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Simplicity is a great virtue but it
requires hard work to achieve it
and education to appreciate it.
And to make matters worse:
complexity sells better.
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Abstract

Search engines are concerned with retrieving relevant information to support a user’s
information seeking task. In the health domain, access to understandable information is
crucial as it has the potential to impact on people’s health decisions. In this thesis, we
study two aspects that should be taken into account by modern health search engines:
the user health expertise in the health domain and the document understandability.

This thesis begins by considering the role of user expertise in the health domain. We
investigate user search behavior through logfiles of several domain-specific health search
engines. While most of the recent studies on health search behavior have been based
on the search logs of commercial general purpose search engines, we performed here
the important task of reproducing these studies on search logs of health search engines,
finding out to what extent these results can be supported or not. Our query-log analysis
can be used to understand health searchers better and even to predict the user expertise
based on user behavior and their interactions with the search engine.

Our investigation of document understandability in the health domain arises from the
increasing concern that health documents on the Web are not suitable for health consumers.
For that, we study the impact that preprocessing pipelines have on readability formulas,
which are commonly used to estimate the understandability of documents. We also
examined domain-specific methods to estimate the understandability of documents and
how machine learning approaches can be employed to predict document understandability.

In particular, for the health domain, documents should be considered more relevant if,
apart from being topically relevant, they are also understandable by the searcher. For
that, we need evaluation frameworks that consider other relevance dimensions beyond
topicality. In this work, we propose a framework that delays the combination of scores
for the different relevance dimensions, which facilitates the work of information retrieval
practitioners by increasing the interpretability of the results. With such a framework, we
evaluated various strategies to integrate understandability estimation into search engines,
finding that learning-to-rank is the most effective approach.

This work contributes to improving search engines tailored to consumer health search
because it thoroughly investigates promises and pitfalls of understandability estimations
and their integration into retrieval methods. As shown by our experiments, these methods
would undoubtedly improve current health-focused search engines.
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CHAPTER 1
Introduction

1.1 Background and Motivation
Health is one of the most critical topics on the Web, both because of its popularity and
its potential impact on people’s life [90]. A 2013 Pew Research Center report found that
81% of U.S. adults use the Internet and, of those, 72% say they have looked online for
health information in the previous year, and one in every three wanted to diagnose a
medical condition [66].

Using the Web for health advice is a global tendency. In Europe, a survey from the
European Commission estimates that 60% of the population have gone online to search
for health-related information in 2014 [59]. In China, reports point to the fact that 28.9%
of Chinese mobile Internet users have been using mobile healthcare apps, with 60.3% of
them using apps for information search [126].

These reports show that search tasks vary from searching for very general information on
health-related topics, such as diet or pregnancy, to searching for specific injuries and, in
some cases, for rare diseases. It was also found that people often seek information on
behalf of friends or relatives [48]; it is estimated that half of health information searches
are on behalf of someone else [66]. Overall, these reports found that the search starts
mostly in a commercial search engine, such as Baidu, Bing or Google.

Commercial search engines aim to retrieve relevant information to support a user’s
information seeking task. Commonly, signals about the topicality of a piece of information
with respect to a query are used to estimate relevance, with other relevance dimensions,
such as understandability, topical expertise, novelty, scope and trustworthiness [221]
being relegated to a secondary position, or completely neglected. While this may be a
minor problem for many information seeking tasks, there are some specific tasks in which
dimensions other than topicality have an essential role. The seeking of health information
on the Web by the general public is one such task.

3



1. Introduction

In this thesis, we particularly study two of such dimensions: the user topical expertise
and the document understandability in the health domain.

1.1.1 Topical Expertise

We define expertise as the amount of knowledge someone has on a topic. This knowledge
can be acquired through study, training or experience in the subject. While expertise is
intrinsically a continuous value, due to the nature of the data used in Part II of this thesis,
we opt for defining two non-overlapping categories: the experts in the health domain and
the non-experts in the health domain. We refer to them in this work, respectively, as
health experts and health consumers.

Health consumers or just consumers are the general public, i.e., people without an in-
depth and formal knowledge about health domain. Patients and laypeople are two terms
often used in the literature to refer to this group. In this work, we avoid the term patient
as the search engine user does not necessarily have a condition (as mentioned, searching
on behalf of other people is a common practice). Note that some chronic condition
patients might develop a broad knowledge on their diseases, often becoming experts in
their one specific disease, but for the sake of simplicity we formally still consider these
patients as health consumers.

On the other side of the spectrum, we opt for the term health experts, or simply, experts,
to refer to people that have an in-depth and formal knowledge about the health domain,
such as medical doctors, nurses, biologists or pharmacists. Health professionals or simply
professionals are interchangeable terms often used in the literature to refer to health
experts.

Studies have shown that the simple distinction between health consumers and health
experts can significantly improve the quality of their interactions with search engines [207,
147, 207, 174, 39]. Schwarz et al. [174] show that the popularity of a webpage among
experts is a crucial feature to help non-experts identify credible websites. Collins-
Thompson et al. [39] discuss that re-ranking general search engine results to match the
user’s skills of readability can provide significant gains; however they also point out that
estimating user profiles is a non-trivial task and needs to be further explored.

Part II of this thesis sheds light on this topic by investigating how both health consumers
and health experts search online for health information. We profile these two types of
users and study estimators that can be used to tell them apart.

1.1.2 Document Understandability

A key problem when searching the Web for health information is that retrieved documents
might be too technical, unreliable and even misleading. While experts can identify the is-
sues with low-quality results, the retrieval of unclear or incorrect health information poses
potential risks to consumers, as they may dismiss severe symptoms, use inappropriate
treatments or unfoundedly escalate their health concerns about common symptomatol-
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1.2. Thesis Goal

ogy [17, 208]. In high-stakes search tasks such as this, access to poor information can
lead to poor decisions which ultimately can have a significant impact on people’s health
and well-being [208, 205].

The use of general purpose commercial search engines for seeking health advice has
been largely analyzed, questioned and criticised, despite the commendable efforts these
services have put into providing increasingly better health information (e.g., the Google
Health Cards [71]). While the access to a vast volume of online information could lead to
better physician-patient relationships and better health outcomes [126, 215], an extensive
number of studies has shown that the average user finds it difficult to understand the
content of a significant portion of the results retrieved by current search engine technology,
e.g., [81, 58, 62, 210, 161, 9, 133, 57]. In the context of consumer health information
seeking, search engines should not only retrieve relevant information, but they should
also promote information that is understandable, reliable and verified [208].

Parts III and IV of this thesis investigate the understandability of health information
retrieved by search engines, and the improvement of search results to favor information
understandable by the general public. Although very important in the health domain, we
leave addressing the reliability and trustworthiness of the retrieved information for future
work. Nevertheless, this can be achieved by extending the frameworks we investigate
here.

1.1.3 Data Resources

In order to effectively support users in finding topical, high-quality, and accessible health
information on the Web, new retrieval methodologies have to be developed and evaluated.

In this context, CLEF eHealth1 is an evaluation lab organized within the Conference and
Labs of the Evaluation Forum (CLEF) aiming to build resources and methods to support
health consumers, their next-of-kin, clinical staff, and health scientists in understanding,
accessing, and authoring eHealth information in a multilingual setting. The lab has been
running yearly since 2013 [189, 107, 77, 106, 78] and historically has been built upon
three main tasks in the health domain: information extraction, information management
and information retrieval. In particular, the CLEF eHealth Evaluation Labs 2015 Task
2 [154] and 2016 Task 3 [226] were specifically designed to evaluate information retrieval
systems aimed at health consumers to improve how the general public access medical
information on the Web. The collections created in CLEF eHealth are extensively used
in this thesis.

1.2 Thesis Goal

Information retrieval collections, such as CLEF eHealth 2015 and 2016, are developed
to foster research in specific areas in which few or no solutions have been proposed. In

1https://sites.google.com/site/clefehealth/
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1. Introduction

the case of consumer health search, only a few ad-hoc solutions exist. These solutions
are typically supported by government initiatives or medical practitioner associations,
e.g., HealthOnNet.org (HON) and HealthDirect.gov.au, among others. They
aim to provide better health information to health consumers. For example, HON’s
mission statement is “to guide Internet users to reliable, understandable, accessible and
trustworthy sources of medical and health information”. But, do the solutions that these
services currently employ actually provide this type of information to the health-seeking
general public?

As an illustrative example, we analyzed the top 10 search results retrieved by HON on
01/10/2017 in answer to 300 health search queries generated by regular health consumers
in health forums. These queries are part of the CLEF 2016 eHealth collection mentioned
above. The understandability score of the retrieved documents was estimated with the
most effective readability formula and preprocessing settings analyzed in the late chapters
of this thesis. The understandability scores approximately correspond to the number of
years in the school necessary to understand the text in the document. Thus low scores
correspond to easy to understand Web documents. As the target audience of HON
is health consumers without deep health expertise, one might expect that the content
retrieved is accessible and easy-to-understand.

Figure 1.1 reports the cumulative distribution of understandability scores for these
search results. Note that we did not assess the topical relevance of the documents
here, only their estimated understandability score. We also report the understandability
scores for the “optimal” search results (oracle), as found in CLEF 2016. In the oracle
setting, we retrieved only results that were assessed as topically relevant ranked by their
understandability scores. The other two systems reported are a typical baseline method
(BM25 ) and our best retrieval method (XGB).

The results clearly indicate that, despite solutions like HON being explicitly aimed at
supporting access to understandable health information, they often fail to do so (note
how the cumulative distribution of HON and the BM25 baseline are similar).

The overall goal of this thesis is to investigate and establish methods and best practice for
developing search engines that retrieve relevant and understandable health information
from the Web for non-expert health consumers.

1.3 Road Map and Contributions
This thesis is divided into 5 parts. Part I contains this introduction and the related
work of this thesis, shown in Chapter 2. Each of its subsections focuses on a particular
forthcoming part of this thesis.

Next, we highlight here the three main general contributions of this thesis which we
investigate, respectively, in Parts II, III and IV of this work.

The first contribution of this thesis is a study of user interactions with health/medical
search engines. Part II analyzes health search behavior. Throughout a detailed query-log

6
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Figure 1.1: The cumulative distribution of the Dale-Chall Index (DCI) of search results.
DCI measures the years of schooling required to understand a document. The average
US resident reads at or below an 8th-grade level (dashed line) [43, 199, 50, 187], which is
the level suggested by NIH for health information on the Web [196]. The distribution
for HON is similar to that of the baseline used in this article (BM25). Our best method
(XGB) re-ranks documents to provide more understandable results; its distribution is
similar to that of an “Oracle” system.

based analysis, we investigate what distinguishes health consumers and health experts
looking at what and how they search for medical advice on the Web. In Chapter 3, the
query logs of four health search engines are investigated to understand the differences
in search behavior of health experts and health consumers. These differences are then
explored to build a health expertise classifier, which can be used to automatically classify
search engine users as health experts or health consumers. Search engines could make
use of such a classifier to foster search results’ content that, while topically relevant, has
the highest level of understandability.

The second contribution of this thesis is an investigation into methods for estimating
understandability of health documents. Part III changes the focus of this thesis from users
to documents. Chapter 5 looks into how different HTML preprocessing settings impact the
estimation of understandability when popular readability formulas are used. Readability
formulas are widely used methods for estimating understandability of documents, but we
identify hidden pitfalls in their usage. In Chapter 6, we develop other domain-specific
methods which on top of being resilient to such pitfalls, are more effective. We make
use of understandability assessments collected in CLEF eHealth to evaluate the different
HTML preprocessing pipelines. In order to provide the most suitable document for
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a health searcher, search engines need to be able to estimate how understandable a
document is.

The third contribution of this thesis is the investigation and evaluation of methods to
re-rank search engine results to boost understandable and relevant results. For that,
Part IV focuses on building retrieval systems that, while aiming to find the most relevant
documents for a given query, are specially trained to promote more understandable search
results.

Topical relevance is central to the notion of relevance, but not the only factor (also
called dimension) that determine the relevance of a document. Chapter 7 investigates
evaluation frameworks that consider other relevance dimensions beyond the topical
relevance. We present the current state-of-the-art framework for multidimensional search
engine evaluation, UBIRE [224, 223], and its limitations. We propose a similar framework,
named H, aiming to overcome the limitations found in UBIRE. With this new evaluation
framework, in Chapter 8, we propose and evaluate different learning-to-rank approaches
to retrieve topically relevant and understandable results.

Finally, Chapter 9 in Part V of this thesis presents the conclusion of this work, its
limitations, and future directions.

1.4 Research Questions

This thesis is motivated by the need for a better health consumer experience when
seeking out information on the Web, in particular retrieving information that can be
understood by everybody. Based on that, the overall research question is: How can
we make search engines retrieve relevant and understandable information, especially for
health consumers?

We break this broad research question into many smaller ones which will be tackled in
the following parts/chapters of this thesis:

• Part II: Health Search Behavior

1. Chapter 3: What and how do consumers and health professionals search in
the health domain?

2. Chapter 3: How suitable is an automatic health text annotator, such as
UMLS MetaMap, to analyze and annotate short Web queries?

3. Chapter 4: Can we automatically infer user health expertise through user
search behavior?

4. Chapter 4: What are the most useful features to infer user health expertise
through search behavior automatically?

• Part III: Understandability Level of Web Documents

8



1.5. Published Research

5. Chapter 5: What is the effect of preprocessing pipelines on readability for-
mulas when estimating the understandability of Web documents?

6. Chapter 5: Among the readability formulas, what are the most and the least
robust ones? Which readability formula should we use?

7. Chapter 6: What are the best understandability estimators among the various
studied?

8. Chapter 6: How do preprocessing pipelines affect methods of understandability
estimation?

• Part IV: Understandability Integrated into Search Engines

9. Chapter 7: How can we incorporate other relevance dimensions (e.g., under-
standability) into existing system evaluation metrics?

10. Chapter 7: What is the limitation of the state-of-the-art multidimensional
evaluation framework and how can we overcome its limitation?

11. Chapter 8: How can understandability estimations be integrated into retrieval
methods to enhance the quality of the retrieved health information?

1.5 Published Research

The scientific work done during my Ph.D. is not limited to the work presented in this
thesis. In this section, I compile a list of all my publications during the years of my Ph.D.
studies and how they are linked (or not linked) to the text in this thesis:

• Analysing Search Behavior - Part II - Chapters 3 and 4.

1. Exploiting health related features to infer user expertise in the medical domain.
WSCD 2014. J Palotti, A Hanbury, H Müller [147]

2. User intent behind medical queries: an evaluation of entity mapping approaches
with MetaMap and Freebase. IIiX 2014. J Palotti, V Stefanov, A Hanbury [140]

3. How Users Search and What They Search for in the Medical Domain – Under-
standing Laypeople and Experts Through Query Logs. Information Retrieval
Journal 2016 J Palotti, A Hanbury, H Müller, C Kahn [148]

• Analysing Document Content - Part III - Chapters 5 and 6.

4. The Influence of Pre-processing on the Estimation of Readability of Web Documents.
CIKM 2015. J Palotti, G Zuccon, A Hanbury [141]
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5. Consumer Health Search on the Web: Study of Web Page Understandability and Its
Integration in Ranking Algorithms, JMIR 2019 J Palotti, G Zuccon, A Hanbury
[157]

• Understandability in Search Engines - Part IV - Chapters 7 and 8.

6. Ranking Health Web Pages with Relevance and Understandability. SIGIR 2016
J Palotti, G Zuccon, L Goeuriot, A Hanbury [145]

7. Beyond Topical Relevance: Studying Understandability and Reliability in Consumer
Health Search. SIGIR 2016 J Palotti [142]

8. MM: A new Framework for Multidimensional Evaluation of Search Engines, CIKM
2018 J Palotti, G Zuccon, A Hanbury [156]

• CLEF eHealth. The CLEF collections are extensively used in Chap-
ters 5, 6, 7 and 8.

9. ShARe/CLEF eHealth Evaluation Lab 2014, Task 3: User-centred Health Informa-
tion Retrieval. CLEF 2014. L Goeuriot, L Kelly, W Li, J Palotti, P Pecina, G
Zuccon, A Hanbury, G Jones, H Müller [107]

10. Overview of the ShARe/CLEF eHealth Evaluation Lab 2014. CLEF 2014. L
Kelly, L Goeuriot, H Suominen, T Schreck, G Leroy, D Mowery, S Velupillai, W
Chapman, D Martínez, G Zuccon, J Palotti [76]

11. Overview of the CLEF eHealth Evaluation Lab 2015. CLEF 2015. L Goeuriot, L
Kelly, H Suominen, L Hanlen, A Névéol, C Grouin, J Palotti, G Zuccon [77]

12. CLEF eHealth Evaluation Lab 2015, Task 2: Retrieving Information About Medical
Symptoms. CLEF2015. J Palotti, G Zuccon, L Goeuriot, L Kelly, A Hanbury, G
Jones, M Lupu, P Pecina [154]

13. The IR Task at CLEF eHealth evaluation labs 2016: user-centred health information
retrieval. CLEF 2016. G Zuccon, J Palotti, L Goeuriot, L Kelly, M Lupu, H
Müller, J Budaher, A Deacon [226]

14. Overview of the CLEF eHealth Evaluation Lab 2016. CLEF 2016. L Kelly, L
Goeuriot, H Suominen, A Névéol, J Palotti, G Zuccon [106]

15. CLEF eHealth Evaluation Lab Overview. CLEF 2017. L Goeuriot, L Kelly,H
Suominen, A Névéol, A Robert, E Kanoulas, R Spijker, J Palotti, G Zuccon [78]

16. CLEF 2017 Task Overview: The IR Task at the CLEF eHealth Evaluation Lab.
CLEF 2017. J Palotti, G Zuccon, Jimmy, P Pecina, M Lupu, L Goeuriot, L
Kelly, A Hanbury [155]
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17. Building Evaluation Datasets for Consumer-Oriented Information Retrieval. LREC
2016. L Goeuriot, L Kelly, G Zuccon, J Palotti [79]

18. An analysis of evaluation campaigns in ad-hoc medical information retrieval: CLEF
eHealth 2013 and 2014. Information Retrieval Journal 2018 L Goeuriot, G
Jones, L Kelly, J Leveling, M Lupu, J Palotti, G Zuccon [74]

19. Overview of the CLEF eHealth Evaluation Lab 2018. CLEF 2018 H Souminen,
L Kelly, L Goeuriot, A Névéol, L Ramadier, A Roberts, E Kanoulas, R Sijker, L
Azzorpardi, D Li, Jimmy, J Palotti, G Zuccon [188]

20. Overview of the CLEF 2018 Consumer Health Search Task. CLEF 2018 Jimmy,
G Zuccon, J Palotti, L Goeuriot, L Kelly [103]

• Research papers related to health search

21. Khresmoi - Multilingual Semantic Search of Medical Text and Images. MEDINFO
2013. All Project Collaborators [8]

22. TUW @ TREC Clinical Decision Support Track. TREC 2014. J Palotti, N
Rekabsaz, L Anderson, A Hanbury [150]

23. TUW @ TREC Clinical Decision Support Track 2015. TREC 2015. J Palotti, A
Hanbury [146]

24. Diagnose This If You Can – On the Effectiveness of Search Engines in Finding
Medical Self-diagnosis Information. ECIR 2015. G Zuccon, B Koopman, J Palotti
[225]

25. Exploring Understandability Features to Personalize Consumer Health Search.
CLEF 2017. J Palotti, N Rekabsaz [149]

26. Interactive Exploration of Healthcare Requests. CBMI 2016. A Bampoulidis, J
Palotti, J Brassey, M Lupu, S Metallidis, A Hanbury [12]

27. Does Online Evaluation Correspond to Offline Evaluation in Query Auto-Completion?
ECIR 2017. A Bampoulidis, J Palotti, J Brassey, M Lupu, A Hanbury [13]

28. Query Variations and their Effect on Comparing Information Retrieval Systems.
CIKM 2016 G Zuccon, J Palotti, A Hanbury [227]

29. Assessors Agreement: A Case Study across Assessor Type, Payment Levels, Query
variations and Relevance Dimensions. CLEF 2016. J Palotti, G Zuccon, J
Bernhardt, L Goeuriot, A Hanbury [153]

• Other research papers non-related to health search

11



1. Introduction

30. Insight to Hyponymy Lexical Relation Extraction in the Patent Genre Versus Other
Text Genres. IPaMin@KONVENS 2014. L Andersson, M Lupu, J Palotti, F
Piroi, A Hanbury, A Rauber [3]

31. TUW @ Retrieving Diverse Social Images Task 2014. MediaEval 2014. J Palotti,
N Rekabsaz, M Lupu, A Hanbury [151]

32. TUW @ MediaEval 2015 Retrieving Diverse Social Images Task. MediaEval 2015.
S Sabetghadam, J Palotti, N Rekabsaz, M Lupu, A Hanbury [169]

33. Learning to Rank for Personalized E-Commerce Search at CIKM Cup 2016. CIKM
Cup 2016 Workshop J Palotti [143]

34. When is the time ripe for natural language processing for passage patent retrieval?
CIKM 2016. L Andersson, M Lupu, J Palotti, A Hanbury, A Rauber [2]

35. Fixed-Cost Pooling Strategies based on IR Evaluation Measures. ECIR 2017.
A.Lipani, J Palotti, M Lupu, F Piroi, G Zuccon, A Hanbury [123]

36. Fixed Budget Pooling Strategies based on Fusion Methods. SAC 2017. A.Lipani,
M Lupu, J Palotti, G Zuccon, A Hanbury [122]

37. Leveraging Wikipedia’s Article Structure to Build Search Agents. CLEF 2017. J
Palotti [144]

38. TrecTools: an Open-source Python Library for Information Retrieval Practitioners
Involved in TREC-like Campaigns. SIGIR 2019. J Palotti, H Schells, G Zuccon
[152]

12



CHAPTER 2
Related Work

The goal of this thesis is studying the role of expertise and understandability in consumer
health search. We start by expanding on this last word, search. For that, we review, in
Section 2.1, the basic concepts of the Information Retrieval (IR) field and its components.
We then focus on health search and the role of expertise on the health domain in Section 2.2.
Finally, we review the literature on document understandability in Section 2.3. Note
that this chapter condenses all the related work of this thesis.

2.1 Topics from Information Retrieval
As defined by Baeza and Ribeiro Neto, Information Retrieval deals with the representation,
storage, organization of, and access to information items [11]. Simply put, the goal of
this field is providing easy access to information in which a person is interested [11].
Croft, Metzler, and Strohman call the three core issues for the IR field: information need,
relevance and evaluation [47].

Information need is the topic or piece of information that a person desires to learn more,
and it is expressed by her with a query [128]. In other words, the information need is the
underlying cause of the query that a person submits to an IR system/search engine/search
system [47]. Unfortunately, it is not always easy to represent an information need with
a query. There is an inherent gap between the information need and the query, and
this mismatch often results in the retrieval of information that is not relevant for the
searcher [206]. Information is relevant if it is one that the person perceives as containing
value with respect to their personal information need [128]. In order to find the relevant
information, researchers have proposed a number of retrieval models and systematically
evaluate the performance of them.

In Section 2.1.1, we briefly overview the related work on IR evaluation, introducing
the CLEF eHealth collections that were created and used in this thesis. Section 2.1.2
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better defines the concept of relevance and, in particular, the concept of multidimensional
relevance used in our work. One way to evaluate search systems is through the use of
query logs generated by them. However, in this thesis, we employ user search logs to
understand user search behavior better. We introduce the research on understanding
user behavior with user query logs of general search engines in Section 2.1.3 and detail
the related work for the health domain in Section 2.2.

2.1.1 Evaluating Search Systems

Evaluation has always been an important part of information retrieval research [114].
Starting in the late 1950s, the first large-scale evaluation of search performance, known as
the Cranfield paradigm [33, 34], focused primarily on laboratory experiments designed for
batch evaluation. In the 1990s, much more attention has been paid to the evaluation of
real-life experiments with user studies and online evaluation [11]. Despite this tendency,
laboratory experimentation is still dominant and the two main reasons for that are the
repeatability and the scalability provided by the closed setting of a laboratory [11]. In
this thesis, we do not perform any user study or online evaluation, instead, we focus on
batch evaluation following the Cranfield paradigm.

In the Cranfield paradigm, a test collection is created with three components: (1) a
document collection containing a very large set of documents; (2) a sample of typical
information needs, represented by queries; and (3) a (very incomplete) set of assessments
stating whether a document is relevant or not to fulfill an information need. Search
systems can then be evaluated using pre-defined metrics, such as precision and recall, and
research can be empirically conducted evaluating what works and what does not work.
Every year, test collections with different purposes are created following this paradigm.
The best-known test collections are those associated with evaluation forums such as
the Text Retrieval Conference (TREC)1, the Conference and Labs of the Evaluation
Forum (CLEF)2 and the NII Testbeds and Community for Information access Research
(NTCIR)3. In particular, in this thesis, we make extensive use of CLEF eHealth 2015
and 2016 collections [154, 226].

The CLEF eHealth 2015 task provides a test collection to evaluate the effectiveness of
search engines in answering self-diagnosing queries [154]. The collection4 is composed of a
crawl of about one million documents, which have been made available to CLEF eHealth
through the Khresmoi project5 [85, 8, 105]. The query set explored circumlocutory queries
that users may pose when faced with signs and symptoms of a medical condition [186, 225].
The evaluation framework explicitly accounted for both the topical relevance of the search
results and their understandability, interpreted as how easy it is for a health consumer to
understand the content of a specific search result. This was done using understandability-

1http://trec.nist.gov
2http://www.clef-initiative.eu/
3http://http://research.nii.ac.jp/ntcir/index-en.html
4Available at http://catalog.elra.info/product_info.php?products_id=1218
5http://khresmoi.eu/
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biased evaluation measures, where the gain obtained from relevant information was
weighted by how hard it is for a consumer to understand that information [223, 224].
Zuccon and Koopman [224], and later Zuccon [223], have proposed and investigated a
family of measures based on the gain-discount framework, where the gain of a document
is influenced by both its topical relevance and its understandability. They showed that,
although generally correlated, topical-relevance evaluation alone provides differing system
rankings compared to understandability-biased evaluation measures.

In turn, the CLEF eHealth 2016 Information Retrieval task [226] introduced a much
larger Web corpus (ClueWeb12 B136) which aimed to make the challenge more realistic,
simulating well how users would search for health information online. Topics were
extracted by mining the AskDocs health Web forums from Reddit7 to identify example
information needs [226]. The evaluation framework of the CLEF eHealth 2015 collection
was kept.

In this thesis, we use the CLEF eHealth 2015 and 2016 test collections along with
the explicit understandability assessments distributed and the understandability-biased
RBP measure (see [154, 223, 224]). In addition, we review the understandability-biased
evaluation framework in detail and propose improvements in Chapter 7.

Initial attempts to use understandability estimation for improving search results in
consumer health search were proposed [177, 201, 197] by participating teams in the
CLEF eHealth information retrieval task or shortly after the collections were created. For
example, Silva and Lopes experimented with ways to directly combine relevance score
with understandability scores from Flesch-Kincaid, SMOG and Gunning Fog index [177],
and Wang, Lu and Ren proposed a method based on query expansion using the consumer
health search vocabulary [201]. The results of the best participating teams in both CLEF
eHealth 2015 and 2016 are directly compared to our proposed methods in Chapter 8.
Van Doorn et al. [197] have shown that learning a set of rankers that provide trade-offs
across many relevance criteria, including readability/understandability, increases overall
system effectiveness.

A general data analysis of these two CLEF eHealth collections is presented in Appendix A
as they are extensively used in Parts III and IV of this thesis.

2.1.2 Multidimensional Document Relevance

A crucial part of system evaluation in the Cranfield paradigm is defining relevance. One of
the first notions of relevance was straightforward: a document is relevant to a query if the
topic of the information retrieved matches the topic of the request. This was called topical
relevance by Eisenberg and Schamber [56] and measured whether a document was “on
the topic”. Due to its simplicity and clear definition [20], this notion was adopted by most
of the modern evaluation tasks, such as TREC, CLEF and NTCIR, which heavily rely

6http://lemurproject.org/clueweb12/
7http://reddit.com/r/AskDocs/
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on evaluation metrics that exclusively measure the topical relevance of documents [198].
Recently, extensions were made based on notions of novelty and diversity (e.g., [32]), but
these new metrics still mainly consider relevance with respect to document topicality.

However, document relevance cannot be attributed to just one factor such as topicality.
Instead, it is multidimensional and situational [20]. Early research [172, 190, 86], reviewed
by Borlund, divided relevance into two classes: (1) objective or system-based relevance
and (2) subjective or human based relevance [20]. This first class of relevance exclusively
refers to the document “aboutness” aforementioned and it is context-free, while the
second one refers to the subjective factors in both users and documents and it is context
dependent. A large corpus of research was dedicated to identifying the subjective aspects
of relevance. Park, for example, identified individual’s subject knowledge, professional
training, and educational background as a user-based influential factor, while scarcity,
availability, timeliness, and scope were identified as document-based factors [159]. Scham-
ber published a compiling and non-exhaustive list of 80 relevance criteria suggested in
the literature [173]. Recently, Fuhr et al. [70] proposed to enrich documents with an
automatically generated information label, similarly to the nutrient information label
found on packaged foods. Such label would have scores for many dimensions discussed
here such as factuality, readability/understandability, virality, emotion, opinion, contro-
versy, authority/credibility/trustworthiness, technicality, and topicality. In the same way
that a person decides if she wants to buy a dish for lunch after inspecting its nutrient
information, she should be able to determine whether a document is relevant or not after
examining its information label.

