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Kurzfassung

In der natürlichen Sprache (NL) werden Quantoren oft benutzt um Sachverhalte, wie
zum Beispiel “Viele Leute mögen Fussball” und “Ungefähr die Hälfte der Menschheit
ist weiblich”, darzustellen. Die Ausdrücke viele und wenige bedeuten, dass eine gewisse
Menge relativ gesehen groß, beziehungsweise klein ist. Die Semantik dieser zwei Quantoren
ist nicht endgültig festgelegt, sondern hängt insbesondere von Kontextinformationen
ab. In ähnlicher Weise verhalten sich Quantoren wie ungefähr die Hälfte und fast alle,
insofern als dass die Toleranzen die, bezüglich entsprechender Statements, akzeptabel
sind, von Situation zu Situation verschieden sein können.
Fuzzy Logik wird oft herangezogen um solche NL Ausdrücke zu modellieren, insbesondere
zeitgenössische t-norm basierte Mathematische Fuzzy Logik (MFL). Hintikka hat die
klassische Logik (CL), und Giles hat die Łukasiewicz Logik, eine MFL, spiel semantisch
ausgedrückt. Die Gemeinsamkeit ist dabei ein Zweispieler-Nullsummenspiel mit perfekter
Information, wobei die zwei Spieler strategisch vorgehen. Fermüller und Roschger haben
Giles’s Spiel um einen dritten nicht-strategischen Spieler erweitert und damit eingeführt
was wir das Zufallszeugenauswahlprinzip nennen.
Dieses eben genannte Prinzip erlaubt es uns zwei weiter MFLen, Gödel und Produkt
Logik, spiel semantisch auszudrücken. Das erreichen wir mittels propositionaler Quantoren,
welche es uns ermöglichen den Delta-Operator zu modellieren, welcher im Wesentlichen ein
Projektionsoperator ist, der unstetige Wahrheitsfunktionen hervorruft. Diesen benötigen
wir um die Gödel Implikation in Giles’s System auszudrücken. Darüber hinaus modellieren
wir die Multiplikation und Division von Wahrheitsfunktionen mittels dem propositionalen
Quantor der auf dem Zufallszeugenauswahlprinzip basiert, dem Delta-Operator und dem
propositionalen Existenzquantor. Das ermöglicht es uns die Konnektive der Produkt
Logik zu definieren. Auf diesen Resultaten aufbauend, zeigen wir wie man alle MFLen
die auf endlichen Darstellungen basieren in unserem System definieren kann.
Aufbauend auf der erweiterten Ausdrucksstärke, modellieren wir zusätzlich eine Vielzahl
von NL Quantoren in unserem System. Dieses Unterfangen betreiben wir schrittweise, so
dass die ordentliche Interpretierbarkeit von entsprechenden Aussagen garantiert bleibt.
Zunächst modellieren wir semi-fuzzy Quantoren, das sind diejenigen die nur klassische
Argumente annehmen, das heißt Prädikate die entweder (vollständig) wahr oder falsch
sind. Diese werden dann in systematischer Art und Weise mittels Quantifier Fuzzification
Mechanisms (QFMs) zu fully-fuzzy Quantoren erweitert.
Als abschließenden Beitrag dieser Arbeit definieren und testen (mittels Implementierung)
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wir eine Abfragesprache die Quantoren basierend auf dem Zufallszeugenauswahlprinzip
beinhaltet. Die Resultate zeigen, dass probabilistische Auswertungen nicht nur geeignet
sind für Modelle vager NL Quantoren, sondern auch die Auswertungsdauer von großen
Datenmengen verringern können.



Abstract

In natural language (NL), quantifiers are often used to make statements about states
of affairs, like “Many people like football”, and “About half the people are female”. In
particular, many and few express that some set of objects is relatively big, or small
respectively. The semantics of those two quantifiers is not fixed once and for all, but
rather depends on contextual information. Likewise, quantifiers like about half and
almost all show a comparable behavior, as the tolerance margins that make corresponding
statements acceptable can change from one situation to another.
Fuzzy logic is often used to model such NL constructs, in particular contemporary t-norm
based mathematical fuzzy logics (MFLs). Hintikka expressed Classical Logic (CL) game
semantically, and Giles expressed Łukasiewicz logic (Ł), a MFL, game semantically. The
shared underpinning is a two player zero sum game of perfect information, where the
two players act strategically. Fermüller and Roschger have augmented Giles’s game by a
third non-strategic player, thereby introducing what we call the random witness selection
principle into the framework.
The latter principle allows us to also express two other MFLs, Gödel logic and Product
logic, game semantically. We achieve this by allowing for propositional quantification,
which enables us to model the Delta operator, which is basically a projection operator,
evoking discontinuous truth functions. This is needed to express Gödel implication in
Giles’s framework. Moreover, the propositional quantifier based on the random witness
selection principle, together with the Delta operator and the existential propositional
quantifier, allows us to model multiplication and division of truth functions, which we
need to define the connectives of Product logic. Building on this result, we show how to
define all MFLs that are finitely representable in our framework.
Furthermore, the gained expressibility is used to model a variety of NL quantifiers within
the framework. This pursuit is conducted in a step-by-step manner, that guarantees neat
interpretability of statements. First, we model semi-fuzzy quantifiers, i.e. quantifiers
that can only take classical arguments, i.e. predicates that evaluate to either (definitely)
true or false. Then we lift those to fully-fuzzy quantifiers in a systematic and principle
guided way, by means of quantifier fuzzification mechanisms (QFMs).
As a final contribution of this thesis, we define and test, by means of an implementation,
a full-fledged query language, featuring quantifiers based on the random witness selection
principle. The results show that probabilistic evaluations not only are suitable to model
vagueness in NL, but also increase efficiency in presence of large amounts of data.
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“Bildung ist die Fähigkeit, die verborgenen Zusammenhänge
zwischen den Phänomenen wahrzunehmen.”

Václav Havel
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CHAPTER 1
Introduction

Games for logics can help to motivate the semantics of connectives and quantifiers.
Hintikka characterized Classical Logic (CL) as a two player zero-sum game with perfect
information [Hin73], which is perhaps the best known example, of a game based interpre-
tation of logics. He achieved this by only adhering to two strategic players and a notion
of role switch. However, it is well known, that in CL one cannot express relative (or
proportional) quantifiers, like e.g. “at least half”, which nevertheless appear frequently in
Natural Language (NL). Another feature not present in CL is intermediate truth values,
which are standard in contemporary t-norm based Mathematical Fuzzy Logic (MFL)
[CHN11]. Giles’s game for Łukasiewicz logic [Gil74, Gil77], which also is a two player
zero-sum game with perfect information, gives a game semantic representation of the only
MFL that features continuous truth functions for all connectives and quantifiers, and can
hence be considered singular. While Giles’s game does not feature role switches anymore,
it can still be understood as strictly more expressive than the Hintikka game. However,
although Łukasiewicz logic can handle intermediate truth values, and comparisons thereof
by virtue of the implication rule, it does not encompass relative quantifiers, neither does
it allow for expressing intensional, i.e. context dependent, quantifiers, like “many” and
“few”, which are also used a lot in NL. Expressing such quantifiers formally, as well
as finding adequate semantics, remains an open challenge, to which we contribute by
building on a randomized version of Giles’s game, introduced by Fermüller and Roschger
[FR12, FR14]. Such a game adds a third non-strategic player to the setting, referred to
as Nature. We will call this feature random witness selection principle. The framework
resulting from this principle will be used to derive the main contributions of this thesis,
namely:

(C1) definability1 of (continuous) t-norm based MFLs that are finitely representable,
1One may also speak of term-definability, see Remark 8.
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1. Introduction

(C2) modeling of a great number of NL quantifiers, and

(C3) a probabilistic query language for practical application.

1.1 Logic, NL quantifiers, and vagueness

The aim of this thesis is to model certain NL expressions, using formal languages, within
a coherent logical framework. While establishing the setting amounts to a technical
challenge, finding adequate semantics for such expressions is of more conceptual nature,
especially when the expressions are inherently vague.

We are predominately concerned with quantification in NL, rather than with other NL
expressions, like adjectives, adverbs and nouns, expressing properties2. Nevertheless,
we will point out connections and similarities where suitable, e.g. in Section 1.3 below.
The binding aspect of our investigations is vagueness, or uncertainty, i.e. quantifiers (or
predicates) that do not have a clear and indisputable semantics. To clarify that, let
us look at some explanatory NL sentences. Consider first the utterance “All men are
mortal”. We assume there is no issue in accepting it as a true statement. Dismantled, we
have a quantifier “for all” (∀), and two predicates, “being human” and “being mortal”.
Also, here we assume there is a (finite) domain of discourse (D), which at least contains
all humans. Moreover, we assume the meaning of “for all” needs no explanation, while
it seems important to elaborate on the fact, that we furthermore assume that for any
object in D3, there is a clear, or crisp, answer as to the question whether it is a human or
not, meaning that there are no borderline cases. The same should hold for the property
“being mortal”, one either (fully) is or (fully) is not mortal. We will sometimes call this
characteristic bivalency. More formally one speaks about classical predicates, those that,
upon evaluation with respect to some object from the domain, have exactly one of two
different truth values, which are 0 for false and 1 for true. The same applies to the level
of quantification, as long as we consider quantifiers that are as simple to conceptualize
as “for all” (applied to classical predicates). But, there are other quantifiers in NL,
like e.g. “almost all”, for which it can make sense to consider truth functions that are
not bivalent. One aspect of this is that, one finds that not everybody agrees upon the
meaning of a statement like “Almost all US citizens speak English”. Also, even the same
person that, on one side, agrees with the utterance, can still claim that, on the other side,
there are “Many US citizens who do not speak English”. If one, like Peterson [Pet00],
proclaims a semantics of “many” that is equivalent with “majority”, this would not even
be possible, as long as one agrees that “almost all” implies “majority”. This entails that
there are different readings of quantifying expression, each of which corresponds to a
certain truth function. The overlapping of more than one (crisp) truth function can be
modeled by truth functions that take on values within the real unit interval. In Chapter

2The simple reason for this is that, the project that funded the research of this thesis – MOVAQ,
Modeling Vague Quantifiers in Mathematical Fuzzy Logic – did not encompass predicates.

3Throughout this thesis, we will always identify constants from a domain D, and the respective
objects that the constants refer to. The set of objects is also called D.
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1.2. Witness selection principles

4, we introduce quantifier models [M3], which are based on the this idea, which is inspired
by Lawry’s voting semantics [Law98], supervaluationistic models [Fin75, FK06, Smi08],
and Vetterlein’s work on granularity levels [Vet11].

In our NL oriented account of fuzziness, intermediate truth values are not meant to reflect
any sort of inherent fuzziness in the world, but rather serve to increase the robustness of
evaluations of statements. One particularly persuasive example is the following. Think
of a library with exactly 1.000.103 books in stock. Let us further assume that exactly
500.000 of them are written in English, while the others are all written in Czech. Now, on
a guided tour through the library someone asks “How many of the books you have here
are actually written in Czech?”, to which the guide replies “Half of them”. Is he wrong?
Yes, logically speaking 500.103 is the half of 1.000.103 as much as +5 is the square root
−1, namely simply not at all. But do we want his statement to be rendered wrong? Not
really, as it is very close to being right. Which leaves us with two options. We could
allow the guide to amend his answer to “About half of them”, assuming the deviation of
less than 0.1% is acceptable for the people who take the tour, which would make the
guide’s statement fully true, or, we assume there is a truth function for the quantifier
“Half”, that continuously goes down from 1 to 0, as the proportion of witnesses recedes
from the value 1

2 , which would, depending on the particular model taken, most likely still
lead to a truth value very close to 1. Similarly, having a set of objects in the background,
all but one of which have a certain crisp property A, we would like a statement of the
form “Almost all objects have the property A” to be true, while the truth value should
approach 0 monotonically and continuously, as the number of objects fulfilling property
A decreases. The idea to relate vagueness and closeness has been discussed at length by
Smith [Smi08].

1.2 Witness selection principles
Let us take a look at the game semantic selection principles. The existential quantifier
“there is” (∃) is modeled as counting quantifier, i.e. existentially quantified formulas are
true in a given model if there is at least one witness in the model that makes the formula
true. As an example, we consider the statement “There is a country that has more than
one capital”. The meaning of “country” and “having more than one capital” is supposed to
be crisp again, as the one of the quantifier “there is”. To verify the statement, it suffices if
the proponent finds a single witnessing country that has more than one capital, and if she
can name one, e.g. Chile, she succeeded. Similarly, the universal quantifier “for all” can
be explained as based on a game involving witness selection as well. Assume someone, let
us call him Bob, asserts “All countries have more than one capital”. Then, an opponent,
let us call her Mary, can disprove the claim by simply pointing to any country that does
not have this property, e.g. France. This persuasive connection of proving statements and
(strategic) witness selection can be applied to model many different logics, in particular
Classical Logic [Hin73], but also the more expressive Łukasiewicz logic [Gil74]. While the
latter is a fuzzy logic, hence statements can have intermediate truth values within the
real unit interval, we can not directly refer to the proportion of witnesses for a certain

3



1. Introduction

property. This remaining lack of expressibility can be countered by introducing what we
call random witness selection principle. This will come along as a new, non-strategic,
actor, or player, in the game of proving statements. Non-strategic, here, means without
reason (or without vested interest), hence any witness is selected with equal probability,
which in turn means we introduce a uniform probability distribution into our logical
framework. Consider “You can come by at any time”, uttered by someone, let us say Bob,
to someone else, let us say Mary. This can be read as “Pick a random time to come by,
and I’ll be there”. In the model we describe, this statement is only fully true if all time
instances to visit Bob can completely (uniformly) randomly be chosen and all of them
will work, i.e. Bob will be there. One the other hand, if Bob actually only is available
half of the time, there is still a certain probability, namely 1

2 , that the randomly chosen
time instance works, which we will model in a way that allows us to say, that the overall
truth value of Bob’s statement has decreased to 1

2 . Consequently, Bob’s statement will
not be entirely wrong as long as there is at least one time instance that would work for
Mary to come visit him, although almost, as the probability for Mary to catch it is then
conceivably small. Hence, at least in a certain way, the new quantifier (Π), based on the
random witness selection principle, represents the natural language expression “any”.

1.3 Vagueness and properties
The constituting feature of fuzzy logics is that statements can have intermediate truth
values, different from 0 and 1. This is often considered to be controversial in itself.
However, there are convincing examples that may serve to justify this characteristic. Let
us think for example of a pair of socks, which is gray. We assume two predicate symbols
to be present in our language, “black” and “white”. If they are crisp, or classical, i.e.
each sock must be either fully black or fully white to fulfill the respective property, the
pair leads to a negative evaluation regarding both of these predicates. Alternatively, we
can interpret the predicates as fuzzy, i.e. they can take on intermediate truth values. In
that case, dependent on the actual shade of gray the socks have, both predicates can be
partly true or even have the same truth value. The latter is the case when both truth
values are 1

2 , which means the socks are neither fully white nor black, but they are white
as much as they are black.

Another way to think about vague properties, such as “tall” or “rich”, is the following.
People have reasons for stating vague propositions, although not everybody is always
aware of their own. That is to say that there are always crisp background evaluation
criteria attached to vague propositions, such as “Donald is rich”, or “John is tall”. It can
be as easy as just one other crisp predicate that justifies a statement, like the former,
involving the property rich. For example, people may accept Donald as a rich person,
because he has more than one million dollars, or because he is richer than everybody
they know. Also, for judging someone to be tall, the reason may be that he or she who
utters the statement predominantly socializes with shorter people than John, or lives
in a society with mostly shorter people. While these are very simple accounts, crisp
background criteria can also be arranged more complicatedly. A statement like “John is

4



1.4. Thesis structure

a football fan” could be acceptable for someone because John fulfills a number of criteria
from a fixed list of such, not even necessarily a determined number. It can also be a
vague statement again, like “At least about half of the criteria from the fixed list of
(crisp) criteria are (fully) fulfilled”. In particular, the truth value of such a statement
can be modeled in a way that allows for intermediate truth values, which then is in
full accordance with the idea of vague predicates. Also, different truth functions, that
correspond to a certain predicate, can be overlapped again, in the sense that the global
truth function is obtained by overlapping several local ones, each of which corresponds
to a certain reading or interpretation by some agent. This perspective will be fully
expressible in what we will describe and develop in this thesis, it simply needs to be
formalized and we are done.

1.4 Thesis structure
This thesis is structured in the following way. In Chapter 2, we will introduce all the
necessary terminology and background material, like the Hintikka game for CL [Hin73],
Giles’s game for Łukasiewicz logic [Gil74], and extensions thereof that already feature
the random witness selection principle [FR14, Fer14]. In Chapter 3, we prove the main
technical result of the thesis, namely the definability of Gödel logic and Product logic
[CHN11] within an extension of Giles’s game with the random witness selection principle.
We will call the corresponding logic, which particularly features also propositional
quantifiers, Łα(Π). We show that, as a consequence of the definability results, also all
fuzzy logics, that are based on a finite ordinal sum of the three basic t-norm based fuzzy
logics (Gödel, Product and Łukasiewicz), are definable within Łα(Π). Chapter 4 develops
a large number of quantifier models in a principled manner, starting from the easiest
cases of counting quantifiers, and ending with a full account of the intensional quantifiers
“many” and “few”, while predicates, i.e. arguments to quantifiers, are always assumed
to be crisp. Such quantifiers are called semi-fuzzy. Chapter 5 deals with the lifting of
semi-fuzzy quantifiers to fully-fuzzy ones, i.e. those that can take also fuzzy arguments.
This is accomplished by means of so called quantifier fuzzification mechanisms (QFMs),
which comply with certain criteria, that we introduce, discuss and evaluate regarding
their adequateness. Eventually, in Chapter 6, we introduce a full blown query language
that can deal with probabilistic quantifier models based on the random witness selection
principle, and test it on real life data. Chapter 7 provides the reader with a summary of
the presented material and an outlook to future work.

1.4.1 Publications related to this thesis

Much of the original material of this thesis builds upon the author’s conference and
journal contributions, and roughly relates to the chapter structure as follows:

• Chapter 3: [Hof18]

• Chapter 4: [Hof15, Hof16b, Hof16a, FH17]

5



1. Introduction

• Chapter 5: [BFH18]

• Chapter 6: [FHO17]

However, some of the chapters, especially Chapter 4, contain also material that has not
been published beforehand.

6



CHAPTER 2
From Hintikka’s game to the

RG-game

In this and the following two chapters we are going to introduce a variety of logics. Some
are well established already, e.g. Classical Logic, of which we assume the reader to
be familiar with. Other logics will most likely be completely new to the reader, as for
example the logic which will be denoted by Łα(Π). However, all of those follow the same
pattern. Firstly, all have an underpinning language. By introducing the language, we
will also give the syntactic formation rules for each logic. Then, a truth truth functional
semantics will be specified for each logic, based on which we will define what it means
for a formula to be valid within the formalism. The results of this thesis are concerned
with characterizing our logics with a different semantics than the truth functional one,
namely via game semantics, and hence we spare the notion of derivability.

We start by revisiting Hintikka’s game for classical logic and continue to extend it step by
step to the RG-game, which, as an extension of Giles’s game, corresponds to a randomized
extension of Łukasiewicz logic. The complementary presentation of game semantics and
truth functional semantics is supposed to help in understanding and motivating the
nature of the logics itself. Game rules justify truth functions of respective connectives
and quantifiers in a tangible manner, instead of just stating them in an ad hoc fashion,
where the correspondence of both is the key feature of the presented perspective.

2.1 Hintikka game

Maybe the most fundamental, but certainly the best known game is Hintikka’s charac-
terization of truth in a model for classical first order sentences1 [Hin73]. The setting is

1A sentence is a formula without free variables.
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2. From Hintikka’s game to the RG-game

a zero sum game of perfect information with two strategic players, I and You2, one in
the role of the proponent P and the respective other in the role of the opponent O, who
stepwise reduce a given formula to one of its immediate subformulas, until an atomic
formula is reached. If the outermost connective (or quantifier) is ∧ (or ∀), O may decide
which conjunct (or instance of the quantified formula) the game continues with. Likewise,
if the outermost connective (or quantifier) is ∨ (or ∃), P may decide which disjunct (or
instance of the quantified formula) the game continues with.

If a player has asserted a negated formula ¬F , the game continues with her giving up
responsibility for the claim, while the other player has to assert the formula F in return.
One can think of it as a role switch of players, while removing the negation in front of a
formula. When an atomic formula is reached, the player in the role of P wins, if it is
true in the given model, otherwise she loses. This procedure we call H-game. We will
now give a more formal characterization of this game.

The two players, called I (Myself) and You, can both act either as proponent P or as
opponent O with respect to a formula F built up from atoms, using the binary connectives
∧, ∨, as well as the unary connective ¬ and the quantifiers ∀, ∃. Initially, I act as P and
You act as O. My initial aim — or, more generally, P’s aim at any state of the game —
is to show that the present formula is true in a given (classical) interpretationM, which
consists of a finite domain D, a variable assignment ξM that assigns elements of the
domain to all free object variables, and a signature interpretation Φ that assigns relations
R̃ : Dn → {0, 1} to n-ary predicate symbols R3. The values represent payoffs, where
payoff 0 is associated to falsehood and payoff 1 to truth. Also, Φ assigns domain elements
to constant symbols. For simplicity, we will assume that there is a unique constant4

for every element of the domain D of M. The following rules refer to the outermost
connective or quantifier of the current formula.

RH∧ : If the current formula is F ∧G, then O chooses whether the game continues with
either F or G.

RH∨ If the current formula is F ∨G, then P chooses whether the game continues with
either F or G.

RH¬ : If the current formula is ¬F , the game continues with F , and the roles of the players
are switched: the player who is currently acting as P, acts as O at the next state,
and vice versa for the current O.

RH∀ : If the current formula is ∀xF (x), then O chooses a constant c ∈ D and the game
continues with F (c).

2Hintikka uses Nature and Myself as names for the players and Verifier and Falsifier for the two
roles, while our terminology follows the handbook article in [CFN15].

3Note that we often call such predicates crisp.
4The set of constants, representing objects from the domain D, will be called D again.
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2.1. Hintikka game

RH∃ : If the current formula is ∃xF (x), then P chooses a constant c ∈ D and the game
continues with F (c).

Except5 for RH¬ , the players’ roles remain unchanged. The game ends when the current
formula is atomic. The player who is acting as P at the final state wins and the other
player (acting as O) loses, if this atomic formula is true inM. We associate payoff 1
with winning and payoff 0 with losing. We also include the falsity constant ⊥ among the
atomic formulas, signifying definite payoff 0. The game starting with formula F is called
the H-game for F underM.

The truth functional semantics of classical logic extends any given assignment of truth
values in {0, 1} to atomic formulas as follows:

• vM(F ∧G) = min(vM(F ), vM(G))

• vM(F ∨G) = max(vM(F ), vM(G))

• vM(¬F ) = 1− vM(F )

• vM(⊥) = 0

At the first order level, we may define the semantics of the universal and the existential
quantifier as follows, where we identify the elements of the domain D with constants:

• vM(∀xF (x)) = minc∈D(vM(F (c)))

• vM(∃xF (x)) = maxc∈D(vM(F (c)))

The following definition presents the notion of logical consequence and in particular the
set of tautologies in classical logic, i.e. its valid formulas.

Definition 1 In classical logic, a formula F is called a logical consequence of a set of
formulas Γ, written Γ |=cl F , if for every evaluation vM we have:

If vM(G) = 1 for all G ∈ Γ, then also vM(F ) = 1.

In particular, a formula F is called valid if for all evaluations vM we have vM(F ) = 1.
We denote that circumstance by |=cl F .

The following theorem explains the fundamental relation between Hintikka’s game
semantics and the truth functional semantics of classical logic.

5Note the decoration of the upper index of the R preceding the rules, which indicates the setting
they relate to.
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2. From Hintikka’s game to the RG-game

Theorem 1 [Hin73] A formula F is true in a (classical) interpretationM (also written
as vM(F ) = 1) iff I have a winning strategy in the H-game for F underM.

Note that there is no explicit implication rule. However, one can define the implication
F → G of two formulas F and G as ¬F ∨ G, which corresponds to the implication of
classical logic.

2.2 Game for Kleene-Zadeh logic

As explained in [FR14], we can go from classical to fuzzy interpretations, or Kleene-
Zadeh interpretations, by letting the signature interpretation assign fuzzy relations
R̃ : Dn → [0, 1] to n-ary predicate symbols R, generalizing payoffs from {0, 1} to [0, 1].
At the propositional level, Hintikka’s result then directly generalizes to Kleene-Zadeh
logic, which extends any given assignment of values in [0, 1] to atomic formulas, as before,
as:

• vM(F ∧G) = min(vM(F ), vM(G))

• vM(F ∨G) = max(vM(F ), vM(G))

• vM(¬F ) = 1− vM(F )

• vM(⊥) = 0

At the first order level, we may define the semantics of the universal and the existential
quantifier as follows, where we again identify the elements of the domain D with constants:

• vM(∀xF (x)) = infc∈D(vM(F (c)))

• vM(∃xF (x)) = supc∈D(vM(F (c)))

The game rules remain unchanged. As we restrict our attention to finite domains we may
assume that there are witnessing constants for all suprema and infima.

Definition 2 w is called the value of the game for player X, if X has a strategy that
guarantees a payoff of at least w for X, while the opponent player has a strategy that
ensures that X’s payoff is at most w.

The upcoming definition determines the notion of logical consequence and in particular
the set of tautologies in Kleene-Zadeh logic, i.e. its valid formulas.
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2.3. Giles game

Definition 3 In Kleene-Zadeh logic, a formula F is called a logical consequence of a set
of formulas Γ, written Γ |=KlZ F , if for every evaluation vM we have:

If vM(G) = 1 for all G ∈ Γ, then also vM(F ) = 1.

In particular, a formula F is called valid if for all evaluations vM we have vM(F ) = 1.
We denote that circumstance by |=KlZ F .

Interestingly, the notion of validity for Kleene-Zadeh logic only leads to a (non-empty)
set of tautologies if we, as we do, allow for having ⊥ explicitly, for otherwise there are no
valid formulas at all [CFN15].

Theorem 2 [FR14] A formula F evaluates to vM(F ) = w in a Kleene-Zadeh-interpretation
M iff the H-game for F with payoffs matchingM has value w for Myself.

Remark 1 As it will often make sense to distinguish bivalent formulas from fuzzy
formulas, i.e. such that can take only one of two definite truth values, 0 or 1, and those
that can take arbitrary truth values within the real unit interval, we will use the notation
F̂ for the first, and F for the latter. The hat on a formula hence tells us that the formula
is supposed to be strictly crisp or classical.

Remark 2 In the introduction, we already used a terminology that referred to the game
semantic selection principles as witness selection. In the remainder of this thesis, we
will sometimes use the terms positive witness and negative witness, with respect to a
quantified crisp formula F̂ . Then, the term witness means a constant referring to an
object from the domain that is substituted into F̂ for the variable in the scope of the
quantifier. If it makes F̂ true, we call it a positive witness and if it makes F̂ false, we
call it a negative witness.

2.3 Giles game
Giles’s game for Łukasiewicz logic [FR14, Gil74], also is, like Hintikka’s game, a zero
sum game of perfect information, which describes the stepwise reduction of complex
logical assertions into atomic ones in a rule guided dialogue between two players. The
players’ payoff at a final state of the game is specified in terms of the total expected loss
of money if each player bets on the success of dispersive experiments corresponding to
atomic formulas [Gil82]. ‘Dispersive’ means that the (yes/no) results may differ upon
repetition; but a fixed failure probability is associated with each experiment, which is
conceptualized as the risk of the atomic assertion. In this manner Giles succeeded in
deriving the truth functions of the logical connectives of Łukasiewicz logic, or simply
Ł, from first principles about reasoning, rather than just imposing them in an ad hoc
fashion [Gil74]. The formal structure of the game is the following.
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2. From Hintikka’s game to the RG-game

Giles’s game (G-game) shares some central ideas with the H-game, but features not only
a more complex evaluation of final game states, but also a considerably more complex
notion of game states in principal. Whereas a state of an H-game is fully determined
by a single formula and the current distribution of roles (O/P) between the two players
(You, I ), a state of the G-game is always of the following form:

[F1, ..., Fn | G1, ..., Gm] (2.1)

where the F ′s are the asserted formulas of the player You and the G′s are the asserted
formulas of the player I. Independently, [F1, ..., Fn] is the tenet of the player You, and
[G1, ..., Gm] is the tenet of the player I. Both of the tenets contain multisets of formulas,
i.e. formulas can occur more than once in each tenet. Role switches never take place,
i.e. I always is the proponent of the formulas of her tenet and the opponent of those in
the tenet of You, and vice versa for You. By applying the rules of the game a state gets
decomposed into a final state where only atomic formulas remain. This means that any
of the compound formulas, upon decomposition, is removed from its tenet and the rules
determine what they are replaced with. Final states of the game are of the following
form:

[A1, ..., An′ | B1, ..., Bm′ ] (2.2)

where the A′s are atoms that are asserted by the player You, and the B′s are those atoms
that are asserted by the player I.

Formally, one needs a notion of a regulation [FM09] to make the procedure a game.
Following [FM09], such regulations are functions that map any non-final game state into
one of the two labels Y and I. The first one signifies that the player You is the next one
to initiate a state transition and the latter signifies that the player I is up to do so. A
regulation is called consistent if any state labeled with a Y features a compound formula
that the player You can choose as a next one to be decomposed, i.e. there is a compound
formula in the tenet of the player I. Vice versa, any state labeled with an I features a
compound formula that the player I can choose as a next one to be decomposed, i.e. there
is a compound formula in the tenet of the player You. In that sense, one may speak of
an intermediary state which connects two states. When transitioning from a state S into
a state S′, the intermediary state is the state S with one particular non-atomic formula
being singled out as the next one to be decomposed. Then, a game form G([Γ|Ω], ρ),
where Γ and Ω are multisets of formulas and ρ is a consistent regulation, is a tree with
[Γ|Ω] being the root and all possible final states constitute the set of leafs. An actual
game is a game form together with a risk value assignment for atomic formulas, which
will be introduced now.

To each atomic formula A of the signature of the language, we associate a dispersive
binary experiment EA. Here, binary means that the result always is either 0, i.e. the
experiment failed, or 1, i.e. the experiment succeeded, indicating whether A is false or
true in this run of the game. The players have to pay 1e to the respective other player
for each atom in their tenet for which the experiment fails.
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2.3. Giles game

To each experiment we associate a failure probability π(EA). For example, for the falsum
symbol6 ⊥ we assume there is an experiment that always fails, i.e. π(E⊥) = 1. These
failure probabilities are what we also call risks of atomic assertions. In symbols, the
risk of an atom A is 〈A〉, hence 〈A〉 = π(EA). In this sense we talk about expected
losses (or risks) and expected gains (or payoffs) of assertions, and in particular of a
game with randomized payoff . The relation between risk an payoff is that the risk of
player I is the payoff of player You, and the payoff of player I is the risk of player
You. We thereby guarantee that the game actually is a zero-sum game. A risk value
assignment 〈·〉 assigns values in [0, 1] to all atoms of the signature of the language. We
say a risk value assignment matches an interpretationM is for all atoms A we have that
vM(A) = 1− 〈A〉.

When the final state of a G-game has been reached, the expected risk, from the perspective
of the player I, of a game is computed as:

〈A1, ..., An′ | B1, ..., Bm′〉 =
∑

1≤i≤m′
〈Bi〉 −

∑
1≤i≤n′

〈Ai〉 (2.3)

A branch of the game tree is sometimes referred to as individual run of the game. To
clarify the structure of the game, let us look at the following example.

Example 1 Let A,B be two atoms. We consider the state [A,A |B]. This game state
already is final, where the player You has asserted two copies of the atom A and the player
I has asserted the atom B once. Let us assume (1) that π(EA) = 0.1 and π(EB) = 0.4,
i.e. the failure probability of the experiments associated to the atoms A,B is 0.1 and 0.4
respectively. This then entails that the expected loss of money from the perspective of
the player I is 0.2e, because 〈A,A | B〉 = 0.2. If on the other hand (2) the risks of both
atoms are equally 0.4, i.e. 〈A〉 = 〈B〉 = 0.4, we get 〈A,A | B〉 = −0.4, which means the
player I may except an average gain of 0.4e, which is associated to a payoff of 0.4.

Definition 4 A game with randomized payoff is r-valued for player X, if for every ε > 0,
X has a strategy that guarantees that her expected loss is at most (r + ε)e, while her
opponent has a strategy that ensures that her expected loss is at least (r − ε)e. We call r
the risk for X in that game.

The reference to ε > 0 can be spared (that means we can safely read the same definition
while just deleting “for every ε > 0,”, as well as the two subsequent appearances of ε),
unless one considers infinite domains. For infinite domains the problem arises, that, in
case of ∀ and ∃, there might be no witnesses for the suprema and infima, i.e. O potentially
gets into the situation where, whatever she chooses for c ∈ D, there always is a better
c′ ∈ D with 〈F (c′)〉 > 〈F (c)〉 (or for P with “<"). Later, from Section 3.2 on, when we

6The falsum symbol ⊥ is now part of the language.
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2. From Hintikka’s game to the RG-game

introduce the NRG-game, we will employ Definition 2 as it stands, for reasons to be
explained then.

The G-game rules for (weak) conjunction (∧), disjunction (∨), and for the universal and
existential quantifiers (∀ and ∃) directly correspond to the rules RH∧ , RH∨ , RH∀ , and RH∃ .
However, since the terminology slightly changed regarding the H-game, we restate them
here to avoid ambiguities:

RG∧: If P asserts F ∧G, then, if O attacks, O chooses whether P has to assert either F
or G.

RG∨ : If P asserts F ∨G, then, if O attacks, P chooses whether P has to assert either F
or G.

RG∀ : If P asserts ∀xF (x), then, if O attacks, O chooses a constant c ∈ D and P has to
assert F (c).

RG∃ : If P asserts ∃xF (x), then, if O attacks, P chooses a constant c ∈ D and P has to
assert F (c).

The new game rules of the G-game are the following [Fer09, FM09]:

RG→: If P asserts F → G, then, if O attacks, O has to assert F , and P has to assert G.

RG&: If P asserts F&G, then, if O attacks, P must assert F and G, or ⊥ instead.

By attacking a complex formula, O triggers a defense by P, according to the rules. By
this mechanism, complex formulas are decomposed into subformulas. The hedge “if O
attacks” refers to the so called principle of limited liability:

• On one side, this principle means it is not necessary that O attack every formula
asserted by P. Instead of attacking a formula, O can just grant it, in case it does
not carry any risk for P. This then entails that the formula just is removed from
P’s tenet. From the implication rule, we can see how this principle plays out.
Assume we have the state [| A→ B], with A,B being atoms with risks 〈A〉 = 0.8
and 〈B〉 = 0.5. If O attacked the formula, the subsequent state would be [A | B],
which is a final state with risk 〈B〉− 〈A〉 = −0.3, i.e. P could expect a net payment
by O. To avoid this, O can just grant P this formula, to hedge her own loss. In
this case the formula simply is removed from P’s tenet, i.e. the subsequent state is
[|], with risk 0 for P, i.e. payoff 1, which in turn means the formula is true.
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2.3. Giles game

• The other side of this principle states that P can hedge her loss with regard to
subsequently making assertions that have a risk greater than 1. Here, with the
strong conjunction rule, it is stated explicitly that P can assert ⊥ instead of both
F and G, in case their risks sum up to a number greater than 1. This principle
always remains in place throughout this thesis, although sometimes only implicitly
[CFN15].

Remark 3 The negation ¬F of a formula F is defined as F → ⊥.

Remark 4 As Definition 4 insinuates, playing rationally means the following. Players
always try to minimize their risk that results from further assertions related to the
decomposition of formulas, and complementarily, they try to maximize their payoffs
throughout the game. Hence, a strategy for the player I of a game form G([Γ|Ω], ρ) is
a part of the corresponding tree of the game form, where for any state labeled with I
there is only one immediate successor node. A strategy is called winning for the player
I for a risk value assignment 〈·〉 if we have 〈A1, . . . An〉 ≥ 〈B1, . . . , Bm〉 for any of the
leaf nodes [A1, . . . An|B1, . . . , Bm]. Strategies (winning strategies) for the player You are
characterized by analogy.

The truth functional semantics of Łukasiewicz logic is given as follows:

vM(⊥) = 0

vM(F ∧G) = min(vM(F ), vM(G))

vM(F ∨G) = max(vM(F ), vM(G))

vM(∀xF (x)) = infc∈DvM(F (c))

vM(∃xF (x)) = supc∈DvM(F (c))

vM(F → G) = min(1, 1− vM(F ) + vM(G))

vM(F&G) = max(0, vM(F ) + vM(G)− 1)

The upcoming definition determines the notion of logical consequence and in particular
the set of tautologies in Łukasiewicz logic, i.e. its valid formulas.

Definition 5 In Łukasiewicz logic, a formula F is called a logical consequence of a set
of formulas Γ, written Γ |=Ł F , if for every evaluation vM we have:

If vM(G) = 1 for all G ∈ Γ, then also vM(F ) = 1.

In particular, a formula F is called valid if for all evaluations vM we have vM(F ) = 1.
We denote that circumstance by |=Ł F .
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2. From Hintikka’s game to the RG-game

For this described G-game, one can give the following characterization of Łukasiewicz
logic:

Theorem 3 [Gil74],[FM09] A Ł formula F is evaluated to vM(F ) = w in a Ł-
interpretation M iff every G-game for F , i.e. a game starting in the state [|F ], is
(1− w)-valued for the player I under risk value assignment 〈·〉 matchingM.

Although the proof has been presented already [FM09], we show it here again to demon-
strate the mechanisms. In particular, we repeat the proof to prepare for related proofs
later in this thesis, which build upon this one. Hence, to remain self-contained, it seems
necessary to have the important terminology introduced.

Proof:
According to Definition 4, to determine the value of a game for the proponent player I
of a formula F , we have to compute the minimal final risk she can enforce, while her
opponent player You tries to maximize it. This corresponds to a game that is starting in
state [|F ].

For every final state, i.e. states [A1, . . . , Am|B1, . . . , Bn] where all A’s and B’s are atoms,
the player I wins if her expected loss (associated risk) 〈A1, . . . , Am|B1, . . . , Bn〉 =∑n
i=1〈Bi〉 −

∑m
i=1〈Ai〉 is smaller or equal zero, i.e. non-positive. The minimal final

risk that the player I can enforce in any state S by playing optimally can be calculated
by taking into consideration (1) the maximum over all risks associated with the successor
states of S that the player You can enforce by a move at S, and (2) the fact that I can
enforce the minimum over the risks of successor states that correspond to her possible
moves. Therefore, we will show that the notion of minimal risks for player I can be
extended from final states to arbitrary states [Ω|Ω′] (Ω,Ω′ multisets of formulas), such
that the following conditions hold (Γ,Γ′ multisets of formulas). The left-hand side of
the equality symbols always shows the current state of the game, while the respective
formula not in Γ and Γ′ is the one currently being singled out according to the consistent
regulation.

1a: 〈Γ | Γ′, G ∧H〉 = max(〈Γ | Γ′, G〉, 〈Γ | Γ′, H〉)

2a: 〈Γ | Γ′, G ∨H〉 = min(〈Γ | Γ′, G〉, 〈Γ | Γ′, H〉)

3a: 〈Γ | Γ′, G→ H〉 = max(〈Γ | Γ′〉, 〈Γ, G | Γ′, H〉)

4a: 〈Γ | Γ′, G&H〉 = min(〈Γ | Γ′,⊥〉, 〈Γ | Γ′, G,H〉)

5a: 〈Γ | Γ′,∀xG(x)〉 = supc∈D〈Γ | Γ′, G(c)〉

6a: 〈Γ | Γ′,∃xG(x)〉 = infc∈D〈Γ | Γ′, G(c)〉

1b: 〈Γ, G ∧H | Γ′〉 = min(〈Γ, G | Γ′〉, 〈Γ, H | Γ′〉)
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2.3. Giles game

2b: 〈Γ, G ∨H | Γ′〉 = max(〈Γ, G | Γ′〉, 〈Γ, H | Γ′〉)

3b: 〈Γ, G→ H | Γ′〉 = min(〈Γ | Γ′〉, 〈Γ, H | Γ′, G〉)

4b: 〈Γ, G&H | Γ′〉 = max(〈Γ,⊥ | Γ′〉, 〈Γ, G,H | Γ′〉)

5b: 〈Γ,∀xG(x) | Γ′〉 = infc∈D〈Γ, G(c) | Γ′〉

6b: 〈Γ,∃xG(x) | Γ′〉 = supc∈D〈Γ, G(c) | Γ′〉

It is now to be checked that 〈|〉 is well-defined and unique. Moreover, risk values and risk
assignments have to be connected with truth values and valuations.

Let us extend the semantics of Ł formulas to multisets Ω of formulas as follows:

vM(Ω) =
∑
G∈Ω vM(G)

Risk value assignments are placed in one to one correspondence with truth value assign-
ments via the mapping 〈A〉 = 1− vM(A), which then extends to:

〈A1, . . . , Am|B1, . . . , Bn〉 = n−m+ vM([A1, . . . , Am])− vM([B1, . . . , Bn]).

Accordingly, we define the following function for arbitrary states:

〈Ω|Ω′〉 = |Ω′| − |Ω|+ vM(Ω)− vM(Ω′).

Note that vM(F ) = vM([F ]) = 1 iff 〈|F 〉 ≤ 0.

