficient expresses whether the classification is more a random assignment or 
a deterministic assignment. The higher the Kappa coefficient, the more organized the 
classification. In general, a Kappa coefficient greater than 0.7 is said to indicate a good 
classification. In fact, there are cases where even much smaller values indicate a systematic 
and not a random assignment.  
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7 Practical example 

7.1 Selection of ground truth areas  

In this practical section, it will be investigated whether the data is appropriate for the 
Maximum Likelihood classification, therefore, firstly, the selection of the ground truth areas 
is introduced. To successfully achieve a good digital image classification, the ground truth 
areas must be carefully selected and defined. Regarding the supervised classification 
process, the selection of ground truth areas was essential in this study and had to be 
extracted from the imagery data. 

As already mentioned in section 2.1, two study areas (N-W and S-E) were investigated, both 
of them located in the Rosalia region, in a mainly forested region some 60 km south of 
Vienna.  

It need to be noted, that for the S-E area only the multispectral classification was applied, 
while for the N-W area, both multispectral information and texture have been taken into 
consideration. The main reason for this choice is that the N-W area offers much more 
different textures in forests, therefore it was more interesting for this study and the more 
thorough investigation by using spectral and texture at once has been applied. 

The areas were classified with the help of supervised classification. The following list shows 
which classifications have been carried out: 

1) N-W area: 
a) Multispectral classification: 6 classes with training and checking areas for each class; 
b) Textural classification: 7 classes with training and checking areas for each class; 
c) Spectral classification combined with textural classification: 7 classes with training 

and checking areas for each class. 
2) S-E area: 

a) Multispectral classification: 8 classes , with training and checking areas for each 
class. 

7.2 Results of separability analysis  

It has to be mentioned that for the spectral classification three channels of the satellite 
image are the most important ones and have been used for the separability analysis, these 
are Red, Green and Near-Infrared and for the textural classification Mean, Contrast and 
Entropy have been chosen. Theoretically, there is the possibility to use all co-occurrence 
measures but a first quick check showed  that there are partly high correlations in this case 
of forest patterns and therefore, it has been decided to use only three parameters, which 
also Hall-Beyer M. (2017) has used for the investigation of Landsat and which delivered 
quite good results. Although in this current investigation, high-resolution images have been 
analyzed, these three parameters might deliver good results. 

N-W area:  
Tables 2 to 4 describe the pair separation with the help of Jeffries Matusita distance, applied 
to the spectral, textural and combined spectral-textural case. In addition, the separability 
has been calculated for the training and for the checking areas . For a good separation of the 
region-of-interest, values should reach 1.9, the range down to 1 represents a poor, but still 
acceptable separation and less than 1 is very poor and thus forgettable. 
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Table 2 shows the separability results in the spectral case. Numbers in red represent a very 
poor separation, in yellow are the acceptable results, while green indicates an excellent 
separation of the classes. 

 
Table 2. Spectral case: results of separabilities of training and checking areas, respectively 

 
Legend: 
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Table 3, gives an overview of the separability for the textural case. One can clearly see that 
shadow 1 is not able to be separated from shadow 2 and falls into the category forgettable. 
This is not a serious problem since these two classes will finally be unified anyway. 

 
Table 3. Textural case: results of separabilities of training and checking areas respectively 
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Table 4 lists the separability of the combined spectral-textural case. Shadow 1 and shadow 
2, as in the previous case, are difficult to be separated. 

 
Table 4. Spectral combined with texture: results of separabilities of training and checking 

areas respectively 
 

It need to be mentioned that despite the poor separability between some classes, the 
results are encouraging. Many of the yellow marked separabilities are rather close to the 
upper limit and may be considered as highly acceptable. If we look at the results marked in 
red, like for instance shadow 1 and shadow 2, these would normally not be acceptable at all, 
but the central focus of this study is not shadow, therefore, the results are tolerable and 
fully acceptable. Shadow 1 and shadow 2 have been introduced to express the different 
appearance of the areas, rather than to treat them as individual classes. Hence, separating 
shadow 1 from shadow 2 is not an issue. 

S-E area:  
Table 5 displays the results of spectral separability for the training and checking samples. It 
can clearly be observed that most of the classes have been well separated thus indicating 
that the classes and their ground truth samples were well selected. 
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Table 5: Spectral separability of training and checking (=control) samples 

7.3 Assessment of the cluster distributions in feature space 

As a further step, the distribution of the points in the feature space is checked. It should be 
mentioned, that ENVI software provides a tool called n-D Visualizer, which is used to check 
the distribution of point clouds in the n-dimensional feature space, thus, all following figures 
in this section have been produced by the n-D Visualizer tool. 

A 2D scatter plot is a plot where the distribution within one channel is plotted against the 
distribution in the other channel. An n-D scatter plot is a plot of n channels where the 
distribution of each channel is plotted against the distribution in the other channels. While 
2D scatter plots can demonstratively be displayed as graphics, the n-D scatter plot needs 
animation in order to become understandable. Therefore, plots have been added here, 
where the axes in the n-D Visualizer have been rotated so that they resemble a 2D scatter 
plot. 

In the first case three multispectral bands were investigated, namely, Red-Near-Infrared (R-
NIR), Green-Near-Infrared (G-NIR) and Red-Green (R-G), while in the second case, the three 
texture parameters Mean, Contrast and Entropy were in the focus. The Blue channel was 
not included, firstly, because of its high correlation with the other visible light channel and, 
secondly, the restriction to 3 channels facilitates the visual inspection of the scatter plots.  
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7.3.1 Spectral case 

Figures 9 and 10 display the distribution of all training and checking areas, respectively, in 
the 3D feature space. When comparing the distributions, one must be aware, that the 
colour of the same class differs in the plots of training and checking areas, as the legends 
show. Of course, also the shapes of the point clouds are different because of different 
spatial rotation of the axes. And one further point must be mentioned. As one can see, 
there are more classes (and colours) in the legend than colours can be recognized in the 
plot. The reason is the mutual occlusions of the point clouds if 3D clouds are projected onto 
a 2D plane. Again, animation would disclose this apparent shortcoming.    

