
Hand Simulation for Virtual
Climbing

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Roman Voglhuber, BSc
Matrikelnummer 01127128

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Wien, 21. Mai 2019
Roman Voglhuber Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Hand Simulation for Virtual
Climbing

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Roman Voglhuber, BSc
Registration Number 01127128

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag. Dr. Horst Eidenberger

Vienna, 21st May, 2019
Roman Voglhuber Horst Eidenberger

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Roman Voglhuber, BSc
Linke Wienzeile 126/34
1060 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 21. Mai 2019
Roman Voglhuber

v

Acknowledgements

First, I would like to thank Professor Eidenberger for the opportunity to work on such an
interesting topic and for his excellent supervision throughout this thesis. Furthermore, I
want to express my deepest gratitude to my parents Brigitte und Kurt for their patience
and support whenever I needed it. I also want to thank my girlfriend Ines for her
encouragement and motivation over the last few years.

vii

Kurzfassung

Virtual Reality (VR) Anwendungen ermöglichen es den Usern, in eine virtuelle Welt
einzutauchen. Bei aktuellen VR-Systemen tragen die Benutzer eine VR-Brille und können
anhand von Controllern mit der virtuellen Welt interagieren. Die Controller eignen sich für
eine Vielzahl von Anwendungen, allerdings können sie etwa nicht verwendet werden, wenn
die Benutzer mit realen Objekten interagieren sollen. Ein Beispiel für eine Anwendung
dieser Art ist das VreeClimber-Projekt. Es kombiniert eine bewegliche Kletterwand mit
VR Klettern. Nachdem die Hände der User während des Kletterns auch in der virtuellen
Welt sichtbar sein sollten, wird ein optisches Tracking-System zum Erfassen der aktuellen
Positionen der Hände verwendet.

Im Rahmen dieser Diplomarbeit wurden zwei Software-Komponenten für das VreeClimber
Projekt erstellt. Zuerst wurde die Software von einem bereits entwickelten Tracking-
System namens VreeTracker mit Hilfe der Computer-Vision-Bibliothek OpenCV neu
umgesetzt. Während dem Erstellen dieser Software wurde mit dem Vive Tracker eine
erschwingliche Hardwarelösung vorgestellt, welche ebenfalls zum Tracken der Gliedmaßen
eingesetzt werden kann. In der Evaluierung wurden die Genauigkeit der beiden Tracking-
Systeme durch verschiedene Tests miteinander verglichen.

Da die User während des Kletterns ihre eigenen Hände nicht sehen können, wurde im
zweiten Teil dieser Arbeit ein Algorithmus entwickelt, welcher mit Hilfe der erfassten Po-
sitionen die Handbewegungen der Kletterer in der virtuellen Welt nachstellt. Die entwi-
ckelte Handsimulation zeigt vielversprechende Ergebnisse bei typischen Griffbewegungen
während des Kletterns, speziell aber bei schnellen Bewegungen oder bei kleinen Kletter-
griffen kann es zu Abweichungen gegenüber der echten Hand kommen. Eine wichtige
Voraussetzung ist die sorgfältige Kalibrierung vor dem Starten des Kletterns, da andern-
falls die Positionen der echten und der virtuellen Klettergriffe voneinander abweichen
können, wodurch das virtuelle Klettererlebnis gegebenenfalls verschlechtert wird.

Die Evaluierung hat gezeigt, dass der Vive Tracker bessere Ergebnisse erzielt als das
vorher entwickelte VreeTracker System. Aufgrund der höheren Präzision und der einfachen
Integration in das bereits verwendete VR System, macht es Sinn, in Zukunft Vive Tracker
bei dem VreeClimber Projekt einzusetzen. Generell schnitt die virtuelle Handsimulation
bei der Evaluierung gut ab, es wurden aber auch kleinere Schwachstellen in Bezug auf
Griffbewegungen einzelner Finger festgestellt. Nach einer kurzen Analyse werden in dieser
Diplomarbeit entsprechende Verbesserungsvorschläge präsentiert.

ix

Abstract

VR applications enable users to immerse into a virtual world. In current VR systems,
users wear a Head-Mounted Display (HMD) and can use handheld controllers to interact
with the virtual world. The controllers are suitable for a variety of applications, but
they cannot be used if users are to interact with real objects. An example for such an
application is the VreeClimber project. It combines a moveable climbing wall with VR
climbing. Since the hands of the users should also be visible in the virtual world during
climbing, an optical tracking system is used to capture the hand positions in real time.

In the course of this thesis, two software components were created for the VreeClimber
project. At first, the software of an already developed tracking system called VreeTracker
was rewritten with the computer vision library OpenCV. During the development of
this software, the affordable Vive Tracker was released, which can also be used to track
extremities. The evaluation compares the accuracy of the two tracking systems by
different tests.

Since the users are not able to see their own hands during climbing, an algorithm was
created in the second part of this thesis, which uses the detected hand positions to
simulate the hand movements of the climbers. The developed hand simulation shows
promising results for typical grasp movements during climbing, however especially fast
movements or small climbing holds can result in deviations from the real hand pose. An
important requirement is an accurate calibration before climbing, otherwise the positions
of the real and virtual climbing holds may differ, which reduces the climbing experience
significantly.

The evaluation shows that the commercial Vive Tracker achieves better results than
the previously developed VreeTracker system. Due to better precision and an easy
integration into the already used VR system, it makes sense to use the Vive Tracker for
the VreeClimber project in the future. In general, the virtual hand simulation performed
well in the evaluation, however minor flaws in the grasp movements of individual fingers
have been revealed. After a short analysis, appropriate suggestions for improvement have
been presented in this thesis.

xi

Contents

Kurzfassung ix

Abstract xi

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Structure of the Work . 3

2 State of the Art 5
2.1 Hand Tracking for Virtual Reality . 5

2.1.1 Marker Tracking . 5
2.1.2 Finger Tracking . 6
2.1.3 Available Tracking Solutions . 8

2.2 Object Grasping . 9
2.2.1 Simple Object Grasping with VR Controllers 9
2.2.2 Object Grasping with Finger Tracking 9
2.2.3 Algorithms and Methods from Robotics 11

3 Theoretical Background 13
3.1 Computer Vision . 13

3.1.1 Infrared Light . 13
3.1.2 Pinhole Camera . 14
3.1.3 Camera Calibration and Triangulation 16
3.1.4 Image Manipulation and Blob Detection 18
3.1.5 Position Prediction with Kalman Filter 22

3.2 The Human Hand . 24
3.2.1 Anatomy of the Human Hand 25
3.2.2 Joints and Range of Motion . 25
3.2.3 Different Grasp Poses . 26

4 System Design 29
4.1 Requirements . 29

4.1.1 Climbing Scenario . 29

xiii

4.1.2 VreeTracker Software . 30
4.1.3 Virtual Hand Simulation . 30
4.1.4 General Software Requirements 30

4.2 Marker Tracking . 31
4.2.1 Tracking Setup . 31
4.2.2 Hardware Architecture . 33
4.2.3 Software Architecture . 35

4.3 Virtual Hand Simulation . 38
4.3.1 Physics Colliders . 38
4.3.2 Climbing Grips . 40
4.3.3 Closing of the Hand Model . 41
4.3.4 Different Grasp Poses . 42

5 Implementation 45
5.1 Marker Tracker . 45

5.1.1 OpenCV . 45
5.1.2 Class Overview . 46
5.1.3 GUI . 50
5.1.4 Calibration . 53
5.1.5 Tracking . 54

5.2 Virtual Hand Simulation . 55
5.2.1 HTC Vive Setup . 56
5.2.2 Unity Project Setup . 56
5.2.3 Virtual Climbing Scene . 57
5.2.4 Hand Model . 58
5.2.5 VreeTracker Integration . 60
5.2.6 HTC Vive Tracker Integration 61
5.2.7 Grasp Algorithm . 62

6 Evaluation 67
6.1 Setup . 67

6.1.1 Vive Tracker Evaluation . 67
6.1.2 Virtual Hand Simulation Evaluation 67

6.2 VreeTracker and Vive Tracker Comparison 69
6.3 Grasp Performance . 71
6.4 Discussion . 73

7 Conclusion and Future Work 75

List of Figures 77

List of Tables 79

Bibliography 81

CHAPTER 1
Introduction

1.1 Motivation
The VR market has great potential, but it is still waiting for the big breakthrough.
Hardware and software improves every year and gets more affordable. To experience
VR, a cheap case for a smartphone like the Google Cardboard [13] is enough, but there
are also more advanced products such as the HTC Vive [20] or Oculus Rift [45]. These
products‘ screen resolution is better and the position of the user can be tracked with
base stations. These more expensive products also support handheld controllers that
allow the user to interact with the virtual world.

An important part of VR is the immersion of the user, which is the feeling of the user
being physically present in the virtual environment. Two user studies by Insko [23]
showed that passive haptics can increase the presence in a VR world. Therefore, the user
experience can be improved if real objects are visible in the virtual world and the user
can also touch them. The VreeClimber project to which this thesis makes a contribution
tries to utilize this and combines real climbing with VR.

The VreeClimber is a climbing wall which can move vertically like a treadmill and uses VR
to let the climber experience different virtual worlds. As Figure 1.1 shows, VreeClimber
consists of many movable boards with climbing holds. During climbing the boards will
move slowly in the opposite direction to allow a theoretically endless climb. Also the
injury risk is very low because the climber will never be more than one meter above the
ground. The climber is equipped with a HMD and can therefore explore different virtual
worlds such as on planet Mars or on a famous building. All climbing holds were 3D
scanned and are also added into the virtual world at the correct positions. This allows
the climber to really immerse themselves into the VR world.

When climbing on the wall, it is important that the climber can see their own hands
to safely grasp the climbing holds. In a previous thesis, a tracking system prototype

1

1. Introduction

(a) Frontside from above (b) Backside of VreeClimber

Figure 1.1: VreeClimber with climbing holds from both sides

was developed, which uses multiple cameras to track infrared (IR) markers. It is called
VreeTracker, and it tracks the hands and feet of the climber [56]. It was also planned to
use cameras to track each finger, but the performance was sufficient for this application.
Therefore, the outcome of this thesis should be a software to track and simulate the
hands of the climber based on the tracking data from VreeTracker.

1.2 Problem Statement

VreeTracker uses four high-resolution webcams to detect up to four IR trackers in real
time. The 3D printed trackers are placed at the wrists and ankles of the climber. With a
computer vision code for MATLAB [35], the position of the trackers is calculated and
sent to a VR application. For further use, the software should be reimplemented with an
open source computer vision library.

Another part of the VreeTracker project was a software module to detect the fingers of
each hand with additional RGB cameras. The finger tracking worked, but the performance
was not good enough to use in a VR application. There are commercial solutions with
gloves available for finger tracking, but they are very expensive and therefore not suitable
for the VreeClimber project [42, 68]. This is why the fingers of the climbers should be
simulated by a software.

The aim of this thesis is to reimplement the tracking code of the VreeTracker with an
open source computer vision library and create resources for Unity [61] to simulate the
hand movements of the climber in VR. It is important that the virtual hands represent
the real hands as closely as possible to give the climber the feeling that they are seeing
their own hands [37]. The basic idea is to show a 3D hand model at the position from
the VreeTracker and then calculate the distance between the hand model and the nearest

2

1.3. Structure of the Work

climbing hold. If the hand is close enough, it will start grasping for the climbing hold.

The climber will use different grips based on the climbing holds and the angle from where
they try to reach them. The software should consider this and choose an appropriate
grasp based on these factors. For example, if a climber tries to hold onto a very small
climbing hold right above them, they will probably only use four fingers, while they will
also use their thumb for a bigger hold on their side. Graphical glitches, where parts of
the virtual hand move into the wall or climbing holds, should be avoided if possible.

The methodological approach for this thesis consists of three parts. The first part is a
literature review to collect information about existing solutions for object grasping and
hand animation. Furthermore, different open source computer vision libraries should be
researched and the most suitable one should be selected.

After the literature review, the existing MATLAB code for the marker tracking should be
reimplemented with the chosen computer vision library. The already developed prototype
hardware should be reused if possible.

In the third part, the resources and algorithm for the hand simulation should be developed
for Unity. During the development, a simple virtual climbing scene should be created
to test the progress with the real climbing wall. After the implementation, the results
should be tested and evaluated.

1.3 Structure of the Work
Chapter 2 gives an overview over relevant solutions for VR tracking and briefly describes
how the different technologies work. It also includes findings from relevant research fields
for the simulation of a virtual hand, such as how to grab objects with human-like hands
from robotics [26]. In Chapter 3, the computer vision techniques for the marker tracking
are explained. Additionally, the anatomy and joints of the human hand are described
and the different grasp poses which are usually used by inexperienced climbers.

The general design of the marker tracker and the virtual hand simulation is explained
in Chapter 4, which also contains images of the VreeTracker hardware and describes
how a hand model can be animated in Unity. Chapter 5 contains detailed information
about how the different parts of this project were implemented and how problems were
solved. This chapter is split into two main sections for the marker tracker and the virtual
hand simulation. Then in Chapter 6, the results of the VreeTracker are compared to a
recently released commercial tracking solution for the HTC Vive. Also, the precision of
the virtual hand grasps are evaluated. The conclusion of the project and possible future
work is discussed in Chapter 7.

3

CHAPTER 2
State of the Art

2.1 Hand Tracking for Virtual Reality

2.1.1 Marker Tracking

To create an immersive VR experience, multiple movements of the user should be tracked.
The head motions are the most important because they determine the field of view. Hand
tracking is the next big improvement for interactive applications. The HTC Vive [20]
and Oculus Rift [45] both track their handheld controllers and allow the users to perform
gestures or use virtual buttons. This works for many cases, but for some applications
the user needs free hands to grab different objects or, as in this project, to climb. In
such cases, a marker can be placed at the wrist to allow free hand movements without
interference.

Active and Passive Markers

The markers can either be passive or active [36]. Figure 2.1 shows a camera with IR
LEDs and a passive marker, which reflects the light back. Passive markers can only have
one retro-reflective sphere, but multiple spheres can be used to uniquely identify the
marker and also calculate its orientation. Passive markers are very cheap and can be
attached at various spots due to their low weight and small size. An active marker is
usually equipped with an IR LED, which means it needs a power source and some kind
of circuit. This adds complexity and some limitations for the placement, but additional
illumination is not needed for active markers. The LEDs of each active marker can blink
in a different frequency to make it uniquely identifiable.

Position Tracking

An optical marker tracking system uses two or more cameras to monitor a defined space.
Most of them use the IR light spectrum because it is not visible for humans and the

5

2. State of the Art

(a) Camera with IR pass filter (b) Passive marker with retro-reflective spheres

Figure 2.1: Camera with IR LEDs and a passive marker [17]

grayscale images do not need as much processing power to be analysed. Therefore, the
cameras have an IR pass filter in front of the lens which blocks all other frequencies of
light [36]. The calculation of the position works the same for both marker types. The
cameras have to be calibrated before the tracking to know their location in the scene.
The position of the marker in both camera frames is detected with computer vision.
Triangulation is then used to calculate the 3D coordinates of the marker in the scene [16].

Orientation Tracking

Another important metric is the orientation of the marker. It can be determined with an
optical tracking system or an inertial measurement unit (IMU), which measures changes
of the orientation. The process for optical tracking consists of two steps. First, if multiple
markers are used, each one has to be uniquely identified. As seen in Figure 2.1b, each
marker has multiple retro-reflective spheres in different constellations. Model fitting
[48] is used to identify each marker. In the second step, the visible spheres are used
to calculate the orientation and translation of the marker. Alternatively, IMUs are
placed on the marker to keep track of orientation changes. Then the data is analysed
by a microprocessor and the current orientation is sent over a wireless connection. This
solution makes sense especially for active markers because they mostly already use a
microprocessor and can easily be extended with an IMU.