We can now check all the conditions 1a, 1b, . . . , 6a, 6b, i.e. perform the induction step
regarding the induction over the complexity of states, i.e. the number of appearing
connectives and quantifiers, given the players play rationally:

Cases 1a, 1b (cases 2a, 2b work by analogy):

〈Γ | Γ′, G ∧H〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(G ∧H) =

= 〈Γ|Γ′〉+ 1− vM(G ∧H) =

= 〈Γ|Γ′〉+ 1−min(vM(G), vM(H)) =

= 〈Γ|Γ′〉+ max(1− vM(G), 1− vM(H)) =

= 〈Γ|Γ′〉+ max(〈G〉, 〈H〉) =

= max(〈Γ | Γ′, G〉, 〈Γ | Γ′, H〉)

〈Γ, G ∧H | Γ′〉 = |Γ′| − |Γ| − 1 + vM(Γ) + vM(G ∧H)− vM(Γ′) =

= 〈Γ|Γ′〉 − 1 + vM(G ∧H) =

= 〈Γ|Γ′〉 − (1−max(vM(G), vM(H))) =

17



2. From Hintikka’s game to the RG-game

= 〈Γ|Γ′〉 −min(1− vM(G), 1− vM(H)) =

= 〈Γ|Γ′〉 −min(〈G〉, 〈H〉) =

= min(〈Γ, G | Γ′〉, 〈Γ, H | Γ′〉)

Cases 3a, 3b:

〈Γ | Γ′, G→ H〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(G→ H) =

= 〈Γ|Γ′〉+ 1− vM(G→ H) =

= 〈Γ|Γ′〉+ 1−min(1, 1− vM(G) + vM(H)) =

= 〈Γ|Γ′〉+ max(0, vM(G)− vM(H)) =

= 〈Γ|Γ′〉+ max(0, 〈G|H〉) =

= max(〈Γ | Γ′〉, 〈Γ, G | Γ′, H〉)

〈Γ, G→ H | Γ′〉 = |Γ′| − |Γ| − 1 + vM(Γ) + vM(G→ H)− vM(Γ′) =

= 〈Γ|Γ′〉 − 1 + vM(G→ H) =

= 〈Γ|Γ′〉 − 1 + min(1, 1− vM(G) + vM(H)) =

= 〈Γ|Γ′〉 − 1 + min(1, 1 + 〈H|G〉) =

= 〈Γ|Γ′〉+ min(0, 〈H|G〉) =

= min(〈Γ | Γ′〉, 〈Γ, H | Γ′, G〉)

Cases 4a, 4b:

〈Γ | Γ′, G&H〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(G&H) =

= 〈Γ|Γ′〉+ 1− vM(G&H) =

= 〈Γ|Γ′〉+ 1−max(0, vM(G) + vM(H)− 1) =

= 〈Γ|Γ′〉+ min(1, (1− vM(G)) + (1− vM(H))) =

= 〈Γ|Γ′〉+ min(1, 〈|G,H〉) =

= min(〈Γ | Γ′,⊥〉, 〈Γ | Γ′, G,H〉)

〈Γ, G&H | Γ′〉 = |Γ′| − |Γ| − 1 + vM(Γ) + vM(G&H)− vM(Γ′) =

= 〈Γ|Γ′〉 − 1 + max(0, vM(G) + vM(H)− 1) =

= max(〈Γ,⊥ | Γ′〉, 〈Γ, G,H | Γ′〉)

Cases 5a, 5b (cases 6a, 6b work by analogy):
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〈Γ | Γ′, ∀xG(x)〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(∀xG(x)) =

= 〈Γ|Γ′〉+ 1− infc∈DvM(G(c)) =

= 〈Γ|Γ′〉+ supc∈D(1− vM(G(c))) =

= 〈Γ|Γ′〉+ supc∈D〈G(c)〉 =

= supc∈D〈Γ | Γ′, G(c)〉

〈Γ, ∀xG(x) | Γ′〉 = |Γ′| − |Γ| − 1 + vM(Γ) + vM(∀xG(x))− vM(Γ′) =

= 〈Γ|Γ′〉 − 1 + infc∈DvM(G(c)) =

= 〈Γ|Γ′〉 − (1− infc∈D(1− 〈G(c)〉)) =

= 〈Γ|Γ′〉 − supc∈D〈G(c)〉 =

= infc∈D〈Γ, G(c) | Γ′〉

These conditions hold independently of the order in which compound formulas are
decomposed. Therefore, if vM(F ) = 1, there is a winning strategy for the player I with
risk assignment 〈·〉, for any regulation. Also, recall that F is valid if and only if 〈|F 〉 ≤ 0
for every valuation vM. Since this covers all possible risk value assignments 〈·〉, the
theorem follows. 2

Note that we can define a strong disjunction connective F ⊕ G = ¬(¬F&¬G), which
then has the truth function vM(F ⊕G) = min(1, vM(F ) + vM(G)). One can also define
the strong disjunction and the strong conjunction connectives directly via the implication
connective, as we will do later, in Section 3.2, when we introduce the logic Łα(Π).

Remark 5 Starting from a given logic L, we use the notation L(Q) for the logic that
results from augmenting the language of L with the symbol Q, standing for a (unary)
quantifier. The semantics of Q will be defined truth functionally as well as characterized
by suitable rules of a corresponding semantic game. This notation will help achieving a
concise notation.

Remark 6 For two formulas F,G and a fixed interpretationM, we will sometimes write
F ≡ G to abbreviate that vM((F → G) ∧ (G→ F )) = 1.

2.4 Games with random choices - RG-game
In [FR14], the authors proposed a further randomization of the G-game, going beyond
randomized payoffs for atomic formulas, by introducing a new non-strategic player N,
called Nature. The player and its role are identical. It comes about as a new selection
principle. Unlike the rational players, Nature never asserts any formula, and, upon call,
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decides without reason (or without vested interest) how the game continues. The overall
structure of this augmented version of the G-game remains unchanged, we only add two
new rules to the framework, one for the object quantifier (Π) and one for the propositional
connective (π) [Fer14], associated to the new principle, which we call random witness
selection principle:

RRGΠ : If P asserts ΠxF (x) then, if O attacks, N (uniformly) randomly chooses a constant
c ∈ D, and P has to assert F (c).

RRGπ : If P asserts FπG, then, if O attacks, N chooses (uniformly) randomly whether P
has to assert F or G.

Syntactically, we are considering the language of first-order Łukasiewicz logic enriched
with the quantifier symbol Π and a symbol for the binary connective π. Then, we formally
define Ł(Π, π) by specifying the syntactic rules and the semantics of Π and π:

Definition 6 For a finite domain D we define:

vM(ΠxF (x)) =
∑
c∈D vM(F (c))
|D |

(2.4)

vM(FπG) = vM(F ) + vM(G)
2 (2.5)

Furthermore, for future reference, we also define7: PropM(F ) =
∑

c∈D vM(F (c))
|D| .

The upcoming definition determines the notion of logical consequence and in particular
the set of tautologies of Ł(Π, π), i.e. its valid formulas.

Definition 7 In Ł(Π, π), a formula F is called a logical consequence of a set of formulas
Γ, written Γ |=Ł(Π,π) F , if for every evaluation vM we have:

If vM(G) = 1 for all G ∈ Γ, then also vM(F ) = 1.

In particular, a formula F is called valid if for all evaluations vM we have vM(F ) = 1.
We denote that circumstance by |=Ł(Π,π) F .

7Note that, for crisp formulas F̂ , PropM(F̂ ) represents the proportion of elements from the domain
that fulfill formula F̂ .
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The focus on finite domains has two important reasons. One is the intention to model
natural language quantifiers. In linguistics and natural language modeling, one usually
restricts attention to finite domains [KH98], as explained in the introduction. The other,
more technical, reason is the principle of quantifier logicality8. It demands that quantifier
evaluations be independent of the identity of the constants [PW06], i.e. the evaluation
only depends on the quantity of positive witnesses of a scope predicate, but not on which
constants have the respective property. As an example consider the quantifier “about half”
and a set of constants referring to all humans on the planet. Evaluating the statement
“About half of all humans are female” should only depend on quantitative considerations
but never on the assignment of constants to individual humans. This principle reduces
the possible probability distributions, that N can represent, to the uniform one. This
in turn forbids to consider arbitrary domains, as we will discuss later in more detail in
Section 3.5.1.

To fully grasp the meaning of the following theorem, it is important to note that the
quantifier Π and the connective π neatly fit with the realm of games with randomized
payoff. Every single run of a game for a formula F involving these expressions can lead
to different results, even if all atomic formulas in F are classical (i.e. assume only 0 or 1
as truth values). Nevertheless, we can talk about an expected payoff associated to such
formulas, just as before.

Theorem 4 [FR14] A Ł(Π, π) formula F is evaluated to vM(F ) = w in a fuzzy
interpretation M iff every G-game, augmented by the two rules RRGΠ and RRGπ , for F ,
i.e. a game starting in the state [|F ], is (1− w)-valued for the player I under risk value
assignment 〈·〉 matchingM.

Similarly to Theorem 3, the arguments as to the adequacy of the two rules have already
been presented in their respective papers. However, to remain self-contained, we repeat
them here.

Proof:
In addition to the proof of Theorem 3, we need to show the following four properties:

1a: 〈Γ | Γ′,ΠxG(x)〉 = 1
|D|
∑
c∈D〈Γ | Γ′, G(c)〉

2a: 〈Γ | Γ′, GπH〉 = 1
2 · (〈Γ | Γ

′, G〉+ 〈Γ | Γ′, H〉)

1b: 〈Γ,ΠxG(x) | Γ′〉 = 1
|D|
∑
c∈D〈Γ, G(c) | Γ′〉

2b: 〈Γ, GπH | Γ′〉 = 1
2 · (〈Γ, G | Γ

′〉+ 〈Γ, H | Γ′〉)

Recall that these conditions result from the interpretation of the game rule. For case 1a,
since N chooses a constant c ∈ D uniformly randomly, the risk on the left-hand side of

8Later, in Definition 41, this property will be introduced formally for arbitrary quantifiers
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2. From Hintikka’s game to the RG-game

the equality, for the proponent player I, must be the average over the individual risks.
Similarly for case 1b. Analogous arguments apply to cases 2a, 2b.

Hence, for case 1a, we compute (case 1b works by analogy):

〈Γ | Γ′,ΠxG(x)〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(ΠxG(x)) =

= 〈Γ|Γ′〉+ 1− vM(ΠxG(x)) =

= 〈Γ|Γ′〉+ 1−
∑

c∈D vM(G(c))
|D| =

= 〈Γ|Γ′〉+ 1−
∑

c∈D(1−〈G(c)〉)
|D| =

= 〈Γ|Γ′〉+
∑

c∈D〈G(c)〉
|D| =

= 1
|D|
∑
c∈D〈Γ | Γ′, G(c)〉

Case 2a (case 2b works by analogy):

〈Γ | Γ′, GπH〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(GπH) =

= 〈Γ|Γ′〉+ 1− 1
2(vM(G) + vM(H)) =

= 〈Γ|Γ′〉+ 1− 1
2((1− 〈G〉) + (1− 〈H〉)) =

= 1
2 · (〈Γ | Γ

′, G〉+ 〈Γ | Γ′, H〉) 2

In [FR14], the authors predominately focus on quantifiers applied to crisp scope formulas,
a practice supported by Glöckner [Glö06] and others (e.g. [DHBB03, DRSV14]), in order
to avoid unclarity regarding the interpretation of statements. Recall that quantifiers
that, upon evaluation, can take intermediate truth values, even if restricted to crisp (or
classical) arguments, are called semi-fuzzy quantifiers.

In [Bal16], Baldi introduced a hypersequent calculus for Kleene-Zadeh logic enriched
with π. In the following, we will refer to this randomized version of Giles’s game as
RG-game. One can see that propositions representing arbitrary truth values within the
real unit interval can only be approximated. That means that for any ε > 0 we can
give a formula based π with a truth value that has a difference of the value, which we
intend to approximate, of at most ε. As an example, let us consider the rational value 1

3 .
We cannot express it using only the binary π as well as ⊥,> (for > we use ⊥ → ⊥, i.e.
vM(>) = 1). However, we can define formulas that evaluate to i

2j with i ∈ {0, . . . , 2j}
where j is any positive integer, i.e. all dyadic rationals. It is well known that those are
dense in the set of real numbers.

In [FM15], the authors show how rational truth values can propositionally be obtained
as equilibrium values in a setting that augments both Łukasiewicz logic and IF logic
[MSS11].
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CHAPTER 3
The NRG-game and t-norm based

fuzzy logics

3.1 Fuzzy logics based on t-norms

In the Handbook of Mathematical Fuzzy Logic [CHN11], t-norm based fuzzy logics play
a prominent role. T-norms are functions that are used as truth functions of conjunction
connectives. To that end, one wants such functions to be commutative, as the truth of “A
and B” should be the same as the one of “B and A”, for two properties A,B. Also, “A
and (B and C)” should always be as true as “(A and B) and C”, for all properties A,B,C,
hence one wants associativity. Furthermore, the conjunction with a true statement should
not change the original truth value, and if A has a higher truth value than B, then “A
and C” should have a higher truth value than “B and C”, for all properties C. According
to these principles, the definition of a t-norm is the following:

Definition 8 A binary function ∗ : [0, 1]2 → [0, 1] is a t-norm if it is commutative,
associative, monotone, and 1 is its unit element. More formally, in the respective order,
we require:

• a ∗ b = b ∗ a

• a ∗ (b ∗ c) = (a ∗ b) ∗ c

• a ∗ b ≤ a′ ∗ b′ if a ≤ a′ and b ≤ b′

• a ∗ 1 = a
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3. The NRG-game and t-norm based fuzzy logics

If ∗ is furthermore continuous on [0, 1]2 we call it a continuous t-norm. The following three
are the Gödel, Product and Łukasiewicz t-norms respectively1, which are all continuous:

• x ∗G y =min(x, y)

• x ∗P y = x · y

• x ∗Ł y =max(0, x+ y − 1)

Theorem 5 [CHN11] For any continuous t-norm ∗ there is a unique function ⇒:
[0, 1]2 → [0, 1] such that for all x, y, z ∈ [0, 1],

z ∗ x ≤ y iff z ≤ x⇒ y. (3.1)

The function⇒ is called the residuum of ∗. As t-norms are used to model the conjunction
connective, ⇒ can arguably be understood as respective implication connective [CHN11].
From this we can straightforwardly derive the residua of Gödel t-norm, Product t-norm
and Łukasiewicz t-norm respectively2. For x ≤ y they all evaluate to 1, while for x > y
we have:

• x⇒G y = y

• x⇒P y = y/x

• x⇒Ł y = 1− x+ y

Note that the residuum of the Łukasiewicz t-norm is the only of theses three that is
continuous. However, it is enough to have a continuous t-norm ∗ to define min and max
in terms of ∗ and and its residuum ⇒ [CHN11]. Therefor, the three fuzzy logics can be
understood as based on those two functions, t-norm and residuum, for (strong) conjunction
and implication, while entailing also connectives for weak conjunction (modeled by min)
and weak disjunction (modeled by max). Furthermore, the following relation between a
t-norm and its residuum can be derived:

x⇒ y = max{z : z ∗ x ≤ y}. (3.2)

Fuzzy logics that are based on continuous t-norms and their residuum are among the so
called Mathematical Fuzzy Logic3 (MFL). We will use the following notation for the rest

1The subscripts of the t-norms have the following meaning: G stands for Gödel, P for Product and Ł
for Łukasiewicz

2The subscripts of the residua have the following meaning: G stands for Gödel, P for Product and Ł
for Łukasiewicz

3The family of all MFLs is captured in a somewhat looser way, where one merely demands that the
real unit interval forms the set of admissible truth values, and truth values of formulas can be determined
by truth values of their subformulas via application of truth functions. See [Háj98, CHN11]. However, the
most important conditions on truth functions are the ones described here, namely those that constitute
t-norms.
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3.2. NRG-game, or: the logic Łα(Π)

of the thesis4 to express the connectives with truth functions min, max, ⇒◦ and ∗◦ (if
different from min), where ◦ ∈ {G,P,Ł}:

• for Gödel logic: ∧,∨,→G

• for Product logic: ∧,∨,→P ,&P

• for Łukasiewicz logic: ∧,∨,→Ł,&Ł

The negation of a formula F is always defined as F →◦ ⊥5, while the universal and
existential quantifier, ∀ and ∃, are uniformly expressed as before, in Section 2.2, for
the case of the Kleene-Zadeh logic, i.e. their truth functions correspond to inf and sup
respectively.

In the general case, this setting admits infinite domains, which are difficult when Π is to
be given a meaningful semantics, as it is not always clear what a uniform distribution
on an arbitrary set should be. Actually, on N and R, it is not possible to define a
uniform distribution in a meaningful way. As the remainder of this section is devoted to
characterizing a wide class of fuzzy logics game semantically, where a key feature of the
game is this random operator, we have to keep the restriction to finite domains. Hence,
when we, in the following, talk about Gödel, Product and Łukasiewicz logic, we always
mean these logics restricted to finite domains.

Employing Mostert-Shields’ Theorem [CHN11, EGM04], there exists a representation
for an arbitrary continuous t-norm as an ordinal sum of the three basic t-norms just
introduced. We will show how we can define connectives with truth functions that
evaluate in the same way as those given by a continuous t-norm which is representable as
a finite ordinal sums, as well as their respective residua, in our setting which will formally
be introduced in the following section. Furthermore, we will discuss means to extend our
result to the case that admits even infinite ordinal sums.

3.2 NRG-game, or: the logic Łα(Π)
While Ł(Π) features the connectives of Łukasiewicz logic, the ones for the other two basic
t-norm based fuzzy logics are not all immediately at hand. From the game perspective,
one can obtain an expressibility that is great enough to define also the truth functions of
both Gödel and Product logic, by augmenting the set of game rules. First, we add an
object quantifier generalizing strong Łukasiewicz conjunction, and then, for every object
quantifier, we introduce a propositional version of it, i.e. the quantified formula may
depend on a propositional variable [BCPV01]. We formally specify the syntax, of what

4If → or & appear without decoration, they are meant to be the Łukasiewicz ones.
5In [CHN11] this negation is called residual negation, as opposed to involutive negation.
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3. The NRG-game and t-norm based fuzzy logics

we call6 Łα(Π), and give a truth functional semantics for all connectives and quantifiers.
Then, we characterize that logic game semantically with what we call the NRG-game
[Hof18].

Formulas are built by composition from the following expressions:

γ ::= Λ | w | P (~t) | γ → γ | γ ∧ γ | γ ∨ γ | γπγ | ∀vγ | ∃vγ | Πvγ | &vγ |

∀wγ | ∃wγ | Πwγ | &wγ

We have a meta variable Λ for constant symbols that stand for truth constants pα with
truth values7 α ∈ [0, 1], and P is our meta variable for predicate symbols. Then, ~t is a
sequence of terms (either constant symbols or object variables), matching the arity of
the preceding predicate symbol. Also, v is our meta variable for object variables, which
we usually name x, y, . . . , and w is our meta variable for propositional variables, which
we usually name p, q, . . . . We only assume countably many variables, while the language
is uncountable due to the uncountably many constants that are represented by Λ. In the
same way that object variables are placeholders for constants that refer to elements from
the domain, propositional variables are placeholders for truth constants that refer to
truth values from the real unit interval. We refer to the corresponding logic, for which we
are subsequently going to introduce its truth functional semantics and its game semantics
(as well as its notion of validity), of this language as Łα(Π). For any fixed interpretation
M, we always demand that its domain D be finite. The variable assignment ξM has to
be extended in a way that it now assigns truth constants to free propositional variables,
too. Truth functionally, atomic formulas are treated as in Łukasiewicz logic, i.e. for any
atom A we have vM(A) ∈ [0, 1]. Also, for all pα ∈ Λ we have vM(pα) = α ∈ [0, 1], and
the rest of the truth functional semantics is defined as follows:

vM(F → G) = min(1, 1− vM(F ) + vM(G))

vM(F ∧G) = min(vM(F ), vM(G))

vM(F ∨G) = max(vM(F ), vM(G))

vM(FπG) = vM(F )+vM(G)
2

vM(∀xF (x)) = infc∈DvM(F (c))

vM(∃xF (x)) = supc∈DvM(F (c))
6Note that the chosen notation constitutes a technical term, i.e. it represents exactly one logic and

not a family. The α in the subscript indicates the dependency of some quantifiers on propositional
variables rather than on object variables, which evaluate to numbers within the real unit interval, which
we regularly denote by α.

7We use the common notation ⊥ and > to express those truth value constants p0 and p1, with truth
values 0 and 1.
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vM(ΠxF (x)) = 1
|D|
∑
c∈D vM(F (c)) = PropM(F )

vM(&xF (x)) = max(0, 1−
∑
c∈D(1− vM(F (c))))

vM(∀pF (p)) = infα∈[0,1]vM(F (pα))

vM(∃pF (p)) = supα∈[0,1]vM(F (pα))

vM(ΠpF (p)) =
∫ 1
0 vM(F (pα))dα

vM(&pF (p)) = max(0, 1− sup{
∑
α∈J(1− vM(F (pα))) : J ⊂ [0, 1], J finite})

The last four quantifiers we refer to as propositional quantifiers. They are defined
in the style of the other four quantifiers, to which we refer as object quantifiers, as
they range over the set of constants that in turn refer to objects from the domain.
Complementarily, the propositional quantifiers range over the set of truth constants
that represents the truth values from the real unit interval. While & generalizes strong
Łukasiewicz conjunction to the object quantifier level, & does generalize & to the level
of propositional quantifiers. Similarly, ∀,∃ and Π generalize their respective object
quantifiers to the level of propositional quantifiers. This may still seem arbitrary, but the
motivation can be seen in two different and complementary ways. For one, it is the goal
of the present chapter to provide with a logic that increases the expressive power of the
previously introduced logics, which will be achieved by these propositional quantifiers, as
we will see shortly. On the other side, the particular choice of the semantics is based
on the selection principles that correspond to the players of the RG-game. Once we
introduced the alternative (game) semantics, this will become rather obvious.

For the truth function of Π we chose the Lebesgue integral. We thereby guarantee
existence, as vM(F (pα)) ≤ 1 for all formulas F , which do not yet involve the propositional
quantifier Π, and α ∈ [0, 1]. Hence

∫ 1
0 vM(F (pα))dα ≤

∫ 1
0 dα = 1 <∞. Again, this truth

function generalizes the truth function of Π. The motivation of both is best understood
from their game semantic characterization, which will be given further down.

For the truth function of &, note that, although the supremum may be infinite, the
maximum still always takes values within the real unit interval.

Equivalence F ↔ G, of two formulas F and G, is defined as (F → G) ∧ (G → F ), i.e.
vM(F ↔ G) = 1− | min(vM(F ), vM(G))−max(vM(F ), vM(G)) |, and the negation ¬F
of a formula F as F → ⊥, i.e. vM(¬F ) = 1− vM(F ). Then we may define:

• F&G = ¬(F → ¬G), leading to: vM(F&G) = max(0, vM(F ) + vM(G)− 1)

• F ⊕G = ¬F → G, leading to: vM(F ⊕G) = min(1, vM(F ) + vM(G))
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• F 	G = ¬(F → G), leading to: vM(F 	G) = max(0, vM(F )− vM(G))

Also, we can define k-ary versions of the connectives, associated to strategic players, as
the simple iterations of the binary versions. For strong Łukasiewicz conjunction, this
works as we have associativity, and hence the way brackets are placed does not affect the
final truth value [Háj98].

• &k
i=1Fi, leading to: vM(&k

i=1Fi) = max(0, 1−
∑k
i=1(1− vM(Fi)))

• [Fi]1≤i≤k⊕ , leading to: vM([Fi]1≤i≤k⊕ ) = min(1,
∑k
i=1 vM(Fi))

• ∧ki=1Fi, leading to: vM(∧ki=1Fi) = min{vM(Fi) : 1 ≤ i ≤ k}

• ∨ki=1Fi, leading to: vM(∨ki=1Fi) = max{vM(Fi) : 1 ≤ i ≤ k}

Defining a k-ary π with a truth function that takes the average of k formulas cannot
be done straightforwardly, as e.g., for three formulas F,G,H, we have (FπG)πH 6=
vM(F )+vM(G)+vM(H)

3 . One would need to define such a k-ary (k ≥ 2) π from the start.
However, formulas with truth values that are arbitrarily close to any number in [0, 1] can
be defined via the binary π already, as we have seen at the end of Chapter 2. Syntactically,
we just added uncountably many truth constants to the language of Łα(Π), while the
expressive power of Łα(Π) already gives us all of them up to an infinitesimal error at
most, i.e. an error that can be made arbitrarily small. A similar situation arises from
Giles’s game, where the risk of asserting an atomic formula is determined by an associated
dispersive experiment [Gil82], which, by the very idea of tangible meaning, can only be
executed finitely many times. Hence, rational and also irrational truth values appear
only as an idealization.

It should further be noted that (1), we can not replace the implication connective→ with
one for strong conjunction & and define the implication via it, as that would need another
rule for negation as well, and (2), for & is not idempotent8, also & and & behave unlike
usual quantifiers, as, e.g., if the quantified formula F is independent of the quantifier
variable, the truth value of F might still be changed from the quantifier application.
Object quantifiers based on t-norms are also discussed in [Got13].

We now characterize Łα(Π) game semantically, by giving game rules for the basic
connectives and quantifiers, with payoffs for P matching the truth functional semantics.
In that way, we show that a justification, regarding the choice of the truth functions,
that is based on the selection principles the players adhere to, exists. As these selection
principles are formulated with an appeal more intuitive than technical, one may even
call them philosophically motivated. Furthermore we show that these three selection

8A binary operation ? on a set A is called idempotent if a ? a = a for all a ∈ A [CHN11].

28



3.2. NRG-game, or: the logic Łα(Π)

principles together are strong enough to express the discontinuous Gödel implication as
well as Product implication and conjunction. The underlying language provides us with
propositions pα for all α ∈ [0, 1] such that vM(pα) = α. As usual, the proponent player
optimizes her payoff, while the opponent tries to minimize it. In a way dual to that, the
third player acts neutrally and selects uniformly randomly. We state the twelve rules of
the NRG-game, while the evaluation of states and atoms is as in the RG-game (like the
first seven rules). The N in NRG stands for number. For a fixed interpretationM with
finite domain D, we then define:

RNRG→ : If P asserts F → G, then O attacks by asserting F , obliging P to assert G.

RNRG∧ : If P asserts F ∧G, O chooses whether P must assert F or G.

RNRG∨ : If P asserts F ∨G, P chooses whether P must assert F or G.

RNRGπ : If P asserts FπG, N chooses whether P must assert F or G.

RNRG∀ : If P asserts ∀xF (x), O chooses c ∈ D, and P must assert F (c).

RNRG∃ : If P asserts ∃xF (x), P chooses c ∈ D, and P must assert F (c).

RNRGΠ : If P asserts ΠxF (x), N chooses c ∈ D, and P must assert F (c).

RNRG& : If P asserts &xF (x), then, if O attacks, P must assert all F (c), c ∈ D, or ⊥.

RNRG∀ : If P asserts ∀pF (p), O chooses pα ∈ Λ, and P must assert F (pα).

RNRG∃ : If P asserts ∃pF (p), P chooses pα ∈ Λ, and P must assert F (pα).

RNRGΠ : If P asserts ΠpF (p), N chooses pα ∈ Λ, and P must assert F (pα).

RNRG& : If P asserts &pF (p), then O attacks by choosing a finite J ⊂ Λ and

P must assert F (pα) for all pα ∈ J , or ⊥.

Remark 7 The motivation for defining such games is the tangibility of these rules. They
are more tangible than truth functions, and often people understand the intended semantics
better when it is explained in the realm of dialogue games between players. The implication
rule is a particularly good example for that, but the instances of the random witness
selection principle (π,Π,Π) are also much easier to justify when explained as augmenting
games with only strategic reasoning, as for example the G-game. This is because in that
way we can argue that the random witness selection complements the strategic witness
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selection, which should make intuitive sense. On the other hand, introducing truth
functions that compute the average of values, hence leading to intermediate truth values in
the real unit interval, may seem ad hoc, if no further background principle, that justifies
this choice, is provided.

The upcoming definition determines the notion of logical consequence and in particular
the set of tautologies of Łα(Π), i.e. its valid formulas.

Definition 9 In Łα(Π), a formula F is called a logical consequence of a set of formulas
Γ, written Γ |=Łα(Π) F , if for every evaluation vM we have:

If vM(G) = 1 for all G ∈ Γ, then also vM(F ) = 1.

In particular, a formula F is called valid if for all evaluations vM we have vM(F ) = 1.
We denote that circumstance by |=Łα(Π) F .

The following theorem explains the correspondence of the truth functional semantics and
the evaluation of these game rules, while the notion of risk is the one of Definition 4 as it
stands.

Theorem 6 [Hof18] A Łα(Π) formula F is evaluated to vM(F ) = w in a fuzzy
interpretation M iff every NRG-game for F , i.e. a game starting in the state [|F ], is
(1− w)-valued for the player I under risk value assignment 〈·〉 matchingM.

Proof:
As we have Theorem 3 and Theorem 4, we only have to consider the cases where the NRG-
game, and hence the language of Łα(Π), differs from the RG-game, and the language
of Ł(Π, π) respectively. This is the case for &,∀,∃,Π, and &. Truth value constants
need no special treatment, as they behave like atoms. If the game for F starts, it is in
the state [| F ]. Leaving out the shared basics with the RG-game (see Theorem 3 and
Theorem 4), we have to treat the following ten cases (G,H are a Łα(Π) formulas, Γ,Γ′
multisets of Łα(Π) formulas, and α = vM(pα)).

1a: 〈Γ | Γ′,&xG〉 = min(〈Γ | Γ′,⊥〉,
∑
c∈D〈Γ | Γ′, G(c)〉)

2a: 〈Γ | Γ′,∀pG〉 = supα∈[0,1]〈Γ | Γ′, G(pα)〉

3a: 〈Γ | Γ′,∃pG〉 = infα∈[0,1]〈Γ | Γ′, G(pα)〉

4a: 〈Γ | Γ′,ΠpG〉 =
∫ 1

0 〈Γ | Γ′, G(pα)〉dα

5a: 〈Γ | Γ′,&pG〉 = min(〈Γ | Γ′,⊥〉, sup{J⊂[0,1],J finite}
∑
α∈J〈Γ | Γ′, G(pα)〉)
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1b: 〈Γ,&xG | Γ′〉 = max(〈Γ,⊥ | Γ′〉,
∑
c∈D〈Γ, G(c) | Γ′〉)

2b: 〈Γ,∀pG | Γ′〉 = infα∈[0,1]〈Γ, G(pα) | Γ′〉

3b: 〈Γ,∃pG | Γ′〉 = supα∈[0,1]〈Γ, G(pα) | Γ′〉

4b: 〈Γ,ΠpG | Γ′〉 =
∫ 1

0 〈Γ, G(pα) | Γ′〉dα

5b: 〈Γ,&pG | Γ′〉 = max(〈Γ,⊥ | Γ′〉, sup{J⊂[0,1],J finite}
∑
α∈J〈Γ, G(pα) | Γ′〉)

Recall that the conditions result from the interpretation of the respective game rules.
For case 1a, the game rule prescribes to either assert ⊥ or all instances G(c) (c ∈ D) if
&xG(x) has been asserted previously, and as P can choose herself, she is able to enforce
the minimum over these risks. Regarding case 2a, in the game, the opponent player
You can enforce the maximum over all risks 〈Γ|Γ′, G(pα)〉 (α ∈ [0, 1]). Similarly for case
3a, the proponent player I can enforce the minimum over the same risks as in case 2a.
For case 4a, we have to consider that N samples uniformly randomly from the real unit
interval, hence the average risk is computed as the integral over all results. Eventually for
case 5a, the opponent player You chooses a set J corresponding to finitely many values
from the real unit interval, and the proponent player I can choose whether to assert
⊥ or G(pα) for all α ∈ J . The conditions for cases 1b − 5b are obtained by analogous
arguments.

Case 1a (case 1b works by analogy):

〈Γ | Γ′,&xG〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(&xG) =

= 〈Γ|Γ′〉+ 1−max(0, 1−
∑
c∈D(1− vM(G(c)))) =

= 〈Γ|Γ′〉+ min(1,
∑
c∈D〈G(c)〉) =

= min(〈Γ | Γ′,⊥〉,
∑
c∈D〈Γ | Γ′, G(c)〉)

Case 2a (case 2b works by analogy):

〈Γ | Γ′,∀pG〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(∀pG) =

= 〈Γ|Γ′〉+ 1− infα∈[0,1]vM(G(pα)) =

= 〈Γ|Γ′〉+ supα∈[0,1]〈G(pα)〉 =

= supα∈[0,1]〈Γ | Γ′, G(pα)〉

Case 3a (case 3b works by analogy):

〈Γ | Γ′,∃pG〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(∃pG) =

= 〈Γ|Γ′〉+ 1− supα∈[0,1]vM(G(pα)) =
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= 〈Γ|Γ′〉+ infα∈[0,1]〈G(pα)〉 =

= infα∈[0,1]〈Γ | Γ′, G(pα)〉

Case 4a (case 4b works by analogy):

〈Γ | Γ′,ΠpG〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(ΠpG) =

= 〈Γ|Γ′〉+ 1−
∫ 1
0 vM(G(pα))dα =

= 〈Γ|Γ′〉+
∫ 1

0 〈G(pα)〉dα =

=
∫ 1

0 〈Γ | Γ′, G(pα)〉dα

Case 5a (case 5b works by analogy):

〈Γ | Γ′,&pG〉 = |Γ′|+ 1− |Γ|+ vM(Γ)− vM(Γ′)− vM(&pG) =

= 〈Γ|Γ′〉+ 1−max(0, 1− sup{J⊂[0,1],J finite}
∑
α∈J(1− vM(G(pα)))) =

= 〈Γ|Γ′〉+ 1−max(0, 1− sup{J⊂[0,1],J finite}
∑
α∈J〈G(pα)〉) =

= 〈Γ|Γ′〉+ min(1, sup{J⊂[0,1],J finite}
∑
α∈J〈G(pα)〉) =

= min(〈Γ | Γ′,⊥〉, sup{J⊂[0,1],J finite}
∑
α∈J〈Γ | Γ′, G(pα)〉)

Note that the notion of Definition 4 with ε > 0 is needed here, for the cases 5a, 5b. It is
buried inside the sup, as here an approximation with infinitesimal error takes place. 2

Remark 8 In the remainder of this chapter, we will show how one can define the truth
functions of certain MFLs by the truth functions of Łα(Π). In that sense, we may also
speak about term-definability of a logic in another.

3.3 Definability of Gödel logic in Łα(Π)
Gödel implication can be defined in Łukasiewicz logic enriched with the Delta operator
[CFN15, CHN11]. This operator allows for expressing discontinuities, and can be defined
as follows:

Definition 10 For Łα(Π) formulas F we define:

vM(∆F ) =
{

1 if vM(F ) = 1
0 otherwise

(3.3)
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Theorem 7 [Hof18] For Łα(Π) formulas F , in which the propositional variable p does
not occur, we have:

vM(∆F ) = vM(&pF ). (3.4)

To prove this we need the following lemma9:

Lemma 1 [Fol99] Let I be an uncountable index-set, and f : I → [0, 1]. If we have:∑
i∈I

f(i) <∞, then for all but countably many i ∈ I we also have f(i) = 0. (3.5)

We now prove Theorem 7:

Proof:
We prove this by case distinction:

Case (1): If vM(F ) = 1, the sum in the truth function of &pF disappears, and we get
vM(&pF ) = 1.

Case (2): If vM(F ) < 1, then, in the limit, the sum of the truth function of &pF contains
uncountably many positive terms, which by Lemma 1 means it is infinite, and hence
vM(&pF ) = 0. 2

Remark 9 If we consider a game for &pF an interesting situation arises. If vM(F ) = 1,
the opponent player triggers her part of the principle of limited liability and will hence
not attack. On the other hand, if vM(F ) < 1, the proponent player triggers her part of
the principle of limited liability and assert ⊥ instead of a lot of F ’s with each having a
positive risk. It is clear that, if F carries a positive risk, the opponent player can find a
natural number m such that m times the risk of F is at least 1.

Gödel conjunction is of course already part of Ł(Π), and Gödel implication can be defined
as follows:

Definition 11 For two Łα(Π) formulas F,G, in which the propositional variable p does
not occur, we define:

F � G = &p(F → G) ∨G. (3.6)

Remark 10 As the definition shows, we technically do not need the restriction to finite
domains at all to define �. The overall restriction to finite domains results from the
presence of the object quantifier Π, as explained in the second half of Section 2.4, and in
Section 3.5.1.

9Note that the maybe unfamiliar sum over an uncountable index-set is defined as follows (using the
terminology of the subsequent definition):

∑
i∈I f(i) = sup{

∑
i∈J f(i) : J ∈ I with J ⊂ I finite}.
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Remark 11 Abusing notation, we will sometimes also write ∆F instead of &pF , when
it is clear from the context that we want to stay in Łα(Π), to ease the readability of
formulas. In that case, we agree that inside the formula, inside the scope of that ∆ (or
better &p), the propositional variable p does not occur.

Theorem 8 [Hof18] For two Łα(Π) formulas F,G, in which the propositional variable p
does not occur, we have:

vM(F � G) = vM(F )⇒G vM(G). (3.7)

Proof:
To prove the theorem, we make the obvious case distinction:

(i): vM(G) ≥ vM(F )

In that case, vM(&p(F → G)) = 1.

(ii): vM(G) < vM(F )

In that case, vM(&p(F → G)) = 0, hence the claim follows. 2

Theorem 9 [Hof18] Considering only interpretations with finite domains, we can define
the truth functions of Gödel logic via the truth functions of Łα(Π).

Proof:
As we have Gödel conjunction in Łα(Π), and since we can define a connective which
evaluates like Gödel implication, the claim follows for Gödel logic restricted to finite
domains through [EGM04], which gives us a finite axiomatization for any continuous
t-norm and its residuum. 2

3.3.1 Definability of Product logic in Łα(Π)
As for Product logic, we have to be able to express multiplication and division, of real
numbers in [0, 1], on the truth functional level. For this, we can use the propositional
quantifiers, especially Π. We can directly define:

Definition 12 For two Łα(Π) formulas F and G, in which the propositional variables p
and q do not occur10, we define:

F ·G = ΠpΠq(∆(p→ F ) ∧∆(q → G)), and (3.8)

F � G = ∃p(p ∧∆(p · F → G)). (3.9)
10Recall that we, abusing notation, write ∆ instead of &p. This convention implicitly demands that

the formula in the scope of ∆ (or &p) be independent of the variable bound by &.
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From this construction we can see, that it were not enough to restrict Λ to countably
many constants representing [0, 1] ∩Q, as the Lebesgue measure of that set is zero. Also,
recall Remark 10.

Theorem 10 [Hof18] For two Łα(Π) formulas F and G, as in Definition 12, we have:

vM(F ·G) = vM(F ) ∗P vM(G), (3.10)

vM(F � G) = vM(F )⇒P vM(G). (3.11)

Proof:
For the conjunction connective ·, we assume, without loss of generality, that vM(F ) ≤
vM(G). Also, vM(pα) = α, vM(pα′) = α′, with α, α′ ∈ [0, 1]. Then we have:

vM(F ·G) =
∫ 1

0
∫ 1

0 min(vM(∆(pα → F )), vM(∆(pα′ → G)))dαdα′ =

=
∫ 1

0 (
∫ vM(F )

0 min(1, vM(∆(pα′ → G)))dα)dα′ =

=
∫ 1

0 (
∫ vM(F )

0 vM(∆(pα′ → G))dα)dα′ =
∫ 1

0 vM(∆(pα′ → G))dα′ ·
∫ vM(F )
0 1dα =

=
∫ vM(G)

0 1dα′ ·
∫ vM(F )

0 1dα = vM(G) · vM(F ) = vM(F ) ∗P vM(G).

For the implication connective � it is clear that vM(F � G) = 1 if vM(F ) ≤ vM(G).
We can hence pay attention to the case where vM(F ) > vM(G):

vM(F � G) = supα∈[0,1]min(vM(pα), vM(∆(pα · F → G))).

From that line we see that the supremum is attained if vM(pα · F ) = vM(G), which is
exactly when vM(pα) · vM(F ) = vM(G). Hence together,

vM(F � G) = vM(F )⇒P vM(G). 2

Theorem 11 [Hof18] Considering only interpretations with finite domains, we can define
the truth functions of Product logic via the truth functions of Łα(Π).

Proof:
As we have defined connectives in Łα(Π) that model the implication and conjunction
connective of Product logic, the claim follows for Product logic restricted to finite domains
through [EGM04], which gives us a finite axiomatization for any continuous t-norm and
its residuum. 2
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3.4 Definability of MFLs in Łα(Π)
Continuous t-norms can be expressed as ordinal sums of the three basic t-norms, namely
Gödel, Product and Łukasiewicz. This is what Mostert-Shields’ Theorem gives us
[CHN11]. We are going to represent t-norms that correspond to finite sums, as well as
their residua, in Łα(Π). Then, we use [EGM04], to infer that, since we have a continuous
t-norm and its residuum, a finite axiomatization for the corresponding fuzzy logic is
effectively obtainable. Again, we only treat cases with finite domains.

Theorem 12 [CHN11] Every continuous t-norm is isomorphic to an ordinal sum of the
three basic t-norms (Gödel, Product and Łukasiewicz).

Theorem 13 [Hof18] Considering only interpretations with finite domains, we can
define the truth functions of all fuzzy logics that are based on a continuous t-norm that is
representable as a finite ordinal sum of the three basic ones, i.e. those corresponding to
Gödel logic, Product logic and Łukasiewicz logic, via the truth functions of Łα(Π).