In the consumer health search domain, Hersh highlights two important factors that
should be considered by modern search engines [90]: understandability and information
trustworthiness. This thesis focus on the first one.

Initial work to take document understandability into account for better personalization
has been evaluated and successfully implemented in general search engines [191, 39, 109,
40, 176, 125].

Tan, Gabrilovich and Pang, for example, used a month of Yahoo search engine logs
to evaluation a system that personalizes content according to user familiarity in a
domain [191]. They estimate text understandability using a classifier trained on 40,000
aligned pairs of articles from both Simple Wikipedia (easy-to-read documents) and
standard English Wikipedia (hard-to-read documents). As the feature set, they used the
output of different readability formulas as well as bag-of-words features (850 basic English
words from a Wikipedia list8). Interestingly, “health and wellness” was the hardest
domain among the 17 domains evaluated. Their evaluation framework was based on user
clicks and their experiments reported that content ranking was significantly improved.

Similarly to Tan et al., Collins-Thompson et al. [39] and their follow up work, Kim
et al. [109], modeled the understandability of Web documents retrieved by the Bing

8https://simple.wikipedia.org/wiki/Wikipedia:Basic_English_ordered_
wordlist
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Search Engine and the reading level of Bing users. They explicitly modeled 12 reading
levels corresponding to the 12 US school grades, as was previously done by Collins-
Thompson [40]. Their main finding is that reading level and topic metadata used together
were more effective than either one used alone.

There are two fundamental differences between the aforementioned work and this thesis:
(1) the focus on our work is the health domain rather than the general domain: this
allowed us to explore much more domain related features; (2) instead of using commercial
search engines to model the effects of integrating document understandability into search
engines, we opt to foster research in developing freely available collections, which can be
used by any other researcher in industry or academia. These efforts in creating such freely
available collections led us to establish the Information Retrieval task of CLEF eHealth
Evaluation Lab [75, 76, 154, 226, 155], from which the author of this thesis actively
collaborated since 2014. In particular, the integration of document understandability
was explicitly explored in the information retrieval task of CLEF eHealth 2015 [154] and
2016 [226], which are used in Chapters 6, 7 and 8.

2.1.3 User Query Logs

As soon as modern search engines appeared, the first studies on query logs started [99,
178, 98, 87]. For example, Jansen et al. [99] and Silverstein et al. [178] analysed the
logs from Excite and Altavista, respectively, popular search engines at that time. Both
studies point out some essential results such as the fact that the vast majority of users
issue only one single query and rarely access any result page beyond the first one. These
results helped to model the research in the information retrieval field by, for example,
given emphasis to precision over recall, making query recommendation [10, 94], and
understanding user sessions [104, 72].

The most recent general search engine to disclose query logs to researchers was America
Online (AOL) in 2006 [160]. The AOL data were afterward used in various studies, such
as Brenes et al. [23], which provides methods to group users and their intents, and Torres
et al. [54], who analyze queries targeting children’s content. In this work, we compare the
analysis made in the literature for general search engines [99, 179] with medical domain
search engines, and we adopt a method similar to [54] to divide the AOL logs into queries
related or not to health.

It is important to mention that the AOL log had known privacy problems in the past [1, 72],
resulting in some users being identified even though the logs were supposedly anonymized.
Despite this problem, we opt to use this dataset in Chapters 3 and 4 for several reasons.
One reason is that it can be freely downloaded, as well as the code used for all the
experiments of this thesis, making the experiments reproducible. In the absence of a
more recent large search engine query log, we consider that the AOL logs are still the
best choice for researchers in academia. A complete reference of the previous 20 years of
research on log analysis and its applications is well described by Silvestri [179].
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There are a number of studies analyzing query logs in the medical domain. We highlight in
details in the next section some important work for this research, including work based on
general search engines [185, 207, 27, 209], as well as specialized ones [91, 96, 194, 131, 220].

2.2 User Search Behavior in the Health Domain

Part II of this thesis investigates user search behavior in the health domain based on the
query logs of various search engines. Each search engine was designed explicitly for either
being used by health consumers (e.g., laypeople, general public) or by health experts (e.g.,
nurses and physicians). We start by reviewing the literature on health search behavior
when the search is done by health consumers with general search engines (Section 2.2.1)
and by health experts with specialized search engines (Section 2.2.2). We also review the
related work on the role of user expertise in search behavior (Section 2.2.3).

2.2.1 Health Search using General Search Engines

In one of the first studies on search query logs, Spink et al. [185] investigated medical
queries issued in 2001 in both Excite and AlltheWeb.com, popular search engines at that
time. They found that medical web search was decreasing since 1999, suggesting that
users were potentially shifting from general-purpose search engines to specialized sites
for health-related queries. They also showed that health-related queries were equivalent
in length, complexity, and lack of reformulation to general web searching.

Toms and Latter [193] observed 48 consumers searching for four health-related topics
using Google. They used transaction logs, video screen capture, retrospective verbal
protocols and self-reported questionnaires to study user behavior. Their results indicated
significant problems in query formulation (on average 4.2 keywords were used per query,
but out of those, 3.2 were stopwords and thus not processed by the search engine) and
in making efficient selections from result lists. While the searching behavior in a lab
environment might substantially differ from natural searching behavior, the queries issued
by the participants were successfully used in the TREC 10 Interactive Track9.

The European Center for Disease Prevention and Control surveyed the research on
consumer health search published between 2006 and 2010 reporting that, among other
findings, females are more likely than males to search for health information and online
health consumers tend to be more educated, earn more and have high-speed internet
access at home and work [139]. Interestingly, they also report that those with limited
literacy skills have less knowledge of disease management and health-promoting behaviors,
poorer health status and are less likely to use preventive services than those with average
or above average literacy skills.

More recently, White and Horvitz studied how users start looking for a single symptom and
end up searching for severe diseases, a phenomenon they named cyberchondria [208, 209].

9http://trec.nist.gov/data/t10i/t10i.html
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They used the logs of the Windows Live Toolbar to obtain their data and list of keywords
to annotate symptoms and diseases in queries. Instead of word matching, we used the
US National Library of Medicine MetaMap to do the same in Chapter 4. Similarly to
our work, they define user sessions as a series of queries followed by a period of user
inactivity of more than 30 minutes and they made use of the Open Directory Project
(ODP) hierarchy to identify medical sessions.

Another important recent work is Cartright et al. [27], in which a study on user behavior
when searching for health information online is presented. They classified user queries
into three classes (symptoms, causes, and remedy), and analyzed the change of search
focus along a session. They showed that it is possible to build a classifier to predict what
is the next focus of a user in a session. We decided to use the same classes in order
to make our study comparable, however, we used the semantic annotator of MetaMap
instead of hand-coded rules.

Not based on query logs, but on the ranking lists of major general search engines, Wang et
al. compared the results of Google, Yahoo!, Bing, and Ask.com for one single query breast
cancer [200]. Among their conclusions is the fact that results provided rich information
and highly overlapped between the search engines. The overlap between any two search
engines was about half or more. Thus, if the quality of results retrieved by a specific
search engine for a health query is poor, it is likely that it will be poor for other search
engines as well.

2.2.2 Health Search using Specialized Search Engines

Herskovic et al. analyzed an arbitrary day in PubMed10, the largest biomedical database
in the world [91]. They found that the usage of PubMed differs from the usage of general
Web search engines. For example, PubMed queries are longer than the ones issued on
Excite and Altavista. Subsequently, Dogan et al. studied an entire month of PubMed log
data [96]. Their main finding comparing PubMed and general search engines was that
PubMed users are less likely to select results when the result sets increase in size, users
are more likely to reformulate queries and are more persistent in seeking information.
In Chapter 3, whenever it is possible, we compare our findings with the ones made for
PubMed.

Meats et al. analyzed the 2004 and 2005 logs of the TRIP Database, together with a
usability study with nine users [131]. Their work concluded that most users used a single
term and only 12% of the search sessions made use of Boolean operators, under-utilizing
the search engine features. Tsikrika et al. examined query logs from ARRS GoldMiner,
an expert search engine for radiology images [194]. They studied the process of query
modification during a user session, aiming to guide the creation of realistic search tasks
for the ImageCLEFmed benchmark. Meats used 620,000 queries and Tsikrika only 25,000,
while we use respectively nearly 3 and 9 times more queries from TRIP and GoldMiner
in Chapters 3 and 4, allowing us to perform a more in-depth analysis.

10https://www.ncbi.nlm.nih.gov/pubmed
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Zhang analyzed how 19 students solved 12 tasks using MedlinePlus11 [220]. The tasks
were created based on questions from the health section of Yahoo! Answers. Even
though the log analysis made is very limited due to the artificial scenario created and
the small number of users, Zhang could investigate browsing strategies used by users
(amount of time searching and/or browsing MedlinePlus) and the users’ experience with
Medline-Plus (usability, usefulness of the content, interface design) through questionnaires
and recording the users performing the tasks. Although our user analysis is limited to the
query logs, a larger analysis is made with different search engines and the user behavior
is captured in a very natural setting.

2.2.3 Influence of Expertise in Search

One of the first studies to report how expertise influences the process of search dates from
the 1990s. In that work, Hsieh-Yee reported that experienced library science students
could use more thesauri, synonymous terms, combinations of search terms and spend
less time monitoring their searches than novices [93]. Later, Bhavnani studied search
expertise in the medical and shopping domains [18]. He reported that experts in a topic
could easily solve the task given even without using a search engine because they already
knew which website was better adapted to fill their needs. Bhavnani also reported that
experts started their search by using websites such as MedlinePlus, instead of a major
search engine, while consumers started with Google.

White et al. [207] showed a log-based analysis of expertise in four different domains
(medicine, finance, law, and computer science), developing an expertise classifier based
on their analysis. Apart from showing that it is possible to predict user expertise based
on their behavior, they showed that experts have a higher success rate only in their
domain of expertise, with success in a session being defined as a clicked URL as the
final event in a session. Therefore, an expert in finance would have a comparable or
worse success rate in medicine than a non-expert. A significant limitation of their work
is the approach used to separate experts from non-experts. They assume that search
leading to PubMed was done by medical experts and search leading to ACM Digital
library (ACM-DL)12 was made by computer science experts. In the medical domain
this is a weak premise for two reasons: (1) it is estimated that one-third of PubMed
users are health consumers [117], (2) PubMed is more important for medical researchers
than practitioners [113]. Tracing a parallel between medicine and computer science, a
general practitioner would be like a software developer that does not necessarily need to
consult the ACM-DL (the correspondent for PubMed) to perform his/her work. One
could manually expand the list of expert sites to include, for example, StackOverflow13

or an API website for experts in computer science and treatment guidelines or drug
information sites for medicine but it would be a laborious task and unstable over time.

11MedlinePlus is a web-based consumer health information system developed by the American National
Library of Medicine (NLM): http://www.medlineplus.gov/

12http://dl.acm.org/
13http://stackoverflow.com/
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Hence, to cope with this challenge, we use the logs of different search engines made for
distinct audiences.

Other few recent user studies were also conducted to infer user expertise in the medical
domain. For example, Zhang et al. [219] and Cole et al. [36] are based on TREC Genomics
data. The former employed a regression model to match user self-rated expertise and
high-level user behavior features such as the mean time analyzing a document and the
number of documents viewed. They found that the user’s domain knowledge could be
indicated by the number of documents saved, the user’s average query length, and the
average rank position of opened documents. Their model, however, needs to be further
investigated because the data was limited, collected in a controlled experiment. Similarly,
but using only eye movement patterns as features, the latter conducted a user study
instead of log analysis and employed a linear model and random forests to infer the user
expertise level. Their main contribution is demonstrating that models to infer a user’s
level of domain knowledge without processing the content of queries or documents is
possible, however they only performed one single experiment and in one single domain.

2.3 Understandability Estimation of Web Documents
Understandability refers to the ease of comprehension of the information presented to
a user. Health information is understandable “when health consumers of diverse back-
grounds and varying levels of health literacy can process and explain key messages” [175].
Often the terms understandability and readability are used interchangeably: we use
readability to refer to formulas that estimate how easy it is to understand a text, usually
based on its words and sentences. We use understandability to refer to the broader
concept of ease of understanding: this is affected by text readability, but may also be
influenced by how legible a text is and its layout, including, e.g., the use of images or
diagrams to explain difficult concepts. In general, increasing readability tends to improve
understanding/understandability [121].

There is a large body of literature that has examined the understandability of Web
health content when the information seeker is a member of the general public. For
example, Becker reported that the majority of health Web sites are not well designed
for the elderly [16], while Stossel et al. found that health education material on the
Web is not written at an accessible reading level [187]. A common finding of these
studies is that, in general, health content available on Web pages is often hard to
understand by the general public. Often, understandability research in the medical
domain includes content that is retrieved in top-ranked positions by current commercial
search engines [81, 58, 62, 210, 161, 9, 133].

Previous Linguistics and Information Retrieval (IR) research have attempted to devise
computational methods for the automatic estimation of text readability and understand-
ability, and for the inclusion of these within search methods or their evaluation. We divide
the computational approaches to understandability estimation into the two following
categories: (1) Readability Formulas: Section 2.3.1 presents the most common readability
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formulas, which generally exploit word surface characteristics of the text; (2) Machine
Learning: Section 2.3.2 presents machine learning approaches for understandability esti-
mation, these include the use of medical specialized dictionaries or terminologies, often
compiled with information about understandability difficulty.

2.3.1 Readability Formulas

While recent research has proposed sophisticated readability estimation methods [39, 82],
often tailored to specific domains [214], traditional readability measures such as the
Automated Readability Index [180] and the Gunning Fog Index [83] are extensively used
for assessing information on the Web (see [210, 224], for example). These long-established
readability measures consider the surface level of the text contained in Web pages, that
is, the wording, syllables counts and sentence syntax. In this framework, the presence of
long sentences, words containing many syllables and unpopular words, are all indicators
of difficult text to read.

In this thesis, we consider a large number of readability formulas, which are listed in
Table 2.1. For example, the Dale-Chall readability formula is based on a corpus of
3,000 words that can be understood by fourth-grade students [49], the Flesch-Kincaid
and Flesch Reading Ease measures compute a readability score based on a weighted
combination of the number of words and the number of syllables in a sentence [110]. The
Gunning-Fog index combines the intuitions of these preceding approaches using sentence
length and frequency of “complex” words [83].

Generally, traditional readability measures estimate the minimum required level of
knowledge to comprehend a text, often measured using the U.S. grade level system. For
example, a text with a score of 1 would be suitable for a 6-7-year-old child, while a score
of 13 requires the knowledge of a freshman undergrad student. Among the metrics used
here, Flesch Reading Ease (FRE) and Lasbarhetsindex (LIX) are the only ones which do
not follow the U.S. grade level system. With the exception of Flesch Reading Ease, for all
other measures, the higher the readability score, the harder it is to understand the text.

Note that several (if not all) experiments published in the medical area often consider
one or more of these readability formulas as a proxy for understandability (e.g. [81, 62,
210, 161, 9, 133]). We analyze the pitfalls of using such readability formulas to infer
understandability of Web documents in Chapter 5.

2.3.2 Machine Learning for Understandability Predictions

Earlier research explored the use of statistical natural language and language model-
ing [176, 125, 40, 89, 39] as well as linguistic factors, such as syntactic features or lexical
cohesion [162]. Si and Callan [176], for example, devised a new formula which linearly
combined two components: (1) a value for word frequency in a background corpora, using
a Unigram Language Model; and (2) a value to cope with the sentence length distribution
of a document, modeled with a normal distribution. They showed that the combination
of these two components was more accurate than using either of them alone. The use of
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Table 2.1: The most frequently used readability formulas. C is the number of characters,
DCW is the number of words found in the Dale-Chall list of 3,000 common words, LW
is the number of long words (words with 6 or more characters), PW is the number of
polysyllables words (words with 3 or more syllables) S is the number of sentences, Sy is
the number of syllables and W is the number of words in the text.

Automated Readability Index (ARI) [180]
ARI = 4.71× C

W + 0.5× W
S − 21.43

Coleman-Liau Index (CLI) [37]
CLI = 5.89× C

W − 30.0× S
W − 15.8

Dale-Chall Index (DCI) [49]
DCI = 15.79× DCW

W + 0.0496× W
S

Flesch-Kincaid Grade Level (FKGL) [110]
FKGL = 0.39× W

S + 11.8× Sy
W − 15.59

Flesch Reading Easy (FRE) [110]
FRE = 206.835− 1.015× W

S − 85.6× Sy
W

Lasbarhetsindex (LIX) [19]
LIX = W

S + LW×100
W

Gunning Fog Index (GFI) [83]
GFI = 0.4 ∗ (WS + 100.0× PW

W )

Simple Measure of Gobbledygook (SMOG) [129]
SMOG = 1.0430 ∗

√
PW × 30.0

S + 3.1291

the Unigram Language Model, though, requires a (large) set of training documents, i.e.,
documents which were previously classified either manually or through a set of rules.

Liu et al. [125] and Collins-Thompson & Callan [40] followed the steps of Si and
Callan [176], successfully building models based on manually labeled Web documents us-
ing the American K-12 school system. Because of the large vocabulary difference, models
trained on general school text for estimating the understandability of general English
documents are not the best alternative for estimating the understandability of specialized
medical content. Nevertheless, the idea of using statistical models is further explored in
the health domain in Chapter 6. In the medical domain, Zeng et al. explored features
such as word frequency in different medical corpora to estimate concept familiarity, which
prompted the construction of the Consumer Health Vocabulary (CHV) [217, 218, 216].
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2. Related Work

The CHV is a prominent medical vocabulary dedicated to mapping consumer vocabulary
to technical terms [218]. It attributes a score for each of its concepts with respect
to their difficulty, with lower/higher scores for harder/easier concepts. Researchers
have evaluated CHV in tasks such as document analysis [120] and medical expertise
prediction [147]. The hierarchy of MeSH was previously used in the literature to identify
hard concepts, assuming that a concept deep in the hierarchy is harder than a shallow
one [213]. Other approaches combined vocabularies with word surface characteristics and
syntactic features, like part of speech, into a unique readability measure [108]. Also in
Chapter 6, we investigate approaches to estimate understandability that are based on
both CHV and MeSH vocabularies.

2.4 Summary
We centralized in this chapter the related work of each part of this thesis.

In Section 2.1, we overviewed the core concepts of the information retrieval field used in
this thesis. In particular, we introduced the query logs used to understand user search
behavior in Part II of this thesis, and the 2015 and 2016 CLEF eHealth collections which
are extensively used in Parts III and IV of our work.

Section 2.2 focused on the health domain and reported the related work on health search
and user expertise, which is the main subject of Part II of this thesis.

Finally, Section 2.3 described the related work of Part IV by presenting methods to assess
the understandability of health documents on the Web.
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User Search Behavior in the
Health Domain
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CHAPTER 3
Investigating Health Search

through Query Logs

User interactions with a search engine are usually recorded to improve the quality (both in
terms of effectiveness and efficiency) of information retrieval systems. These interactions,
the search query logs, typically contains information about users, issued queries and
clicked results, along with others. The knowledge acquired from the interactions between
users and search engines is the essential part of personalization strategies used by most
of the commercial search engines, as it is an unobtrusive method which captures the user
behavior in a natural setting [101, 179].

In this part of this thesis, we make extensive use of search engine logs. We divide the
users of medical search engines into health consumers and health experts, where health
consumers, i.e., the general public, are considered to be searchers that do not have an
in-depth knowledge about the health/medical topic being searched, while health experts
do have an in-depth knowledge about the medical topic being searched.

Previous research has pointed to the fact that distinguishing consumers and experts can
significantly improve their interactions with the search engine [207, 147]. We assume that
it is possible to distinguish the level of expertise of the searcher based on the vocabulary
used and the search style. Note that while it would be realistic to represent a continuum
of expertise levels, we define only two classes (consumers and experts) in this study,
allowing us to investigate the most relevant differences between the classes.

In our analysis, we use health-related queries from the America Online (AOL) query
log [160], as well as the Health on the Net (HON) search engine log to represent the logs
generated to a significant extent by health consumers. Health experts also use general
search engines to seek health content; however, their queries are drowned in the consumer
queries. White et al. [207], for example, hypothesize that search leading to PubMed was
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done by experts. However using this hypothesis, only 0.004% of the whole AOL log was
issued by health experts.

Besides the fact that PubMed is more frequently used in a research environment rather
than in a clinical environment [113], it is also frequently visited by health consumers [117].
Therefore, instead of the PubMed queries, we use the logs from the evidence-based search
engine TRIP Database and the radiology image search engine American Roentgen Ray
Society (ARRS) GoldMiner to represent queries entered by physicians usually when
facing a practical problem.

One limitation of using such specialized search engines, though, is that they only index
medical content, rather than general health information. Thus, we shall restrict our anal-
ysis only to queries in the medical domain, instead of the full health domain. Important
topics, such as diet, physical activity, and well-being should be excluded from our further
analysis. However, it is important to note that the search for medical information, e.g.,
which includes self-diagnosis, advice on drug use or treatment options, is likely the most
harmful if misunderstood by health consumers.

After introducing the datasets and preprocessing steps in Section 3.1, we present and
evaluate MetaMap, the tool used to enrich the information contained in the query logs, in
Section 3.2. In Section 3.3, we use the mappings to analyze individual queries, following
a very similar approach carried out by Herskovic et al. [91], being able to compare our
results for individual queries. Later, in Section 3.4, the focus is on the session level.
Summary and discussion are presented in Section 3.5.

3.1 Query Logs and Preprocessing Steps
This section describes the datasets used to analyze user behavior on the Web (Sec-
tion 3.1.1), their relationship (Section 3.1.2) and the required preprocessing that were
applied (Section 3.1.3).

3.1.1 Query Logs

Four query logs from search engines taking free text queries were divided into five datasets
in our analysis: two focused on health consumer queries, two made up of queries from
health experts and one consisted of queries not related to health or medical information.

The query logs that are assumed to consist almost completely of queries submitted by
health consumers were obtained from medical-related searches in America Online’s search
service [160]1 and from the Health on the Net Foundation website (HON2).

The AOL logs were obtained from March to May 2006. We divided them into two
non-overlapping sets: AOL-Medical and AOL-NotMedical. For this purpose, the
click-through information available in the AOL data was used. A common approach

1Obtained from http://www.gregsadetsky.com/aol-data/
2http://www.hon.ch/HONsearch/Patients/index.html
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3.1. Query Logs and Preprocessing Steps

Table 3.1: ODP categories used to filter the AOL-Medical. These categories are the
most relevant ones related to Medicine in ODP hierarchy (see http://www.dmoz.org/
Health/Medicine/)

ODP Category URL Examples

\Top\Health\Medicine http://www.nlm.nih.gov
http://www.webmd.gov

\Top\Health\Alternative http://www.acupuncturetoday.com
http://www.homeopathyhome.com

\Top\Health\Dentistry http://www.dental--health.com
http://www.animated-teeth.com

\Top\Health\Conditions_and_Diseases http://www.cancer.gov
http://www.cancer.org

\Top\Health\Organisations\Medicine http://www.ama-assn.org
http://www.aafp.org

\Top\Health\Resources http://health.nih.gov
http://www.eyeglassretailerreviews.com

to infer the topic of a URL is checking if it is listed in the Open Directory Project
(ODP)3 [27, 39, 54, 207, 209]. For the clicked URLs that are not present in ODP, some
researchers use supervised learning to automatically classify them [39, 207, 209]. However,
it is very important to note that this approach cannot be used here, as 47% of the AOL
log entries lack the clicked URL information.

Alternative approaches can be designed. One is to keep only queries in which the clicked
URL is found in ODP, excluding all the rest. Although valid, this approach results in
removing 73% of all queries, as only 27% of the queries had a clicked URL found in ODP.
This has a substantial impact on the behavior analysis, such as a vast reduction in the
number of queries per session. Another possibility is doing as in Cartright’s work [27],
in which a list of symptoms was used to filter sessions on health information. However,
this approach creates a strong bias when analyzing what users are searching for, as it
certainly results in a dataset in which everyone searches for symptoms.

Our solution is based on user sessions – this approach is not as restricted as to analyzing
single queries and does not suffer from the bias of filtering by keywords. First, we divide
the query log into user sessions, continuous queries from the same user followed by an
inactivity period exceeding 30 minutes. After this, we attribute one of the following
labels for each clicked URL, if any: (1) Medical, (2) Not Medical, or (3) Not Found. This
depends on whether the URL is (1) found in any Medical category listed in Table 3.1;
(2) found in any other category: News, Arts, Games, Health/Animals, Health/Beauty,
etc.; or (3) not found in either of these. Last, we assign to the whole session the Medical
label only if the proportion of URLs on Medical information is greater than a threshold t.

3http://www.dmoz.org/
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AOL 
Logs

"google"           19:12:50   google.com                                   
"zetia"              19:21:50   None                                             
"triamterene"   19:22:25   http://www.triamterene.com         
"benicar"          19:24:00   http://www.benicar.com                
"toprol"            19:25:15    http://www.rxlist.com                   
"toprol"            19:25:15    http://www.toprol-xl.com              

"fiber carpet"  00:49:01    http://www.floorfacts.com             
"fiber carpet"  00:49:01    http://www.shawfloors.com           
"carpet"          00:52:41    None                                              
"carpet"          00:53:35    None                                              
"new carpet"   00:55:20    http://www.cpsc.gov                     
"new carpet"   00:55:20    http://www.servicemagic.com

Query Log
       ODP
Classification Final Decision

P(Session=Medical) = 
3 Medical / (3 Medical + 1 Not Medical) = 0.75

Session is considered on medical information
and goes to AOL-Medical

P(Session=Medical) = 
1 Medical / (1 Medical + 3 Not Medical) = 0.25

Session is not on medical information. 
It goes to AOL-NotMedical

Si

Not Medical
Not Found
Not Found
Medical
Medical
Medical

Not Medical
Not Medical
Not Found
Not Found
Medical
Not Medical

Sj

Figure 3.1: Two real user sessions extracted from AOL logs, Si is classified as a search
for medical content, while Sj is not.

Medical search sessions classified this way are attributed to the set AOL-Medical, while
the rest goes to the AOL-NotMedical set. Figure 3.1 illustrates the session assignment
procedure. For the experiments performed in this work, we use t = 0.5. This value is a
fair trade-off between two extremes: considering an entire session as being on medical
information because one single URL on medical information was clicked (see the second
part of Figure 3.1), and considering an entire session as being on medical information only
if all the known clicked links are on medical information (see the first part of Figure 3.1).

For the first part of Figure 3.1, it is important to note that the first query could belong
to another session, as the user intent might be different from the rest of the session. The
second and third queries, drug names that are clearly for medical content, were not used
to calculate whether the session was on medical information or not, as their clicked URLs
were not found in ODP. After the label estimation is done, all the queries of a session are
assigned to the same class, therefore all six queries in Si are assigned to AOL-Medical.

While only 27% of the queries have their URLs found in ODP, using the session approach
described above allows us to have 50% of all sessions with at least one URL found in
ODP. Altogether, 68% of all AOL queries were evaluated, as they belong to sessions that
had at least one clicked URL in ODP. A more accurate way to define sessions is a field of
research by itself [87, 104, 72] and it is not the goal of this work.

TheHON dataset is composed of anonymous logs ranging from December 2011 to August
2013. This non-governmental organization is responsible for the HONcode, a certification
of quality given to websites fulfilling a pre-defined list of criteria [21]. HON provides a
search engine to facilitate the access to the certified sites. Although the majority of the
queries are issued in English, the use of French or Spanish is frequent. Aiming to reduce
noise, every query in the HON dataset was re-issued in a commercial search engine and
the snippets of the top 10 results were used as input for an automatic language detection
tool [127], which presented a precision of 94% in filtering English queries.

As health expert datasets, we use the query logs from the Turning Research Into Practice
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(TRIP) database4 and ARRS GoldMiner5. The former is a search engine indexing
more than 80,000 documents and covering 150 manually selected health resources such as
MEDLINE and the Cochrane Library. It intends to allow easy access to online evidence-
based material for physicians [131]. The query logs contain queries of 279,280 anonymous
users from January 2011 to August 2012. GoldMiner consists of logs from an image
search engine that provides access to more than 300,000 radiology images based on text
queries of text associated with the images. Although the usage of an image search engine
is slightly different from document search, previous work in the literature [194, 92] showed
that the user search behavior is similar. We had access to more than 200,000 queries with
last logged query being issued in January 2012. Due to a confidentiality agreement, we
cannot reveal the start date of this collection. The GoldMiner search engine is interesting
because its users are very specialized. Thus, it represents the particular case of catering
to experts in a narrower domain inside medicine. As GoldMiner is so specialized, the
number of health consumers using it is likely small. It is, therefore, a good example
of the extreme specialization end of the expert continuum, allowing the effects of this
specialization on the vocabulary and search behavior of the users to be found.