2.1.2 Finger Tracking

Finger Tracking for virtual reality is a big challenge, because of possible occlusion and
the need of real-time tracking data [52]. Most of the time the hands are very close to the
user’s point of view and even small tracking errors or latency of finger movements can be
noticed by the user. In the following section, optical and glove-based finger tracking are
explained.

6

2.1. Hand Tracking for Virtual Reality

Optical Tracking

There are different approaches for optical finger tracking. One of them is very similar
to the marker tracking described in Section 2.1.1. As seen in Figure 2.2a, active IR
light sources are placed on the fingertips and on the back of the hand to track different
points [17]. Then, the position and orientation of each phalanx is calculated with inverse
kinematics. The active markers use time division multiplexed addressing to be uniquely
identifiable. This helps to detect crossed fingers, which is usually a problem for optical
finger tracking systems.

A popular commercial finger tracking product is the Leap Motion [39], which also uses
IR light and consists of two cameras and three LEDs [5]. The main difference is that
the Leap Motion does not use markers, which limits its detection range to about 60
cm. This is why it is usually placed on the HMD for VR applications. The light of the
LEDs is reflected by the user’s hands, and grayscale images are recorded by the cameras.
Then, software calculates a 3D representation of the hands and extracts the position and
orientation of the different fingers. It also tries to infer the position of occluded objects
and uses filtering techniques to smoothen movements between frames.

(a) Finger tracking with optical IR LEDs [17] (b) Manus VR Glove [67]

Figure 2.2: Optical and glove-based finger tracking

Another possibility is to use RGB cameras and depth data. For example, the Microsoft
Kinect uses an IR projector and camera to generate a depth map [72]. Then this data
is combined with the RGB images to detect poses and gestures. The Kinect itself does
not support finger tracking, but the Kinect software development kit (SDK) is used by
third-party libraries for finger tracking [31]. At least two Kinects are needed to avoid
occlusion issues for finger tracking in a climbing scenario. Because of possible interference
between multiple Kinects, Vive and VreeTracker, the Kinect is not suitable for this
project [30, 54].

7

2. State of the Art

Glove-Based Tracking

Gloves are another way to track finger movements. Figure 2.2b shows one of the currently
available tracking gloves. The difficult part is to add sufficiently precise sensors on all
parts of the glove and still keep it flexible enough to not bother the user. In earlier
research magnetic, induction coils were used as sensors [9]. Because of the technological
progress, more advanced hardware sensors became available, which were also small enough
to be used on gloves [29, 27]. The main goal of those prototypes was to recognize gestures
and use them as input device for computers.

The commercial gloves that are currently available use multiple IMUs with accelerometers,
gyroscopes and magnetometers to detect the smallest movements of each finger [69].
Then, software uses this data to calculate the bending of each finger joint. The gloves
themselves cannot track their position, which is why additional tracking systems such
as VreeTracker are needed. [69, 41] The calculated data is transferred wirelessly with
a latency < 5 ms and can be used in all major gaming engines. Another interesting
feature is haptic feedback, which allows developers to use vibrations to indicate the user
collisions with objects.

2.1.3 Available Tracking Solutions

HTC Vive

The Vive [20] is a HMD that is developed by HTC and Valve. It comes with two
lighthouse base stations and two handheld controllers. The lighthouses emit defined IR
pulses, which are picked up by sensors in the headset as seen in Figure 2.3a [7, 34]. The
position and orientation can then be calculated by the time difference between emitting
the pulse and hitting the sensor. The lighthouses should be placed over the user’s head
in opposing corners of the room to avoid tracking issues. The current price of the HTC
Vive is 599e. During the writing of this thesis, HTC also released the Vive Tracker [19],
which can be used as an alternative to the VreeTracker.

(a) Sensors on the HTC Vive [21] (b) IR LED pattern on Oculus Rift [22]

Figure 2.3: Headset differences because of tracking method

8

2.2. Object Grasping

Oculus Rift

The second big consumer VR platform is the Oculus Rift [45]. The features of the Rift
and Vive are very similar; the only big difference is the tracking method. On the Rift
headset and controllers are IR LEDs in a specific pattern as seen in Figure 2.3b [2, 22].
Around the scene, two or more Oculus Sensors [44] with cameras are placed, which can
calculate the position and orientation of the devices based on the visible LEDs. The Rift
costs 449e and also includes two Oculus Sensors and two controllers.

Gloves

Many companies are trying to build Gloves for finger tracking, but only a few are available
for purchase and are suitable for climbing. The two most promising gloves are the Manus
VR [67] and Hi5 VR Glove [43]. Both offer 9 Degrees of Freedom (9DoF) and use multiple
IMUs for accurate finger tracking. For positional tracking, a third-party tracker has to be
used, such as VreeTracker or Vive Tracker. The developer version of the Manus VR costs
1.990e and the Hi5 VR Glove costs 999$. Both prices are too high for the VreeClimber
project.

2.2 Object Grasping

2.2.1 Simple Object Grasping with VR Controllers

Since the release of handheld controllers for VR platforms, many games offer the possibility
of interacting with the virtual world to the player. Some games use this technology for
simple actions such as opening a door or pressing a button, but there are also more
interactive games in which a player can pick up objects and throw them away. Usually,
this object grasping is very simple. The player just has to point the controller at the
object and then hold a button to grab it. Upon the release of the button, the object is
also released.

While this object grasping does not represent physical grasping with hands, it can
still feel intuitive after a few uses. Many games only show the controllers and not
visual representations of the hands. This simplifies many things, because otherwise an
appropriate pose and realistic contact points have to be calculated for each object. For
the VreeClimber project, a better solution is needed, since it is of paramount importance
that the user feels safe when climbing.

2.2.2 Object Grasping with Finger Tracking

Finger Tracking allows for the implementation of more precious and complex object
grasping. An advantage is that the pose of the hand and the contact points do not need
to be calculated. Other problems, such as overlapping of the hand and virtual objects are
hard to solve. Figure 2.4 shows special gloves with force-feedback, which allow the user
to "feel" when they touch an object [3]. In this case, the software shows a virtual hand

9

2. State of the Art

which does not exactly represent the tracked hand to give the user the impression of a
more realistic grasp. This approach can also be implemented with any kind of collision
detection, such as the physics engine of Unity. If a virtual finger collides with an object,
it stops moving until the tracked hand moves away from the object. The balance between
an accurate representation of the tracked hand and a realistic virtual grasp is one of the
difficulties of this approach.

(a) Setup with glove and monitor (b) Virtual hand with force feedback vectors and
representation of the tracked hand (mesh)

Figure 2.4: Grasping a virtual object with a finger tracking glove [3]

Grasping Real Objects

The best solution for a great immersive VR experience would be to grasp real objects
which are also shown in the virtual world. That way, the user could interact with the
real objects, but there are also certain limitations for this approach. For example, if an
optical tracking system is used to track the objects, occlusion can be a problem during
grasps. Furthermore, the tracking of the fingers and objects has to be very accurate to
avoid unrealistic behaviour. If the objects are static, such as walls or tables, the problem
becomes easier because the position can be determined during a calibration at the start.
Then, only an accurate virtual representation of the room has to be created and the
finger tracking system has to be integrated. No further calculations such as collision
detection have to be made. The VreeClimber project is somewhere in-between. The
climbing wall can move, but the current position of the climbing holds will be known
and the climber cannot manipulate them. This means that the climbing holds are more
like static objects which can be grasped.

10

2.2. Object Grasping

2.2.3 Algorithms and Methods from Robotics

The goal of robotics is to use machines to automate tasks. For example, many tasks
in production need to handle and manipulate objects with different forms. Because of
the versatility of the human hand, a lot of research has been done to replicate some of
its capabilities [26, 49, 50, 53]. For this project, we will focus on the grasping problem,
because 3D models of all climbing grips will be available. It describes the difficulty to
find an appropriate point where and how an object should be grasped.

Calculate Proper Contact Points

The contact points of a grasp are very important. The grasp can only be considered
stable if the forces of different fingers come from different directions. A stable grip is
especially important for climbing because the climber has to put a lot of weight on it.
One method is to choose a focus point first and then try to place the fingers around this
point [26, 49]. The lines of force from the fingers will then intersect at the focus point,
as shown in Figure 2.5. The position of the point depends on the form of the object.
Because of the fixed location of the climbing grips, the contact points on top of the grip
should be the main priority, but a stable grip is still important to keep the balance on
the climbing wall.

(a) The line of forces intersect at the focus point [26] (b) Ideal grasps for objects with different sizes [49]

Figure 2.5: Focus point and example grasps of a robotic hand

Find a Feasible Grasp

The next step is to find a feasible grasp, which uses the calculated contact points. Each
robotic hand has some limitations based on the used components and their Degrees
of Freedom (DoF). If a set of contact points gets discarded, a different set has to be
calculated. In a first step, all kinematically infeasible contact points are discarded [49].
For example, when the distance between two contact points is bigger than the physical
limit of a robotic hand, it must be discareded. In the next step, a starting configuration
for the grasp is selected. The basis of this configuration is an ideal grasp, which means

11

2. State of the Art

that the angle of each joint should be similar. Two ideal grasps for a small and a big
object are shown in Figure 2.5. This helps to avoid limitations of single joints and
also looks more natural. Finally, the configuration is checked for collisions between the
components of the robot and other objects within reach of the hand. If a problem is
found, adjustments of the pose or contact points are made to avoid them.

This chapter gave an overview of solutions for VR tracking and how object grasping
is implemented in different fields. The next chapter describes theoretical principles
of computer vision, which are the basis for hand tracking. Furthermore, it contains
information about the anatomy of the human hand.

12

CHAPTER 3
Theoretical Background

3.1 Computer Vision

This section explains how computer vision can be used to determine the location of an
IR marker. After some basic information about IR light, the pinhole camera model
and the camera parameters are introduced. Then, the camera calibration process and
triangulation are described. Finally, some computer vision operations and the Kalman
filter are explained.

3.1.1 Infrared Light

VreeTracker is an optical tracking system that uses multiple cameras to capture the IR
light from the markers. IR light is just a small part of the electromagnetic spectrum
[18]. As seen in Figure 3.1, the visible light for human eyes has a wavelength of 380 nm
to 780 nm. The IR spectrum is from 780 nm to 1 mm, which makes it invisible to the
human eye. For optical tracking systems, the so-called Near Infrared (NIR) spectrum
is especially interesting because commonly used CCD and CMOS camera sensors are
sensitive to wavelengths from 350 nm to about 1000 nm [18].

Light Filters

Typical consumer webcams also use CCD or CMOS sensors. Therefore, they are sensitive
to visible and IR light. To increase the quality of the images, manufacturers usually add
a light filter to block IR light, which means that IR light is not visible on the recorded
images. A so-called bandpass filter only transmits light within a certain wavelength band
[18]. Hence, if the IR filter of a webcam is replaced with one that only transmits NIR
light, the camera can be used for an optical tracking system.

13

3. Theoretical Background

Figure 3.1: Electromagnetic spectrum [11]

3.1.2 Pinhole Camera

The basic camera model for computer vision is the pinhole camera model, which describes
the geometric relation of 3D and 2D points on the image plane. As shown in Figure 3.2a,
a pinhole camera is a closed box with a tiny hole on one side and a photosensitive surface
on the opposite side. Light enters through the hole and projects an inverse image onto the
photosensitive surface. The pinhole is called the center of projection, and the projection
expressed by the pinhole model is a perspective projection [16].

(a) Simple illustration of a pinhole camera (b) Components of the pinhole camera model

Figure 3.2: The pinhole camera model [57]

The distance between the center of projection and the image plane is the focal length f
and the intersection point of the optical axis and the image plane is called the principal
point. This point is also the center of the image coordinate system. The digital image is
represented by a pixel coordinate system, which usually originates in one of the corners
of the image. The offsets between the image and pixel coordinate system are (−x0,−y0).
Let (X, Y, Z) be the coordinates in 3D space. Then, we can use Equation 3.1 to calculate
(x, y) in the image coordinate system [57].

14

3.1. Computer Vision

x = f
X

Z
y = f

Y

Z
(3.1)

In the next step, the coordinates should be transferred to the pixel coordinate system.
The values (x0, y0) are added as offset to the point of origin of the image coordinate
system. Also, the aspect ratio of the camera, which represents the density of pixels
horizontally and vertically, has to be considered. Therefore, we introduce the variables
ku and kv (measured as number of pixels per millimeter) [57].

u = kvf
X

Z
+ kux0 v = kuf

Y

Z
+ kvy0 (3.2)

Projection equations can also be expressed using homogenous coordinates, which results
in Equation 3.3.

x
y
1

 ∼
kuf 0 kux0 0

0 kvf kvy0 0
0 0 1 0

X
Y
Z
1

 (3.3)

The ∼ in Equation 3.3 signifies equality up to scale of vectors or matrices [57].

Intrinsic Camera Parameters

The intrinsic camera parameters describe what happens "inside" the camera. Specifically,
these are the focal length in number of pixels (kuf, kvf) and the offset of the pixel
coordinate system (kux0, kvy0). There can also be a so-called skew parameter, but it
can be neglected with modern cameras [57]. By convention the parameters are usually
represented as an upper triangular matrix and this representation is called calibration
matrix [58]. This matrix is also part of Equation 3.3.

K =

kuf 0 kux0
0 kvf kvy0
0 0 1

 (3.4)

Extrinsic Camera Parameters

In addition to the intrinsic camera parameters, there are also two extrinsic camera
parameters. Let R represent the camera’s orientation and t the center of projection’s
coordinates in the world coordinate system. R is a 3x3 rotation matrix and t a 3D
translation vector. As a result, we get Equation 3.5 to translate a 3D point from the
world to the camera coordinate system [57].

15

3. Theoretical Background

X
Y
Z
1

 =
(

R −Rt
0T 1

)
Xw

Y w

Zw

1

 (3.5)

Parts of Equation 3.3 can be replaced and simplified with the calibration matrix from
Equation 3.4 and the extrinsic camera parameters from Equation 3.5. Equation 3.6 is the
result, where Id3 is the 3x3 identity matrix and P is the so-called camera matrix [57].

x
y
1

 ∼ KR(Id3 − t)︸ ︷︷ ︸
P

Xw

Y w

Zw

1

 (3.6)

3.1.3 Camera Calibration and Triangulation

The process to calculate the camera parameters mentioned in Section 3.1.2 is called
camera calibration. The simple pinhole camera model does not take distortions into
account, which occur due to the used camera lens. The distortions become more significant
with a shorter focal length [16]. During the camera calibration process, these distortions
are detected and can then be corrected with different techniques.

Distortion

The two major distortions which should be considered during camera calibration are
radial and tangential distortion [58]. Radial distortion causes straight lines in a scene
to appear curved on the recorded image. Figure 3.3 shows the two most common types
of radial distortion. If the curved lines bend outward, it is called a barrel distortion.
The opposite is the pincushion distortion, where the lines are bent inwards. The effects
increase with distance from the center of the image.

(a) Barrel distortion (b) No distortion (c) Pincushion distortion

Figure 3.3: Different types of distortion compared to no distortion

16

3.1. Computer Vision

Tangential distortion occurs if the camera lens is not aligned perfectly parallel to the
image plane [12]. This leads to the effect that some parts of the image appear closer to
the camera than others.

Camera Calibration

For this project, the camera calibration algorithm by Zhang was used [71]. The algorithm
is already implemented in the OpenCV library. There are no specific requirements during
the calibration, such as a predefined angle or distance to the camera. The proposed
technique consists of the following six steps:

1. Pattern selection: First, one of the supported patterns, such as a checkerboard
or a circle grid, has to be chosen. Then, the selected pattern has to be printed and
attached to a planar surface (e.g. hard book cover).

2. Take images: In this step multiple images of the pattern should be taken from
different orientations. Either the camera or the pattern can be moved. To get good
results, at least ten images should be taken from different distances.

3. Pattern recognition: Then the pattern has to be recognized by the algorithm in
each picture. For example, the 8× 5 checkerboard from Figure 3.4 has 28 corner
points between the squares, which are detected with a corner detection algorithm.
The number of rows and columns of the printed pattern should not be the same to
avoid orientation ambiguity.