 

 

Fig.9: The distribution of the training areas in the feature space of multispectral channels R, 
G and NIR 
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Fig.10: The distribution of the checking areas in the feature space of multispectral channels 
R, G and NIR 

 
As already emphasized above, figures 9 and 10 must not be compared, because the plots 
are created in order to see the distribution of the points in the multispectral feature space. 
The clouds have a different position and different direction, therefore these two 
screenshots are not comparable, in order to see a relationship between training and 
checking areas. 

The following figures, 11 to 13, show the same point cloud as in figure 9, but this time the 
axes have been rotated in positions in order to generate 2D scatter plots. The figures show 
all possible pairings of the three channels. One can clearly see that the channels are highly 
correlated, there is a linear dependence, especially between Green and Red, therefore, the 
cloud shapes are compact and may form elongated normal distributions. Deciduous old, 
conifers 1 and conifers 2 are distinguishable and the shape of the training areas do not 
overlap, thus, they come closer to the shape of an ellipse, and could be approximated by a 
multidimensional ellipse. The correlation is lower if NIR is involved. 
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Fig.11: View of all training areas, R and G channels 

 

 

Fig.12: View of all training areas, R and NIR channels 
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Fig.13: View of all training areas, G and NIR channels 

7.3.2 Textural case  

Figures 14 and 15 display the distribution of all training and checking areas in the 3D feature 
space of the texture features Mean, Contrast and Entropy. One must be aware, that the 
Entropy axis is rotated so that it runs vertically to the paper plane, thus generating a 2D 
scatter plot of the channels Mean versus Contrast. As already mentioned before, the colours 
of the same classes are different in the plots of training and checking areas, respectively. 
When comparing, the legends need to be consulted. 

 

 

Fig.14: The distribution of all training areas in the feature space of textural channels Mean 
versus Contrast 
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Fig.15: The distribution of all checking areas in the feature space of textural channels Mean 
versus Contrast 

 
In the figures below, 16 to 18, the co-occurrence texture features already show that the 
classes are much more compressed and closer to each other. 
 

 
Fig.16: 2D scatter plot of Contrast versus Entropy of all training areas 
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Fig.17: 2D scatter plot of Mean versus Contrast of all training areas (same as Fig. 14) 

 

 
Fig.18: 2D scatter plot of Mean versus Entropy of all training areas 

 

In figure number 17, is easy to observe that, coarse texture is within fine texture, flat 
texture within rough texture, as well as foliar texture within shadow, being difficult to 
distinguish between the clouds. In some cases the elliptical shapes become recognizable but 
in other cases, the clouds are more compressed being hard to recognize their form. The 
variations of the pixels in the shadow classes  are very low. Entropy expresses how many 
bits are used in order to store this sort of class. For shadow not many bits are needed 
because everything is dark. For other textures, in contrast, there are dark and bright areas, 
i.e. a much wider range of the gray values, therefore, much more bits per pixel are needed 
for these classes, hence, the entropy is higher. 
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The Maximum Likelihood classifier does a good job if the statistics of the ground truth areas 
within the training subset resemble a normal distribution. By visually analyzing the scatter 
plot, where the Entropy is involved, a non-linear dependence can be observed. One may 
assume that the required precondition of normal distribution might not be fulfilled. One 
work around could be a non-linear scaling of the Entropy axis, in order to generate a quasi-
linear distribution and thus come close the normal distribution. In this investigation a scaling 
of that kind has not been taken into consideration. The Maximum Likelihood classifier has 
been applied to the original values. 

In the first, the spectral case (see figures 9 and 10), the classes are better discernible than in 
the second, the textural case (figures 14 and 15). 

In the following figures, from 19 to 26, a few classes are meticulously investigated and 
individually analyzed. As can be observed, for the classes fine texture (training sample), 
coarse texture (checking sample), rough texture (training sample) and foliar texture 
(checking sample), the clouds are rather homogenous and come close to the shape of an 
ellipse, although the afore mentioned non-linearity of Entropy is still recognizable in all 
respective figures. Still, we can assume that they are approximately normally distributed. 
Therefore, the images were inspected even closer. 2D scatter plots have been generated in 
order to allow a better estimation whether the clouds could be approximated by ellipses.  

 

 
Fig. 19: 2D scatter plot of training area of fine texture, Mean vs. Entropy 
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Fig. 20: Left side image: the density slice of the distribution in this feature space for the 

entire image (note: colours indicate point density in the cloud and not colour coded classes); 
Right side image: violet indicates where the point cloud of the sample for fine texture is 
located while white points belong to other classes (Note, the conspicuous non-linearity). 

 

 
Fig. 21: 2D scatter plot of checking area of coarse texture, Mean vs. Entropy 

 

  
Fig. 22: Left side image: the density slice of the distribution in this feature space for the 

entire image (note: colours indicate point density in the cloud and not colour coded classes); 
Right side image: violet indicates where the point cloud of the sample for coarse texture is 

located, while white points belong to other classes. 
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Fig. 23: 2D scatter plot of training area of rough texture, Contrast vs. Entropy 

 

  
Fig. 24: Left side image: the density slice of the distribution in this feature space for the 

entire image (note: colours indicate point density in the cloud and not colour coded classes); 
Right side image: blue indicates where the point cloud of the sample for rough texture is 

located, while white points belong to other classes. 
 