3.1.2 Sorting the Data by Expertise Level

We make the assumption that experts and health consumers are more likely to use
different search engines to satisfy their information needs. Therefore we assume that
almost all queries issued into a particular search engine are issued by only one of the two
classes of users under consideration. This assumption is justified as we are using search
logs from search engines clearly aimed at users of specific expertise. This assumption
is also more inclusive than another assumption that has been used to separate medical
experts from consumers: that only searches leading to PubMed were done by medical
experts [207]. As discussed earlier, this assumption would only tend to detect health
researchers, as health practitioners make less use of PubMed [113]. We do not take into
account that many users are in between consumers and experts as levels can vary.

On one extreme, we have AOL health consumer users. There might be a few experts
using AOL, but their queries are drowned in the consumer queries. Also focused on
patients, HON is a search engine for consumers searching for reliable health information.
The primary target audience is health consumers concerned about the reliability of the
information they access. On the other extreme, mainly targeting health experts looking
for health/medical evidence, the TRIP database can also be accessed by consumers but
these few consumers might be already considered specialists in their diseases. Finally,
the GoldMiner search engine is made by radiologists and for radiologists, consumers have
practically no use for this kind of information, but a variety of health experts might
access the system. We position each dataset on an expertise axis in Figure 3.2 to help in
understanding how each dataset relates to each other.

4http://www.tripdatabase.com/
5http://goldminer.arrs.org
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Expertise Scale

Health Consumer  
Focused Datasets

Health Experts  
Focused Datasets

AOL

HON

GoldMiner

TRIP

Figure 3.2: The datasets used here are placed on an expertise scale. The expertise level
increases as a dataset is placed more to the right-hand side of the scale.

3.1.3 Preprocessing Log Files

The first challenge dealing with different sources of logs is normalizing them. Unfor-
tunately, the clickthrough URL information is available only for the AOL and HON
datasets, limiting a detailed click analysis. Thus, we focus on a query content analysis,
using only the intersection of all possible fields: (1) timestamp, (2) anonymous user
identification, and (3) keywords. Neither stop word removal nor stemming was used.

Sessions were defined as follows. They begin with a query and continue with the
subsequent queries from the same user until a period of inactivity of over 30 minutes is
found. This approach for sessions, as well as the 30-minutes threshold, is widely used in
the literature [27, 209, 104]. We excluded extremely prolific users (over 100 queries in a
single session) since they likely represent “bots” rather than individuals.

3.2 Enriching the Query Logs with MetaMap
The US National Library of Medicine MetaMap is intensively used in this work to
enrich the information contained in the query logs, adding annotations regarding the
concepts searched in the queries. MetaMap is widely employed to map biomedical
text to the Unified Medical Language System (UMLS) Metathesaurus, a compendium
of many controlled vocabularies in the biomedical sciences [4]. This type of mapping
has been already used for many different tasks in the health domain, such as query
expansion [7, 107], concept identification and indexing [5, 137], question answering [51],
knowledge discovering [202], and more related to this work, to enrich query logs to
understand user goals [91, 96]. To explain how mapping queries to UMLS can give us
some insights about the user intent, we first have to explain what UMLS is and how
MetaMap maps text to UMLS. We explain how the mapping works in the next section
and we evaluate the mapping in Section 3.2.2.

3.2.1 MetaMap

The Unified Medical Language System (UMLS) Metathesaurus is a multi-purpose, multi-
lingual vocabulary database, containing information about biomedical and health related
concepts. A Metathesaurus can be defined as a very large, multi-purpose, and multi-
lingual vocabulary resource that contains information about biomedical and health related
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concepts, their various names, and the relationships among them [135]. UMLS is updated
quarterly with new vocabularies and currently contains 169 different sources6. Altogether,
UMLS comprises more than 1 million biomedical concepts. In its 2013 version, the UMLS
Metathesaurus has more than one hundred different controlled vocabulary sources and a
large number of internal links, such as alternative names and views of the same concept.

Figure 3.3: MeSH hierarchy with the Disease branch expanded

The white row of Table 3.2 is the original version of the classical UMLS example
from [135]. It illustrates how different atoms can have the same meaning. Atoms are
the basic building blocks from which the Metathesaurus is constructed, containing the
concept names or strings from each of the source vocabularies. The atoms shown are
part of two vocabularies PSY (Psychological Index Terms), and MSH (Medical Subject
Headings, MeSH), mapping different strings and terms to the same concept, C0004238,
which states that atrial fibrillation is a pathological function. The other row of this table
shows another concept, C1963067, mapped from the vocabulary NCI (National Cancer
Institute), which states that atrial fibrillation can be an adverse event associated with
the use of a medical treatment or procedure, although we do not know which medical
treatment or procedure.

6http://www.nlm.nih.gov/research/umls/sourcereleasedocs/index.html
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Table 3.2: A concept is potentially linked to various AUI (atom), SUI (string), and LUI
(term). We used MetaMap to map a user query, e.g. “Atrial Fibrillation” to the different
existing concepts (C0004238, C1963067). Note that each concept is associated to one
single semantic meaning.

Concept (CUI) Terms (LUIs) Strings (SUIs) Atoms (AUIs)

C0004238
[Pathologic Function]

Atrial Fibrillation
(preferred)

Atrial Fibrillations
Auricular Fibrillation
Auricular Fibrillations

L0004238
Atrial Fibrillation

(preferred)
Atrial Fibrillations

S0016668
Atrial Fibrillation

(preferred)

A0027665
Atrial Fibrillation

(from MSH)
A0027667

Atrial Fibrillation
(from PSY)

S0016669
(plural variant)

Atrial Fibrillations

A0027668
Atrial Fibrillations

(from MSH)

L0004327
(synonym)

Auricular Fibrillation
Auricular Fibrillations

S0016899
Auricular Fibrillation

(preferred)

A0027930
Auricular Fibrillation

(from PSY)
S0016900

(plural variant)
Auricular Fibrillations

A0027932
Auricular Fibrillations

(from MSH)
C1963067
[Finding]

Atrial fibrillation
(Atrial Fibrillation Adverse Event)

....... Auricular Fibrillations
(from NCI)

The task of MetaMap is to map biomedical text to its corresponding concept(s). MetaMap
generates a candidate set for a piece of text, based on its internal parser and variant
generation algorithm, which takes into account acronyms, synonyms, inflections and
spelling variants of the text. Then, based on metrics such as centrality, variation,
coverage and cohesiveness, MetaMap ranks each candidate [4]. Occasionally, more than
one candidate may have the same score. We collect all the top candidate(s) and its (their)
associated semantic type(s), shown in bold below the CUIs in Table 3.2. In the running
example, a text containing only ‘atrial fibrillation’ is mapped to both C0004238 and
C1963067 with the same top score, and the types ‘Pathologic Function’ and ‘Finding’
are assigned to the query. To the best of our knowledge, MetaMap is the state of the art
for mapping biomedical text to UMLS concepts.

An interesting way to capture the user intent is mapping the queries to a well known
domain corpus. In this work we use the Medical Subject Headings, MeSH, as it is a
rich and well-structured hierarchy that has already been studied to examine user query
logs [91], allowing us to compare the behavior of the users studied here with PubMed
users. The whole MeSH hierarchy contains more than 25,000 subject headings in the
2013 version, the one used in this work, containing 16 top categories such as ‘Anatomy’
and ‘Diseases’. Figure 3.3 shows an example of the MeSH hierarchy with the first level of
the disease branch expanded.

We use the approach of Herskovic et al. [91] in this chapter, mapping each query onto
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Finding
Pathologic Function

Semantic Types
C14.280.067.198
C23.550.073.198

MeSH Hierarchy

atrial fibrillation
                 What is atrial
                   fibrillation?

<userID, timestamp, "atrial fibrillation">

NLM Metamap

<userID, timestamp, "atrial fibrillation", [Finding, Path...], [C14.280.067.198, ...]>

C004238
C1963067

Concepts

Tissue, Body Part, Organ, or Organ 
Component, Neoplastic Process, 
Therapeutic or Preventive Procedure

Semantic Types
A04.411, E02, C08.381.540, 
C04.588.894.797.520

MeSH Hierarchy

lung cancer treatment
                What are the 
              treatments for
                 lung cancer?

<userID, timestamp, "lung cancer treatment">

NLM Metamap

<userID, timestamp, "lung cancer treatment", [Tissue, Body...], [A04.411, E02, ...]>

C0024109, C1522236, C1705169, 
C1278908,  C0684249, C0087111, 
C0242379, C1533734,  C0819757, 
C0039798, C092025

Concepts

Figure 3.4: Two different user queries are enriched with information extracted with
MetaMap. In the top part, the same example used in Table 3.2 is processed by MetaMap.
In the bottom part, the query “lung cancer treatment” is more ambiguous and results in
different mappings, such as Lung (Entire lung) / Cancer Treatment (Cancer Therapeutic
Procedure) and Lung Cancer (Malignant neoplasm of lung) / Treatment (Therapeutic
procedure)

one or more MeSH terms with MetaMap. As shown in Figure 3.4, one query can be
mapped to multiple MeSH identifiers. For example, the query ‘atrial fibrillation’ is
mapped to both MeSH ids C14.280.067.198 and C23.550.073.198, both in the topmost
Disease category (represented by the starting letter ‘C’ as shown in Figure 3.3). After
the mapping to MeSH is done, we can easily have an overview regarding the subjects the
users are more interested in. In this case, we would conclude that this user is interested in
diseases, as her/his only query maps only to category ‘C’, more specific in cardiovascular
diseases, C14, and pathological conditions, C23.

After preprocessing, each query is converted into the following format: <timestamp,
userID, query, semanticTypes, meshIDs>, where the timestamp, userID and query are
originally query log fields, while meshIDs and semanticTypes are the set of semantic
types and MeSH identifiers generated by MetaMap. These two fields are examined in
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detail in Sections 3.3.2 and 3.4.2. Figure 3.4 illustrates how the queries were enriched
with the information provided by MetaMap and the final format.

Finally, it is important to mention that the queries were mapped to concepts in the UMLS
2013 AA USAbase Strict Data and no special behavior parameter was used. We manually
examined the behavior for two important parameters: allowing acronyms/abbreviations
(-a) and using the word sense disambiguation module (-y), and decided not to activate
them. Our experiments show that activating the former parameter decreases the precision
significantly for the sake of a small increase in recall, as MetaMap is already capable of
matching some of the most frequently used abbreviations (HIV, HPV, AIDS, COPD).
For the latter, we have an inverse scenario, where we had a small gain in precision but
a larger loss in recall, as MetaMap always picks only one possibility when more than
one concept is possible. It means that MetaMap would be forced to choose between
concepts C0004238 and C1963067 of Table 3.2, even when both are equally likely. The
last important reason for not using any other parameter is that we want to compare our
results with [91], in which no special option was used either. For the experiments shown
in Section 3.3.2 we used the parameter (-R) to restrict MetaMap to use only MeSH as
vocabulary source.

3.2.2 Evaluation of the MetaMap Mappings

As recently reported by MetaMap’s authors [6], a direct evaluation of MetaMap against
a manually constructed gold standard mapping to UMLS concepts has almost never been
performed. Usually, indirect evaluations are made, where the effectiveness of a task is
measured with and without MetaMap. For example, query expansion using the related
concepts of a concept identified by MetaMap versus not using it. Here we are interested
in the few articles that evaluate the effectiveness of MetaMap, especially the ones focused
on mapping user queries.

In 2003, Pratt and Yetisgen-Yildiz [165] compared MetaMap mappings to UMLS with
mappings made by six physicians and nurses. For the 151 concepts in their ground
truth, MetaMap could match 81 concepts exactly, 60 partially and could not match
only 10 concepts, of which 6 were not available in UMLS. In a scenario considering
partial matches (e.g., mapping to angiomatosis instead of leptomeningeal angiomatosis),
MetaMap had an F1 of 76%. In another experiment in the same year, Denny et al. [52]
built a bigger gold standard dataset of 4,281 concepts to evaluate MetaMap, reaching a
precision of 78%, recall of 85% and F1 of 81%.

More recently, Névéol et al. [137] reported results on using MetaMap to detect disease
concepts on both literature and query corpus. The results showed that MetaMap had a
better effectiveness for long sentences (F1 of 76%) than for short queries (F1 of 70%),
but they also pointed out that the average inter-annotator agreement of the 3 assessors
for the query corpus was 73%, showing that MetaMap results are not far from humans
performing the same task. Using 1,000 queries from partly the same datasets that are used
here: AOL, HON and TRIP, we also showed in [140] an F1 of 70% for query mappings.
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Névéol et al. [136] created an annotated set of 10,000 queries that were mapped to 16
categories, in a similar way to what is done in Section 3.4.2, where the semantic types
produced by MetaMap are used to define our own categories. We used Névéol’s dataset
to calibrate our mappings for our Cause and Remedy categories (see Section 3.4.2),
as well as to make decisions regarding MetaMap’s parameters. We used the Disorder
category of Névéol as an equivalent of our Cause category, and we combined Chemical
and Drugs (antibiotic, drug or any chemical substance), Gene, Proteins and Molecular
Sequences (name of a molecular sequence) and Medical Procedures (activity involving
diagnosis, or treatment) as the closed possible class of our Remedy class. We could reach
an F1 of 78% for the Cause category (Precision=75%, Recall=81%) and 72% for Remedy
(Precision=70%, Recall=73%). These figures are in line with what is known for MetaMap
when mapping medical abstracts to concepts (i.e., [137, 147]), encouraging us to use it
for mapping short queries to concepts as well.

3.3 Individual Query Analysis
One goal of this section is to study how users search, based first on simple statistics to
model their behavior. Also, we start exploring the content of their queries, but considering
all the queries without dividing into user sessions.

3.3.1 How Users Search

We start by showing a few simple but important statistics about the logs. This section
aims to understand the user behavior through general statistics, as well as to show how
each log is composed. In Table 3.3 we depict several metrics that are used to characterize
user interactions and compare their values to those in related studies. Torres et al. [54]
use AOL logs to study queries performed by kids. White et al. [207] use a keyword-based
method to filter domain-specific queries and divide them into those issued by consumers
and those issued by experts. Their work also considers other types of queries, such as
queries on computer science or financial information. We show only the data for the
medical domain. Herskovic et al. [91] and Dogan et al. [96] analyze different periods of
PubMed logs. For all datasets, “N/A” is used when the information is not available.

The query logs from the related work shown in Table 3.3 belong to the same period as the
AOL logs. Query logs from HON, TRIP and GM are considerably newer than the others.
Nevertheless, Table 3.3 shows that AOL-Medical and HON are very similar in many
aspects, such as the average number of terms per query and the average time per session.
The biggest difference between these two query logs was found for the average number of
queries per session, however the difference is small (2.71 for AOL-M and 1.80 for HON)
if compared to any other datasets (e.g., 5.20 for TRIP and 8.76 for AOL-Kids). In this
aspect, HON query logs are more similar to enterprise and local Web site search [114]: for
example, the logs from the University of Essex analyzed by Kruschwitz et al. [115, 116]
contained on average 1.53 queries per session, and logs of queries submitted to the Utah
government Web site showed on average 1.73 queries per session. In turn, the number of
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queries per session for AOL-M (2.71) and AOL-NM (3.26) are similar to other general
search engines at the time, such as AltaVista (2.02 [178]), Excite (2.8 [99]) and Dogpile
(2.31 [100]).

The average terms/characters per query can be an indicator of the complexity and
difficulty of the users to express their information needs. We note that AOL-Medical
and HON queries are shorter than TRIP queries, and that TRIP logs are similar to
PubMed logs in terms of query length. White’s work also found that expert queries are
more complex than consumer queries. Note that the recent increase in the number of
spoken queries submitted to search engines due to the popularity of smartphones has
likely increased the average terms/characters per query [46, 84]. Experiments with more
recent search logs are necessary to understand if expert queries continue to be longer
than non-expert queries.

The average number of queries per session and time per session, although considerably
smaller than what was found by White’s work, follow the same pattern, with TRIP data
having longer sessions than HON and AOL-Medical. We could not find an explanation
for such long sessions in the White et al. dataset. We show only the sessions made by
experts and consumers in the medical domain from White’s work, but in their original
paper they report that sessions are considerably smaller when the same set of people
query in other domains: having a mean session length of fewer than 5 queries, and the
mean time per session is never longer than 800 seconds.

We aggregate the log into two groups in Table 3.4: consumers and experts, making the
comparison of our datasets with the literature possible. As done by White et al. [207], we
use Cohen’s d to determine the effect size of each variable between each pair of groups.
We randomly sampled 45,000 users from TRIP and merged them with the 45,090 users
from GoldMiner, making all datasets have a comparable number of users. Cohen’s d is a
useful metric for meta-analysis [35] that uses the means and standard deviations of each
measurement to calculate how significant a difference is. Although there are controversies
about what is a “small”, “medium” or “large” effect size, a recommended procedure is to
define a Cohen’s d effect size of 0.2 or 0.3 as a “small” effect, around 0.5 as “medium”
effect and greater than 0.8 as a “large” effect [35]. White et al. built a classifier to detect
user expertise based on a superset of the features shown in Table 3.4. They argued
that these are valuable features based on Cohen’s d value, as well as feature importance
calculated by their regression classifier. Although considered to have a “small” effect,
this was big enough to help separate experts from consumers. We reached very similar
Cohen’s d values to White’s paper, hypothesizing that the behavior could be used to
predict expertise in other logs as well. In particular, we found the same ranking that
White et al. found, among the four features presented in Table 3.4.

3.3.2 What Users Search for

In order to understand what search engine users are looking for, we investigate popular
terms and queries issued. Also, we use MetaMap to map queries to the MeSH hierarchy,
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Table 3.3: General Statistics describing the query logs. We use * when the median value
was used instead of the average, and N/A when the data was not available.

This Work Literature

Dataset Consumers Experts Non-Medical AOL-Kids AOL-NKids Consumers Experts Pubmed

AOL-M HON TRIP GM AOL-NM Torres et al. [54] White et al. [207] Herskovic et al.[91] Dogan et al.[96]

Logs Initial Date Mar 2006 Dec 2011 Jan 2011 N/A Mar 2006 Mar 2006 May 2007 Jan 2006 Mar 2008
Logs Final Date May 2006 Aug 2013 Aug 2012 Jan 2012 May 2006 May 2006 Jul 2007 Jan 2006 Mar 2008

# Users 47,532 47,280 279,280 45,090 655,292 N/A N/A 37,243 7,971 624,514 NA
# Queries 215,691 140,109 1,788,968 219,407 34,427,132 485,561 N/A 673,882 362,283 2,689,166 58,026,098
# Unique Queries 69,407 85,824 486,431 90,766 9,695,882 10,252 N/A N/A N/A N/A N/A
# Sessions 79,711 77,977 344,038 100,848 10,555,562 21,009 N/A 68,036 26,000 740,215 23,017,461

Avg Terms Per Query 2.61 (±1.71) 2.72 (±2.05) 3.40 (±2.33) 2.28 (±2.54) 2.46 (±1.87) 3.23 2.5 2.92 3.30 3* 3.54
Avg Char Per Query 16.22 (±9.11) 18.11 (±11.48) 21.22 (±9.69) 16.64 (±10.20) 15.98 (±9.67) N/A N/A 20.76 24.05 N/A N/A
Avg Queries Per Session 2.71 (±2.50) 1.80 (±2.48) 5.20 (±5.95) 2.18 (±2.57) 3.26 (±4.65) 8.76 2.8 9.90 13.93 N/A 4.05
Avg Time Per Session (s) 258 (±531) 208 (±592) 471 (±758) 163 (±520) 384 (±809) 1238 N/A 1549.74 1776.45 N/A N/A

Table 3.4: General Statistics – Stratified by expertise. C for consumers and E for experts

Dataset Consumers Experts Cohen’s d

Total Number of Users 94,812 90,090
E - C E - C

from [207]Total Number Of Queries 355,800 504,745
Total Number Of Unique Queries 149,648 181,051
Total Number Of Sessions 157,688 155,965
Mean Terms Per Query 2.65 (± 1.85) 2.91 (±2.09) 0.13 0.20
Mean Chars Per Query 16.97 (± 10.16) 19.18 (±10.16) 0.22 0.30
Mean Queries Per Session 2.26 (± 2.53) 3.24 (±4.29) 0.28 0.38
Mean Time Per Session (sec) 233 (±562) 271 (±629) 0.06 0.11

finding the high-level topics associated with the user queries.

Terms and Queries

We depict the most popular queries, terms (here excluding the stop words), and ab-
breviations used in all logs, as well as their frequency among the queries in Table 3.5.
As expected, AOL-NotMedical contains navigational queries and several terms related
to entertainment. Similarly, some of the most popular queries in AOL-Medical are
navigational: in the top 10 queries, two are for the website webmd.com and one searching
for the website mayoclininc.com. These same websites also appear in the HON search
log. The analysis of AOL-Medical terms shows common medicine-related concepts, with
people searching for information about different cancer types in more than 3% of the
cases.

Most of the top queries in the TRIP log are related to diseases. In TRIP logs, we found
‘area:’ in 3% of the queries, ‘title:’ in 2.2%, ‘to:’ in 1.5% and ‘from:’ in 1.8%, in total
these keywords were used in 6.7% of the queries, however, we do not show these terms in
Table 3.5, as they do not reveal what the users search for, but how they search. These
patterns were not found in the other datasets. The use of more advanced terms is also
found in PubMed logs [91], we hypothesize that some users might just copy and paste
their queries from PubMed into the TRIP search engine, resulting in queries such as
‘palliative care (area:oncology)’, indicating that the user wants material about palliative
care specifically for the area of oncology. ‘Title’ is used in PubMed for performing a
search only in the title of the indexed articles, while ‘from:’ and ‘to:’ specify periods of
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Table 3.5: Top queries and terms and their relative frequency (%) among all queries

Laypeople Experts

Rank. AOL-Medical HON TRIP GoldMiner AOL-NotMedical
String Freq String Freq String Freq String Freq String Freq

QUERIES

1 webmd 0.98 trustworthy health sites 4.24 skin 0.29 mega cisterna magna 0.44 google 0.95
2 web md 0.41 cancer 0.51 diabetes 0.22 baastrup disease 0.40 ebay 0.40
3 shingles 0.27 webmd 0.47 asthma 0.17 toxic 0.23 yahoo 0.37
4 mayo clinic 0.26 sleep apnea syndromes 0.27 hypertension 0.14 limbus vertebra 0.22 yahoo.com 0.28
5 lupus 0.25 lymphoma 0.22 stroke 0.13 cystitis cystica 0.20 mapquest 0.25
6 herpes 0.20 breast cancer 0.21 osteoporosis 0.11 thornwaldt cyst 0.14 google.com 0.23
7 diabetes 0.19 hypertension 0.18 low back pain 0.10 buford complex 0.13 myspace.com 0.22
8 fibromyalgia 0.18 mayoclinic.com 0.16 copd 0.10 splenic hemangioma 0.13 myspace 0.21
9 pregnancy 0.16 obesity 0.16 breast cancer 0.09 throckmorton sign 0.12 www.yahoo.com 0.12
10 hernia 0.16 drweil.com 0.14 pneumonia 0.09 double duct sign 0.12 www.google.com 0.12

TERMS

1 cancer 3.40 health 6.39 treatment 3.03 cyst 3.17 free 1.24
2 hospital 3.00 sites 4.37 cancer 2.56 mri 1.89 google 1.04
3 pain 2.25 trustworthy 4.28 pain 2.13 disease 1.80 county 0.65
4 symptoms 2.14 cancer 2.74 care 2.10 ct 1.75 yahoo 0.62
5 disease 2.03 disease 1.53 children 1.98 fracture 1.68 pictures 0.60
6 blood 1.87 diabetes 1.17 therapy 1.81 tumor 1.65 lyrics 0.52
7 medical 1.62 treatment 0.96 diabetes 1.80 syndrome 1.47 school 0.51
8 webmd 1.21 syndrome 0.87 disease 1.78 liver 1.26 myspace 0.49
9 surgery 1.14 heart 0.83 pregnancy 1.70 pulmonary 1.22 ebay 0.46
10 syndrome 1.13 pain 0.80 acute 1.41 bone 1.16 sex 0.44
11 breast 1.11 care 0.77 syndrome 1.39 renal 1.13 florida 0.45
12 center 1.09 effects 0.75 management 1.14 sign 1.12 sale 0.41
13 health 1.04 medical 0.67 stroke 1.07 lung 1.11 city 0.40
14 heart 0.90 blood 0.65 surgery 1.06 brain 1.08 home 0.39
15 diabetes 0.86 pregnancy 0.61 prevention 1.05 cell 1.00 state 0.39

time in which a document was published.

The topmost query in the HON log and its top 3 terms are ‘trustworthy health sites’. It
shows that many of the queries are from users that do not know which are the medical
websites that they can trust, and also demonstrates a misunderstanding by the end users
of the nature of the content indexed by the HON search engine (only HONcode-certified
websites are indexed).

For the GoldMiner queries and terms, we clearly see the increase in the terminological
specificity of the most popular keywords used.

Mapping to MeSH

MeSH is a hierarchical vocabulary used by US National Library of Medicine for indexing
journal articles in the life sciences field. A query log analysis using MeSH was also carried
out by Herskovic et al.[91] for the PubMed logs in order to understand what are the
most popular topics searched by the users. We use the same weighting schema used in
Herskovic’s work: if n categories are detected in one query, we give the weight of 1/n to
these categories.

General statistics calculated for the mapping of user queries to MeSH terms are shown
in Table 3.6. Here, we are testing MetaMap for the annotation of non-medical queries as
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Table 3.6: General MeSH Statistics

Laypeople Experts
Metric AOL-M HON TRIP GM AOL-NM

% of queries containing MeSH terms 77.87 77.81 85.96 79.02 50.51
Mean MeSH Depth 3.99 3.83 3.86 4.01 4.37

Mean MeSH terms per query 2.14 2.19 2.78 2.07 1.12
Mean Disease terms per query 0.81 0.60 0.99 1.17 0.05

well, which to the best of our knowledge was never studied.

An interesting result is the fact that around 50% of AOL-NotMedical queries were
successfully mapped to a MeSH concept. To investigate this, we collected a large random
sample of mapped queries and analyzed them. We found that MetaMap is able to find
many concepts not directly linked to medicine, such as geographic locations, animals and
plants, food and objects. For example, ‘www’ (L01.224.230.110.500 ), used in 10% of
all AOL queries, is recognized and annotated as Manufactured Object. Also, locations
are usually very commonly found and help to explain the high mean MeSH depth found
for this dataset, second row in column AOL-NM (California is mapped to both Z01.107-
.567.875.760.200 and Z01.107.567.875.580.200 ). It is important to have this in mind
when building systems like in Yan et al. [213], in which the MeSH depth is used to model
document scope and cohesion. When looking at false positive mappings, especially the
ones mapping to diseases and symptoms, we detected that MetaMap’s errors fall into
two main categories: (1) English common words: tattoo (tattoo disorder), Pokemon
(ZBTB7A gene), and (2) abbreviations: park (Parkinson disease), dvd (Dissociated
Vertical Deviation). For both types of errors, MetaMap, or a system using it, would
have to use the context (words around the mapping) to detect that Pokemon is used as a
cartoon or a game, and not as a gene name. Specifically for the second case, it would be
desirable if MetaMap could allow the use of a pre-defined list of acronyms to increase
its precision. In the current implementation, MetaMap has a parameter for user-defined
acronyms (-UDA), but it is just used to expand more acronyms instead of overwriting its
pre-defined ones. Also for AOL-NM, the third and fourth rows indicate the suitability of
using mappings to MeSH for distinguishing between medical and non-medical queries.
Queries from the medical logs have a larger number of MeSH terms and disease terms
than AOL-NM. If the errors analyzed above could be amended using the query context
or session, for example, then mapping to MeSH could be helpful to detect queries or
sessions on medical information.

Going further, we present in Figure 3.5 the most popular categories for the first level
of the MeSH hierarchy. We also show the results obtained by Herskovic et al. [91] for
PubMed, in order to compare our findings. We show only the categories that have more
than 5% of the queries containing MeSH terms mapped to it.

When Herskovic and colleagues did this experiment, they found that PubMed users were
more interested in the category Chemical and Drugs. In general, the distributions over
the categories for the AOL-Medical, HON and TRIP search logs are similar. However,
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Figure 3.5: Popular categories according to MeSH mappings

differently from PubMed, we found that the users are generally most interested in
Diseases, and then Chemicals and Drugs. The results for GoldMiner show another trend
for the second most popular category, focused on anatomy rather than on drugs, likely
because radiologists often have to append to their query the part of the body that they
are interested in. In its actual version, GoldMiner has a filter for age, sex and modality
(e.g., CT, X-ray), but it has no filter for body parts. This analysis suggests that it could
be interesting to add a filter for body regions as well.

Last, the four classes to the right of Figure 3.5 partly explain the high percentage of
AOL-NotMedical terms mapped to MeSH terms. The high percentage of mappings to
these least medical categories of MeSH (e.g., Information Science and Technology and
Industry), together with a low percentage of mappings to highly medical categories (e.g.,
Diseases), could be used as a discriminative feature to distinguish between medical and
non-medical logs.