Before we prove the theorem, let us recall Remark 10. The restriction to finite domains
comes from the fact that we are dealing with Łα(Π), which has the object quantifier Π
as an essential feature. Technically, one can also remove this object quantifier from the
language, and only use the propositional version of it. Although in that way we can
generalize the result to arbitrary domains, we thereby would lose an important component
of our framework, which is particularly necessary when we want to model NL quantifiers.

Proof:
From Theorem 12 (Mostert-Shields’ Theorem) [CHN11], we get, for any fixed continuous
t-norm T , an ordinal sum decomposition (∗ιi([ai, bi]))i≥1, ιi ∈ {Ł, P}, i ≥ 1, such that we
have:

x ∗T y =


ai + (bi − ai)( x−aibi−ai ∗Ł

y−ai
bi−ai ) if (x, y) ∈ [ai, bi]2 and ιi = Ł

ai + (bi − ai)( x−aibi−ai ∗P
y−ai
bi−ai ) if (x, y) ∈ [ai, bi]2 and ιi = P

x ∗G y otherwise
(3.12)

We have to provide with a definition representing those continuous t-norms ∗T as Łα(Π)
formulas for which there is a positive integer τ such that the ordinal sum consists of τ
parts. The case τ = 1 is trivial, so from now on we assume τ = k ≥ 2 fixed. For the
appropriate truth constants, representing the interval bounds a and b, called11 a and b,
we define for two Łα(Π) formulas F and G:

F&ι
a,bG =

11Note that here, to ease readability, we employ a slightly different notation to refer to truth constants
than usually.
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= a⊕ ((b	 a) · (((b	 a)� (F 	 a))&ι((b	 a)� (G	 a)))).

The connective &T representing the full t-norm ∗T can now be defined as:

F&TG =

= ∨ki=1(∆((ai → F ) ∧ (ai → G) ∧ (F → bi) ∧ (G→ bi)) ∧ (F&ιi
ai,bi

G)) ∨

∨ (∧ki=1(¬∆(F → bi) ∨ ¬∆(G→ bi) ∨ ¬∆(ai → F ) ∨ ¬∆(ai → G)) ∧ (F&GG)).

It remains to verify that the F&TG really possesses the truth function matching the
definition of ∗T . So, (1) assume there is an 1 ≤ i ≤ k such that vM(F ), vM(G) ∈ [ai, bi],
which must be unique. That means:

vM(∨ki=1∆((ai → F ) ∧ (ai → G) ∧ (F → bi) ∧ (G→ bi))) = 1, and

vM(∧ki=1(¬∆(F → bi) ∨ ¬∆(G→ bi) ∨ ¬∆(ai → F ) ∨ ¬∆(ai → G)) = 0.

Hence, vM(F&TG) = vM(F&ιi
ai,bi

G) = vM(ai) +

+ vM(bi 	 ai) · vM(((bi 	 ai)� (F 	 ai))&ιi
ai,bi

((bi 	 ai)� (G	 ai))).

The truth values of the two conjuncts of &ιi
ai,bi

are:

vM(((bi 	 ai)� (F 	 ai))) = vM(F	ai)
vM(bi	ai)

= vM(F )−vM(ai)
vM(bi)−vM(ai)

, and

vM(((bi 	 ai)� (G	 ai))) = vM(G	ai)
vM(bi	ai)

= vM(G)−vM(ai)
vM(bi)−vM(ai)

.

That gives us, that:

vM(F&TG) = ai + (bi − ai) · (vM(F )−ai
bi−ai ∗ιi

vM(G)−ai
bi−ai ).

On the other hand (2), if there is no 1 ≤ i ≤ k such that vM(F ), vM(G) ∈ [ai, bi], then:

vM(∨ki=1∆((ai → F ) ∧ (ai → G) ∧ (F → bi) ∧ (G→ bi))) = 0, and

vM(∧ki=1(¬∆(F → bi) ∨ ¬∆(G→ bi) ∨ ¬∆(ai → F ) ∨ ¬∆(ai → G))) = 1.

This in turn means, that:

vM(F&TG) = vM(F&GG).

This shows that we can express &T in Łα(Π). It now remains to show that also the
residuum of &T is expressible in Łα(Π), which works as follows. For two formulas F and
G we define:
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F →T G = ∃p(∆((p&TF )→ G) ∧ p).

Using vM(p&TF ) = vM(p) ∗T vM(F ) the truth function of →T becomes (α = vM(pα)):

vM(F →T G) = supα∈[0,1]{α : vM(pα) ∗T vM(F ) ≤ vM(G)}.

Therefore, by Equation 3.2, we have vM(F →T G) = vM(F )⇒T vM(G).

Furthermore, as is demonstrated in [EGM04], we can directly infer the axiomatization of
a fuzzy logic, which is based on a continuous t-norm, from its t-norm and its residuum.
2

3.5 Infinity and selecting subsequent states
In this last part of the section, we investigate some alternative approaches that may
lead to similar results by other means, or just show how one can can use the selection
principles associated to the three players to define certain constructs. Also, we argue why
infinite domains are to be treated cautiously in the presence of Π, but most importantly,
we look at a way of making the result about continuous t-norms more general, i.e. a way
to express infinite ordinal sums. Note that the game rules R presented in this section do
not carry any upper index. This is due to them not being part of any setting discussed
so far. They only serve the purpose of illustrating alternative approaches.

3.5.1 Infinite domains

The object quantifier Π makes it difficult to consider infinite domains in the general case.
Although there are many examples where one can define probability distributions over
infinite sets, the uniform distribution on, e.g., N and R does not exist. Hence, we can not
simply take the integral over an arbitrary domain D, and assume it were automatically
defined. Actually, one needs to bring in the notion of measurability and hence σ-algebras,
which goes beyond the scope of the present thesis, where we lay particular interest in a
certain detachment from too much mathematics.

3.5.2 Infinitary game rules

Game rules that allow the players to choose from infinitely many options are nothing
particularly special in principle. Having infinite domains, every choice of constants
performed by O or P, i.e. those related to universal or existential quantifiers, corresponds
to a selection from infinitely many possibilities. Therefore the following game rules appear
natural.

R∨∞: If P asserts ∨∞i=1Fi, P chooses i ≥ 1 and P asserts Fi.
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R∧∞: If P asserts ∧∞i=1Fi, O chooses i ≥ 1 and P asserts Fi.

The truth functions matching those game rules are the expected ones, except that, with
respect to the k-ary versions, max and min become sup and inf, as no witnesses for the
maximal or minimal truth value may exist. This is similar to the case where one has
infinite domains. For that kind of scenario the notion of risk as introduced in Definition
4 as it stands, is again the appropriate one. Still, syntactically such infinitary constructs
are to be justified, as for example via a schematic condition that all Fi are the same
up to shuffling constants or changing the arity of the formula. In [Got13], the author
considers infinitely long expressions as an alternative to generalizations of the kind here.

Infinite ordinal sums

In particular, although not executed entirely here, one can use infinitary rules for
conjunction and disjunction to extend the result of Theorem 13 in a way that all
MFLs based on continuous t-norms are covered. To that end, one merely has to
replace ∧ki=1,∨ki=1, in the proof of Theorem 13, with ∧∞i=1,∨∞i=1, in case the ordinal
sum corresponds to infinitely many different intervals. However, although the formulas
in its scope follow a schematic pattern, a full characterization and an adequacy proof (i.e.
a proof that the rules payoff-wise, for P, match their defined truth functions based on
inf and sup) for ∧∞i=1,∨∞i=1 are not part of the present thesis.

A game rule for the Delta

Another application of ∧∞i=1 is a different characterization of the Delta operator. The
following game rule would do the job:

R∆: If P asserts ∆F , O chooses k ≥ 1 and P must assert k instances of F , or ⊥.

Syntactically, this corresponds to an expression of the form ∧∞k=1(&k
j=1F ). Again, since

we always assume the same formula F as base and then only adjust the number of times
it appears within the scope of strong Ł conjunction, a schematic pattern is given.

Informally, if the risk of asserting F is exactly 0, no matter which k ≥ 1 O chooses, also
k instances of F do not entail any risk. On the other hand, if the risk of F is greater
than zero, O only needs to go high enough and will always find a natural number which
makes asserting that many instances of F , for P, at least as expensive as asserting ⊥.

3.5.3 Truth constants and the k-ary π

For k ≥ 2 and formulas Fi, 1 ≤ i ≤ k, one can consider the following game rule:

Rπk : If P asserts πki=1Fi, N chooses 1 ≤ i ≤ k and P must assert Fi.
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3. The NRG-game and t-norm based fuzzy logics

The payoff for P matches the following truth function:

vM(πki=1Fi) =
∑k
i=1 vM(Fi)

k
. (3.13)

This construct can be used, e.g., to define arbitrary rational truth value constants, as
one can set any combination of ⊥’s and >’s for the Fi.

Note that here, as for the object quantifier Π, infinitely many options to choose from
become really problematic, as the denominator of the defined truth function would
become infinite.
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CHAPTER 4
Quantifier Models

Models for vague natural language quantifiers can hardly be unique. One uses expressions
like “almost all”, “about half”, “at least about a third” and “many” frequently and
naturally in spoken and written language. Formal models for those are a tool of meta-
level precisifications, that can be used to explain the discrepancy in speakers using them
with different background meanings. For example, let us consider the two statements
“Almost all free tigers are endangered”, and “Almost all children like chocolate”. The
tolerance margin, i.e. the number of negative witnesses (or their percentage) that is
still tolerable for a speaker to accept the respective statements to be true, neither is an
absolute number, nor is it a fixed percentage of the underlying base set, here, the set of
free-living tigers and the set of children respectively. We are going to conceptualize this
freedom of defining quantifier semantics by allowing for different readings for each natural
language quantifier. To do so in a systematic manner, we recall [FR14] the hierarchy of
quantification, was introduced by Liu and Kerre [LK98] fo fuzzy quantifiers. Since the
models of vague quantifier expressions might - in principle - not be based on fuzzy logic,
we prefer to use “vague”, where Liu and Kerre have “fuzzy”. However we retain “crisp”
for “precise”.

Type I: The quantifier and its scope are crisp.

Type II: The quantifier is crisp, but its scope may be vague.

Type III: The quantifier is vague, but its scope is crisp.

Type IV: The quantifier and its scope may be vague.

Although vagueness (and crispness) on the level of natural language and intermediate
truth values of formulas are not necessarily related, we use the mentioned classification
to concisely refer to the structure of the following definition. Subsequently, we are
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4. Quantifier Models

going to explain in greater detail how we intend to relate vagueness and intermediate
truth values, namely by embedding the former classification into the latter, by means
of defining appropriate versions of respective natural language quantifier expressions
formally, respecting the potential differences that speakers may attribute to them.

Definition 13 Let a fuzzy interpretation M and some language comprising symbols
F̂ , F,Q, . . . be given. Then we say:

• A quantifier Q is of Type I if it is defined only for classical formulas F̂ , and for all
these we have vM(QxF̂ (x)) ∈ {0, 1}.

• A quantifier Q is of Type II if it is defined for all formulas F , and for all these we
have vM(QxF (x)) ∈ {0, 1}.

• A quantifier Q is of Type III if it is defined only for classical formulas F̂ , and for
all these we have vM(QxF̂ (x)) ∈ [0, 1].

• A quantifier Q is of Type IV if it is defined for all formulas F , and for all these we
have vM(QxF (x)) ∈ [0, 1].

Quantifiers of Type III are also called semi-fuzzy and quantifiers of Type IV are also
called fully-fuzzy.

Note that the foregoing definition does not assume any particular logic yet. It is more
thought to be a generic classification that may be used for different frameworks.

Remark 12 Throughout this chapter, we will always have an interpretation M fixed
in the background. This in particular means that D always denotes the corresponding
(finite) domain, or set of constants referring to objects from the domain (which is also
called D), respectively. Moreover, for any definition, theorem and corollary, we will make
explicit which logical framework we refer to. In case this is not made explicit, we refer to
a generic situation, i.e. definitions or statements refer to any framework, as for example
just above in Definition 13.

Another line alongside which we can distinguish quantifier expressions is extensionality
and intensionality [FK96]. By the former we mean absolute quantifiers (or counting
quantifiers) and relative quantifiers (or proportional quantifiers), i.e. those that relate
only to absolute numbers, or proportions respectively, of witnessing constants for the
quantifier’s scope within the domain of some interpretation M. By the latter, the
intensional quantifiers, we mean such quantifiers that are not of the extensional sort,
e.g. “many” and “few”. For these, as we will discuss shortly in greater detail, we will
require a more refined analysis of the distribution of witnesses for a quantifier’s scope
with respect to M. However, extensional quantifiers can be seen as a special case of
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intensional quantifiers, in the following sense. We model intensional quantifiers in a way
that allows us to incorporate contextual information. Models of quantifiers where this
information is empty, i.e. it does not contribute to the evaluation, can be considered to
be extensional. On one side that means, absolute and relative quantifiers can be seen as
trivial cases of intensional ones, and intensional quantifiers without extra information
from context can be seen as extensional models of intensional quantifiers. Consequently,
the notion of absolute and relative quantifiers also applies to intensional quantifiers, while,
instead of singling out particular names for them, we rather only speak of absolute and
relative models of intensional quantifiers.

One more important feature is the arity of a quantifier Q. Arity refers to the number
of arguments1 a quantifier can take. In [PW06], in its most general form, a quanti-
fied sentence Qx1, . . . xn(F1, . . . , Fm) features a quantifier Q, which is binding variables
x1, . . . , xn, that may occur in several argument formulas F1, . . . , Fm. Such quantifiers are
then said to be of Type 〈a1, . . . , am〉, where ai is the arity of the formula Fi (1 ≤ i ≤ m).
In natural language, binary quantification2 (Type 〈1, 1〉 quantification), where only one
variable is bound, is the most common form, as e.g. in “All humans are mortal”. In the
example, the predicate “human” is the range (restricting) predicate (let us called it H),
whereas “mortal” takes the place of what is usually called the scope predicate (let us
called itM). Then, a possible way to write the statement as a formula is ∀x(H(x),M(x)).
For unary quantification, i.e. Type 〈1〉 quantification, there only is a scope predicate, and
the quantification ranges over the whole domain, as e.g. in the statement “All [objects
from the domain] are blue”.

We will mostly focus on unary and binary quantifiers, while the general case of n-ary
quantifiers, with n ≥ 3, only receives slight attention, as NL examples in that direction
hardly exist in frequently used language. However, we will show how certain expressions
of that kind, that are not expressible in Classical Logic, can neatly be expressed within
our framework Łα(Π). Summarizing the different angles to quantifier classification, we
give the following list:

• Quantifiers of Type I − IV (w.r.t. Definition 13).

• Extensional and intensional quantifiers.

• The arity of a quantifier.

For extensional quantifiers, i.e. the relative and absolute ones, we will first treat the
unary cases and only then work out how to deal with binary quantification, while for the

1Note that we sometimes refer to a quantifier’s scope as the quantifier’s argument(s). The reason for
that is that in [?] quantifiers are regarded as functions, as no distinction between syntax and semantics is
performed there.

2In [Zad85] Zadeh speaks of a classification of quantifiers into the first kind, second kind, third kind,
etc., rather than of unary, binary, ternary, etc., quantification. However, this is in conflict with Zadeh’s
own earlier terminology in [Zad83].
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4. Quantifier Models

intensional quantifiers “many” and “few”, we will start with the binary case, which then
subsumes the unary case as well. This choice is conceptually motivated by the fact that for
extensional quantifiers an additional range to the scope reduces to simply restricting the
domain of discourse, which is fairly straightforward, while for our intensional quantifiers
the situation is more complex, as we will see when we introduce respective readings.
Quantifiers with an arity higher than 2 are considered in Section 4.5.3.

We consider the following basic natural language quantifiers (k ≥ 0, q ∈ [0, 1]), where
the abbreviations Abs,Rel and Int indicate that they encompass absolute, relative and
intensional quantifier expressions respectively:

Abs1: “exactly k”, “at least/ at most k”, “more than/ less than k”.

Abs2: “about k”, “at least/ at most about k”, “more than/ less than about k”.

Rel1: “exactly (q ·100)%”, “at least/ at most (q ·100)%”, “more than/ less than (q ·100)%”.

Rel2: “about (q · 100)%”, “at least/ at most about (q · 100)%”, “more than/ less than
about (q · 100)%”.

Int1: “many”, “few”.

Additionally to those, we can now fix some more quantifier expressions that are common
in natural language (k1, k2 ≥ 0 with k1 < k2, and q1, q2 ∈ [0, 1] with q1 < q2):

Abs3: “more than k1 and less than k2”, “more than k1 and at most k2”, “at least k1 and
less than k2”, “at least k1 and at most k2”.

Rel3: “more than (q1 · 100)% and less than (q2 · 100)%”, “more than (q1 · 100)% and
at most (q2 · 100)%”, “at least (q1 · 100)% and less than (q2 · 100)%”, “at least
(q1 · 100)% and at most (q2 · 100)%”.

Int2: “several”, “various”, “multiple”, “heaps of”, “loads of”.

We are now taking up the discussion again on the relation of vagueness in natural
language and intermediate truth values in fuzzy logic. Type I-IV quantification has
been used twice. The first and more informal hierarchy relates more to vagueness in
natural language, while the second and more formal one rather relates to formulas with
either classical or intermediate truth values, which is closer to the originally intended
distinctions of Liu and Kerre, i.e. the one of Definition 13. In the informal hierarchy of
quantification, the term vague is referring to an inherent vagueness of NL statements,
which often is expressed with the hedge “about” and also implicit when we use quantifiers
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like “many” and ”few”. Crispness, on the other hand, refers to formulas that only assume
one of two definite truth values, namely 0 for false, and 1 for true. On the quantifier
level, “for all” and “exactly 10” are good examples, while on the propositional level
it seems safe to say that “being mortal” or “being more than 20 years old” are crisp3

in the sense that these properties are either completely fulfilled or unfulfilled by any
conceivable witness. Definition 13 does not directly reflect these concepts. There, “vague”
is changed to “can attain intermediate truth values” while crisp still expresses “bivalency”.
Since the expressions [Abs1], [Abs2], [Abs3], [Rel1], [Rel2], [Rel3], [Int1] and [Int2] are NL
quantifiers ([Abs2] and [Rel2] relate to vague ones, the others to crisp ones) which we
intend to model in terms of fuzzy logic, we have to consider the following. There are four
different cases for the quantifier level, while we always assume quantifier arguments to be
crisp:

• vague NL quantifiers can be of Type I (w.r.t. Definition 13), i.e. bivalent:

This is the way linguists usually treat vagueness, namely by not allowing for
intermediate truth values, even if the quantifier under consideration is clearly vague,
like “many”. Evaluations are based on (crisp) truth conditions., i.e. vagueness is
taken care of by considering context as an independent parameter of a bivalent
model.

• vague NL quantifiers can be of Type III (w.r.t. Definition 13), i.e. semi-fuzzy:

This is how fuzzy logicians often proceed, namely by giving truth functions for
vague quantifiers in the following way. The truth function of the relative quantifier
“about half” is 1 within a smallish area (for the acceptable tolerance) around the
value 1

2 , and then continuously approaches 0 on both sides. See e.g. Figure 4.4.

• crisp NL quantifiers can be of Type I (w.r.t. Definition 13), i.e. bivalent:

This is fairly intuitive and done by linguists and fuzzy logicians. The reasons seem
clear.

• crisp NL quantifiers can be of Type III (w.r.t. Definition 13), i.e. semi-fuzzy:

This, again, is something that linguists do not commonly do, while fuzzy logicians
find this very normal. Perhaps the best reason is to achieve a certain level of
robustness of evaluations. Recall the introduction’s example involving a library
and 1.000.103 books.

A comprehensive study of the literature, see e.g. [vG08, Ali81, dC05], all lexica in the
world, e.g. [Ada79], and extensive talk with several specimens, reveals that people’s use
of quantifier expressions is not limited to the ones introduced above. However, it often

3Note that we fequently use the same term to refer to classical, i.e. bivalent, formulas, too.
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4. Quantifier Models

happens that certain expressions have assigned certain meanings that are already covered
by our chosen quantifiers, like for example the quantifier expression “most”, which has at
least two different interpretations or readings. For one, it is often understood as simple
majority [Pet00], i.e. for a set of 100 balls, we can say “Most of the balls are green”
as soon as “at least 51”, or “more than half” of the balls have the property of being
green. Secondly, “most” often is read in the sense of “many”. For example, consider the
statement “Most people that have voted for Hillary Clinton in 2016 are unhappy that
Donald Trump won the presidential election.” Here, “most” expresses not the fact that
a simple majority of Clinton voters are unhappy with the election’s outcome, rather it
insinuates that a vast majority or even “almost all” voters are unhappy. Taking this
interpretation as one of the possible readings of “many” entails a respective semantics
that depends on a certain threshold value [FK96], which in turn can be seen as [Rel1] or
[Rel2] expressions. On the other hand, “many” can be interpreted intensionally, based
on a notion of comparison, as we will handle it further down in this chapter’s Section
4.6. Unless stated otherwise, for us, “most” will always refer to the “(simple) majority”
reading.

4.1 Extensional absolute crisp quantifiers
For absolute (unary) Type I quantifiers, we consider the following base quantifiers, called
[Abs1] above:

• “exactly k”, “at most k”, “less than k”, “at least k”, “more than k”.

Using those, we can also define various other quantifiers, by means of conjunction, called
[Abs3] above:

• “more than k1 and less than k2”, “more than k1 and at most k2”, “at least k1 and
less than k2”, “at least k1 and at most k2”.

Based on the game rule for E2 in [FH17], we can give a quantifier game rule RNRG∃≥k ,
for absolute (unary) Type I quantifiers, as follows4 (recall that the superscript of an R
preceding a rule indicates the associated game, here the NRG-game):

RNRG∃≥k : If P asserts ∃≥kxF̂ (x), then, if O attacks, P chooses k different constants
c1, . . . , ck, and then O chooses one of these constants, say ci, and P has to assert
F̂ (ci).

4Note that we do not give a theorem on the correspondence of this game rule with its associated truth
function. This is because we do not wish to add this rule formally to Łα(Π), as the formula leading to the
intended truth function is already expressible in Łα(Π). However, it is quite immediate that the payoff
for the proponent player matches the truth function of the defined expression introduced just below.
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4.1. Extensional absolute crisp quantifiers

We introduce the following terminology for notational convenience.

Definition 14 For a crisp formula F̂ , we define5: ‖F̂‖ =
∑
c∈D vM(F̂ (c)).

Also, for a condition A, we use I(A) as the indicator function for A:

I(A) =
{

1 if A holds
0 otherwise

(4.1)

Note that this latter function merely serves as a convenient notation, while a condition A
can be expressed in any way that admits assessing whether it holds or not.

We now define the following well known scheme [Glö06], assuming equality = in the
language:

Definition 15 For a crisp Łα(Π) formula F̂ , and 1 ≤ k ≤|D |, we define:

∃≥kxF̂ (x) = ∃x1 . . . ∃xk(
k∧
i=1

F̂ (xi) ∧
∧
i 6=j

(xi 6= xj)). (4.2)

Also, we define ∃≥0 = >.

It is relatively easy to see that the following theorem holds:

Theorem 14 [Glö06] For a crisp formula F̂ , and 0 ≤ k ≤|D |, we have:

vM(∃≥kxF̂ (x)) = I(‖F̂‖≥k). (4.3)

Game semantically, for a crisp formula F̂ , it is clear that P has a winning strategy for
the game for ∃≥kxF̂ (x), if and only if there are at least k positive witnesses for F̂ in D.
Hence, the payoff for P matches the truth value of the truth function just above.

Then, we define the following:

Definition 16 For a crisp Łα(Π) formula F̂ , and 0 ≤ k ≤|D | −1, we define:

• ∃≤kxF̂ (x) = ¬∃≥k+1xF̂ (x)

• ∃>kxF̂ (x) = ∃≥k+1xF̂ (x)
5Note that this represents the cardinality of the extension of the F̂ .
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• ∃<k+1xF̂ (x) = ∃≤kxF̂ (x)

• ∃kxF̂ (x) = ∃≥kxF̂ (x) ∧ ∃≤kxF̂ (x)

The remaining special cases, ∃≤|D|, ∃>−1,∃<|D|+1 are constantly true, while ∃>|D|,∃<0 are
constantly false. The quantifier ∃|D| is the same as ∀. Then, for 0 ≤ k1, k2 ≤|D | with
k1 < k2, we define:

• ∃[k1,k2]xF̂ (x) = ∃≥k1xF̂ (x) ∧ ∃≤k2xF̂ (x)

• ∃(k1,k2]xF̂ (x) = ∃>k1xF̂ (x) ∧ ∃≤k2xF̂ (x)

• ∃[k1,k2)xF̂ (x) = ∃≥k1xF̂ (x) ∧ ∃<k2xF̂ (x)

• ∃(k1,k2)xF̂ (x) = ∃>k1xF̂ (x) ∧ ∃<k2xF̂ (x)

Theorem 15 For a crisp Łα(Π) formula F̂ , and 0 ≤ k, k1, k2 ≤|D | with k1 < k2, we
have:

• vM(∃≤kxF̂ (x)) = I(‖F̂‖≤k)

• vM(∃>kxF̂ (x)) = I(‖F̂‖>k)

• vM(∃<kxF̂ (x)) = I(‖F̂‖<k)

• vM(∃kxF̂ (x)) = I(‖F̂‖=k)

• vM(∃[k1,k2]xF̂ (x)) = I(‖F̂‖∈[k1,k2])

• vM(∃(k1,k2]xF̂ (x)) = I(‖F̂‖∈(k1,k2])

• vM(∃[k1,k2)xF̂ (x)) = I(‖F̂‖∈[k1,k2))

• vM(∃(k1,k2)xF̂ (x)) = I(‖F̂‖∈(k1,k2))

Proof:
This is an immediate consequence of Theorem 14. 2

Remark 13 The quantifier expressions that were introduced as [Abs2] above, can also be
understood as absolute (unary) Type I quantifiers, while the choices one can take, e.g. for
“about 10”, are rather limited. The most obvious way consists in defining fixed tolerance
margins and simply express them by means of [Abs3] expressions.
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4.2. Extensional relative crisp quantifiers

Theorem 16 For a crisp Łα(Π) formula F̂ , and 0 ≤ k, k′ ≤|D | with k + k′ =|D |, we
have6:

• ∃≤kxF̂ (x) ≡ ¬∃<k′x¬F̂ (x)

• ∃≥kxF̂ (x) ≡ ¬∃>k′x¬F̂ (x)

Proof:
For k, k′ and F̂ given according to the setting of the theorem, we start by noting:

¬∃>kxF̂ (x) ≡ ∃≤kxF̂ (x), and ∃>kxF̂ (x) ≡ ∃<k′x¬F̂ (x).

Together they prove the first item of the theorem. Then we see that:

∃>kxF̂ (x) ≡ ¬∃≥k′x¬F̂ (x).

Applying outer-negation and replacing F̂ with the formula ¬F̂ , yields the desired remai-
ning second item. 2

4.2 Extensional relative crisp quantifiers
For relative quantifiers, we consider the following base expressions, introduced above as
[Rel1]:

• “exactly (q ·100)%”, “at most (q ·100)%”, “less than (q ·100)%”, “at least (q ·100)%”,
“more than (q · 100)%”.

Again, from those we can define various other quantifiers, introduced above as [Rel3], by
means of conjunction:

• “more than (q1 · 100)% and less than (q2 · 100)%”, “more than (q1 · 100)% and
at most (q2 · 100)%”, “at least (q1 · 100)% and less than (q2 · 100)%”, “at least
(q1 · 100)% and at most (q2 · 100)%”.

For relative (unary) Type I quantifiers, we define the following quantifier models, based
on the Π quantifier:

Definition 17 For a crisp Łα(Π) formula F̂ and q ∈ Λ \ {>,⊥}, with vM(q) = q, we
define:

6Recall that ≡ means the equivalence of two formulas, i.e. their truth values coincide.
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• ∃≥qxF̂ (x) = ∆(q → ΠxF̂ (x))

• ∃≤qxF̂ (x) = ∆(ΠxF̂ (x)→ q)

• ∃>qxF̂ (x) = ¬∆(ΠxF̂ (x)→ q)

• ∃<qxF̂ (x) = ¬∆(q → ΠxF̂ (x))

• ∃qxF̂ (x) = ∆(ΠxF̂ (x)↔ q)

For the remaining boundary cases we have: ∃≤1, ∃≥0 are constantly true. ∃<0, ∃>1 are
constantly false. ∃≥1, ∃1 can be associated to ∀. ∃≤0, ∃0 can be associated to ¬∃. ∃>0

can be associated to ∃, and ∃<1 can be associated to ¬∀. Then, for q1, q2 ∈ Λ with
vM(q1) = q1, vM(q2) = q2, and q1 < q2, we define:

• ∃[q1,q2]xF̂ (x) = ∃≥q1xF̂ (x) ∧ ∃≤q2xF̂ (x)

• ∃(q1,q2]xF̂ (x) = ∃>q1xF̂ (x) ∧ ∃≤q2xF̂ (x)

• ∃[q1,q2)xF̂ (x) = ∃≥q1xF̂ (x) ∧ ∃<q2xF̂ (x)

• ∃(q1,q2)xF̂ (x) = ∃>q1xF̂ (x) ∧ ∃<q2xF̂ (x)

Theorem 17 For a crisp Łα(Π) formula F̂ and q, q1, q2 ∈ Λ, with vM(q) = q, vM(q1) =
q1, vM(q2) = q2, and q1 < q2, we have:

• vM(∃≥qxF̂ (x)) = I(PropM(F̂ )∈[q,1])

• vM(∃≤qxF̂ (x)) = I(PropM(F̂ )∈[0,q])

• vM(∃>qxF̂ (x)) = I(PropM(F̂ )∈(q,1])

• vM(∃<qxF̂ (x)) = I(PropM(F̂ )∈[0,q))

• vM(∃qxF̂ (x)) = I(PropM(F̂ )=q)

• vM(∃[q1,q2]xF̂ (x)) = I(PropM(F̂ )∈[q1,q2])

• vM(∃(q1,q2]xF̂ (x)) = I(PropM(F̂ )∈(q1,q2])

• vM(∃[q1,q2)xF̂ (x)) = I(PropM(F̂ )∈[q1,q2))

• vM(∃(q1,q2)xF̂ (x)) = I(PropM(F̂ )∈(q1,q2))
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4.3. Extensional absolute semi-fuzzy quantifiers

Proof:
The results are obtained by basic computations, however, to demonstrate the procedure,
we prove the fourth statement:

First, we have to note that we have to consider a crisp, i.e. bivalent, statement. Conse-
quently, the truth value must be either 0 or 1. It is 1 if and only if vM(∆(q → ΠxF̂ (x))) =
0. This is the case if PropM(F̂ ) < q. 2

Remark 14 Quantifiers from [Rel2] can also be conceived as relative (unary) Type
I quantifiers. The relative (unary) Type III quantifier models ([Models 3]), based on
granular hierarchies, to be introduced below in Section 4.4.3, can serve as convenient
models for such expressions, when the granular hierarchy only contains one element.

Theorem 18 For a crisp Łα(Π) formula F̂ , and q, q′ ∈ [0, 1] with q + q′ = 1, we have:

• ∃≤qxF̂ (x) ≡ ¬∃<q′x¬F̂ (x)

• ∃≥qxF̂ (x) ≡ ¬∃>q′x¬F̂ (x)

Proof:
For q, q′ and F̂ given according to the setting of the theorem, we start by noting:

¬∃>qxF̂ (x) ≡ ∃≤qxF̂ (x), and ∃>qxF̂ (x) ≡ ∃<q′x¬F̂ (x).

Together they prove the first item of the theorem. Then we see that:

∃>qxF̂ (x) ≡ ¬∃≥q′x¬F̂ (x).

Applying outer-negation and replacing F̂ with the formula ¬F̂ , yields the desired remai-
ning second item. 2

4.3 Extensional absolute semi-fuzzy quantifiers

The base quantifier expressions for this section are the following, introduced above as
[Abs2]:

• “about k”, “at least/ at most about k”, “more than/ less than about k”.
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Of course, these can also be understood as absolute (unary) Type I quantifiers, as, e.g.
“about 5” could clearly be defined as “at least 4 and at most 6.” (tolerance 1), while our
focus in this section goes beyond this interpretation of solely adding fixed tolerances.
The main idea of Type III quantification is the one of having intermediate truth values
for statements like “About 5 students passed the exam”, as for example 0.9, if actually 3
students passed the exam, where only a tolerance of 1 is fully acceptable. Formally, we
can model these quantifiers employing a similar game rule as before for absolute (unary)
Type I quantifiers7:

RNRG∃̃≥k : If P asserts ∃̃≥kxF̂ (x), then, if O attacks, P chooses k different constants
c1, . . . , ck, and then N chooses one of these constants, say ci, and P has to assert
F̂ (ci).

This rule is based on the rule of Section 4.1. While there the opponent player O chooses
among the constants selected by P, it is now nature N who does so. This is meant to
relax the evaluation criteria and hence to increase robustness. The same principle applies
to the definitions of quantifiers further down in this section, where the junction of two
statements is modeled by π rather than ∧.

As before, we can express the quantifiers captured by this rule schema syntactically,
assuming again = in the language:

Definition 18 For a crisp Łα(Π) formula F̂ , and 1 ≤ k ≤|D |, we define:

∃̃≥kxF̂ (x) = ∃x1 . . . ∃xk(πki=1F̂ (xi) ∧
∧
i 6=j

(xi 6= xj)). (4.4)

Also, we define ∃̃≥0 = >.

It is then relatively easy to see that the following theorem holds:

Theorem 19 For a crisp Łα(Π) formula F̂ , and 1 ≤ k ≤|D |, we have:

vM(∃̃≥kxF̂ (x)) = 1
k
· sup{

∑
c∈Dk

vM(F̂ (c)) : Dk ⊆ D such that |Dk |= k}. (4.5)

Also, it holds vM(∃̃≥0xF̂ (x)) = 1.
7Note that we do not give a theorem on the correspondence of this game rule with its associated

truth function. This is because we do not wish to add this rule formally to the setting, as the formula
leading to the intended truth function is already expressible in Łα(Π). However, it is quite immediate
that the payoff for the proponent player matches the truth function of the defined expression introduced
just below.
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4.3. Extensional absolute semi-fuzzy quantifiers

Proof:
Since 1 ≤ k ≤|D |, it is of course possible to fulfill the right conjunct,

∧
i 6=j(xi 6= xj), of

the formula. Also, it has to be fulfilled in order not to render the whole statement wrong
entirely. This means there are sets Dk ⊆ D of cardinality k of constants that make for k
instances of F̂ , and due to the existence quantifiers, a set that maximizes the truth value
of πki=1F̂ (xi), which is 1

k ·
∑
c∈Dk vM(F̂ (c)), determines the eventual truth value. 2

By closely looking at both constructs, the game rule and the syntactic representation,
one can see that the (expected) payoff for P matches the defined truth function. Then,
as before, we can define the corresponding quantifiers as follows:

Definition 19 For a crisp Łα(Π) formula F̂ , and 0 ≤ k ≤|D | −1 we define:

• ∃̃≤kxF̂ (x) = ∃̃≥|D|−kx¬F̂ (x)

• ∃̃>kxF̂ (x) = ∃̃≥k+1xF̂ (x)

• ∃̃<k+1xF̂ (x) = ∃̃≥|D|−kx¬F̂ (x)

• ∃̃kxF̂ (x) = ∃̃≥kxF̂ (x) π ∃̃≤kxF̂ (x)

The remaining special cases ∃̃>|D|, ∃̃<0 are constantly false. ∃̃≤|D| are constantly true, and
∃̃|D| can be associated to Π. Then, for 0 ≤ k1, k2 ≤|D |, with k1 < k2, we define:

• ∃̃[k1,k2]xF̂ (x) = ∃̃≥k1xF̂ (x) π ∃̃≤k2xF̂ (x)

• ∃̃(k1,k2]xF̂ (x) = ∃̃>k1xF̂ (x) π ∃̃≤k2xF̂ (x)

• ∃̃[k1,k2)xF̂ (x) = ∃̃≥k1xF̂ (x) π ∃̃<k2xF̂ (x)

• ∃̃(k1,k2)xF̂ (x) = ∃̃>k1xF̂ (x) π ∃̃<k2xF̂ (x)

Theorem 20 For a crisp Łα(Π) formula F̂ , and 0 ≤ k, k1, k2 ≤|D | −1, with k1 < k2,
we have:

• vM(∃̃≤kxF̂ (x)) =

= 1
|D|−k · sup{

∑
c∈D|D|−k vM(¬F̂ (c)) : D|D|−k ⊆ D such that |D|D|−k |=|D | −k}

• vM(∃̃>kxF̂ (x)) =

= 1
k+1 · sup{

∑
c∈Dk+1

vM(F̂ (c)) : Dk+1 ⊆ D such that |Dk+1 |= k + 1}
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• vM(∃̃<k+1xF̂ (x)) =

= 1
|D|−k · sup{

∑
c∈D|D|−k vM(¬F̂ (c)) : D|D|−k ⊆ D such that |D|D|−k |=|D | −k}

• vM(∃̃kxF̂ (x)) = vM(∃̃≥kxF̂ (x))+vM(∃̃≤kxF̂ (x))
2

The truth functions of ∃̃>|D|, ∃̃<0 are always 0. The one of ∃̃≤|D| is always 1, and the one
of ∃̃|D| is PropM. Then, for 0 ≤ k1, k2 ≤|D |, with k1 < k2, we have:

• vM(∃̃[k1,k2]xF̂ (x)) = vM(∃̃≥k1xF̂ (x))+vM(∃̃≤k2xF̂ (x))
2

• vM(∃̃(k1,k2]xF̂ (x)) = vM(∃̃>k1xF̂ (x))+vM(∃̃≤k2xF̂ (x))
2

• vM(∃̃[k1,k2)xF̂ (x)) = vM(∃̃≥k1xF̂ (x))+vM(∃̃<k2xF̂ (x))
2

• vM(∃̃(k1,k2)xF̂ (x)) = vM(∃̃>k1xF̂ (x))+vM(∃̃<k2xF̂ (x))
2

Proof:
This is an immediate consequence of Theorem 19. 2

Corollary 1 For a crisp Łα(Π) formula F̂ and 0 ≤ k, k1, k2 ≤|D |, with k1 < k2, we
have:

• vM(∃̃≥kxF̂ (x)) = 1 iff ‖F̂‖ ≥ k

• vM(∃̃≤kxF̂ (x)) = 1 iff ‖F̂‖ ≤ k

• vM(∃̃>kxF̂ (x)) = 1 iff ‖F̂‖ > k

• vM(∃̃<kxF̂ (x)) = 1 iff ‖F̂‖ < k

• vM(∃̃kxF̂ (x)) = 1 iff ‖F̂‖ = k

• vM(∃̃[k1,k2]xF̂ (x)) = 1 iff ‖F̂‖ ∈ [k1, k2]

• vM(∃̃(k1,k2]xF̂ (x)) = 1 iff ‖F̂‖ ∈ (k1, k2]

• vM(∃̃[k1,k2)xF̂ (x)) = 1 iff ‖F̂‖ ∈ [k1, k2)

• vM(∃̃(k1,k2)xF̂ (x)) = 1 iff ‖F̂‖ ∈ (k1, k2)
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Proof:
The results are obtained by basic computations, however, to demonstrate the procedure,
we prove the first statement:

We prove by case distinction. Assume there are at least k positive witnesses of F̂ .
That means there is a set Dk ⊆ D such that | Dk |= k with

∑
c∈Dk vM(F̂ (c)) = k.

Since
∑
c∈D′ vM(F̂ (c)) ≤ k for all D′ ⊆ D with |D′ |= k, we have vM(∃̃≥kxF̂ (x)) =

1
k · k = 1. On the other hand, if there are less than k positive witnesses of F̂ , we have∑
c∈Dk vM(F̂ (c)) = x < k. Hence, vM(∃̃≥kxF̂ (x)) = 1

k · x < 1. 2

Remark 15 Additional quantifiers, like e.g. “more than about k1 and at most about k1”,
can freely be define by means of conjunction.

4.4 Extensional relative semi-fuzzy quantifiers
This section’s prototypical quantifiers are the following relative (unary) Type III quanti-
fiers, introduced as [Rel2] above:

• “about (q · 100)%”, “at least/ at most about (q · 100)%”, “more than/ less than
about (q · 100)%”.

Those can be modeled in various ways and then freely be combined to arrive at models
for, e.g. “at least about a third and at most about half”. Perhaps the simplest way of
getting adequate models is to take the models for the relative (unary) Type I quantifiers
and just remove all the Deltas from the definitions (note that in this case we will not
anymore distinguish between “more than/ less than about” and “at least/ at most about”).
Other methods comprise the models of blind choice and deliberate choice quantifiers
[FR12, FR14], a method based on the idea of granular hierarchies [Yao01, Kee09, XYJ13],
and methods based on an augmented version of the Π quantifier, which corresponds to
random samples without replacement, called Πj,k. We summarize our classes of relative
(unary) Type III quantifiers as follows:

M 1: Quantifiers based extensional relative crisp quantifiers and dropping the Deltas.

M 2: Blind Choice and Deliberate Choice quantifiers.

M 3: Quantifiers based on granularity levels.

M 4: Quantifiers based on random sampling without replacement and strong conjunction.

M 5: Quantifiers based on random sampling without replacement and strong disjunction.

M 6: Quantifiers for querying databases.
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4. Quantifier Models

4.4.1 Quantifiers based extensional relative crisp quantifiers and
dropping the Deltas

This section’s models are based on those of Section 4.2. The main difference is that
we removed the Delta operator that made the expressions crisp. As a consequence, the
distinction between “more than/ less than about” and “at least/ at most about” becomes
rather insignificant and is hence omitted.