 
Fig. 25: 2D scatter plot of checking area of foliar texture, Contrast vs. Entropy 
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Fig. 26: Left side image: the density slice of the distribution in this feature space for the 
entire image (note: colours indicate point density in the cloud and not colour coded classes); 

Right side image: purple indicates where the point cloud of the sample for foliar texture is 
located, while white points belong to other classes. 

 
The texture classes shadow have also been investigated here (see figures 27 to 30), although 
in practice it does not play a role, as already mentioned earlier. For classification reasons, on 
the other hand, it is advisable to introduce this sort of classes to improve the discrimination 
between other classes. As shadows are almost uniformly dark, their texture does not show 
much variation, and therefore, it has been expected that their clouds come closer to a 
normal distribution than clouds of other classes.  
 

 
Fig. 27: 2D scatter plot of training area of shadow 2, Mean vs. Contrast 
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Fig. 28: Left side image: the density slice of the distribution in this feature space for the 

entire image (note: colours indicate point density in the cloud and not colour coded classes); 
Right side image: brown indicates where the point cloud of the training sample for shadow 2 

is located, while white points belong to other classes. 
 

 
Fig. 29: 2D scatter plot of checking area of shadow 2, Mean vs. Contrast 

 

  
Fig. 30: Left side image: the density slice of the distribution in this feature space for the 

entire image(note: colours indicate point density in the cloud and not colour coded classes); 
Right side image: yellow indicates where the point cloud of the sample for shadow 2 is 

located, while white points belong to other classes. 
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As for the classification results based on Haralick’s textural features, their quality is partly 
questionable. As already expected, the Maximum Likelihood classifier might not be a good 
choice for this sort of data, even though there are classes, for which the results are 
satisfactory. Several reasons may be considered responsible for the suboptimal quality. The 
shape of the clouds and its deviation from normal distributions is just one part, the other is 
the fact that already the selection of ground truth areas caused problems in finding 
homogeneously textured sample fields. The a priori investigation of separability already 
suspected that less satisfying results may be expected. 
On the other hand, the Maximum Likelihood classifier is more suitable for the multispectral 
case. This algorithm has traditionally been applied to multispectral data in the past and, 
hence, has become a standard procedure for classifying multispectral data. As mentioned 
before, it immediately becomes evident that the Maximum Likelihood classification was not 
exceptionally appropriate in the textural case, but produces very good results for some 
classes like for the multispectral case. 
 

7.4 Visual comparison of the real distribution with the 
normal distribution  

In the following the training areas are abbreviated by IT for the area of interest of training 
regions and IC for the area of interest for checking regions. 

In this subchapter, the real distribution is compared with the normal distribution derived 
from the real distribution. When classifying, there is usually a model behind that and this 
model is more or less a functional approximation of the real distribution. In the case of 
Maximum Likelihood, this model is the normal distribution, in other words, the real cloud is 
described by only a vector and a matrix. The vector describes the mean values and the 
matrix the variance-covariance properties of the data cloud spread out over the individual 
channels. 

Images 31a to 31c represent the training areas for the fine texture class and images 32a to 
32c are the checking areas for the same fine texture class. In all these figures, it is 
investigated how the point cloud looks like compared to that what the statistical analysis for 
a normal distribution would deliver. The colour-coded isolines represent the density of the 
point cloud and the black ellipses show the isolines for certain probabilities of a normal 
distribution derived from the point cloud. In other words, it can be seen a sort of 
compression by a functional approximation where the real point cloud is described by their 
statistical measures assuming that it is a normal distribution. The difference between the 
isolines and the ellipses is an indicator of how good a normal distribution would fit. If the 
isolines and the ellipses were identical, one could say that the normal distribution describes 
the real distribution in an ideal way. If the normal distribution would fit, also the mean value 
should lie close to the highest peak of the isolines. If this is not the case, it means, that the 
mean value is not representative.  

In figure 31a one can see, that the mean value is far away from the peak of the distribution 
and also the direction of the isolines are different from that of the normal distribution. In 
other words, it means that the cloud does not fulfill the requirements of a normal 
distribution and therefore, one does not have to expect very good results when applying the 
Maximum Likelihood classifier. In contrast, figure 31b is a rather good case and one can 



 

56 
 

clearly see that the maximum density is at the position where the center of the ellipses is 
located. 

The initial gray values in the range between minimum and maximum have been scaled from 
0 to 1, hence, each of the texture features (Mean, Contrast and Entropy) has at least one 
point at 0 and one point at 1. The colour bar represents a measure of the point density, 
where the violet colour indicates the lowest density and the red one the highest density. 

 
Fig. 31a : The representation of the 2D distribution in the feature space for Mean versus 

Entropy 

 
Fig. 31b : The representation of the 2D distribution in the feature for Mean versus Contrast 
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Fig. 31c : The representation of the 2D distribution in the feature space for Contrast versus 

Entropy 
 

 
Fig. 32a : The representation of the 2D distribution in the feature space for Mean versus 

Entropy 
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Fig. 32b : The representation of the 2D distribution in the feature space for Mean versus 

Contrast 

 
Fig. 32c : The representation of the 2D distribution in the feature space for Contrast versus 

Entropy 
 
Concluding from the visual inspection of the above figures, the already afore mentioned 
significantly non-linear behaviour of the Entropy distribution can be confirmed. All scatter 
plots, where Entropy is involved, show, that the mean of the normal distribution does 
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conspicuously not match the area of the highest density of the data cloud. Even though the 
isolines are not matching the shape of the probability ellipses, they are not so far away, that 
an attempt to apply the Maximum Likelihood classification should immediately be 
abandoned. One should just be aware, that optimal results must not be expected.  