3.4 Analysing Sessions

The rest of this chapter considers user sessions instead of separate queries. Once more,
we first study the user behavior, then the content of each session.

3.4.1 Session Characteristics

A series of queries, part of an information seeking activity, is defined as a session [72]. In
order to better understand sessions, we define and study a set of search patterns. In this
work, we consider that, after issuing the first query, a user may act in four different ways:
(1) Repetition: repeat precisely the same query, (2) Expansion (Specialization): repeat

42



3.4. Analysing Sessions

Table 3.7: Aggregated percentages for query modifications along the sessions

Laypeople Experts
Action AOL-M HON TRIP GM AOL-NM

Expansion 6.66 13.83 14.85 5.96 3.71
Reduction 1.23 2.23 4.35 9.61 0.84

Reformulation 84.74 63.56 43.96 49.56 80.27

Exp. Red. 0.37 1.29 5.09 3.54 0.57
Exp. Ref. 5.43 13.90 15.27 8.28 9.66
Red. Ref. 1.01 2.21 5.63 12.01 2.09

Exp. Red. Ref. 0.56 2.98 10.85 11.04 2.86

the query adding one or more terms to increase precision, (3) Reduction (Generalization):
reduce the number of terms to increase recall, or (4) Reformulation: reformulate the
query changing some or all the terms used. We ignore the first case because we cannot be
sure if a user is indeed repeating the same query or just changing the result page, as some
search engines record the same query as a result of a page change. Note that multiple
search patterns have been employed in the literature [119, 88, 100, 94, 72] depending,
among other factors, whether the semantics of the queries are taken into account or not.
The search patterns employed in this work are a common subset of the different patterns
definitions in the literature.

Table 3.7 depicts the changes made by users during the sessions. If during one single
session a user adds a term to the previous query and then changes a few words, we
count one action in the row Exp.Ref (for expansion and reformulation – the order is
not important). In the end, we divide the number of actions of each row by the total
actions in the query log. Hence, Table 3.7 shows that the most frequent user action
is the reformulation alone, but it is more likely to happen in search engines targeting
consumers, e.g., 84% of the sessions in the AOL-Health logs and 63% of HON had
only reformulations. The last row of Table 3.7 shows that expert users might be more
persistent than consumers, as more than 10% of the sessions in the expert search engines
are composed of every type of action, while in consumers logs this number is less than a
third of this. In the literature, White et al. [207] also hypothesize that expert users are
more persistent than consumers.

3.4.2 What are the Sessions About?

In order to understand the sessions, we first attribute meaning to the users’ individual
queries, mapping them to search intents. We use the same search intents previously
defined in Cartright, White and Horvitz [27]: symptom, cause and remedy, so that a
direct comparison can be performed. A difference between their method and ours is that
we map the queries in a session to search intents by using the UMLS semantic types of
MetaMap, as done in [97, 136, 147, 140], instead of handmade rules.

In Figure 3.6, we show ten semantic types that are frequently found in the query logs
(i.e., semantic types found in at least 5% in any query log). We inspect only these ten
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Figure 3.6: The top most frequently used semantic types (frequency in percentage). Many
of the most used types are aggregated to study the user focus described in Table 3.8

semantic types for a matter of readability, as currently MetaMap recognizes 133 semantic
types and it is not possible to visualize them all7. The single most common type in all the
medical logs is ‘Disease and Syndrome’. As we expect, the top types in AOL-NotMedical
are not related to the medical domain, and the second most common semantic type for
GoldMiner is related to parts of the body, as one might expect for radiology queries.

After a meticulous analysis of the semantic meaning assigned for the queries (as previously
described in experiments made in Section 3.2.2), we defined the following classification
based on the three classes created in [27] (some examples of queries classified for each
type are given for a better understanding):

• Symptom: Sign or Symptom (cough; sore; headache; red eyes), Findings (stress;
testicular cyst)

• Cause: Anatomical Abnormality (hiatial hernia), Cell or Molecular Dysfunction
(macrocytos), Congenital Abnormality (scoliosis), Disease or Syndrome (diabetes;
heart failure), Experimental Model of Disease (cancer model), Injury or Poisoning
(achilles tendon rupture), Mental or Behavioral Dysfunction (bipolar disorder),
Neoplastic Process (lung cancer ; tumor), Pathologic Function (atypical hyperplasia)

• Remedy: all 28 types belonging to the high-level group Chemicals & Drugs, which
includes Clinical Drug (cough syrup), Antibiotic (penicillin), Pharmacologic Sub-
stance (tylenol; mietamizol), Amino Acid, Peptide, or Protein (vectibix; degarilex),
Immunologic Factor (vaccine; acc antibody), Vitamin (quercetin, vitamin B12),
Therapeutic or Preventive Procedure (treatment; physiotherapy), etc.

7A complete list of all semantic types can be found Online: http://metamap.nlm.nih.gov/
SemanticTypesAndGroups.shtml
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3.5. Summary

We analyze the most popular semantic types found in the queries and show them in
Table 3.8, together with a direct comparison to Cartright et al. [27]. The largest difference
between all four medical logs analyzed in this paper and the Cartright et al. results is in
the symptom category. For the latter, 63.8% of the sessions are focused on symptoms,
while between 5.5% and 9.1% are focused on symptoms in our analysis. The main
reason for Cartright’s result is linked to the way in which they created their dataset:
keeping only sessions that had at least one query containing a term in a wordlist extracted
from a list of symptoms from the Merck medical dictionary. Their preprocessing step,
therefore, explains the fact that most of the sessions were concentrated only on searching
for symptoms. Conversely, our analysis reveals that the most common user focus is on
causes rather than on symptoms. Also, the second most common focus is on the way
to cure a disease. It is important to note that the Cartright et al. logs date from 2009,
which means they are 3 years younger than AOL, but roughly 3 years older than HON,
also suggesting that the considerable divergence found is due to the preprocessing steps
and not to an evolution on how the users search.

Once more, GoldMiner presents a different behavior. We hypothesize that the low number
of sessions on remedies is explained by the fact that radiologists are not interested in
remedies when searching for images as they are rather in the diagnosis phase. It is
interesting to note that searching for causes and remedies in the same session is a very
frequent task for medical experts in the TRIP logs, with 16% of the sessions searching
for both remedies and causes.

In Table 3.9, we show the behavior modifications along a session. One oscillation is
characterized by a transition from one focus type to another and then back to the original
type. Originally, this study was made to support the hypothetico-deductive searching
process in which a user cyclically searches for a symptom, then a cause and then returns
to symptom [27]. The symptom-cause pattern was also found in our experiments, but
with a more balanced distribution in relation to the other patterns. Again, the large
number of behaviors involving symptoms found in [27] is likely an artifact of how the
dataset was constructed. We see that the cause-remedy pattern plays a very important
role, especially in the TRIP log, in which this is the most common pattern. Finally, the
least frequent pattern found in all four datasets is the symptom-remedy one. The study
of the behavior modification was used in [27] to build a classifier to predict what is the
next user action, allowing a search system to support medical searchers by pre-fetching
results of possible interest or suggesting useful search strategies.

3.5 Summary

In this chapter, we focus on one of the most important topics in the health domain,
medicine. We conducted a detailed study of medical information search behavior through
query logs. We studied how users search for medical documents, as well as what they
search for. Results were compared to those in published studies analyzing search logs in
the medical domain. Almost all recent studies about the behavior of searchers looking
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Table 3.8: User focus when searching for medical content in a single session.

Laypeople Experts
Intent AOL-Medical HON TRIP GoldMiner AOL-NotMedical Cartright et al.[27]

None 34.0 40.4 16.8 21.2 82.9 3.9

Symptom 9.1 6.3 5.5 6.4 3.9 63.8
Cause 24.3 20.9 26.0 58.2 3.3 5.3
Remedy 14.7 16.2 17.4 3.3 7.5 1.1

Symptom and Cause 6.8 6.1 7.2 6.4 0.5 22.6
Symptom and Remedy 2.1 2.6 4.5 0.5 0.9 2.0
Cause and Remedy 7.1 5.0 15.9 3.0 0.8 0.4

All three 1.9 2.5 6.7 1.0 0.2 0.8

Table 3.9: Cycle Sequence along a single session

Laypeople Experts

Pattern Interaction AOL-Medical HON TRIP GoldMiner Cartright et al.[27]
Sessions with oscillations (%) 23.07 13.48 64.61 8.60 16.2

Symptom-Cause Symptom→Cause→Symptom 19.2 15.6 13.2 22.7 51.4
Cause→Symptom→Cause 19.9 18.8 14.5 35.3 38.4

Symptom-Remedy Symptom→Remedy→Symptom 8.2 11.8 10.8 4.1 5.1
Remedy→Symptom→Remedy 8.1 14.2 11.6 3.8 2.7

Cause-Remedy Cause→Remedy→Cause 18.2 18.4 24.8 20.3 1.5
Remedy→Cause→Remedy 26.4 21.2 25.1 13.8 0.9

for medical information have been based on the search logs of a large commercial general
purpose search engine. This chapter performs the important task of reproducing these
studies as far as possible on search logs from other search engines to find out to what
extent these results can be supported or not. An important difference with this study
compared to published studies is the use, in three of the four cases, of domain-specific
medical search engines targeted at either experts or consumers, meaning that we have
very strong priors about who is using the search engines and what they are searching
for. This avoids assumptions that have to be made in order to extract medical queries
or extract expert or consumer queries from the search log of a general purpose search
engine.

This chapter covers the behavior of the users when searching for medical information.
Analyses were done both at the level of individual queries and of sessions. It was found
that the mean number of terms per query and mean number of chars per query were
higher for experts than for consumers with a small effect (measured by Cohen’s d value).
We also found longer sessions both in terms of mean number of queries per session
and mean amount of time spent per session, with a small effect. These small effects
were sufficient to successfully train a classifier to predict expert and consumer classes in
Chapter 4.

When analyzing the user behavior in terms of sessions, we conclude that experts are
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more persistent than consumers, as more than 10% of the sessions in the expert search
engines were composed of all possible query modification actions (expansion, reduction,
reformulation). Alternatively, longer sessions could mean that experts are struggling to
find relevant information. It supports the current efforts of the information retrieval com-
munity to help experts finding scientific material to improve their clinical decisions [167].
It would be interesting to study if the increase of expertise of consumers can change their
behavior over time as suggested by Wildemuth [211], but this will likely require years of
search engine logs.

The investigation of what the users search for led us to conclusions that are significantly
different from results published in the literature. In both of our analyses, the one based
on the MeSH hierarchy and the one based on semantic types, we observed that users
are more concerned with diseases rather than symptoms. Understanding what users are
searching for is an essential step towards providing more relevant search results.

We also identified patterns supporting the hypothetico-deductive searching processes,
especially for the cause-remedy component, in which both consumers and experts cycle
through searching for causes and remedies in sessions to discover potential treatments for
a disease. Finally, we found that TRIP users, mainly users falling into our expert class,
use the hypothetico-deductive method very often, in more than 60% of their sessions,
versus less than 25% for AOL and HON. This supports the hypothesis that experts have
much more complex information needs, which are not well addressed by the current
search systems [167].

An interesting kind of search in the medical domain is the one for self-diagnosis pur-
poses [65], which often arises before consulting medical expert (or to help the decision to
consult). Previous research has shown that exposing people with no or scarce medical
knowledge to complex medical language may lead to erroneous self-diagnosis and self-
treatment and that access to medical information on the Web can lead to the escalation of
concerns about common symptoms (e.g., cyberchondria) [208]. Also, current commercial
search engines are far from being effective in answering such queries [225], presenting on
average only 3 highly relevant results in the top 10 results. In the same manner that
experts can assist health consumers in detecting credible content on the Web [174], a
search system capable of inferring user expertise can learn about the decisions taken by
experts to better support consumers. In the case of self-diagnosis, the symptom-cause
cycle in the expert search logs can be explored to provide query suggestions for health
consumers.

After consulting a medical expert, health consumers often query about a disease or about
a treatment that was recommended to them [65]. When copying-and-pasting the complex
terms into a search box, they are presented with documents that are potentially as complex
as their queries [107, 225]. Inferring user medical knowledge can help matching health
consumers with the suitable documents for them even for complex queries, significantly
diminishing harmful situations and misunderstandings. Inferring user medical knowledge
is the focus of the next chapter of this thesis.
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CHAPTER 4
Exploiting Query Logs:

Estimating User Medical
Expertise

We have seen in Chapter 3 that health experts and health consumers use different search
strategies. Now, we shall take advantage of these differences to build an automatic
classifier that can assist search systems to provide the most suitable content to the users
based on the user domain knowledge.

In particular, we explore two out of the four query logs studied in Chapter 3: HON
and TRIP. Those are the most representative query logs of the health consumers and
experts and their search sessions, as GM is too limited to a very specific specialization
(radiologists) and the AOLM requires preprocessing that is not needed by HON. Both
HON and TRIP query logs are made for a distinct audience, although they share a very
similar interface, taking free text queries in a single text box. Our assumption that health
experts use TRIP and health consumers use HON does not require any complex filtering
of users, as most users query medical content on these Websites.

One concern that arises when using two different sources of logs is that we could learn
how to differentiate between the two search engines, instead of learning how to infer the
correct user expertise. To overcome this drawback, we are focusing on what the users
search for (e.g., analyzing the keywords used to find out the topics searched), rather than
how (e.g., the number of words used or the number of queries per session). Therefore, we
do not make use of user sessions and use behavior features only as baseline, rather we
focus on creating and evaluating features for expertise prediction in the health domain
based solely on the keywords used. As an outcome, we built a classification model capable
of inferring user medical expertise that can be easily integrated into any search engine.
The results show that a Random Forest classifier using the medical features proposed
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can boost the classification accuracy by more than 12%, compared to the same classifier
using only user behavior related features.

This chapter is divided as follows. Section 4.1 presents the datasets used in the classi-
fication task, while Section 4.2 lists all the features devised. Section 4.3 analyses the
classification results. A summary and conclusion are presented in Section 4.4.

4.1 Data Collection
Our dataset consists of query of two types of users: users from the HON search engine,
the health consumers; and users from the TRIP search engine, the health experts. The
general statistics about the dataset were described in Table 3.3. In order to create a
balanced dataset, we randomly selected 25,000 users (i.e., 25,000 query sessions) from
both HON and TRIP datasets. Note that we opted for a balanced dataset as we are
not aware of the actual distribution between health consumers and professionals in
commercial search engines. While it has been observed that the naturally occurring
distribution is not always the optimal distribution to train classification models [204, 30],
experiments with different sampling strategies are beyond the scope of our work.

Only two primary pieces of information are extracted for each query: (1) the anonymous
user identification, and (2) the keywords used. This information is the common inter-
section of the two query logs used, and potentially present in any other query log of a
search engine or Q&A system. As done in Chapter 3, we enrich the user query using
Metamap [4]. We augment the datasets with: (1) the concepts found in each query,
(2) the sources of vocabularies, (3) the Medical Subject Headers (MeSH) identifiers, (4)
the medical semantic types, and (5) the part-of-speech tagging. In the next section, we
describe the 28 features generated in this work.

4.2 Classification Features
We divided the features devised into 5 groups, allowing us to later study the contribution
of each group. Groups are described below, and a summary is presented in Table 4.1.

4.2.1 Behavior Features

Behavior features focus on how users search instead of what they search. We use the
average number of words per query and average number of characters per query, because
they have shown to be good predictors in the related work [207, 219]. Our goal with
these two features is to be able to compare the performance of classifiers using them with
classifier using other groups of features.

4.2.2 Semantic Features

As in Section 3.4.2, we explored the MetaMap mappings to acquire the semantic behind
a query. Apart from the same three semantic classes: (1) symptom, (2) cause (disease)
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and (3) remedy, we use the label other to refer to queries with no symptom, cause
or remedy. A query can be mapped to multiple semantic classes symptom, cause and
remedy, or belong to the other semantic class. Features are normalized by the number of
queries issued by a users, e.g., if only one out of the five queries a user issue is mapped
to the symptoms, then feature % Queries with Symptoms = 0.2.

4.2.3 Unified Medical Language System (UMLS) Features

Similarly to what we did in Chapter 3, we use MetaMap to map user queries to UMLS
concepts. MetaMap also provides an easy way to access all the sources and different
concepts to which a term might belong. Using this information, we model features based
on the number of UMLS sources and the number of concepts that can be identified in
a query. Additionally, we also map each UMLS concept to one or more concepts in
the Medical Subject Headings (MeSH) hierarchy. MeSH was already used assuming
that difficult concepts are lower in the hierarchy [213]. For example, the query ‘wilson’s
disease’ is mapped to two concepts (ATP7B gene, and Hepatolenticular Degeneration), it
is presented in 20 out of 169 sources used by Metamap and related to 11 concepts in the
MeSH hierarchy. We normalized these counts by the number of queries issued by a user.

4.2.4 Consumer Health Vocabulary Features

The vocabulary gap between consumers and experts is a substantial barrier to health
information access for consumers. The Consumer Health Vocabulary (CHV) was created
to cope with this issue [218]. The CHV dataset (version 20110204) links part of the
UMLS concepts, e.g., ‘myocardial infarction’, to everyday expressions, e.g., ‘heart attack’,
which are called laypeople-preferred term. Moreover, for many terms in the UMLS
Metathesaurus, a difficulty score is available, related to the frequency or the context in
which the term is used. For any word without a difficult score, we used the mean difficult
score of the complete CHV dataset, 0.29 (the data ranges from 0.0 – very difficult – to 1.0
– very easy). For example, myocardial infarction score is 0.54, while heart attack is 0.80.

For each query in our datasets, we compute five values: (1) the number of terms found in
the CHV dataset; if the query contained an (2) expert term (i.e., a UMLS term that is
not in the laypeople-preferred version), a (3) consumer term (i.e., a UMLS term that is
in the laypeople-preferred version) or a (4) misspelled term (CHV dataset also contains a
list of frequently misspelled terms); as well as (5) the average difficult score of all terms
identified. We normalized these counts by the number of queries issued by a user. For
example, the query ‘heart attack’ contains only one concept which is successfully mapped
to CHV with MetaMap, a consumer term is identified and its difficulty score is 0.80.
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Table 4.1: Groups and features used in this work. Two basic behavior features are used
in the baseline models.

Behavior Features (Baseline Only)

Avg. Words per Query Avg. characters per query

Semantic Features

% Queries with Symptoms % Queries with Causes
% Queries with Remedies % Queries with Other Types

Unified Medical Language System (UMLS) Features

% Queries Using Sources Avg. Sources Per Query
% Queries Using Concepts Avg. Concepts Per Query

% Queries Using MeSH Avg. MeSH Per Query
Avg. MeSH Depth Per Query

Consumer Health Vocabulary (CHV) Features

Avg. CHV Terms Per Query % Queries with Consumer Terms
% Query with Expert Terms % Queries with Misspelled Terms
Avg. Combo Score Per Query

Part-of-Speech Tagging (POS) Features

% of Nouns % of Verbs
% of Auxiliary Verbs % of Adjectives

% of Conjunctions % of Adverbs
% of Determiners % of Prepositions

% of Pronouns % of Shapes
% of Punctuations % of Modal Verbs

4.2.5 Part-of-Speech Tagging Features

We employed the part-of-speech tagger module MedPost/SKR1 of Metamap to annotate
each word in a query with one of the following lexicon tags: noun, verb, auxiliary
verb, adjective, conjunction, adverb, determiner, preposition, modal verb, pronoun,
punctuations and numbers. We count the percentage of queries with any one of the
possible tags.

4.3 Classification Results

The classification problem presented here seeks to infer the user expertise based on the
user queries by calculating the features shown in Table 4.1 for each user. As described
in Section 4.1, there are 25,000 regular users from HON and 25,000 medical users from
TRIP in the dataset, resulting in a baseline accuracy of 50.00% for a classifier that assigns
all the users to one of the two classes.

Support Vector Machines with Linear Kernel, Logistic Regression and Random Forest from
the Python package scikit-learn2 were used with their respective best hyperparameters

1https://metamap.nlm.nih.gov/MedPostSKRTagger.shtml
2http://scikit-learn.org
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4.3. Classification Results

Table 4.2: Results of the experiment on classifying users according to their expertise.
Different combinations of classifiers and feature sets are explored. Underline is used to
show values that are statistically different from the classifier with Behavior Features
using a student’s t-test with Bonferroni correction, p < .00069.

Feature Set Classifier Pos. Class Acc Prec Recall F1

Baseline I: None Positive Class Layp. 50.00 50.00 100.0 50.00Exp.

Baseline II: Behavior Features
(Avg. Words per Query & Avg. Chars. per Query)

Logistic Regression Layp. 63.33 62.53 66.52 64.46
Exp. 64.25 60.15 62.12

SVM (Linear Kernel) Layp. 59.74 60.35 73.22 63.98
Exp. 61.71 51.24 54.18

Random Forest Layp. 68.01 67.10 70.70 68.84
Exp. 69.05 64.51 66.69

Part Of Speech

Logistic Regression Layp. 61.62 58.30 81.66 68.02
Exp. 69.42 41.59 52.00

SVM (Linear Kernel) Layp. 61.56 58.32 81.07 67.83
Exp. 68.98 42.07 52.25

Random Forest Layp. 65.33 61.54 81.75 70.22
Exp. 73.51 47.84 57.96

Semantic

Logistic Regression Layp. 64.63 65.28 62.51 63.86
Exp. 64.03 66.74 65.35

SVM (Linear Kernel) Layp. 64.61 65.34 62.24 63.75
Exp. 63.95 66.98 65.43

Random Forest Layp. 65.80 67.51 60.92 64.04
Exp. 64.43 70.35 67.25

UMLS

Logistic Regression Layp. 65.67 68.84 57.27 62.51
Exp. 63.42 74.08 68.33

Linear SVM Layp. 64.17 68.12 60.00 62.33
Exp. 64.79 66.20 62.17

Random Forest Layp. 70.19 71.26 67.68 69.42
Exp. 69.91 67.43 68.64

CHV

Logistic Regression Layp. 67.09 68.35 63.67 65.92
Exp. 66.00 70.52 68.18

SVM (Linear Kernel) Layp. 66.89 68.46 62.67 65.43
Exp. 65.58 71.12 68.23

Random Forest Layp. 70.99 71.62 69.57 70.57
Exp. 71.30 67.36 69.27

Part of Speech + Semantic + UMLS + CHV

Logistic Regression Layp. 71.70 72.75 70.24 71.27
Exp. 71.09 73.16 72.10

SVM (Linear Kernel) Layp. 71.58 72.49 70.32 71.15
Exp. 70.76 74.45 72.37

Random Forest Layp. 76.45 79.48 71.33 75.18
Exp. 76.88 74.43 75.63

All Features Above

Logistic Regression Layp. 72.71 73.42 71.20 72.28
Exp. 72.05 74.24 73.12

SVM (Linear Kernel) Layp. 69.33 74.06 65.40 67.21
Exp. 71.59 71.37 68.93

Random Forest Layp. 76.93 80.24 71.46 75.59
Exp. 77.58 75.11 76.32
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4. Exploiting Query Logs: Estimating User Medical Expertise

selected using grid search. The performance of each classifier was measured by precision,
recall, F1

3 and accuracy scores, as these are well known and widely used metrics.

We performed a ten-fold cross-validation experiment across ten runs. Comparisons to
the baseline with behavior features were made using a two tailed student’s t-test with
Bonferroni correction [69] (72 hypotheses tests = 3 machine learning models × 6 groups
× 4 evaluation metrics – and an initial α = .05 resulted in a new critical p-value of
α/72 = .00069 – i.e., results are significantly different from the baseline if p<.00069). We
analyze the results of our model and compare them to two baselines: (1) a classifier that
assigns all examples to the positive class, (2) classifiers using two basic user behavior
related features - average words per query and average characters per query.

Table 4.2 summarizes the results. Models using the behavior features obtained a sub-
stantial improvement over the positive class baseline, with the Random Forest classifier
reaching an accuracy score of 68.01, an absolute increase of 18 percentile points over the
positive class baseline. The Random Forest model using only the part of speech features
or only the semantic feature was not able to improve on the behavior features baseline.
The CHV and UMLS features revealed to be strong signals to infer medical expertise.
The use of UMLS features for the Random Forest classifier improved the accuracy by
2 percentile points when compared to the same classifier with behavior features; while
CHV increased the accuracy by 2.9 percentile points. Finally, the use of all features yield
a Random Forest model with an accuracy score of 76.45, 8.4 percentile points higher
than the same classifier with behavior features. When adding the behavior features,
the accuracy score of the Random Forest model reaches 76.93, a gain of 8.9 percentile
points compared to the Random Forest using only the behavior features. In general, the
Random Forest classifier obtained the best results within experiments with the same
feature set, showing that non-linear models should be preferred to this user classification
task.

The Random Forest classifier also allows us to compute the Gini importance score for
each feature. This value is higher when the feature is more important, indicating how
often a particular feature was selected for a split in a forest, and how large its overall
discriminative value was for the classification problem under study. Figure 4.1 shows
all features according to the Gini importance score when all the features are used. The
reason why the Random Forest using only the two behavior features did relatively well
is that these two features are among the top ten strongest features, with Number of
Chars per query being the strongest feature. Unfortunately, the high variance of the Gini
importance method does not allow us to say that one single feature is significantly better
than the others.

A direct comparison with other works in the literature such as White et al. [207], Zhang
et al. [219] and Cole et al. [36] would not be fair, because these other works use a different
range of features and datasets. Particularly, many of the features are related to the result
page: ranking of clicked results, domains of results, saved documents, among others. In

3F1 is defined as: F1 = 2 · precision·recall
precision+recall
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Figure 4.1: Feature importance according to the Gini importance score generated by the
Random Forest classifier. The higher, the more important the feature. The error bars
represent the standard deviation from the mean value for each feature.

contrast to the metrics used in this work, these are pieces of information more difficult
to obtain and not always available in search logs.

4.4 Summary

In this chapter, we made use of two distinct query log dataset to investigate the feasibility
of estimating user expertise from user queries. Our approach, when compared to similar
work in the literature [207, 209], has the advantage of not requiring any complex filtering
of users.
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4. Exploiting Query Logs: Estimating User Medical Expertise

We have developed and evaluated features to be used in the medical domain to classify
users according to their expertise. We concentrated on pieces of information easily
obtained by any search engine: the keywords for each query. Many of the features devised
here have never been used in the literature before.

We evaluated different machine learning models with various sets of features. We found
that the best results using only the set of behavior features, simple yet efficient, were
superior to using feature sets based on part-of-speech features and semantic analysis.
Feature sets extracted from domain vocabularies, such as the UMLS and, in particular
using the CHV, reached a better performance than using other feature sets. Altogether
the best results were achieved when all features were used, significantly outperforming
the two baselines, reaching an accuracy of 76.93%.

Search engines, such as Google, HON or PubMed, could make use of the classifier here
proposed to personalize the results for their users. Once a user is classified as a health
consumer, the result set could then be re-ranked to promote content that, while topically
relevant, has the highest level of understandability. Methods to re-rank results in such
way, as well as methods to evaluate the effectiveness of such re-ranking, are presented in
Part IV of this thesis.
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Part III

Understandability Estimation of
Web Documents
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CHAPTER 5
The effects of preprocessing
HTML on the estimation of

understandability

In Part II of this thesis, we studied the users of different medical retrieval systems. We
learned that health consumers and health experts have different behavior both on what
they search and how they search. We devised and analyzed features based on these
differences and showed how it is possible to distinguish between health consumers and
health experts, which can be useful to better support search engine users seeking health
or medical information online.

Now we turn our attention away from the users and focus on the results, i.e., documents,
that are retrieved by search engines. In particular for the health domain, in this part of
this thesis, we study methods to infer how difficult to read a document can be.

Researchers in the health domain are actively interested in measuring how capable search
engines are in providing consumer-friendly results at the top of their rankings (among the
many research papers in this area see [81, 62, 210, 161, 9, 133]). For example, Meillier and
Patel [133] show that, in order to understand the top results of Google for gastroparesis,
users need the knowledge of a 12th-grade student1. Patel et al. [161] similarly report
that results for thyroid surgery require at least 10 years in school to be understood, while
the average American inhabitant reads at or below an 8th grade level (i.e., 8 years in
school) [43, 199, 50, 187], which is the level suggested by NIH for health information on
the Web [196].

1Most of the readability/understandability studies use the K-12 American grade level as reference.
K-12 is a shortening to designate the period from the kindergarten (K) for 4-to 6-year-olds to the twelfth
grade (12) for 17-to 19-years-olds.
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5. The effects of preprocessing HTML on the estimation of understandability

In order to estimate how difficult a Web document is to understand, researchers heavily
rely on text readability formulas that are mostly based on surface level characteristics of
text, such as the length of words and sentences.

In this chapter, we demonstrate that different tools for extracting text from Web doc-
uments lead to very different estimations of understandability. This has an important
implication for search engines because search result personalization strategies that consider
users reading ability may fail if incorrect text readability estimations are computed.