Definition 20 For a crisp Łα(Π) formula F̂ and q, q1, q2 ∈ Λ, with vM(q) = q, vM(q1) =
q1, vM(q2) = q2, and q1 < q2, we define:

• ∃̃≥qxF̂ (x) = q → ΠxF̂ (x)

• ∃̃≤qxF̂ (x) = ΠxF̂ (x)→ q

• ∃̃qxF̂ (x) = ΠxF̂ (x)↔ q

• ∃̃[q1,q2]xF̂ (x) = ∃̃≥q1xF̂ (x) ∧ ∃̃≤q2xF̂ (x)

Theorem 21 For a crisp Łα(Π) formula F̂ and q, q1, q2 ∈ Λ, with vM(q) = q, vM(q1) =
q1, vM(q2) = q2, and q1 < q2, we have:

• vM(∃̃≥qxF̂ (x)) = min(1, 1− q + PropM(F̂ ))

• vM(∃̃≤qxF̂ (x)) = min(1, 1 + q − PropM(F̂ ))

• vM(∃̃qxF̂ (x)) = 1−max(PropM(F̂ ), q) + min(PropM(F̂ ), q)

• vM(∃̃[q1,q2]xF̂ (x)) = min(vM(∃̃≥q1xF̂ (x)), vM(∃̃≤q2xF̂ (x)))

Proof:
The results are obtained by basic computations. 2

Corollary 2 For a crisp Łα(Π) formula F̂ and q, q1, q2 ∈ Λ, with vM(q) = q, vM(q1) =
q1, vM(q2) = q2, and q1 < q2, we have:

• vM(∃̃≥qxF̂ (x)) = 1 iff PropM(F̂ ) ∈ [q, 1]

• vM(∃̃≤qxF̂ (x)) = 1 iff PropM(F̂ ) ∈ [0, q]

• vM(∃̃qxF̂ (x)) = 1 iff PropM(F̂ ) = q

• vM(∃̃[q1,q2]xF̂ (x)) = 1 iff PropM(F̂ ) ∈ [q1, q2]
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4.4. Extensional relative semi-fuzzy quantifiers

Proof:
The results are obtained by basic computations. 2

Remark 16 As the Corollary shows, these models need a tolerance margin to be added
manually if one wants to have one. This can be achieved straightforwardly. Also note that,
since we assume an about-hedge for the basic NL quantifiers, we spare strict comaprisons,
as they seem not to contribute anything significant to the intended meaning.

4.4.2 Blind Choice and Deliberate Choice quantifiers

This section’s models are based on [FR14]. While blind choice quantifiers are merely
restated for the sake of a self-contained and sufficiently complete presentation, we consider
deliberate choice quantifiers in two different settings. The first account models them
in what we will call the randomized Hintikka game, i.e. Hintikka’s game with the Π
quantifier over fuzzy interpretations. The second account will model deliberate choice
quantifiers directly in Łα(Π).

Blind Choice Quantifiers

One class of semi-fuzzy quantifiers is blind choice quantifiers. In [FR14] the authors
introduce two blind choice quantifier rule schemata and show how all other possible ones
can be reduced to them. Those two are Gkm and Lkm, for k,m ∈ N8:

RRG
Gkm

: If P asserts GkmxF̂ (x), then, if O attacks, N chooses a list of m+ k occurrences
of (not necessarily different) constants c1, . . . , cm+k. Then, O must assert ¬F̂ (ci)
for all i ∈ {1, . . . ,m}, and P must assert F̂ (ci) for all i ∈ {m+ 1, . . . ,m+ k}.

RRG
Lkm

: If P asserts LkmxF̂ (x), then, if O attacks, N chooses a list of k +m occurrences
of (not necessarily different) constants c1, . . . , ck+m. Then, O must assert F̂ (ci) for
all i ∈ {1, . . . , k}, and P must assert ¬F̂ (ci) for all i ∈ {k + 1, . . . , k +m}.

The idea behind blind choice quantifiers is that the players place their bets unaware of
the identity of the sampled constants. Hence, the defined truth functions, that, for P,
payoff-wise match these game rules, are:

• vM(GkmxF̂ (x)) = min(1,max(0, 1− k + (m+ k) · PropM(F̂ )))

• vM(LkmxF̂ (x)) = min(1,max(0, 1 + k − (m+ k) · PropM(F̂ )))
8Note that the following rules adhere to the principle of limited liability, i.e. P can always hedge her

loss by asserting ⊥.
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Their aim then is to derive a representation theorem, in terms of the connectives and
quantifiers from the randomized Giles game from [FR14], for each of them. While the ones
in [FR14] are incorrect, corrected versions in Fermüller’s handbook article in [CFN15]
make use of truth constants.

Theorem 22 [CFN15] The blind choice quantifiers Lkm and Gkm for all m, k ≥ 1 can
be expressed in Ł(Π) enriched by certain truth constants via the following reductions (a
denotes the truth constant for a ∈ [0, 1]):

• vM(GkmxF̂ (x)) = vM([¬(ΠxF̂ (x)→ (k − 1)/(m+ k))]m+k
⊕ )

• vM(LkmxF̂ (x)) = vM([¬((1 + k)/(m+ k)→ ΠxF̂ (x))]m+k
⊕ )

Remark 17 In the theorem, it is clearly enough to restrict to truth constants referring
to the rationals within the real unit interval. Also, for Gkm if k = 0 and for Lkm if m = 0,
the truth functions become constantly 1. On the other hand, (1) for Gkm if m = 0 the
truth function becomes min(1,max(0, 1− k + k · PropM(F̂ ))), and (2) for Lkm if k = 0
the truth function becomes min(1,max(0, 1−m · PropM(F̂ ))),

Deliberate Choice Quantifiers: Representation in KlZ(Π)

Deliberate choice quantifiers are another important class of semi-fuzzy quantifiers that
are based on the random selection principle [FR14, CFN15]. They have been introduced
extending Giles’s game enriched with the Π quantifier, which we call RG-game9. Players
place rational bets on numbers of random instances, i.e. unlike with blind choice quantifiers,
players now know about the identity of constants a prior to betting on them. Thereby
they provide payoff schemes10 that are supposed to model natural language quantifiers,
like “about half” or “about a third”.

RRGΠkm
: If P asserts Πk

mxF̂ (x), then, if O attacks, N (uniformly) randomly chooses k +m

(not necessarily different) constants. Then, P picks k of those constants, say
c1, . . . , ck and asserts F̂ (c1), . . . , F̂ (ck), while also asserting ¬F̂ (c′1), . . . ,¬F̂ (c′m),
where c′1, . . . , c′m are the remaining constants.

In [FR14], the authors show that the associated payoff for P matches the following truth
function:

vM(Πk
mxF̂ (x)) =

(
k +m

k

)
· (PropM(F̂ ))k · (1− PropM(F̂ ))m. (4.6)

9Note that there the underlying language is the one of Ł(Π).
10Note that the following rule adheres to the principle of limited liability, i.e. P can always hedge her

loss by asserting ⊥.
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Taking Π as semi-fuzzy quantifier, i.e. the scope of Π must be crisp, there is no
representation of deliberate choice quantifiers in Ł(Π), while when taking Π as fully-fuzzy
quantifier, i.e. fuzzy scopes are permitted, we can express them in Ł(Π). However,
as we have shown in [FH17], to that end we do not make use of strong Łukasiewicz
conjunction or Łukasiewicz implication, which means we can represent deliberate choice
quantifiers in what we call the RH-game. This game is Hintikka’s game, enriched with a
rule for the quantifier Π, over fuzzy interpretations. Therefore, the corresponding logic
is Kleene-Zadeh logic enriched with the Π quantifier, with the defined truth function
PropM. We call this logic KlZ(Π), while logical consequence and validity are captured
by strict analogy with the logic KlZ.

Let us consider the following two rule schemata11:

RRHΠ∧
k
: If the current formula is Π∧kxF (x), then N (uniformly) randomly chooses k (not
necessarily different) constants, and then the player acting as O can decide for
which constant the game continues with F (c).

RRHΠ∨
k
: If the current formula is Π∨kxF (x), then N (uniformly) randomly chooses k (not
necessarily different) constants, and then the player acting as P can decide for
which constant the game continues with F (c).

One can take these two rule schemata as augmenting the RH-game, given that we also
augment the underlying language with the respective symbols. However, we will see
shortly, in the proof of Theorem 23, how these quantifiers can syntactically be expressed
as KlZ(Π) formulas, without augmenting the language. Theorem 24 states the explicit
correspondence between rules adhering to the general Rule Scheme, defined below just
before Theorem 24, and its syntactic representations.

Then, the following theorem holds:

Theorem 23 For crisp KlZ(Π) formulas F̂ , and k ≥ 0, we have:

• vM(Π∧kxF̂ (x)) = PropM(F̂ )k

• vM(Π∨kxF̂ (x)) = 1− (1− PropM(F̂ ))k

Proof:
It is relatively straightforward to see that the payoff for the proponent, associated to the
rules RRHΠ∧

k
,RRHΠ∨

k
, matches the truth functions of the following nested formulas:

11In the upcoming two rule schemata, note that N chooses the constants with replacement, i.e. the
chosen constants are not necessarily different. This corresponds to independent choices.
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• Πx1 . . .Πxk(F̂ (x1) ∧ · · · ∧ F̂ (xk))

• Πx1 . . .Πxk(F̂ (x1) ∨ · · · ∨ F̂ (xk))

This is due to the fact that, in the rules, N first chooses k constants independently, and
then O (or P respectively) can minimize (or maximize respectively) P’s payoff.

Hence:

vM(Π∧kxF̂ (x)) = 1
|D|k ·

∑
c1∈D · · ·

∑
ck∈Dmin(vM(F̂ (c1

i )), . . . , vM(F̂ (ckj ))), and

vM(Π∨kxF̂ (x)) = 1
|D|k ·

∑
c1∈D · · ·

∑
ck∈Dmax(vM(F̂ (c1

i )), . . . , vM(F̂ (ckj ))).

For the first equation, we observe that (1), since F̂ is a crisp formula, i.e. true or false
for each constant, the minimum is zero if one or more constants lead to a negative
evaluation of F̂ . Let us fix the number of constants leading to positive evaluations as
z ∈ {0, . . . , | D |} (note that PropM(F̂ ) = z

|D|). For the second equation, we observe
that (2) vM(Π∨1 xF̂ (x)) = vM(ΠxF̂ (x)), and that the following reduction equation holds
for all k > 1:

vM(Π∨kxF̂ (x)) = PropM(F̂ ) + (1− PropM(F̂ )) · vM(Π∨k−1xF̂ (x)).

We may hence conclude, that (PropM(F̂ ) = p = 1− q):

vM(Π∧kxF̂ (x)) =(1) zk

|D|k = PropM(F̂ )k, and

vM(Π∨kxF̂ (x)) =(2) (1− q) ·
∑k−1
i=0 q

k = (1− q) · 1−qk
1−q = 1− (1− PropM(F̂ ))k. 2

Corollary 3 For crisp KlZ(Π) formulas F̂ , and k ≥ 0, we have:

vM(Π∨kxF̂ (x)) = vM(¬Π∧kx¬F̂ (x)) (4.7)

The corollary follows directly from Theorem 23. The winning conditions for the player I
are, that, in case of Π∧k , all independently and (uniformly) randomly chosen constants
lead to a positive evaluation of F̂ , or, for Π∨k , that there is at least one such constant.
In the following, we show how we can produce more involved game rules that allow
for expressing binomially distributed success probabilities for the player I of winning
the game. The general rule schema, provided in [FH17], captures all possible formulas
built from variants12 of a formula F by using only ∧,∨,¬, ∀,∃, as well as π and Π. It

12A variant of F (x) results from uniformly renaming all free occurrences of the exhibited variable x in
F . In particular F (x) and F (y) denote variants of each other.
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should be noted, that the Rule Scheme admits rules corresponding to game rules for the
propositional connectives ∧,∨, π, of arity k in [FH17], and hence here in this section.
The general Rule Scheme can be expressed in the following form:

Rule Scheme for QxF (x):

Each move of the rule refers to some X ∈ {O,P,N}, where the player (in role) X may
do just one of two things:
(A) choose a constant, or else
(B) choose among a finite number of given options for continuation; i.e. X chooses either
a subsequent move or a particular instance F (c) (plus potential role switch between I
and Y ou) with which the rule ends, where c is from a specified number of previously
chosen constants.

The following theorem is then quite natural:

Theorem 24 [FH17] Let G be a formula built up from variants of a given formula F (x)
using the connectives ∧ki=1, ∨ki=1, πki=1, (k ≥ 2), ¬ and the quantifiers ∀, ∃, and Π, such
that all exhibited variable occurrences are bound. Then G translates into a game rule
instantiating the scheme for the quantifier QG specified by vM(QGxF (x)) = vM(G).

Proof:
By analogy with the arguments in [FR14] and [FH17], we can interpret RH-games as
restricted versions of NRG-games in the following way. We disregard the rules for
implication, the object quantifier corresponding to strong Łukasiewicz conjunction, and
all propositional quantifiers. Then, any state is either of the form [|H], indicating a
role distribution I : P/Y ou : O, or of the form [H|], indicating a role distribution
Y ou : P/I : O, for a formula H. To capture negation, we let states alternate from [|¬F ]
to [F |] and from [¬F |] to [|F ], i.e. we perform a role switch. When we arrive at the
atomic level, after having decomposed the initial formula G to an atomic formula A, if the
state is [|A], the player I wins if 〈A〉 = 1− vM(A) = 0, and loses if 〈A〉 = 1− vM(A) = 1.
Accordingly, if the state is [A|], the player You wins if 〈A〉 = 1− vM(A) = 0, and loses if
〈A〉 = 1− vM(A) = 1.

In the proof of Theorem 4, the argument for π extends straightforwardly to the k-ary
case. Then we need to note that we can push negations in G to the atomic level, as we
have the following equivalences.

• ¬(∧ki=1Fi) ≡ ∨ki=1¬Fi

• ¬(∨ki=1Fi) ≡ ∧ki=1¬Fi

• ¬(πki=1Fi) ≡ πki=1¬Fi
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• ¬∀xF (x) ≡ ∃x¬F (x)

• ¬∃xF (x) ≡ ∀x¬F (x)

• ¬ΠxF (x) ≡ Πx¬F (x)

Consider G′ resulting from G by pushing all occurrences of ¬ to the inside as far as
possible. Then, we arrive at G′′ by replacing all consecutive occurrences of negation
symbols, in front of atoms, that correspond to an uneven number, with one negation
symbol. Also, we entirely remove all consecutive occurrences of negation symbols, in
front of atoms, that are multiples of two. Then, we use the following correspondence
to build a rule for G′′, which is equivalent to G, adhering to the Rule Scheme. The
quantifiers ∀,∃,Π correspond to moves of type (A) with a player in role O, P or N
respectively. Analogously, the connectives ∧ki=1,∨ki=1, π

k
i=1 correspond to moves of type

(B) with a player in role O, P or N respectively. When all connectives and quantifiers
are eliminated, we check whether there is a role switch to be performed, and eventually,
the game ends with the evaluation of the remaining atomic formula, as described above.
2

The rules RRHΠ∧
k
,RRHΠ∨

k
can now be identified with the instantiation of the Rule Scheme

with respect to the formulas presented at the beginning of the proof of Theorem 23. Let
us consider another example.

Example 2 Let G = Πx(¬F (x)π∃y(F (y)∨ ∀z¬F (z))). The corresponding rule that can
be extracted with respect to the Rule Scheme is this one:

RRHQG : If the current formula is QGxF (x), then

1 [type (A) move for N]: N chooses a constant c.

2 [type (B) move for N]: N chooses between 3 and 4.

3 [end]: The game continues with F (c) after role switch.

4 [type (A) move for P]: P chooses a constant d.

5 [type (B) move for P]: P chooses between 6 and 7.

6 [end]: The game continues with F (d) (no role switch).

7 [type (A) move for O]: O chooses a constant e.

8 [end]: The game continues with F (e) after role switch.

In [FH17], we showed how the following recursive definition of quantifiers leads to a
truth function matching the one of the deliberate choice quantifiers (recall Π∧1 xF (x) =
Π∨1 xF (x) = ΠxF (x)):
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4.4. Extensional relative semi-fuzzy quantifiers

Definition 21 For a crisp KlZ(Π) formula F̂ , and k,m ≥ 0, the quantifiers Πk
m are

given by:

Πk
0xF̂ (x) = Π∧

kxF̂ (x),Π0
mxF̂ (x) = Π∧

mx¬F̂ (x), and

Πk+1
m+1xF̂ (x) = Πx((F̂ (x) ∧Πk

m+1y¬F̂ (y)) ∨ (¬F̂ (x) ∧Πk+1
m yF̂ (y)).

Note that we again use the symbol Πk
m in this setting of Hintikka’s game enriched with

the Π quantifier, as we did for the deliberate choice quantifiers, which are objects of Ł(Π).
This seems uncontroversial as the distinction of settings is made explicit throughout the
presentation.

Theorem 25 [FH17] Applied to crisp KlZ(Π) formulas F̂ , and k,m ≥ 0, the truth
functions for Πk

m are as follows:

vM(Πk
mxF̂ (x)) =

(
k +m

k

)
· PropM(F̂ )k · (1− PropM(F̂ ))m. (4.8)

Proof:
The two base cases, where either k or m are 0, follow from Theorem 23. For the case
k = 1 we argue as follows. Writing vkm for vM(Πk

mxF̂ (x)),vkm for vM(Πk
mx¬F̂ (x)) and p

for PropM(F̂ ) we obtain:

v1
m+1 = p · v0

m+1 + (1− p) · v1
m

and hence by Theorem 23 and induction on m, we have:

v1
m+1 = p · (1− p)m+1 + (1− p) ·

(m+1
1
)
· p · (1− p)m =

= (m+ 1 + 1) · p · (1− p)m+1 =
(m+2

1
)
· p · (1− p)m+1.

The case for fixed m = 1 works by analogy. Generally, for m > 1,

vk+1
m = p · vkm + (1− p) · vk+1

m−1

and therefore, by induction and Footnote 14,

vk+1
m =

= p ·
(k+m

k

)
· pk · (1− p)m + (1− p) ·

(k+1+m−1
k+1

)
· pk+1 · (1− p)m−1 =

=
(k+m+1

k+1
)
· pk+1 · (1− p)m.

The case for increasing k while fixing m works analogously. 2
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We now provide the explicit game rule schema, adhering to the Rule Scheme, with a
payoff for the player I that matches the afore-mentioned truth functions of Πk

m. The
following rules are supposed to be understood as applied to a crisp scope formula F̂ . Let
k,m be natural numbers greater than zero13, i ∈ {1, . . . , k + m}, and j ∈ {0, . . . ,m},
then we define the following game rule schema (starting with move α0

1):

RRHΠkm
: If the current formula is Πk

mxF̂ (x), then, for all j ∈ {0, . . . ,m − 1} with i ∈
{1 + j, . . . , k + j}:

αji : N chooses a constant ci.

βji : P decides between γji and γj+1
i :

• γji : O decides whether to end the game with F (ci), or to continue the game
with move αji+1.

• γj+1
i : O decides whether to end the game with F (ci)+role switch, or to

continue the game with move αj+1
i+1 .

If j = m (or i− j = k + 1):

αji : N chooses k +m+ 1− i (or m− j) constants.

βji : O decides for which of these constants the game continues with F (c) (or F (c) +
role switch).

We capture the behaviour of this game rule in the following theorem. Note that, since we
are dealing with randomized payoff, we are employing Definition 4 rather than Definition
2. Although Definition 4 can be applied as it stands, we can here also spare the reference
to ε > 0 (recall that this just means we read the same definition while deleting the
references to ε in it).

Theorem 26 Let a crisp KlZ(Π) formula F̂ be given. Then, vM(Πk
mxF̂ (x)) = w in a

fuzzy interpretationM iff the RH-game for Πk
mxF̂ (x) is (1− w)-valued for the player I

under risk value assignment 〈·〉 matchingM..

Proof:
To terminate the game for Πk

m it is necessary that either the subscript or the superscript
of Πk

m becomes zero first, while Figure 4.2 shows how the decrementing of the scripts of
Πk
m corresponds to the incrementing of the scripts of αji . Hence, we distinguish these two

cases (PropM(F̂ ) = p):

1, The superscript of Πk
m is zero first:

13Note that rules for either one of these numbers being zero, or even both, are trivial.
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Figure 4.1: Flow of the game rule RRHΠkm
, for fixed i.

Scripts get decremented by 1, hence to get a superscript equal to 0, i.e. being in one
of the situations Π0

m, . . . ,Π0
1, we have to come from one of the situations Π1

m, . . . ,Π1
1

with probability p. To those, the player I comes with probabilities
(k−1+0
k−1

)
· pk−1 · (1−

p)0, . . . ,
(k−1+(m−1)

k−1
)
·pk−1 · (1−p)m−1. And from those, the player I departs with success

probabilities (1 − p)m, . . . , (1 − p)1. Hence together, the success probabilities for the
player I are:

∑m−1
i=0

(k−1+i
k−1

)
· pk · (1− p)m.

2, The subscript of Πk
m is zero first:

As scripts get decremented by 1, one gets to a subscript equal to 0, i.e. to one of the
situations Πk

0, . . . ,Π1
0, by coming from one of the situations Πk

1, . . . ,Π1
1 with probability 1−

p. To those, the player I comes with probabilities
(m−1+0

0
)
·p0 ·(1−p)m−1, . . . ,

(m−1+(k−1)
k−1

)
·

pk−1 ·(1−p)m−1. And from those, the player I departs with success probabilities pk, . . . , p1.
Hence together, the success probabilities for the player I are:

∑k−1
i=0

(m−1+i
i

)
· pk · (1− p)m.

It now remains to show, that:

(k+m
k

)
=
∑m−1
i=0

(k−1+i
k−1

)
+
∑k−1
i=0

(m−1+i
i

)
.
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Figure 4.2: Flow of the game rule RRHΠkm
as i increases.

The cases where m = 1, or k = 1 are checked easily. For bigger numbers we prove the
statement by induction, and (1) assume that k > 1 is fixed first. We now fix also m and
assume (induction hypothesis IH) the equation holds. We now have to show that:(k+m+1

k

)
=
∑m
i=0

(k−1+i
k−1

)
+
∑k−1
i=0

(m+i
i

)
.

The following computation holds14:(k+m+1
k

)
=
(k+m
k−1

)
+
(k+m

k

)
=(IH) (k+m

k−1
)

+
∑m−1
i=0

(k−1+i
k−1

)
+
∑k−1
i=0

(m−1+i
i

)
.

We compute:∑k−1
i=0

(m−1+i
i

)
−
∑k−1
i=0

(m+1
i

)
=
∑k−1
i=0 (

(m−1+i
i

)
−
(m+1

i

)
) =

14As we have
(
n+1
r+1

)
=
(
n
r

)
+
(
n
r+1

)
, for n > 0 and 0 ≤ r < n.
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=
∑k−1
i=1 (

(m−1+i
i

)
−
(m+1

i

)
) = −

∑k−1
i=1

(m−1+i
i−1

)
.

The last equality follows directly from the equation of Footnote 14. Hence it remains to
show:

(k+m
k−1

)
=
(k−1+m

k−1
)

+
∑k−1
i=1

(m−1+i
i−1

)
.

After a simple rearrangement, it remains to show that:

∑k−2
i=0

(m+i
i

)
=
(k+m−1

k−2
)
,

which follows from a side-induction on k > 1:

For the side-induction start, we note that for k = 2 we have:

∑k−2
i=0

(m+i
i

)
=
(m

0
)

= 1 =
(m+1

0
)

=
(k+m−1

k−2
)
.

The side-induction hypothesis (sI.H.) is that, for an arbitrary but fixed k ≥ 2, we have:

∑k−2
i=0

(m+i
i

)
=
(k+m−1

k−2
)
.

As to the side-induction step, we compute:

∑(k+1)−2
i=0

(m+i
i

)
=
∑k−2
i=0

(m+i
i

)
+
(m+k−1

k−1
)

=sI.H.
(k+m−1

k−2
)

+
(m+k−1

k−1
)

=

=
(k+m
k−1

)
=
((k+1)+m−1

(k+1)−2
)
.

The second last rewriting step is due to Footnote 14.

Part (2) of the induction, when m > 1 is fixed first, proceeds by analogy. 2

Deliberate Choice Quantifiers: Representation in Łα(Π)

The following theorem gives a representation theorem for deliberate choice quantifiers,
in the Łα(Π) setting, that employs the defined · connective, rather than nesting of
quantifiers.

Definition 22 For a Łα(Π) formula F and a positive integer k we define:

F k = F · ... · F , with k occurrences of F. (4.9)

It is clear that, vM(F k) = vM(F )k.
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Theorem 27 [Hof18]For crisp Łα(Π) formulas F̂ , we have:

vM(Πk
mxF̂ (x)) = vM([(ΠxF̂ (x))k · (Πx¬F̂ (x))m]1≤i≤(k+m

m )
⊕ ). (4.10)

Proof:
vM([(ΠxF̂ (x))k · (Πx¬F̂ (x))m]1≤i≤(k+m

m )
⊕ ) =

= min(1,
(k+m
m

)
· vM((ΠxF̂ (x))k) · vM((Πx¬F̂ (x))m)) =

= min(1,
(k+m
m

)
· vM(ΠxF̂ (x))k · vM(Πx¬F̂ (x))m) =

= min(1,
(k+m
m

)
· PropM(F̂ )k · (1− PropM(F̂ ))m) =

=
(k+m
m

)
· PropM(F̂ )k · (1− PropM(F̂ ))m. 2

4.4.3 Quantifiers based on granularity levels

An idea going back to Zadeh [Zad79], being carried out much in recent years, is granular
computing [PSK08]. The idea is to attach a level of granularity to certain scenarios,
hence making objects indistinguishable with respect to some (equivalence) relation, which
corresponds to having tolerance margins, or intervals, around some crisp value. We
extend this idea, which is applied to vague concepts in [Yao01], to model relative (unary)
quantifiers of Type III [Hof16b], but also show how the same idea can be used to model
relative (unary) Type I quantifiers [Hof16b].

Example 3 The quantifier expression“about half” can be associated with several accep-
tance intervals, e.g. [37.5%, 62.5%], [45%, 55%], [49.5%, 50.5%], or others. We can
partition the unit interval in arbitrarily many different ways, where each partitioning then
corresponds to some level of granularity. Having several such levels, we can talk about a
granular hierarchy [Kee09, XYJ13, Yao01]. However, following everyday experience, we
propose the following systematic refinement procedure:

• 3-partitioning, e.g. “small numbers”,“about half”, and “large numbers”.

partitioning intervals: [0, 1
3), [1

3 ,
2
3), [2

3 , 1]

• 5-partitioning, e.g. “nearly none”, “several”, “about half”, “most”, “almost all”.

partitioning intervals: [0, 1
5), . . . , [4

5 , 1]
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• 7-partitioning, e.g. “nearly none”,“small numbers”, “several”,“about half”,“most”,
“large numbers”, “almost all”.

partitioning intervals: [0, 1
7), . . . , [6

7 , 1]

• tenner-partitioning: (About) 0%, 10%, 20%, . . . , 90%, 100%.

partitioning intervals: [0, 1
20), [ 1

20 ,
3
20), . . . , [17

20 ,
19
20), [19

20 , 1]

• fiver-partitioning: (About) 0%, 5%, 10%, 15%, . . . , 90%, 95%, 100%.

partitioning intervals: [0, 1
40), [ 1

40 ,
3
40), . . . , [37

40 ,
39
40), [39

40 , 1]

• oner-partitioning: (About) 0%, 1%, 2%, 3%, . . . , 98%, 99%, 100%.

partitioning intervals: [0, 1
200), [ 1

200 ,
3

200), . . . , [197
200 ,

199
200), [199

40 , 1]

• decimal place-partitioning: (About) 0%, 0.1%, 0.2%, 0.3%, . . . , 99.8%, 99.9%, 100%.

partitioning intervals: [0, 1
2000), [ 1

2000 ,
3

2000), . . . , [1997
2000 ,

1999
2000), [1999

2000 , 1]

These classifications are, of course, somehow freely defined, and may hence be changed
accordingly. However, taking for example the 3-partitioning, an arbitrary set of objects
and an arbitrary crisp property, e.g. 100 people and the property of being a student, one
probably could agree that there might be someone who would consider a number of 29
students among the 100 people to be a relatively small number. Similarly for all other
partitionings.

To describe the semantics of some relative (unary) Type III quantifier Q, we need to fix a
finite number of such levels of granularity, say GL1, . . . , GLmQ, mQ ≥ 1, with respect to
which we can evaluate respective statements. In the present case, for statements of the
kind “about half (of the domain elements) fulfill property F̂”, we then have acceptance
intervals15 as follows:

• [1
3 ,

2
3) (3-partitioning)

• [2
5 ,

3
5) (5-partitioning)

• [3
7 ,

4
7) (7-partitioning)

15I.e. the statement is true if PropM(F̂ ) is an element of this acceptance interval.
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Figure 4.3: left: truth function of “about half” modeled by a granular hierarchy with
only one element, i.e. only one granular level, namely [0.49, 0.51]; right: truth function of
“about half” modeled by a granular hierarchy with seven distinct granular levels, namely
the 3−, 5−, 7−,tenner-,fiver-,oner- and deciaml place-partitioning of Example 3.

• [45, 55) (tenner-partitioning)

• [47.5, 52.5) (fiver-partitioning)

• [49.5, 50.5) (oner-partitioning)

• [49.95, 50.05) (decimal place-partitioning)

Remark 18 It seems important to remark that different levels of granularity are not
merely a tool to model that different agents may tolerate smaller or larger deviations
regarding the same scenario. Different levels of granularity should also be seen as referring
to entirely different situations, where once a smaller and another time a larger tolerance
margin is what is needed to model vague quantifier expressions adequately. For the latter
use, Vetterlein [Vet11] has contributed convincing arguments.

Formally, we define a granularity level and granular hierarchies as follwos:

Definition 23 A granularity level GL corresponds to a partitioning of the real unit
interval [0, 1] into finitely many disjoint intervals A1, . . . , AmGL, mGL ≥ 1, such that⋃mGL
i=1 Ai = [0, 1]. A granular hierarchy g consists of a set of granularity levels.

Definition 24 Any relative (unary) Type III quantifier Qg, based on a granular hierarchy
g, comes with a set {GL1, . . . , GLmQ}, mQ ≥ 1, of granularity levels, corresponding to
g, such that each such level has a unique acceptance interval Iz for Qg. That means
if Qg,GLi denotes the quantifier Qg restricted to the granularity level GLi, and Iz =
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[z−Q,q,GLi , z
+
Q,g,GLi ], with z−Q,g,GLi , z

+
Q,g,GLi ∈ Λ such that vM(z−Q,g,GLi) = z−Q,g,GLi and

vM(z+
Q,g,GLi) = z+

Q,g,GLi , we define for a crisp formula from Łα(Π) enriched with a k-ary
π for k ≥ 2:

• Qg,GLixF̂ (x) = ∆((ΠxF̂ (x)→ z+
Q,g,GLi) ∧ (z−Q,g,GLi → ΠxF̂ (x)))

• QgxF̂ (x) = π
mQ
i=1Qg,GLixF̂

Theorem 28 For a crisp formula F̂ from Łα(Π) enriched with a k-ary π for k ≥ 2, and
relative (unary) Type III quantifier, based on a granular hierarchy, we have:

• vM(Qg,GLixF̂ (x)) = min(I(PropM(F̂ )≥z−Q,g,GLi )
, I(PropM(F̂ )≤z+

Q,g,GLi
))

• vM(QgxF̂ (x)) =
∑mQ

i=1 vM(∆((ΠxF̂ (x)→z+
Q,g,GLi

)∧(z−Q,g,GLi→ΠxF̂ (x))))
mQ

Proof:
For the first claim, we note that, since there is a Delta in front of the conjunction, both
conjuncts have to be fully true, in order to make the whole statement true. This is the
case if both, PropM(F̂ ) ≥ z−Q,GLi and PropM(F̂ ) ≤ z+

Q,GLi , are true. This is exactly
what the stated truth function expresses. The second claim follows directly from the first.
2

Remark 19 When one restricts attention to granular hierarchies with only one element,
one immediately gets models for relative (unary) Type I quantifiers.

The models Qg can of course be weakened or strengthened by replacing πmQ
i=1 by ∨mQ

i=1 or
∧mQ
i=1 respectively, according to intended usages. The merit of this approach to modeling

vague natural language quantifiers is the flexibility that comes from allowing for different
ways to make vagueness crisp. This reflects different opinions of distinct speakers, while
the overlapping operation, modeled by a k-ary π connective, gives us the average of of
individual crisp values as the final truth value of a statement.

4.4.4 Quantifiers based on random sampling without replacement
and strong conjunction/ strong disjunction

Nature selects witnessing constants uniformly randomly. In a formula, each Π quantifier
stands for choosing one constant from D. When more than one constant is chosen, due
to the appearance of more than one Π quantifier, then, each time, Nature will choose
again from the whole set of constants D, hence the picks are meant to be stochastically
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independent and performed with replacement (w.r.). New quantifier models arise when
we allow for uniform random selection of constants, where Nature can choose more than
one constant at once, hence without replacement (wo.r.), which then need to be different.
Above, when we treated the case of relative (unary) Type I quantifiers, we have seen
game rules, where P chooses several different constants. There, we already saw how it
can make an important difference to demand that the witnesses not be identical, and
the same applies when Nature acts, as the probabilities for certain events, that we are
interested in, increase. For large domains it might seem neglectable, however for finite
domains interesting consequences pop up. Unlike deliberate choice quantifiers, which in
[FR14] undergo an artificial modification procedure to cope with the defect that the truth
functions are always bound by certain numbers smaller than 1, the augmented (uniform)
random selection principle allows for defining convincing models for relative semi-fuzzy
quantifiers representing NL quantifiers like “about (q · 100)%”, and “at least/ at most
about (q · 100)%”. Looking at it from the perspective of probability theory, the truth
functions of the deliberate choice quantifiers are the probability distributions of binomially
distributed random variables. The new approach of this chapter then corresponds to
the so called hypergeometric distributions, which, for domains that grow toward an
infinite cardinality, converge to the binomial distribution [Geo13]. This intuitively makes
immediate sense, as for infinite domains the probability of choosing exactly one particular
object is zero (when choosing uniformly randomly). We will investigate two classes of
models. Both can be used for applications, while the first seems most appropriate when
the domain of discourse is rather small but precision matters, hence the quantifier models
of that kind have a focus on a clear semantics of vague quantifiers, while the latter uses
a stochastic trick, that makes it usable even when the domain of discourse becomes very
large, at the price that the semantics is much more bound to probabilistic expectations
than to hard facts. The game rule, for what we call the Πj,k quantifier, is the following
[Hof16a]:

RNRGΠj,k : If P asserts Πj,kxF̂ (x), then, if O attacks, N chooses 1 ≤ k ≤|D | different
constants c, and then P has to assert F̂ (c) for j different of the c’s, or ⊥ instead.

The upcoming theorem states, that the payoff for P associated to that game rule matches
the following truth function:

vM(Πj,kxF̂ (x)) =
∑k
i=j
(|D|·PropM(F̂ )

i

)(|D|·(1−PropM(F̂ ))
k−i

)(|D|
k

) . (4.11)

Theorem 29 Let 1 ≤ j ≤ k ≤|D | be given. A sentence Πj,kxF̂ (x), for a crisp Łα(Π)
formula F̂ , is evaluated to vM(Πj,kxF̂ (x)) = w in a fuzzy interpretation M iff every
NRG-game augmented by rule (RRGΠj,k) for Πj,kxF̂ (x) is (1− w)-valued for the player I
under risk value assignment 〈·〉 matchingM.
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Proof:
The proof builds upon the proof of Theorem 3, Theorem 4 and Theorem 6. As we have
seen there, risks behave additively, which means that:

A: 〈Γ | Γ′,Πj,kxF̂ (x)〉 = 〈Γ | Γ′〉+ 〈| Πj,kxF̂ (x)〉

B: 〈Γ,Πj,kxF̂ (x) | Γ′〉 = 〈Γ | Γ′〉+ 〈Πj,kxF̂ (x) |〉

Case A: When N (uniformly) randomly samples k different constants, we first of all
have to distinguish two different cases. There are either at least j positive witnesses
for the formula F̂ , or strictly less than j. In the latter case, the player I loses and
since F̂ is a crisp formula, we can assume that she triggers her part of the principle of
limited liability, i.e. she asserts ⊥. In total, there are

(|D|
k

)
ways for N to perform the

sampling, i.e. there are as many branches of the game tree. For each 1 ≤ i ≤ k, there
are

(|D|·PropM(F̂ )
i

)
·
(|D|·(1−PropM(F̂ ))

k−i
)
branches with exactly i positive and k − i negative

witnesses of F̂ . Since we assume that 〈F̂ (c)〉 = 1 − vM(F̂ (c)) for all c ∈ D (induction
hypothesis), the value for the player I is computed as follows:

〈| Πj,kxF̂ (x)〉 =
∑j−1
i=0

(|D|·PropM(F̂ )
i )·(|D|·(1−PropM(F̂ ))

k−i )
(|D|k ) = 1− w.

We now compute w:

w = 1− 〈| Πj,kxF̂ (x)〉 = 1−
∑j−1
i=0

(|D|·PropM(F̂ )
i )·(|D|·(1−PropM(F̂ ))

k−i )
(|D|k ) =

=
∑k
i=j

(|D|·PropM(F̂ )
i )·(|D|·(1−PropM(F̂ ))

k−i )
(|D|k ) .

The last equation is an instance of the distribution function of hypergeometric random
variables. It follows from Vandermonde’s identity, which states that for three natural
numbers m, r, k ∈ N we have [CKM92]:(

m+ k

r

)
=

r∑
i=0

(
m

i

)
·
(

k

r − i

)
. (4.12)

Case B works by analogy. 2

Note that we have ΠxF̂ (x) = Π1,1xF̂ (x). Also, it is important to note that the Πj,k

quantifier can only be applied to crisp scopes, as the Π quantifier in its original intention
[FR14]. This makes it a bit less general again, but our overall strategy, to treat semi-fuzzy
quantifiers, and only later lift them to fully-fuzzy ones, by means of quantifier fuzzification
mechanisms (QFMs), works well in accordance with that fact. We are only going to use
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the quantifier Πj,k in this chapter, but for reasons of symmetry and completeness, we
also introduce the propositional connective that works along the same lines. For a finite
set of m closed formulas F̂i, let us call it Am, the game rule becomes:

RNRG
πj,kAm

: If P asserts πj,kAmF̂i, then, if O attacks, N uniformly randomly chooses 1 ≤ k ≤ m

different F̂i’s from a set of m such, i.e. from Am, and then P has to assert F̂i for j
different of those, or ⊥ instead.

P’s payoff associated to that game rule matches the following truth function, as the
following theorem states (q = 1

m ·
∑m
i=1 vM(F̂i)):

vM(πj,kAmF̂i) =
∑k
i=j
(m·q
i

)(m·(1−q)
k−i

)(m
k

) . (4.13)

Theorem 30 Let 1 ≤ j ≤ k ≤ m and Am, as introduced just above, be given. A
formula πj,kAmxF̂i, for crisp and closed Łα(Π) formulas F̂i, 1 ≤ i ≤ m, is evaluated to
vM(πj,kAmF̂i) = w in a fuzzy interpretation M iff every NRG-game augmented by rule
(RRG

πj,kAm
) for πj,kAmF̂i is (1 − w)-valued for the player I under risk value assignment 〈·〉

matchingM.

Proof:
This works by analogy with the proof of Theorem 29. 2

Remark 20 The propositional connective πj,kAm is a good candidate to model vague NL
properties, as we can use it to encode the necessity to fulfill a certain number of distinct
crisp properties from a given list. In that way, we model borderline cases of predicates,
i.e. such that are neither fully true nor fully false, but have intermediate truth values. A
longer treatment of such borderline cases can e.g. be found in [KS97] or [Smi08].

Quantifiers based on random sampling without replacement and strong
conjunction

The quantifier expressions that we model in this section relate to those that we introduced
as [Rel2] above, comprising16 “almost all” (Qalal

t ), “nearly none” (Qneno
t ), “at least/ at

most about (q · 100)%” (Q≥qt /Q≤qt ), and “about (q · 100)%” (Qq
t ), all dependent on a

tolerance value t [Hof16a].

Definition 25 For a crisp Łα(Π) formula F̂ , q ∈ [0, 1], and j, t ≥ 1 such that j+t ≤|D |,
we define:

16We interpret quantifiers “about 0%” as “nearly none” and “about 100%” as “almost all”.
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4.4. Extensional relative semi-fuzzy quantifiers

• Qalal
t xF̂ (x) = Πj,j+txF̂ (x)

• Qneno
t xF̂ (x) = Πj,j+tx¬F̂ (x)

If for n =|D | we have bn(1− q)c+ j + t ≤ n, or bnqc+ j + t ≤ n respectively, we also
define:

• Q≥qt xF̂ (x) = Πj,bn(1−q)c+j+txF̂ (x)

• Q≤qt xF̂ (x) = Πj,bnqc+j+tx¬F̂ (x)

Eventually we set: Qq
txF̂ (x) = Q≤qt xF̂ (x) ∧ Q≥qt xF̂ (x).