The following figures 33 (a,b,c) and 34 (a,b,c) display individual frequency histograms of 
Mean, Contrast and Entropy for the ground truth sample IT (training areas) and IC (checking 
areas). These histograms, represent  the projection of the scattergrams onto the axis, and 
are cross views of the projection onto the axis. The histograms can be seen in one channel, 
where the length of the red bar represent the average frequency. The position of the bar 
shows the mean value and the lengths of the bar shows the average frequency. 

 
33a) 

 
33b) 
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33c) 

Figure 33 (a,b,c). Textural case: Frequencies of Mean, Contrast and Entropy for the training 
samples of class fine texture 

 

 
34a) 
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34b) 

 
34c) 

Figure 34 (a,b,c). Textural case: Frequencies of Mean, Contrast and Entropy for the checking 
samples of class fine texture 

 
In the same way as in above figures, the data range of all channels in the figures 35 and 36 is 
scaled from 0 to 1 and therefore it represents just a subspace of the original data range. The 
scattergrams are intended to visually assess the data distributions within a certain class. 
They may also be used, to a certain degree, to compare the shape of the distributions 
between the training and checking regions of the same class. Since only one class is 
represented in one figure the scattergrams do not show, of course, possible cloud overlaps 
of different classes. These 2D plots of a 3D graphical representation, which are a certain 
projection from a certain eye point into a certain direction, do not allow an as thorough 
assessment as an animation would do. 
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Fig. 35. Textural case: 3D Scattergram representing Mean vs. Contrast vs. Entropy for 

training samples of class fine texture 

 
Fig. 36. Textural case: 3D Scattergram representing Mean vs. Contrast vs. Entropy for 

checking samples of class fine texture 
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7.5 Classification  

The central objective of this practical example is to check the quality of the classification 
result by using checking samples, which are ground truth data other than the training data. 
Hence, it is obvious, that a careful selection of both the checking and training samples is a 
crucial prerequisite for a reliable assessment. Training and checking samples of a class must 
reliably cover the ground truth of the same class and in addition the samples must not 
overlap and should not lie in immediate neighbourhood. If these aspects are not accurately 
observed, the eventual quality assessment would be representative for the carelessness of 
sample selection rather than for the quality of classification. A test for the equivalence of 
checking and training areas could be carried out by a cross-validation, i.e. by once 
performing a classification with training samples and a second time with checking samples. 
In the ideal case both classifications would deliver the same result. A significant difference 
would indicate that training and the respective checking samples do not represent the same 
class, and therefore, a re-selection of ground truth data were necessary.  

Both areas of interest have been classified, although the N-W area has been treated more 
thoroughly, while for the S-E area only a multispectral classification has been carried out. 
The N-W area, in the spectral case, training and checking samples for 6 classes have been 
chosen. Table 6 contains the name for the classes, in column 3 a colour infrared composite 
of a sample, and in the two right columns the number of pixels contained in the training and 
checking samples: 

 

 
Table 6. Spectral case: training and checking samples 

 

Table 7 contains the 7 selected texture classes, where the first picture column shows the 
green spectral band, on which the derivation of  GLCM images has been based. The second 
picture column is a colour composite of the derived Haralick features Mean (as blue), 
Contrast (as green) and Entropy (as red).  
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Table 7.Textural case: training and checking samples 

 

In the following, the classification has been carried out by applying the Maximum Likelihood 
rule for both the multispectral data and the textural data. Figures 37 and 38 and table 8 
belong to the spectral case, figures 39 and 40 and table 9 to the textural case. 

7.5.1 N-W area: Spectral case  

Figure 37 shows the original image as colour-infrared composite (i.e. composed of Green, 
Red, Near Infrared) with the training areas superimposed in the colours as defined in the 
legend below, while figure 38 shows the respective result after a Maximum Likelihood 
classification which used all available four spectral channels (i.e. Blue, Green, Red, Near 
Infrared). 
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Fig.37: Original image as colour-infrared composite with training areas overlaid (IT) 

 
Fig.38: Result after a Maximum Likelihood classification based on the training areas 

Legend 
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Table 8 displays the means and standard deviations of the training areas and the checking 
areas.  

The mean values show the estimated locations of the cloud centres in feature space. The 
better the centres are distributed over the entire feature space, the greater the chance for a 
good class discrimination. And the less the standard deviation, the smaller is the width of 
the clouds and again the better the chance that clouds do not overlap and, thus, allow a 
better class discrimination.  In order to assess whether training areas and checking areas 
represent the same class, the statistics of training and checking samples should be 
compared. In the ideal case, they must be identical. In practice, they will not be identical, 
but too great differences provide an indicator that the final accuracy assessment may lack of 
reliability. 

Table 8 shows the differences between the means of the training areas and of the checking 
areas. They are very close compared to the standard deviations of both values, therefore, 
these two training and checking areas could be assumed to represent the same samples. 

 

 
Table 8. Spectral case: statistical analysis of training and checking samples 

7.5.2 N-W area: Textural case 
As in the previous case, figure 39 shows the image used for the classification of the textural 
features. It is the result of the original image processed with the help of GLCM in order to 
derive the textural parameters Mean, Contrast and Entropy. Also here, the image has been 
overlaid by the training samples of the classes shown in the legend below figure 40. 
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Fig.39: The textural image as colour composite of the channels Mean, Contrast and Entropy, 

overlaid by the training areas 
 

 
Fig. 40: Result after a Maximum Likelihood classification based on the training areas 

 
Legend 
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Table 9 , as in the previous case, provides an overview of means and standard deviations of 
the training areas and checking areas. 