This chapter is divided as follows. Section 5.1 briefly revisits the traditional readability
formulas and their limitations. Section 5.2 details the different preprocessing methods
and tools used in our analysis. In Section 5.3, we experiment with a realistic collection to
calculate the impact of preprocessing methods on estimation and analysis of readability
formulas. Finally, we summarize our findings in Section 5.4.

5.1 Traditional Readability Formulas
Numerous studies have proposed and analyzed methods to accurately measure the level
of knowledge required to read a text [55, 82, 38, 39, 192]. While recent research has
proposed sophisticated readability estimation methods [39, 82], often tailored to specific
domains [214], traditional readability formulas such as the Automated Readability Index
and the Gunning Fog Index are extensively used for assessing information on the Web
(see for example [210, 224]). As described in Chapter 2, these long-established readability
formulas consider the surface level of the text contained in Web documents, that is, the
wording and the syntax of sentences. In this framework, the presence of long sentences,
words containing many syllables and unpopular words, are all indicators of difficult text
to read.

We consider in this chapter a subset of the readability formulas listed in Table 2.1. We
explicitly exclude the Dale-Chall Index and the Flesch Reading Ease (FRE) formulas, as
their understandability estimation scales widely differ from that of the others, and thus
make their comparison more difficult to interpret. An easier way to compare different
metrics was also one motivation to update the FRE formula to the FKGL [110]. Note that
more recent and sophisticated readability estimators are also not considered in this analysis
for two main reasons: (1) they often introduce additional complexity to the estimation
process and thus introduce more degrees of variation, which are difficult to control for
and compare across; (2) several (if not all) experiments published in the health domain
often consider only traditional formulas (see [81, 58, 62, 210, 161, 9, 133]). Nevertheless,
further in Chapter 6, more recent understandability estimators are considered.

Two main factors have been identified as affecting the user perception of text difficulty
and that thus characterize the readability formulas of Table 2.1:

Word Length: short words are commonly used and understood, while long words are
usually rare, often containing many syllables, harder to read, write and remember.
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This factor is measured by expressions such as Sy
W , C

W and PW
W .

Sentence Length: short sentences are usually simple. Long sentences are usually
complex, demanding more cognitive processing (memory) and attention. This
factor is usually measured by the average words per sentence, i.e., WS .

Each measure differs from the others in the way these factors are combined, usually via
a coefficient that has been tuned through comprehensive readability experiments [55].

Web documents contain text strings that do not belong to the information content of
documents, but are instead used to format, structure and layout (e.g., tags) and to
embed functionalities (e.g., scripts). The presence of these strings affects both word
length and sentence length. While the use of HTML parsers allow to remove all strings
not associated with the actual informative content of the documents (and thus reducing
the errors in estimating word lengths), the estimation of sentence lengths is heavily
affected by how the text is extracted from Web documents, as we show with a concrete
example in Section 5.2. This is because Web documents are rich in tables, menus, lists,
figures, captions, titles and subtitles: these are often part of the information content
of the documents, but do not follow the expected structure of a sentence as assumed
by the traditional readability formulas. For example, often titles, menus and lists do
not end with a punctuation mark that delimits the end of the sentence. In this chapter,
we determine the effects that different ways of preprocessing Web documents to extract
the text associated with their information content have on the estimation of readability
scores.

It is interesting to note that, already in the 1960s, the precise identification of sentence
boundaries was a topic of concern for evaluating the readability of text. For example,
Smith and Senter [180], authors of the Automated Readability Index (ARI), recommend
typists to add to the end of each sentence an equals sign, aligned with a full stop, to
explicitly demarcate sentence boundaries.

5.2 Preprocessing of Web Documents
Because traditional readability formulas are based on surface level characteristics of
text, the accurate parsing of Web documents is fundamental to ensure that readability
is accurately estimated and taken into account for search result personalization. For
example, text contained in different HTML fields, tables, lists, etc., should be adequately
processed to determine the wording and the syntax of sentences, including sentence
length. This preprocessing step is often omitted or simplified (see for example [224])
and the influence of parsing errors on the readability estimation of Web documents is
unknown. On the other hand, the cleansing of Web documents’ text has been recognized
as an important issue in linguistics and language technology research [14].

Here we consider three different approaches to remove the HTML tags and the boilerplate
text, to maintain only the text associated with the information content of the Web
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5. The effects of preprocessing HTML on the estimation of understandability

1 <body class="mediawiki page-Readability skin-vector action-view">
2 <div id="siteNotice"><!-- CentralNotice --></div>
3 <h1 id="firstHeading" class="firstHeading" lang="en">Readability</h1>
4 <div id="siteSub">From Wikipedia, the free encyclopedia</div>
5 <div id="jump-to-nav" class="mw-jump"> Jump to:

<a href="#mw-head">navigation</a>, <a href="#p-search">search</a> </div>
6 <div id="mw-content-text" lang="en" dir="ltr" class="mw-content-ltr">
7 <p>Readability</b> is the ease with which a text can be understood.
8 </div>
9 </body>

CentralNotice CentralNotice.
Readability Readability.
From Wikipedia, the free encyclopedia From Wikipedia, the free encyclopedia.
Jump to: navigation, search Jump to: navigation, search.
Readability is the ease with which a text can be understood. Readability is the ease with which a text can be understood.

Figure 5.1: Simplified Wikipedia entry for Readability (top) and the output of Naïve
(bottom). In the bottom part, we show the result of the preprocessing approach termed
DoNotForcePeriod (left), which does not modify the text extracted by the HTML parser,
and that of the alternative preprocessing approach termed ForcePeriod (right), which
adds a period as sentence boundary at the end of every line. The DoNotForcePeriod
approach concatenates all the text till it reaches a sentence boundary, producing longer
sentences than the ForcePeriod approach.

documents. The first approach to performing this text cleansing process is to use
standard HTML parsing tools such as JSoup2 for Java or Beautiful Soup3 for Python.
We used Beautiful Soup version 4.3.2, and we term this approach as Naïve, as this is
the simplest preprocessing method and only naïvely strips the HTML tags from a Web
document.

We also consider two open source tools developed specifically for removing the boilerplate
from HTML documents: Boilerpipe [111] and JusText [164]. In common, both of
these two tools divide an HTML document into blocks depending on specific HMTL tags
(Div, Form, H1, so on) and estimate block by block if the text of the block represents
boilerplate, thus should be removed, or represents a legit text, and thus should be kept.
Boilerpipe [111] is based on decision trees and its basic algorithm uses two features only,
the word count and the link density. These features are extracted from the current block
(the block being classified) as well as from the previous and the next block. JusText [164]
was created based on a set of heuristics such as the observation that short blocks which
contain a link are almost always boilerplate. The key idea behind JusText is that long
text blocks and some short text blocks can be classified with very high confidence. All
the other blocks can then be classified by looking at the surrounding blocks. We used
the Python version 1.2.0.0 of Boilerpipe4 and version 2.1.1 of JusText5.

Figure 5.1 shows the output of the Naïve approach applied to the first paragraph of a Web
document from Wikipedia. The extracted text often presents an interesting characteristic:
it lacks the punctuation marks to delimit the sentence boundaries. This has a clear

2http://jsoup.org
3https://pypi.python.org/pypi/beautifulsoup4
4https://pypi.python.org/pypi/boilerpipe
5https://pypi.python.org/pypi/JusText
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effect on the readability measures that consider sentence length as an indication of text
difficulty. To better understand the effect of this, we explore two possible approaches:

1. ForcePeriod: a sentence boundary (period / full stop) is added at the end of a
line if no punctuation mark is found, possibly resulting in short sentences.

2. DoNotForcePeriod: no sentence boundary is added, possibly resulting in long
sentences.

Note that the Naïve-DoNotForcePeriod approach is often used when processing Web
documents to automatically estimate readability measures, see for example [224].

5.3 The Influence of Preprocessing Methods on Retrieval
Experiments

Researchers in the health domain are interested in measuring how accessible for health
consumers are the documents provided by search engines (e.g., [81, 62, 210, 161, 9, 133]).
However, these researchers rarely mentioned how, i.e., which preprocessing steps were
taken to evaluate the understandability of the retrieved documents. In this section,
two different retrieval experiments are done: (1) we directly measure the impact of
preprocessing methods into the interpretation of retrieval result sets; (2) we measure how
similar would be documents sorted by readability metrics when different preprocessing
methods are used. While the first experiment, shown in Section 5.3.1, provides insights
for the researchers in the medical domain which assess the understandability of retrieved
documents, the second, shown in Section 5.3.2 provides insights to information retrieval
researchers.

For the further experiments, we consider the health/medical Information Retrieval task
at CLEF eHealth 2015 and 2016 [77, 106] (see also Appendix A). The 2015 collection
contains approximately one million Web documents related exclusively to the medical
domain and is used as a resource to evaluate search engines tailored to health consumers.
The 2016 collection contains medical related topics but used a much larger corpus of
Web documents (ClueWeb 12-b, with more than 52 million documents), which is not
limited to the health domain. We use these collections because of the importance the
readability (and, more generally, the understandability) of Web documents presenting
medical advice has within consumer health search [210, 224].

Table 5.1 reports the average number of words and sentences in the whole CLEF eHealth
2015 corpus and in the CLEF eHealth 2016 pool of 25,000 documents as extracted by the
preprocessing methods studied here: Naïve, Boilerpipe and JusText. These statistics are
at the basis of the readability measures of Table 2.1. We exclusively show in Table 5.1 the
statistics of a part (the pooled documents) of the CLEF eHealth 2016 collection. This
decision was motivated by the fact that it is more likely that these documents belong to
the health domain, as the pool was created by pooling documents retrieved in answer of
queries in the health domain by the participating teams of CLEF eHealth 2016 campaign.
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Table 5.1: Number of words and sentences (mean and standard deviation) for documents
in CLEF 2015 eHealth corpus (approximately 1 million documents) and CLEF 2016 pool
of assessed documents (25.000 documents), as obtained by the three preprocessing tools
and the two approaches to sentence boundaries (see Section 5.2).

Tool # Words # Sentences
ForcePeriod DoNotForcePeriod

CLEF 2015 eHealth Collection

Naïve 1001.5 ± 2062 137.2 ± 443 37.9 ± 93
Boilerpipe 364.2 ± 884 24.4 ± 55 18.6 ± 49
JusText 409.9 ± 1403 24.4 ± 82 19.4 ± 68

CLEF 2016 eHealth IR Task Pool

Naïve 2106.4 ± 6103 255.0 ± 887 96.4 ± 434
Boilerpipe 1366.2 ± 5497 80.3 ± 423 73.8 ± 408
JusText 1728.5 ± 4968 93.3 ± 266 90.5 ± 252

Although all the experiments made in this thesis use the whole collection, as we use
the same queries created in CLEF eHealth 2016, these documents are the most likely
documents to be retrieved in our experiments.

From Table 5.1, we can observe that the Naïve method produces a much higher number
of words and sentences for both collections than the other two methods. While small, the
differences between Boilerpipe and JusText are still important in that they can influence
the estimations of readability measures. Similarly, the use of the ForcePeriod approach
for sentence boundary rather than the DoNotForcePeriod produces large differences
among all text preprocessing approaches, in particular for the Naïve method.

In order to understand the effect of preprocessing methods on the retrieval of Web
documents, we consider baseline runs used in both CLEF eHealth 2015 and 2016. For
CLEF 2015, we use the default vector space retrieval model of Apache Lucene 4.8 to
retrieve the top 100 documents per query, using the query titles of the 67 topics in the
CLEF 2015 collection [77]. For CLEF 2016, we used the default BM25 retrieval model of
Terrier 4.0 to retrieval the top 100 documents per query and as queries the 50 topics of
the CLEF 2016 collection [106]. For each query, we compute the readability scores of
the retrieved documents according to the different settings considered here in terms of
preprocessing tools and the approaches to sentence boundaries.
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Figure 5.2: Readability scores for each measure based on various preprocessing and
sentence boundary methods. Error bars indicate 95% confidence intervals around the
mean.

5.3.1 The Influence of Preprocessing Methods on the Interpretation
of Readability Formulas

For each retrieved document of queries in both CLEF eHealth 2015 and 2016, we calculate
the readability score of various readability formulas (ARI, CLI, FKGL, GFI, SMOG) for
each combination of preprocessing method and sentence boundary. Figure 5.2 reports
the mean values of readability scores averaged across all retrieved documents. The
results suggest that the choice of approach to use for sentence boundary has a significant
influence on readability measures: the variance between the readability scores obtained
with ForcePeriod and DoNotForcePeriod is large across all methods, apart for CLI that
appears to be the most robust readability formula in this aspect. For example, consider
the blue bars for CLEF eHealth 2015 representing the usage of the Naïve preprocessing
method, the mean readability score of ARI can vary more than 100%, from 10.9± 0.4,
when using ForcePeriod sentences to 22.5± 1.8, when using DoNotForcePeriod sentences.
This high variability in the estimation of readability measures influences the conclusions
one would infer about the difficulty of the retrieved documents: documents that could be
readable by high school students (grade 11) – when sentence boundaries are detected
with ForcePeriod – become suddenly intractable for people with level of education below
that of a Ph.D. student (grade 22) – according to the readability measures computed
using the DoNotForcePeriod method.

Note in Figure 5.2 that different preprocessing methods (i.e., Naïve, Boilerpipe, JusText)
lead to different conclusions about the readability of text. For example, Figure 5.2 suggests
that, when ARI is used as readability measure and the DoNotForcePeriod approach is
employed to identify sentence boundaries, Naïve and JusText provide contrasting results,
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Figure 5.3: Kendall τ correlation and 95% confidence intervals between the ForcePeriod
and DoNotForcePeriod approaches for sentence boundary identification.

with the mean readability of text assessed as being 22.5± 1.8 according to Naïve and
14.1 ± 0.6 according to JusText. These results highlight the significance that choices
of the preprocessing tool and sentence boundary identification approach have on the
estimation of readability scores for Web documents when using the commonly adopted
readability measures considered in this study.

The results in Figure 5.2 also suggest that CLI is the most robust readability measure
among those considered in this chapter. In particular, variations in preprocessing tool
and sentence boundary identification have little impact on the estimated readability
scores for this measure. The stability of CLI is due to the fact that W � S and thus
S
W < 1 (see CLI formula in Table 2.1), dampening the effect of the relation between the
number of words and sentences (in our experiments, 1 < 30.0× S

W < 4), and ensuring
stability across different values of S. This is unlike measures such as ARI (see ARI
formula in Table 2.1), where 3 < 0.5× W

S < 13.

5.3.2 Ranking Correlations based on Readability Scores

Next, we consider how similar document rankings obtained from readability measure
estimations are when using different preprocessing and sentence boundary approaches.
This is interesting for information retrieval because it is often these differences between
rankings, rather than the actual absolute value of the readability estimation, that are used
to demote or promote Web documents when taking into account readability levels. For
example, a high correlation between two different preprocessing settings would suggest
that, although the actual readability scores may be very different, the preference ordering
obtained by the readability measures (i.e., the ranking according to readability scores)
are similar and therefore these two preprocessing settings would lead to little difference
in terms of impact on retrieval.
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Figure 5.4: Kendall τ correlation and 95% confidence intervals between the approaches
for HTML preprocessing, under different settings for sentence boundary identification.

To this aim, in the following experiment, we retrieve the top 100 documents for each query
and rank them from the lowest to the highest readability score. We consider the Kendall
τ ranking correlation between different settings of sentence boundary identification
(Figure 5.3) and preprocessing tool (Figure 5.4). Figure 5.3 shows that, independently of
the preprocessing tool used, the correlation between ForcePeriod and DoNotForcePeriod
rankings obtained when using Boilerpipe or JusText as preprocessing tools is generally
high, with the maximum correlation of 0.92 achieved using CLI. However, if the Naïve
approach to text preprocessing is used, then correlations deteriorate, with the SMOG
measure exhibiting a correlation coefficient as low as 0.20. CLI exhibits the least
variance in correlation among the three preprocessing approaches (and indeed, the highest
correlations) – stability that was already observed when analyzing Figure 5.2.

The results of Figure 5.4 suggest that different preprocessing tools produce different
document rankings (when using readability to rank). Specifically, the highest correlation
between two of these tools is achieved by the Boilerpipe-JusText pair – but these exhibit
correlations of only about 0.5, independently of the readability measure or the sentence
boundary approach (the highest correlation is achieved for SMOG by Boilerpipe-JusText
with CLEF eHealth 2016 using ForcePeriod: τ = 0.64± 0.08). When comparing these
methods to the Naïve approach, correlation decreases.

These results suggest that, whenever it is possible, advanced HTML cleansing tools,
such as Boilerpipe and JusText, should be preferred over simple tools, such as JSoup or
BeautifulSoup, represented here by the Naïve method. When the Naïve method is used,
the influence of the sentence boundary identification is high, which is not seen when
JusText and Boilerpipe are used.
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5.4 Summary
This chapter analyzed the influence that preprocessing and sentence boundary identifi-
cation choices have on the estimation of readability measures for Web documents. The
experimental results show that these choices have a significant impact on the estima-
tion of readability scores, which in turn can highly influence the order relations among
documents that can be obtained from the readability scores. Our findings strongly suggest
that attention should be directed to the choice of preprocessing settings when measuring
readability for Web documents. Advanced HTML cleansing tools, such as Boilerpipe
and JusText, provide more stable results across settings. In addition, the use of the
Coleman-Liau Index (CLI) as readability measure leads to the most stable results across
choices of preprocessing tools and sentence boundary identification strategies (although
we have not yet assessed the quality of CLI for correctly estimating the readability of
documents). In the following chapter, we study which combination of preprocessing
settings and readability measure lead to estimations of readability that most agree with
user assessment. Note that regardless of each preprocessing method used, the average
readability level of results, as shown in Figure 5.2, is much higher than the recommended
level of 8th grade [196, 203, 63].
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CHAPTER 6
Analysing Documents:

understanding understandability
through correlation analysis

Chapter 5 showed that preprocessing steps are crucial for the interpretation of readability
formula results. Depending on the preprocessing steps used, the same readability formula
may yield results that vary widely. Despite this fact, the understandability of documents
in the Web is commonly estimated by readability formulas with little or no attention
being paid to the preprocessing pipelines used (e.g., [81, 62, 210, 161, 9, 133]).

In this chapter, we introduce the understandability assessments made by humans in
recent CLEF eHealth campaigns of 2015 [77] and 2016 [106]. These assessments were
complimentary to the topicality assessments and are fundamental to the experiments
we conduct in this chapter. With these understandability assessments (described in
Section 6.1), we are now able to:

• create and evaluate new methods to estimate understandability of Web documents
(methods are also described in Section 6.1). These methods explore a variety
of approaches to estimate how understandable a Web page can be. These will
posteriorly be used as features for machine learning (Section 6.5) and learning-to-
rank models (Chapter 8).

• particularly evaluate the use of readability formulas to estimate understandability
(Section 6.2);

• systematically evaluate the combination of different HTML preprocessing pipelines
(described in Chapter 5) and methods to estimate the understandability of Web
pages (Section 6.3);
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• identify the methods that best correlate with human assessments to estimate
understandability (Section 6.4);

• create and evaluate automatic machine learning methods to predict the understand-
ability of Web documents (Section 6.5).

A summary of the main findings of this chapter is presented in Section 6.6.

6.1 Experimental Methodology

The main components of our evaluation are presented in this section in order: the dataset
and ground truth data (Section 6.1.1), the methods of understandability estimation
which can be used independently or act as features for machine learning algorithms
(Section 6.1.2), the preprocessing of Web documents (Section 6.1.3), and the evaluation
metrics (Section 6.1.4).

6.1.1 CLEF eHealth Data Collections

We make use in this chapter of the CLEF 2015 and 2016 eHealth collections [77, 106], as
these collections have assessments for both topical relevance1 and understandability. While
a detailed description of CLEF 2015 and 2016 collections can be found in Appendix A,
we briefly introduce these datasets here.

The CLEF 2015 collection contains 67 queries and 2,515 documents that have been
assessed relevant by clinical experts and have an assessment for understandability [77].
Documents in this collection are a selected crawl of health Web sites, of which the majority
are certified HON Web sites. The CLEF 2016 collection contains 300 queries and 3,298
relevant documents that also have been assessed with respect to understandability [106].
Documents in this collection belong to the ClueWeb12 B13 corpus, and thus are general
English Web documents, not necessarily targeted to health topics, nor of a controlled
quality (as are instead HON certified documents). Understandability assessments were
provided on a 4-point Likert scale for CLEF 2015 (0:“Content is very technical and difficult
to read” to 3:“Content is very easy to read and understand”), and on a [0, 100] range for
CLEF 2016 (0 indicates the highest understandability). To illustrate how the assessment
was conducted, we show in Figure A.3 the adaptations made on Relevation! [112], the
assessment tool used in both CLEF campaigns.

To support the investigation on methods to automatically estimate the understandability
of Web documents, we also considered correlations among multiple human assessors
(inter-assessor agreement). For CLEF 2015, we used the publicly available additional
assessments made by unpaid medical students and health consumers collected in our
previous study of how medical expertise affects assessments [153]. For CLEF 2016,

1We refer to this simply as relevance in the remainder of this thesis, when this does not cause
confusion.
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we collected understandability assessments for 100 documents. Three members of our
research team were recruited to provide the assessments. Once again, Relevation! [112]
was also used to assist with the assessments similarly to the original settings used in
CLEF.

6.1.2 Understandability Estimators

As reviewed in Section 2.3, several approaches have been applied to estimate the under-
standability of health documents on the Web, with the most popular methods (at least in
the biomedical literature) being readability formulas based on surface level characteristics
of the text. In this section, we outline a large number of methods to estimate document
understandability which we categorize into ten distinct groups described as follows. An
overview of all methods is shown in Table 6.1.

Traditional Readability Formulas (TRF)

This group includes all the readability formulas introduced in Chapter 2 (Table 2.1). We
implemented the Python package ReadabilityCalculator2 with all the readability formulas
used in this thesis.

Components of Readability Formulas (CRF)

This group is formed by the “building blocks” used in the traditional readability formulas.
Examples of such building blocks include the average number of characters per word and
the average number of syllables in a sentence. Words are divided into syllables using the
Python package Pyphen3.

General Medical Vocabulary Features (GMV)

This group includes methods that count the number of words with a medical prefix or
suffix, i.e., beginning or ending with Latin or Greek particles (e.g., amni-, angi-, algia-,
arteri-), and text strings included in lists of acronyms or in medical vocabularies such
as the International Statistical Classification of Diseases and Related Health Problems
(ICD), Drugbank and the OpenMedSpel dictionary4. An acronym list from the ADAM
database [222] was used. Methods in this group were matched with documents using
simple keyword matching.

Consumer Vocabulary Features (CVF)

Previously used in Chapter 4, the Consumer Health Vocabulary (CHV) is a prominent
medical vocabulary dedicated to mapping consumer (layperson) vocabulary to technical
terms [218]. It attributes a score for each of its concepts with respect to their difficulty,

2https://pypi.python.org/pypi/ReadabilityCalculator
3http://www.pyphen.org/
4http://extensions.openoffice.org/en/project/openmedspel-en-us
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Table 6.1: Methods to estimate the understandability of Web documents. ?: raw values
are used; ♦: values normalized by the number of words in a document are used; †: values
normalized by the number of sentences in a document are used.

Group Metric Group Metric

Traditional
Readability

Formulas (TRF)

Automated Readability Index (ARI) [180]

HTML
Features (HF)

# of Abbr tags
Coleman-Liau Index (CLI) [37] # of A tags
Dale Chall Index (DCI) [49] # of Blockquote tags
Flesch-Kincaid Grade Level (FKGL) [110] # of Bold tags
Flesch Reading Ease (FRE) [110] # of Cite tags
Gunning Fog Index (GFI) [83] # of Div tags
Lasbarhetsindex (LIX) [19] # of Forms tags
Simple Measure of Gobbledygook (SMOG) [129] # of H1 tags

Components of
Readability

Formulas (CRF)

# of Characters ?♦† # of H2 tags
# of Words ?† # of H3 tags
# of Sentences ?♦ # of H4 tags
# of Difficult Words (Dale Chall list [49]) ?♦† # of H5 tags
# of Words Longer than 4 chars ?♦† # of H6 tags
# of Words Longer than 6 chars ?♦† # of Hs (any H above)
# of Words Longer than 10 chars ?♦† # of Img tags
# of Words Longer than 13 chars ?♦† # of Input tags
# of Number of Syllables ?♦† # of Link tags
# of Polysyllable Words (>3 Syllables) ?♦† # of DL tags

General Medical
Vocabularies

Features (GMV)

# of Words with Medical Prefix ?♦† # of UL tags
# of Words with Medical Suffix ?♦† # of OL tags
# of Acronyms ?♦† # of List (DL + UL + OL)
# of ICD Concepts ?♦† # of Q tags
# of Drugbank ?♦† # of Scripts tags
# of Words in medical dict. (OpenMedSpel) ?♦† # of Spans tags

Consumer Medical
Vocabulary

Features (CMV) [218]

CHV Mean Score for all Concepts ?♦† # of Table tags
# of CHV Concepts ?♦† # of P tags
CHV Mean Score for Symptom Concepts ?♦†

Word Frequency
Features (WFF)

25th percentile English Wikipedia
# of CHV Symptom Concepts ?♦† 50th percentile English Wikipedia
CHV Mean Score for Disease Concepts ?♦† 75th percentile English Wikipedia
# of CHV Disease Concepts ?♦† Mean Freq. Percentile English Wikipedia

Expert Medical
Vocabulary

Features (EMV)

# of MeSH Concepts ?♦† Mean Freq. Percentile English Wikipedia - Includes OV
Average Tree of MeSH Concepts ?♦† 25th percentile Medical Reddit
# of MeSH Symptom Concepts ?♦† 50th percentile Medical Reddit
Average Tree of MeSH Symptom Concepts ?♦† 75th percentile Medical Reddit
# of MeSH Disease Concepts ?♦† Mean Freq. Percentile Medical Reddit
Average Tree of MeSH Disease Concepts ?♦† Mean Freq. Percentile Medical Reddit ncludelude OV

Natural Language
Features (NLF)

Positive Words ?♦† 25th percentile Pubmed
Negative Words ?♦† 50th percentile Pubmed
Neutral Words ?♦† 75th percentile Pubmed
# of verbs ?♦† Mean Freq. Percentile Pubmed
# of nouns ?♦† Mean Freq. Percentile Pubmed - Includes OV
# of pronouns ?♦† 25th p. Wikipedia+Reddit+Pubmed
# of adjectives ?♦† 50th p. Wikipedia+Reddit+Pubmed
# of adverbs ?♦† 75th p. Wikipedia+Reddit+Pubmed
# of adpositions ?♦† Mean R. Wiki.+Reddit+Pubmed
# of conjunctions ?♦† Mean R. Wiki.+Reddit+Pubmed - w. OV
# of determiners ?♦†

Regressor (MLR)

Linear Regressor
# of cardinal numbers ?♦† eXtreme Gradient Boosting (XGB) Regressor
# of particles or other function words ?♦† Multi-layer Perceptron Regressor
# of other POS (foreign words, typos) ?♦† Random Forest Regressor
# of punctuation ?♦† Support Vector Machine Regressor
Height of part-of-speech parser tree ?♦†

Classifier (MLC)

Logistic Regression
# of Entities ?♦† eXtreme Gradient Boosting (XGB) Classifier
# of Stopwords ?♦† Multi-layer Perceptron Classifier
# of words not found in Aspell Eng. dict. ?♦† Random Forest Classifier

Support Vector Machine Classifier
Multinomial Naive Bayes

with lower/higher scores for harder/easier concepts. The MetaMap [6] tool was used to
map the text content of Web documents to entries in CHV. We also explore MetaMap
options to filter only concepts identified as symptoms or diseases, using the same definitions
from Section 3.4.2.
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Expert Medical Vocabulary Features (EMV)

The hierarchy of Medical Subject Headers (MeSH) was previously used in the literature
to identify difficult concepts, assuming that a concept that is deep in the hierarchy is
more difficult than a shallow one [213]. We use MeSH as an example of expert vocabulary
and, as done with CHV, we used MetaMap to map the content of Web documents to
MeSH entities. We also study mappings to symptoms and disease concepts separately.

Natural Language Features (NLF)

This group includes commonly used natural language heuristics such as the ratio of
part-of-speech (POS) classes, the height of the POS parser tree, the number of entities in
the text, the sentiment polarity [158] and the ratio of words found in English vocabularies.
The Python package NLTK 3.25 was employed for sentiment analysis and POS tagging.
The GNU Aspell6 dictionary was used as a standard English vocabulary and a stopword
list was built by merging the stopword lists of the Indri7 and Terrier8 toolkits. Discourse
features, such as the distribution of POS classes and proportion of entity in a document,
were previously studied in the task of understandability estimation [60] and found superior
to complex features such as entity co-reference and entity grid [15]. Our intuition when
using sentiment polarity is that the content produced by laypeople in patient forums
or blogs (easy-to-read) might be potentially more emotional than scientific publications
(hard-to-read).