The truth functions can be determined as follows:

Theorem 31 For a crisp Łα(Π) formula F̂ , q ∈ [0, 1], n =|D |, and j, t ≥ 1 such that
j + t ≤ n (or bn(1− q)c+ j + t ≤ n, bnqc+ j + t ≤ n respectively), we have:

• vM(Qalal
t xF̂ (x)) =

∑j+t
i=j (n·pi )(n·(1−p)

j+t−i )
( n
j+t)

• vM(Qneno
t xF̂ (x)) =

∑j+t
i=j (n·(1−p)

i )( n·p
j+t−i)

( n
j+t)

• vM(Q≥qt xF̂ (x)) =
∑bn(1−q)c+j+t

i=j (n·pi )( n·(1−p)
bn(1−q)c+j+t−i)

( n
bn(1−q)c+j+t)

• vM(Q≤qt xF̂ (x)) =
∑bnqc+j+t

i=j (n·(1−p)
i )( n·p

bnqc+j+t−i)
( n
bnqc+j+t)

• vM(Qq
txF̂ (x)) =

= min(
∑bnqc+j+t

i=j (n·(1−p)
i )( n·p

bnqc+j+t−i)
( n
bnqc+j+t)

,

∑bn(1−q)c+j+t
i=j (n·pi )( n·(1−p)

bn(1−q)c+j+t−i)
( n
bn(1−q)c+j+t)

)

Proof:
The results follow from basic computations. 2

This semantic modeling of relative semi-fuzzy quantifiers is accurate in the sense that,
the quantifiers evaluate to 1 if and only if the intended meaning is true. For example, for
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the quantifier “almost all” with tolerance t = 1 and a domain size of 100, the intended
meaning is that a corresponding statement is (fully) true if and only if 99 or 100 objects
from the domain fulfill the property from the quantified predicate. This means at most
one negative witness is permitted. If that is true, this means that any sample of size
greater or equal than two must have at least one positive witness. The tolerance value
is absolute in the sense that this deviation leaves the truth value unchanged, while
increasing j corresponds to stronger readings, i.e. it becomes harder (more unlikely) to
win the game. A similar reasoning applies to the quantifiers “at least about (q · 100)%”
and “at most about (q · 100)%”. This explains in particular the range dependence of these
quantifier models. To check whether there are “at least (about) half” objects fulfilling
a certain property, we have to look at more than half of the objects. To illustrate this,
assume that t = 0 and j = 1, this means we consider at Π1,50+1. If there are at least
50% positive instances of F̂ , for our example that means 50 or more, any sample of of
size 51 has to contain at least one positive instance, since there are only 49 remaining
ones. Similarly, if we sample 52 instances (without replacement), there would have to be
at least 2 positive ones, and so on. Having a positive tolerance value t means sampling
more instances, thus making it easier for P to win. If the statements are not completely
true, the quantifiers behave monotonically, in the sense that truth values monotonically
go down as the proportion more and more clears away from the acceptance intervals, as
can be seen in Figure 4.4.

Corollary 4 For a crisp Łα(Π) formula F̂ , q ∈ [0, 1], n =|D |, and j, t ≥ 1 such that
j + t ≤ n (or bn(1− q)c+ j + t ≤ n, bnqc+ j + t ≤ n respectively), we have:

• vM(Qalal
t xF̂ (x)) = 1 iff vM(∃≤tx¬F̂ (x)) = 1

• vM(Qneno
t xF̂ (x)) = 1 iff vM(∃≤txF̂ (x)) = 1

• vM(Q≥qt xF̂ (x)) = 1 iff PropM(F̂ ) ≥ dnqe−tn

• vM(Q≤qt xF̂ (x)) = 1 iff PropM(F̂ ) ≤ bnqc+tn

• vM(Qq
txF̂ (x)) = 1 iff PropM(F̂ ) ∈ [ dnqe−tn , bnqc+tn ]

Proof:
Let z = n · p, where p = PropM(F̂ ), and n =|D |. Recall that for q ∈ [0, 1] we have
n = bn · qc+ dn · (1− q)e. Also, recall that for three natural numbers m, r, k ∈ N we have
Vandermonde’s identity [CKM92]:(

m+ k

r

)
=

r∑
i=0

(
m

i

)
·
(

k

r − i

)
. (4.14)

76



4.4. Extensional relative semi-fuzzy quantifiers

Figure 4.4: Left: truth function of “almost all” modeled by Π100,101, n = 10000; Middle:
truth function of “about a third” modeled by Q18,{4,5,6},{6,7,8,9}, n = 1000; Right: truth
function of “about half” modeled by Q14,{5,6,7},{7,8,9}, n = 1000.

• For the first case, “almost all”, we note that vM(Qalal
t xF̂ (x)) = 1, for two numbers

j, t ≥ 1 with j + t ≤ n, if and only if
∑j−1
i=0

(z
i

)
·
( n−z
j+t−i

)
= 0. As

(z
0
)

= 1, this
leads to the condition z > n − j − t, for otherwise the product of the binomial
coefficients is not equal to zero, which it must be, because all summands of the
sum are non-negative. This in turn gives z ≥ 1, since j + t ≤ n. Consequently, as(z
1
)
≥ 1, the next condition is z > n − j − t + 1, which gives z ≥ 2. Continuing

this argument leads to the condition z > n− j − t+ (j − 1) = n− t− 1, which is
equivalent to t ≥ n− z, which precisely says that PropM(¬F̂ ) · n ≤ t.

• This follows from the case “almost all”, by replacing F̂ with ¬F̂ .

• Similarly to before, we note that we have the necessary and sufficient condition for
vM(Q≥qt xF̂ (x)) = 1 equivalently as

∑j−1
i=0

(z
i

)
·
( n−z
bn·(1−q)c+j+t−i

)
= 0. Again, since all

summands of the sum are non-negative, and with the same reasoning as in the first
case, we have the condition n−z < bn · (1−q)c+j+ t− i for all 0 ≤ i ≤ j−1, hence
in particular the strongest of these, namely n− z < bn · (1− q)c+ j + t− (j − 1),
which is equivalent to z ≥ n− bn · (1− q)c − t = dn · qe − t.

• Analogously we get the condition z < bn · qc+ j + t− (j − 1), which is equivalent
to z ≤ bn · qc+ t.

• This is obvious from the semantics of the ordinary conjunction connective ∧.

2

Quantifiers based on random sampling without replacement and strong
disjunction

This section’s models, for relative semi-fuzzy quantifiers, are based on the idea of
evaluating quantified statements, like “About half of all humans are women”, on a small
set of randomly chosen witnesses (in this case humans). In particular, for reasons to be
explained shortly, we choose to read “About k

k+m”, for appropriate choices of k,m as
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4. Quantifier Models

“almost k
k+m (including the proportion k

k+m) OR slightly more than k
k+m (also including

the proportion k
k+m)”, where the OR is interpreted as strong Łukasiewicz disjunction.

The reason for this design choice is the following. Assuming we are in a situation in
which the example statement is intuitively true, e.g. if there were indeed exactly have of
the humans male and the others female, choosing a small random sample of size s, will
never tell us with certainty, i.e. with probability 1, that this is actually the case, as we
only look at a fraction of all humans. One means to trick ourselves out of this dilemma is
to add up more than one probability value with respect to overlapping events, which can
be accomplished by employing strong Łukasiewicz disjunction. We now have to consider
the following fact about the density function of the binomial distribution underpinning
deliberate choice quantifiers:

Let k,m ≥ 1 be given, and f(x) =
(k+m
m

)
· xk · (1− x)m. Then its derivative is:

f ′(x) =
(
k +m

m

)
· k · xk−1 · (1− x)m −

(
k +m

m

)
· xk ·m · (1− x)m−1. (4.15)

To determine the maximum of f(x) we set f ′(x) = 0, which is equivalent to x = k
k+m .

Versions of deliberate choice quantifiers that are supposed to model “about half”, always
have k = m ( k

k+m = 1
2), which means that their truth functions are bound by 1

2 , which in
turn means that, even if we sum up to identical copies of such truth values, the result will
still be bound by 1, i.e. can become 1 at most, and nothing higher. This is problematic,
as the chosen approach is particularly supposed to model the vagueness component of
the natural language quantifier “about half”, which is completely ignored when the truth
function does not model a tolerance area around one half. To put it in other words,
only if the proportion of objects fulfilling the scope predicate is exactly 1

2 , the direct
sum (modeled by strong Łukasiewicz disjunction) of two copies of deliberate choice
quantifiers modeling “about half” would yield a truth value of 1 and no tolerance region
were modeled by this method. The issue that can be identified is that deliberate choice
quantifiers sample random witnesses with replacement. Choosing a different sampling
mechanism, namely without replacement, directly eliminates this issue in the minimally
invasive manner. The corresponding distribution is called hypergeometric distribution,
which converges to the binomial distribution, when the size of the domain approaches
infinity [Geo13]. The only difference lies in the underlying sampling mechanism. Imagine
a bowl with 100 balls in it, 50 of which are green and the other 50 are beige. With the
deliberate choice quantifier Π1

1 we have a probability of 1
2 to get one green and one beige

ball, while when we sample two constants at once, the probability increases to 50
99 . This is

because, when the two witnesses are selected, it can not happen that both are identical,
as in the case before, when the two witnesses were selected with replacement. One can
also see it as if the first draw doesn’t matter, as only the second need be different from
the first, but when one ball already misses, then one is left with 99, 50 of which are
different from the first. Let us look at the following example:
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4.4. Extensional relative semi-fuzzy quantifiers

Example 4 Let us consider the quantifier “about a third”, and a domain of size 1000
representing certain people. The statement we look at is “About a third of all people own
a bike”. The truth of this statement should be 1 if the proportion of all people that own a
bike is exactly 1

3 . But it should also be 1 if the proportion deviates only a bit. One may
also argue, that the tolerance toward deviations to smaller values of proportion is a bit
smaller than the one to bigger such values. Concretely, on a scale 1, 2, 3, 4, . . . , 16, 17, 18,
which means s = 18, the area for almost a third (including exactly a third) can be taken
as M1 = {4, 5, 6} and the region corresponding to slightly more than a third (including
exactly a third) as M2 = {6, 7, 8, 9}. For a model for the quantifier about half, one
can, for example, take the values s′ = 14 and M ′1 = {5, 6, 7},M ′2 = {7, 8, 9}. Both truth
functions get depicted in Figure 4.4.

Formally, we define the quantifier models as follows [Hof16a]:

Definition 26 For a crisp Łα(Π) formula F̂ , s ≤ n =|D | and17 M1,M2 ∈ P({1, . . . , s})\
∅, we define:

Qs,M1,M2xF̂ (x) =

=
⊕
i∈M1(Πi,sxF̂ (x)	Πi+1,sxF̂ (x))⊕

⊕
i∈M2(Πi,sxF̂ (x)	Πi+1,sxF̂ (x)).

Theorem 32 For a crisp Łα(Π) formula F̂ , s ≤ n =|D | and M1,M2 ∈ P({1, . . . , s})\∅,
we have:

vM(Qs,M1,M2xF̂ (x)) = min(1,
∑
i∈M1

(n·p
i

)(n·(1−p)
s−i

)(n
s

) +
∑
i∈M2

(n·p
i

)(n·(1−p)
s−i

)(n
s

) ). (4.16)

Proof:
The result follows from the observation, that, for |D |= n, we have:

vM(Πi,sxF̂ (x)	Πi+1,sxF̂ (x)) = max(0,
∑s

l=i (n·pl )(n·(1−p)
s−l )

(ns)
−
∑s

l=i+1 (n·pl )(n·(1−p)
s−l )

(ns)
) =

= (npi )(n(1−p)
s−i )

(ns)
. 2

By instantiating Qs,M1,M2 in a clever way, we can get models for “about half” with truth
functions that actually have a tolerance region around the value of proportion 1

2 . More
formally, we define the conditions for “clever instantiation” as follows:

17P refers to the power set.
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Definition 27 Let k,m ≥ 1 be given. For s ≤ n =|D | and M1,M2 ∈ P({1, . . . , s})\∅,
Qs,M1,M2 is called a clever instance for the quantifier “about k

k+m”, if, for j = 1, 2 and
1 ≤ m1 ≤ m2 ≤ n, we have:∑

i∈Mj

(bn· k
k+m c
i

)(bn·(1− k
k+m )c

s−i
)(n

s

) >
1
2 , and (4.17)

M1 = {m1,m1 + 1, . . . , b s · k
k +m

c}, and M2 = {b s · k
k +m

c, . . . ,m2 − 1,m2}. (4.18)

This condition can clearly be fulfilled as we can always adjust M1 and M2 rich enough,
for any value s ≤|D |.

Regarding the case of “about half” of Example 4, this relates as follows. |D |= 1000, s =
14,M1 = {5, 6, 7},M2 = {7, 8, 9}, k = m. Hence, the conditions are:∑7

i=5 (500
i )( 500

14−i)
(1000

14 ) > 1
2 , and

∑9
i=7 (500

i )( 500
14−i)

(1000
14 ) > 1

2 . Since,∑7
i=5 (500

i )( 500
14−i)

(1000
14 ) =

∑9
i=7 (500

i )( 500
14−i)

(1000
14 ) = 0.517,

Q14,{5,6,7},{7,8,9} makes for a reasonable model for the vague natural language quantifier
“about half”, as it is a clever instance of the schema.

Similarly, regarding the case “about a third” from the previous example, we have the
following setting. |D |= 1000, s = 18,M1 = {4, 5, 6},M2 = {6, 7, 8, 9}, 2 · k = m. Hence,
the conditions are:∑6

i=4 (500
i )( 500

18−i)
(1000

18 ) > 1
2 , and

∑9
i=6 (500

i )( 500
18−i)

(1000
18 ) > 1

2 . Since,∑6
i=4 (500

i )( 500
18−i)

(1000
18 ) = 0.51, and

∑9
i=6 (500

i )( 500
18−i)

(1000
18 ) = 0.55,

Q18,{4,5,6},{6,7,8,9} makes for a reasonable model for the vague natural language quantifier
“about a third”, as it is a clever instance of the schema.

Although these models work, they are still dependent on the size of the actual domain,
which one usually wants to avoid, in favor of a semantics that uniformly works for any size
of the domain. To that end, in particular taking into consideration practical applications,
we give similar but domain size independent quantifier models as a next step.

4.4.5 Quantifiers for querying

We discuss the quantifier models of this section in Chapter 6 on queries, as we there
introduce the corresponding query language that they are designed for [FHO17].
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4.5 Beyond unary quantifiers: ∀,∃,Π
In natural language, binary quantifiers are more common than unary ones. For example
consider the statement “All humans are mortal”. Uttering this assumes a domain of
discourse that, besides all humans, contains also other objects. Otherwise one could
spare the range restriction and simply say “Everything is mortal”. For the universal and
the existential quantifier we can, for two formulas F̂ and G, where F̂ is crisp, define18

∃x(F̂ (x), G(x)) = ∃x(F̂ (x) ∧G(x)) and ∀x(F̂ (x), G(x)) = ∀x(F̂ (x)→ G(x)).

4.5.1 Binary Π

We show how one can express the binary semi-fuzzy quantifier F̂Π from [FR14], a quantifier
with a range not necessarily equal to the whole domain of discourse, in Łα(Π). Such
quantifiers are very commonly motivated by examples from natural language, as e.g.
“Almost all elephants are from Africa”, or “About half of all humans are female”.

The game rule for F̂Π from [FR14] is the following:

RF̂Π: If P asserts F̂ΠxG(x), then P has to assert G(c) for a randomly picked element c
from those that make F̂ (c) true.

The defined truth function of F̂Π is the following:

vM(F̂ΠxG(x)) =
∑
c∈D vM(F̂ (c) ∧G(c))∑

c∈D vM(F̂ (c))
. (4.19)

This truth function matches P’s payoff regarding a game for F̂ΠxG(x).

Definition 28 For two Łα(Π) formulas F̂ , G, where F̂ is crisp, we define19:

2Πx(F̂ (x), G(x)) = ΠxF̂ (x)� Πx(F̂ (x) ∧G(x)). (4.20)

The relation of vM(F̂ΠxG(x)) and vM(2Πx(F̂ (x), G(x))) is the following:

Theorem 33 [Hof18] For two Łα(Π) formulas F̂ , G, where F̂ is crisp, we have:

vM(2Πx(F̂ (x), G(x))) = vM(F̂ΠxG(x)). (4.21)
18Note that this means that vM(∃x(F̂ (x), G(x))) = supc∈D(F̂ (c) ∧G(c)) and vM(∀x(F̂ (x), G(x))) =

infc∈Dmin(1, 1− vM(F̂ (c)) + vM(G(c))).
19Recall that � is equivalent to →P
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Proof:
Since vM(ΠxF̂ (x)) ≥ vM(Πx(F̂ (x) ∧G(x))):

vM(ΠxF̂ (x)� Πx(F̂ (x) ∧G(x))) = vM(Πx(F̂ (x)∧G(x)))
vM(ΠxF̂ (x))) =

= PropM(F̂∧G)
PropM(F̂ ) =

∑
c∈D vM(F̂ (c)∧G(c))

|D|∑
c∈D vM(F̂ (c))

|D|

=
∑

c∈D vM(F̂ (c)∧G(c))∑
c∈D vM(F̂ (c)) . 2

4.5.2 Remaining binary versions of quantifier models of this chapter

For the first case, absolute (unary) Type I quantifiers, and two formulas F̂ , G, where F̂
is crisp, the binary version of the base quantifier can be defined as follows:

∃≥kx(F̂ (x), G(x)) ≡ ∃x1 . . . ∃xk(
k∧
i=1

(F̂ (xi) ∧G(xi)) ∧
∧
i 6=j

(xi 6= xj)). (4.22)

For the case of absolute (unary) Type III quantifiers, and two formulas F̂ , G, where F̂ is
crisp, the binary version of the base quantifier can be defined as follows:

∃̃≥kx(F̂ (x), G(x)) ≡ ∃x1 . . . ∃xk(
k∧
i=1

F̂ (xi) ∧ πki=1G(xi) ∧
∧
i 6=j

(xi 6= xj)). (4.23)

For relative (unary) Type I quantifiers and the relative (unary) Type III models
[Models 1]−[Models 3], we only need to replace occurrences ΠxG(x) with Πx(F̂ (x), Ĝ(x))
to arrive at the binary versions, featuring F̂ as scope. For the remaining cases of re-
lative (unary) Type III models, [Models 4] − [Models 6], there are sadly no known
representations in Łα(Π).

4.5.3 k-ary quantifiers, with k ≥ 3
Although it is not the main topic of this thesis to investigate quantifiers of higher arities,
we remark a few things on such expressions, particularly those that are discussed in
Glöckner’s monograph [Glö06] on fuzzy quantifiers. Further literature on higher arity
quantifiers comprises for example Westerstahl [PW06]. It is not our aim to express all
expressions that are sometimes considered in the literature within our framework, that
would need much more work and might not even be possible. However, one example of a
case that is called a resumption quantifier in [PW06] is the statement “Men are usually
taller than women”. One might want to argue about the actual meaning of this natural
language sentence, but one possible reading certainly is this one: “On average men are
taller than women”, which can concisely be expressed as:

• Πx(woman(x), tall(x))→ Πx(man(x), tall(x)).
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The two main examples from [Glö06] are (1) “more A’s than B’s are C’s”, and (2) “most
A’s and B’s are C’s or D’s”. Reductions that only need binary quantifiers, which in turn
can be reduced to unary ones in Łα(Π), are the following:

• Πx(C(x), B(x))→ Πx(C(x), A(x))

• Qmostx(A(x), C(x) ∨D(x)) ∧ Qmostx(B(x), C(x) ∨D(x))

Yet another more involved example from [PW06] is this one: “At most three boys gave
more dahlias than roses to Mary”, which can be expressed as:

• ∃≤3x∆(Πy(rose(y) ∧ gaveToMary(x, y))→ Πz(dahlia(z) ∧ gaveToMary(x, z))).

This is of course no comprehensive analysis of quantifiers with arity greater than two,
but shows how expressions not expressible in standard frameworks, like Classical Logic,
fit neatly in the very expressive setting of Łα(Π).

4.6 Intensional quantifiers: Many and Few
A quantifier pair, which is notoriously difficult to treat, is “many” and “few”([Int1]).
Most people can agree that these two are vague quantifiers, but what exactly constitutes
the vagueness and how it should be understood is disputed. Like before, we leave
out the discussion of what vague means on the propositional level, and focus on the
quantifiers themselves. As it is common practice in linguistics [KH98, KS86, Cru11],
we only consider crisp arguments F̂ to the quantifiers “many” and “few”, which may
yet evaluate to intermediate truth values, if conceptualized as Type III quantifiers, i.e.
when they are semi-fuzzy. Restricting to this scenario does not reduce expressibility, it
rather guarantees the neat interpretability of statements, and the lifting to fully-fuzzy
quantifiers will be subject to general quantifier fuzzification mechanisms (QFMs). Also,
as we have the modeling of natural language as our objective, and since it is needed to
make sense of the comparison based semantics we will give shortly, we will have binary,
or 2-place, quantifier expressions as our main type of statement. For example, consider
“Many quantum physicists have visited The Eagle and Child”20. In our interpretation
of the world, we don’t want to restrict to one domain with only quantum physicists
and to another one as soon as the subject changes. Rather we assume a (finite) domain
with all objects under consideration, like all humans, animals, plants, and other sorts of
items, and, whenever we make a quantified utterance, we tell the range restriction. There
still is a lot of room to discuss what the semantics of “many” and “few” should then
be. In [BC81], Barwise and Cooper gave a strong account of the theory of generalized

20For the interested reader, the Eagle and Child is an English Pub in Oxford were academics like to
have their glass of ale.
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quantifiers, but did not, whatsoever, contribute to the semantics of the vague quantifier
pair “many” and “few”.

Keenan and Stavi, in [KS86], explain that, as the meaning of the quantifiers “many”
and “few” is context dependent, i.e. their evaluation must be based on some notion of
comparison, statements involving them cannot be interpreted and do not assume any
determinate truth value at all. They come to this conclusion, as “in simple uses at
least, the standard of comparison is usually not given”. Since we have a very expressive
framework at our disposal and for people usually have no problem interpreting respective
statements in real life [Glö06], we will not follow their dismissal but only keep in mind
that a notion of comparison has to be established.

In [Pet00], Peterson, for example, considers the quantifiers “most”, “many” and “few”.
His account is based on the relations of those quantifiers, which he depicts in something
reminiscent of the Aristotelian square. Although he recognizes that “most” can be read
as sheer “majority”, he predominately considers it equivalently with “almost all”, which
then entails “many”. To be more concrete, “Most A’s are B’s” implies “Many A’s are
B’s”. Furthermore, when the entity of interest is a mass noun rather than a count noun,
he states that “much” and “little” replace “many” and “few”.

Westerstahl [PW06] explains “many” as symmetric to “few”, which, for him, means that,
in case of an absolute account, there must be absolute thresholds, and for the relative
account, that there must be relative thresholds. That means, for example, based on a
domain of discourse with one hundred elements having a certain property A, that “Many
A’s are B’s” were true if, say, 70 elements, or 70% of the elements have property B. And
the same for “few”, just that there the threshold were to be chosen smaller, let us say
as 30 elements, or 30% of elements, while the parametrization, of course, allows for any
threshold values to be used.

Fernando and Kamp [FK96] model “many” differently. Although they also see Wester-
stahl’s simple interpretation, they go beyond it by introducing a notion of expectation,
which is to give a means to determine threshold values instead of only claiming their
existence and “that context spits out n”. These expectations come about as comparisons.
For example, consider the statement “Many lawyers are doctors, as compared to criminals”
[FK96], which is supposed to be true if and only if, within a fixed set of lawyers, there
are more doctors than criminals.

Lappin’s [Lap00] intensional parametrization is broadly similar to the approach of
Fernando and Kamp, as the intensionality comes about via contextual comparisons. Still,
we chose to follow his account rather than any of the others, for, either the others are
subsumed within his (or rather our refinement of it [Hof15]), or since it simply makes
more sense here, as his the notion of comparisons fits in most neatly with Łα(Π), and
can be developed to a mature state. In the remainder of this section, we will introduce
Lappin’s method in detail and augment it to our own contribution to the matter.

To have all this a bit more down-to-earth, let us discuss some of the influentials that
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can go into the evaluation of a “many-quantified” statement. In the example above,
the range is the set of quantum physicists (QP ), and “has visited the Eagle and Child”
(hvEC) is the scope predicate. Now, assuming (1) that from the set QP more than
50% have visited the Eagle and Child, the interpretation of “many”, that assumes the
semantics of it to be equivalent with simple majority, is fulfilled. This is of course usually
too simple as a semantics for “many”, but even Westerstahl’s idea of always having
a threshold value that just needs to be determined by context is unsatisfying, as no
means at all to determine such a value is a priori at our disposal. It is just assumed to
exist. Going beyond that, hence assuming that contextual information has to be taken
into account formally, one arrives yet at a multitude of ways to model the semantics
of “many”. Fernando and Kamp argue that the expectation of someone who utters a
statement must go into the evaluation. That means, for example, if Bob talks about that
“Many quantum physicists have visited The Eagle and Child”, he must have some implicit
set of properties in mind to which we can compare, as for example “Many quantum
physicists have visited The Eagle and Child, as compared to Mathematicians.” Or “Many
quantum physicists have visited The Eagle and Child, as compared to Psychologists or
Sociologists”. This is already quite similar the Lappin’s approach, who extends that idea
to not only comparison properties but also whole comparison situations. An example
for that can be the following: “Many quantum physicists eat at Mc Donald’s”, while
the statement is once evaluated over the situation “USA” and another time over the
situation “France”. Not knowing what the actual (absolute or relative) difference would
be, it is clear that such situation dependent evaluations yield different results in general.

In fuzzy logic, generalized quantifiers are usually defined for fuzzy scopes, which we ignore,
until we employ QFMs. Concerning versions of the quantifier “many” in fuzzy logic,
most notably, Hajek’s modal characterization of it [Háj98] has to be mentioned. Without
giving all the technical details, it uses the average of evaluations of scope formulas over
finitely many different worlds as a semantics for the quantified statement. We will capture
the main intuition behind this approach by interpreting the different worlds as different
situations, and the taking of an average will be, although in a much refined way, be
expressed by means of the Π quantifier. This, as we will show shortly, will bring us
especially much closer to linguistic interpretations of the quantifier “many”, particularly
the one of Lappin.

Also, we can express any non-context dependent truth function for “many” using Zadeh’s
S function [Glö06], see 4.6.7. That is, in particular, what Glöckner does, when defining
a relative version of “many” [Glö06] (page 72). The absolute version of “many” defined
on the same page also employs the S function, which is actually a mistake of Glöckner’s,
as S is not defined for values greater than 1 in its first argument position.
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4.6.1 Lappin’s parametrization of “many”

In [Lap00], Lappin defines a bivalent and binary intensional parametric interpretation of
‖many‖, namely this one21:

‖B‖sa ∈ ‖many‖(‖A‖sa) iff
S 6= ∅, and for all sn ∈ S, | ‖A‖sa ∩ ‖B‖sa |≥| ‖A‖sn ∩ ‖B‖sn | (4.24)

Informally, this reads as follows. In an actual situation sa, there are many A′s that are
B′s if and only if for all normative situations sni, of which there must be at least one,
we have that the amount of A′s that are B′s in sni is smaller or equal than the amount
of A′s that are B′s in sa (the actual situation). Hence, the (linguists) notation can, in
our framework, be captured as follows:

• a situation s is a non-maximal possible world, hence we have s ⊆M.22

• sa is the actual situation (for one fixed statement).

• S is the set of all normative situations sni (for one fixed statement).

• for a crisp properties A and a situation s we define23: ‖A‖s = {a : s � A(a)}.

In the remainder of this section, a set S = {sn1, . . . , snn} of normative situations (n ≥ 1),
is always supposed to be such that for 1 ≤ i, j ≤ n with i 6= j we have Dsni ∩Dsnj = ∅.
In particular, we require that Dsni ∩Dsa = ∅, for 1 ≤ i ≤ n.

4.6.2 Extensional readings of “many”: binary, Type I

In this setting we can distinguish two different types of statements. Those that refer to
only one situation, namely sa, and those that take into consideration normative situations,
sn. Although Lappin’s parametrization is intensional as it stands, the restriction to only
one situation of interest can be regarded as extensional special case within the intensional
framework, where the set S contains only sa. The nine extensional readings of “many”
in [Lap00] are the following24(N+ = N \ {0}):

Definition 29 For three crisp Łα(Π) formulas F̂ , Ĝ, Ĥ, q, q1, q2 ∈ [0, 1], j ≥ 1 and
f : N+ → N+, we define:

21Here, the letters A and B stand for crisp properties, which we usually, and also in the remainder of
this section, denote with F̂ or Ĝ.

22Ds will denote the domain D restricted to the situation s.
23Note that this is related but not the same as the notation of Definition 14. However, upon taking

absolute values | · |, for crisp formulas F̂ and a situation s, we have: | ‖F̂‖s |=
∑

c∈Ds
vM(F̂ (c)).

24The first is due to Barwise and Cooper [BC81], while the second to fifth are taken and reformulated
from Westerstahl (1985). The last four are Lappin’s contribution.
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me1: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥ (q · 100)% |‖F̂‖sn | & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥ j}

me2: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥ i· |‖F̂‖sn |,with i ∈ (0, 1) fixed}

me3: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥ |‖Ĝ‖
sn|

|Dsn| · |‖F̂‖
sn |}

me4: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥ f(|Dsn |), f(|Dsn |) ∈ N+}

me5: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥ i· |‖Ĝ‖sn |,with i ∈ (0, 1) fixed}

me6: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥|‖F̂‖sn ∩ ‖Ĥ‖sn |}

me7: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥|‖Ĝ‖sn ∩ ‖Ĥ‖sn |}

me8: S = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |≥|‖Ĥ‖sn |}

me9: S = {sn : sn=sa & |‖F̂‖sn∩‖Ĝ‖sn|
|‖F̂‖sn| ≥ (q1 · 100)% & |‖Ĝ‖

sn∩‖Ĥ‖sn|
|‖Ĥ‖sn| = (q2 · 100)% & q1 ≥

q2}

Note that, although reading me4 relies on a function f with values in N+, we can safely
assume that f takes on values in {1, . . . , |Dsa |}. This is because we have |‖F̂‖sa∩‖Ĝ‖sa |≤|
Dsa |. Hence, we can also assume that f acts simply as multiplication with a number
a ∈ { 1

|Dsa| , . . . ,
|Dsa|
|Dsa|} on |Dsa |.

Definition 30 Let sa be an actual situation. A set of crisp Łα(Π) formulas Ĥi, for
1 ≤ i ≤ k with k ≥ 1, is defined to be a set of crisp comparison sets, or crisp comparison
predicates, if the following holds: for all 1 ≤ i, j ≤ k with i 6= j we have | ||Ĥi||sa ∩
||Ĥj ||sa |= ∅.

Then, for two crisp formulas F̂ and Ĝ, as well as Ĥi, for 1 ≤ i ≤ k with k ≥ 1, a set of
comparison predicates with respect to an actual situation sa, we define:

• I> = {i : i ∈ {1, . . . , k}, |‖F̂‖sa ∩ ‖Ĥi‖sa |>|‖F̂‖sa ∩ ‖Ĝ‖sa |}, and a = |I>|.

• I= = {i : i ∈ {1, . . . , k}, |‖F̂‖sa ∩ ‖Ĥi‖sa |=|‖F̂‖sa ∩ ‖Ĝ‖sa |}, and b = |I=|.

• I< = {i : i ∈ {1, . . . , k}, |‖F̂‖sa ∩ ‖Ĥi‖sa |<|‖F̂‖sa ∩ ‖Ĝ‖sa |}, and c = |I<|.

• |H+| = max{|‖Ĥi‖sa ∩ ‖F̂‖sa| : 1 ≤ i ≤ k}

The following readings are taken from [Hof15]:
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Definition 31 For k ≥ 1, and crisp Łα(Π) formulas F̂ , Ĝ as well as Ĥi, 1 ≤ i ≤ k
comparison predicates with respect to an actual situation sa, we define:

me10: S = {sn : sn = sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |≥ |H+|}

me11: S = {sn : sn = sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |> |H+|}

me12: S = {sn : sn=sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |≥|‖F̂‖sa ∩ ‖Ĥi‖sa |, for most 1≤ i≤k}

me13: S = {sn : sn = sa &
∑
i∈I> |‖F̂‖

sa ∩ ‖Ĥi‖sa |<
∑
i∈I< |‖F̂‖

sa ∩ ‖Ĥi‖sa |}

Example 5 Let us consider a situation of some small children playing LEGO. A child
could consider the number of red LEGO-bricks to be “many”, if there are more of the
red sort than of all other colors. That would be Lappin’s interpretation of Equation
4.24, if he had introduced more than one comparison set (here it corresponds to me10;
note that me11 is simply a strengthening thereof). Still, it makes sense to talk about
“many red LEGO-bricks”, even if there is a color of which there are more LEGO-bricks.
Reading me12 weakens the condition by demanding that only a majority of all comparison
sets features the respective property.Then, me13 formalizes a deeper comparison of these
numbers. Considering the actual situation of LEGO playing children, there would be
many red LEGO bricks, if the heap of heaps of all LEGO bricks of which there are less
than of the red sort, is bigger than the heap of heaps of all LEGO bricks of which there
are more than of the red sort.

4.6.3 Intensional readings of “many”: binary, Type I

Definition 32 For S = {sni : i ∈ {1, . . . , n}} a set of normative situations, n ≥ 1, and
two crisp Łα(Π) formulas F̂ and Ĝ, we define:

• Irel� = {i : i ∈ {1, . . . , n}, |‖F̂‖
sni∩‖Ĝ‖sni|
|‖F̂‖sni| > |‖F̂‖sa∩‖Ĝ‖sa|

|‖F̂‖sa| }, and α = |Irel� |.

• Irel≡ = {i : i ∈ {1, . . . , n}, |‖F̂‖
sni∩‖Ĝ‖sni|
|‖F̂‖sni| = |‖F̂‖sa∩‖Ĝ‖sa|

|‖F̂‖sa| }, and β = |Irel≡ |.

• Irel≺ = {i : i ∈ {1, . . . , n}, |‖F̂‖
sni∩‖Ĝ‖sni|
|‖F̂‖sni| < |‖F̂‖sa∩‖Ĝ‖sa|

|‖F̂‖sa| }, and γ = |Irel≺ |.

• Iabs� = {i : i ∈ {1, . . . , n}, |‖F̂‖sni∩ ‖Ĝ‖sni |>|‖F̂‖sa∩ ‖Ĝ‖sa |}, and α′ = |Iabs� |.

• Iabs≡ = {i : i ∈ {1, . . . , n}, |‖F̂‖sni∩ ‖Ĝ‖sni |=|‖F̂‖sa∩ ‖Ĝ‖sa |}, and β′ = |Iabs≡ |.

• Iabs≺ = {i : i ∈ {1, . . . , n}, |‖F̂‖sni∩ ‖Ĝ‖sni |<|‖F̂‖sa∩ ‖Ĝ‖sa |}, and γ′ = |Iabs≺ |.
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The intensional readings then are [Hof15]:25

Definition 33 For two crisp Łα(Π) formulas F̂ and Ĝ, and S = {sni : i ∈ {1, . . . , n}}
a set of normative situations, n ≥ 1, we define:

mi1: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and for 1 ≤ i ≤ n, we have: |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| ≥ |‖F̂‖

sni∩‖Ĝ‖sni|
|‖F̂‖sni|

mi2: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and for most 1 ≤ i ≤ n : |‖F̂‖sa ∩ ‖Ĝ‖sa |≥|‖F̂‖sni ∩ ‖Ĝ‖sni |

mi3: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and for most 1 ≤ i ≤ n : |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| ≥ |‖F̂‖

sni∩‖Ĝ‖sni|
|‖F̂‖sni|

mi4: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and: |‖F̂‖sa ∩ ‖Ĝ‖sa |> max{|‖F̂‖sni ∩ ‖Ĝ‖sni |: 1 ≤ i ≤ n}

mi5: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and: |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| > max{ |‖F̂‖

sni∩‖Ĝ‖sni|
|‖F̂‖sni| : 1 ≤ i ≤ n}

mi6: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and:
∑
i∈Iabs≺

|‖F̂‖sni ∩ ‖Ĝ‖sni |>
∑
i∈Iabs�

|‖F̂‖sni ∩ ‖Ĝ‖sni |

mi7: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and:
∑
i∈Irel≺

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| >

∑
i∈Irel�

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni|

To see that we are really going beyond Lappin’s characterization, we prove the following
theorem:

Theorem 34 [Hof15] Let S = {sn1, . . . , snn} be a set of normative situations. Furt-
hermore, assume we want to employ the relative reading of “many” captured by the
intensional reading mi1. It is not possible to rewrite S into S′ = {sn′1, . . . , sn′n} such
that S′ is a set of normative situations, and we can employ mi1 equivalently to Lappin’s
original characterization of “many”, using this S′ instead of S.

25To not run into trouble, we employ the following common practice: For two sets M and N , we have:
|M∩N|
|N| = 0 , if |N | = 0.
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Proof:
Let F̂ and Ĝ be fixed crisp formulas, we assume an actual situation sa and normative
situations sn ∈ S 6= ∅ with:

• ‖F̂‖sa 6= ∅, and ‖F̂‖sn 6= ∅ for all sn ∈ S.

• for all sn ∈ S : |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| ≥ |‖F̂‖

sn∩‖Ĝ‖sn|
|‖F̂‖sn| . (�)

We are looking for some S′ such that:

• for all sn′ ∈ S′ : |‖F̂‖sa ∩ ‖Ĝ‖sa| ≥ |‖F̂‖sn′ ∩ ‖Ĝ‖sn′ |.

Also, we can fix some sn from S for which we have equality in (�), and try to rewrite it
into an sn′, while sa is fixed from the very beginning. Thus, by assumption, q = ‖F̂‖sa

‖F̂‖sn
is a non-negative rational number, depending particularly on the actual situation sa.
Hence, it can be, that q = 1

3 , as a special case, as well as it may be the case, that
|‖F̂‖sn ∩ ‖Ĝ‖sn| = 26. Since |‖F̂‖sn′ ∩ ‖Ĝ‖sn′ | ∈ N, we can not have, that:

|‖F̂‖sn ∩ ‖Ĝ‖sn| |‖F̂‖
sa|

|‖F̂‖sn| = |‖F̂‖sn′ ∩ ‖Ĝ‖sn′ |, since that would mean, that 26
3 ∈ N, which

is clearly wrong. This completes the argument. 2

This shows, that there is more to achieve than Equation 4.24 suggests. However, some of
our stated readings actually can be encoded in Lappin’s original one, namely mi2 and
mi4. We decided not to hide them anyway, for the spectrum becomes more transparent
when we have them listed altogether.

4.6.4 New readings of “many”: binary, Type I

We now introduce one more extensional and two more intensional readings. The idea
is that, for the extensional case, the proportion of Ĝ’s (within the F̂ ’s in sa) should be
higher than the average of the proportions of the comparison sets Ĥi’s (within the F̂ ’s in
sa, 1 ≤ i ≤ k).

me14: S = {sn : sn = sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |> 1
k ·
∑k
i=1 |‖F̂‖sa ∩ ‖Ĥi‖sa |}

Intensionally, we have the option to either look at absolute or relative numbers, but in
both cases we compare the proportion of Ĝ’s (within the F̂ ’s):

mi8: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and: |‖F̂‖sa ∩ ‖Ĝ‖sa |> 1
n

∑n
i=1 |‖F̂‖sni ∩ ‖Ĝ‖sni |
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City residents German students % all students rel. count
Vienna 1.8 · 106 20000 ∼ 11

1000 60000 ∼ 0.33
NY 107 20010 ∼ 2

1000 150000 ∼ 0.13
London 107 12000 ∼ 12

10000 100000 ∼ 0.12
Paris 2.2 · 106 10010 ∼ 46

10000 80000 ∼ 0.125

Table 4.1: ‘German students’ corresponds to |‖Ĝ‖∩‖F̂‖|, ‘students’ corresponds to |‖F̂‖|,
and ‘relative count’ corresponds to |‖Ĝ‖∩‖F̂‖||‖F̂‖| .

mi9: ‖Ĝ‖sa ∈ ‖many‖(‖F̂‖sa) iff

S 6= ∅, and: |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| > 1

n

∑n
i=1

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni|

Example 6 Let us consider the natural language statement “Many students are German”,
and evaluate it with regard to an actual situation sa = Vienna and the following set of
normative situations S = {sn1, sn2, sn3}, with sn1 = New York, sn2 = London, and
sn3 = Paris. So, what we intend to evaluate is the following statement:

“Many students are German (in Vienna, compared to NY, London and Paris)”.

Let us consider the fictive numbers of Table 4.1. Using Equation 4.24, we are bound
to evaluate the statement to false, unlike with, say mi1, since, even though there is a
normative situation in which we have (absolutely) more German students than in the
actual one, it is still true, that Vienna has (relatively) the most German students within
all normative situations. This is still a plausible reading of “many”. Since mi1 is just the
relative version of Equation 4.24, it it obvious how the interpret the two (absolute and
relative) weakenings mi2 and mi3, as well as the two (absolute and relative) strengthenings
mi4 and mi5. mi6 and mi7 are the new intensional readings of “many” from [Hof15].
Note that, unlike before in the extensional case, here it makes a difference whether we
introduce a relative version of mi6, namely mi7, for the normative situations are distinct.
These respectively evaluate to:

W.r.t. mi6: “Many F̂ s are Ĝs” is true , since 10010 + 12000 > 20010.

W.r.t. mi7: “Many F̂ s are Ĝs” is true , since 0.12 + 0.125 + 0.13 > 0.

The intensional readings which were not already introduced in [Hof15], i.e. mi8,mi9,
evaluate as follows:

W.r.t. mi8: “Many F̂ s are Ĝs” is true , since 20000 > 10010+12000+20010
3 .

W.r.t. mi9: “Many F̂ s are Ĝs” is true , since 20000 > 0.13+0.12+0.125
3 .
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The extensional reading that was not already introduced in [Hof15], i.e. me14, needs
comparison sets to be evaluated. Assuming those are the nationalities of other non
Austrian students, we might expect that this would lead to 1 as a truth value of the
statement as well.