4. Estimate camera parameters: The five intrinsic and all extrinsic camera pa-
rameters are estimated with a closed-form solution [71].

5. Estimate distortion: The first two coefficients of the radial distortion are esti-
mated with the linear least-squares method.

6. Refine all parameters: All parameters are refined to consider the estimated
distortion from the previous step. This is done with the Levenberg-Marquardt
algorithm [38].

The full calibration with multiple images of the pattern has to be done only once per
camera, because the intrinsic parameters of the camera will not change. After moving or
rotating the camera, only the extrinsic camera parameters need to be calculated again,
which can be done with only one image of the pattern. For this project the checkerboard
pattern was chosen and, as seen in Figure 3.4, the feature points get detected by the
camera calibration algorithm. The top left feature point of the checkerboard (the first
red dot in Figure 3.4) is the point with the coordinates (0, 0).

17

3. Theoretical Background

Figure 3.4: Checkerboard pattern with feature points overlay

Triangulation

The camera images are a projection from 3D to 2D space, so we are not able to determine
the location of a point in 3D space from a single image. Therefore, two images from
different angles are needed to calculate the location in 3D space. This calculation is
called triangulation, and the cameras have to be calibrated first.

If we assume there are no measurement errors, we can just project rays back from the
camera through the image points and would get the point in 3D space at the intersection
of the rays. However, as seen in Figure 3.5a, the rays will never intersect because of
minor errors during calibration and calculation of the image points x and x′ [16].

To still get a point in 3D space despite the errors, we estimate a point X̂, as seen
in Figure 3.5b. X̂ projects to the two images at x̂ and x̂′, which satisfy the epipolar
constraint [18]. The point X̂ is chosen so that the reprojection error d2 + d′2 is minimized
[16].

3.1.4 Image Manipulation and Blob Detection

VreeTracker uses different computer vision operations to extract the location of a marker
from the images. This real-time location data is then used in a VR application, so the
performance is very important. Simple operations such as cropping are used to only
analyze the regions of the images which we are interested in. Because the cameras
only detect IR light, the recorded images will be mostly black with some white spots
representing the IR markers. To further improve efficiency, the color images are converted
to grayscale images. A so-called blob detector then calculates the center of each white
spot.

18

3.1. Computer Vision

(a) Back projected rays never intersect because of errors (b) Estimation of the Point X

Figure 3.5: Triangulation in epipolar geometry [16]

Color Models

Color models describe colors in a 3D space. A color model has three channels which
represent the axis of the coordinate system. Each point in this space describes a different
color [18]. The following two examples show that the characteristics of color models can
be quite different.

RGB

One of the most popular color models for digital images is RGB [10]. It describes a color
by the mixture of the three primary colors red, green and blue [58]. A digital image
is the representation of this information for each pixel. Figure 3.6 shows an image of
the VreeTracker on the left and then a grayscale image of each color channel (red, green
and blue). The red and green color channels from Figure 3.6 are brighter because yellow
is a mixture of red and green. One advantage of the RGB model is that it is easy to
understand and for example, thresholds can be found quickly with just looking at the
data.

Figure 3.6: RGB image and each color channel (red, green and blue)

19

3. Theoretical Background

YCbCr

An alternative to the RGB color model is Y ′CbCr. It was created for digital video
encoding but is also used for image compression. A popular example is the JPEG
compression for images produced by digital photography. The Y ′ channel represents the
luminance of the color. The Cb and Cr channels represent the blue and red difference
chroma. As shown in Figure 3.7, the Y ′ channel is more or less just a grayscale version
of the original image. Only the Cb and Cr channels hold the information about the color.
The Cb and Cr channels can be compressed without losing much image quality, because
the human eye is more sensitive to the luminance. Equation 3.7 shows how an R’G’B’
image (gamma-compressed version of an RGB image) can be transformed to the Y ′CbCr

model [58].

Y ′

Cb

Cr

 =

 0.299 0.587 0.114
−0.168736 −0.331264 0.5

0.5 −0.418688 −0.081312

R′

G′

B′

+

 0
128
128

 (3.7)

Figure 3.7: RGB image and each color channel (Y’, Cb, Cr)

Color Model Selection

Image processing is used in many different scenarios and it often is important to choose
an appropriate color model. The RGB model is easy to understand and can be used
to quickly create a prototype or select a threshold. A more practical example is an
algorithm that uses the RGB model to automatically detect the state of an Rubik’s Cube
[15]. If the images of the Rubik’s Cube are recorded in different lighting conditions (e.g.
outdoor and indoor), the previously working algorithm fails. This problem is hard to
fix because in the RGB space the change of illumination means that the variation of
the color channel values is high. So if the thresholds are adjusted, similar colors get
wrongfully detected.

One possible solution is to use the Y ′CbCr color model. Since it separates the image into
luminance and chroma, mostly the value of the Y ′ channel changes with the different
illumination. The variation of the chroma channel values is small enough to use thresholds
and avoid false positives [15]. Another advantage of Y ′CbCr is the possible compression,
which can be useful if many images should be saved or transferred over a network.

20

3.1. Computer Vision

Blob Detection

In computer vision, a blob is a region in an image that has different properties such as
color or intensity. A blob detection algorithm tries to find blobs which match a certain
pattern [25]. There are many different blob detection methods, but because we only need
to detect white blobs on a black background, a simple method based on edge detection is
sufficient. Nonetheless, this operation is computationally expensive, and the parameters
should be optimized to improve the performance.

For the VreeTracker software the SimpleBlobDetector of the OpenCV library is used
[47, 51]. All relevant parameters for our scenario are listed in Table 3.1. The algorithm
executes the following steps:

1. Thresholding: The source image is then converted into multiple binary images
based on the threshold steps. For example, if we use the values (minThreshold
= 120, maxThreshold = 150, thresholdStep = 10) three binary images with a
threshold of 120, 130 and 140 are created.

2. Find blobs: In each binary image connected white pixels are detected as blobs.
Furthermore, their centers are calculated.

3. Grouping: The calculated centers from the previous step are grouped together
from all binary images based on the distance between them (minDistBetweenBlobs).
If a group contains at least as many blobs as the minimum repeatability parameter,
it is a valid blob.

4. Center and radius: In the last step the center and radius of the grouped blobs
are calculated.

Parameter Description
minThreshold Minimum threshold (inclusive)
maxThreshold Maximum threshold (exclusive)
thresholdStep Step size between minimum and maximum threshold
minDistBetweenBlobs Minimum distance between blobs
minRepeatability Blob must be detected in at least as many threshold steps

Table 3.1: Relevant parameters for the SimpleBlobDetector [47]

Figure 3.8 shows an image with different circular blobs from white to almost black. The
SimpleBlobDetector was used to detect blobs with a threshold of 60 to 255 and all found
blobs are marked with a red circle. The blobs in the last line are under the threshold and
are therefore ignored. For the VreeTracker only the center will be used as the current
location of a marker in the image. The connected blobs in the middle and on the right
side of the image are detected as one blob and the center is adjusted accordingly. This
can potentially be one of the problems of occlusion and should be considered by the
VreeTracker software.

21

3. Theoretical Background

Figure 3.8: Example image with circular blobs in white and different shades of gray

3.1.5 Position Prediction with Kalman Filter

The Kalman filter was introduced in 1960 and is used to predict future states of a process
based on previous measurements [24]. Some popular use cases are the Apollo Project
and navigation systems [14]. The Kalman filter helps to reduce the noise of inaccurate
GPS measurements and provides estimates if the GPS signal is lost (e.g., in a tunnel).
For a vision-based marker tracking system, the usage of a Kalman filter has multiple
advantages. Because of estimates during the camera calibration and triangulation, the
calculated positions always have small errors. The Kalman filter reduces those error
noises, which is especially useful for VR experiences, because even small unexpected
motions can be perceived negatively [70]. Other problems of vision-based systems are
occlusion and performance. With a Kalman filter, the marker’s position can be predicted
if the precise calculation takes too long or the marker is currently not visible.

Requirements

The Kalman filter cannot be used on all problems where some values need to be estimated.
The process needs to be convertible to following two equations [70].

xk = Axk−1 + Buk−1 + wk−1 (3.8)

zk = Hxk + vk (3.9)

22

3.1. Computer Vision

Equation 3.8 estimates the current state x ∈ Rn of a discrete-time controlled process. k
represents the current time step and A is a n×n matrix that relates state of the previous
time step to the current state. The n × l matrix B relates the optional control input
u ∈ Rl to the state x. wk−1 is the process noise of the previous time step.

The measurement Equation 3.9 describes a measurement z ∈ Rm. H is a m × n that
relates the state to the measurement zk and vk is the measurement noise. In practice H
can change with each time step, but often we can assume it is constant [70].

Kalman Filter Cycle

The two repeating steps of the discrete Kalman filter are time update and measurement
update as seen in Figure 3.9. The time update returns a prediction for the future based
on previous measurements. The measurement update adjusts the estimate from the time
update with an actual measurement. The two steps are explained in more detail later in
this section. After each step the next step uses the calculated values from the previous
step. This recursive nature is one of the advantages of the Kalman filter. It is not
necessary to save all previous measurements and estimates, but they are still considered
for the current step.

Figure 3.9: Cycle of a discrete Kalman filter [70]

Time Update

The time update provides a prediction of the state and the error covariance for the next
time step. Table 3.2 contains the specific equations for this step. Equation 3.10 calculates
x̂-

k ∈ Rn (note the "super minus"), which is defined as the a priori state estimate at step
k with consideration of all knowledge collected before step k [70]. x̂k ∈ Rn is a posteriori
state estimate at step k given measurement zk. A, B and u are from Equation 3.8.
Equation 3.11 calculates the a priori estimate error covariance P -

k at step k with the
process noise covariance Q.

23

3. Theoretical Background

x̂-
k = Ax̂k−1 + Buk−1 (3.10)

P -
k = APk−1AT + Q (3.11)

Table 3.2: Discrete Kalman filter time update equations [70]

Measurement Update

The measurement update consists of the three equations from Table 3.3. First, the
Kalman gain K from Equation 3.12 is calculated with H from Equation 3.9 and the
measurement noise covariance R. The Kalman gain is a n×m matrix and defines if the
prediction or the measurement should be trusted more. Then the a posteriori state x̂k

is calculated with the measurement value zk and the Kalman gain from the previous
calculation. In Equation 3.14 the a posteriori error covariance is estimated, which is
needed for the next time update.

Kk = P -
kHT (HP -

kHT + R)−1 (3.12)

x̂k = x̂-
k + Kk(zk −Hx̂-

k) (3.13)

Pk = (I −KkH)P -
k (3.14)

Table 3.3: Discrete Kalman filter measurement update equations [70]

3.2 The Human Hand

To create a realistic virtual hand, it is not enough to create a 3D model that looks like a
human hand. It is also important that its movements look realistic. In modern game
engines such as Unity, it is possible to create a skeleton of bones and joints for models.
Then, the meshes of the model are linked with the closest bone. If the skeleton or parts of
it are moved, all connected meshes will also move accordingly and make the movements
look more real. In this section the anatomy of the human hand is described to better
understand how the virtual hand should move. Furthermore, grasp poses typically used
during climbing are explained.

24

3.2. The Human Hand

3.2.1 Anatomy of the Human Hand

As seen in Figure 3.10a, the 27 bones of the human hand are segmented into five groups.
The carpals make up the wrist and the root of the hand. The anatomical design of each
finger is very similar, with some exceptions for the thumb. While the metacarpal bone of
the thumb can be moved independently, the other four metacarpals are closely linked
and only allow very limited independent movements. The human hand has 14 phalanges:
three in each finger and only two in the thumb, because it is missing the middle phalange
[59].

(a) Bones of the human hand (b) Joints of the thumb and fingers

Figure 3.10: Bones and joints of the human hand [66]

3.2.2 Joints and Range of Motion

Most muscles that move the hand and fingers lie in the forearm. Tendons connect the
muscles with different parts of the hand [59]. They can easily be seen on the back of the
hand when the fingers are moved. Figure 3.10b shows the joints of the fingers between the
bones. For our climbing scenario, the most interesting joints are the metacarpophalangeal
(MCP), proximal interphalangeal (PIP), distal interphalangeal (DIP), and interphalangeal
(IP). The difficulty is to choose appropriate angles for each joint without any additional
data. We only know the position and orientation of the hand.

Table 3.4 shows the range of motion of each joint and the average position during the grasp
of different objects [4]. During a grasp, the PIP is the most angled joint. Furthermore,
research has shown that there is a relation between the positions of different joints [8].
This relationship is especially noticeable on the PIP and DIP joints of one finger, but
generally the positions of the four fingers are similar during a grasp. Of course, this also
depends on the form of the object, but this information can be useful to animate more
realistic virtual grasps on climbing holds.

25

3. Theoretical Background

Joint Range of Motion Average Position during Grasp

Thumb MCP 0 - 56◦ 10◦ (± 9◦)
IP -5 - 73◦ 28◦ (± 11◦)

Fingers MCP 0 - 100◦ 33◦ (± 6◦)
PIP 0 - 105◦ 39◦ (± 7◦)
DIP 0 - 85◦ 26◦ (± 5◦)

Table 3.4: Thumb and fingers range of motion and average position during a grasp of an
object [4]

3.2.3 Different Grasp Poses

The human hand can adapt to the form of many differently shaped objects. Figure 3.11
shows the six basic types of prehension defined by Schlesinger [1, 59]. For climbing
the most relevant grasp poses are the cylindrical and spherical grasp, but some smaller
climbing holds also require a hooklike pose. The climbing holds of the VreeClimber
all have similar forms, so one algorithm for the grasp pose should be enough. But the
algorithm should consider the orientation of the hand during the grasp. For example, if
the climber reaches for a climbing hold right above his head the pose should be different
to a grasp on his side where the hand is in an angle of 45 degrees. The target group of
the VreeClimber are unexperienced climbers. Therefore, complicated climbing grasps
such as from underneath are not specifically considered.

Figure 3.11: Six basic types of prehension [59]

26

3.2. The Human Hand

Cylindrical Grasp

This pose is used when a cylindrical object is grabbed. All fingers are side by side and
flexed around the object. The thumb is wrapped around the other side, and if the object
is small enough, the thumb can overlap the fingers. During climbing this grasp gives the
climber stability because the climbing hold is grasped from two sides.

Spherical Grasp

The fingers and thumb are placed around the object. There are not many spherical
climbing holds, but grasps similar to this one are still frequently used during climbing.
This pose also provides good stability because the fingers are on opposite sides of the
object.

Hook

In this pose, usually only the four fingers are used. They are flexed like a hook and
wrapped around the object. Climbers use it on small climbing holds, and only a fraction
of the force can be applied. Most of the time the thumb is not used, because the surface
of the hold is too small.

The first section of this chapter gave an overview of the technologies and methods
necessary for hand tracking. The second part described the anatomy of the human hand
and grasp poses used during climbing. This information is the basis for the next chapter,
which specifies the architecture of the VreeTracker and the virtual hand simulation.

27

CHAPTER 4
System Design

The last chapter gave a theoretical overview of different topics, which are the basis for
this project. This chapter is the beginning of the more practical part of this thesis. First,
the climbing scenario is briefly described and then the software requirements are defined.
Then, the hardware and software architecture of the VreeTracker is explained. The
system design of the virtual hand simulation is presented in the last part of this chapter.

4.1 Requirements

Before the implementation of the tracking software and virtual hand simulation, different
requirements should be defined in order to become able to continuously verify that
the original goals of the project are met by the software. The requirements should be
clear and easy to check, but especially for a VR application this is not always possible
since every user perceives the virtual world differently. The requirements focus on the
VreeTracker software and the virtual hand simulation software, because the hardware
was developed in a previous project [56]. Table 4.1 gives an overview of the requirements
at the end of this section.