HTML Features (HF)

This group includes the identification of a large number of HTML tags, which were
extracted with the Python library BeautifulSoup v4.49. The intuition for these features is
that Web documents with many images and tables might explain and summarize health
content better, thus providing more understandable content to the general public.

Word Frequency Features (WFF)

Generally speaking, common and known words are usually frequent words, whereas
unknown and obscure words are generally rare. This idea is implemented in readability
formulas such as the Dale-Chall Index, which uses a list of common words and counts
the number of words that fall outside this list (complex words) [49] (see Section 2.3.1).
We extended these observations by studying corpus-wide word frequencies. Three very
distinct auxiliary corpora, but all in the health domain, were analyzed to extract word
frequencies:

5http://www.nltk.org/
6http://www.aspell.net/
7http://www.lemurproject.org/indri/
8http://www.terrier.org/
9https://www.crummy.com/software/BeautifulSoup/
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• Medical Reddit: Reddit10 is a Web forum with a sizeable user community which is
responsible for generating and moderating its content. Any user can start a discussion
or reply to a discussion. This forum is intensively used for health purposes: for
example, in the Reddit community AskDocs11, licensed nurses and doctors (subject
to user identity verification) advise help seekers free of charge. We selected six
of such communities (medical, AskDocs, AskDoctorSmeeee, Health, WomensHealth,
Mens_Health) and downloaded all user interactions available until September 1st, 2017
using the Python library PRAW12), v5.1. In total 43,019 discussions were collected.

• Medical English Wikipedia: after obtaining a recent Wikipedia dump13 (May 1st 2017),
we filtered articles to only those containing an Infobox14 in which at least one of the
following words appeared as a property: ICD10, ICD9, DiseasesDB, MeSH, MeSHID,
MeshName, MeshNumber, GeneReviewsName, Orphanet, eMedicine, MedlinePlus,
drug_name, Drugs.com, DailyMedID, LOINC. Figure 6.1 illustrates a Wikipedia
document that is marked as medical because of its Infobox entries. In doing so, we
followed the method by Soldaini et al. [181], which favors precision over recall when
identifying a health-related article. This resulted in a collection of 11,868 articles.

• PubMed Central: PubMed Central (PMC)15 is an online digital database of full-text
biomedical literature. We used the collection distributed for the TREC 201416 and
201517 Clinical Decision Support Track [167, 168], consisting of 733,191 articles.

A summary of the corpora statistics is reported in Table 6.2. Instead of working with the
absolute frequency of a term in a corpus, we use its frequency percentile. Let L be a list
of occurring terms sorted by their frequency in a corpus, the frequency percentile of a
term t is the position of t in L divided by the length of L, multiplied by 100. Intuitively,
this is a linearization of the typically exponential distribution of frequencies of terms in a
corpus. This way, for example, the consumer term ‘heart’ is at percentile 99.75 in the
Reddit corpus, while the expert term ‘myocardium’ is only found at percentile 66.03 in
the same corpus.

Using the frequency percentiles, we defined different features for a document. For
example, the Mean Frequency Percentile English Wikipedia of a document is the sum of
the frequency percentile of each word of the document found in the English Wikipedia
corpus divided by the total number of words in the document. The 50th percentile18

10htttp://www.reddit.com/
11http://www.reddit.com/r/AskDocs/
12https://praw.readthedocs.io/
13https://dumps.wikimedia.org/enwiki/
14A Wikipedia infobox is a structured template that appears on the right of Wikipedia documents

summarizing key aspects of articles.
15https://www.ncbi.nlm.nih.gov/pubmed/
16http://trec-cds.appspot.com/2014.html
17http://trec-cds.appspot.com/2015.html
18Not to be confused with the frequency percentile.
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6.1. Experimental Methodology

Table 6.2: General statistics for the auxiliary corpora used in this work

Statistic Medical Wikipedia Medical Reddit PubMed Central
Number of Docs. 11,868 43,019 733,191
Number of Words 10,655,572 11,978,447 144,024,976

Number of Unique Words 467,650 317,106 2,933,167
Avg. Words per Doc. 898.90 ± 1351.76 278.45 ± 359.70 227.22 ± 270.44
Avg. Char per Doc. 5107.81 ± 7618.57 1258.44 ± 1659.96 1309.11 ± 1447.31
Avg. Char per Word 5.68 ± 3.75 4.52 ± 3.52 5.76 ± 3.51

Figure 6.1: Wikipedia document on hyperthermia. The rectangular red box identifies the
Infobox on the right-hand side. This document is filtered as medical because it contains
entries for ICD-9, DiseasesDB and MeSH.

English Wikipedia of a document is the median frequency percentile among the frequency
percentile of all the words in the document (including duplicates).

Machine Learning on Text: Regressors (MLR) and Classifiers (MLC)

This group includes machine learning methods for estimating Web document understand-
ability based on word counts. While it has been noted in the literature that machine
learning methods are promising for estimating understandability, an open challenge
is identifying the background corpus to be used for training [38]. In this work, we
propose the use of the three corpora detailed above as background corpus, and assumed
understandability labels according to the expected difficulty of documents in these

75



6. Analysing Documents: understanding understandability through correlation
analysis

collections:

• Medical Reddit (label 1): Documents in this collection are expected to be written in
a colloquial style, and thus the easiest to understand. All the conversations are in fact
explicitly directed to assist inexpert health consumers;

• Medical English Wikipedia (label 2): Documents in this collection are expected to
be less formal than scientific articles, but more formal than a Web forum like Reddit,
thus somewhat more difficult to understand;

• PubMed Central (label 3): Documents from this collection are expected to be
written in a highly formal style, as the target audiences are physicians and biomedical
researchers.

Based on the labels of each class above, models were learned using all documents from
these corpora after features were extracted using Latent Semantic Analysis (LSA) with
ten dimensions on top of TF-IDF calculated for each word. We modeled a classification
task as well as a regression task using these corpora. In the classification task, the first
step is to train a classifier on documents belonging to these three collections with the
three different classes shown above. The second step is to use the classifier to estimate
which of these three possible classes an unseen document from the CLEF 2015 or CLEF
2016 would belong. Similarly, in the regression task, after training, a regressor has to
estimate an “understandability” value to an unseen CLEF document. We hypothesize
that documents that are more difficult to read are more similar to PubMed documents
than to Wikipedia or Reddit ones.

6.1.3 Preprocessing Pipelines for Web Documents

Except for the methods in the HTML features group (HF in Table 6.1), the methods
in all other nine groups, in order to estimate an understandability score, require a
preprocessing pipeline to remove the HTML markups of a Web document. It is expected
the preprocessing pipelines are more important to some groups, such as the group
of readability formulas, than others. In this chapter, we systematically evaluate the
preprocessing pipelines introduced in Chapter 5 comparing preprocessing pipelines and
methods to estimate understandability within and across groups.

To preprocess the documents in the CLEF 2015 and 2016 collections, extracting the main
content of Web documents from the HTML source, we use the same preprocessing pipeline
from Chapter 5: BeautifulSoup [166] (Naïve), which just naively removes HTML tags,
Boilerpipe [111] (Boi) and JusText [164] (Jst), which eliminate boilerplate text together
with HTML tags. Also, we experiment with the same two preprocessing heuristics devised
in Chapter 5: ForcePeriod (FP), which forces a period at the end of each extracted
HTML field, and DoNotForcePeriod (DNFP) which does not.
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6.1.4 Evaluation Metrics

As part of our study, we investigate the influence that the preprocessing of Web documents
has on the estimation of understandability. We do so by comparing the combination of a
number of preprocessing pipelines and heuristics (Section 6.1.3), and understandability
estimation methods (Section 6.1.2) with human assessments of Web document under-
standability from the CLEF eHealth collections (Section 6.1.1). For that, we use Pearson,
Kendall and Spearman correlations to compare the understandability assessments made
by human assessors in the CLEF collections with estimations obtained by the considered
approaches, under all combinations of preprocessing pipelines and heuristics. Pearson
correlation is used to calculate the strength of the linear relationship between two vari-
ables, whereas Kendall and Spearman measure the rank correlations among the variables.
We opted to report all three correlation coefficients to allow for a thorough comparison
with other work, as they are equally used in the literature.

Whenever appropriate, we use either the two-tailed paired t-test [118] or the Analysis Of
Variance (ANOVA) test [61] to compare whether the differences found in our experiments
are statistically significant. Tests are performed at the 5% level of significance, i.e.,
differences are significant if p < .05.

6.2 Evaluation of Readability Formulas

We begin our evaluation by focusing our analysis on the readability formulas alone due to
their importance. We assume that readability score estimated by the readability formulas
can be directly used as proxies for document understandability, i.e., they can measure
how understandable a document is.

In Chapter 5, we studied the stability of each readability formula in the face of different
preprocessing strategies. We identified that the use of Naïve preprocessing was associated
with more larger variances in the (understandability) score estimated by readability
formulas, as shown in Figure 5.2. Now we investigate how strong is the correlation
between the scores of readability formulas preprocessed with different methods with the
human ground truth. For that, the correlation scores of each traditional readability
formula with the human assessments made in CLEF 2015 and 2016 are shown in Figures 6.2
and 6.3, respectively.

Once more, the Naïve preprocessing is the worst choice. No matter which correlation
measure or which readability formula is used, the Naïve preprocessing shows the lowest
correlation coefficients. To summarize the analysis of Figures 6.2 and 6.3, we show in
Table 6.3 the average correlation for each preprocessing pipeline across the results of the
various readability formulas. As shown in Table 6.3, JusText has the highest average
correlation coefficient in both CLEF eHealth 2015 and 2016 for all correlation measure
studied. Experiments with CLEF 2015 show that correlations with human assessments
are significantly higher when using JusText compared to the other methods, but from
CLEF 2016, JusText is not significantly different from Boilerpipe when Spearman or
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Figure 6.2: Correlation between the scores of various readability formulas and the
understandability scores assessed by humans collected in CLEF eHealth 2015 considering
different HTML preprocessing pipelines

Kendall are used. Nevertheless, correlations are significantly lower when using the Naïve
pipeline in all experiments.

To study the impact of using ForcePeriod or DoNotForcePeriod, similarly to Table 6.3,
in Table 6.4, we measured the mean absolute correlation between human assessments
and the score predicted by the readability formulas across readability formulas and
preprocessing pipelines. No differences were found when comparing the use of ForcePeriod
and DoNotForcePeriod.
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Figure 6.3: Correlation between the scores of various readability formulas and the
understandability scores assessed by humans collected in CLEF eHealth 2016 considering
different HTML preprocessing pipelines

Finally, in Table 6.5, we show the average absolute correlation for each readability formula
across the different preprocessing pipelines, heuristics and correlation measures. Results
show that the Flesch Reading Ease formula had the highest average correlation in CLEF
2015 and the second highest in CLEF 2016, although it was statistically different only
from the ARI Index in CLEF 2015. The Dale-Chall Index had the highest average
correlation in CLEF 2016, significantly higher than four other readability formulas (ARI
Index, Flesch Kincaid Grade Level, Gunning Fox and Smog Index), and third highest in
CLEF 2015 (only .007 less than the runner-up formula, Smog Index). The ARI Index
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Table 6.3: Correlation results (Mean ± Std) each correlation measure across different
preprocessing pipelines for readability formula in Figures 6.2 (CLEF eHealth 2015) and 6.3
(CLEF eHealth 2016). The symbols B, J and N are used to show significant differences
between the current value and the one obtained by using, respectively, Boilerpipe, JusText
or the Naïve preprocessing pipeline.

Pipeline CLEF eHealth 2015 CLEF eHealth 2016
Pearson Spearman Kendall Average Pearson Spearman Kendall Average

Naïve .27± .06BJ .22± .05BJ .16± .04BJ .20± .06BJ .15± .04BJ .16± .05BJ .11± .03BJ .16± .04BJ
Boilerpipe .37± .03NJ .31± .02NJ .23± .02NJ .28± .04NJ .33± .04NJ .31± .04N .21± .03N .28± .06N
JusText .39± .03NB .34± .02NB .25± .02NB .31± .05NB .37± .03NB .32± .03N .22± .02N .30± .07N

Table 6.4: Mean absolute difference between the average correlation coefficient when
using ForcePeriod and DoNotForcePeriod for each correlation measure across different
preprocessing pipelines for each readability formula in Figures 6.2 (CLEF eHealth 2015)
and 6.3 (CLEF eHealth 2016). No significant differences were found when comparing
ForcePeriod to DoNotForcePeriod.

Pipeline CLEF eHealth 2015 CLEF eHealth 2016
Pearson Spearman Kendall Average Pearson Spearman Kendall Average

ForcePeriod .34± .07 .30± .04 .22± .03 .28± .07 .29± .09 .30± .04 .18± .05 .26± .09
DoNotForcePeriod .35± .07 .28± .08 .21± .06 .28± .09 .27± .11 .28± .08 .17± .07 .24± .11

had the lowest average correlation for both datasets and the only readability formula
significantly worst than the best formulas of CLEF 2015 and 2016.

Results of Chapter 5 indicated that Coleman Liau Index (CLI) was the most stable
metric across different preprocessing pipelines. However, our experiments in this section
show that other formulas correlated better with human assessments than CLI, although
the differences between CLI and the best formulas are not significant. While we do
not explicitly advocate in favor of any readability formula in particular, we advocate
against the use of ARI index, which was the least stable readability formula among the
ones evaluated in Chapter 5 (i.e., changing the preprocessing method highly impacts the
estimated understandability score by the ARI index, see Figure 5.4) and obtained the
lowest average absolute correlation among all metrics, as shown in Table 6.5.

It is important to note the large difference between the correlation coefficients reported
in Chapter 5 and the ones reported in this section. In Figures 5.3 and 5.4, we calculated
the correlation coefficient among the different preprocessing strategies, but never against
human assessments. The correlation coefficients for the comparisons shown in Figures 5.3
and 5.4 were as high as 0.90. Instead, in Figures 6.2 and 6.3, we compared preprocessing
strategies against human assessments, obtaining correlation coefficients that were never
higher than 0.45. Assessing the difficulty of a text is a hard and subjective task, and
human assessments for this task are naturally noisy. Although the correlation coefficients
shown in this section seem low when compared to those obtained in Chapter 5, they
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Table 6.5: Correlation results (Absolute Mean ± Std) for each readability formula
across different preprocessing pipelines and heuristics. These results summarize those of
Figures 6.2 (CLEF eHealth 2015) and 6.3 (CLEF eHealth 2016). Highest results for each
collection are shown in bold.

Readability Formula CLEF eHealth 2015 CLEF eHealth 2016

ARI Index .236 ± .085 .207 ± .091
Coleman Liau Index .277 ± .065 .250 ± .099
Flesch Kincaid Grade Level .270 ± .079 .218 ± .086
Gunning Fog Index .289 ± .079 .222 ± .083
SMOG Index .297 ± .090 .223 ± .089
Dale-Chall Index .290 ± .070 .303 ± .093
LIX Index .278 ± .072 .247 ± .086
Flesch Reading Ease .313 ± .076 .260 ± .093

are actually not far from the correlation coefficient measured by different sets of human
assessors as we will see in Section 6.3 (e.g., the highest Kendall-τ ’s correlation between
two sets of human assessors for CLEF eHealth 2015 is only 0.35 as shown in Figure 6.4).

6.3 Evaluation of Preprocessing Pipelines and Heuristics

We further compare the correlation of other methods for understandability estimation
introduced in Section 6.1.2 (summarized in Table 6.1) with human assessments made in
CLEF eHealth 2015 and 2016. The results for each group of methods are aggregated
and shown with boxplots in Figures 6.4 (CLEF 2015) and 6.5 (CLEF 2016). Note that
we kept the results separated with respect to the preprocessing pipelines used. For
instance, the first boxplot on the top of Figure 6.4 represents the distribution of Pearson
correlations with human assessments across all methods in the category Traditional
Readability Features (Table 6.1), obtained with the Naïve ForcePeriod preprocessing,
for CLEF 2015. Each box extends from the lower to the upper quartile values, with
the red marker representing the median value for that category. Whiskers show the
range of the data in each category and circles represent values considered outliers for
the category. The last four boxes are the summary results across all understandability
assessment methods and sentence-ending heuristics for each of the preprocessing pipelines
(named Preprocessing Accumulator), and the inter-assessor correlation (last box) when
multiple assessors provided assessments about the understandability of Web documents
(details about this data in Section 6.1.1). This indicates the range of variability and
subjectiveness when assessing understandability, along with the highest correlation we
measured between human assessors.

The correlations between human assessments and readability formulas are once again
shown in both Figures 6.4 and 6.5 to provide a comparison with other methods to estimate
understandability. The choice of preprocessing method strongly impacts readability
formulas, but they are not the only ones: in general, differences in correlation strength
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Figure 6.4: Box plots divided by feature groups. Correlations are calculated using
understandability labels from relevant documents assessed in CLEF eHealth 2015
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Figure 6.5: Box plots divided by feature groups. Correlations are calculated using
understandability labels from relevant documents assessed in CLEF eHealth 2016
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are seen in various groups when comparing the strategies that use advanced HTML
preprocessing methods (JusText and Boilerpipe) and those that do not (Naïve).

When considering methods beyond those based on readability formulas, we found that
the highest correlations were achieved by the regressors (MLR) and classifiers (MLC)
trained on our auxiliary corpora, independently of the preprocessing method used. There
is little difference in terms of effectiveness of methods in these categories: the largest
variances were found for the MLR on CLEF 2015 in which the Neural Network Regressor
the Pearson correlation was 0.44 while the Support Vector Regressor was 0.30. This
difference of 0.14 is small if compared with the difference of 0.42 found for the Pearson
correlation of the NLF group also in CLEF 2015.

A common trend when comparing preprocessing pipelines is that the Naïve pipeline
provided the weakest correlations with human assessments for CLEF 2016, regardless of
estimation methods and heuristics. This result, however, was not confirmed for CLEF
2015, where the Naïve preprocessing negatively influenced correlations for the readability
formula category (RF), but not for other categories, although it was generally associated
with larger variances of the correlation coefficients (i.e., larger differences between the
best and the worst method in a boxplot).

To provide a full analysis of our data, we run an Analysis of Variance (ANOVA) test to
study the influence of four variables: (1) the collection (CLEF 2015 vs. CLEF 2016);
(2) the group of methods to estimate understandability; (3) the use of ForcePeriod vs.
DoNotForcePeriod; and (4) the use of Naïve vs. Boilerpipe vs. JusText. We show the
results of the ANOVA test using only the Spearman correlation, but the same significant
differences are found when conducting these experiments with Pearson and Kendall
correlation. The results of the ANOVA test comparing the Spearman correlation (mean
± standard deviation) show that:

• CLEF 2015 vs. CLEF 2016: the absolute Spearman correlation results in CLEF
2015 (.17± .10) are significantly higher than those in CLEF 2016 (.14± .10), p < .001.

• Groups of methods to estimate understandability: we found that the variance
due to different groups is statistically significant (p < .001). We conducted a post-
hoc-test with the Tukey’s honest significance test [195] to detect which means are
significantly different from each other. Figure 6.6 shows the mean and confidence
interval values for each of the groups studied here. MLR and MLC are not significantly
different from each other (the confidence interval of these group groups overlap), but
their Spearman correlation is significantly higher than any other group. Also, note
that the group with the third highest mean is the Traditional Readability Formulas
(TRF), followed by the group of Components of Readability Formulas (CRF).

• ForcePeriod vs. DoNotForcePeriod: the absolute Spearman correlation results
using ForcePeriod (.167±.104) are not significantly different from the results using
DoNotForcePeriod (.166±.106), p = .855. This result reaffirms the comparison of
ForcePeriod Vs. DoNotForcePeriod made in Section 6.2.
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Figure 6.6: Average difference and confidence interval when comparing the Spearman
correlation for each group. Groups whose confidence intervals overlap are not significantly
different.

• Naïve vs. Boilerpipe vs. JusText: we also found that the variance due to the
different preprocessing pipelines is statistically significant, p = .025. In Figure 6.7, we
show that the absolute Spearman correlation when using the JusText preprocessing is
significantly higher than when using the Naïve approach. No statistically significant
differences were found between the use of Boilerpipe and JusText and Boilerpipe and
Naïve. This result is different from the one found in Section 6.2, as now we also
consider the other groups of methods and the preprocessing is less important for them
than for the group of readability formulas. Still, results point to the fact that the
Naïve method should be avoided.

6.4 The Best Understandability Estimators

We report in Table 6.6 the methods for understandability estimation of each group with
the highest correlation coefficient. For example, the method that counts the number
of words not found in Aspell dictionary when the documents were preprocessed with
JusText DoNotForcePeriod showed the highest Pearson correlation (0.351) among the
Natural Language Processing methods in CLEF 2015. For the same group and collection,
the method that counts the number of pronouns per word with documents processed
with Naïve ForcePeriod obtained the highest Spearman (0.441) and Kendall-τ (0.325)
correlations.

For the methods in the Traditional Readability Formula (TRF) group, SMOG had the
highest correlations for CLEF 2015 and DCI for CLEF 2016, regardless of correlation
measure. These results resonate with those obtained for the group of Components of
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Figure 6.7: Average difference and confidence interval when comparing the Spearman
correlation of the three preprocessing HTML tools we validated. The mean absolute
Spearman correlation of the JusText preprocessing is significantly higher than the Naïve
preprocessing. Naïve and Justext are the only groups that are significantly different, i.e.,
their confidence intervals do not overlap.

Table 6.6: Methods with highest correlation per group. In bold are the methods that
achieved the highest correlation for a correlation measure.

Group CLEF 2015 CLEF 2016
Method Prep. Pears. Spear. Kend. Method Prep. Pears. Spear. Kend.

TRF SMOG Index Jst NFP .438 .388 .286 Dale Chall Index Jst FP .439 .381 .264
Boi FP .437 .382 .264

CRF Avg. N. of Polysyl. Words per Word Jst FP .429 .364 .268 Avg. Difficult Words Per Word Boi FP .431 .379 .262Avg. N. of Polysyl. Words per Sentence Jst NFP .192 .388 .286

GMV Avg. N. Medical Prefixes per Word Nai FP .314 .312 .229 Avg. Prefixes per Sentence Jst FP .263 .242 .164
N. of Medical Prefixes .131 .368 .272 ICD Concepts Per Sentence Jst NFP .014 .253 .172

CMV CHV Mean Score for all Concepts Nai FP .371 .314 .228 CHV Mean Score for all Concepts Jst FP .329 .313 .216
CHV Mean Score for all Concepts Boi FP .329 .325 .224

EMV N. of MeSH Concepts Nai FP .227 .249 .178 N. of MeSH Concepts Boi NFP .201 .166 .113
N. of MeSH Disease Concepts .179 .192 .132

NLF N. of words not found in Aspell Dict. Jst NFP .351 .276 .203 Avg. Stopword Per Word Boi FP .344 .312 .213
N. of Pronouns per Word Nai FP .271 .441 .325 N. of Pronouns Boi FP .341 .364 .252

HF N. of P Tags None .219 .196 .142 N. of Lists None .114 .021 .015
N. of P Tags .110 .123 .084

WFF Mean Percentile Medical Reddit - Inc. OV Jst NFP .435 .277 .197 Mean Percentile Medical Reddit Boi NFP .387 .312 .214
25th percentile Pubmed .330 .347 .256 50th percentile Medical Reddit Jst NFP .351 .315 .216

MLR XGB Regressor Boi NFP .602 .394 .287 XGB Regressor Jst NFP .454 .373 .258
Jst FP .565 .438 .324 Random Forest Regressor Boi NFP .389 .355 .264

MLC Multinomial Naive Bayes Nai FP .573 .477 .416 Multinomial Naive Bayes Jst FP .461 .391 .318

Readability Formulas (CRF). In fact, the method that counts the number of polysyllable
words in documents, which is the main component of the SMOG readability formula,
had the highest correlation for CLEF 2015 among CRF methods. Similarly, the number
of difficult words, which is the main component used in DCI, had the highest correlation
for CLEF 2016 among CRF methods.

For the General Medical Vocabulary (GMV) group, the counts of medical prefixes and
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ICD concepts per sentence obtained the highest correlation. Note that, although the
Spearman and Kendall correlation for ICD concepts per sentence was high in CLEF
2016, its Pearson correlation was near zero. Overall, Spearman and Kendall correlations
obtained similar results (in terms of which methods exhibited the highest correlations):
this was expected as, unlike Pearson, they are both rank-based correlations.

When examining the Expert Medical Vocabulary (EMV) group, we found that the number
of MeSH concepts obtained the highest correlations with human assessments; however,
its correlations were considerably lower than those achieved by the best method from the
consumer medical vocabulary group, i.e., the scores of CHV concepts. For the Natural
Language Feature (NLF) group, we found that the number of pronouns, the number of
stop words and the number of out of vocabulary words had the highest correlations –
and these were even higher than those obtained with MeSH and CHV based methods.
In turn, the methods that obtained the highest correlations among the HTML features
group (counts of P tags and list tags) exhibited overall the lowest correlations compared
to methods in the other groups. P tags are used to create paragraphs in a Web document,
being thus a rough proxy for text length. Among methods in the Word Frequency
Features (WFF) group, the use of Medical Reddit (but also of PubMed) showed the
highest correlations, and these were comparable with those obtained by the readability
formulas. Finally, the groups with the highest correlated estimators are the regressors
and classifiers trained on the auxiliary corpora, with top estimators being the eXtreme
Gradient Boosting regressor and the multinomial Naïve Bayes.

Our intention in this section is to explicitly document what worked better in each group.
Next, the methods described in this chapter will be used as the features to represent a
document. With this, we will be able to build classifiers and regressors to estimate the
understandability of a document automatically.

6.5 Predicting Document Understandability

The methods to estimate understandability described in Section 6.1.2 can also be combined
to build models with even better estimations of document understandability. The typical
machine learning approach is to use each method of Section 6.1.2 as a feature to represent
a document. These features are then utilized to build automatic models to predict
understandability.

Note that machine learning has already been used in this chapter when developing the
methods belonging to the MLC and MLR groups in Section 6.1.2. The goal of the
methods in the MLC and MLR is the same as the machine learning methods in this
section: predict understandability. The difference is the input of these models. For
the methods in the MLC and MLR groups, we extracted features from the auxiliary
corpora. For the machine learning methods of this section, we use as features the various
methods of Section 6.1.2, including the predictions made by methods in the MLC and
MLR groups.
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The scale of assessment labels of CLEF 2015 and 2016 collections are different. Documents
in CLEF 2015 were assessed using a 4 level scale, while documents in CLEF 2016 were
assessed using a 101-level scale. We take advantage of these differences to experiment with
both classification and regression tasks. For that, in Section 6.5.1, with the CLEF 2015
collection, we propose a multiclass classification task to estimate the understandability
of documents using the four different labels as four distinct classes (i.e., on one end, we
have a class for documents that are very hard to understand and, on the other end, a
class for documents that are very easy to understand). In Section 6.5.2, with the CLEF
2016 collection, we propose a regression task in which an understandability value ranging
from 0 to 100 is estimated for each document exploring the original assessments created
by human assessors in CLEF 2016.

For each collection, we perform ten-fold cross-validation so that 10% of the documents
are separated in a test set and the rest 90% is used for training, tuning hyper-parameters
and feature selection. Each time, a different and disjoint set of documents is used
in the test set and results are average across the ten experiments. We evaluate the
regressors and classifiers with standard evaluation metrics. For the classification task
with the CLEF 2015 collection, we used the accuracy score (Acc.)19 and the macro F1
score (Mac.F1)20. For the regression task with the CLEF 2016 collection, we used the
coefficient of determination (R2)21 and the mean absolute error (MAE)22. We concatenate
the predictions of each one of the ten folds to calculate the (Pearson, Spearman and
Kendall) correlation between the predicted understandability scores and the human
assessed scores for the documents. This allows us to compare the correlation of the
machine learning predictions with the correlation of other methods previously shown in
Figures 6.2 and 6.3.

We experiment with various methods for feature selection. We take advantage that the
features from Section 6.1.2 were divided into groups to evaluate the importance of each
group separately. For that, we train models using only one group at the time and models
excluding only one group at the time (ablation study). We also experiment with the
three following approaches to select features across groups. The first approach is to use
only the best features of each group of features; those were shown in Table 6.6 for both
CLEF 2015 and 2016. The second approach is to use only features which obtained a
(Pearson or Spearman or Kendall) correlation degree with the human assessments in the
training set higher than a pre-defined threshold (we experiment with both .30 and .40 as
thresholds). The third approach is based on tree methods: the idea is that after fitting a

19Accuracy counts the number of correctly classified documents.
20The macro F1 is the average of the F1 score (F1 = 2 · precision·recall

precision+recall ) calculated for each class
separately.

21R2 is the proportion of the variance in the predicted scores that is predictable from the model. It
usually varies from 0.0 (model predictions are independent of the data) to 1.0 (model predictions perfectly
fit the data), but it can also yield negative values meaning that even a constant value is better than the
predictions made by the model.)

22This is the only measure used in the experiment of this chapter in which lower values mean better
predictions.
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tree-based machine learning method, such as Random Forest [22] or Extra Tree [73], we
can calculate how important features are by counting how often a feature is used as split
points of the trees in the model. We fit an initial model with all features and assign a
value to every feature according to their importance. A feature with importance greater
than the mean importance of all features is kept, otherwise discarded.