Example 7 To explain these readings once more in detail, we look at two different
statements, namely (st1) “Many people are French”, and (st2) “Many people are Catholics”.
Of course, one way to understand those is as applying to the whole world, but we restrict
our attention to Europe, to make things more meaningful. Now, let us say (1) the actual
situation sa is fixed as the European Union (EU), while “people” and “French” are crisp
properties. Then we might fix the comparison sets Cj as the crisp predicates expressing
“from country j”, where each j ∈ {1, . . . , 27} represents one other EU country26. (st1)
together with the implicit information now reads as “Many people in the EU are French,
as compared to other nationalities from the EU.”. Within the term “compared to”, there
still is room to choose from one of the extensional readings that employ several comparison
sets, like me10, . . . ,me14. The first two of those simply demand that there must be (not
strictly or strictly) more French people in the EU, than of any other EU nationality, which
is probably wrong, as there are supposedly more Germans. This again reflects Lappin’s
very strong condition. me12 relaxes it to only requiring that 14, hence the majority
of other EU nations have less citizens in the EU than France, which is probably true.
The meaning of me13 is somewhat more complicated. It compares those nations with
less citizens with those that have more. If the sum of people from countries with fewer
citizens is bigger than the sum of people from countries with higher population, then it
renders (st1) true. The last reading, me14, takes the average of population sizes from all
comparison countries and compares it to the French one. As the average population in
the EU countries is about 18 million with a French population of about 67 million, this
reading also evaluates (st1) to true.

We now change the actual situation sa from the EU to Spain. The comparison sets
stay the same, but are now taken within sa, hence we look at the French population in
Spain, compared to other EU nationalities within Spain, including the Spanish. According
to Wikipedia27, Romania leads the list of EU immigrants in Spain, so me10 and me11
evaluate to false, but only six EU countries have more people in Spain than France, so
me12 evaluates to true. On the other side, those six have together about 1.6 million people
living in Spain, while the remaining 21 altogether have only about a tenth of that, so
me13 evaluates to false. me14 evaluates to true, as the average of EU citizens in Spain is
clearly less than 100000, which is approximately the French population in Spain.

We now keep the actual situation Spain, but look at the other 27 EU nations as normative
situations sni, and evaluate (st2). Again, according to Wikipedia28, there are about
32 million Catholics in Spain, and only France, Italy and Poland have more (about 40

26In case you read this past 2019 and the UK has left the EU, then j ranges only until 26.
27https://en.wikipedia.org/wiki/Immigration_to_Spain
28https://en.wikipedia.org/wiki/Catholic_Church_by_country#Europe
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million, 50 million and 33 million). The rest of the about 232 million Catholics in total
in the EU distributes over the remaining 24 nations, and the average is about 8 million.
Hence, Equation 4.24 evaluates to false, as does mi1, as Italy has (relatively) clearly
more Catholics than Spain. Similarly also mi4 and mi5 evaluate to false, since the only
difference is the strictness in the inequalities. mi2 evaluates to true, as there are only
three nation that have (absolutely) more Catholics than Spain. Also relatively, there are
only seven nations that have more Catholics than Spain, therefore mi3 evaluates to true.
Going through the numbers yields that both mi6 and mi7 evaluate to false, as the EU
countries with (absolutely or relatively) more Catholics than Spain account for about 123
million (or an average of about 76%), while those with less Catholics only account for
about 76 million (or an average of about 25%), while Spain’s average is about 70%. The
overall average though, is only about 8 million, or 45%, so both mi8 and mi9 evaluate to
true.

4.6.5 Extensional readings of “few”: binary, Type I

The respective definition for ‖few‖, with respect to Equation 4.24 can be obtained by
replacing ≥ with <29:

‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff
Z 6= ∅, and for all sn ∈ Z, | ‖F̂‖sa ∩ ‖Ĝ‖sa |<| ‖F̂‖sn ∩ ‖Ĝ‖sn | (4.25)

Definition 34 For crisp Łα(Π) formulas F̂ , Ĝ, Ĥ, Ĥi, 1 ≤ i ≤ k, with k ≥ 1, such that
the Ĥi are comparison sets with respect to sa, and j ≥ 1 q, q1, q2 ∈ [0, 1], as well as
f : N+ → N+, we define:

fe1: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |< (q · 100)% |‖F̂‖sn | & |‖F̂‖sn ∩ ‖Ĝ‖sn |< j}

fe2: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |< l· |‖F̂‖sn |,with l ∈ (0, 1) fixed}

fe3: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |< |‖Ĝ‖sn|
|Dsn| · |‖F̂‖

sn |}

fe4: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |< f(|Dsn |), f(|Dsn |) ∈ N+}

fe5: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |< l· |‖Ĝ‖sn |,with l ∈ (0, 1) fixed}

fe6: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |<|‖F̂‖sn ∩ ‖Ĥ‖sn |}

29Before, regarding Equation 4.24, we kept Lappin’s original notation for (crisp) predicates, namely A
and B, while now we use our common notation for (crisp) formulas, namely F̂ and Ĝ. Also, we use Z,
instead of S, in the definitions of the readings for “few”, to make visible the difference from the definitions
of the readings for “many”.
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fe7: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |<|‖Ĝ‖sn ∩ ‖Ĥ‖sn |}

fe8: Z = {sn : sn=sa & |‖F̂‖sn ∩ ‖Ĝ‖sn |<|‖Ĥ‖sn |}

fe9: Z = {sn : sn=sa & |‖F̂‖sn∩‖Ĝ‖sn|
|‖F̂‖sn| <(q1·100)% & |‖Ĝ‖

sn∩‖Ĥ‖sn|
|‖Ĥ‖sn| = (q2·100)% & q1<q2}

fe10: Z = {sn : sn = sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |< |H+|}

fe11: Z = {sn : sn = sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |≤ |H+|}

fe12: Z = {sn : sn=sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |<|‖F̂‖sa ∩ ‖Ĥi‖sa |, for most 1≤ i≤k}

fe13: Z = {sn : sn = sa &
∑
i∈I> |‖F̂‖

sa ∩ ‖Ĥi‖sa |≥
∑
i∈I< |‖F̂‖

sa ∩ ‖Ĥi‖sa |}

fe14: Z = {sn : sn = sa & |‖F̂‖sa ∩ ‖Ĝ‖sa |≤ 1
k ·
∑k
i=1 |‖F̂‖sa ∩ ‖Ĥi‖sa |}

Note that, although reading fe4 relies on a function f with values in N+, we can safely
assume that f takes on values in {1, . . . , |Dsa |}. This is because we have |‖F̂‖sa∩‖Ĝ‖sa |≤|
Dsa |. Hence, we can also assume that f acts simply as multiplication with a number
a ∈ { 1

|Dsa| , . . . ,
|Dsa|
|Dsa|} on |Dsa |.

4.6.6 Intensional readings of “few”: binary, Type I

Definition 35 For two crisp Łα(Π) formulas F̂ and Ĝ, and Z = {sni : i ∈ {1, . . . , n}}
as set of normative situations, n ≥ 1, we define:

fi1: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and for 1 ≤ i ≤ n, we have: |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| < |‖F̂‖sni∩‖Ĝ‖sni|

|‖F̂‖sni|

fi2: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and for most 1 ≤ i ≤ n : |‖F̂‖sa ∩ ‖Ĝ‖sa |<|‖F̂‖sni ∩ ‖Ĝ‖sni |

fi3: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and for most 1 ≤ i ≤ n : |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| < |‖F̂‖sni∩‖Ĝ‖sni|

|‖F̂‖sni|

fi4: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and: |‖F̂‖sa ∩ ‖Ĝ‖sa |≤ max{|‖F̂‖sni ∩ ‖Ĝ‖sni |: 1 ≤ i ≤ n}
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fi5: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and: |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| ≤ max{ |‖F̂‖

sni∩‖Ĝ‖sni|
|‖F̂‖sni| : 1 ≤ i ≤ n}

fi6: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and:
∑
i∈Iabs≺

|‖F̂‖sni ∩ ‖Ĝ‖sni |≤
∑
i∈Iabs�

|‖F̂‖sni ∩ ‖Ĝ‖sni |

fi7: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and:
∑
i∈Irel≺

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| ≤

∑
i∈Irel�

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni|

fi8: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and: |‖F̂‖sa ∩ ‖Ĝ‖sa |≤ 1
n

∑n
i=1 |‖F̂‖sni ∩ ‖Ĝ‖sni |

fi9: ‖Ĝ‖sa ∈ ‖few‖(‖F̂‖sa) iff

Z 6= ∅, and: |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| ≤ 1

n

∑n
i=1

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni|

4.6.7 Representation of the readings of “many” and “few”

The above analysis of Lappin’s account of “many” [Lap00], and the refinement of it
[Hof15], show how one can define plausible readings for the two quantifiers “many” and
“few”. From a linguists perspective this might already be it, while our aim here is to
translate the given characterizations into a formal logic framework, namely Łα(Π). As
we will see, since some of the readings are relatively involvedly defined, we have to use
Łα(Π) to cover the full spectrum of all 20 readings.

Type I, binary, “many” and “few”

Definition 36 For crisp Łα(Π) formulas F̂ , Ĝ, Ĥ, Ĥi, with i ∈ {1, . . . , k}, k ≥ 1, such
that the Ĥi are comparison predicates with respect to sa, and a set S = {sn1, . . . , snn},
n ≥ 1, of normative situations, we first define the following expressions:

For any situation s and two crisp formulas Ĥa, Ĥb, we define:

• vM(Ps(c)) = I(c∈Ds)

• qs = Πx(Ps(x))

• qs
Ĥa

= Πx(Ps(x) ∧ Ĥa(x))

• qs
Ĥa,Ĥb

= Πx(Ps(x) ∧ Ĥa(x) ∧ Ĥb(x))
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For two values a, b ∈ [0, 1] and d ∈ (0, 1), we use qa, qb and qd for truth value constants
that evaluate to a, b and d respectively. Similarly, for a value c ∈ { 1

|Dsa| , . . . ,
|Dsa|
|Dsa|}, we

use qc for the truth constant that evaluates to c. Also, we may assume that there is a
situation s|j| such that |Ds|j| |= j, for all 1 ≤ j ≤| D |. Then30:

Base (binary) Type I reading of “many”:

• Qm
0 x(F̂ (x), Ĝ(x)) = ∧ni=1∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)

Extensional (binary) Type I readings of “many”:

• Qm
e1x(F̂ (x), Ĝ(x)) = ∆((qa → (qsa

F̂
� qsa

F̂ ,Ĝ
)) ∧ (qs|j| → qsa

F̂ ,Ĝ
))

• Qm
e2x(F̂ (x), Ĝ(x)) = ∆(qd → (qsa

F̂
� qsa

F̂ ,Ĝ
))

• Qm
e3x(F̂ (x), Ĝ(x)) = ∆((qsa� qsa

Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))

• Qm
e4x(F̂ (x), Ĝ(x)) = ∆((qc · qsa)→ (qsa

F̂ ,Ĝ
))

• Qm
e5x(F̂ (x), Ĝ(x)) = ∆(qd → (qsa

Ĝ
� qsa

F̂ ,Ĝ
))

• Qm
e6x(F̂ (x), Ĝ(x)) = ∆(qsa

F̂ ,Ĥ
→ qsa

F̂ ,Ĝ
)

• Qm
e7x(F̂ (x), Ĝ(x)) = ∆(qsa

Ĝ,Ĥ
→ qsa

F̂ ,Ĝ
)

• Qm
e8x(F̂ (x), Ĝ(x)) = ∆(qsa

Ĥ
→ qsa

F̂ ,Ĝ
)

• Qm
e9x(F̂ (x), Ĝ(x)) = ∆((qa → (qsa

F̂
� qsa

F̂ ,Ĝ
)) ∧ (qb ↔ (qsa

Ĥ
� qsa

Ĝ,Ĥ
)) ∧ (qb → qa))

• Qm
e10x(F̂ (x), Ĝ(x)) = ∆(∨ki=1q

sa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

)

• Qm
e11x(F̂ (x), Ĝ(x)) = ¬∆(qsa

F̂ ,Ĝ
→ ∨ki=1q

sa
F̂ ,Ĥi

)

• Qm
e12x(F̂ (x), Ĝ(x)) = ¬∆(πki=1∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)→ (>π⊥))

30Recall that � is equivalent with →P .
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• Qm
e13x(F̂ (x), Ĝ(x)) =

= ¬∆([qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĝ
→ qsa

F̂ ,Ĥi
)]⊕1≤i≤k → [qsa

F̂ ,Ĥi
∧ ¬∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤k)

• Qm
e14x(F̂ (x), Ĝ(x)) = ¬∆(qsa

F̂ ,Ĝ
→ πki=1q

sa
F̂ ,Ĥi

)

Intensional (binary) Type I readings of “many”:

• Qm
i1x(F̂ (x), Ĝ(x)) = ∧ni=1∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))

• Qm
i2x(F̂ (x), Ĝ(x)) = ¬∆(πni=1∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)→ (>π⊥))

• Qm
i3x(F̂ (x), Ĝ(x)) = ¬∆(πni=1∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))→ (>π⊥))

• Qm
i4x(F̂ (x), Ĝ(x)) = ¬∆(qsa

F̂ ,Ĝ
→ ∨ni=1q

sni
F̂ ,Ĝ

)

• Qm
i5x(F̂ (x), Ĝ(x)) = ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ ∨ni=1(qsni

F̂
� qsni

F̂ ,Ĝ
))

• Qm
i6x(F̂ (x), Ĝ(x)) =

= ¬∆([qsni
F̂ ,Ĝ
∧ ¬∆(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)]⊕1≤i≤n → [qsni

F̂ ,Ĝ
∧ ¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤n)

• Qm
i7x(F̂ (x), Ĝ(x)) =

= ¬∆([(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))]⊕1≤i≤n →

→ [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))]⊕1≤i≤n)

• Qm
i8x(F̂ (x), Ĝ(x)) = ¬∆(qsa

F̂ ,Ĝ
→ πni=1q

sni
F̂ ,Ĝ

)

• Qm
i9x(F̂ (x), Ĝ(x)) = ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ πni=1(qsni

F̂
� qsni

F̂ ,Ĝ
))

Base (binary) Type I reading of “few”:

• Qf
0x(F̂ (x), Ĝ(x)) = ∧ni=1¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)

Extensional (binary) Type I readings of “few”:

• Qf
e1x(F̂ (x), Ĝ(x)) = ¬∆(qa → (qsa

F̂
� qsa

F̂ ,Ĝ
)) ∧ ¬∆(qs|j| → qsa

F̂ ,Ĝ
)
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• Qf
e2x(F̂ (x), Ĝ(x)) = ¬∆(qd → (qsa

F̂
� qsa

F̂ ,Ĝ
))

• Qf
e3x(F̂ (x), Ĝ(x)) = ¬∆((qsa� qsa

Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))

• Qf
e4x(F̂ (x), Ĝ(x)) = ¬∆((qc · qsa)→ (qsa

F̂ ,Ĝ
))

• Qf
e5x(F̂ (x), Ĝ(x)) = ¬∆((qd → (qsa

Ĝ
� qsa

F̂ ,Ĝ
)))

• Qf
e6x(F̂ (x), Ĝ(x)) = ¬∆(qsa

F̂ ,Ĥ
→ qsa

F̂ ,Ĝ
)

• Qf
e7x(F̂ (x), Ĝ(x)) = ¬∆(qsa

Ĝ,Ĥ
→ qsa

F̂ ,Ĝ
)

• Qf
e8x(F̂ (x), Ĝ(x)) = ¬∆(qsa

Ĥ
→ qsa

F̂ ,Ĝ
)

• Qf
e9x(F̂ (x), Ĝ(x)) =

= ¬∆(qa → (qsa
F̂
� qsa

F̂ ,Ĝ
)) ∧∆(qb ↔ (qsa

Ĥ
� qsa

Ĝ,Ĥ
)) ∧ ¬∆(qb → qa)

• Qf
e10x(F̂ (x), Ĝ(x)) = ¬∆(∨ki=1q

sa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

)

• Qf
e11x(F̂ (x), Ĝ(x)) = ∆(qsa

F̂ ,Ĝ
→ ∨ki=1q

sa
F̂ ,Ĥi

)

• Qf
e12x(F̂ (x), Ĝ(x)) = ¬∆(πki=1¬∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)→ (>π⊥))

• Qf
e13x(F̂ (x), Ĝ(x)) =

= ∆([qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĝ
→ qsa

F̂ ,Ĥi
)]⊕1≤i≤k → [qsa

F̂ ,Ĥi
∧ ¬∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤k)

• Qf
e14x(F̂ (x), Ĝ(x)) = ∆(qsa

F̂ ,Ĝ
→ πki=1q

sa
F̂ ,Ĥi

)

Intensional (binary) Type I readings of “few”:

• Qf
i1x(F̂ (x), Ĝ(x)) = ∧ni=1¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))

• Qf
i2x(F̂ (x), Ĝ(x)) = ¬∆(πni=1¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)→ (>π⊥))

• Qf
i3x(F̂ (x), Ĝ(x)) = ¬∆(πni=1¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))→ (>π⊥))
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• Qf
i4x(F̂ (x), Ĝ(x)) = ∆(qsa

F̂ ,Ĝ
→ ∨ni=1q

sni
F̂ ,Ĝ

)

• Qf
i5x(F̂ (x), Ĝ(x)) = ∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ ∨ni=1(qsni

F̂
� qsni

F̂ ,Ĝ
))

• Qf
i6x(F̂ (x), Ĝ(x)) =

= ∆([qsni
F̂ ,Ĝ
∧ ¬∆(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)]⊕1≤i≤n → [qsni

F̂ ,Ĝ
∧ ¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤n)

• Qf
i7x(F̂ (x), Ĝ(x)) =

= ∆([(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))]⊕1≤i≤n →

→ [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))]⊕1≤i≤n)

• Qf
i8x(F̂ (x), Ĝ(x)) = ∆(qsa

F̂ ,Ĝ
→ πni=1q

sni
F̂ ,Ĝ

)

• Qf
i9x(F̂ (x), Ĝ(x)) = ∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ πni=1(qsni

F̂
� qsni

F̂ ,Ĝ
))

Theorem 35 The quantifiers Qm
ζ and Qf

ζ , for ζ ∈ {0, e1, . . . , e14, i1, . . . , i9}, formalize
the corresponding readings mζ , fζ for “many” and for “few”.

Proof:
We first note that:

vM(qs) = |Ds|
|D|

vM(qs
Ĥa

) =
∑

c∈Ds
vM(Ĥa(c))
|D| = |‖Ĥa‖s|

|D|

vM(qs
Ĥa,Ĥb

) =
∑

c∈Ds
vM(Ĥa(c)∧Ĥb(c))
|D| = |‖Ĥa‖s∩‖Ĥb‖s|

|D|

vM(qs
Ĥa
� qs

Ĥa,Ĥb
) = |‖Ĥa‖s∩‖Ĥb‖s|/|D|

|‖Ĥa‖s|/|D|
= |‖Ĥa‖s∩‖Ĥb‖s|

|‖Ĥa‖s|

We now prove case by case:

• vM(Qm
0 x(F̂ (x), Ĝ(x))) = vM(∧ni=1∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
))

This evaluates to 1 if and only if for all 1 ≤ i ≤ n it is true that:

|‖F̂‖sa∩‖Ĝ‖sa|
|D| ≥ |‖F̂‖

sni∩‖Ĝ‖sni|
|D| , which holds if and only if

|‖F̂‖sa ∩ ‖Ĝ‖sa |≥|‖F̂‖sni ∩ ‖Ĝ‖sni |, for all 1 ≤ i ≤ n.
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• vM(Qm
e1x(F̂ (x), Ĝ(x))) = vM(∆((pa → (qsa

F̂
� qsa

F̂ ,Ĝ
)) ∧ (qs|j| → qsa

F̂ ,Ĝ
)))

This evaluates to 1 if and only if, for a fixed a ∈ [0, 1] and 1 ≤ j ≤|D |:

a ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|
|‖F̂‖sa|/|D| , and

|Ds|j||
|D| = j

|D| ≤
|‖F̂‖sa∩‖Ĝ‖sa|

|D| .

This holds if and only if:

a ≤ |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| , and |Ds|j| |= j ≤|‖F̂‖sa ∩ ‖Ĝ‖sa |.

• vM(Qm
e2x(F̂ (x), Ĝ(x))) = vM(∆((pd → (qsa

F̂
� qsa

F̂ ,Ĝ
))))

This evaluates to 1 if and only if, for a fixed d ∈ (0, 1):

d ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|
|‖F̂‖sa|/|D| . This holds if and only if d ≤ |‖F̂‖

sa∩‖Ĝ‖sa|
|‖F̂‖sa| .

• vM(Qm
e3x(F̂ (x), Ĝ(x))) = vM(∆((qsa� qsa

Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
)))

This evaluates to 1 if and only if:

|‖Ĝ‖sa|/|D|
|Dsa|/|D| ≤

|‖F̂‖sa∩‖Ĝ‖sa|/|D|
|‖F̂‖sa|/|D| . This holds if and only if |‖Ĝ‖

sa|
|Dsa| ≤

|‖F̂‖sa∩‖Ĝ‖sa|
|‖F̂‖sa| .

• vM(Qm
e4x(F̂ (x), Ĝ(x))) = vM(∆((qc · qsa)→ (qsa

F̂ ,Ĝ
)))

This evaluates to 1 if and only if, for a value c ∈ { 1
|Dsn| , . . . ,

|Dsn|
|Dsn|}:

c·|Dsa|
|D| ≤

|‖F̂‖sa∩‖Ĝ‖sa|
|D| . This holds if and only if c· |Dsa |= f(|Dsa |) ≤|‖F̂‖sa∩‖Ĝ‖sa |

• vM(Qm
e5x(F̂ (x), Ĝ(x))) = vM(∆((pd → (qsa

Ĝ
� qsa

F̂ ,Ĝ
))))

This evaluates to 1 if and only if, for a fixed d ∈ (0, 1):

d ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|
|‖Ĝ‖sa|/|D| . This holds if and only if d ≤ |‖F̂‖

sa∩‖Ĝ‖sa|
|‖Ĝ‖sa| .

• vM(Qm
e6x(F̂ (x), Ĝ(x))) = vM(∆(qsa

F̂ ,Ĥ
→ qsa

F̂ ,Ĝ
))

This evaluates to 1 if and only if:

1 ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|

|‖F̂‖sa∩‖Ĥ‖sa|/|D| . This holds if and only if:

|‖F̂‖sa ∩ ‖Ĥ‖sa |≤|‖F̂‖sa ∩ ‖Ĝ‖sa |.
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• vM(Qm
e7x(F̂ (x), Ĝ(x))) = vM(∆(qsa

Ĝ,Ĥ
→ qsa

F̂ ,Ĝ
))

This evaluates to 1 if and only if:

1 ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|

|‖Ĝ‖sa∩‖Ĥ‖sa|/|D| . This holds if and only if:

|‖Ĝ‖sa ∩ ‖Ĥ‖sa |≤|‖F̂‖sa ∩ ‖Ĝ‖sa |.

• vM(Qm
e8x(F̂ (x), Ĝ(x))) = vM(∆(qsa

Ĥ
→ qsa

F̂ ,Ĝ
))

This evaluates to 1 if and only if:

1 ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|
|‖Ĥ‖sa|/|D| . This holds if and only if:

|‖Ĥ‖sa |≤|‖F̂‖sa ∩ ‖Ĝ‖sa |.

• vM(Qm
e9x(F̂ (x), Ĝ(x))) =

vM(∆((pa → (qsa
F̂
� qsa

F̂ ,Ĝ
)) ∧ (pb ↔ (qsa

Ĥ
� qsa

Ĝ,Ĥ
)) ∧ (pb → pa)))

This evaluates to 1 if and only if, for fixed a, b ∈ [0, 1]:

a ≤ |‖F̂‖
sa∩‖Ĝ‖sa|/|D|
|‖F̂‖sa|/|D| , and b = |‖Ĝ‖sa∩‖Ĥ‖sa|/|D|

|‖Ĥ‖sa|/|D| , and b ≤ a.

This holds if and only if:

a ≤ |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| , and b = |‖Ĝ‖sa∩‖Ĥ‖sa|

|‖Ĥ‖sa| , and b ≤ a.

• vM(Qm
e10x(F̂ (x), Ĝ(x))) = vM(∆(∨ki=1q

sa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

))

This evaluates to 1 if and only if for all 1 ≤ i ≤ k we have:

|‖F̂‖sa∩‖Ĥi‖sa|
|D| ≤ |‖F̂‖

sa∩‖Ĝ‖sa|
|D| . This holds if and only if

|‖F̂‖sa ∩ ‖Ĥi‖sa |≤|‖F̂‖sa ∩ ‖Ĝ‖sa |, for all 1 ≤ i ≤ k.

• vM(Qm
e11x(F̂ (x), Ĝ(x))) = vM(¬∆(qsa

F̂ ,Ĝ
→ ∨ki=1q

sa
F̂ ,Ĥi

))

This evaluates to 1 if and only if for all 1 ≤ i ≤ k we have:

|‖F̂‖sa∩‖Ĥi‖sa|
|D| < |‖F̂‖sa∩‖Ĝ‖sa|

|D| . This holds if and only if

|‖F̂‖sa ∩ ‖Ĥi‖sa |<|‖F̂‖sa ∩ ‖Ĝ‖sa |, for all 1 ≤ i ≤ k.
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• vM(Qm
e12x(F̂ (x), Ĝ(x))) = vM(¬∆(πki=1∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)→ (>π⊥)))

This evaluates to 1 if and only if:
1
2 <

1
k ·
∑k
i=1 vM(∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)). This is true if and only if there are at least

l comparison predicates with |‖F̂‖
sa∩‖Ĥi‖sa|
|D| ≤ |‖F̂‖sa∩‖Ĝ‖sa|

|D| , for l such that l
k >

1
2 .

Hence, there must be a majority of comparison predicates, which is exactly the
semantics of “most”.

• vM(Qm
e13x(F̂ (x), Ĝ(x))) =

= vM(¬∆([qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĝ
→ qsa

F̂ ,Ĥi
)]⊕1≤i≤k →

→ [qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

)]⊕1≤i≤k)) = 1− I{1=min(1,1−v+w)}, with v, w:

v = vM([qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĝ
→ qsa

F̂ ,Ĥi
)]⊕1≤i≤k) =

∑
i∈I<

|‖F̂‖sa∩‖Ĥi‖sa|
|D| , and

w = vM([qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

)]⊕1≤i≤k) =
∑
i∈I>

|‖F̂‖sa∩‖Ĥi‖sa|
|D| .

Hence, vM(Qm
e13x(F̂ (x), Ĝ(x))) evaluates to 1 if and only if v > w, which

is exactly when
∑
i∈I< |‖F̂‖

sa ∩ ‖Ĥi‖sa |>
∑
i∈I> |‖F̂‖

sa ∩ ‖Ĥi‖sa |.

• vM(Qm
e14x(F̂ (x), Ĝ(x))) = vM(¬∆(qsa

F̂ ,Ĝ
→ πki=1q

sa
F̂ ,Ĥi

))

This evaluates to 1 if and only if:

|‖F̂‖sa∩‖Ĝ‖sa|
|D| > 1

k

∑k
i=1

|‖F̂‖sa∩‖Ĥi‖sa|
|D| . This is true if and only if,

|‖F̂‖sa ∩ ‖Ĝ‖sa |> 1
k

∑k
i=1 |‖F̂‖sa ∩ ‖Ĥi‖sa |.

• vM(Qm
i1x(F̂ (x), Ĝ(x))) = vM(∧ni=1∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
)))

This evaluates to 1 if and only if for all 1 ≤ i ≤ n:

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| ≤ |‖F̂‖

sa∩‖Ĝ‖sa|
|‖F̂‖sa|

• vM(Qm
i2x(F̂ (x), Ĝ(x))) = vM(¬∆(πni=1∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)→ (>π⊥)))

This evaluates to 1 if and only if:
1
2 <

1
n ·
∑n
i=1 vM(∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)). This is true if and only if there are at least

l normative situations, with |‖F̂‖
sni∩‖Ĝ‖sni|
|D| ≤ |‖F̂‖sa∩‖Ĝ‖sa|

|D| , for l such that l
n >

1
2 .

Hence, there must be a majority of normative situations, which is exactly the
semantics of “most”.
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• vM(Qm
i3x(F̂ (x), Ĝ(x))) =

= vM(¬∆(πni=1∆((qsni
F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))→ (>π⊥)))

This evaluates to 1 if and only if:

1
2 <

1
n ·
∑n
i=1 vM(∆((qsni

F̂
� qsni

F̂ ,Ĝ
) → (qsa

F̂
� qsa

F̂ ,Ĝ
))). This is true if and only if

there are at least l normative situations, with |‖F̂‖
sni∩‖Ĝ‖sni|
|‖F̂‖sni| ≤ |‖F̂‖

sa∩‖Ĝ‖sa|
|‖F̂‖sa| , for l

such that l
n >

1
2 . Hence, there must be a majority of normative situations, which

is exactly the semantics of “most”.

• vM(Qm
i4x(F̂ (x), Ĝ(x))) = vM(¬∆(qsa

F̂ ,Ĝ
→ ∨ni=1q

sni
F̂ ,Ĝ

))

This evaluates to 1 if and only if for all 1 ≤ i ≤ n we have:

|‖F̂‖sni∩‖Ĝ‖sni|
|D| < |‖F̂‖sa∩‖Ĝ‖sa|

|D| . This holds if and only if:

|‖F̂‖sa ∩ ‖Ĝ‖sa |> max1≤i≤n{|‖F̂‖sni ∩ ‖Ĝ‖sni |}.

• vM(Qm
i5x(F̂ (x), Ĝ(x))) = vM(¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ ∨ni=1(qsni

F̂
� qsni

F̂ ,Ĝ
)))

This evaluates to 1 if and only if for all 1 ≤ i ≤ n we have:

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| < |‖F̂‖sa∩‖Ĝ‖sa|

|‖F̂‖sa| . This holds if and only if:

|‖F̂‖sa∩‖Ĝ‖sa|
|‖F̂‖sa| > max1≤i≤n{ |‖F̂‖

sni∩‖Ĝ‖sni|
|‖F̂‖sni| }.

• vM(Qm
i6x(F̂ (x), Ĝ(x))) =

= vM(¬∆([qsni
F̂ ,Ĝ
∧ ¬∆(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)]⊕1≤i≤n →

→ [qsni
F̂ ,Ĝ
∧ ¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤n)) = 1− I{1=min(1,1−v+w)}, with v, w:

v = vM([qsni
F̂ ,Ĝ
∧ ¬∆(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)]⊕1≤i≤n) =

∑
i∈Iabs≺

|‖F̂‖sni∩‖Ĝ‖sni|
|D| , and

w = vM([qsni
F̂ ,Ĝ
∧ ¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤n) =

∑
i∈Iabs�

|‖F̂‖sni∩‖Ĝ‖sni|
|D| .

Hence, vM(Qm
i6x(F̂ (x), Ĝ(x))) evaluates to 1 if and only if v > w, which

is exactly when
∑
i∈Iabs≺

|‖F̂‖sni ∩ ‖Ĝ‖sni |>
∑
i∈Iabs�

|‖F̂‖sni ∩ ‖Ĝ‖sni |.
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• vM(Qm
i7x(F̂ (x), Ĝ(x))) =

= vM(¬∆([(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))]⊕1≤i≤n →

→ [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))]⊕1≤i≤n)) =

= 1− I{1=min(1,1−v+w)}, with v, w:

v = vM([(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))]⊕1≤i≤n) =

=
∑
i∈Irel≺

|‖F̂‖sni∩‖Ĝ‖sni|
|D|·|‖F̂‖sni| ≤ 1, and

w = vM([(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))]⊕1≤i≤n) =

=
∑
i∈Irel�

|‖F̂‖sni∩‖Ĝ‖sni|
|D|·|‖F̂‖sni| ≤ 1.

Hence, vM(Qm
i7x(F̂ (x), Ĝ(x))) evaluates to 1 if and only if v > w, which

is exactly when
∑
i∈Irel≺

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| >

∑
i∈Irel�

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| .

• vM(Qm
i8x(F̂ (x), Ĝ(x))) = vM(¬∆(qsa

F̂ ,Ĝ
→ πni=1q

sni
F̂ ,Ĝ

))

This evaluates to 1 if and only if:

|‖F̂‖sa∩‖Ĝ‖sa|
|D| > 1

n

∑n
i=1

|‖F̂‖sni∩‖Ĝ‖sni|
|D| . This is true if and only if,

|‖F̂‖sa ∩ ‖Ĝ‖sa |> 1
n

∑n
i=1 |‖F̂‖sni ∩ ‖Ĝ‖sni |.

• vM(Qm
i9x(F̂ (x), Ĝ(x))) = vM(¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ πni=1(qsni

F̂
� qsni

F̂ ,Ĝ
)))

This evaluates to 1 if and only if |‖F̂‖
sa∩‖Ĝ‖sa|
|‖F̂‖sa| > 1

n

∑n
i=1

|‖F̂‖sni∩‖Ĝ‖sni|
|‖F̂‖sni| .

The cases for “few” work analogously. 2

Type III, binary, “many” and “few”

Although not common in linguistic accounts, “many” and “few” can be understood as
Type III quantifiers, too.

Zadeh [Zad65] initiated the studies in fuzzy logic, which have since been developed
incredibly far until today’s state of a formal Mathematical Fuzzy Logic (MFL) [CHN11].
To that end, major contributions have been made by Hajek [Háj98], Cintula and Noguera
[CHN11], especially when developing a systematic t-norm based account to fuzzy logic,
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which is today at the heart of any MFL. Albeit, although fuzzy logic was (and still is)
intended to model natural reasoning more flexibly, no case closing contributions have
been made in regard of the semantics of “many” and “few”. This is not to say none have
been made at all. In fact, several readings we discussed beforehand, have been formalized
already, e.g. by means of Zadeh’s S function[Glö06], which is basically a parametrized
function from the real unit interval to itself, with function values starting in the origin
and ending up in the point (1, 1). More formally, dependent on two parameters a, b, it is
defined as follows:

S : [0, 1]3 → [0, 1], with:

S(x, a, b) =


0 x ≤ a
2 · (x−ab−a )2 a < x ≤ a+b

2
1− 2 · (x−bb−a )2 a+b

2 < x ≤ b
1 x > b

This is to be read as follows. Regarding a statement of the form “Many A’s are B’s”,
the value x represents the proportion of A′s that are B′s, hence ||A∩B||||A|| , while the value
S(x, a, b) models the respective truth value of the statement for any x. Since S is clearly
a monotonically increasing function, starting in the origin and ending up in (1, 1), it
is possible to model all sorts of readings for “many” with it. Still, again, we are left
with the determination of the parameters a and b, which is unsatisfying as there is no
described way as to how to get to them.

Then, there is Hajek’s way [Háj98], which basically consists in shifting the problem away,
similarly to most of the other strategies discussed so far. He introduces a set of possible
worlds, each of which evaluates respective “many”-quantified statements classically, i.e.
the evaluation yields either 0 or 1. Eventually, one takes the average of these values,
interpreting it as the probability that a respective statement is true in a randomly picked
world. Although this makes a lot of sense in principle, we still don’t know how the get
to the individual truth values in each world. Looks like we go round in circles, as also
Glöckner [Glö06] and, more recently, Delgado et al. [DRSV14] do not exceed these
limits.

Following our own account, based on Lappin’s, going from Type I to Type III can simply
be done by making the evaluation criteria non-crisp, i.e. removing some Deltas from the
Type I definitions. We can not just say all Deltas, since some of the encoded conditions
have to remain crisp. As a consequence we list all Type III quantifier definitions for
“many” and “few”.

Definition 37 Let crisp Łα(Π) formulas F̂ , Ĝ, Ĥ, Ĥi, with i ∈ {1, . . . , k}, k ≥ 1, such
that the Ĥi are comparison predicates with respect to sa, and a set S = {sn1, . . . , snn},
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n ≥ 1, of normative situations, be given. For two values a, b ∈ [0, 1] and d ∈ (0, 1), we
use qa, qb and qd for truth constants that evaluate to a, b and d respectively. Similarly, for
a value c ∈ { 1

|Dsa| , . . . ,
|Dsa|
|Dsa|}, we use qc for the truth constant that evaluates to c. Also,

we may assume that there is a situation s|j| such that |Ds|j| |= j, for all 1 ≤ j ≤| D |.
Then31:

Base (binary) Type III reading of “many”:

• QM
0 x(F̂ (x), Ĝ(x)) = ∧ni=1(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)

Extensional (binary) Type III readings of “many”:

• QM
e1x(F̂ (x), Ĝ(x)) = (qa → (qsa

F̂
� qsa

F̂ ,Ĝ
)) ∧ (qs|j| → qsa

F̂ ,Ĝ
)

• QM
e2x(F̂ (x), Ĝ(x)) = qd → (qsa

F̂
� qsa

F̂ ,Ĝ
)

• QM
e3x(F̂ (x), Ĝ(x)) = (qsa� qsa

Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
)

• QM
e4x(F̂ (x), Ĝ(x)) = (qc · qsa)→ (qsa

F̂ ,Ĝ
)

• QM
e5x(F̂ (x), Ĝ(x)) = qd → (qsa

Ĝ
� qsa

F̂ ,Ĝ
)

• QM
e6x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĥ
→ qsa

F̂ ,Ĝ

• QM
e7x(F̂ (x), Ĝ(x)) = qsa

Ĝ,Ĥ
→ qsa

F̂ ,Ĝ

• QM
e8x(F̂ (x), Ĝ(x)) = qsa

Ĥ
→ qsa

F̂ ,Ĝ

• QM
e9x(F̂ (x), Ĝ(x)) = (qa → (qsa

F̂
� qsa

F̂ ,Ĝ
)) ∧ (qb ↔ (qsa

Ĥ
� qsa

Ĝ,Ĥ
)) ∧∆(qb → qa)

• QM
e10x(F̂ (x), Ĝ(x)) = ∨ki=1q

sa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

• QM
e11x(F̂ (x), Ĝ(x)) = ∨ki=1q

sa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

• QM
e12x(F̂ (x), Ĝ(x)) = (>π⊥)→ πki=1∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)

31Recall that � is equivalent with →P .
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• QM
e13x(F̂ (x), Ĝ(x)) =

= [qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

)]⊕1≤i≤k → [qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĝ
→ qsa

F̂ ,Ĥi
)]⊕1≤i≤k

• QM
e14x(F̂ (x), Ĝ(x)) = πki=1q

sa
F̂ ,Ĥi

→ qsa
F̂ ,Ĝ

Intensional (binary) Type III readings of “many”:

• QM
i1 x(F̂ (x), Ĝ(x)) = ∧ni=1((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))

• QM
i2 x(F̂ (x), Ĝ(x)) = (>π⊥)→ πni=1∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)

• QM
i3 x(F̂ (x), Ĝ(x)) = (>π⊥)→ πni=1∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))

• QM
i4 x(F̂ (x), Ĝ(x)) = ∨ni=1q

sni
F̂ ,Ĝ
→ qsa

F̂ ,Ĝ

• QM
i5 x(F̂ (x), Ĝ(x)) = ∨ni=1(qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
)

• QM
i6 x(F̂ (x), Ĝ(x)) =

= [qsni
F̂ ,Ĝ
∧ ¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤n → [qsni

F̂ ,Ĝ
∧ ¬∆(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)]⊕1≤i≤n

• QM
i7 x(F̂ (x), Ĝ(x)) =

= [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))]⊕1≤i≤n →

→ [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))]⊕1≤i≤n

• QM
i8 x(F̂ (x), Ĝ(x)) = πni=1q

sni
F̂ ,Ĝ
→ qsa

F̂ ,Ĝ

• QM
i9 x(F̂ (x), Ĝ(x)) = πni=1(qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
)

Base (binary) Type III reading of “few”:

• QF
0 x(F̂ (x), Ĝ(x)) = ∧ni=1(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)

Extensional (binary) Type III readings of “few”:

• QF
e1x(F̂ (x), Ĝ(x)) = ((qsa

F̂
� qsa

F̂ ,Ĝ
)→ pa) ∧ (qsa

F̂ ,Ĝ
→ qs|j|)
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• QF
e2x(F̂ (x), Ĝ(x)) = (qsa

F̂
� qsa

F̂ ,Ĝ
)→ qd

• QF
e3x(F̂ (x), Ĝ(x)) = (qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsa� qsa

Ĝ
)

• QF
e4x(F̂ (x), Ĝ(x)) = (qsa

F̂ ,Ĝ
)→ (qc · qsa)

• QF
e5x(F̂ (x), Ĝ(x)) = (qsa

Ĝ
� qsa

F̂ ,Ĝ
)→ qd

• QF
e6x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ qsa

F̂ ,Ĥ

• QF
e7x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ qsa

Ĝ,Ĥ

• QF
e8x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ qsa

Ĥ

• QF
e9x(F̂ (x), Ĝ(x)) =

= ((qsa
F̂
� qsa

F̂ ,Ĝ
)→ qa) ∧ (qb ↔ (qsa

Ĥ
� qsa

Ĝ,Ĥ
)) ∧ ¬∆(qb → qa)

• QF
e10x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ ∨ki=1q

sa
F̂ ,Ĥi

• QF
e11x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ ∨ki=1q

sa
F̂ ,Ĥi

• QF
e12x(F̂ (x), Ĝ(x)) = (>π⊥)→ πki=1¬∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)

• QF
e13x(F̂ (x), Ĝ(x)) =

= [qsa
F̂ ,Ĥi

∧ ¬∆(qsa
F̂ ,Ĝ
→ qsa

F̂ ,Ĥi
)]⊕1≤i≤k → [qsa

F̂ ,Ĥi
∧ ¬∆(qsa

F̂ ,Ĥi
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤k

• QF
e14x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ πki=1q

sa
F̂ ,Ĥi

Intensional (binary) Type III readings of “few”:

• QF
i1x(F̂ (x), Ĝ(x)) = ∧ni=1((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))

• QF
i2x(F̂ (x), Ĝ(x)) = (>π⊥)→ πni=1¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)

• QF
i3x(F̂ (x), Ĝ(x)) = (>π⊥)→ πni=1¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))
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• QF
i4x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ ∨ni=1q

sni
F̂ ,Ĝ

• QF
i5x(F̂ (x), Ĝ(x)) = (qsa

F̂
� qsa

F̂ ,Ĝ
)→ ∨ni=1(qsni

F̂
� qsni

F̂ ,Ĝ
)

• QF
i6x(F̂ (x), Ĝ(x)) =

= [qsni
F̂ ,Ĝ
∧ ¬∆(qsa

F̂ ,Ĝ
→ qsni

F̂ ,Ĝ
)]⊕1≤i≤n → [qsni

F̂ ,Ĝ
∧ ¬∆(qsni

F̂ ,Ĝ
→ qsa

F̂ ,Ĝ
)]⊕1≤i≤n

• QF
i7x(F̂ (x), Ĝ(x)) =

= [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsa

F̂
� qsa

F̂ ,Ĝ
)→ (qsni

F̂
� qsni

F̂ ,Ĝ
))]⊕1≤i≤n →

→ [(qs|1| · (qsni
F̂
� qsni

F̂ ,Ĝ
)) ∧ ¬∆((qsni

F̂
� qsni

F̂ ,Ĝ
)→ (qsa

F̂
� qsa

F̂ ,Ĝ
))]⊕1≤i≤n

• QF
i8x(F̂ (x), Ĝ(x)) = qsa

F̂ ,Ĝ
→ πni=1q

sni
F̂ ,Ĝ

• QF
i9x(F̂ (x), Ĝ(x)) = (qsa

F̂
� qsa

F̂ ,Ĝ
)→ πni=1(qsni

F̂
� qsni

F̂ ,Ĝ
)

(Non)-Monotonicity of the readings for “many” and “few”

Monotonicity of a quantifier is a very basic and core property that can be fulfilled or even
should or must be fulfilled in certain cases where adequacy of the quantifier model is an
objective. An non-decreasing quantifier has a truth function with non-negative slope,
while a quantifier is non-increasing if it has a non-positive slope. In the next chapter, we
will analyze properties of quantifiers in more detail. However, since here we are interested
in particular (binary) quantifiers, namely “many” and “few”, we introduce and use the
notion of monotonicity (in proportion) of a quantifier in advance.32.