4.1.1 Climbing Scenario

As mentioned in the introduction, the VreeClimber consists of multiple boards that slowly
move downward when the climber reaches a certain height on the climbing wall. The
climber wears an HMD of a VR system and sees a virtual world where they can climb.
The combination of the VreeClimber functionality and the virtual world theoretically
allows an endless virtual climbing scenario. In front of the VreeClimber, two stereo
cameras are placed to track four IR markers, which the climber wears at their wrists and
ankles. Also, two base stations of the HTC Vive are placed in front of the climbing wall
to guarantee the tracking of the HMD and the controllers. Before the system can be

29

4. System Design

used, both stereo cameras, the VR system, and the location of the climbing wall in the
VR application need to be calibrated.

4.1.2 VreeTracker Software

For the marker tracking, accuracy and performance are the most important requirements
since the VR application needs accurate position data to show the user’s hands at the
correct location from their point of view. Performance is important, because the data
is useless if the software needs multiple seconds to calculate it. Therefore, the tracking
software should be optimized to calculate the position nearly at the frame rate of the VR
application, which is 60 frames per second. Even if some precision is lost, it is crucial that
the tracked movements are in real time and look smooth in the virtual world. Another
important requirement is, that each marker is associated with the correct extremity.
This problem can always occur when a visual tracking solution is used. So temporary
occlusions should be considered by the software. Other metrics to consider are a good
tracking coverage of the whole climbing wall and minimization of possible occlusions.

4.1.3 Virtual Hand Simulation

The virtual hand simulation has to be developed as an algorithm for Unity and should
include an attractive hand model. The most important requirement is that the movements
of the hand should feel natural for the climber and should help them to safely grasp
for the climbing holds. To achieve this, the grasp animation has to be adapted for each
climbing hold. One factor is the size of the hold. For example, a big hold can be grabbed
with the complete hand, whereas only the fingertips are used on small ones. The solution
should be useable for many different climbing hold forms, hence it makes no sense to
categorize them manually. The algorithm should try to get all necessary information,
such as size and depth, from the 3D model automatically.

Another problem can be graphical glitches where parts of the hand move into the climbing
wall. These can be especially difficult to solve because the virtual hand should grasp
the climbing holds. Therefore, a procedure should be a developed which allows the
virtual hand to grasp an object as closely as possible, but also prevents overlapping
between them. As mentioned earlier, the climbing holds have various forms, therefore the
animation should be individual for each finger. For example, if the index finger already
touches the hold, the animation of the index finger is stopped. However, the other fingers
should still continue to move until they also touch the hold or reach their final position.
The animation algorithm should be efficient enough to run with 60 frames per second on
consumer hardware, which is the normal frame rate of VR applications.

4.1.4 General Software Requirements

Besides the specific requirements mentioned above, all parts of the software should meet
some general requirements. The code should be well-structured and separated into smaller
modules. This allows the replacement or extension of specific modules without the need

30

4.2. Marker Tracking

VreeTracker
Accuracy Accuracy of the marker tracking should be < 0.5cm
Performance 60 frames per second with calculation and prediction
Tracking Coverage Good coverage of the climbing wall to avoid occlusions
Occlusion Handling Occlusion handling to correctly associate markers with

extremities
Distributed System Possibility to run the software on two PCs

Virtual Hand Simulation
Natural Movements Hand movements should look natural and smooth
Different Grasp Poses The software should support different grasp poses
Individual Animations Each finger should be animated individually
Performance 60 frames per second while animating two hands

General Requirements
Modular Code Split software into smaller modules
Configurability GUI with settings or config file
Documentation Code should be well documented

Table 4.1: Requirements for the VreeTracker and virtual hand simulation software

to rewrite the entire software. Furthermore, the software should be configurable with a
graphical user interface (GUI) or a config file to quickly change some parameters. Due to
possible hardware limitations, it should be possible to run the VreeTracker software for
each stereo camera on a separate PC. As a consequence, the results of the calculation
should be transferred over a network connection with the user datagram protocol (UDP).
Additionally, the code should be well-documented, especially the more complex parts.

4.2 Marker Tracking

In this section, the hardware and software architecture of the VreeTracker are explained.
First, the hardware components, which were built by Ludwig Steindl, are described to
better understand their functionality. Then, the architecture of the marker tracking
software is described.

4.2.1 Tracking Setup

The VreeTracker uses a stereo camera to track the location of the marker. The 3D
location of the marker is calculated with triangulation, which means that both cameras
need an unobstructed view of the marker. Theoretically, this can be done for all four
markers with one stereo camera, but as soon as the climber moves their hands in-front

31

4. System Design

of his body, the tracking is not possible anymore. This is why a setup with two stereo
cameras was chosen.

Figure 4.1: Setup of the stereo cameras in front of the VreeClimber

Figure 4.1 shows the two stereo cameras in front of the climbing wall. Each stereo camera
tracks a hand and a foot of one side of the climber’s body. The cameras are placed at the
edge of the climbing wall so that they have a good field of view and the view is obstructed
only if the markers are right in front of the climber. Because of the camera calibration
method, which was explained in Section 3.1.3, there are no restrictions on the exact
location of the cameras or the distance to the climbing wall. During the development, a
setup such as the one shown in Figure 4.1 provided good results.

32

4.2. Marker Tracking

4.2.2 Hardware Architecture

The VreeTracker system consists of two different types of hardware components. The
first type are the IR markers, which are equipped with active IR light LEDs and inertial
sensors. The second type are the modified webcams that only record IR light. For the
tracking of all extremities of a climber, four markers and four cameras are required.

IR Marker

The VreeTracker uses active IR markers for the visual tracking of the extremities. The
hardware prototype was built by Ludwig Steindl and consists of a microcontroller, circuit
board, IR LED, battery, and a 3D printed case with one or more straps. Figure 4.2 shows
the last version of the VreeTracker prototypes. On the left is a marker for a hand with
a wristband, and on the right is a marker with three Velcro straps to attach it to the
climber’s ankle and shoe.

Figure 4.2: Two VreeTracker marker prototypes with straps for the wrist and ankle

All markers are equipped with a light diffusing sphere to emit the light in all directions.
This component makes them more visible for the cameras in different orientations. They
are only invisible for the cameras when the diffusing sphere is facing the wall, but this
should not be the case during the climbing. The small red switch on the front is used to
turn the tracker on and off. By removing two screws, the 3D printed case can be opened
quickly to replace the Li-Ion battery.

The hardware of a basic active IR marker for visual position tracking could be simpler,
but with the present components the VreeTracker marker can also track its orientation.
An inertial sensor array is used to calculate the absolute orientation of the marker. The
microcontroller connects to a Wi-Fi network and transmit the marker’s orientation in
real time. More details about the marker prototype and its development can be found in
Steindl’s thesis [56].

33

4. System Design

Cameras

The used webcams are Logitech HD Pro Webcam C920 [32]. These webcams can record
30 frames per second with a resolution of up to 1920x1080 pixels. By default, they are
equipped with a bypass filter, which only lets visible light through. Since we want to
record IR light, the filter has to be removed and replaced with an IR pass filter. The
original filter is placed right in front of the camera sensor, which means each camera had
to be opened to remove the filter. A simple IR pass filter for SLR cameras is attached at
the front of each webcam as seen in Figure 4.3 [40].

(a) Webcam and a daylight suppression filter (b) Mounted webcam with the filter attached to it

Figure 4.3: Logitech HD Pro Webcam C920 with a suppression filter

For each side of the climber’s body, two webcams are used. As seen in Figure 4.1, a
stand is used for this stereo camera setup, where one camera is placed at the bottom
and the other one on the top to get more precise tracking results. The cameras are
rotated inwards to better cover the whole climbing wall with their 16:9 aspect ratio. This
helps to avoid problems with significant occlusions and still gives a good view of the
whole VreeClimber wall. The two webcams are connected to a USB hub, which is then
connected to a PC that runs the image processing software. In the remaining parts of
this thesis, such a stereo camera setup is referred to as a camera rig.

Wi-Fi Router

To simplify the Wi-Fi setup for the IR markers, a pre-configured Wi-Fi router is used.
The router’s SSID and password are known by the markers so that they can automatically
connect to it. If multiple PCs are used, they can be connected to the router with LAN
cables to avoid Wi-Fi delays.

34

4.2. Marker Tracking

4.2.3 Software Architecture

For the marker tracking, two different software components are necessary. The component
which is developed as part of this thesis analyzes the images from the stereo cameras
and calculates the location of the markers in front of the climbing wall. The second
component runs on each marker’s microcontroller and uses different sensors to calculate
the current rotation of the marker. This software was written by Ludwig Steindl and it
was possible to use it for this project without any changes.

Tracking Software

The main purpose of the tracking software is to use computer vision to calculate the
location of the markers. But as stated in Section 4.1, it also has to consider different
aspects such as occlusions to avoid calculation errors. Each functionality is split into
a separate module, and code is reused where possible. The inputs of the software are
the frames from the camera rig, and for each frame pair the same steps are necessary to
calculate the marker positions in the frames. Figure 4.4 shows the basic architecture of
the tracking software. Each module represents a specific task, and its output is the input
for the next module.

Stereo Camera

This module uses the OpenCV library to configure and control the two webcams of a
camera rig. Before the actual tracking, this module also handles the camera calibration.
If a full intrinsic and extrinsic calibration is necessary (e.g. if new webcams are used),
15 images of the calibration pattern in different orientations and positions have to be
recorded. For the extrinsic calibration, one image of the calibration pattern is enough
to determine the camera’s position relative to the pattern. After the calibration, this
module reads the frames from the two webcams at a specified frame rate. The frame
rate is limited by the webcams, which is 30 frames for the Logitech C920 [32].

IR Interference Filter

The modified webcams record any IR light. This means that if there are any other
IR light sources or reflections near the climbing wall, the software could mistake it for
markers. The most common interferences are sunlight or reflections of it. This module
analyzes the first few frames after the calibration and creates a mask with all visible IR
spots for each webcam. This mask is then subtracted from all subsequently recorded
frame pairs in order to eliminate these static interferences.

Region of Interest Filter

The efficiency of the software is important to get a high frame rate. A simple method to
improve efficiency is to reduce the frame size. The user of the software can select a region
of interest (e.g. only the area which contains parts of the climbing wall). Each frame is

35

4. System Design

Figure 4.4: Software modules of the tracking software

then cropped to this region of interest by this module. A positive side effect of this is
that other IR lights outside of the region of interest are as well ignored by the software.

Blob Detection

The principles of a blob detector were already explained in Section 3.1.4. The blob
detection module uses the SimpleBlobDetector from the OpenCV library to find all
blobs with a specific minimum size and distance between them [47]. The result of the
SimpleBlobDetector is a list of KeyPoints. A KeyPoint is a data structure from OpenCV
that describes blobs. The most useful values for our use case are the coordinates of the
center and the size of the blob. The final output of the blob detection module is a list of
KeyPoints for each frame.

36

4.2. Marker Tracking

Triangulation

The triangulation module tries to find all reasonable points in the 3D space by combining
the blobs previously found in the frame pair. This module only uses the two blobs, which
are closest to the edge of the tracked side of each frame. For example, if the left hand
and foot should be tracked, the blobs closest to the left edge are used. In the next step,
all combinations of the selected blobs are used to triangulate a point in 3D space. This
means that we get four points in 3D space if at least two blobs are found in both frames.
Points which do not meet certain criteria, such as being inside an area of one meter in
front of the climbing wall, are filtered out. Most of the time, this is enough to filter out
unreasonable points.

The combination of all points is necessary because two or more markers could be close to
each other or a marker could be temporarily not visible to a camera. With this additional
information the software can try to find the most reasonable combinations. The module
returns a list of possible 3D points where a marker could be located.

Extremity Tracker

At this point, the triangulation module calculated all possible points and the extremity
tracker module tries to match these possible points with the last position of the extremities.
The basic idea is to keep track of what the last positions of the extremities were and only
consider points which are near that position. There are also configurable tolerances of
how far the distance between the last and the new position may be. This helps to avoid
misinterpretations if a marker is temporarily occluded. The position is updated only if
the calculated location is inside the tolerances of the last position of an extremity. The
extremity tracking only starts when all markers are visible to get an initial position for
all extremities.

Kalman Filter

A detailed explanation of the Kalman filter was already given in Section 3.1.5. In the
VreeTracker software, the Kalman filter has two purposes. One is to smoothen the
movements of the extremities, which improves the VR experience. The other is to predict
a location between two calculations of the algorithm. The prediction is needed because
the webcams can only record with 30 frames per second, but the VR application runs with
60 frames per second. Therefore, between each calculation from the webcam images, a
predicted position is added. It is also possible to get a relatively good position prediction
if a marker becomes briefly invisible.

Network Transmitter

The network transmitter module sends the calculated and predicted positions of the
extremities over a network to a configurable IP address. The module uses UDP and the
port is different for each extremity. For example, the position of the left hand is sent to

37

4. System Design

port 8001 and the left foot’s position is sent to port 8002. The VR application only has
to listen to these ports to get the newest position data. This approach allows the use of
multiple computers and other software can easily use the position data if needed.

Marker Software

As mentioned above, the software for the marker was written by Ludwig Steindl and
runs on a microcontroller [56]. It combines data from an accelerometer, gyroscope, and
magnetometer to calculate the absolute orientation. The microcontroller automatically
connects to a pre-configured wireless network and sends the current orientation in real
time to a specified port. It also uses UDP for this transmission.

4.3 Virtual Hand Simulation

The VR application was created with Unity and uses an HTC Vive to give the user a
virtual climbing experience. The real time position and orientation data for the climber’s
limbs come from the VreeTracker. The main purpose of the application is to simulate
the hand movements of the climber. Figure 4.5 shows the different components which
are used by the application. At the top are two instances of the VreeTracker software,
which send the real time positions of the climber’s body parts to the Unity application.
Additionally, the four markers themselves send their current orientation to the application.
To receive and attribute the data to the right body parts the software listens on multiple
ports for the UDP packets.

On the bottom of Figure 4.5 are SteamVR and the HTC Vive. SteamVR is the software
which is needed to use the HTC Vive on a PC. To integrate the Vive in a Unity project
the SteamVR SDK has to be used [63]. The SDK handles all the communication with
the Vive and automatically includes the HMD at the correct position in the scene. The
main view of the scene is linked with the HMD, so if the user moves his head around,
the visible area in the scene changes accordingly. The Vive controllers are also supported
out of the box and are used in this project to calibrate the exact location of the climbing
wall. The 3D hand model is another component which is added to the Unity project.
This universally usable hand model can be purchased from the Unity Asset Store and is
the base for the virtual hand used in the simulation [62]. The next few sections explain
the different components in greater detail.

4.3.1 Physics Colliders

The physics engine of Unity can be activated for any object in the scene. For example,
it is possible to add a ball to the scene, and with a few configuration changes this ball
can behave like a metal or rubber ball. To get a physically realistic behavior in a scene,
all physics objects need to be moved with forces. For instance, the ball is not moved
one meter from its current position, but a force is applied to it, which moves the ball.
This approach is not suitable for our project because we get the location of the climber’s

38

4.3. Virtual Hand Simulation

Figure 4.5: Overview of the components used by the VR application

body parts from an external source. This is why physics colliders are only used to detect
physical collisions, but the objects are not controlled by the physics engine.

The colliders are invisible and do not need to have exactly the same shape as the visible
objects they are attached to. It is recommended to use simple shapes such as boxes or
spheres to roughly approximate the shape to make the calculations more efficient. If two
physics colliders intersect each other, a collision is detected by the physics engine. A
custom script is used to handle the collision accordingly and stop the animation of the
involved finger, for example.

The basic idea is to define the virtual hands, the climbing wall and the climbing holds
as physics colliders. That way, it is possible to detect when the virtual hand models
touch the climbing wall or a climbing hold. To create a more realistic animation of the
grasp movement, three colliders are added to each finger. With this setup it is possible to
detect which part of a finger collided with the wall. With this information the animation
script can then stop the animation for certain parts of the finger that collided. To make

39

4. System Design

Figure 4.6: Hand model with physics colliders

the grasp more realistic, the other parts of the finger keep moving until they also collide
with the wall or the climbing hold. Another positive side effect is that no graphical
glitches occur, where parts of the virtual hand move into the climbing wall, because the
animation is stopped when the objects touch each other.