 

 
Table 9. Textural case: statistical analysis of training and checking samples 

7.5.3 N-W area: Combination of spectral and textural properties 

In the sections above, the classification has separately been carried out with a focus on 
spectral properties and on textural properties. Therefore, also the ground truth samples 
have been  selected accordingly. Since spectral and textural properties together are 
characteristics of a certain class, for this reason it seems to be advisable to define a class by 
observing both properties at once and select ground truth samples, which are unique with 
respect to the combination of spectral and textural properties. Figure 41 shows the image 
with superimposed ground truth samples which have been selected according to the afore 
mentioned strategy.  

 
Fig. 41 : Image with ground truth samples according to spectral-textural properties 
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Fig. 42: Result of the Maximum Likelihood classification of the spectral-textural case 

 

 

7.5.4 S-E area: Spectral case  

As already mentioned in section 1 the current research with the focus on the classification 
of high-resolution imagery has been split up into two parts: first, the classification based on 
spectral properties, second, the classification based on textural properties. The latter 
investigation was the more important, since texture plays a significant role for the 
interpretation of modern remote sensing images with their high geometric resolution. 

At the beginning two areas of interest have been chosen, where the first one, the N-W area 
turned out to be more appropriate as far as forest classification is concerned. Still, also the 
second area of interest, the S-E area, should be processed eventually. Since there are not so 
great differences in texture, it has been decided to classify this area just based on spectral 
properties. Figure 43 shows a colour-infrared composite of that area with the ground truth 
areas superimposed.  
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Fig.43: Colour-infrared composite of the S-E area with superimposed ground truth samples 

 
Not only forest stands have been selected as ground truth but also built-up areas, meadows, 
and shadows. The latter ones, as already mentioned, are not in the main focus of this study, 
they are included for better class separability. Altogether 8 classes have been selected for 
each of the training areas as well as control areas. Before applying the classification 
algorithm one has to make sure that the classes are sufficiently separable, therefore, the 
decision has been made to apply the Jeffries-Matusita Distance as separability measure. 

After the successful separability check (see section 7.2), the standard Maximum Likelihood 
classification method has been applied. Figure 44 shows the result. 

 

Figure 44 : Result of the Maximum Likelihood classification of the spectral image 
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7.6 Results of the quality assessment  

Since training areas as well as checking areas represent ground truth, the classification could 
be carried out in two theoretically equivalent ways, i.e. by using the training areas for 
training and the checking areas for checking (that is the standard approach) or the checking 
areas for training and the training areas for checking (a cross-validation approach). In the 
ideal case both results should be identical. In the following a few abbreviations should be 
introduced for better readability. The result of a classification will be written as C(…). A 
classification based on training areas (IT), therefore, will be written as C(IT), a classification 
based on checking areas (IC) as C(IC). For the assessment with the help of a comparison 
within a confusion matrix the comparison operator  …… will be introduced, in practice 
C(IT)IC or C(IC)IT denote classifications based on training areas, which are compared to 
checking data, and a classification based on checking areas, which are compared to training 
data, respectively. The comparison of two classifications - C(IT) based on training areas and 
C(IC) based on checking areas - is denoted as C(IT)C(IC). 

7.6.1 N-W area: Spectral case 

In the first case, the original multispectral image with the Blue, Green, Red and Near-
Infrared channels is taken into consideration. Table 10 shows the assessment of C(IT)IC. 
The quality assessment with the help of confusion matrices compares the classified results 
with the ground truth results. The diagonals are filled with the correctly classified pixels and 
hopefully contain the highest values. In the following examples, (tables 10 to 18) the 
absolute values are not suited for providing information about the accuracy, but they show, 
how many pixels have been involved. 
The ENVI Software, which has been used for classification, also provides a detailed overview 
of the achieved accuracy. The following tables show the ENVI listings, and therefore, it 
seems to be appropriate to provide a short description of the listings. They consist of five 
major parts:  

 The first part consists of just two lines. The top line shows the Overall Accuracy as 
ratio correctly classified pixels to all assessed pixels, and the second line the Kappa 
coefficient. 

 The second part shows the confusion matrix with the ground truth classes as 
columns and the classified classes as rows. The very last row contains the sum of the 
columns, the very last column the sum of the rows. The diagonal elements represent 
the correctly classified pixels. The number at the bottom right corner of the list is the 
number of all pixels involved in the assessment.  
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 The third part shows the confusion matrix in the same order as in the above one, but 
the columns show the class distribution after classification (expressed in percent) for 
the ground truth classes. Note, that in this case the diagonal elements are equivalent 
to the Producer’s Accuracy. The very last column shows the class distribution after 
classification (expressed in percent). 

 The fourth and the fifth part of the listing are mathematically related. The fourth 
part lists on the left the Error of Commission and Omission in percent and on the 
right as ratio of incorrectly classified pixels to all pixels of a classified class. 

 The fifth part lists on the left the Producer’s Accuracy and the User’s Accuracy in 
percent and on the right as ratio of correctly classified pixels to all pixels of a 
classified class. The Producer’s Accuracy is the complement of the Error of Omission, 
i.e. their sum is 100, and the User’s Accuracy is the complement of Error of 
Commission, again their sum is 100, as one can easily see in the tables.     