Definition 38 A binary semi-fuzzy quantifier Q is called non-decreasing in proportion,
if for three crisp formulas F̂ , Ĝ, Ĥ, with PropM(Ĥ ∧ F̂ ) ≤ PropM(Ĥ ∧G), we have:

vM(Qx(Ĥ(x), F̂ (x))) ≤ vM(Qx(Ĥ(x), Ĝ(x))). (4.26)

Also, a semi-fuzzy quantifier Q is called non-increasing in proportion, if for three formulas
F̂ , Ĝ, Ĥ, with PropM(Ĥ ∧ F̂ ) ≤ PropM(Ĥ ∧G), we have:

vM(Qx(Ĥ(x), F̂ (x))) ≥ vM(Qx(Ĥ(x), Ĝ(x))). (4.27)

32In the next chapter we will define monotonicity in proportion for unary quantifiers. This will then
technically be redundant, but for the presentation still be useful.
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In [PW06], Westerstahl argues that “many” and “few” are particularly good examples
for quantifiers that should have the monotonicity property, i.e. models for “many” should
be non-decreasing and models for “few” should be non-increasing. This seems to make
sense, as, for example, if one accepts that “Many people are destitute”, then we would
most likely also accept that “Many people are destitute or just poor”. To rate the one or
the other statement, we can perhaps safely use the same reading of “many”, meaning the
same comparison sets or normative situations. On the other side, when the quantified
predicates relate to different contexts, this comparability most certainly will be lost. The
following theorem captures the non-monotonic nature of this section’s models, which
is due to the very flexible way in which we can instantiate situations and comparison
predicates.

Theorem 36 None of the quantifier models of this section generally complies with their
respective monotonicity properties.

Proof:
For extensional readings of “many”, it is relatively easy to see that the conditions for
monotonicity (in proportion) can be violated by setting the actual situation accordingly.
The issue arises from the fact that PropM always evaluates the whole domain D. This
means that any statement of the form PropM(F̂ ∧ Ĝ) ≤ PropM(F̂ ∧G′), for a semi-fuzzy
quantifier Q and crisp Łα(Π) formulas F̂ , Ĝ, Ĝ′, can be rendered irrelevant with respect to
evaluations of situation dependent quantifier models. This happens if we simultaneously
have an actual situation sa such that Dsa = {c ∈ D : vM(F̂ (c) ∧ Ĝ(c)) = 1}, and
{c ∈ D : vM(F̂ (c) ∧ Ĥ(c)) = 1} ∩Dsa = ∅. When normative situations enter the stage,
the argument becomes even more obvious. The argument for readings of “few” works by
analogy. 2

The result of this theorem should not be taken as a defect of the quantifier models, but
rather as a hint that most basic criteria, like monotonicity, should not be demanded from
natural language expressions that are so very flexible by their very nature.

Remark 21 In the beginning of this chapter, we outlined which quantifiers we are going
to treat and analyze. It now remains to mention how those labeled as [Int2], namely
several, various, multiple, heaps of, and loads of, are supposed to be understood. Again,
there are many different interpretations that can be witnessed in real life. Some are fairly
straightforward, e.g. several, various and multiple can be read as more than one. The
other two are somewhat similar to “many”, and, as there are already plenty of readings
to choose from, we claim that some of them may also apply to those. The use of plenty
in the forgoing sentence also falls under this regime. Taking the present thesis as actual
situation, just think of the comparison sets referring to the amount of readings we defined
for other quantifiers, and verify that there are less.
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CHAPTER 5
Quantifier Fuzzification

Mechanisms: QFMs

5.1 Desiderata for Quantifier Fuzzification Mechanisms

Lifting semi-fuzzy quantifiers to fully-fuzzy quantifiers should be performed in a systematic
manner, following certain principles or axioms. This approach has been pursued most
notably by Glöckner, who wrote a whole monograph on the topic [Glö06]. More recently,
Delgado et al. [DRSV14] provided the community with a survey article, that summarizes
the most important techniques in that regard concisely and in great detail. Also, Diaz-
Hermida et al. [DHBCB04] dedicated themselves to this method. This chapter is based
on [BFH18]. The framework we build upon throughout this chapter will be Łα(Π),
unless clearly stated otherwise. Hence, we will keep that fact implicit, to shorten the
presentation. The main notion, the Quantifier Fuzzification Mechanism (QFM), is defined
as follows:

Definition 39 A quantifier fuzzification mechanism (QFM) F assigns to each semi-fuzzy
quantifier Q a corresponding fully-fuzzy quantifier F(Q).

Focusing on the semantics that underpins the different QFMs that we will discuss and
analyze in this chapter, we will only treat unary quantifiers, as done in [BFH18]. The
lifting principles will be introduced as desiderata rather than axioms. Unlike Glöckner,
we do not aim at a set of axioms that are minimal in the sense that none of them is
derivable by the others. The reason is that we intend to have them listed transparently
and systematically, one by one. Two of Glöckner’s principles, or axioms in his terminology,
called ‘internal joins’ and ‘functional application’, respectively, apply to quantifiers with
arity greater than 1, and are hence omitted here. We further note that Glöckner does
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5. Quantifier Fuzzification Mechanisms: QFMs

not distinguish properly between syntax and semantics, achieving a shorter presentation
of matters, while we translate that terminology into one corresponding to our logical
framework, following the practice of [BFH18]. According to Glöckner, “perhaps the most
important axiom” is this one:

Correct Generalization: For all crisp formulas F̂ : vM(F(Q)xF̂ (x)) = vM(QxF̂ (x)).

This desideratum expresses that the evaluation of the fuzzified quantifier F(Q) must
coincide with the evaluation of the semi-fuzzy quantifier Q on crisp arguments.

For the following definition, remember that we identify domain elements with constants.

Definition 40 For all crisp formulas F̂ and all c ∈ D, we define the (Type I) projection
quantifier ∆c by vM(∆cxF̂ (x)) = vM(F̂ (c)).

Note that ∆cxF̂ (x) is classical (bivalent). Glöckner postulates the following desideratum
for lifting ∆c to fuzzy predicates.

Projection Quantifiers: For all formulas F : vM(F(∆c)xF (x)) = vM(F (c)).

Projection quantifiers are introduced to model quantifiers that refer to named objects,
such as “John”, not as a name for arbitrary people, but a particular John that one wants
to single out. Linguistically, that is standard, while logically, as we will see from the
following definition, such quantifiers play a special role, as they cannot be considered
quantitative or logical. This property expresses that the truth value of a quantified
statement should not depend on the order of domain elements, but only on quantitative
aspects of the argument predicate. This can be expressed in various ways. Following
[PW06], we will take the following property as the hallmark of logicality.

Definition 41 A quantifier Q is called quantitative if for all bijections1 ξ : D → D
and all formulas F 2, vM(QxF (x)) = vMξ(QxF (x)), where the interpretationMξ results
from the interpretationM by mapping every c ∈ D into ξ(c).

Remark 22 The foregoing definition, and many of the following ones, do not distinguish
clearly between semi-fuzzy quantifiers and fully-fuzzy quantifiers, to safe some space and
make the text more readable. However, if one considers the definitions for semi-fuzzy
quantifiers, one has to restrict the phrase “for all formulas F” to “for all crisp formulas
F̂”, for otherwise some appearing terms are actually undefined.

1Note that this corresponds to a permutation of the domain, and that we do not shuffle the set of
constants, which is also called D.

2In case of semi-fuzzy quantifiers, we have to consider only crisp formulas. Note the following remark.
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The respective desideratum for QFMs is given as:

Preservation of Quantitativity: If a semi-fuzzy quantifier Q is quantitative, then so
is F(Q).

The following definitions capture properties that are related to extending or restricting
the domain of discourse D, while not changing the interpretation of predicates over the
original D.

Definition 42 We call the interpretation M′ a conservative extension of M and say
thatM′ conservatively extendsM, ifM′ results fromM by (possibly) adding further
elements to the domain D without changing the interpretation of predicates over D itself
(i.e. vM′() and vM() agree on D).

Definition 43 A quantifier Q is called non-decreasing under extension if for all for-
mulas F , vM(QxF (x)) ≤ vM′(QxF (x)), whenever M′ conservatively extends M. It
is called non-increasing under extension if, under the same condition, vM(QxF (x)) ≥
vM′(QxF (x)).

Note that neither relative nor absolute quantifiers are monotonic under extension, in ge-
neral. However, the classical existential quantifier and, more generally, Type I quantifiers
expressing “at least k” (k > 0), and “at least (q · 100)%” (q ∈ [0, 1]), are non-decreasing
under extension, while the classical universal and, more generally, Type I quantifiers
expressing “at most k” (k > 0), and “at most (q · 100)%” (q ∈ [0, 1]), are non-increasing
under extension. Although not considered by Glöckner [Glö06] or by Delgado et al.
[DRSV14], it is not unreasonable to ask for the preservation of this property under
fuzzification.

Preservation of monotonicty under conservative extension: If a semi-fuzzy quan-
tifier Q is non-decreasing (non-increasing) under extension, then so is F(Q).

Expressing dualities of syllogistic reasoning, as in Aristotle’s square (see, e.g., [Glö06]),
requires not only the presence of a connective for negation (¬), but also of antonymic
quantifiers. Since we are only interested in unary quantifiers, the corresponding definition
is straightforward.

Definition 44 For any quantifier Q, its antonym Q¬ is given by vM(Q¬xF (x)) =
vM(Qx¬F (x)). The negated quantifier ¬Q is given by vM(¬QxF (x)) = vM(¬QxF (x)).
Moreover, the dual quantifier Qd is defined by vM(QdxF (x)) = vM(¬Qx¬F (x)). In
other words, the dual quantifier is the negated antonym of the given quantifier.
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Corresponding desiderata arise for a QFM F and semi-fuzzy quantifier Q:

Internal Negation: For all formulas F : vM(F(Q¬)xF (x)) = vM(F(Q)x¬F (x)).

External Negation: For all formulas F : vM(F(¬Q)xF (x)) = vM(¬F(Q)xF (x)).

Combined, these become:

Dualization: For all formulas F : vM(F(Qd)xF (x)) = vM(F(Q)dxF (x)).

As already indicated, dualization presupposes the existence of a unique negation ope-
rator. Glöckner tackles this problem by introducing a mechanism for deriving truth
functions for propositional connectives from QFMs. While he speaks of ‘canonical con-
struction’, one should emphasize that the set of truth functions preferred by Glöckner
for negation, disjunction, conjunction and implication are incompatible with those of
Łukasiewicz, Gödel, and Product logic3. More generally, Glöckner’s approach to pro-
positional connectives is incompatible with a more recent approach to deductive fuzzy
logics [Háj98, CHN11, CFN15], where one starts with a (left-)continuous t-norm for
conjunction, uses its residuum for implication and derives all other connectives from
these in a canonical fashion.

The next definition singles out an important subclass of quantifiers.

Definition 45 A quantifier Q is called non-increasing if, for all formulas F , vM(F (c)) ≥
vM(F ′(c)), for every c ∈ D, implies vM(QxF (x)) ≤ vM(QxF ′(x)).

Note that in the case of crisp formulas F̂ and F̂ ′, the condition vM(F̂ (c)) ≥ vM(F̂ ′(c))
expresses that the extension of F̂ ′ is a subset of the extension of F̂ . In this form,
monotonicity of quantifiers is often discussed in linguistic literature (see, e.g., [PW06]).
For example, for any constant k, the quantifier “at most k” is non-increasing, but also
the vague quantifiers ”nearly none” and “less than about half” are non-increasing. As to
the desiderata for QFMs, we have the following:

Preservation of Monotonicity (≥): If a semi-fuzzy quantifier Q is non-increasing,
then so is F(Q).

The dual property is this one:
3Glöckner himself points out the incompatibility with Łukasiewicz logic in a footnote ([Glö06], p. 156).

Clearly, the non-involutive truth function for negation, of Gödel and Product logic, is also in tension
with Glöckner’s axioms.
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Definition 46 A quantifier Q is called non-decreasing if, for all formulas F , vM(F (c)) ≤
vM(F ′(c)), for every c ∈ D, implies vM(QxF (x)) ≤ vM(QxF ′(x)).

Accordingly, one also has the following version of Preservation of Monotonicity.

Preservation of Monotonicity (≤): If a semi-fuzzy quantifier Q is non-decreasing,
then so is F(Q).

The following definition reformulates monotonicity properties almost equivalently, but
certainly more naturally. This is because PropM(F ) exists for all formulas F , while the
former definitions rely on particular formulas F that can be ordered with respect to the
truth values they assume, when applied to elements of the domain.

Definition 47 A quantifier Q is called non-decreasing in proportion, if for all formulas
F,G, we have vM(QxF (x)) ≤ vM(QxG(x)), whenever PropMF ≤ PropMG. Analo-
gously, we call Q non-increasing in proportion, if vM(QxF (x)) ≥ vM(QxG(x)), under
the same condition.

The following lemma follows from the fact that the condition for monotonicity in propor-
tion is weaker than the one for ordinary monotonicity.

Lemma 2 [BFH18] If a semi-fuzzy quantifier Q is non-increasing (non-decreasing) in
proportion, then it is also non-increasing (non-decreasing).

The converse direction holds for logical semi-fuzzy quantifiers; i.e. for quantitative semi-
fuzzy quantifiers in the sense of Definition 41.

Lemma 3 [BFH18] If a quantitative semi-fuzzy quantifier Q is non-increasing (non-
decreasing), then it is also non-increasing (non-decreasing) in proportion.

Proof:
Let Ĝ1 and Ĝ2 be two crisp formulas that fulfill PropMĜ1 ≤ PropMĜ2. We define two
crisp formulas Ĥ1 and Ĥ2 such that PropMĤ1 = PropMĜ1 and PropMĤ2 = PropMĜ2
and moreover vM(Ĥ1(c)) ≤ vM(Ĥ2(c)) for all c ∈ D. Note this is always possible by
introducing new monadic (crisp) predicate symbols for Ĥ1 and Ĥ2.

Since Q is quantitative and non-decreasing, it follows that vM(QxĤ1(x)) ≤ vM(QxĤ2(x)).
It therefore remains to observe, that vM(QxĤ1(x)) = vM(QxĜ1(x)) and vM(QxĤ2(x)) =
vM(QxĜ2(x)), which is clear since Q is a quantitative semi-fuzzy quantifier and we have
PropMĤ1 = PropMĜ1, as well as PropMĤ2 = PropMĜ2.
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The case for non-increasing quantifiers works by analogy. 2

Glöckner singles out QFMs that fulfill the six above mentioned desiderata (‘axioms’ in his
terminology): Correct Generalization, Projection Quantifiers, Dualization, Preservation
of Monotonicity, as well as Internal Joins and Functional Application, where the latter
two are only relevant for quantifiers with more than one argument position. A QFM that
satisfies these six conditions is called a determiner fuzzification scheme (DFS) in [Glö06].
Glöckner claims that DFSs ‘capture all important aspects of systematic and coherent
interpretations’. As we will see, this claim is problematic, since it neglects some features
that might well be considered highly desirable, in particular from the point of view of
linguistic adequateness.

Another form of preserving monotonicity is called ‘Monotonicity in Quantifiers’ [DHBCB04].
It is not concerned with the truth degrees of the respective argument formulas, but
rather with the relative degrees of truth, resulting from different quantifiers applied to
the same argument. We suggest an alternative name for the relevant property and the
corresponding principle.

Definition 48 A quantifier Q1 is called at least as strong as a quantifier Q2, in signs:
Q1 ≥ Q2, if for all formulas F , we have vM(Q1xF (x)) ≥ vM(Q2xF (x)).

Preservation of Quantifier Strength: If for two semi-fuzzy quantifiers Q1,Q2, we
have Q1 ≥ Q2, then F(Q1) ≥ F(Q2).

A further, rather natural, principle calls for a certain ‘robustness’ in evaluating quantified
fuzzy statements. It seeks to capture the intuition that small variations, in the truth
values of the (instantiated) argument formula, should only lead to small changes of the
truth value of the quantified formula.

Continuity in the Argument: For any semi-fuzzy quantifier Q, the truth function of
the corresponding fuzzy version F(Q) is continuous. More precisely, the following
holds for all formulas F and F ′: for every ε > 0 there exists δ > 0 such that
supc∈D |vM(F (c))−vM(F ′(c))| < δ gives |vM(F(Q)xF (x))−vM(F(Q)F ′(x))| < ε.

Although Glöckner writes that this condition on F (called arg-continuity in [Glö06]) “is
crucial to the utility” and “must be possessed by every practical model”, he nevertheless
does not include it in his list of axioms for determiner fuzzification schemes (DFSs),
proving that he aims for a level of generality that encompasses discontinuous cases.

A further desideratum, that is called ‘Coherence with Logic’ in [DHBCB04], is specific to
universal and existential quantification. For unary quantification, it just states that the
truth functions for ∀, and for ∃, are given by the infimum and the supremum of the truth
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values of the argument formula. Note that, while this is obvious for crisp arguments (i.e.
in ordinary classical logic), it amounts to an explicit desideratum for fuzzy (Type IV)
versions of ∀ and ∃. The name ‘Coherence with Logic’ for this simple principle becomes
understandable only if one considers binary quantifiers and additionally requires that
binary universal and existential quantification be reduced to the unary case by strict
analogy to classical logic, using implication and conjunction, respectively. In our context,
it is better to talk of ‘Supremum/Infimum Principle’.

Supremum/Infimum Principle: For all formulas F , we have:
vM(F(∀)xF (x)) = infc∈D vM(F (c)) and vM(F(∃)xF (x)) = supc∈D vM(F (c)).

We emphasize that the above list of desiderata for fuzzification mechanisms is not
exhaustive. Here, we restrict attention to unary quantification. This renders desiderata
for Glöckner’s axioms for “internal joins”, “functional application”, and “argument
insertion” [Glö06] irrelevant to our context. But even for unary quantifiers, further
principles might be relevant, at least for particular application scenarios. In fact, certain
more general methodological principles for the design of fuzzy quantifier models should be
respected as well. Most importantly, such models should be embeddable into deductive,
t-norm based fuzzy logics, as intensively studied in contemporary Mathematical Fuzzy
Logic [CHN11]. In particular, the models should be compatible with Łukasiewicz logic
Ł, which is distinguished among all the t-norm based fuzzy logic as the only one, where
all truth functions of connectives and quantifiers are continuous.4 That (a properly
extended) Łukasiewicz logic should indeed be considered as a distinguished basis for
modeling reasoning with vague notions, including quantifier expressions, has been argued,
e.g., by Novak [Nov06]. Here, we aim at (fully-fuzzy) quantifiers that can actually be
defined within the logic Łα(Π)5. The QFMs for lifting semi-fuzzy quantifiers to fully-fuzzy
ones, which we introduce in the next section, do not directly depend on the NRG-game,
or Łα(Π) respectively. However, they are partly inspired by this semantic framework.

5.2 Fuzzification mechanisms in the limelight
Quantifier fuzzification mechanisms (QFMs) are a powerful tool to arrive at fully-fuzzy
quantification. One starts with a semi-fuzzy quantifier Q, that takes only crisp arguments,
but, upon evaluation, may yield intermediate truth values, and associates to Q a fully-fuzzy
quantifier F(Q), to be evaluated over arbitrary fuzzy argument. For our considerations
of this section, we always assume the full expressive power of Łα(Π).

In this section, we will introduce some concrete QFMs and discuss their properties. To
make a semi-fuzzy quantifier Q fit for fuzzy arguments F , we need to systematically

4In [MN12, MN14, Nov08] the authors introduce an alternative generalization based on fuzzy type
theory, which extends Łukasiewicz logic to a higher order setting.

5In the remainder of this chapter, we will in particular sometimes point out if representations of
quantifiers work even in less expressive settings than Łα(Π).
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modify the way F is interpreted. One well known way to do so, is considering α-cuts.
Here, the α-cut of a formula F is another (crisp) formula F ′. If the truth value of F is
at least α, then F ′ is equivalent to >, and if the truth value of F is less than α, F ′ is
equivalent to ⊥. This method has been used for the evaluation of fuzzy quantifiers, e.g.
in [BF17, DHBCB04]. It can be defined as follows:

Definition 49 Let a formula F and α ∈ [0, 1] be given. Furthermore, let pα ∈ Λ be
given such that vM(pα) = α. Then the α-cut of F is defined as F≥pα = ∆(pα → F ).

One can also define an alternative way to project F to an either fully true or fully false
formula, namely by applying α-cuts to all atoms that F is built from.

Definition 50 Let a formula F and α ∈ [0, 1] be given. Furthermore, let pα ∈ Λ be
given such that vM(pα) = α. Then the at-α-cut of F is defined as the formula F≥pαat

which is obtained from F by replacing each atom A in it with ∆(pα → A).

More generally, we introduce the following notation for later use:

Definition 51 Let F (x) and G be formulas. We denote by F≥G(x) the formula ∆(G→
F (x)) and by F≥Gat (x) the formula obtained replacing any atomic formula A in F (x)
by ∆(G → A). To simplify the notation, we will denote the formulas F≥F (y)(x) and
F≥F (c)(x) by F≥y(x) and F≥c(x), respectively.

Remark 23 Note that we do not explain the lifting from Type I quantifiers to Type II
quantifiers independently, as Type I quantifiers technically are also Type III quantifiers
and Type II quantifiers technically are also Type IV quantifiers.

5.2.1 Fuzzification mechanisms based on random α-cuts: FR1 ,FR2

Our first QFM, based on a random choice of at-α-cuts, therefore denoted as FR1 , is
defined as follows:

Definition 52 For a formula F , pα ∈ Λ such that vM(pα) = α, and a semi-fuzzy
quantifier Q, we define FR1 as follows:

vM(FR1(Q)xF (x)) =
∫ 1

0
vM(QxF≥pαat (x))dα. (5.1)

In other words, vM(FR1(Q)xF (x)) is the expected value of vM(QxF≥pαat (x)) with respect
to a uniform random choice of some α ∈ [0, 1].
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5.2. Fuzzification mechanisms in the limelight

FR1 might look tempting as a mechanism, but, as the following example shows, it fails
to comply with the desideratum of “correct generalization", which demands that FR1(Q),
applied to crisp arguments, yield the same result as the semi-fuzzy quantifier Q applied
to the same crisp argument:

Example 8 Assume D = {c1, c2} with vM(A(c1)) = 0.2 and vM(A(c2)) = 1 and let
F̂ (x) = ∆A(x). Now,

vM(∀xF̂ (x)) = 0. And, for some small value ε > 0, we also have:

vM(FR1(∀)xF̂ (x)) = 0.2 · vM(∀xF̂≥p0.2
at (x)) + 0.8 · vM(∀xF̂≥p0.2+ε

at (x)) =
= 0.2 · 1 + 0.8 · 0 = 0.2 6= 0.

A different fuzzification mechanism, in particular related to the so called Choquet integral
[DRSV14], is obtained by directly (uniformly randomly) picking α-cuts of the entire
argument F . We define this second QFM, based on randomly choosing α-cuts, FR2 , as
follows:

Definition 53 For a formula F , pα ∈ Λ such that vM(pα) = α, and a semi-fuzzy
quantifier Q, we define FR2 as follows:

vM(FR2(Q)xF (x)) =
∫ 1

0
vM(QxF≥pα(x))dα. (5.2)

The same evaluation function and corresponding lifting mechanism for fuzzy quantifiers
is also obtained in [DHBCB04], although motivated by a different semantics, based on
voting models. The sampling of threshold values from the real unit interval, which is
needed for the definition of FR1 and FR2 , can be expressed by way of our propositional
quantifier Π, based on the object quantifier Π.

Theorem 37 [BFH18] For a semi-fuzzy quantifier Q, and a formula F , we have:

FR1(Q)xF (x) ≡ ΠpQxF≥pat (x), (5.3)

FR2(Q)xF (x) ≡ ΠpQxF≥p(x). (5.4)

Proof:
Straightforward computation. 2

Hence, both fuzzification mechanisms FR1 and FR2 are expressible in Łα(Π). As we
assume Q to be a unary semi-fuzzy quantifier, the QFM FR2 coincides with both, the
maximum dependence model, and the independence model from [DHBCB04].

We can now examine to which extend the fuzzification mechanism FR2 complies with
the desiderata in Section 5.1.
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Theorem 38 [BFH18] The QFM FR2 complies with correct generalization, projection
quantifiers, preservation of quantitativity, preservation of monotonicity under conser-
vative extension, internal negation, external negation, dualization, preservation of mo-
notonicity, preservation of quantifier strength, continuity in the argument, and the
supremum/infimum principle.

Proof:
As we only consider unary quantifiers, in our models the distinction between maximum
dependence and independence regarding [DHBCB04] collapses. Hence, we can use
their results, which show correct generalization, internal negation, external negation,
dualization, preservation of monotonicity, preservation of quantifier strength, continuity in
the argument, and the supremum/infimum principle. Let pα ∈ Λ such that vM(pα) = α.

• Projection Quantifiers: We show that for an arbitrary formula F , and all c ∈ D,
we have:

vM(FR2(∆c)xF (x)) = vM(Πp∆cF
≥p(x)) = vM(ΠpF≥p(c)) = vM(F (c)).

• Preservation of quantitativity: This is apparent.

• Preservation of monotonicity under conservative extension (non-decreasing):

Let Q be a semi-fuzzy quantifier and assumeM′ conservatively extendsM, and
that for all crisp formulas F̂ we have that vM(QxF̂ (x)) ≤ vM′(QxF̂ (x)). We then
have that vM(QxF≥pα(x)) ≤ vM′(QxF≥pα(x)), for all α ∈ [0, 1]. As a consequence,
vM(ΠpQxF≥p(x)) ≤ vM′(ΠpQxF≥p(x)).

• Preservation of monotonicity under conservative extension (non-increasing):

Let Q be a semi-fuzzy quantifier and assumeM conservatively extendsM′, and that
for all crisp formulas F̂ we have that vM(QxF̂ (x)) ≤ vM′(QxF̂ (x)). We then have
that vM(QxF≥pα(x)) ≤ vM′(p)QxF≥pα(x), for all α ∈ [0, 1]. As a consequence,
vM(ΠpQxF≥p(x)) ≤ vM′(ΠpQxF≥p(x)).

2

This already tells us that FR1 and FR2 cannot coincide, as FR1 does not comply with
the desideratum of correct generalization. We provide an explicit counterexample that
shows that they are different, thus correcting what has been claimed in [BF17].

Corollary 5 [BFH18] FR1 and FR2 do not coincide.
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Proof:
For simplicity, we assume the domain has only one element D = {c}, and Q is either ∀,∃
or Π. A(x) and B(x) are fuzzy atoms, with a = vM(A(c)) ≤ vM(B(c)) = b. Then, for
pα ∈ Λ such that vM(pα) = α, we look at F (x) defined as A(x)⊕B(x), and plug it into
the QFMs:

vM(FR1(Q)xF (x)) = vM(Πp(A(c)≥p ⊕B(c)≥p)) =

=
∫ 1

0 vM(A(c)≥pα ⊕B(c)≥pα)dα =
∫ a

0 1dα+
∫ b
a 1dα+

∫ 1
b 0dα = b.

vM(FR2(Q)xF (x)) = vM(Πp(A(c)⊕B(c))≥p) =

=
∫ 1

0 vM((A(c)⊕B(c))≥pα)dα =
∫ a+b

0 1dα+
∫ 1
a+b 0dα =min(1, a+ b).

Since b and min(1, a+ b) are not generally equal, the claim follows. 2

Example 9 We assume a domain D such that | D |= 4, and consider the Type III
quantifier Π. We further assume that the four objects from the domain represent balls
and that there are two fully black ones, i.e., for a fuzzy predicate B, standing for the
property of being black, we have vM(B(c1)) = vM(B(c2)) = 1. The other two are gray,
or putting it differently, black to a certain degree. We label those two gray balls c3 and c4,
with vM(B(c3)) = 0.9 and vM(B(c4)) = 0.7.

Game semantically, the evaluation of FR2(Π)xB(x), based on a randomly sampled thres-
hold value, can be interpreted as follows. Nature samples a constant pα for the proposi-
tional variable p, and the proponent P, has to accept the payoff associated to asserting
ΠxB≥pα(x). This payoff corresponds to the (possibly) intermediate truth value, as Π is
a semi-fuzzy quantifier. Then, the overall truth value is the average of the individual
results. The result can be obtained straightforwardly and amounts to the truth value 0.9.

It is worth noting that one can also immediately apply the quantifier Π to fuzzy arguments,
i.e. regard it as Type IV quantifier. In this case we also get vM(ΠxB(x)) = 0.9. It
is straightforward to check that for all formulas F we have that vM(FR2(Π)xF (x)) =
vM(ΠxF (x)) (telescopic sum).

5.2.2 Fuzzification mechanisms based on optimized α-cuts: FP1 ,FP2

We now discuss another QFM, which we call FP1 . Again, one thinks of the fuzzy argument
F , of some semi-fuzzy quantifier Q, as being cut off at some level α ∈ [0, 1]. Formulas
with truth values of at least α are rendered true while all others are projected to false.
The final truth value of the fully-fuzzy quantified statement is obtained by choosing an
optimal threshold α which maximizes the truth value of the semi-fuzzy quantifier over
the corresponding precisification, in conjunction with the threshold value α itself. In
principle any combination of t-norm and t-conorm can be employed for the conjunction

121



5. Quantifier Fuzzification Mechanisms: QFMs

and the optimization: if we use the t-norm min and the t-conorm max we get a method
based on the Sugeno integral, also called the “possibilistic method” in [DRSV14], which
is why we call the QFM FP1 . Formally we define:

Definition 54 Let F be a formula, pα ∈ Λ such that vM(pα) = α, and Q a semi-fuzzy
quantifier. We define:

vM(FP1(Q)xF (x)) = sup
α∈[0,1]

min(α, vM(QxF≥pα(x))). (5.5)

Example 10 Let us get back to the setting of Example 9. From a game semantic
perspective, we can understand the functioning of FP1 as follows. If we evaluate
FP1(Π)xB(x), the proponent P, has to decide how many of the gray balls are accepted as
black balls. If the threshold value is chosen as 0.9, 3 of the 4 balls are accepted as black.
If P also accepts the last ball, c4, as black, she would have all 4 balls to qualify as black,
but the conjunction in FP1 with the threshold value 0.7 would make that a non-rational
move. Hence, vM(FP1(Π)xB(x)) = 0.75.

We will now introduce a useful lemma, that will turn out to be helpful to express FP1

within Łα(Π).

Lemma 4 Let QxF (x) be a semi-fuzzy quantified formula, α1 ≤ α2 . . . ,≤ αn the n (not
necessarily different) truth values taken by vM(F (ci)), ci ∈ D = {c1, . . . , cn} constants
(domain elements), such that αi = vM(F (ci)). For simplicity, slightly abusing notation,
we also let F (c0) stand for ⊥ and F (cn+1) for >. Furthermore, pα ∈ Λ such that
vM(pα) = α. Then we have:

(a) vM(FP1(Q)xF (x)) = max
i=1,...,n+1

min(vM(F (ci)), vM(QxF≥ci(x))). (5.6)

Moreover, if Q is non-decreasing, we have:

(b) vM(FP1(Q)xF (x)) = min
i=1,...,n+1

max(vM(F (ci−1), vM(QxF≥ci(x))), and (5.7)

(c) vM(FP1(Q)xF (x)) = inf
α∈[0,1]

max(α, vM(QxF≥pα(x))). (5.8)

Proof:
By the definition of the αi and α-cuts, it follows that, for any α in (αi−1, ai], we get
vM(QxF≥pα(x)) = vM(QxF≥pαi (x)).

(a): Hence, letting α0 = 0, αn+1 = 1, we obtain:

supα∈(αi−1,ai] min(α, vM(QxF≥pα(x))) =
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= min(supα∈(αi−1,ai] α, vM(QxF≥pαi (x)) ) =

= min(αi, vM(QxF≥pαi (x))) .

From this we get:

vM(FP1(Q)xF (x)) = supα∈[0,1] min(α, vM(QxF≥pα(x))) =

= maxi=1,...,n+1 supα∈(αi−1,ai] min(α, vM(QxF≥pα(x))) =

= maxi=1,...,n+1 min(αi, vM(QxF≥pαi (x))) =

= maxi=1,...,n+1 min(vM(F (ci)), vM(QxF≥ci(x))) .

(b): For the second claim, it suffices to show that:

n+1∧
i=1

(F (ci−1) ∨ QxF≥ci(x)) ≡
n+1∨
i=1

(F (ci) ∧ QxF≥ci(x)).

∧n+1
i=1 (F (ci−1) ∨ QxF≥ci(x)) ≡

≡ QxF≥c1(x) ∧ (F (c1) ∨ QxF≥c2(x)) ∧
∧n+1
i=3 (F (ci−1) ∨ QxF≥ci(x)).

We now note, since Q is non-decreasing, that:

QxF≥c1(x) ∧ (F (c1) ∨ QxF≥c2(x)) ≡ (F (c1) ∧ QxF≥c1(x)) ∨ QxF≥c2(x).

Since:

(F (c1) ∧ QxF≥c1(x)) ∧
∧n+1
i=3 (F (ci−1) ∨ QxF≥ci(x)) ≡ F (c1) ∧ QxF≥c1(x),

we get:

(QxF≥c1(x) ∧ (F (c1) ∨ QxF≥c2(x))) ∧
∧n+1
i=3 (F (ci−1) ∨ QxF≥ci(x)) ≡

≡ ((F (c1) ∧ QxF≥c1(x)) ∨ QxF≥c2(x)) ∧
∧n+1
i=3 (F (ci−1) ∨ QxF≥ci(x)) ≡

≡ (F (c1) ∧ QxF≥c1(x)) ∨ (QxF≥c2(x) ∧
∧n+1
i=3 (F (ci−1) ∨ QxF≥ci(x))).

Repeating this transformation yields the desired result.

(c): For the last claim, by analogy with (a), we have:

infα∈(αi−1,ai] max(α, vM(QxF≥pα(x))) =

= max(infα∈(αi−1,ai] α, vM(QxF≥pαi (x)) =

= max(αi−1, vM(QxF≥pαi (x))).
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Hence, using (b):

vM(FP1(Q)xF (x)) = mini=1,...,n+1 max(vM(F (ci−1), vM(QxF≥ci(x)) =

= mini=1,...,n+1 max(αi−1, vM(QxF≥pαi (x))) =

= mini=1,...,n+1 infα∈(αi−1,ai] max(α, vM(QxF≥pα(x))) =

= infα∈[0,1] max(α, vM(QxF≥pα(x))). 2

The QFM FP1 can be expressed in more than one way. Firstly, within Łα(Π), employing
the propositional quantifier ∃. As an alternative, and more basic way to represent FP1 ,
one can even use only Ł4 (Łukasiewicz logic enriched with the Delta operator) at the
price of a somewhat more complex representation.

Theorem 39 [BFH18] Let Q be a semi-fuzzy quantifier and F a formula. Then we have:

• FP1(Q)xF (x) ≡ ∃p(p ∧ QxF≥p(x))

• FP1(Q)xF (x) ≡ ∃y(F (y) ∧ QxF≥y(x)) ∨ Qx∆F (x)

Proof:
The first claim follows from Definition 54, while the second is a direct consequence of
Lemma 4. 2

Theorem 40 [BFH18] The QFM FP1 complies with the desiderata of correct generali-
zation, projection quantifiers, preservation of quantitativity, preservation of monotonicity
under conservative extension, preservation of monotonicity, preservation of quantifier
strength, and the supremum/infimum principle.

Proof:

• Correct generalization works, as crisp formulas have truth values that are either
always greater or equal than any threshold value, namely when they are true, or
smaller or equal than any, when they are false, hence:

vM(∃p(p ∧ Qx∆(p→ F̂ (x)))) = vM(Qx∆(> → F̂ (x)) = vM(QxF̂ (x)).

• Projection Quantifiers: We show that for an arbitrary formula F , and all c ∈ D,
we have:

vM(FP1(∆cxF (x))) = vM(∃p(p ∧∆(p→ F (c)))) = vM(F (c)).

124



5.2. Fuzzification mechanisms in the limelight

• Preservation of quantitativity: This is apparent.

• Preservation of monotonicity under conservative extension (non-decreasing):

Let Q be a semi-fuzzy quantifier and assume M′ conservatively extends M, as
well as for all crisp formulas F̂ we have that vM(QxF̂ (x)) ≤ vM′(QxF̂ (x)). We
then have that vM(QxF≥pα(x)) ≤ vM′(QxF≥pα(x)), for all α ∈ [0, 1]. Hence, we
also have vM(pα ∧ QxF≥pα(x)) ≤ vM′(pα ∧ QxF≥pα(x)), for all α ∈ [0, 1]. As a
consequence, vM(∃p(p ∧ QxF≥p(x))) ≤ vM′(∃p(p ∧ QxF≥p(x))).

• Preservation of monotonicity under conservative extension (non-increasing):

Let Q be a semi-fuzzy quantifier and assume M conservatively extends M′, as
well as for all crisp formulas F̂ we have that vM(QxF̂ (x)) ≤ vM′(QxF̂ (x)). We
then have that vM(QxF≥pα(x)) ≤ vM′(QxF≥pα(x)), for all α ∈ [0, 1]. Hence, we
also have vM(pα ∧ QxF≥pα(x)) ≤ vM′(pα ∧ QxF≥pα(x)), for all α ∈ [0, 1]. As a
consequence, vM(∃p(p ∧ QxF≥p(x))) ≤ vM′(∃p(p ∧ QxF≥p(x))).

• Preservation of monotonicity:

Let Q be a non-decreasing semi-fuzzy quantifier. Furthermore, let F and G be
two arbitrary formulas such that for all c ∈ D we have that vM(F (c)) ≤ vM(G(c)).
Then we have:

vM(F(Q)xF (x)) = vM(∃p(p ∧ QxF≥p(x))) ≤

≤ vM(∃p(p ∧ QxG≥p(x))) = vM(F(Q)xG(x)).

The case where Q is non-increasing works analogously.

• Preservation of quantifier strength:

If, for two semi-fuzzy quantifiers Q1,Q2, and any crisp formula F̂ , we have
vM(Q1xF̂ (x)) ≤ vM(Q2xF̂ (x)), then, for any fuzzy formula F we also have:

vM(FP1(Q1)xF (x)) = vM(∃p(p ∧ Q1xF
≥p(x))) ≤ vM(∃p(p ∧ Q2xF

≥p(x))) =

= vM(FP1(Q2)xF (x)).

The case where vM(Q1xF̂ (x)) ≥ vM(Q2xF̂ (x)) works analogously.

• Supremum/Infimum principle:

vM(F(∀)xF (x)) = ∃p(p ∧ ∀xF≥p(x)) = infc∈D vM(F (c)),

vM(F(∃)xF (x)) = ∃p(p ∧ ∃xF≥p(x)) = supc∈D vM(F (c)).
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2

Example 11 Let us fix the domain D such that |D | = 2. Regarding Q, we use the
quantifier “at least 50%", modeled as Type III quantifier, which is non-decreasing in
proportion and denoted by Q[≥ 1

2 ], with vM(Q[≥ 1
2 ]xF̂ (x)) = min(1, 2 ·PropMF̂ ), for a crisp

formula F̂ . Also, we assume that there are two fuzzy predicates A and B, with the following
truth value distribution: vM(A(c1)) = 0.7 and vM(A(c2)) = 0.1, and vM(B(c1)) =
vM(B(c2)) = 0.5. Hence, PropMA = 0.4 < 0.5 = PropMB. This means the proportion
of objects fulfilling A is lower than the one of B. Still, vM(FP1(Q[≥ 1

2 ])xA(x)), which
is 0.7, is greater than vM(FP1(Q[≥ 1

2 ])xB(x)), which is 0.5. That means that Lemma 3
can not be extended to fully-fuzzy quantifiers and that the property of monotonicity in
proportion is not preserved by FP1.