Significance tests are conducted with a paired two-tail t-test with Bonferroni correc-
tion [69]. The traditional p < 0.05 is adjusted per collection according to the number of
experiments. In total, we make 28 t-tests when we compare the machine learning model
using all features with all other settings, resulting in a p = .0018 (0.05/28) according to
the Bonferroni correction.

To keep our analysis concise, we show only the results of the Extra Tree classifier (CLEF
2015) and regressor (CLEF 2016) implemented in the sklearn Python package23. The
results of other machine learning algorithms are similar to the ones shown next.

6.5.1 Classification Task with CLEF 2015 Collection

We first define four baselines to use in the experiments in this section: (1) Most Frequent
Class Classifier : always outputs the most frequent class in the dataset; (2) Stratified
Class Classifier : generates predictions respecting the training set’s class distribution; (3)
Thresholds: three thresholds are learned from the distribution of scores of a readability
formula. The readability formula is then applied to the documents in the test set and
documents are classified depending on the thresholds learned in the training set. We
used the values at the 25th, 50th and 75th percentile of the distribution of the readability
formula’s scores in the training set. For example, if the thresholds were th1 = 10.29,
th2 = 11.23 and th3 = 13.13, a document with a score of 9.42 would be classified as “Very
Easy to Understand”. (4) ML on Single Feature: an Extra Tree classifier trained only on
the scores predicted by a single readability formula. We selected the SMOG Index as the
readability formula for baselines (3) and (4) because it showed the best correlation with
human assessments among all readability formulas for topically relevant documents in
CLEF 2015 (Table 6.6).

In Table 6.7, we report the results for the classification task with the CLEF 2015 collection.
The best baseline method in terms of accuracy is the Most Frequent Class Classifier, but
its predictions are not useful for IR systems. Retrieval methods would not be able to
promote easy-to-read documents, as all documents are assigned to the same class.

The ML on Single Feature (SMOG) baseline presents the highest accuracy and Macro F1
among all baseline methods. The Threshold (SMOG) shows the highest correlation results
post-classification. Note that for these two baselines, the correlation results obtained
here (e.g., Kendall correlation of .33) are similar to the ones obtained when directly
correlating the SMOG index scores with the human assessments (in Table 6.6, Pearson
correlation of .28). The baselines show that the scores of readability formulas can be

23http://scikit-learn.org/0.18/modules/ensemble.html#forest
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Table 6.7: Results for the document understandability classification task using the
relevant documents from CLEF 2015 collection. Accuracy and Macro F1 (both Mean ±
Std) were calculated across the ten folds in a 10-fold cross-validated experiment. Results
of each fold are accumulated and correlation with human assessments is shown in the
last three columns. Bold is used to show the best values per experiment.

Experiment Features Class. Res. Correlation Analysis

Acc. Mac.F1 Pears. Spear. Kend.

Baselines

Most Frequent Class Classifier .44±.06 .15±.02 - - -
Stratified Class Classifier .37±.03 .24±.03 .03 .03 .03
Thresholds (SMOG) .19±.04 .14±.02 .41 .38 .33
ML on Single Feature (SMOG) .54±.04 .44±.06 .37 .36 .33

Only one
Feature
Group
at time

Trad. Readability Formulas .60±.04 .56±.06 .56 .50 .47
Components of Read. Formulas .61±.04 .56±.05 .57 .51 .48
General Medical Voc. Features .60±.04 .53±.06 .49 .46 .43
Consumer Vocabulary Features .60±.04 .53±.06 .47 .44 .42
Expert Vocabulary Features .60±.04 .51±.06 .43 .41 .38
Natural Language Features .62±.04 .58±.06 .58 .52 .48
Machine Learning Regressors Feats. .61±.04 .60±.05 .61 .53 .49
Machine Learning Classifiers Feats. .52±.04 .51±.05 .53 .42 .39
Word Frequency Features .61±.04 .58±.05 .59 .52 .49
HTML Features .61±.04 .59±.05 .60 .52 .49

All Features .64±.04 .63±.05 .65 .57 .53

Ablation
Analysis

Trad. Readability Formulas .63±.04 .63±.05 .65 .57 .53
Components of Read. Formulas .64±.04 .63±.05 .65 .57 .53
General Medical Vocabulary .64±.04 .63±.05 .65 .57 .53
Consumer Vocabulary .64±.04 .63±.05 .65 .57 .53
Expert Vocabulary .63±.04 .63±.05 .65 .56 .53
Natural Language Features .64±.04 .63±.05 .65 .57 .54
Machine Learning Regressors .63±.04 .63±.05 .64 .56 .53
Machine Learning Classifiers .63±.04 .62±.05 .64 .56 .53
Word Frequency Features .63±.04 .63±.05 .65 .57 .53
HTML Features .63±.04 .63±.05 .65 .56 .53

Feature
Selection

Only Best Features .64±.04 .63±.05 .65 .57 .53
Only Features Correlation > .40 .63±.04 .62±.05 .64 .55 .52
Only Features Correlation > .30 .63±.04 .62±.05 .64 .56 .52
Feature Selection Trees .64±.04 .63±.05 .65 .57 .53

directly used even without machine learning (as in the Threshold approach), but the use
of machine learning, even with a unique feature can significantly improve the results.

The second part of Table 6.7 shows the results of only training the Extra Tree classifier
with features of one group at the time. Our intent with this experiment is to measure
the contribution of each group of features individually. The best results were obtained by
a classifier trained with features of the Natural Language Features group, while the worst
were obtained using the features of the Machine Learning Classifiers Features group.
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The factors that help to explain the performance of the classifiers with both Natural
Language Features and Machine Learning Classifier Features groups are linked to the
characteristics of the features in each group. One large difference between these two
groups is the number of features in each group. Natural Language Features group had a
total of 342 features (= 19 features × 3 variants (i.e., raw counts and counts normalized
by the number of words and sentences in the documents) × 6 preprocessing pipelines
(e.g, JusText ForcePeriod, JusText DoNotForcePeriod, etc)), while the Machine Learning
Classifier Features had only 36 features. A larger feature set is more likely to have more
variety among the features in the group and that is the case in here. The features in
the Natural Language Features group are diverse, with features that could indicate how
long a document is (e.g., number of nouns or verbs in the document) and how rare
the vocabulary used in a document is (e.g., number of words not found in the Aspell
dictionary). However, the features in the Machine Learning Classifier group are limited
to only 3 possible values (1, 2 or 3) and with a substantial overlap among themselves,
as those were extracted from classifiers predicting if a document should be classified
as Medical Reddit, Medical English Wikipedia or PubMed Central (see Section 6.1.2).
Note that the Machine Learning Regressor Features group also had a small number of
features, 30, but the fact that the predictions were made in continuous scale24 seems
to have allowed the Extra Tree classifier to explore the search space better and provide
more accurate predictions than using the Machine Learning Classifier Features group.
Also note that, although the features in group of HTML Features in Table 6.6 did not
correlate well with the human assessments (i.e., the number of p tags, its best method,
showed a weaker correlation than the best method of any other group of features), they
could successfully be used by a machine learning classifier showing results as good as
the other groups of features. Finally, note that the Macro F1 of the classifier using the
Expert Medical Vocabulary Features is, together with the classifier using the Machine
Learning Classifier Features, the worst one. The post-classification results for the Expert
Medical Vocabulary Features are also the worst one for all correlation measures. This
group focus on exploring features related to the MeSH hierarchy, which has already been
used successfully in the literature to classify documents according to their expertise [213].
However, our results indicate that features extracted from the MeSH hierarchy are not
particularly useful.

Although the classification accuracy of .64 between the classifier using all features and the
human assessments of CLEF 2015 seems low (i.e., one out of three predictions are wrong),
it is important to compare this accuracy with the ones obtained by comparing different sets
of human assessments among each other. In fact, if the other sets of human assessments
were used as understandability predictions, their accuracy would not be higher than .45,
even though they would still be useful to rank retrieval systems [153]. Apart from it, the
correlation coefficients obtained by the classifier using all features (Pearson correlation of
.65, Spearman of .57 and Kendall of .54), which are more important for a retrieval task,
are as high as the highest ones obtained by human assessors (Figure 6.4). Both accuracy

24That is, the values from the MLR features could assume any real number value although the set of
training labels was the same as in the MLC: 1, 2 and 3.
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score and correlation coefficients indicate that the classifier using all features is as good
as humans in ranking documents regarding their understandability.

6.5.2 Regression Task with CLEF 2016 Collection

We also define four baselines in the regression experiments: (1) Mean Value: always
outputs the mean understandability score from the training set; (2) Median Value: always
outputs the median understandability score from the training set; (3) MinMax Scaling:
the scores obtained by a readability formula are converted in a scale between 0 (minimum)
and 100 (maximum). (4) ML on Single Feature: a machine learning regressor trained
only on the scores of a single readability formula. For baselines (3) and (4), we use the
Dale-Chall Index as readability formula due to its correlations with human assessments
in the previous experiments with CLEF 2016 (Table 6.6). We only show the results of
the Extra Tree Regressor in this section, but note that similar results are obtained by
other machine learning regressors.

The first part of Table 6.8 shows the results of the baseline methods. The predictions
of the Mean Value and Median Value models are constant for each fold, resulting in an
R2 close to 0. The post regression analysis also shows that correlations with the human
assessments are close to 0. While the use of Dale-Chall in the MinMax Scaling and ML on
Single Feature methods resulted in predictions that are equivalent or worse than simply
predicting the mean or median value, e.g., R2 = −.23 for the ML on Single Feature
method, the post regression analysis of MinMax Scaling shows higher correlations than
the other baselines, with correlation coefficients as high as the ones seen in Figure 6.4.

The second part of Table 6.8 shows the contribution of each group of features individually.
As seen in the experiments in Section 6.5.1, the results using the Natural Language
Features were the best ones, while the ones using Machine Learning Classifiers Features
were among the worst ones. The worst results in terms of both R2 and MAE were seen
in the experiments using only the Expert Vocabulary Features group, showing once more
that the MeSH hierarchy features are not particularly useful for this task.

Inline with our findings in Section 6.5.1, the results of a regressor that uses all features
are significantly better than a regressor that uses only one group of features (for all
groups, p < .0018) and are not significantly different from a regressor that uses all group
of features except one (for all groups, p > .0018).

The last part of Table 6.8 shows the attempts to select features across different groups.
The best results are accomplished by the feature selection using the feature importance
of the Extra Tree regressor, however these results are not statistically different from
the results of the regressor using all features (p > .0018). The other methods resulted
in regressors that are significantly worse than the regressor with all features (for all
comparisons, p < .0018).

Finally, note the results of the correlation analysis made with the outcomes of the best
regressor (with all features): Pearson correlation of .59, Spearman of .50 and Kendall of
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Table 6.8: Results for the document understandability classification task using the
relevant documents from CLEF 2016 collection. R2 and Mean Absolute Error (both
Mean ± Std) were calculated across the ten folds in a 10-fold cross-validated experiment.
Results of each fold are accumulated and correlation with human assessments is shown
in the last three columns. Bold is used to show the best values per experiment.

Experiment Features Reg. Results Correlation Analysis

R2 MAE Pears. Spear. Kend.

Baseline

Mean Value .00±.00 17.45±.80 .05 .05 .03
Median Value .04±.02 17.02±.86 .03 .03 .03
MinMax Scaling (Dale-Chall) .05±.07 17.26±.44 .44 .38 .26
ML on Single Feature (Dale-Chall) -.23±.11 18.68±.85 .31 .23 .16

Only one
Feature
Group
at time

Trad. Readability Formulas .23±.05 14.84±.62 .50 .40 .28
Components of Read. Formulas .26±.05 14.59±.70 .53 .44 .31
General Medical Voc. Features .19±.05 15.15±.71 .46 .39 .27
Consumer Vocabulary Features .22±.05 14.93±.76 .48 .42 .29
Expert Vocabulary Features .10±.05 15.99±.72 .37 .31 .21
Natural Language Features .28±.04 14.28±.67 .54 .45 .31
Machine Learning Regressors Feats. .24±.07 14.75±.73 .51 .42 .29
Machine Learning Classifiers Feats. .14±.07 15.70±.82 .44 .34 .23
Word Frequency Features .26±.06 14.64±.67 .52 .40 .28
HTML Features .11±.05 15.87±.78 .39 .32 .22

All Features .33±.04 13.62±.59 .59 .50 .35

Ablation
Analysis

Trad. Readability Formulas .34±.05 13.62±.66 .59 .50 .35
Components of Read. Formulas .34±.05 13.62±.62 .59 .50 .35
General Medical Voc. Features .34±.05 13.58±.61 .59 .50 .36
Consumer Vocabulary Features .33±.05 13.69±.65 .59 .49 .35
Expert Vocabulary Features .34±.05 13.57±.65 .59 .51 .36
Natural Language Features .33±.06 13.64±.62 .59 .50 .36
Machine Learning Regressors Feats. .33±.05 13.65±.68 .59 .49 .35
Machine Learning Classifiers Feats. .34±.05 13.61±.62 .59 .50 .36
Word Frequency Features .34±.04 13.60±.54 .59 .50 .35
HTML Features .33±.05 13.65±.70 .59 .50 .35

Feature
Selection

Only Best Feats. .29±.04 14.15±.64 .56 .45 .31
Only Features Corr. > .40 .24±.05 14.65±.65 .52 .43 .30
Only Features Corr. > .30 .30±.05 14.07±.62 .56 .47 .33
Feature Selection Trees .34±.05 13.58±.64 .59 .50 .36

.35. We can directly compare these values with the boxplots shown in Figure 6.5. For
all results shown in Figure 6.5, only the highest correlation made by human assessors is
higher than the correlation results shown by the regressor with all features. This shows
that the model using all features is a good as humans in ranking documents according
to their understandability. In Chapter 8 we investigate how to integrate the machine
learning methods investigated in this chapter into retrieval systems in order to boost
understandable documents among the topically relevant ones.
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6.6 Summary
There is an abundance of factors that affect how users perceive understandability. In
this chapter, we devised and studied a large number of understandability estimators,
ranging from traditional readability formulas extensively used in the past 50 years to
state-of-the-art machine learning algorithms build with the auxiliary corpora. We grouped
them into semantically related groups in order to facilitate the investigation of their
correlation with human assessments collected during CLEF eHealth campaigns in 2015
and 2016.

Complementary to Chapter 5, we evaluated how preprocessing steps impact the under-
standability estimation in traditional readability formulas and other modern estimators.
We empirically learned the importance of preprocessing steps when applying readability
formulas, as the highest correlations happen when proper HTML cleaning methods are
used. For the most modern estimators, such as the ones based on machine learning
methods, the correlation is less sensitive to the preprocessing steps.

We also studied the correlation of each readability formula with the human assessment to
provide insights on which formula should be preferred. Our analysis did not conclude that
one single formula is better than the others in particular. In fact, we could only find one
formula that is significantly worse than the others: the ARI Index. The correlation results
between the various methods to estimate understandability and human assessments are
higher when preprocessing text with JusText than when using Boilerpipe or the Naïve
strategies, although they are not significantly different from using Boilerpipe. We also did
not find significant differences between the use of ForcePeriod and DoNotForcePeriod.

Although we did not show how well each method in Section 6.1.2 correlated with the
human assessments due to the vast number of methods tested in this chapter, we explicitly
show what are the best methods in each group, providing an overview of what works
better in each group. Finally, we showed that machine learning algorithms can be
successfully used to combine methods to estimate understandability, reaching results
that are significantly higher than the methods used individually. The experiments in this
chapter serve as a basis for the following chapters of this thesis, as the learning-to-rank
methods take advantage of the estimators devised and analyzed here.
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CHAPTER 7
Multidimensional Evaluation of

Search Engines

The topicality of a document to a query or information need is central to the notion
of relevance, but other factors (also called dimensions) that influence the relevance
of a document do exist. In fact, researchers have long established that the notion
of relevance in information retrieval is multidimensional [173, 20]. These dimensions
include novelty, diversity, timeliness, scope, understandability and trustworthiness, among
others [159, 173]. In particular, in the context of consumer health search, the relevance
dimensions of understandability and information trustworthiness are fundamental [90].
It means that health information is only valuable to users, allowing them to make
appropriate health decision, if it is understandable and correct. It is therefore important
to take into account these additional relevance dimensions, along with topicality, when
evaluating the effectiveness of search systems in the context of consumer health search
tasks, and in general in other tasks with similar requirements.

An evaluation framework that integrates understandability into information retrieval
evaluation has been recently devised [224, 223] and it has been largely adopted to
evaluate systems for consumer health search [154, 226, 155]. The framework, named
Understandability-Biased IR Evaluation (UBIRE), builds upon the gain-discount frame-
work of evaluation measures used in information retrieval (measures like normalized
Discounted Cumulative Gain (nDCG), Expected Reciprocal Rank (ERR), Rank Biased
Precision metric (RBP) belong to this framework) [26]. UBIRE uses a discount based on
the rank position at which documents are retrieved, and a gain function that integrates
contributions from both topicality and understandability (see Section 7.1).

A limitation of the approach used to model multidimensional relevance in UBIRE is that
it is not trivial to identify how different dimensions of relevance affect the final evaluation
score. This is because in UBIRE gains produced by documents for each of the considered
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dimensions of relevance are combined early on in the evaluation measure. This limitation
makes the interpretation of evaluation results using UBIRE difficult as it is impossible to
determine whether improvements (deteriorations) are due to more (less) understandable
or more (less) topical documents being retrieved.

In this chapter, we propose an alternative to UBIRE, called the MM (forMultidimensional
Metric), which overcomes the interpretability limitation of UBIRE, while still enabling
the combination of multidimensional relevance evidence when evaluating information
retrieval systems (Section 7.2). Using small synthetic data, we show the intuitive differ-
ences between UBIRE and MM and demonstrate how MM overcomes UBIRE’s limitation
(Section 7.3). We further empirically compare specific measures instantiated from the
two frameworks using real data to study system ranking correlations across UBIRE and
MM (Section 7.4). The results show that while system correlations measured with MM
are aligned with UBIRE, MM provides richer information to researchers, allowing them
to assess and control how each relevance dimension contributes to the evaluation score of
a system.

7.1 Incorporating Understandability into Evaluation
Metrics

The understandability based framework of Zuccon [223] is based on the gain-discount
framework by Carterette [26], which can be generically defined as an evaluation metric
M as:

M = 1
N

K∑
k=1

d(k)g(d@k) (7.1)

where g(d@k) and d(k) are respectively the gain function computed for the (relevance of
the) document at rank k (i.e., d@k) and the discount function computed for the rank k.
K is the depth of assessment at which measureM is evaluated, and 1/N is an optional
normalization factor, which serves to bound the value of the sum into the range [0,1]
(details in [26]).

The gain-discount framework encompasses measures such as the normalized Discounted
Cumulative Gain (nDCG) [102] with g(d@k) = 2P (R|d@k) − 1 and d(k) = 1/(log2(1 + k));
the expected reciprocal rank (ERR) [29] with g(d@K) = (2P (R|d@k) − 1)/2max(P (R|d))

and d(k) = 1/k; and the Rank Biased Precision (RBP) with g(d@k) equal to 1 if d@k is
relevant and 0 otherwise and d(k) = ρk−1 (with ρ representing the user persistence).

The gain provided by a document at rank k can be expressed as a function of its
probability of relevance. Without loss of generality, g(d@k) = f(P (R|d@k)), where
P (R|d@k) is the probability of relevance given the document at k. When only topical
relevance is modeled, P (R|d@k) = P (T |d@k), i.e., the probability that the document at
k is topically relevant. For binary relevance, this probability can simply be 1 for relevant
documents and 0 for non-relevant documents. For non-binary cases, this probability can
be distributed according to the number of relevance levels.
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UBIRE extends this framework to consider cases where relevance is modeled beyond
topicality to explicitly model other dimensions, such as understandability. This is done
by modeling the probability of relevance P (R|d@k) as the joint distribution over all
considered dimensions, P (δ1, · · · , δn|d@k), where each δi ∈ D represents a dimension of
relevance, e.g., topicality, understandability. The computation is simplified by assuming
that dimensions are compositional events and their probabilities independent (see [223]
for more details). The gain function with respect to different dimensions of relevance can
then be expressed as:

g(d@k) = f(P (R|d@k)) (7.2)
= f

(
P (δ1, · · · , δn|d@k)

)
(7.3)

= f
( n∏
i=1

P (δi|d@k)
)

(7.4)

Evaluation metrics developed within this framework differ through the instantiations of
f
(
P (δ1, · · · , δn|d@k)

)
, other than by which dimensions are modeled. Zuccon provided an

instantiation that considers both topicality (T) and understandability (U) [223]:

g(d@k) = f(P (R|d@k)) = f(P (T,U |d@k)) = f
(
P (T |d@k) · P (U |d@k)

)
(7.5)

with P (R|d@k) as the joint P (T,U |d@k) that is in turn computed as the product
P (T |d@k) · P (U |d@k) following the assumptions discussed above.

Specific implementations of the UBIRE framework that have been developed in previous
work considered the basic gain and discount functions from RBP [134]; an instantiation
with understandability [224, 223] has been later extended by jointly considering also
trustworthiness [155]. For ease of explanation, we consider the formulation with topicality
and understandability; similar considerations apply when also trustworthiness is modeled
(as well as other dimensions). In this case, the understandability-biased RBP, uRBP , is
defined as:

uRBP (ρ) = (1− ρ)
K∑
k=1

ρk−1P (T |d@k) · P (U |d@k) (7.6)

= (1− ρ)
K∑
k=1

ρk−1gRBP (d@k) · gU (d@k) (7.7)

In the uRBP , the function gRBP (d@k) is the same as the gain in RBP and transforms
relevance values into the corresponding gains and, likewise, gU (d@k) transforms under-
standability values into the corresponding gains. If gU (d@k) = 1 for every document,
then only topical relevance affects retrieval evaluation, i.e., every document is considered
as having equal understandability (and its highest value) and we obtain the original RBP.
Two instantiations of the gain function gU (d@k) have been explored in previous work:
one binary (uRBP) and the other graded (uRBPgr). In the binary version gU (d@k) = 1
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if P (U |d@k) ≥ thU , where thU is a threshold on the assessments of understandability
(every assessment that is greater than or equal to thU would generate a gain of 1), and
gU (d@k) = 0 otherwise. In the graded version, we rely on the possibility to transform
the understandability assessment collected into estimations of P (U |d@k). For example,
assessments collected in a Likert scale of 5 levels can be easily converted into estimations
ranging from 0.0 to 1.0 with steps of 0.25 (0.0, 0.25, 0.50, 0.75 and 1.0). Assessments
collected in a scale from 0 to 100 (e.g., 0 being the lowest level of understandability),
could be directly used as estimations of P (U |d@k) or modified by a smoother function.
These estimations are then plugged into the metric.

7.2 A new Framework for Multi-Dimension IR Evaluation

A limitation of UBIRE is that it prematurely combines the gains contributed by each
dimension of relevance in one single step, providing a unique evaluation score [224, 223].
While this allows for the comparison of systems, it does not permit to understand
the contribution each dimension had on the evaluation measure. To overcome this
limitation, we aim to create a framework which, while still allowing the modeling of
multidimensional relevance, is of easy interpretation and for which it is straightforward
to track the contribution each relevance dimension had on the final effectiveness score.
This is achieved by separating the evaluation of each dimension such that a value for
each dimension is calculated separately with respect to its gain and discount, and then
these are combined into a unique effectiveness measure. Note that we assume that it is
possible to evaluate each measure separately.

The evaluation of each relevance dimension separately is trivial, as it consists in applying
the discount and gain function of the underlying evaluation measure, e.g. RBP, to each
relevance dimension δ ∈ D, where the gains are those associated with the criteria for that
specific dimension.

While the outputs of each relevance dimension could be combined with a linear or
geometric combination of values, we opt to use the weighted harmonic mean, as it is
particularly sensitive to a single lower-than-average value. The same intuition is used
to combine recall and precision in the widely used F -measure. Given a (discount-gain)
evaluation measureM and a particular dimension δ, we apply the measureM to evaluate
a list of documents lδ which have been labeled with respect to dimension δ (i.e., we
computeM(lδ)). Then, to compute the proposed measure MMM, we combine allM(lδ)
for each relevance dimension using the harmonic mean, where each dimension is weighted
according to a preferential weight wδ assigned to each dimension; formally:

MMM =


n∑
δ=1

wδ · M(lδ)−1

n∑
δ=1

wδ


−1

=

n∑
δ=1

wδ

n∑
δ=1

wδ
M(lδ)

(7.8)
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Without loss of generality, we instantiateM = RBP and define the following modification
of RBP [134] for each dimension:

• RBPt(ρ): uses binary topicality assessments (i.e., the usual RBP).

• RBPu(ρ): uses understandability assessments (either graded or binary; see below for
specific instantiations).

Thus Equation 7.8 becomes (we assumed wt = wu):

MMRBP (ρ) = 2 · RBPt(ρ) ·RBPu(ρ)
RBPt(ρ) +RBPu(ρ) (7.9)

7.3 Comparing frameworks Through System Simulations

To understand the behavior of UBIRE and MM when facing different IR systems, we
first employed synthetic systems to have fine-grained control over our experiments. This
allowed knowing a priori what has changed between two system instances and study the
effect these changes had on evaluation. In our experiments, along with topicality, we
considered understandability, leaving the (trivial) extension to other dimensions to later
work. In the following simulations, we controlled the number of topical documents and
understandable documents retrieved. We did so by following this two-phase procedure:

1. Topicality Phase: we controlled the number of topical documents in a simulated
run using a random variable T , 0 ≤ T ≤ 1. We constructed a synthetic run by
drawing a real number Ni, 0 ≤ Ni ≤ 1, for each position i in a ranking. If Ni ≤ T ,
we marked the document at position i as relevant, otherwise, we marked it as
not relevant. It is expected that a run generated with T = 0.1 has 10% of the
documents assessed as relevant (90% as non-relevant), while a run with T = 0.5
has as many relevant as non-relevant documents.

2. Understandability Phase: we controlled the level of understandability of the
documents in a synthetic run. In order to create and control the randomness of
our synthetic systems, we generated understandability labels using a Gaussian
distribution with pre-defined mean µ and variance σ. As previously done in
consumer health search collections [226, 155], we forced the understandability labels
to be in the interval [0, 100]. We fixed a relatively large variance, σ = 40, to mimic
results of previous collections in which the understandability labels had a large
variance [226], and we varied the mean µ of the Gaussian from 0 to 100. Figure 7.1
shows the expected label distribution for µ = 20, 50, 80, i.e., N (20, 40), N (50, 40)
and N (80, 40). In Figure 7.1 we also included the threshold U used to compute
RBPu (Section 7.2).

101



7. Multidimensional Evaluation of Search Engines

0 20 40 60 80 100
Understandability Label

0.000

0.002

0.004

0.006

0.008

0.010

p(
x

|
,

)

(20, 40) (50, 40) (80, 40)

Figure 7.1: Gaussian distribution for different µ: higher µ generates higher understand-
ability labels (more difficult documents were retrieved). In the experiments in this chapter,
only documents with understandability lower than 40 are considered easy-to-understand
(understandability threshold shown as dotted line).

We executed these two phases in succession. In total, we generated 1,000 runs for each
value of T (topicality phase) and value of µ (understandability phase).

We calculated uRBP (using UBIRE) and MMRBP for each synthetic system. The
average result of the synthetic runs is shown in Table 7.1. Each row shows the results
of simulations with different values for T , i.e., different expected number of topical
documents retrieved. We varied µ which was used to create the understandability labels,
and show the results for µ = 50, 40, 30. A smaller µ means that more understandable
documents were retrieved. The results show that as the expected number of topical
documents (T ) increases, RBP increases. Likewise, uRBP increases, as it is bounded by
topical relevance. In turn, increasing T does not affect RBPu, but increases MMRBP , as
it is also directly dependant on RBP . When the number of understandable documents
retrieved is increased (i.e., µ decreased ), RBP stays constant, as it does not measure how
understandable documents are. In turn, uRBP , RBPu and MMRBP increase. These
are the expected behaviors of the considered measures.

We further focused our attention on the results of specific experiments highlighted in
blue and yellow in Table 7.1 as they show the advantage of MM framework compared to
UBIRE. These cases simulated an initial system S1 that exhibited the results in blue
(condition T = 0.6 and N (40, 40)) being modified to improve the understandability of
retrieved documents (N (30, 40)) at the expenses of topicality (T = 0.5), producing a new
system S2. The effectiveness of S2 is highlighted in yellow.

If RBP and uRBP were used to decide whether S2 should be preferred over the original
system S1, then S2 would be discarded and S1 preferred, as S2 produced an 16% reduction
in RBP and a 13% reduction in uRBP . With these results, an IR researcher would
conclude that the modifications in S2 did not pay off.
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Table 7.1: We varied T , the expected proportion of topically relevance documents
(rows), and the mean µ of Gaussian distribution used to generate understandability labels
(columns). A smaller µ means that easier to read documents are retrieved. We showed the
average and standard deviation of each experiment. S1 (blue) and S2 (yellow) represent
two systems with similar MMRBP , but very different RBP (= RBPt) and RBPu results.