Table 10, 11, and 12 may be interpreted by keeping in mind that they are the assessment of 
three classifications, which more or less should, in the ideal case, deliver the same quality 
figures. Table 10 is based on C(IT)IC, table 11 on C(IC)IT, and eventually table 12 on 
C(IT)C(IC). Just a remark need to be added here, since the latter comparison is not a 
genuine quality assessment, it is more a comparison of two classification results, which are 
expected to be highly identical. If one assumes that IT and IC both are highly representative 
for the classes, all three classification results would be more or less identical. The more the 
results differ, the less comparable were IT and IC, or in other words, the assessment of C(IT) 
by using IC may not be fully justified. Therefore, first, the quality figures of these three 
classifications must be compared: 

 C(IT)IC:    Overall Accuracy 86.4%; Kappa 0.81 

 C(IC)IT:    Overall Accuracy 77.4%; Kappa 0.71 

 C(IT)C(IC):   Overall Accuracy 83.4%; Kappa 0.78 

Conclusion: There is a significant difference of 10% between the first two classifications, 
which indicates that training areas and checking areas do not ideally represent the same 
class, although an Overall Accuracy of some 80% is quite good and lie within the 
expectations of a multispectral classification. The quality of the third classification is 
somewhere, not unexpectedly, between the first two. If one looks a bit closer into the data, 
a significant greater number of checking pixels IC (greater by some 30%, i.e. 98658 
compared to 76061) than training pixels IT exist. Thus, the first classification was less 
supported by training, but more thoroughly checked, while the second classification was 
better supported by training, but less checked, although this fact does not explain the 
difference of accuracies. If one looks at the individual classes, the major differences of pixels 
numbers are the classes “deciduous“, “larch“ and “shadow“. By comparing the Producer’s 
and User’s Accuracies, the difference between classes within one classification are already 
very significant. The problem class is not really surprising “meadow“, followed by “larch“.  
For “meadow“ only a bit more than 700 pixels have been selected and by the two 
classification a great part of the pixels has been assigned to the class “deciduous“ (75% and 
47%, respectively). Spectrally there was not a great difference between these classes with a 
dominating NIR channel. One could expect that the assignments for the class “deciduous“ 
would be similarly bad. This is not the case and, therefore, the conclusion must be drawn 
that the ground truth areas for “meadow“ were not representative enough. As for the class 
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“larch“, the classification decided once partly for “conifers 1“ and in the second case for 
“conifers 2“. Finally, one can conclude, that the difference in the basic accuracy figures 
between these two classifications are mainly caused by the not well defined class 
“meadow“ and to a lesser extent by the class “larch“. 
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Table 10: Accuracy assessment C(IT) IC 
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Table 11: Accuracy assessment C(IC)IT 

 

An even better measure for estimating the ground truth quality can be found by comparing 
the two classification results, the first based on training areas, i.e. C(IT), and the second 
based on checking areas, i.e. C(IC). Table 12 shows the assessment C(IT)C(IC). 

The following table represents the comparison of two images, therefore much more pixels 
are involved, but again one can see that class “meadow“ could not be well discriminated. A 
great part has to be shared with class “deciduous“. And again the class “larch“ is not well 
discriminated, too, and partly classified as “conifers 1“ and “conifers 2“. This result is not 
unexpected, since this classification to a certain extent is based on both previous 
classifications. 
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Table 12: Accuracy assessment C(IT)C(IC) 

7.6.2 N-W area: Textural case 

Table 13, 14, and 15 may be interpreted in the same way as previous tables, by taking into 
consideration the textural classification. Table 13 is based on C(IT)IC, table 14 on 
C(IC)IT, and table 15 on C(IT)C(IC). The quality figures of these three classifications are 
as follows: 

 C(IT)IC:    Overall Accuracy 80.9%; Kappa 0.76 

 C(IC)IT:    Overall Accuracy 76.3%; Kappa 0.70 

 C(IT)C(IC):   Overall Accuracy 88.3%; Kappa 0.85 

Conclusion: It can clearly be seen that the accuracies of these three classifications are quite 
high and lie within the expectations of a textural classification, although a significant 
improvement compared to pure multispectral classification cannot be observed. By 
comparing the Producer`s and User`s Accuracies, as in the multispectral case, the difference 
between classes within one classification is significant. For “flat“ only 367 pixels have been 
selected and a significant part of the pixels has been assigned to the class “rough“. 
Therefore, one can conclude, that “flat“ is marginally represented, being too small and it 
cannot be determined very reliably,  while all other classes are well represented. 
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Table 13: Accuracy assessment C(IT)IC 
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Table 14: Accuracy assessment C(IC)IT 
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Table 15: Accuracy assessment C(IT)C(IC) 
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7.6.3 N-W area: Combination of spectral and textural properties 

Table 16, 17, and 18 represent the combination by taking into consideration both, spectral 
and textural properties already at the selection of training and checking samples. Table 16 is 
based on C(IT)IC, table 17 on C(IC)IT, and table 18 on C(IT)C(IC). The quality figures of 
these three classifications are as follows: 

 C(IT)IC:    Overall Accuracy 76.0%; Kappa 0.69 

 C(IC)IT:    Overall Accuracy 73.2%; Kappa 0.67 

 C(IT)C(IC):   Overall Accuracy 83.0%; Kappa 0.78 

Conclusion: By combining spectral and textural properties, the Overall Accuracy is quite 
good, although, there is a significant difference of 10% between the last two classifications, 
which again indicates that the training areas and checking areas do not ideally represent the 
same class. By comparing the Producer`s and User`s Accuracies, the problem class is again 
“flat“, followed by “shadow 1“ and “shadow 2“. For “flat“ only 645 pixels have been 
selected and a great part of the pixels has been assigned to class “old deciduous very 
dense“. Also in this case, the ground truth areas for “flat“ were not representative enough, 
therefore, the difference in the accuracy between the last two classifications are caused by 
the not well defined class “flat“. 
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Table 16: Accuracy assessment C(IT)IC 
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Table 17: Accuracy assessment C(IC)IT 
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Table 18: Accuracy assessment C(IT)C(IC) 
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In the following table (table 19), the accuracies achieved so far are summarised. Concluding 
from these results one can see that the expectations that by considering the texture in the 
classification does not significantly improve the quality, in contrast even, in this case, is 
lower, but one should be aware that this difference is not very significant. 