One aspect that still needs to be considered is the hand movements of the climber. For
example, even after all virtual fingers collided with the wall, the hand could be moved
in any direction and now the position of the fingers do not match the climbing hold
anymore. This means that the finger positions have to be adjusted after each movement
of the virtual hand.

4.3.2 Climbing Grips

The climbers wear the HMD of the VR system, so they cannot see the real climbing
wall or the climbing holds. The climbing wall has to be rebuilt in the virtual world and
the climbing holds have to be of the same size and at the same location as on the real
climbing wall. Especially for a virtual climbing scenario, it is very important that the

40

4.3. Virtual Hand Simulation

climbers can see the climbing holds to safely grab them. Besides the size and location,
the form of the virtual climbing holds should also be at least very similar so the climber
can trust what they see and do not have to feel the form of every hold. One possibility to
achieve this behavior is to 3D scan all climbing holds. Figure 4.7 shows a real mounted
climbing hold on the left and its 3D scan on the right. The 3D scan is not perfect, but
the quality is generally good enough for our virtual climbing scenario. Even with better
scans, there would be some tracking and calibration errors. In the current approach, the
3D scans are Wavefront 3D object files (.obj file extension) and can be directly imported
in Unity.

(a) Climbing hold on climbing wall (b) 3D scan of climbing hold

Figure 4.7: Image and 3D scan of the same climbing hold

For the VreeClimber, many different climbing holds are used, so each one should be
marked (e.g. with a number) and matched with the correct 3D scans. This helps to
quickly add them to the unity project at the right location. The recreation of the climbing
wall in Unity3D can still be a time-consuming task. As mentioned earlier, the alignment
of the virtual climbing holds does not have to be perfect, but the position, orientation and
size should be roughly the same to ensure a good VR immersion. As seen in Figure 4.7b,
the plane on which the climbing holds were placed during the 3D scanning is also part of
the 3D model. To avoid that this area is shown in the virtual world, the models need to
be placed by a small distance inside the climbing wall.

4.3.3 Closing of the Hand Model

The VR application only gets position data for the whole hand and not for each finger.
Therefore, an algorithm is necessary to calculate when the virtual hand should start
closing to grasp a climbing hold. During a usual grasp movement the hand is already
closing while it approaches the climbing hold. Hence, we need to calculate how far the

41

4. System Design

hand should be closed during the approach. The algorithm calculates a value between 0
and 1 for each joint individually to describe how far it should be closed. For example,
a value of 0 means it has the same angle as in the open hand pose, while a value of 1
means it is bent to represent the fully closed hand pose. After each hand movement the
values are recalculated and consequently the hand movements look smooth, even if the
hand is moved back and forth.

The calculations of the algorithm are based on two factors. The first factor is the distance
of the finger to the climbing hold. This factor can be configured with two settings in
Unity. The first setting is the distance where the closing animation of the virtual finger
starts. The second setting is the distance where the finger is closed as far as possible, if it
did not already collide with the climbing hold. The calculation of the distance between
two complex 3D Objects can be a computational expensive task, hence an invisible
bounding box is created automatically for each climbing hold. This makes the calculation
of the distance between the fingertip and the climbing hold faster and the result is still
sufficiently accurate.

The second factor is the average joint angle value from the other fingers of the hand.
This is the result of findings from Section 3.2, where it was described that the angles of
the different finger joints are related to each other. This relation is especially important
if the hand approaches a climbing hold sideways. Without this factor the fingers closer
to the climbing hold would start closing, while the fingers on the other side of the hand
would still be extended. In most cases this animation would look unnatural. Therefore,
the average joint angle value is added to the calculation, if the difference is greater than
a certain threshold.

4.3.4 Different Grasp Poses

The used climbing holds on the VreeClimber vary significantly. Some are big enough
to be grabbed with the whole hand, while others are very small and only the fingertips
can be used. This means that the climber’s hand automatically adapts to the different
climbing hold sizes. Figure 4.8 shows some grasp poses for different climbing holds. In
the first image the whole hand is used to get a good grip, while in the other two images
mostly the fingers are used to grab the smaller climbing holds. Therefore, the grasp
algorithm distinguishes between big and small climbing holds. This distinction is based
on the depth of the 3D model. For each size a different animation is used to better match
the real grasp pose of the climber.

Besides the size of the climbing hold, the orientation of the climber’s arm also affects the
grasp type. As seen in Figure 4.8b, the climber will try to place his thumb and one or
two fingers on top of the climbing hold during a horizontal grasp to get a stable grip.
Compared to a vertical grasp the joints are not bent as much. Figure 4.8c shows a vertical
grasp of a small climbing hold, where the thumb does not even touch the climbing hold.
As a result of this observation, the algorithm also differentiates between a horizontal and
vertical grasp. This distinction is made additionally, after determining if a climbing hold

42

4.3. Virtual Hand Simulation

(a) Whole hand grasp (b) Horizontal grasp (c) Vertical grasp with fingers only

Figure 4.8: Examples of different grasp poses

is big or small. Therefore, the algorithm supports four different grasp poses to provide a
good simulation of the grasp movements. This part of the software was designed to be
easily extendable by further distinctions.

In the first part of this chapter, the requirements for the VreeTracker and virtual hand
simulation software were defined. Then, the architecture of the VreeTracker hardware and
software was presented. In the last part, the system design of the virtual hand simulation
was explained. These information given, the next chapter describes the technologies and
methods that were used to implement the VreeTracker and the virtual hand simulation
software.

43

CHAPTER 5
Implementation

This chapter describes how the marker tracker and the virtual hand simulation software
were implemented. The first part contains information about the OpenCV library, the
classes of the marker tracker, and its GUI. In the second part of the chapter, the virtual
climbing scene and the grasp algorithm are explained in detail. It also contains some
information about the Unity project setup and how the VreeTracker or the HTC Vive
Tracker can be integrated.

5.1 Marker Tracker

5.1.1 OpenCV

The OpenCV library is an open source library that can be used for various computer
vision tasks [60]. The main focus of the library is real-time applications. It is written in
C/C++, but there are also interfaces and wrappers for other programming languages
available. For the VreeTracker software, the Java version of OpenCV 3.3.1 was used. The
advantages of this library are that it includes implementations of many different computer
vision algorithms and has a large community which continuously improves it. For example,
the camera calibration algorithm by Zhang from Section 3.1.3 is implemented and can
be used with a few method calls.

To use the Java wrapper of the OpenCV library, the .jar and .dll files need to be added.
These files can either be downloaded from the project’s website or can be compiled from
the source code [60]. After loading the native library (.dll), all methods of OpenCV can
be used. Most of the documentation and code examples for OpenCV are for C++ and
Python, but there are also many posts in forums and blogs which describe the Java
version of methods. The syntax and naming of the Java wrapper are a little different
than the C++ implementation, but since the same base library is used, the code can be
translated with some research.

45

5. Implementation

One of the most important OpenCV modules for this project is the camera module.
This module works with many different cameras and supports most of their functionality
because of the widespread use of OpenCV. For example, the automatic focus can be
deactivated, or the recording resolution can be chosen. One of the problems of the camera
module is that the cameras are not identified by a unique ID or a serial number. A
camera index (integer value) from the operating system is used to choose one of the
available cameras. The problem with multiple cameras is that the camera index can be
different every time the cameras are reconnected. Therefore, the GUI needs to include a
camera selector and preview to allow the user to quickly configure the camera rigs. After
the successful initialization of a camera module, the current frame can be retrieved with
a simple method call.

In OpenCV, the data structure to save an image is called Mat and it represents a frame as
a multidimensional array. For example, a simple grayscale image with a pixel resolution
of 100× 50 is a two-dimensional array with 100 columns and 50 rows. For each pixel, a
grayscale value between 0 and 255 is stored. The same image in the BGR color model
has three channels in which each one represents one color. Therefore, the Mat object
consists of 100× 50× 3 integer values from 0 to 255. This means that a conversion to a
grayscale image makes the Mat object two thirds smaller. The optimization is not so
important regarding the memory space, but because different computer vision algorithms
have to check each pixel multiple times, considerable computational effort can be saved
if a grayscale image can be used to get the same results.

5.1.2 Class Overview

The class diagram in Figure 5.1 contains the most important properties and methods of
each class to give a good overview of the functionality and interaction between the classes.
The diagram clearly shows that the Controller handles all communication between the
classes. The GUIController handles all of the user inputs and gives the user the possibility
to change different settings and to start or stop the tracking. The update method of the
Controller handles the processing of one frame pair by calling all of the different modules
one after the other. Next, each class is described briefly.

GUIController

The GUIController is the entry point of the software. Before the tracking starts, the
user can configure the process in the GUI. The images of the connected cameras can be
previewed to select the proper cameras for each camera rig. The camera-specific settings,
such as contrast or brightness, can also be configured in the GUI. During the calibration,
the user can see the recorded images and if the calibration pattern was detected by the
software.

46

5.1. Marker Tracker

Figure 5.1: Class diagram of the tracking software

Controller

The Controller is the component that connects all classes. It also contains the code that
checks the results of the different modules and calls the next module until the final 3D
coordinates are sent by the NetworkTransmitter. This process is executed each time the
update method is called. The other methods handle communication between the GUI
and other classes.

Settings

The Settings class handles the saving and loading of the general configuration file, the
camera parameters, and the region of interest mask. All settings are saved as JSON files.

47

5. Implementation

The user can edit these files with any text editor, but most of the values can also be
changed in the GUI. The last used configuration is automatically loaded and saved after
each start of a tracking session. All methods are static and can be used by any other
class.

CameraRig

The CameraRig handles the communication with the two USB-connected webcams. It
uses OpenCV to change settings and receive frames from the cameras. Another big
part of the class is the calibration logic. The users can select in the GUI if they only
want to calibrate the extrinsic camera parameters or if they want to do a full calibration
including the intrinsic camera parameters. For the full calibration, 15 images with the
calibration pattern are needed, while the extrinsic calibration only needs one image where
the calibration pattern is visible. After the start of the calibration, the software checks
the camera images repeatedly for a few seconds for the calibration pattern. If the pattern
was detected, the frames and the locations of the significant points of the pattern are
saved. After collecting the necessary number of images, the calibration algorithm of
OpenCV is used to do the actual calibration. The results of the calculations are the
camera parameters, which are saved in a JSON file, so the calibration does not have to
be done before each tracking session. After a successful calibration or if already saved
camera parameters can be used, the getFrames method returns the last recorded camera
frames.

MarkerDetector

The main task of the MarkerDetector is to find all white blobs in the frame pairs. Before
the frames are analyzed, the interference filter mask is initialized. This is done by checking
the first few frames after the start of the tracking. Only white blobs that are visible at
the same location in all analyzed frames are added to the filter mask because they are
probably from IR light sources that could disturb the marker tracking. This means that
a visible marker which is moved (e.g. because it is worn by the climber) will be ignored
and not added to the filter mask. The interference filter mask is then subtracted from
each frame pair before the SimpleBlobDetector algorithm of OpenCV is used to find the
blobs. Besides the filter mask, the frames are also cropped to the region of interest before
the blob detection. The parameters for the SimpleBlobDetector are loaded from an XML
file, which can be adjusted if needed. The result of the detectMarkers method are two
lists of KeyPoints, which describe the detected blobs by their center and radius.

PointTracker

This class is responsible for the calculation of the markers’ locations in 3D space. As
mentioned in Section 4.2.3, the PointTracker only uses the two points closer to the edge
because usually all four markers are visible on each camera. After picking these two
points for each frame, a point in 3D space is calculated for each combination. Therefore,

48

5.1. Marker Tracker

four 3D points are calculated. Most of the time, two points will be completely wrong and
meters away from the climbing wall because the coordinates for the triangulation are
from two different markers. These calculations are still necessary because we cannot know
which two blobs represent the same marker. The obviously wrong results are filtered out
by checking if their position is within a configurable area in front of the climbing wall.
Besides this check, the reprojection error for each point needs to be below a certain limit.
The reprojection error is calculated by reprojecting the 3D point to the 2D space of each
camera. The Euclidean distance between the reprojected point and the detected blob’s
point is the reprojection error. Therefore, we get a reprojection error value for each
camera. If one of them is over a configurable limit, the point is discarded. All remaining
points are then passed on to the PointFilter. The final return value of the PointTracker
is the return value of the PointFilter.

PointFilter

The purpose of the PointFilter is to filter out position calculations that seem unlikely.
This is done by comparing the just-calculated points and the last positions of the markers.
First, the matching probability of each point with each marker is checked by calculating
the distance between the points. The distance of each coordinate (e.g. x, y and z) needs
to be inside a configurable tolerance. For all points inside this tolerance, the absolute
distance to the last position is calculated. Then, the position of each marker is set to the
closest point, as long as this point is not the closest for both markers. In that case, the
position of the marker that is further away is updated to the next possible point, if there
is any inside the tolerance. Before the updated positions are returned, the PointFilter
checks if the climber’s hand position is lower than the foot position. If that is the case,
the two positions are swapped because the user target group are unexperienced climbers
and, hence, this scenario is very unlikely. The new positions are saved and returned to
the PointTracker.

KalmanFilter

The general functionality of a Kalman filter was already explained in Section 3.1.5. The
basis for the KalmanFilter class is an extension of the OpenCV Kalman filter by Kim
Son [55]. The code and configuration of the Kalman filter was adapted for this project.
All valid positions from the PointFilter are added as measurements to the Kalman filter.
Then, the results from the Kalman filter are used as the current positions. These results
can be different from the measurements because of the functionality of the Kalman filter.
The effect of this is that the tracked movements become smoother, which improves the
VR experience. Between the visual tracking of two frame pairs, the KalmanFilter is
used to predict a position. This is necessary because the maximum frame rate of the
cameras are 30 frames per second, but the VR application runs at 60 frames per second.
Additionally, if a position of an extremity could not be calculated (e.g. because of an
occlusion), a prediction from the Kalman filter is used.

49

5. Implementation

NetworkTransmitter

The NetworkTransmitter is a simple class that sends the position data of the extremities
to a configured IP address. The ports are also configurable and are different for the hand
and the foot. The UDP packets are strings which start with "hand" or "foot" and contain
the x, y, and z coordinates separated with a colon.

5.1.3 GUI

In this section, the different parts of the GUI are explained. The top part of the GUI
shows the currently recorded images of the webcams. Underneath the camera previews,
the user can change different settings and start the marker tracking. Figure 5.2 shows a
screenshot of the GUI with camera settings which are usually only used for the calibration.

Camera Preview

The camera preview always shows the frames with the camera settings of the current mode.
As mentioned above, Figure 5.2 was created during the calibration phase, while Figure 5.3
shows a climber in a similar position in the tracking mode. The best-case scenario during
tracking are two black images with some white spots, which are the IR markers of the
climber. Usually, the camera preview is only used during the calibration and to check if
the camera settings are correct. Then, the camera preview can be deactivated to avoid
unnecessary CPU usage. As mentioned earlier, the cameras are rotated inwards, hence
the frames in the GUI are also rotated 90 degrees to avoid confusion. The two white
spots at the climber’s hands in Figure 5.2 are the IR markers. The used camera settings
(e.g. exposure, contrast and gain) are necessary to make the calibration pattern visible
during the calibration phase.

The blue rectangle in the two images represents the region of interest that was set by the
user. Only the parts inside the rectangle are considered during the tracking. If the "Set
new ROI" option is selected, a new rectangle can be chosen by marking the four corners
with clicks on the camera preview. Under the camera images, the camera index can be
chosen. The camera index is automatically assigned by the operating system and can
be different every time multiple cameras are connected to the PC. Therefore, the user
can try different indices to find the two correct cameras for the camera rig. The selected
camera indices are saved after each start, but as stated before, this procedure does not
guarantee the right mapping after the cameras are reconnected.