A statement about the QFM FP1 , but only valid for Type I quantifiers which are non-
decreasing in proportion, is that it coincides with the QFM FR2 . This is expressed by
the following theorem. Hence, the compliance with many of the desiderata that were
discussed in the beginning of the chapter follows also for FP1 . This is captured by
Corollary 6.

Theorem 41 [BFH18] For a formula F , and Type I quantifier Q which is non-decreasing
in proportion we have:

FP1(Q)xF (x) ≡ FR2(Q)xF (x). (5.9)

Proof:
For D = {c1, . . . , cn}, we assume the following truth value distribution of F :

0= t0 ≤ vM(F (c1)) = t1 ≤ vM(F (c2)) = t2 ≤ · · · ≤ vM(F (cn)) = tn ≤ 1= tn+1.

The assumption of the theorem tells us that there is a value i0 ∈ {0, 1, . . . , n} such that
for any crisp formula F̂ we have, if PropM(F̂ ) ≥ i0

n then we also have vM(QxF̂ (x)) = 1
(as long as Q is not constantly equivalent to ⊥. However, that case is trivial.). We
therefore define the set IQ = {i0, . . . , n}. Also, recall the indicator function I{x∈A}, which
is 1, if x ∈ A and 0 otherwise.

(1): vM(FR2(Q)xF (x)) =
∑n
j=0(tj+1 − tj) · I{n−j∈IQ}, and

(2): vM(FP1(Q)xF (x)) = maxj=1,...,n+1(min(tj , I{n−(j−1)∈IQ})).

For (1), the indicator function is 1, if n− j ≥ i0, which is equivalent to j ≤ n− i0, and
for (2) the indicator function is 1, if n− (j− 1) ≥ i0, which is equivalent to j ≤ n− i0 + 1.
Hence:
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(1): vM(FR2(Q)xF (x)) =
∑n−i0
j=0 (tj+1 − tj) = tn−i0+1, and

(2): vM(FP1(Q)xF (x)) = tn−i0+1. 2

Corollary 6 [BFH18] The QFM FP1 complies with all desiderata mentioned in Theorem
38, for Type I quantifiers that are non-decreasing.

Proof:
As FR2 and FP1 coincide for Type I quantifiers which are non-decreasing in proportion,
the claim follows from Theorem 38 and Theorem 41 and Lemma 2. 2

The corollary cannot be extended to the general class of Type I quantifiers, as we show
in the following example. Also, it shows that FP1 does not comply with the desideratum
of continuity in the argument.

Example 12 Let us consider the Type I quantifier “none", ∀¬, which has the following
truth function: vM(∀¬xF̂ (x)) = 1, if for all constants c we have that vM(F̂ (c)) = 0, and
vM(∀¬xF̂ (x)) = 0 otherwise. Let us further assume we have D = {c}, with vM(F (c)) =
0.9. We then have:

vM(FP1(∀¬)xF (x)) = 1 , and vM(FR2(∀¬)xF (x)) = 0.1 · 1 + 0.9 · 0 = 0.1.

On the one side, FP1 recognizes that there are no fully true witnesses for the argument
F , which is fairly rational, especially when crisp values play a predominant role. On the
other side, the truth function determined by FP1 is not continuous in general. Indeed,
even witnesses with truth value (with respect to the respective formula F ) arbitrarily close
to 1 are excluded. On the other hand, FR2, as we have seen, preserves continuity in the
argument instead.

We now turn to the desideratum of dualization, which is fulfilled by the QFM FP1 for the
subclass of quantifiers, which are non-decreasing. Before that, we prove a useful property
of dual quantifiers.

Lemma 5 [BFH18] If Q is a semi-fuzzy quantifier which is non-decreasing, then so is
its dual Qd.

Proof:
We assume that Q is non-decreasing, i.e. for any two crisp formulas F̂1, F̂1 with
vM(F̂1(c)) ≤ vM(F̂2(c)) for all c ∈ D, we have that vM(QxF̂1(x)) ≤ vM(QxF̂2(x)).
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Now, let Ĝ1, Ĝ2 be two arbitrary crisp formulas with vM(Ĝ1(c)) ≤ vM(Ĝ2(c)) for all
c ∈ D. Then the following lines are all equivalent:

vM(QdxĜ1(x)) ≤ vM(QdxĜ2(x))

vM(¬Qx¬Ĝ1(x)) ≤ vM(¬Qx¬Ĝ2(x))

vM(Qx¬Ĝ1(x)) ≥ vM(Qx¬Ĝ2(x))

Since we also have that vM(¬Ĝ1(c)) ≥ vM(¬Ĝ2(c)) for all c ∈ D, the claim follows. 2

Theorem 42 [BFH18] The QFM FP1 complies with the desideratum of dualization for
semi-fuzzy quantifiers Q which are non-decreasing.

Proof:
Recall that by Theorem 39 and the definition of dual quantifiers we have:

FP1(Q)dxF (x) ≡ ¬∃p(p ∧ Qx(¬F )≥pα(x)) ≡ ¬∃p(p ∧ Qx∆(p→ ¬F (x))) ≡(1) ?

We then go on with a chain of equivalences and explain afterwards in detail why everyone
of them is justified:

? ≡ ¬∃p(p ∧ Qx∆(F (x)→ ¬p)) ≡(2)

≡ ∀p(¬p ∨ ¬Qx∆(F (x)→ ¬p)) ≡(3)

≡ ∀p(p ∨ ¬Qx∆(F (x)→ p)) ≡(4)

≡ ∀p(p ∨ Qdx¬∆(F (x)→ p)) ≡(5)

≡ ∀p(p ∨ Qdx∆(p→ F (x))) ≡(6)

≡ ∃p(p ∧ Qdx∆(p→ F (x))) ≡(7) FP1(Qd)xF (x)

(1) results from the fact that for two formulas G,H we have that G→ H ≡ ¬H → ¬G.

(2) is De Morgan’s law.

(3) is only a variable renaming.

(4) adds two negations after the quantifier.

(5) follows from the fact that vM(¬∆(F (x)→ p)) = 1 if vM(F (x)) > vM(p), and is 0
otherwise, while, on the other hand, vM(∆(p→ F (x))) = 1, if vM(F (x)) ≥ vM(p),
and is 0 otherwise. Since the truth values of constants to be substituted for p range
continuously in [0, 1], the equivalence holds.
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(6) follows from Theorem 39 and Lemma 4 point (c), as Q, and hence by Lemma 5
also Qd, is non-deceasing.

(7) follows from Theorem 39.

2

That this result cannot be extended to quantifiers that are non-increasing, becomes clear
by looking at the following example.

Example 13 For semi-fuzzy quantifiers that are non-increasing, the desideratum of
dualization fails to hold in general. As an example, we again, as in Example 12, look at
the Type I quantifier “none", ∀¬. Let us assume D = {c}, and vM(F (c)) = 1

2 . Then:

vM(∀p(p ∨ ∀¬xF≥p(x))) = 1
2 , and vM(∃p(p ∧ ∀¬xF≥p(x))) = 1.

By the proof of Theorem 42, this means the desideratum of dualization cannot be fulfilled,
as the equivalence rewriting step (6) does not work.

Interestingly, although FP1 complies with the desideratum of dualization (for quantifiers
that are non-decreasing), it generally does not do so for any of the two independent
properties of internal and external negation. For the internal negation condition, we note
that:

∃p(p∧Qx¬(F≥p(x)))≡∃p(p∧Qx∆(¬p→ ¬F (x))) 6≡∃p(p∧Qx∆(p→ ¬F (x))). (5.10)

For the external negation condition, we note that for non-increasing Q, by Lemma 4 (c):

¬∃p(p∧QxF≥p(x)) ≡ ∀p(¬p∨¬QxF≥p(x)) 6≡ ∀p(p∨¬QxF≥p(x)) ≡ ∃p(p∧¬QxF≥p(x)).
(5.11)

Taking inspiration from this defect, we propose the following variant of FP1 :

Definition 55 Let F be a formula, pα ∈ Λ such that vM(pα) = α, and Q be a semi-fuzzy
quantifier.

For quantifiers Q that are non-decreasing we define:

vM(FP2(Q)xF (x)) = sup
α∈[0,1]

min(α, vM(QxF≥pα(x))). (5.12)

For quantifiers Q that are non-increasing we define:

vM(FP2(Q)xF (x)) = sup
α∈[0,1]

min(1− α, vM(QxF≥pα(x))). (5.13)
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Theorem 43 [BFH18] Let Q be a semi-fuzzy quantifier that is non-increasing, and F a
formula. Then we have:

• FP2(Q)xF (x) ≡ ∃p(¬p ∧ QxF≥p(x))

• FP2(Q)xF (x) ≡ ∃y(¬F (y) ∧ QxF≥y(x)) ∨ QxF≥⊥(x)

Proof:
The proof proceeds by analogy with the one of Theorem 39, i.e. actually with the one of
Lemma 4 point (a). 2

We then obtain the following theorem:

Theorem 44 [BFH18] FP2 complies with the desiderata of preservation of internal and
external negation for semi-fuzzy quantifiers Q that are non-decreasing.

Proof:
Assume Q is a semi-fuzzy quantifier that is non-decreasing. Then, as a consequence,
Q¬ is a semi-fuzzy quantifier that is non-increasing, and Qd a semi-fuzzy quantifier
that is non-decreasing. Hence, using Lemma 4 and Theorem 42, for pα ∈ Λ such that
vM(pα) = α, we obtain:

vM(FP2(Q¬)xF (x)) = supα∈[0,1] min(1− α, vM(Q¬xF≥pα(x))) =

= 1− infα∈[0,1] max(α, 1− vM(Q¬xF≥pα(x))) =

= 1− infα∈[0,1] max(α, vM(QdxF≥pα(x))) =

= 1− supα∈[0,1] min(α, vM(QdxF≥pα(x))) =

= 1− vM(FP2(Qd)xF (x)) = 1− vM(FP2(Q)dxF (x)) =

= vM(FP2(Q)¬xF (x)) .

Preservation of external negation is a consequence of preservation of internal negation
and dualization. 2

While this extension of the QFM FP1 , to quantifiers that are non-increasing, might
seem ad hoc, [BFH18] shows how it fits a more general framework, based on the idea of
closeness measures.
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CHAPTER 6
Queries and Summarizations

6.1 Querying with probabilistic quantifiers

The quantifier models [M5] of Chapter 4 were dependent on the size of the domain. In
this section we take up the basic idea of sampling small sets of witnesses and evaluating
the quantified statements on them first, before we extrapolate truth on the full scale,
based on these small scale estimations. The main difference to the former models, besides
the fact that their semantics is domain size independent, is that we now interpret the
vagueness of the about-hedge as follows. Let us again consider the statement “About half
of all humans are male”. Instead of splitting it in two disjunctive independent statements,
we consider the proportion of the scope predicate on the random sample as indicator of
its real proportion with respect to the full domain of discourse. In order to do so, one has
to fix a value for the desired precision of the estimate as well as a level of confidence that
the estimate is true. While the precision can be understood as an acceptable tolerance
margin, the confidence can be interpreted as the inherent vagueness of the statement.
This chapter is based on [FHO17]. Let us briefly review the basic principles of sampling
as they are taught in every good introduction course to stochastics.

6.1.1 Sampling principles

Let Y1, . . . , Ys be independent and identically distributed Bernoulli random variables, i.e.
for each i ∈ {1, . . . , s} we have Yi ∈ {0, 1}. Then, it is easy to see that

∑s

i=1 Yi
s = X

s is a
random variable with (scaled) binomial distribution. To evaluate binary relative Type
III quantifiers, we need to estimate the proportion of range elements that also fulfill the
scope formula. To this end, we need to relate three parameters, namely the sample size
s, the confidence 1 − α ∈ (0, 1), and the precision of the estimate ε ∈ [0, 1]. This can
be expressed as follows [GW14], where Ps,ρ denotes the probability distribution for a
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binomial distributed random variable with parameters s ∈ N+ and ρ ∈ [0, 1]:

Ps,ρ(|
X

s
− ρ |≥ ε) ≤ α. (6.1)

The most accurate way to proceed would be to construct confidence regions, using
binomial and beta quantiles, which should certainly be performed for real life applications
where accuracy matters the most. Another well known and widely used approach, due
to its more efficient nature, makes use of the central limit theorem [GW14], for which
we have to assume that the sample size is sufficiently large, i.e. at least a few dozens.
Following this way, we may calculate:

Ps,ρ(| Xs − ρ |≥ ε) = 1− Ps,ρ(| Xs − ρ |< ε) = 1− Ps,ρ(| X−sρ√
sρ(1−ρ)

|< ε
√

s
ρ(1−ρ)) ≈

≈ 1− (Φ(ε
√

s
ρ(1−ρ))− Φ(−ε

√
s

ρ(1−ρ))) = 1− (2Φ(ε
√

s
ρ(1−ρ))− 1) = 2 · (1− Φ(ε

√
s

ρ(1−ρ))).

Note that Φ is bijective1 and that ρ(1− ρ) ≤ 1
4 . Hence, to make Equation 6.1 true, we

need that s ≥ (Φ−1( 2−α
2 )

2ε )2.

This last inequality tells us which minimum sample size s we have to use to achieve
a certain precision ε with confidence 1 − α. To refer to this functional relation of the
parameters later, we define f : [0, 1]× (0, 1)→ N as follows:

f(ε, α) = d(
Φ−1(2−α

2 )
2ε )2e. (6.2)

6.1.2 Some prose on probabilistic quantifier models

The core issue is that, unlike for small models with, say, a few hundred or thousand
objects, huge models sometimes might be too big to be evaluated in total. One may think
about the whole internet as a database, which ordinary computers can not completely
take into account when they have a certain question, especially if the question is complex.
Therefore, one often uses sampling to make (approximate) statements about states of
affairs, see e.g. [CLS+10, MWA+03]. We may also think, for example, of the recent press
release of the so called Panama Papers. After weeks and months of research, the media
headlines often read something like “Many people from country A have done B”, or
“Most people who did B come from country A”, hence the complex information from
all these documents was processed, by humans, to result in condensed natural language
summarizations. For our purpose, as we are dealing with vague relative quantifiers,
estimations of proportions are conceptually near. This means that we can associate the
player Nature, who samples witnessing constants for properties (uniformly) randomly,
with a random-number generator, that is used when actually taking random samples
from a dataset. We will define our new models for (binary) relative Type III quantifiers,

1As it is the distribution function of standard normally distributed random variables.
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directly tied to the language from database theory. It is important to note that we
restrict our attention to crisp arguments to quantifiers. The general case works via the
already discussed QFMs of Chapter 5. Other approaches to querying in the presence of
fuzziness directly assume fuzzy data, which practically never appears in real life though,
like Pivert and Bosc [PB12], or [KZT15], who also use different quantifier models.

6.1.3 Data summarizations

It is also interesting to consider the following fact. When one answers queries by linking
estimates of proportions to the semantics of (binary) relative Type III quantifiers, one
actually starts with the estimate of the proportion and then checks whether it fits the
semantics of the quantifier of the respective statement. That means that one can actually
use the same estimate to produce natural language summarizations as well, as there is no
conceptual difference at all. Hence, all theoretical considerations trivially carry over to
natural language summarization, in the sense that one only needs to fix a set of quantifiers,
and check whether a certain estimate of a proportion, with respect to a predicate, fits
the semantics of one or more of the quantifiers from the set, to produce a number of
summarizations. Of course, one can then apply certain techniques to find something
like an ideal summarization, in case one produced several ones, but this, although very
interesting in itself, see e.g. [DHB10], is not the topic of the present chapter.

6.2 Defining a query language

In this section, we present our concrete proposal for querying datasets, using a standard
query language extended with (binary) relative Type III quantifiers.

For ease of exposition, we take a declarative logic based view of relational databases
and queries over them [AHV95]. Databases are defined as finite relational structures
over a given signature or schema. As basic query language, we consider first-order logic
(FO) formulas, i.e. CL including the basic quantifiers ∀, ∃, over the same signature. As
data values, we use constants and integer numbers, and we allow (in)equalities ( 6=,=)
of values (both constants and integers), and comparisons (<,>,≥, 6=) between integers.
This basic setting captures expressions of relational algebra (and thus, basic SQL) over
relational databases. Moreover, significant fragments of other datamodels, and their
corresponding query languages, can be viewed as special case of FO-queries over relational
data as considered here. This applies in particular to the fragment of the SPARQL query
language for RDF data [PAG09] which we use in Section 6.4 to illustrate our account.

6.2.1 Relational databases and FO-queries

As usual, we denote the integer numbers by Z, and the positive integers by N+. We
define a (relational) schema as comprising a set R of relation names, together with an
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arity function ar : R → N+, and a function npos that maps each R ∈ R to a (possibly
empty) subset of {1, . . . , ar(R)} of numeric positions of R. 2

Let a relational schema (R, ar ,npos) be given. Let U be a set of constants or data values,
and V be a countably infinite set of variables. A term is an object in U ∪ Z ∪V. Atoms
take the following forms:

i: R(t1, . . . , tar(R)) with R ∈ R. The ti are terms such that ti ∈ Z ∪V if i ∈ npos(R),
and ti ∈ U ∪V if i 6∈ npos(R);

ii: t = t′ and t 6= t′ with t, t′ terms; and

iii: t < t′, t > t′, t ≤ t′ or t ≥ t′, for t, t′ terms in Z ∪V.

An atom is called relational if it is of the form (i), and ground if all its terms are from
U ∪ Z. A database instance (or simply a database) is a finite set D of ground relational
atoms. The active domain of a database D, denoted ADom(D), is the set of constants
and numbers from U ∪ Z that occur in the atoms of D.

Remark 24 Note that, as already mentioned in the last paragraph, in this chapter, D
no longer refers to the domain of an interpretationM, but to a database with domain
ADom(D).

Example 14 Consider a schema containing, among others, the following relations:

• unary country and city, with no numeric positions, that is:
npos(city) = npos(country) = {};
• a binary city_of that relates cities and the countries they are located in, also with

npos(city_of ) = {};
• a binary cap_of that relates each capital city with the country it is capital of; again,

npos(cap_of ) = {};
• a binary has_pop with npos(has_pop) = {2}, which relates countries and cities,
with an integer number denoting its total population;
• a binary hasGDP_agr with npos(hasGDP_agr) = {2}, which relates countries
with an integer number (between 0 and 100) denoting the percentage of its GDP
that comes from agriculture.

A database D1 over this schema may contain, for example, ground atoms:
country(USA), country(India), . . . city(Chicago), city(Beijing), . . .
cap_of (Beijing,China), cap_of (NewDelhi, India), . . .
has_pop(China, 1385 · 106), has_pop(Beijing, 21.6 · 106), has_pop(Shanghai, 24.3 · 106) . . .

2The definition we use here is somewhat simplified compared to other more complex ones, which are
compatible nevertheless. Such more involved ones can, e.g., also assign names and domains to properties.
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6.2. Defining a query language

A FO-query is a first-order formula ψ(~x) with free variables ~x, built from atoms in the
usual way, using the connectives ¬, ∧, ∨, and the quantifiers ∃ and ∀. We refer to these
variables as the answer variables of ψ. The arity of the query is the number of variables
in ~x. We call a query Boolean if it is 0-ary, that is, it has no free variables.

We note that a database D can be seen as a Herbrand interpretation over the predicates
in the schema, with domain ADom(D). An n-ary FO-query over D defines an n-ary
relation over ADom(D), which contains precisely the tuples for which the corresponding
formula is satisfied, under the usual semantics.

Let D be a database. A substitution is a mapping σ from variables in V to values in
ADom(D). We write σ(~t) for the tuple that results from ~t by substituting each variable x
with σ(x), and we write σ(ϕ) to denote the formula that results from ϕ by applying the
substitution σ to all its atoms. For x ∈ V, c ∈ ADom, and a substitution σ, we denote
by σ{x 7→ c} the substitution σ′ that has σ′(x) = c, and σ′(y) = σ(y) for all remaining
variables in the domain of σ. Abusing notation, we may disregard the order in tuples
and treat them as sets.

The satisfaction in D of a formula ψ with respect to σ, in symbols D |=σ ψ, is defined
inductively in the natural way:

• For relational atoms, D |=σ R(~t) if R(σ(~t)) ∈ D.
• For the other atoms, D |=σ t } t′ if σ(t) } σ(t′), where each binary predicate
} ∈ {=, 6=,≥ . . . .} is interpreted as usual.

• D |=σ ψ1 ∧ ψ2 if D |=σ ψ1 and D |=σ ψ2.
• D |=σ ψ1 ∨ ψ2 if D |=σ ψ1 or D |=σ ψ2.
• D |=σ ¬ψ if D 6|=σ ψ.
• D |=σ ∃x ψ if for some c ∈ ADom(D), we have D |=σ{x 7→c} ψ.
• D |=σ ∀x ψ if for each c ∈ ADom(D), we have D |=σ{x 7→c} ψ.

Let ψ(~x) be a query with answer variables ~x = (x1, · · · , xn), and let ~c = c1, · · · , cn be a
tuple of values from U ∪ Z of the same arity. Then we say that ~c is an answer to ψ over
D if D |=σ ψ for the substitution σ that sends xi to ci for each 1 ≤ i ≤ n. In this case,
we write D |= ψ(~c).

Note that for a Boolean query ψ, there are two possibilities: The empty tuple is an
answer to ψ, i.e. D |= ψ. In that case, we may say that ψ is true in D, or that its answer
in D is yes. The other case is when the empty tuple is not an answer to ψ, i.e. D 6|= ψ.
Then we say that ψ is false, or that its answer is no.

Example 15 The following are simple examples of FO-queries over our example schema;
ψ1 is a Boolean, ψ2 a unary, and ψ3 a binary query.

ψ1: Is there a country with a population of more than one billion people?
ψ2: Which countries have a city with higher population than its capital?
ψ3: Which are the countries, and their capitals, such that no other city in the country

has more inhabitants?
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ψ1 = ∃x, y(country(x) ∧ has_pop(x, y) ∧ (y > 1000∗106))
ψ2(x) = ∃y1, y2, z1, z2(country(x) ∧ cap_of (y1, x) ∧ city_of (y2, x)∧

∧ has_pop(y1, z1) ∧ has_pop(y2, z2) ∧ (z1 < z2))
ψ3(x, y) = ∃z

(
country(x) ∧ cap_of (y, x) ∧ has_pop(y, z)∧
∀y1, z1((city_of (y1, x) ∧ has_pop(y1, z1))→ (z1 ≤ z))

)
We note that D1 |= ψ1, that is, its answer is yes, since the substitution σ(x) = China,
σ(y) = 1385 · 106 makes the formula true. We can also observe that the answers to ψ2
contain China, and that (Beijing,China) is not an answer to ψ3.

6.3 Extending FO-queries with relative quantifiers: [M6]
Assume m ∈ N+, and let n, k ∈ {0, . . . ,m} with n 6= 0. We consider the following
(binary) relative Type III quantifiers:

about k
n

: Q[≈ k
n

] at least about k
n

: Q[' k
n

] at most about k
n

: Q[/ k
n

]

If k = n, then we may read both Q[≈ k
n

] and Q[' k
n

] as almost all, and write Q[≈1].

If k = 0, then we may read both Q[≈ k
n

] and Q[/ k
n

] as nearly none and write Q[≈0].

Note that each value of m determines a family of proportional quantifiers, while very
large values of m usually do not occur in natural language. Now we define our query
language, which extends FO-queries with the quantifiers syntactically just introduced
above:

Definition 56 A query is an expression q(~y) of the form:

Qx
(
R(x, ~y′), ψ(x, ~y)

)
(6.3)

where ~y′ ⊆ ~y, and:

• Q is any of the relative quantifiers defined above, or ∀, ∃;
• R(x, ~y′) is a relational atom using the variables in {x} ∪ ~y′, and whose additional
terms are from U ∪ Z, and
• ψ(x, ~y) is a FO-query with answer variables {x} ∪ ~y.

The answer variables of q are ~y. The arity of q is the number of variables in ~y.

Example 16 To illustrate our language, we consider the following queries:

q1: Do at least about two thirds of all countries make at most 20% of their GDP in
agriculture?
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q2: Do about half of all cities have more than 200000 inhabitants?
q3: Which countries have a capital which has more inhabitants than about half of all

other capitals in the world?
q4: Which countries have a capital that has more inhabitants than almost all other

cities of that country?

The first two queries are Boolean. The other two queries are unary. Queries q3 and q4
are very similar, but they differ on the range predicate: it is unary in q3 and binary in
q4. In our syntax, they look as follows:

q1 = Q[' 2
3 ]x
(
country(x), ∃y(hasGDP_agr(x, y) ∧ (y ≤ 20))

)
q2 = Q[≈ 1

2 ]x
(
city(x), ∃y(has_pop(x, y) ∧ (y > 200000))

)
q3(y) = Q[≈ 1

2 ]x
(
capital(x), ∃z, z′, w(cap_of (y, w) ∧ has_pop(w, z)∧

∧ has_pop(x, z′)→ (z > z′))
)

q4(y) = Q[≈1]x
(
city_of (x, y), ∃z, z′, w(cap_of (y, w) ∧ has_pop(w, z)∧

∧ has_pop(x, z′)→ (z > z′))
)

Figure 6.1 shows the estimated and actual results to the queries q1, q2 and q3. Figure 6.2
highlights three particular answers to query q4, namely China, USA, and India.

We now define the semantics of our query language. As anticipated, it is based on
sampling, according to the principles discussed in Section 6.1.1. We assume that values
for the confidence 1− α ∈ (0, 1) and values for the precision ε ∈ [0, 1] are given. These
values then determine a minimal sample size s = f(ε, α), cf. Equation 6.2. Then, for
testing whether a given tuple of variables ~c = c1, · · · , cn of values from U ∪ Z is among
the desired answers to a query Qx

(
R(x, ~y′), ψ(x, ~y)

)
, we take a random sample of size at

least s of objects x that satisfy R(x, ~c′) (where ~c′ is the restriction of ~c to the positions
from ~y that occur in ~y′), and verify whether the proportion of those for which ψ(x,~c)
holds (with respect to s) is within the desired range. Note that, since the sample is
taken (uniformly) randomly, we may get different proportions, and hence different values,
if we repeat the query evaluation. This is natural, since our semantics of the relative
quantifiers defines a probability function over the possible answer tuples. As we will
illustrate in the next section, the answers retrieved in this way are reliable, even for
modest sample sizes.

Definition 57 Let D be a database. Furthermore, let R(x, ~c′) be a relational atom, and
ψ(x,~c) a FO-query, such that x is the only free variable in both. Let S ⊆ ADom(D) with
S 6= ∅, then we define:

PropD(S, ψ(x,~c)) =
|{c ∈ S | D |={x 7→c} ψ(x,~c)}|

|S|
. (6.4)
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We now let σ be a substitution from V to ADom(D), and let DR = {c ∈ ADom(D) |
R(c, σ(y′)) ∈ D}. We define the semantics of queries as follows:

• D |=σ,S,εQ
[≈ k

n
]x
(
R(x, ~y′), ψ(x, ~y)

)
if S ⊆ DR and PropD(S, σ(ψ(x, ~y)))∈

[
k
n−ε,

k
n+ε

]
• D |=σ,S,ε Q

[' k
n

]x
(
R(x, ~y′), ψ(x, ~y)

)
if S ⊆ DR and PropD(S, σ(ψ(x, ~y))) ∈

[
k
n − ε, 1

]
• D |=σ,S,ε Q

[/ k
n

]x
(
R(x, ~y′), ψ(x, ~y)

)
if S ⊆ DR and PropD(S, σ(ψ(x, ~y))) ∈

[
0, kn + ε

]
Let ε ∈ [0, 1] and α ∈ (0, 1) be given. A tuple ~c = c1, · · · , cn of values from U ∪ Z of the
same arity as ~y is called a sampled answer to ψ over D (with precision ε and confidence
1−α) if D |=σ,S,ε Qx

(
R(x, ~y′), ψ(x, ~y)

)
, where σ is the substitution that sends yi to ci for

each 1 ≤ i ≤ n, and S ⊆ ADom(D) is a uniform random sample (with replacement) of
size |S| ≥ f(ε, α) as described in Section 6.1.1. In this case, we may write D |=ε,α ψ(~c).

6.4 MONDIAL
To illustrate the proposed approach on real life data, we chose the MONDIAL database3.
It is a dataset containing geographical data, that relies on open web data, such as the
CIA factbook, Wikipedia, and atlases. The last major revision took place in 2015. Like
most open web data, the database is not complete, and data may be somewhat imprecise.
However, this is not of major concern here.

We evaluated the queries of Example 16. (In fact, the schema and queries of our running
example are based on MONDIAL). We used the RDF version of MONDIAL locally and
posed standard SPARQL queries, using the Java extension Apache Jena. This, together
with random sampling on the list of query results, suffices to simulate the evaluation of
queries in our language. In contrast to other fuzzy querying approaches, like e.g. the
ones of Bosc and Pivert [PB12], we here rely on strictly classical data, and focus on their
probabilistic evaluation.

Practical runs

Our goal was to test how sampling based evaluation performs for particular sample
queries.

Obviously, if the amount of data in the database increases, the difference between the
evaluation times for full and partial answers respectively, increases as well. However, for
the present example, the MONDIAL database (16.4MB), they are still in a similar range.
Some of our observations are captured in Figures 6.1 and 6.2, which show how the sample
size correlates with the calculated proportions, using only a single iteration per size.

Example 17 Figure 6.1 shows the results for the queries q1–q3, and Figure 6.2 for
particular instances of the answer variable y in query q4. From those results one can

3MONDIAL database. (Last accessed January 30th, 2017). Retrieved from:
https://www.dbis.informatik.uni-goettingen.de/Mondial/
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straightforwardly evaluate the answers to the natural language queries. Taking the first
one, which asks whether the proportion in question is at least about two thirds, the results
show that, for almost all samples sizes, this is the case with high confidence. Similar
results hold for the other queries. (Note that in Figure 6.2 just a small range of proportions
is displayed). Finally, we emphasize that the graphs show the proportions obtained for
one random sample of each size. But the blue line (sampled results) converges quickly to
the red line (correct proportion) if we increase the number of iterations.

Figure 6.1: Left: query q1; middle: query q2; right: query q3. The x-axis always
represents possible sample sizes, i.e. the number of domain elements that fulfill the
respective range predicate. For the left and the middle picture, the y-axis stands for the
proportion of those range objects that also fulfill the scope predicate, while for the right
picture it displays the sizes of answer sets. The blue graph shows the achieved results for
samples of the sizes given by the values on the x-axis. The red graph displays the correct
proportions, or answer set size respectively.

Figure 6.2: Query q4, for: left: y = China; middle: y = USA; right: y = India. The
x-axis always represents possible sample sizes, i.e. the number of domain elements that
fulfill the respective range predicate. The y-axis stands for the proportion of these range
objects that also fulfill the scope predicate. The blue graph shows the achieved results
for samples of the sizes given by the values on the x-axis. The red graph displays the
correct proportions.

Example 18 The problem we consider now deals with a slightly different but very similar
setting. The MONDIAL database stores 5716 cities with an average population of 553157
inhabitants. The question is again, how well can we approximate this average, when we
only evaluate a small sample of cities.

We employ three different sampling mechanisms4 [OR86]. The first one performs sampling
4Note that sampling is always supposed to be performed uniformly randomly.
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of witnesses with replacement, i.e. the sample can contain the same city more than only
once. The other two mechanisms perform sampling without replacement, i.e. samples
contain each witness at most once. For the former, we employ simple random sampling
[Sin03] and for the latter we use the algorithm proposed by Knuth [Knu97] and the one
proposed by Fisher-Yates [Knu97].

Simple random sampling works like the name suggests. Fix the size of the domain, say
n = 5716, and apply a random number generator with range {1, . . . , n} as many times as
you want. The sample size is usually chosen smaller or equal than n, but not necessarily.

The algorithm proposed by Knuth works as follows. Assume we have a list of all objects
we want to select a random sample from, without replacement. In the first step, we choose
any of these objects randomly and switch its position with the first element of the list. In
the next step, we randomly choose one of the objects from the sublist that starts in the
second position and again switch its position with the first object from the sublist. The
number of steps equals the sample size. We provide the pseudo code for this procedure:

Generating a sample without replacement of size s ≤ n from a list {a1, . . . , an}:

Step 0: Set i = 1.

Step 1: Select a random number i ≤ r ≤ n.

Step 2: Swap ai and ar in the actual list.

Step 3: Cut out the first element, i.e ai, from the actual list.

Step 4: Store the cut out element in another list, say S, and increase i by 1.

Step 5: Perform Step 1 - Step 4 another s− 1 times.

Eventually, one ends with a list S of s different elements.

The last algorithm we test is the one tracing back to Fisher and Yates and is very similar
in nature to the one from Knuth, but works in a reversed manner. It essentially is a
shuffling mechanism of an entire list, which a priori explains the increased performance
time. Several versions are known, however, the one we implemented executes the following
pseudo code:

Generating a sample of size s ≤ n from a list {a1, . . . , an}:

Step 0: Set i = n.

Step 1: Select a random number 1 ≤ r ≤ i.

Step 2: Swap ai and ar in the list.
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Figure 6.3: left picture: Simple Random Sampling; middle picture: Knuth’s sampling
algorithm; right picture: Fisher-Yates algorithm. The x-axis denotes the sample size in
%, and the y-axis shows the deviation from the average in each random sample with
respect to the actual average, again in %. The number of iterations is 1.

Figure 6.4: left picture: Simple Random Sampling; middle picture: Knuth’s sampling
algorithm; right picture: Fisher-Yates algorithm. The x-axis denotes the sample size in
%, and the y-axis shows the deviation from the average in each random sample with
respect to the actual average, again in %. The number of iterations is 500.

Step 3: decrease i by 1.

Step 4: Perform Step 1 - Step 3 another n− 2 times.

Eventually, one ends with a shuffled version of the original list.

In the following, we give the results of our experiments. For each method, we produced
a plot that shows the deviation (in %) from the true average population size (which is
553157) dependent on the sample size. Also, again for each method, we produced a plot
that displays the evaluation time that is needed, as well dependent on the sample size. To
make clear how this procedures scales up, we do both for three different numbers of total
iterations, first 1, then 500 and eventually 10000.
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Figure 6.5: left picture: Simple Random Sampling; middle picture: Knuth’s sampling
algorithm; right picture: Fisher-Yates algorithm. The x-axis denotes the sample size in
%, and the y-axis shows the deviation from the average in each random sample with
respect to the actual average, again in %. The number of iterations is 10000.

Figure 6.6: left picture: Simple Random Sampling; middle picture: Knuth’s sampling
algorithm; right picture: Fisher-Yates algorithm. The x-axis denotes the sample size in
%, and the y-axis shows the evaluation time, needed for producing an average population
size, in microseconds. The number of iterations is 1.

Figure 6.7: left picture: Simple Random Sampling; middle picture: Knuth’s sampling
algorithm; right picture: Fisher-Yates algorithm. The x-axis denotes the sample size in
%, and the y-axis shows the evaluation time, needed for producing an average population
size, in milliseconds. The number of iterations is 500.
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Figure 6.8: left picture: Simple Random Sampling; middle picture: Knuth’s sampling
algorithm; right picture: Fisher-Yates algorithm. The x-axis denotes the sample size in
%, and the y-axis shows the evaluation time, needed for producing an average population
size, in milliseconds. The number of iterations is 10000.

143





CHAPTER 7
Conclusion and Future Work

7.1 Summary

The modeling of vagueness in natural language, on the quantifier level, is subtle because
it requires the adequate handling of various features and corresponding expressions.
We chose to employ game semantic representations for different logics, like Hintikka’s
game for Classical Logic and Giles’s game for Łukasiewicz logic, in order to conceptually
motivate new constructs, like the Π quantifier, on firm and tangible grounds, namely
by the random witness selection principle. This principle complements the principle of
strategic witness selection, which is fairly standard in game theory [vB14]. This realm is
what we described in Chapter 2, which follows the introduction.

The Π quantifier, based on the random witness election principle, introduced in [FR12,
FR14] as an extension of Łukasiewicz logic, brings about intermediate truth values, even
if applied to crisp arguments. In fact, Łukasiewicz logic is one of the three prominent
t-norm based Mathematical Fuzzy Logics [CHN11], particularly the only one that has
continuous truth functions for all its connectives and quantifiers. As a main contribution
of this thesis, we show that the other two, Gödel logic and Product logic restricted to
finite domains, can be defined within an extension of Łukasiewicz logic, again restricted
to finite domains and enriched with constructs based on the already mentioned game
semantic selection principles, particularly propositional quantifiers. We call this logic
Łα(Π). As a consequence of the first definitions, all fuzzy logics that are based on finite
representations of continuous t-norms, are also definable within Łα(Π). These results are
developed in Chapter 3 [Hof18], and refer to the introduction’s (C1).

The next part of the thesis, Chapters 4 and 5, referring to the introduction’s (C2), is
about giving an account of all the aspects that make the world of quantifiers so sparkling.
Is the quantifier evaluation context dependent or independent? Do we count witnesses
absolutely or relatively? Does a quantified statement refer to all objects from the domain
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or only to a restricted set of such? Finally, do witnesses actually crisply possess their
properties or can we also admit borderline cases? The answer to any of these questions
is ‘both may happen’.

As to the last question, the most direct way of dealing with vague properties certainly
is using fuzzy propositions. This feature is already present in fuzzy logics and is ready
for use. However, in Chapter 4, quantifiers are defined for crisp arguments only. By
developing our models in that way, we follow the well recognized approach of Liu and
Kerre [LK98], Glöckner [Glö06], and others [DRSV14]. In Section 7.3, we will elaborate
on different ways of handling vague properties.

Regarding absolute and relative quantifiers, both refer to extensional quantifiers, i.e. such
that are context independent, in contrast to intensional quantifiers, that may depend
on contextual information1. We treat a great variety of extensional quantifiers, indeed,
all standard cases and combinations thereof, while the class of intensional quantifiers is
basically represented by two generic quantifiers, namely “many” and “few”. Nevertheless,
we argue that the same readings, defined for those two, apply to other NL expressions
as well. Also, we capture these readings, or models, within our framework Łα(Π), and
enrich it by a refinement of the previously given structure [Lap00, Hof15]. When reading
the material, it becomes clear that there is a lot of freedom in the interpretation of
context dependent statements. As the reference situations can be chosen freely, we get
non-monotonic versions of the quantifiers “many” and “few”.

Although we always assume fixed domains, statements sometimes are supposed to refer
to only a fraction of the objects within it. Take for example a domain of all humans and
a statement like “Most boys like girls”. For the evaluation of this statement, we do not
need to know the whole domain, as evaluating the boys will suffice. Such quantifiers,
with an additional range to the scope, are called binary, or 2-place, quantifiers. We show
how quantifiers, not only based on binary ∀ and ∃, but also those based on binary Π,
can be expressed in Łα(Π).

In Chapter 4, as already mentioned, we restrict attention to semi-fuzzy quantifiers, i.e.
those that are only defined for crisp formulas, or arguments. Consequently, it remains to
show how we apply systematic lifting mechanisms to semi-fuzzy quantifiers to arrive at
fully-fuzzy ones. This is done in Chapter 5. We show how to express the most important
versions of such mechanisms (QFMs) into Łα(Π), and analyze them regarding their
compliance with certain new and known lifting principles [BFH18].

In Chapter 6, which refers to the introduction’s (C3), we introduce yet another schema for
relative semi-fuzzy quantifiers, directly tied to a query language [FHO17] that evaluates
vaguely quantified statements based on a probabilistic evaluation technique. We specify
the syntax and semantics of this query language and analyze its implemented routines,

1Note that the distinction between absolute and relative quantifiers also applies to intensional
quantifiers, since extensional quantifiers can be viewed as a special case of intensional ones, namely when
the contextual information is empty.
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to see how well probabilistic evaluation predicts states of affairs on the full scale. Also,
we explain how the same techniques can be used to produce data summarizations.

7.2 Range of the framework
The principle of random witness selection, built into a logic system on firm conceptual
grounds, is one of the strengths of the perspective advocated in this thesis. Game
semantically speaking, in addition to the principle of strategic reasoning, as represented
by the two strategic players, we have a principle of non-strategic reasoning, represented
by a third non-strategic player. By that means, we achieve an encoding of probability
into the logic, and show how expressibility increases vastly. On the technical side, this
allows for the definition of wide classes of t-norm based fuzzy logics. On the application
side, we acquire a wide range of models for vague natural language quantifiers.

7.3 Future work
Future work certainly can go into several directions. On the logical level, one is interested
in full calculi, encompassing certain properties, like standard completeness. Also, the
relations of the random witness selection principle with games of imperfect information
[MSS11] would be worth exploring.

On the practical side, we envision a computer software that can help managing deeper
layers of processing NL texts, than the current keyword search based world provides us
with. To that end, two things are attractive to consider. It would be an interesting next
step to (1) investigate which particular data models, like RDF or other graph models, can
store information from natural language appropriately, and apply the developed theory
to data analysis, as described in Chapter 6. This, in particular, requires (2) a proper
handling of vague properties, as already explained in the introduction, as well. Hence,
allowing for such extensions, in a nicely parametrized fashion, also makes for a potential
branch of further research.
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