 

 
Table 19 : General overview of the quality assessment 

 

7.6.4 S-E area: Spectral case 

Table 20, represents the assessment of the spectral classification and shows the assessment 
of C(IT)IC, with an Overall Accuracy of 88.8% and Kappa 0.86. By comparing the 
Producer`s and User`s Accuracies, one can clearly see that “meadow 1“ is unreliable and 
equal to 0, which means that it has been classified but the training areas have different 
properties than the checking areas. Therefore, the conclusion must be drawn that this is an 
indicator that the training statistics and the checking statistics are not equivalent and the 
properties of checking and training areas are different. 

Since from the very beginning the decision has been made not to concentrate on the S-E 
area because of the suboptimal image content, the classification has been carried out with 
multispectral data alone in order to investigate whether a good quality could be achieved. 
The accuracy assessment showed no unexpected difficulties. In practice, the entire 
classification process should be repeated by looking carefully at those object classes which 
caused the problems. In the case of the current investigation, a second run has not been 
carried out due to the fact that the entire S-E area was not in the focus anymore. 
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Table 20: Accuracy assessment C(IT) IC 
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7.7 Combination of spectral and textural classifications 

In this subchapter, with the help of the ENVI function “band mathematics“, pixel values 
from the spectral classification have been combined with pixel values from textural 
classification,  yielding new classes of combinations, like “conifers1 - rough texture“, 
“meadow - flat“, “conifers 2 - fine texture“ and so on. The combination has been done on a 
pixel basis, thus, for each pixel the spectral classification result has been combined with the 
textural classification result. This combination leads to a class that in its name contains the 
respective spectral class and the respective textural class. The result of the combination is 
presented in figure 45: 

 

 

Fig. 45: Result of the mathematical combination of spectral and textural classification 
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Legend 

 

The mathematical combination yielded a great number of classes so that their use in 
practice would be of very limited value. By analyzing the mathematically found classes, it 
turned out, that many of the classes contained only a few pixels or appeared only in rather 
small and scattered patches or were located at the boundaries of major classes, and 
therefore, it can be assumed that they do not play a significant role. These classes, yielded 
by mathematical combinations, are just caused by the slight inaccuracies of class 
discriminations by the classification algorithm and it is almost impossible to match them 
with class assignments by visual inspection. Therefore, this sort of classes should not be 
used for the assessment of the accuracies. 

In order to apply the usual quality assessment using the confusion matrix, both 
classifications need to have the same number of classes. One classification has 36 classes 
and the other classification only seven classes, therefore, individual classes have to be 
selected for the comparison. A cross-reference table (table 21) has been created, which 
shows the complicated relationship between the two classifications. There are two different 
approaches possible for class selection. The first is based on a visual evaluation and the 
second one is based on a cross-reference table showing the pairing frequencies and 
proposes the maximum frequency of a class pairing. The red fields in the cross-reference 
table represent the maximum values, while the red numbers were independently selected 
by visual impression. For five of the seven classes, the visual and the mathematical selection 
is identical. Still, it has been decided to use only the visual selection for the quality 
assessment with the help of the confusion matrix, where the classification from manual 
selected spectral-textural training samples serves as a sort of ground truth. 
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The following table 22, shows the comparison of a classification based on training samples 
of the spectral together with the textural properties, and a classification, which is the result 
of the mathematical operation between a classification based on spectral training samples 
and a classification based on textural training samples. It should be mentioned explicitly, 
that the comparison is one of two classifications rather than of checking areas with a 
classified image. ITsp+tx means training samples considering both spectral and textural 
properties, while IT sp means training samples considering spectral, and IT tx training samples 
considering textural properties. The ring symbol stands for a mathematical operation, and 
brackets […] for the result of that operation. In the following this comparison is written as 
C(IT sp+tx)  [C(IT sp) ◦ C(IT tx)]. 

One must keep in mind, that in table 22 the comparison must not be interpreted as a real 
accuracy assessment. The attention should also be drawn at the class names for the 
“reference” classes (the columns) and the “classified” classes (the rows): they are not 
identical due to the two different classifications.  

As one example the class pair “meadow-flat“ versus “flat” should be discussed. Firstly, only 
the small number of 730 pixels have been correctly classified, but more conspicuous is the 
great difference between Producer’s and User’s Accuracy of 22.1% and 97.1%, respectively. 
The reference class “flat” consisted of 3282 pixels, which is not large, but still by far larger 
than the classified class “meadow-flat”, which has only 752 pixels. Keeping this ratio in 
mind, it can already be expected that the Producer’s Accuracy cannot be higher than 
752/3282=22.9%, while the User’s Accuracy could even reach 100%. From this point of view, 
the achieved results lie quite close to the achievable maxima and, therefore, they have to be 
considered as very good. This example shows impressively that the User’s and Producer’s 
Accuracy of a certain class depend a lot on the number of pixels in the reference areas of 
that class and the number of pixels classified into this class. The greater the difference the 
more may the accuracies differ from 100%.  

Conclusion: In this special case, the accuracy assessment table is just an attempt for an 
accuracy assessment; therefore, it is much more important to take a look into the cross-
reference table of these two classifications, because there all classes are taken into 
consideration and not only a more or less reliably selected subset. 
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Table 21: Cross-reference table 
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Table 22: C(IT sp+tx)  [C(IT sp) ◦ C(IT tx)] 

 

8 Conclusions 
This research was intended to investigate whether taking into consideration textural 
features alone or together with spectral features may bear the potential to improve the 
classification accuracy when discriminating between forest stands in high-resolution satellite 
images. Images from the Pleiades satellites served as the data source. Any other of today’s 
highly resolving images captured from space would have been suitable, too. 