Tracking Settings

The settings in the bottom left of the GUI are the tracking settings. With the first
dropdown selection, the left or right camera rig can be chosen. In consequence, the
different options are loaded from the configuration file. The selection also determines
in which direction the preview image is rotated, because the cameras of the left camera
rig are rotated 90 degrees clockwise while the right camera rig’s cameras are rotated

50

5.1. Marker Tracker

Figure 5.2: GUI with typical calibration camera settings

counterclockwise. If the recalibration option is checked, the type of calibration can be
chosen with the dropdown selection next to it. As mentioned in the previous section, a
new region of interest can be selected if the next checkbox is ticked. The last option helps
to check if the software correctly tracks the IR markers and how accurate the position
tracking was compared to the white spots from the markers. The currently calculated
location of the hand is shown as a green circle while the foot is represented by a blue
circle.

51

5. Implementation

Figure 5.3: GUI with two visible IR markers

Camera Settings

The first tab of the settings in the bottom right is the camera settings. With the three
sliders, the exposure, contrast, and gain of the cameras can be set. The settings can
and should be different for calibration and tracking. With the dropdown selection, the
different settings for each mode can be chosen. Some example settings for the calibration
and tracking mode can be seen in Figure 5.2 and Figure 5.3. The sliders allow the user to
quickly adapt the camera settings to the current lightning conditions. With the "update
settings" button, the settings can be changed during the tracking. With the other button,
the settings are saved in the configuration file and are loaded again at the next start.

52

5.1. Marker Tracker

Limits and Tolerances

On the second tab, the limits and tolerances of the tracking algorithm can be configured.
Figure 5.4 shows the tab with some example values. The first two values define the area
in which every valid 3D point has to lie. The origin of this area is the top left corner of
the calibration pattern. Therefore, a valid point can be in front of or behind this point.
The maximum reprojection error is another condition for valid points. The extremity
tolerance is the maximum distance between the new and last position of a marker.

Figure 5.4: Settings of limits and tolerances in the GUI

5.1.4 Calibration

The VreeTracker software can do a full calibration of all camera parameters or only a
partial calibration to recalibrate the camera rig’s location. For the full calibration, the
algorithm from Zhang is used [71]. Details of this algorithm were already explained in
Section 3.1.3. The OpenCV implementation of the algorithm is used for this project. A
8× 5 chessboard was chosen as the calibration pattern. Each square of the pattern must
have a side length of 10 cm. The pattern itself does not reflect IR light very well, so the
camera settings need to be adjusted to make it visible during the calibration mode. The
results are grayscale images such as in Figure 5.5. While the software is in calibration
mode, it checks the camera frames every few seconds if it can find the calibration pattern.
After finding 15 images with the pattern for each camera, the calibration algorithm is
started. To get the best results, the calibration pattern should be moved and rotated in
front of the VreeClimber as seen in Figure 5.5.

The calibration of the intrinsic camera parameters is independent for each camera, so
it is not necessary that the images are taken at the same time for both cameras. For
the extrinsic calibration one image of the calibration pattern is enough, but the pattern
cannot be moved until both camera rigs are calibrated. This is necessary to guarantee
that the point of origin of the 3D coordination system is the same for both camera

53

5. Implementation

Figure 5.5: Images recorded during full camera calibration

rigs. Therefore, the pattern should be placed in front of the VreeClimber as shown in
Figure 5.6. For the extrinsic calibration, the OpenCV method solvePnP is used [46].
This method estimates the camera’s pose based on the intrinsic camera parameters from
a previous full calibration and the identified image points of the calibration pattern.
After a successful calibration, the software automatically changes the camera settings
according to the tracking mode and the tracking of the IR markers is started.

5.1.5 Tracking

The theoretical background of the tracking and the different software modules were
already explained in detail. In this section, the full process and the relations between
the software modules are described briefly. The Controller receives 30 frame pairs per
second from the camera rig. It passes the frames to the blob detector, which uses the
first few frames to calculate the IR interference filter. After the initialization, the filter is
applied on all following frames. The frames are also cropped to the selected region of

54

5.2. Virtual Hand Simulation

Figure 5.6: Calibration pattern in front of VreeClimber wall

interest. Then, the blobs are detected and the results are returned to the controller. In
the PointTracker module, the 3D points are calculated with triangulation, and all invalid
points are filtered out. The remaining points are then passed on to the PointFilter, which
updates the extremities’ positions if the new points are close enough to their last position.
The updated positions for the hand and foot are then returned to the Controller. In
the next step, the Kalman filter is updated with the new positions and the returned
results are sent to the VR application with the NetworkTransmitter class. If there was
any problem, for example, that the points are not within the configured tolerances, the
Kalman filter is used to estimate the current positions. These estimations are also used
between two camera frame pairs to increase the position output to 60 updates per second,
which makes the movements appear smoother in the VR application.

5.2 Virtual Hand Simulation

In this part of the chapter, the different parts of the VR application and the grasp
algorithm are described. It starts with the setup of the Vive and the Unity project.
Then, the virtual climbing scene, the hand model and the marker tracker integration
are explained. Finally, the implementation of the grasp algorithm and its challenges are
described.

55

5. Implementation

5.2.1 HTC Vive Setup

An HTC Vive with two controllers and two lighthouses was used for the virtual reality
application. Some information about the Vive was already introduced in Section 2.1.3.
After setting up the hardware as described by the user manual, the SteamVR software
has to be downloaded [65]. The install wizard guides the user through multiple steps
including the room setup. During the room setup, the size of the available space and the
general direction of the virtual room are configured.

Figure 5.7: Interactive room setup in SteamVR [33]

For this project, it is important to set up the room in the direction of the climbing wall
as seen in Figure 5.7. The boundary in front of the climbing wall should be parallel and
as close as possible to the VreeClimber. This makes the calibration of the climbing wall’s
position in the VR application easier. The result of the room setup is called the play
area. It defines the area in which the user can move freely. If the user comes close to a
border of the play area, a virtual wall is shown to prevent the user from stumbling over
objects or walking into walls.

5.2.2 Unity Project Setup

As mentioned earlier, Unity is used to create and run the VR application. Unity provides
a very good documentation and also many video tutorials to quickly learn the basics [64].
The code is written in C# and can be run on any Windows PC with up-to-date hardware.
The SteamVR SDK for Unity was added to the project to integrate the HTC Vive [63].
Requirements to use the SteamVR SDK are a Unity account and the setup of SteamVR
on the PC. The SteamVR SDK can be downloaded from the Unity Asset Store [63]. After
importing all the necessary assets, the prefabs "[CameraRig]" and "[SteamVR]" have to

56

5.2. Virtual Hand Simulation

be added to the scene to automatically integrate the HTC Vive HMD and controllers
when they are connected to the PC.

5.2.3 Virtual Climbing Scene

A simplified prototype of the VreeClimber climbing wall was created in Unity to test
the hand simulation software. Figure 5.8 shows the prototype of the virtual climbing
scene. This virtual climbing wall is placed at the edge of the play area and the different
3D-scanned climbing holds are placed at the same locations as on the real VreeClimber.
The climbing holds are scaled and rotated accordingly. Besides the visual adjustments, a
physics collider and the same tag are added to each climbing hold object in Unity. These
are necessary to detect collisions with the virtual hands and for the grasp animation
script. As mentioned earlier, the origin of the coordinate system of the tracked positions
of extremities from VreeTracker is always the top left corner of the calibration pattern.
This means that this point can be different between two calibrations. Therefore, the
exact location of the climbing wall needs to be calibrated to ensure that the virtual
climbing holds match the location of their real counterparts. For this calibration, an
adapted algorithm from a similar virtual climbing application was used [28].

Figure 5.8: The virtual climbing scene with shoe and hand models

57

5. Implementation

The basic idea of the algorithm is to choose four significant points of the VreeClimber,
such as unique climbing holds. These points are then located on the VreeClimber with a
Vive controller. After acquiring the coordinates of these points in the virtual world, the
algorithm tries to match them with the predefined points on the virtual climbing wall as
precisely as possible. The virtual climbing wall is then moved and rotated accordingly,
so that the locations of the virtual climbing holds match their real counterpart. The
new location of the climbing wall is saved in a file and is automatically loaded when the
application is restarted.

After the wall calibration, the actual virtual climbing app can be run with a climber who
wears the Vive HMD and four VreeTracker markers at wrists and ankles. To initialize the
two VreeTracker camera rigs, all four markers need to be visible for all cameras. After a
successful initiation, the climber should be able to see and move the virtual hands and
feet. Figure 5.9 shows a climber in front of the climbing wall and the point of view in
the virtual world. The virtual hand grasps the climbing hold because the small distance
between hand and object triggers the grasp animation. If the climber moves the hand
away from the climbing hold, the virtual hand will follow the climber’s movement and
open up.

(a) Climber with VR headset on the climbing wall (b) The climber’s view in the virtual climbing scene

Figure 5.9: Picture of a climber in front of the VreeClimber and the point of view
rendering

5.2.4 Hand Model

Current VR systems such as the HTC Vive or Oculus Rift do not track any body parts of
the user without additional hardware. They can only track the HMD and the controllers.
Most applications use the position and orientation of the controllers to show virtual
hands. For a virtual climbing application, this is not possible because the users needs
their hands to climb. Therefore, the VreeTracker or another tracking system is required

58

5.2. Virtual Hand Simulation

Figure 5.10: Used hand model from Unity asset store [62]

to get the real-time position and orientation of the markers, which are placed at the wrists
and ankles of the climber. The challenge now is to add virtual hands to the application
which look realistic enough and predict how the user will most likely grab the different
climbing holds.

To save time, a professionally modeled hand model from the Unity Asset Store was
employed [62]. Figure 5.10 shows the model of the left hand on the left and a mirrored
copy on the right. The hand model supports some animations out of the box, but they
are not useful for our project because there is no way to stop the animation for individual
fingers which touch the climbing wall or a climbing hold. Such a feature is necessary
to improve the user experience of the virtual climbing application. Therefore, new
animation system was developed that can control each finger independently. Additionally,
the animation can be stopped if it touches a climbing hold.

In Unity, it is possible to add a bone-like structure to a 3D model. All visible areas of
the model are connected with one or more bones. If such a bone is moved, the connected

59

5. Implementation

Figure 5.11: Bone structure of the virtual hand

parts of the model move accordingly. The bone structure of the hand model is shown in
Figure 5.11 as a gray overlay. Each finger has three bones and therefore, each part can
be moved individually. In Figure 5.11, the bones of the index finger point downwards
and so does the index finger of the 3D model. Each bone can be moved with a simple
command from Unity. Therefore, it is possible to write an animation script which can
close and open a hand. To detect collisions between the virtual hand and the climbing
wall, physics colliders were used (as mentioned in Section 4.3.1).

5.2.5 VreeTracker Integration

To read the UDP packets from the VreeTracker software, a script was added to the
extremity objects in Unity. Each instance of the script is listening on a different port
to receive the position and orientation data. The packets are UTF8 encoded strings
with multiple float values separated by semicolons. Strings with 3 values are location
coordinates and strings with 4 values are orientation data from the IR markers. The
script parses the values and applies them to the corresponding object. These updates are
performed in the background and applied whenever new data is received.

60

5.2. Virtual Hand Simulation

5.2.6 HTC Vive Tracker Integration

During the development of the virtual hand simulation software, HTC released their
own trackers for the Vive system. The so-called Vive Tracker is fully integrated in the
existing Vive system and can be attached to various objects or body parts [19]. This
feature makes it an alternative for the VreeTracker, because then the additional hardware
and calibration are not needed anymore. The Vive VR system is already a requirement
for the virtual climbing application and the Vive trackers are automatically tracked if
they are added to SteamVR and are inside the play area. Hence, the integration of the
Vive Tracker to the project was simple and did not take much time. The Vive Trackers
are represented as objects in Unity, which makes it possible to add the virtual hand
models as children to these objects. In Unity, the position of children is related to the
parent object’s position. Therefore, when the parent object is moved, the children are
also moved automatically. No other modifications had to be made to integrate the Vive
Trackers.

Figure 5.12: Vive tracker attached to the back of the hand

After testing the movement tracking with wrist bands, such as used for the VreeTracker
markers, an improvised strap for the Vive Tracker showed better results for the virtual
hand simulation. Figure 5.12 shows the improvised strap that places the tracker at the
back of the hand. During climbing and grasping, the angle and rotation of the wrist
can be vary significantly. Therefore, the precision of the virtual hand simulation is
immediately improved if we do not have to make assumptions about the current wrist
orientation. The position change of the tracker is also easy to adjust in Unity, because
only the hand’s position relative to the tracker object needs to be changed.

61

5. Implementation

5.2.7 Grasp Algorithm

The grasp algorithm controls the animation of the virtual hand when it comes close to a
climbing hold. The goal is to make the grasp movements look as real as possible. Because
we do not have any exact location data for the different fingers, we need to make certain
assumptions. The first assumption is that when the climber’s hand comes close to a
climbing hold, it most likely will grasp it. Secondly, the target group for the VreeClimber
app are beginners. Therefore, we assume that the climbers only use basic grasps. The
third assumption is that it is not necessary that the virtual grasp looks exactly like the
real grasp of the climber. The climber does not see the real hands; hence it is also harder
for them to notice small differences. Additionally, the software can be added to other
virtual climbing scenarios, such as climbing on Mars, which will also distract the climber.
Eventually, the correct location of the virtual climbing holds is more important than
the exact look of the grasp animation, therefore the virtual hands should just help the
climber with the coordination of their hands.

The grasp algorithm is a script, which is attached to the hand model objects in Unity. At
the start of the application, the setup method of the script is called. During the setup
the rotation values of all bones of the hand model are saved as reference for the open
hand pose. These values are also saved for the final pose of the closed hand models. With
this information, it is possible to calculate the differences between the open and closed
poses for each bone. After the setup, the grasp algorithm is called at each frame for both
virtual hands. The algorithm can be separated into the following steps, which are called
one after the other.

1. Calculate Closing Value: First, the nearest climbing hold is detected. With
that information, the algorithm calculates how far each finger should be closed.
This part was already explained in Section 4.3.3.

2. Determine the Grasp Pose: The pose is determined based on the climbing hold
and orientation of the climber’s arm. The details can be found in Section 4.3.4.

3. Hand Movement Detection: When the hand was moved, all fingers are clos-
ing/opening again until they reach the final pose or collide with the climbing
hold.

4. Smooth Animation: Move the different parts of the hand in small steps until
the calculated position is reached or the animation is stopped because of a collision.

In addition to these four steps, there are also two methods that are automatically called
by Unity when a collision with a climbing hold or the climbing wall occurs. In the
following sections the central parts of the algorithm are described in greater detail.

62

5.2. Virtual Hand Simulation

Closed Hand Models

The general process of how the grasp pose is selected was already explained in Section 4.3.4.
The different grasp poses are represented as modified copies of the virtual hand model.
Figure 5.13 shows the four currently supported poses. The poses 1, 2 are for small and
big climbing holds when the climber’s hand is horizontal, while the models 3, 4 are used
when the hand is vertical. The difference of the poses for small and big climbing holds
can be seen in model 3 and 4. For smaller climbing holds, only the finger tips are used.
For bigger climbing holds, all joints of the fingers are bent to grab them with the whole
hand. During the setup of the grasp algorithm, the angle value of each finger joint is
saved for each grasp pose. With this information, it is possible to calculate the angle
values when the hand should be halfway closed, for example. To identify the different
grasp poses, the objects are tagged in Unity. The four currently supported poses can be
easily augmented by additional poses. For example, an existing closed hand model can
be copied, and the pose can be adjusted within Unity. Then, the new object needs to be
tagged accordingly and an additional distinction has to be added to the grasp algorithm
to define when the new pose should be used.