In order to limit the number of possible approaches, some restrictions have been defined in 
advance and during the first steps of investigations: 

 First, only the well-known Haralick features, based on the Greylevel Co-occurrence 
Matrix (GLCM), should be used for deriving textural features;  

 Second, only one set of parameters has been applied for deriving the textural features;  

 Third, only a very limited set of Haralick features has been selected for the eventual 
investigations;  

 Fourth, as classification algorithm only the Maximum Likelihood approach has been 
used. 

Due to these limitations, several investigations were necessary at the beginning. There is no 
doubt, that it is justified to base investigations on the Haralick approach, therefore, not too 
much attention has been paid to other approaches. Although the Haralick textural features 
have been well known for decades and have successfully severed as basic texture measures 
for a great many research projects, some further testing was needed in order to understand 
their practical behavior in forested areas in the Pleiades images.  

Besides checking the influences of the GLCM’s quantization parameters, direction, and 
distance setting, the window size seemed to be quite important. The generation of texture 
images can be compared to non-linear filtering in the spatial domain. A moving window is 
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shifted over the image and in each window Haralick features are calculated. Therefore, it is 
obvious, that the window size may have a significant influence on distinguishing between 
areas of uniform textures. Small windows do not smear the boundary between texture 
classes on the one hand, but on the other hand, small windows bear very little information 
about typical texture properties, since the texture is a property of a more or less large image 
patch rather than the property of an individual pixel. Increasing the window size offers by 
far more possibilities to derive reliable texture parameters at the cost of uncertainties on 
texture boundaries and, later on, of the accuracy of class boundaries. Small texture areas 
will be smoothed and incorrectly analyzed. By deriving the textural features for a series of 
window sizes from 5x5 pixel to 25x25 pixels, the visual impression was in favor of 15x15 
pixels. This window size has then been used for all further investigations.  A size of 15x15 
pixels would also have allowed varying the setting of the directional and even of the 
distance parameter. These parameters have not been changed, the direction was left at 
“South-East” and the distance at 1, i.e. “Neighboring Pixel”. The question arises whether a 
too strict limitation has been imposed on the investigations. As for the direction, one should 
first be aware of the sensitivity of that parameter to a derived textural feature. For all image 
textures with a typical directional, non-isotropic behavior, such as rows in vineyards, for 
instance, the directional parameter is quite important. In forested areas, one usually 
observes an isotropic behavior and, therefore, varying the directional parameter seemed to 
be superfluous. As for the distance parameter, a variation makes only sense, first, if the 
window size is big enough, possibly greater than 7 or 9, and second, if a series of distance 
settings are compared to each other, which would allow drawing conclusions regarding the 
spatial frequency of the texture. In order to limit the calculations in this investigation, the 
distance setting has been left constant, although it would be worth to check also other 
settings because young and old forests show quite different spatial frequencies. Hence, it 
might help to achieve a better distinction between old and young forest stands. Future 
investigations should take this fact into account. 

There are quite a lot of Haralick features, which could be used. In order to keep the effort 
low, only three of them have been selected, i.e. the mean, the contrast, and the entropy. Of 
course, the question arises, whether these features provide the optimum choice for forest 
analysis. A rough comparison with other features showed partly high correlations, and it 
was hard to determine, which set of features is optimal. The selection of the above-
mentioned features was supported by other research, who successfully used these three 
features for analyzing satellite images. No further checking has taken place, but certainly, it 
should be kept in mind for future research. 

Finally, a choice has been made regarding the classification algorithm. For the classification 
of multispectral satellite images, the Maximum Likelihood (ML) approach has become one 
of the most used standards. There are several prerequisites which need to be fulfilled in 
order to successfully apply ML. Most importantly, training data must be normally distributed 
and the distribution should form not too big clouds, in order to guarantee good class 
separability. By careful selection of training data in spectral images, the preconditions are 
fulfilled to a great extent. Textural features may behave differently, and therefore, it was a 
must to investigate closer how the data clouds of the training areas behave in the feature 
space. A first visual inspection did not look that nice and, therefore, the shape of the clouds 
and the derived parameters of the normal distribution have been carefully compared. As a 
result, one comes to the following conclusion: The ML approach is certainly not the optimal 
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for this sort of texture classification since individual training data deviate significantly from 
an ideal normal distribution. On the other hand, there are features which come quite close 
to the ideal conditions. This investigation, therefore, dared to stick to ML and to find out 
which accuracy would be achievable. A careful separability analysis and the accuracy 
assessment showed weak points but also proved that ML may yield good, though not 
excellent results. The assumption that including textural parameters in the classification 
would significantly improve the accuracy of the classified data could not be confirmed. 
There is a slight improvement compared to the classification based on spectral features, if 
only textural features are analysed. Unfortunately, the achieved accuracy of a classification 
based on spectral together with textural features was even slightly worse. But in any case, 
the degradations as well as the improvements are far from any significance. The great 
advantage of ML is its implementation in almost each remote sensing software package and 
its comparably simple handling, but it needs a lot of effort for careful selection of training 
data, especially as far as texture selection is concerned. Still, future research should focus on 
other classification approaches as well, which allow a more general data distribution. 

Summarizing, one can state, that this investigation leads to an insight of how Haralick 
textural parameters behave in the classification of forested areas in images acquired by 
modern high-resolution space sensors. Although the results are not as perfect as one would 
have preferred, several points could be found, which certainly need further research. But 
there is no question, that textural parameter will play an increasingly important role when 
analyzing modern remotely sensed images. 
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