Figure 5.13: Closed hand models for different climbing hold sizes and hand orientations

63

5. Implementation

Hand Movement Detection

The grasp animation algorithm always needs to consider that the climber could move the
hands during an animation. Therefore, a grasp animation could look well, but if the hand
is then moved closer to the climbing hold and the pose is not adapted, graphical glitches
could occur. Generally, we have to assume that the tracking of the hand is precise enough
so that the virtual hand is never moved into the virtual climbing wall. Movements of the
hand are detected by comparing the current and last position of the virtual hand. If a
movement was detected, previous collisions are ignored and the animation of each finger
is started again from their current position. If a finger collides again or is still colliding,
the finger is automatically opened until it does not collide anymore. This guaranties that
there are no graphical glitches when the hand is moved closer to the climbing hold. The
rest of the hand is closing until the fingers collide or the final position of the grasp pose
is reached. The algorithm also recalculates how far the hand should be opened in case
the hand is moved away from the climbing hold.

Smooth Animation

After all the calculations of the algorithm are done, we know the current and the target
rotation of each bone. Since we want a realisticly looking animation, we cannot just
rotation the bones to the target value immediately. To smoothen the animation, only
small changes are applied at each frame until the final rotation is reached. To make the
algorithm more efficient, the target rotation is only recalculated if the hand was moved.

Collision Handling

As mentioned earlier, the physics engine of Unity is used to detect collisions between the
virtual hand and the climbing wall. When a collision occurs, a delegate method in the
script is called. The simplest implementation would be to just stop the animation for all
bones of the finger, if any bone collided. But in many cases, this would not really look
like the hand is completely grasping the climbing hold. Therefore, only the animation of
the collided bone and the bones closer to the hand center are stopped. For example, if the
fingertip collides, the animation of each bone is stopped, but if the middle part collides,
the fingertip is still animated until it collides, too. If the bones closer to the center would
still be rotated after the fingertip collided, the tip of the finger would be moved further
into the climbing hold, which would result in graphical glitches. Unity makes it also
possible to detect if two objects are still colliding at each frame. The algorithm uses this
feature to open the finger until it is no longer touching the climbing hold or the climbing
wall, thus helping to avoid graphical glitches.

Known Problems of the Virtual Hand Simulation

If the different calibrations were done carefully and the errors are small, the virtual
hand simulation works well and is a good visual help for the climber, but of course the
simulation can be improved. For example, when the hand is moved quickly back and

64

5.2. Virtual Hand Simulation

forth near a climbing hold, the virtual hand opens and closes fast. This behavior does
not look fully natural, because usually a climber would open the hand about half way,
but generally this can be seen as an edge case. Most amateur climbers will probably hold
on their current position and then try to quickly grasp the next suitable climbing hold.

Another problem can be early collisions when the hand closes too fast, for example, when
the fingertip collides while the hand moves over a climbing hold from underneath it.
Then, the animation is stopped for the finger and it can happen that the finger moves
into the climbing hold. Then, the finger opens as long as it is still colliding with the
climbing hold and then starts closing again. This behavior can appear strange to the
climber.

The biggest problem during testing was inaccurate tracking or a bad calibration of the
climbing wall. Then the best algorithm cannot improve the user experience, because
the position data of the virtual hand or the locations of the climbing holds are generally
wrong. To avoid this situation, the calibration process should be repeated until the
results are good enough to guarantee a good virtual climbing experience.

In the first part of the chapter, the implementation of the VreeTracker software was
explained, while the second part discussed the virtual hand simulation and the VR
application. In the next chapter, the precision and characteristics of the VreeTracker
and the HTC Vive are compared. The performance of the grasp algorithm in some test
scenarios is also evaluated.

65

CHAPTER 6
Evaluation

In this chapter, some parts of this project are evaluated. Since the performance of
the VreeTracker was already evaluated by Ludwig Steindl, his results are compared to
the HTC Vive Tracker, which was not available at the time of that thesis [56]. The
performance of the developed grasp algorithm is evaluated by a test scenario in which
a virtual hand automatically grasps different climbing holds. Before the results are
presented, the evaluation methods are explained.

6.1 Setup

6.1.1 Vive Tracker Evaluation

To compare the Vive Tracker and the VreeTracker, the tests of Ludwig Steindl were
repeated with the Vive System [56]. The positional precision was evaluated by tracking
a resting Vive Tracker for one minute. The calculated positions of the marker should not
differ by much, but all visual tracking system produce few deviations. The maximum
difference between individual positions is the so-called jitter. In a second test, a moving
marker is tracked. Figure 6.1 shows the Vive Tracker on the test platform, which can
be rotated at a consistent speed to get comparable results. The recorded data should
represent a smooth circle without many outliers.

6.1.2 Virtual Hand Simulation Evaluation

The evaluation of the virtual hand simulation is difficult because there are many different
factors and the most important aspect is the visual impression of the climber, which
cannot be measured. The key component of the virtual hand simulation is the grasp
algorithm. Therefore, the evaluation tries to find out how good the virtual hand can
adapt to different climbing holds. A script is used to test the algorithm with ten small
and ten large climbing holds. The virtual hand automatically grasps the grips, and

67

6. Evaluation

Figure 6.1: Rotating platform to evaluate precision during movement

when the final hand pose is reached, the distance between each fingertip and the grip is
measured. Since Unity does not provide a method to measure the distance between a
3D point and a concave mesh, rays are sent out from each fingertip to find the minimal
distance between them. The rays are sent in all directions and can only collide with
the climbing hold. In Figure 6.2 the rays that first collided with the climbing hold are
visualized in red. The algorithm will use two different grasp poses based on the size of
the climbing hold. With this test, the general adaptability of the virtual hand and the
grasp algorithm should be evaluated.

Figure 6.2: Shortest distances visualized as red rays

68

6.2. VreeTracker and Vive Tracker Comparison

6.2 VreeTracker and Vive Tracker Comparison

The maximum jitter of the Vive Tracker along the horizontal, vertical and depth axes
was ±0.52mm, ±0.79mm, and ±0.56mm. The measurements were made under typical
conditions without an especially careful calibration or multiple runs. As mentioned in the
setup section, the VreeTracker was already evaluated by Ludwig Steindl [56]. The results
of the same test with the VreeTracker were ±0.4mm, ±0.26mm, and ±0.75mm, but the
raw data did not seem to be evenly distributed. After some investigation Ludwig Steindl
found out, that the VreeTracker returned only a few different values, which was probably
caused by a rounding error [56]. Figure 6.3 shows the distribution of the measurements
from the VreeTracker. The collected data contained some positions for a few hundred
times. The values from the Vive Tracker are shown in Figure 6.4 and are more evenly
distributed.

To compare the outcome of the second test, the results from both tracking systems, were
normalized and added to the diagram shown in Figure 6.5. The blue points represent
the Vive Tracker, while the VreeTracker’s points are red. The circular movement is
clearly visible for both tracking systems but the detail view in Figure 6.6 shows that the
calculated coordinates from the Vive system are more accurate and do not contain as
much jitter.

Figure 6.3: 3D histogram of VreeTracker’s positional data

69

6. Evaluation

Figure 6.4: 3D histogram of Vive Tracker’s positional data

Figure 6.5: Positions of the markers during the circular movement

70

6.3. Grasp Performance

Figure 6.6: Detail view of the position data

6.3 Grasp Performance
The result of the grasp algorithm evaluation is an average distance of 13mm between
each fingertip and the climbing hold. Figure 6.7 shows a boxplot of the data with the
distance for each finger separately. As expected, the thumb and little finger did not
perform as good as the other fingers with an average of 17mm and 19mm distance. The
main reason is that most of the climbing holds of the VreeTracker are only as wide as the
hand or smaller. Therefore, some of the climbing holds are too small to be grasped with
all fingers. In the test this effect always concerns the thumb and little finger, because the
centers of the hand and the climbing hold are aligned. Additionally, the virtual hand
is always vertical during the test, hence the thumb sometimes could not even reach the
climbing holds.

Interestingly the average distance of 13mm is still the same after the data is normalized
by the climbing hold size. The differences can be seen in Figure 6.8. The middle and
ring finger perform better for smaller grips because the different grasp pose allows their
fingertips to often collide with the top side of the climbing hold. The average distance of
the little finger is 23mm for small and 18mm for big climbing holds. This can also be
explained with the width of the climbing hold. Figure 6.9a shows such a grasp where the
thumb and the little finger do not reach the small climbing hold. Another typical error
can occur when a finger collides with the climbing wall during the grasp movement. The
animation of the finger is stopped and as seen in Figure 6.9b, the finger does not really
grasp the climbing hold.

71

6. Evaluation

Figure 6.7: Boxplot of distance (mm) between each finger and the climbing hold

(a) Small climbing holds (b) Big climbing holds

Figure 6.8: Boxplots of distances (mm) split by climbing hold size

72

6.4. Discussion

(a) Thumb and little finger do not reach the climbing hold (b) Middle finger collides with climbing wall

Figure 6.9: Typical errors during virtual hand simulation

6.4 Discussion
The comparison of the VreeTracker and Vive Tracker showed, that the calculated positions
of the Vive Tracker are more evenly distributed and its moving object tracking performance
is also superior. Beside the better precision, the easy integration in the already used
Vive system is another good reason to use the Vive Tracker for the VreeClimber project.
The results from the grasp algorithm evaluation showed, that the virtual hand is able to
adapt to climbing holds of various sizes and forms. However, the data also showed, that
the performance of the thumb and the little finger could be improved. One possibility
would be to consider the width of the climbing hold to introduce a new grasp pose, in
which the fingers are more closed towards the climbing hold’s center.

73

CHAPTER 7
Conclusion and Future Work

In the course of this thesis, the software of the VreeTracker was rewritten and an algorithm
to simulate the hand movements in the VR world was created [56]. The original software
of the VreeTracker was written for Matlab and is now replaced with a Java implementation
that uses the OpenCV library. Therefore, Matlab is no longer required and the software
can be run on any PC. The virtual hand simulation software was created for the game
engine Unity and can be easily integrated in other Unity projects. The main component
of the software is the grasp algorithm. It automatically opens and closes the virtual hand
depending on the distance to the climbing hold. The algorithm also supports different
grasp poses, which are selected based on the size of the climbing hold and the orientation
of the hand.

During the creation of this thesis, HTC released the Vive Tracker, which has very similar
features as the VreeTracker. The integration of the Vive Tracker in the already-used
Vive system was straightforward, and with a few modifications, the tracking also worked
with the virtual hand simulation. A substantial benefit of this change is that the camera
rigs and their calibration are no longer necessary. The evaluation showed that the
overall performance of the Vive Tracker is better than the VreeTracker’s performance,
and therefore it makes sense to only use the Vive system in future projects of the
VreeClimber.

The virtual hand simulation works well for simple use cases, such as when the hand
approaches the climbing hold with a constant movement. However, to grasp smaller
climbing holds the tracking system and virtual climbing wall need to be calibrated
accurately to ensure good results during climbing. If the calibration was not performed
carefully, graphical glitches can occur, and the user immediately notices inaccuracies.

During the development of the grasp algorithm, some experimenting with the placement
of the hand tracker was done. An improvised strap that placed it on the back of the

75

7. Conclusion and Future Work

hand showed the most promising results. Hence, the purchase or development of a more
suitable strap could further improve the user experience [6].

The evaluation of the grasp algorithm showed that the performance of the thumb and
little finger can be improved. One possibility would be to add additional grasp poses
to better adapt to the different sizes and forms of the climbing holds. Another area for
potential improvements is the virtual hand model. Currently, the size of the climber’s
hand is not considered, which could be a problem for users with very small or big hands.
Additionally, the hand’s skin could be customized for different climbing scenarios.

76

List of Figures

1.1 VreeClimber with climbing holds from both sides 2

2.1 Camera with IR LEDs and a passive marker [17] 6
2.2 Optical and glove-based finger tracking 7
2.3 Headset differences because of tracking method 8
2.4 Grasping a virtual object with a finger tracking glove [3] 10
2.5 Focus point and example grasps of a robotic hand 11

3.1 Electromagnetic spectrum [11] . 14
3.2 The pinhole camera model [57] . 14
3.3 Different types of distortion compared to no distortion 16
3.4 Checkerboard pattern with feature points overlay 18
3.5 Triangulation in epipolar geometry [16] 19
3.6 RGB image and each color channel (red, green and blue) 19
3.7 RGB image and each color channel (Y’, Cb, Cr) 20
3.8 Example image with circular blobs in white and different shades of gray . 22
3.9 Cycle of a discrete Kalman filter [70] . 23
3.10 Bones and joints of the human hand [66] 25
3.11 Six basic types of prehension [59] . 26

4.1 Setup of the stereo cameras in front of the VreeClimber 32
4.2 Two VreeTracker marker prototypes with straps for the wrist and ankle . 33
4.3 Logitech HD Pro Webcam C920 with a suppression filter 34
4.4 Software modules of the tracking software 36
4.5 Overview of the components used by the VR application 39
4.6 Hand model with physics colliders . 40
4.7 Image and 3D scan of the same climbing hold 41
4.8 Examples of different grasp poses . 43

5.1 Class diagram of the tracking software 47
5.2 GUI with typical calibration camera settings 51
5.3 GUI with two visible IR markers . 52
5.4 Settings of limits and tolerances in the GUI 53
5.5 Images recorded during full camera calibration 54

77

5.6 Calibration pattern in front of VreeClimber wall 55
5.7 Interactive room setup in SteamVR [33] 56
5.8 The virtual climbing scene with shoe and hand models 57
5.9 Picture of a climber in front of the VreeClimber and the point of view rendering

. 58
5.10 Used hand model from Unity asset store [62] 59
5.11 Bone structure of the virtual hand . 60
5.12 Vive tracker attached to the back of the hand 61
5.13 Closed hand models for different climbing hold sizes and hand orientations 63

6.1 Rotating platform to evaluate precision during movement 68
6.2 Shortest distances visualized as red rays 68
6.3 3D histogram of VreeTracker’s positional data 69
6.4 3D histogram of Vive Tracker’s positional data 70
6.5 Positions of the markers during the circular movement 70
6.6 Detail view of the position data . 71
6.7 Boxplot of distance (mm) between each finger and the climbing hold . . 72
6.8 Boxplots of distances (mm) split by climbing hold size 72
6.9 Typical errors during virtual hand simulation 73

78

List of Tables

3.1 Relevant parameters for the SimpleBlobDetector [47] 21
3.2 Discrete Kalman filter time update equations [70] 24
3.3 Discrete Kalman filter measurement update equations [70] 24
3.4 Thumb and fingers range of motion and average position during a grasp of an

object [4] . 26

4.1 Requirements for the VreeTracker and virtual hand simulation software . . 31

79

Bibliography

[1] M. Borchardt, K. Hartmann, R. Leymann, and S. Schlesinger. Ersatzglieder und
Arbeitshilfen: Für Kriegsbeschädigte und Unfallverletzte. Springer Berlin Heidelberg,
1919.

[2] A. Borrego, J. Latorre, M. Alcañiz, and R. Lloréns. Comparison of oculus rift and
htc vive: Feasibility for virtual reality-based exploration, navigation, exergaming,
and rehabilitation. Games for health journal, 7 3:151–156, 2018.

[3] C. W. Borst and A. P. Indugula. Realistic virtual grasping. pages 91–98, 320, 2005.

[4] M. C. Hume, H. Gellman, H. Mckellop, and R. H. Brumfield. Functional range of
motion of the joints of the hand. The Journal of Hand Surgery, 15:240–243, 04 1990.

[5] A. Cologan. How does the leap motion controller work? http:
//blog.leapmotion.com/hardware-to-software-how-does-the-
leap-motion-controller-work/. Accessed: 2018-08-02.

[6] R. Corp. Trackstrap hand for htc vive tracker in vr and motion capture. https:
//rebuffreality.com/products/trackstrap-hands. Accessed: 2019-04-
24.

[7] P. Dempsey. The teardown: Htc vive vr headset. Engineering Technology, 11(7-
8):80–81, Aug 2016.

[8] G. ElKoura and K. Singh. Handrix: Animating the human hand. In Proceedings
of the 2003 ACM SIGGRAPH/Eurographics Symposium on Computer Animation,
SCA ’03, pages 110–119, Aire-la-Ville, Switzerland, Switzerland, 2003. Eurographics
Association.

[9] C.-S. Fahn and H. Sun. Development of a data glove with reducing sensors based
on magnetic induction. IEEE Transactions on Industrial Electronics, 52(2):585–594,
April 2005.

[10] J. Farley. A short guide to color models - sitepoint. https://www.sitepoint.
com/a-short-guide-to-color-models/. Accessed: 2018-12-07.

81

http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
http://blog.leapmotion.com/hardware-to-software-how-does-the-leap-motion-controller-work/
https://rebuffreality.com/products/trackstrap-hands
https://rebuffreality.com/products/trackstrap-hands
https://www.sitepoint.com/a-short-guide-to-color-models/
https://www.sitepoint.com/a-short-guide-to-color-models/

[11] A. I. for Artificial Intelligence. the electromagnetic spectrum (lesson 0753)
- tqa explorer. http://data.allenai.org/tqa/the_electromagnetic_
spectrum_L_0753/. Accessed: 2018-09-04.

[12] B. Gabor. Opencv: Camera calibration with opencv. https://docs.
opencv.org/3.4.3/d4/d94/tutorial_camera_calibration.html. Ac-
cessed: 2018-10-07.

[13] Google. Google cardboard - google vr. https://vr.google.com/cardboard/.
Accessed: 2018-07-18.

[14] M. S. Grewal and A. P. Andrews. Applications of kalman filtering in aerospace 1960
to the present [historical perspectives]. IEEE Control Systems Magazine, 30(3):69–78,
June 2010.

[15] V. GUPTA. Color spaces in opencv (c++ / python) | learn opencv. https:
//www.learnopencv.com/color-spaces-in-opencv-cpp-python/. Ac-
cessed: 2018-12-28.

[16] R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cam-
bridge University Press, New York, NY, USA, 2 edition, 2003.

[17] G. Hillebrand, M. Bauer, K. Achatz, and G. Klinker. Inverse kinematic infrared
optical finger tracking. 2006.

[18] A. Hornberg. Handbook of Machine Vision. Wiley-VCH, 2006.

[19] HTC. Vive | vive tracker. https://www.vive.com/us/vive-tracker/. Ac-
cessed: 2018-08-02.

[20] HTC. Vive | vive virtual reality system. https://www.vive.com/us/product/
vive-virtual-reality-system/. Accessed: 2018-07-18.

[21] iFixit. Htc vive teardown - ifixit. https://www.ifixit.com/Teardown/HTC+
Vive+Teardown/62213. Accessed: 2018-08-14.

[22] iFixit. Oculus rift cv1 teardown - ifixit. https://de.ifixit.com/Teardown/
Oculus+Rift+CV1+Teardown/60612. Accessed: 2018-08-14.

[23] B. E. Insko. Passive Haptics Significantly Enhances Virtual Environments. PhD
thesis, University of North Carolina, 2001.

[24] R. E. Kalman. A new approach to linear filtering and prediction problems. Transac-
tions of the ASME–Journal of Basic Engineering, 82(Series D):35–45, 1960.

[25] A. Kaspers. Blob detection. Master’s thesis, UMC Utrecht, 2011.

[26] A. Kawamura, K. Tahara, R. Kurazume, and T. Hasegawa. Dynamic grasping of an
arbitrary polyhedral object. Robotica, 31(4):511?523, 2013.

82

http://data.allenai.org/tqa/the_electromagnetic_spectrum_L_0753/
http://data.allenai.org/tqa/the_electromagnetic_spectrum_L_0753/
https://docs.opencv.org/3.4.3/d4/d94/tutorial_camera_calibration.html
https://docs.opencv.org/3.4.3/d4/d94/tutorial_camera_calibration.html
https://vr.google.com/cardboard/
https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/
https://www.learnopencv.com/color-spaces-in-opencv-cpp-python/
https://www.vive.com/us/vive-tracker/
https://www.vive.com/us/product/vive-virtual-reality-system/
https://www.vive.com/us/product/vive-virtual-reality-system/
https://www.ifixit.com/Teardown/HTC+Vive+Teardown/62213
https://www.ifixit.com/Teardown/HTC+Vive+Teardown/62213
https://de.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612
https://de.ifixit.com/Teardown/Oculus+Rift+CV1+Teardown/60612

[27] J. Kim, N. D. Thang, and T. Kim. 3-d hand motion tracking and gesture recognition
using a data glove. In 2009 IEEE International Symposium on Industrial Electronics,
pages 1013–1018, July 2009.

[28] F. Kosmalla. Virtual reality to reality calibration unity example. https://github.
com/felixkosmalla/unity-vive-reality-mapper. Accessed: 2019-04-05.

[29] P. Kumar, J. Verma, and S. Prasad. Hand data glove: A wearable real-time device
for human-computer interaction. 43:15–26, 01 2012.

[30] A. Kunz, L. Brogli, and A. Alavi. Interference measurement of kinect for xbox one.
pages 345–346, 11 2016.

[31] LightBuzz. Github - lightbuzz/kinect-finger-tracking: The most accurate way to track
fingers using kinect v2. https://github.com/LightBuzz/Kinect-Finger-
Tracking. Accessed: 2018-07-27.

[32] logitech. Logitech hd pro webcam c920 für windows, mac und chrome os. https:
//www.logitech.com/de-at/product/hd-pro-webcam-c920. Accessed:
2019-02-12.

[33] logitech. steamvr-setup-room-scale-9 - road to vr. https://www.roadtovr.com/
steamvr-setup-room-scale-9/. Accessed: 2019-02-24.

[34] E. Luckett. A quantitative evaluation of the htc vive for virtual reality research,
2018.

[35] Mathworks. Matlab - mathworks - matlab & simulink. https://www.mathworks.
com/products/matlab.html. Accessed: 2018-07-17.

[36] M. Mehling. Implementation of a low cost marker based infrared light optical
tracking system. Master’s thesis, Institute for Software Technology and Interactive
Systems, 2006.

[37] E. Mikael. Reaching out to grasp in virtual reality: A qualitative usability evaluation
of interaction techniques for selection and manipulation in a vr game. Master’s
thesis, KTH Royal Institute of Technology, 2016.

[38] J. More. Levenberg–marquardt algorithm: implementation and theory. 1 1977.

[39] L. Motion. Leap motion. https://www.leapmotion.com/. Accessed: 2018-08-
02.

[40] Neewer. Neewer 52mm 52 mm ir 850 nm 850nm infrared infra-red filter | neewer |
photographic equipment and accessories for professionals, musicians, and amateur
photographerso. https://neewer.com/product/10000319/. Accessed: 2019-
03-19.

83

https://github.com/felixkosmalla/unity-vive-reality-mapper
https://github.com/felixkosmalla/unity-vive-reality-mapper
https://github.com/LightBuzz/Kinect-Finger-Tracking
https://github.com/LightBuzz/Kinect-Finger-Tracking
https://www.logitech.com/de-at/product/hd-pro-webcam-c920
https://www.logitech.com/de-at/product/hd-pro-webcam-c920
https://www.roadtovr.com/steamvr-setup-room-scale-9/
https://www.roadtovr.com/steamvr-setup-room-scale-9/
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.leapmotion.com/
https://neewer.com/product/10000319/

[41] Noitom. Can i use hi5 vr glove without adding any positional tracking devices?
| hi5 vr glove. https://support.hi5vrglove.com/hc/en-us/articles/
360003162914. Accessed: 2018-09-27.

[42] Noitom. Hi5 vr glove business edition | hi5 vr glove. https://hi5vrglove.com/
store/hi5glove. Accessed: 2018-07-18.

[43] Noitom. Home | hi5 vr glove. https://hi5vrglove.com/store/hi5glove.
Accessed: 2018-07-18.

[44] Oculus. Accessories | oculus. https://www.oculus.com/rift/
accessories/. Accessed: 2018-08-02.

[45] Oculus. Oculus rift | oculus. http://oculus.com/rift. Accessed: 2018-07-18.

[46] OpenCV. Opencv: Camera calibration and 3d reconstruction.
https://docs.opencv.org/3.3.1/d9/d0c/group__calib3d.html#
ga549c2075fac14829ff4a58bc931c033d. Accessed: 2019-03-11.

[47] OpenCV. Opencv: cv::simpleblobdetector class reference. https://docs.opencv.
org/3.3.1/d0/d7a/classcv_1_1SimpleBlobDetector.html. Accessed:
2019-01-03.

[48] T. Pintaric and H. Kaufmann. A rigid-body target design methodology for optical
pose-tracking systems. In Proceedings of the 2008 ACM Symposium on Virtual
Reality Software and Technology, VRST ’08, pages 73–76, New York, NY, USA, 2008.
ACM.

[49] N. Pollard. The grasping problem: Toward task-level programming for an articulated
hand. Technical Report 1214, 1990.

[50] J. Redmon and A. Angelova. Real-time grasp detection using convolutional neural
networks. In 2015 IEEE International Conference on Robotics and Automation
(ICRA), pages 1316–1322, May 2015.

[51] satya Mallick. Blob detection using opencv (c++ / python) | learn opencv.
https://www.learnopencv.com/blob-detection-using-opencv-
python-c/ . Accessed: 2019-01-03.

[52] N. Shaker and M. Abou Zliekha. Real-time finger tracking for interaction. pages
141 – 145, 10 2007.

[53] K. B. Shimoga. Robot grasp synthesis algorithms: A survey. Int. J. Rob. Res.,
15(3):230–266, June 1996.

[54] Skarredghost. How to use kinect with htc vive. https://skarredghost.com/
2016/12/09/how-to-use-kinect-with-htc-vive/. Accessed: 2018-09-27.

84

https://support.hi5vrglove.com/hc/en-us/articles/360003162914
https://support.hi5vrglove.com/hc/en-us/articles/360003162914
https://hi5vrglove.com/store/hi5glove
https://hi5vrglove.com/store/hi5glove
https://hi5vrglove.com/store/hi5glove
https://www.oculus.com/rift/accessories/
https://www.oculus.com/rift/accessories/
http://oculus.com/rift
https://docs.opencv.org/3.3.1/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
https://docs.opencv.org/3.3.1/d9/d0c/group__calib3d.html#ga549c2075fac14829ff4a58bc931c033d
https://docs.opencv.org/3.3.1/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://docs.opencv.org/3.3.1/d0/d7a/classcv_1_1SimpleBlobDetector.html
https://www.learnopencv.com/blob-detection-using-opencv-python-c/
https://www.learnopencv.com/blob-detection-using-opencv-python-c/
https://skarredghost.com/2016/12/09/how-to-use-kinect-with-htc-vive/
https://skarredghost.com/2016/12/09/how-to-use-kinect-with-htc-vive/

[55] K. D. Son. son-oh-yeah/moving-target-tracking-with-opencv. https://github.
com/son-oh-yeah/Moving-Target-Tracking-with-OpenCV. Accessed:
2019-03-05.

[56] L. Steindl. Hybrid tracking technology for virtual rock climbing. Master’s thesis,
Vienna University of Technology, 2018.

[57] P. Sturm. Pinhole Camera Model, pages 610–613. Springer US, Boston, MA, 2014.

[58] R. Szeliski. Computer Vision: Algorithms and Applications. Springer-Verlag, Berlin,
Heidelberg, 1st edition, 2010.

[59] C. J. Taylor and R. J. Schwarz. The anatomy and mechanics of the human hand.
Artificial limbs, 2 2:22–35, 1955.

[60] O. team. Opencv library. https://opencv.org. Accessed: 2019-04-05.

[61] U. Technologies. Unity. https://unity3d.com/de. Accessed: 2018-07-17.

[62] Unity. Animated hands with gloves - asset store. https://assetstore.unity.
com/packages/3d/characters/animated-hands-with-gloves-48520.
Accessed: 2019-02-23.

[63] Unity. Steamvr plugin - asset store. https://assetstore.unity.com/
packages/tools/integration/steamvr-plugin-32647. Accessed: 2019-
02-24.

[64] Unity. Unity - manual: Unity user manual (2018.3). https://docs.unity3d.
com/Manual/index.html. Accessed: 2019-02-24.

[65] Valve. Steamvr. https://steamcommunity.com/steamvr. Accessed: 2019-
02-24.

[66] M. R. Villarreal. Scheme human hand bones-en - hand - wikipedia.
https://en.wikipedia.org/wiki/Hand#/media/File:Scheme_human_
hand_bones-en.svg. Accessed: 2018-11-26.

[67] M. VR. Learn more | manus vr. https://manus-vr.com/learn-more. Ac-
cessed: 2018-08-2.

[68] M. VR. Manus vr | order the manus vr development kit. https://manus-
vr.com/order.php. Accessed: 2018-07-18.

[69] M. VR. Tech specs | manus vr. https://manus-vr.com/tech-specs. Accessed:
2018-09-27.

[70] G. Welch and G. Bishop. An introduction to the kalman filter. Technical Report
95-041, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA, 1995.

85

https://github.com/son-oh-yeah/Moving-Target-Tracking-with-OpenCV
https://github.com/son-oh-yeah/Moving-Target-Tracking-with-OpenCV
https://opencv.org
https://unity3d.com/de
https://assetstore.unity.com/packages/3d/characters/animated-hands-with-gloves-48520
https://assetstore.unity.com/packages/3d/characters/animated-hands-with-gloves-48520
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://assetstore.unity.com/packages/tools/integration/steamvr-plugin-32647
https://docs.unity3d.com/Manual/index.html
https://docs.unity3d.com/Manual/index.html
https://steamcommunity.com/steamvr
https://en.wikipedia.org/wiki/Hand#/media/File:Scheme_human_hand_bones-en.svg
https://en.wikipedia.org/wiki/Hand#/media/File:Scheme_human_hand_bones-en.svg
https://manus-vr.com/learn-more
https://manus-vr.com/order.php
https://manus-vr.com/order.php
https://manus-vr.com/tech-specs

[71] Z. Zhang. Flexible camera calibration by viewing a plane from unknown orientations.
In Proceedings of the Seventh IEEE International Conference on Computer Vision,
volume 1, pages 666–673 vol.1, Sept 1999.

[72] Z. Zhang. Microsoft kinect sensor and its effect. 19:4–10, 02 2012.

86

	Kurzfassung
	Abstract
	Introduction
	Motivation
	Problem Statement
	Structure of the Work

	State of the Art
	Hand Tracking for Virtual Reality
	Marker Tracking
	Finger Tracking
	Available Tracking Solutions

	Object Grasping
	Simple Object Grasping with VR Controllers
	Object Grasping with Finger Tracking
	Algorithms and Methods from Robotics

	Theoretical Background
	Computer Vision
	Infrared Light
	Pinhole Camera
	Camera Calibration and Triangulation
	Image Manipulation and Blob Detection
	Position Prediction with Kalman Filter

	The Human Hand
	Anatomy of the Human Hand
	Joints and Range of Motion
	Different Grasp Poses

	System Design
	Requirements
	Climbing Scenario
	VreeTracker Software
	Virtual Hand Simulation
	General Software Requirements

	Marker Tracking
	Tracking Setup
	Hardware Architecture
	Software Architecture

	Virtual Hand Simulation
	Physics Colliders
	Climbing Grips
	Closing of the Hand Model
	Different Grasp Poses

	Implementation
	Marker Tracker
	OpenCV
	Class Overview
	GUI
	Calibration
	Tracking

	Virtual Hand Simulation
	HTC Vive Setup
	Unity Project Setup
	Virtual Climbing Scene
	Hand Model
	VreeTracker Integration
	HTC Vive Tracker Integration
	Grasp Algorithm

	Evaluation
	Setup
	Vive Tracker Evaluation
	Virtual Hand Simulation Evaluation

	VreeTracker and Vive Tracker Comparison
	Grasp Performance
	Discussion

	Conclusion and Future Work
	List of Figures
	List of Tables
	Bibliography