T
Understandability N (50,40) Understandability N (40,40) Understandability N (30,40)

RBP uRBP RBPu MMRBP RBP uRBP RBPu MMRBP RBP uRBP RBPu MMRBP

.3 .29 ± .15 .15 ± .09 .39 ± .17 .30± .12 .29 ± .15 .17 ± .11 .50 ± .16 .34 ± .14 .29 ± .15 .19 ± .12 .61 ± .16 .36 ± .15

.4 .39 ± .17 .20 ± .11 .40 ± .17 .36 ± .14 .39 ± .17 .22 ± .12 .48 ± .17 .40 ± .13 .39 ± .17 .25 ± .13 .60 ± .16 .44 ± .14

.5 .50 ± .17 .25 ± .11 .42 ± .16 .42 ± .13 .50 ± .17 .29 ± .12 .50 ± .17 .47 ± .13 .50 ± .17 .33 ± .14 .60 ± .17 .52 ± .13

.6 .60 ± .16 .30 ± .12 .41 ± .16 .46 ± .14 .60 ± .16 .35 ± .12 .50 ± .17 .52 ± .13 .60 ± .16 .40 ± .13 .61 ± .17 .58 ± .13

.7 .70 ± .15 .36 ± .12 .41 ± .17 .49 ± .15 .70 ± .15 .41 ± .13 .51 ± .17 .56 ± .14 .70 ± .15 .46 ± .13 .59 ± .16 .62 ± .12

IfMMRBP was used instead, the IR researcher would have been able to gain more insights
about system effectiveness and the trade-off between understandability and topicality.
To use MMRBP , RBPt (= RBP ) and RBPu needed to be computed. Between S1 and
S2, there was a decrease in RBPt of 16%; but conversely RBPu increased by 20%: this
clearly allows the trade-off between topicality and understandability to be gauged.

When RBP and RBPu were combined within MMRBP , if both dimensions were given
equal weight, then systems S1 and S2 obtained the same MMRBP . Note that MM can be
adapted to specific circumstances: if topicality is more important than understandability,
then the weights of each dimension can be changed accordingly in the harmonic mean
computation.

7.4 Rank Correlations

Next, we compared the behaviors of MM and UBIRE using real data. For this, we
used the systems participating in the CLEF eHealth IR Lab evaluations in 2015 and
2016 [154, 226]. In both these evaluation challenges, systems were evaluated using
uRBP – we further evaluated each system using MM and studied the correlations among
system rankings obtained using RBP (thus considering topicality only), uRBP (UBIRE),
and our proposed RBPu (thus considering only understandability) and MMRBP . This
investigation of correlations is a common approach to compare and understand the
relative behavior of evaluation measures [223].

Specifically, we studied a setting where understandability was binary, akin to topicality,
which also was considered as binary. For topicality, this was achieved using the common
gain function for RBP that only models binary relevance: graded relevance labels were
conflated to binary such that highly relevant and relevant assessments were mapped
to relevant, and the rest to irrelevant. For understandability, the binarization of the
assessments was dependant on the year of the challenge. For 2015, understandability
assessments were made on a 4-point scale (very easy, easy, hard and very hard) [154]:
we made this binary by assuming that a document marked as very easy and easy
was understandable, while we made the remaining as not-understandable. For 2016,
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Table 7.2: Kendall-τ correlation for systems participating in CLEF eHealth 2015 and
2016.

CLEF 2015 CLEF 2016
RBP uRBP RBPu MMRBP RBP uRBP RBPu MMRBP

RBP 1.000 0.901 0.483 0.843 1.000 0.948 0.497 0.850
uRBP 0.901 1.000 0.563 0.901 0.948 1.000 0.456 0.866
RBPu 0.483 0.563 1.000 0.610 0.497 0.524 1.000 0.633
MMRBP 0.843 0.901 0.610 1.000 0.850 0.866 0.633 1.000

understandability assessments were made on an integer scale ranging from 0 (very easy)
to 100 (very hard) [226]: we made this binary by assuming that documents with an
assessment lower than or equal to 401 were understandable, while we made the remaining
as not-understandable.

Table 7.2 shows the Kendall-τ rank correlations of systems according to RBP, uRBP ,
RBPu and MMRBP . Rank correlation between RBP and uRBP was high for both 2015
and 2016 data. This emphasizes the tight relation between RBP and uRBP . On the
other hand, MMRBP exhibited the strongest rank correlation with RBPu, while the
correlation between RBPu and RBP or uRBP is marginal. In addition, we found that
MMRBP strongly correlated with RBP, but not as strongly as uRBP does. Finally,
MMRBP and uRBP showed a generally high correlation among themselves, highlighting
that the two measures provided similar evaluations of system effectiveness; however,
MMRBP had the advantage that the trade-off between topicality and understandability
could be clearly identified and studied.

7.5 Summary
In this chapter, we proposed a new framework, called MM, to evaluate search engines
when multidimensional relevance should be considered. Using both synthetic and real
data, we compared MM to the understandability-biased information retrieval evaluation
framework (UBIRE), which has recently been used to evaluate search systems in the
consumer health search domain.

Our experiments showed that whileMM correlated well with UBIRE and that both had an
equivalent power to rank and distinguish good systems, MM has the advantage of allowing
experimenters to easily understand how each relevance dimension affects their system
performance, as well as carefully tune the trade-off between topical relevance and other
relevance dimensions. While our empirical experiments only considered understandability
as an additional dimension to relevance, this was done for directly comparing with UBIRE,
and by definition MM naturally accommodates for an unlimited number of relevance
dimensions.

1This threshold was arbitrary chosen because of the semantic and colors used in the Relevation!
assessment tool in CLEF 2016 (see Figure A.3). The green part of the slider, which is likely understood
as “easy-to-read documents” started at the label 40, thus we re-used this threshold here.
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CHAPTER 8
Integrating Understandability

into Search Engines

In this chapter, we investigate how understandability estimations can be integrated into
retrieval methods to increase the quality of search results. Similarly to Chapter 6, we
make extensive use of both CLEF eHealth 2015 and 2016 collections in this chapter.
Please refer to the Appendix A for an overview of the CLEF eHealth collections.

We describe in Section 8.1 our experimental methodology and approaches to integrate
understandability into retrieval. Three approaches exploring the understandability
estimators from Chapter 6 are proposed. They are evaluated with measures described in
Section 8.2, which are based on the frameworks for multidimensional evaluation studied
in Chapter 7. The result of our experiments is shown in Section 8.3. A summary of our
main findings is in Section 8.4.

8.1 Methods to Integrate Understandability into
Retrieval

We consider three different strategies to integrate understandability into retrieval: (1)
re-ranking with an understandability estimator, (2) rank fusion, and (3) learning-to-rank.
Re-ranking with readability formula and rank fusion are approaches that can be applied
to any ranking list, i.e., these two approaches re-rank documents according to their
understandability assuming that a retrieval system, seen as a black box, retrieved docu-
ments exclusively according to their topical relevance to the query. The learning-to-rank
approach, however, in a single step integrates the topical relevance and understandability
of the documents. For that, the retrieval system cannot act as a black box and, as we
investigate in this chapter, needs to be modified to consider the understandability of
the documents. Any of these strategies can be directly employed in websites such as
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HealthOnNet.org (HON) or HealthDirect.gov.au, allowing the health consumers
of these websites to have access to documents that are relevant and easy-to-understand
at the same time.

Re-ranking with an understandability estimator, presented in Section 8.1.1, is a straight-
forward strategy to increase the understandability level of the retrieved results. Given
that a (complex) search engine is capable of retrieving highly relevant results, an un-
derstandability estimator (such as a readability formula) can be used to re-rank these
results according to their understandability. This approach assumes that re-ranking
the top documents returned by such a search engine can improve the user satisfaction
by increasing the understandability of the top results without hurting their topicality.
Rank fusion, presented in Section 8.1.2, aims to balance topicality and understandability
automatically. In this strategy, two ranking lists are automatically combined: (1) the
results retrieved by the search engine with the focus on topicality, and (2) the re-ranked
results from the Re-ranking with an understandability estimator focusing on understand-
ability. The assumption is that documents that are at the same time topically relevant
and understandable will be favored when the two ranking lists are merged. Finally,
the learning-to-rank strategy, presented in Section 8.1.3, is based on machine learning
methods. These methods create retrieval models taking into account features representing
both topicality and understandability of documents.

The Re-rank with an understandability estimator and the rank fusion require an initial
retrieval method. We consider three alternatives for initial retrieval methods in this
chapter. These include the best two runs submitted to each CLEF task, and a plain
BM25 baseline (default Terrier parameters: b = 0.75 and k1 = 1.2). The best submission
of CLEF 2015, created by team ECNU [183], was a system based on Terrier’s TF-IDF
model that expanded the queries by re-issuing them in Google and collecting words
from the titles and snippets associated with the top ten Google results. The runner-up
system of CLEF 2015 was built by KISTI [138] and based on Lucene’s Dirichlet Language
Model. After an initial retrieval, their best system explored two approaches for re-ranking:
concept-based document centrality (CBDC) and cluster-based external expansion model
(CBEEM). The best system of CLEF 2016 was created by team GUIIR [182] and was
based on a Terrier with Divergence from Randomness model. Their system generated
reformulations of the queries exploring synonyms and hypernyms from UMLS and then
merged the original query and the generated ones using the Borda rank aggregation
algorithm. The runner-up system of CLEF 2016 was again created by ECNU [184] and
once more based on query expansion with Google. This time, however, their base system
was Terrier’s BM25 model, the same that we use as our main baseline system.

As understandability estimators for the strategies re-ranking with an understandability
estimator and rank fusion, we used the SMOG Index for CLEF 2015 and Dale-Chall Index
for CLEF 2016 as they were the best performing readability formulas investigated in
Table 6.6. We also use the XGB Regressor as an alternative understandability estimator
that, apart of not being a readability formula, showed correlation coefficients higher than
those of the best readability formulas for both CLEF collections (this is also shown in
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Table 6.6, MLR group).

8.1.1 Re-Ranking with an understandability estimator

To integrate understandability estimators into the retrieval process, we first investigate
re-ranking search results retrieved by the initial runs only based on an understandability
estimator. If all the search results from a run were to be considered, then such a re-ranking
method would place at early ranks web pages highly likely to be understandable, but
possibly less likely to be topically relevant. To balance relevance and understandability,
we only re-ranked the first k documents. We explored rank cut-offs k = 15, 20, 50. Because
the evaluation is performed with respect to the first n = 10 rank positions, the setting
k = 15 provides a conservative re-ranking of search results, while k = 50 provides a less
conservative re-ranking approach. Results are presented in Section 8.3.1.

8.1.2 Rank Fusion

As an alternative to the previous two-step ranking strategy for combining topical relevance
and understandability, we explore the fusion of two search result lists separately obtained
for relevance and understandability. For this, we used the Reciprocal Rank Fusion (RRF)
method [41], which was shown effective for combining two lists of search results based on
their documents ranks, rather than scores. Given a set D of documents to be ranked and
a set of rankings T and U, respectively the search result lists for topical relevance and
understandability, we compute:

RRF (d ∈ D) = 1
C + rT (d) + 1

C + rU (d)

with rX(d) representing the rank position of document d in the result list X, and C is a
constant which mitigates the impact of high rankings by outlier systems. In this work,
we use C = 60 as in the original formulation of RRF [41]. It is important to note that
score-based fusion methods, such as CombMNZ or CombSUM [64], are not recommended
for a fusion task such as the one made in this work, as the distribution of topical relevance
scores and the understandability scores widely differs.

In our experiments, we used, separately, three retrieval systems for each collection. For
CLEF 2015, we used BM25, ECNU [183] and KISTI [138], while for CLEF 2016, we
used GUIR [182], ECNU [184] and also BM25. To consider the understandability of
the documents retrieved by the retrieval systems, we used the method with the highest
correlation to human assessments (according to Pearson correlation for CLEF 2015 -
shown in Table 6.6), eXtreme Gradient Boosting (XGB) regressor, which is also studied
by the strategy of re-ranking with an understandability estimator. Also for this approach,
we studied limiting the ranking of results to be considered by the methods across the
cut-offs k = 15, 20, 50. Results are presented in Section 8.3.2.
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8.1.3 Learning-to-Rank

Finally, we considered a third alternative to combine relevance and understandability
using learning-to-rank. A typical learning-to-rank approach is based on 3 components:
(1) a learning-to-rank algorithm and a loss function; (2) a labeling strategy to combine
relevance and understandability; (3) features to describe a document. We describe these
components next. The results are presented in Section 8.3.3.

Learning-to-rank algorithm and Loss Function

A large number of learning-to-rank algorithms have been recently developed. While
details of each algorithm can be found elsewhere [124], they are traditionally divided into
three categories: pointwise, pairwise and listwise, depending on how the learning-to-rank
problem is modeled.

In the pointwise approach, the learning-to-rank problem is modeled as a regression
problem. After a query is issued, a score is predicted for each document and the re-ranked
result is simply the ordered list according to this predicted score. The PRanking [44] is
an example of an algorithm in this category in which a perceptron algorithm predicts
the score of each document.

In the pairwise approach, a pair of documents is compared with a binary classifier built
to decide whether a document is more relevant than the other. The Multiple Additive
Regression Trees (MART) [68], the RankBoost [67], the RankNet [24] and XGB [31] are
popular pairwise approaches.

Finally, the listwise approach directly optimizes a whole list of documents, usually directly
evaluating the quality of a ranking with IR measures. The AdaRank [212] and ListNet [25]
are examples of this approach.

In this work, we experimented with the algorithms implemented in the Ranklib1 framework
(which includes the aforementioned MART, RankBoost, RankNet, AdaRank and ListNet),
and the pairwise learning-to-rank algorithm based on tree boosting (XGB2). We only
report the results of the XGB approach in this chapter as it reached the best results
among all learning-to-rank approaches.

The loss function used in our experiments to train the learning-to-rank model was
NDCG@10.

Labeling Strategies

Assigning a label for each document-query pair is an important step of a learning-to-rank
setup. Any of the approaches discussed above heavily rely on these labels to infer the
importance of a document for a query. Usually, these labels are simply the topical
relevance assessments available in a collection, but in our case, we would also like to

1https://sourceforge.net/p/lemur/wiki/RankLib/
2https://github.com/dmlc/xgboost/tree/master/demo/rank
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consider the understandability labels of the documents. In this work, we explore four
strategies to combine the topical relevance and understandability labels with the CLEF
2015/2016 collection.

Let Rd,q, or just R, be the topical relevance of document d for a query q, and Ud, or
just U , be the understandability score of document d, then we can define the different
labeling strategies as a function F of U and R. This way, the first labeling strategy,
named relevance only, can be defined as F (R,U) = R. This strategy, akin to how
learning-to-rank is used when understandability assessments of the documents do not
exist, simply uses the topical relevance of a document as its label. The possible values of
R in both CLEF 2015 and CLEF 2016 are 0 for documents that were explicitly assessed
as not relevant or documents that were not assessed for the query, i.e., documents that
were not in the pool set of the collection; 1 for documents assessed as somewhat relevant
for the query; and 2 for documents assessed as highly relevant for the query.

The second strategy, named proportional, is to assign labels to documents not only
proportionally to their topical relevance, but also to their understandability score. This is
done by considering how far the understandability score is from the score of the easiest-to-
understand document in the collection. Remember that in CLEF 2015, the easiest-to-read
documents were assigned a score U = 3 while the hardest to read documents got U = 0.
Thus, for CLEF 2015 this strategy can be defined as F (R,U) = R∗U/3. This way, even a
document that is highly relevant for a query can still get a label 0 if it this document was
assessed as very hard to read. Similarly, for CLEF 2016, the easiest-to-read documents
were assigned a score U = 0 and the hardest-to-read documents got U = 100. Thus, for
CLEF 2016, this strategy can be defined as F (R,U) = R ∗ (100− U)/100. Another way
to see this strategy is that a penalty is proportionally assigned to documents according to
how bad is their understandability score. For example, a document with understandability
0 receives no penalty, as 0 is the easiest level of understanding in the 2016 dataset, while
another with understandability 50 received a 50% penalty, meaning that its relevance
score is halved.

The third and fourth strategies assume the existence of an understandability threshold
that divides the documents into two groups: the easy-to-read and the hard-to-read
documents. This understandability threshold was set to U = 2 for CLEF 2015 and
documents with U ≥ 2 are considered easy-to-read. For CLEF 2016, we use U = 40 and
documents in which U ≤ 40 are considered easy-to-read3.

The third labeling strategy, named threshold, assigns label 0 to hard-to-read documents
and the topical relevance label to easy-to-read documents. Formally, it can be defined as

F (R,U) =
{
R if U ≥ 2
0 otherwise

for CLEF 2015 and as F (R,U) =
{
R if U ≤ 40
0 otherwise

for CLEF

2016.
3Similarly to Section 7.4, this threshold was arbitrary chosen based on the semantic and colors used

in the Relevation! assessment tool in CLEF 2016 (see Figure A.3). The green part of the slider, which
is likely understood as “easy-to-read documents” goes from understandability scores 0 to 40, thus we
re-used this threshold here.
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Lastly, the fourth labeling strategy, named boost, avoids assigning zeros to hard-to-read
documents. Instead, it boosts the label of easy-to-understand documents. In our experi-
ments, we double the value of label of easy-to-understand documents. Formally, we define

as F (R,U) =
{

2×R if U ≥ 2
R otherwise

for CLEF 2015 and as F (R,U) =
{

2×R if U ≤ 40
R otherwise

for CLEF 2016.

Feature Set

The last part of a typical learning-to-rank experiment consists in defining the representa-
tion of the documents. We define three options for the feature set to represent documents:
the use of information retrieval (IR) features; the use of understandability features; and
the combination of IR and understandability features.

As IR features, we explore different retrieval models: eight retrieval models implemented in
the Terrier toolkit were used - BM25, PL2, DirichletLM, Hiemstra_LM, LemurTF_IDF,
TF_IDF,DFRee and Dl - this is a representative subset of all families of retrieval models4.
Specifically, we devised 24 IR features using the Terrier framework. The score of the eight
retrieval models listed above was extracted from a multi-field index composed of title,
body and whole document. Although simple, this is a typical learning-to-rank setting.
As understandability features, we explore the understandability estimators investigated
in Section 6.1.2. Considering all preprocessing variations and features listed in Table 6.1,
a total of 1,082 features were used for understandability.

Experiment Settings

Each of the four labeling strategies can be combined with one option of a feature set.
This results in twelve possible experimental settings. In order to keep our experiments
concise, we experiment with only five combinations of labeling strategy and feature set.

The experimental setting named LTR 1 is the most common learning-to-rank setting
in which only topical relevance is considered for labeling strategy and only IR features
are extracted from the documents. In LTR 2, while using only the topical relevance as
labeling strategy, we expand the document representation to include understandability
features as well as IR features. LTR 3, LTR 4 and LTR 5 use both understandability
and IR features, but different labeling strategies. LTR 2 uses the proportional strategy,
while LTR 3 uses the threshold strategy and LTR 4 uses the boost strategy.

These combinations are listed in Table 8.1, with R being the relevance of documents and
U their understandability estimation.

4Details on each method can be found online at http://terrier.org/docs/v4.2/configure_
retrieval.html
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Table 8.1: Learning to rank settings.

Name Features Labeling Strategy
CLEF 2015 CLEF 2016

LTR 1 Only IR features F(R,U) = R F(R,U) = R
LTR 2 IR and Understandability features F(R,U) = R F(R,U) = R
LTR 3 IR and Understandability features F(R,U) = R× U/3. F(R,U) = R× (100− U)/100

LTR 4 IR and Understandability features F(R,U) =
{
R if U ≥ 2
0 otherwise

F(R,U) =
{
R if U ≤ 40
0 otherwise

LTR 5 IR and Understandability features F(R,U) =
{

2×R if U ≥ 2
R otherwise

F(R,U) =
{

2×R if U ≤ 40
R otherwise

8.2 Evaluation Measures
Apart from the rank-biased precision (RBP) measure [134], for the retrieval experiments
in Section 8.3, we used evaluation measures that rely on both (topical) relevance and
understandability. From the UBIRE framework [224, 223], we used uRBP , and from
the MM framework, we used both RBPu and MMRBP . Both frameworks and their
measures were described and studied in Chapter 7. For all measures, we set the persistence
parameter of RBP to 0.80, as done in both CLEF 2015 and 2016 [77, 106].

Shallow pools were used in both CLEF collections, i.e., only a limited number of documents
were selected to be assessed for relevance. Because of that, we focused on evaluating
the top 10 search results for all measures (e.g., RBPr@10). To cope with unassessed
documents, we also report the condensed version of the evaluation measures, represented
with a superscripted “*” (e.g., RBP ∗r or MM∗RBP ). The condensed approach, proposed
by Sakai as a way to deal with unassessed documents [170], is nothing else than the
corresponding measure calculated by ignoring unassessed documents. Finally, we recorded
the number of unassessed documents in the top 10 (una@10) and the RBP residuals
for RBP-based measures (e.g., RBPr@10, uRBP@10 or MMRBP ) [134]. The residuals
represent the error bound of the RBP measures, i.e., the maximum contribution to the
RBP score if the unassessed documents were assessed as relevant documents.

Our special care with unassessed documents aims to minimize pool bias since the
pools built in CLEF were of limited size, and the investigated methods retrieved a
substantial number of unassessed documents. Pool bias refers to the possible bias in the
evaluation towards systems that have contributed documents to the assessment pool:
these erroneously receive higher evaluation scores compared with systems that did not
contribute to the pool (i.e., that were not sampled to create the set of documents to be
judged for relevance).

8.3 Evaluating Understandability Aware Retrieval
Results for our experiments are shown in Table 8.2 for CLEF 2015 and Table 8.3 for
CLEF 2016. The effectiveness of the top two submissions to CLEF 2015/2016 and the
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BM25 baseline are reported at indices 1–3 of Tables 8.2 and 8.3. Statistically significant
differences compared with the best run in CLEF 2015, ECNU, and CLEF 2016, GUIR, are
indicated with �; differences between an original run (indices 1–3) and its modifications
are indicated with †. Statistically significant differences using a paired two-tail t-test
with Bonferroni correction [69] were calculated between the result of an experiment and
(1) the BM25 baseline and (2) the best method of each collection (ECNU for CLEF 2015
and GUIR for CLEF 2016). For the Bonferroni correction, as 294 t-tests were conducted
per collection (14 experiments [3 using the best readability formula + 3 using the best
machine learning method + 3 using the combination of the best readability formula and
machine learning method + 5 learning-to-rank approaches] × 7 evaluation metrics [RBPr
+ RBPu + MMRBP + uRBP + RBP ∗r + RBP ∗u + MM∗RBP ] × 3 systems [top 2 from
each collection + BM 25] = 294), the actual p-value used was .05/294 = .00017, i.e.,
differences were considered statistically significant only if p < .00017.

Next, we report the results of each sub-experiment: Simple re-ranking (indices 4–21),
Fusion Experiments (indices 22–30), Learning-to-rank (indices 31–35).

8.3.1 Simple Re-ranking

Indices 4–12 of Tables 8.2 and 8.3 report the results of re-ranking methods applied
to the runs listed at indices 1–3. Re-ranking was applied based on the SMOG score
for CLEF 2015 (preprocessing made with JusText-ForcePeriod) and Dale-Chall Index
(DCI) score for CLEF 2016 (preprocessing made with JusText-ForcePeriod) of each
document. Readability formulas and preprocessing combination were chosen based on
their Pearson correlation to human assessments, previously examined in Table 6.6, but
any other understandability estimator studied in Chapter 6 could be used instead. We
found that the topical relevance of the re-ranked runs (as measured by RBP and RBP ∗r )
significantly decreased, compared with the original runs: e.g., in CLEF 2016, re-ranking
the top 15 search results using DCI made RBPr decreasing from 25.28 to 23.22 for the
BM25 system. However, these re-ranked results were significantly more understandable:
for the previous example, RBPu passed from 42.08 to 47.09. As described in Chapter 7,
note the limitation of uRBP to reveal such an effect, as both topical relevance and
understandability are tied together in one single score.

In the experiments, we also studied the influence of the numbers of documents considered
for re-ranking (cut-off). Indices 4–6 refer to re-ranking only the top k = 15 documents
from the original runs; 7–9 refer to the first k = 20; and 10–12 to the first k = 50. The
results show that the more documents are considered for re-ranking, the more degradation
in RBPr effectiveness. Similarly to RBPr, uRBP and RBPu, metrics that take into
account understandability, degraded when k increased.

It is important to note that with the increase in the number of documents considered for
re-ranking, there is an increase in the number of unassessed documents being considered
by the evaluation measures. Both the RBP residuals and the column Una quantify the
effect that unassessed documents have on evaluation. In particular, when we exclude
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Table 8.2: Results obtained by integrating understandability estimations within retrieval
methods on CLEF 2015. Baseline runs are reported at table indices 1–3 (the index
column is labeled Idx). Re-ranking experiments are reported at indices 4–21. Fusion
experiments are reported at indices 22–30. Learning to rank experiments are reported at
indices 31–35. All measures were calculated up to rank n = 10. The highest result of
each set of experiments is reported in boldface for each measure. Statistically significant
differences compared to ECNU are indicated with �, while differences between an original
run (indices 1-3) and its modifications are indicated with † (paired, two-tail t-test with
Bonferroni correction, p < .00017 (.05 / 294)).

Idx Rerank Run CLEF 2015 Measures New Measures to Evaluate the Understandability in Retrieval

RBPr Res. uRBP Res. RBPu Res. MMRBP Res. Una@10 RBP ∗r RBP ∗u MM∗RBP

1
No Rerank

ECNU [183] (1st) 51.57 8.95 50.51 8.95 59.55 10.09 46.22 8.62 0.00 51.57 59.55 46.22
2 KISTI [138] (2nd) 36.72 8.06 35.92 7.32 64.50 11.54 37.56 7.89 0.03 37.07 65.31 37.96
3 BM25 Baseline 31.20� 8.76 30.51� 7.65 67.60 12.20 35.75 8.76 0.03 31.57� 68.94 36.42

4 SMOG
Top 15

Based on ECNU 38.16†� 20.09 37.36†� 8.95 55.11 22.14 37.59†� 18.98 0.14 45.45 62.58 43.65
5 Based on KISTI 31.28� 10.21 30.59� 7.48 67.05 13.95 34.23 10.05 0.05 33.12� 69.10 36.02�
6 Based on BM25 24.39� 11.46 23.83� 7.16 67.69 17.66 28.97� 11.46 0.10 26.28� 72.82 31.53
7 SMOG

Top 20

Based on ECNU 34.88†� 25.96 34.13†� 8.95 54.15 27.91 35.34†� 25.02 0.20 44.87 66.20 44.88
8 Based on KISTI 28.01� 11.05 27.39� 7.32 66.61 15.44 30.93� 10.82 0.08 30.87� 69.99 33.81
9 Based on BM25 22.83†� 13.48 22.31†� 7.32 63.61 22.44 26.52†� 13.48 0.15 26.22� 72.72†� 30.87†�
10 SMOG

Top 50

Based on ECNU 21.83†� 36.63 21.34†� 8.95 41.71†� 46.89 23.65†� 36.63 0.45 39.88†� 71.61 43.86
11 Based on KISTI 21.00†� 18.67 20.53†� 7.32 59.72 26.67 24.88†� 18.67 0.23 27.20� 72.47†� 31.90
12 Based on BM25 15.20†� 18.73 14.86†� 6.51 49.87† 36.41 17.79†� 18.73 0.32 21.22� 73.17 25.78†�
13 XGB

Top 15

Based on ECNU 39.77†� 21.59 38.90†� 9.11 54.84 24.22 38.35†� 20.72 0.15 47.00 64.28 45.22
14 Based on KISTI 31.36†� 8.95 30.63� 6.83 68.63 13.63 33.78 8.78 0.05 32.80 70.87 35.24
15 Based on BM25 23.38� 11.36 22.84� 7.16 66.79 19.43 27.60†� 11.36 0.10 26.35� 73.48 31.35
16 XGB

Top 20

Based on ECNU 34.91†� 27.19 34.12†� 9.11 52.69 30.19 34.89†� 25.95 0.25 46.71 67.26 45.81
17 Based on KISTI 29.04� 10.10 28.35� 6.51 69.10 15.86 32.00 9.94 0.07 31.82 73.19 34.84
18 Based on BM25 21.83� 12.88 21.32� 6.51 64.16 25.29 25.47†� 12.88 0.16 26.56� 76.26†� 31.45
19 XGB

Top 50

Based on ECNU 22.75†� 33.65 22.22†� 8.79 43.36†� 49.18 24.90†� 33.65 0.45 40.69†� 74.39†� 44.65
20 Based on KISTI 18.69� 17.21 18.25� 6.67 56.87 33.37 21.82†� 17.21 0.29 27.69� 76.44†� 32.53
21 Based on BM25 17.47� 20.95 17.00� 6.02 47.21† 43.81 19.22†� 20.98 0.41 27.09� 79.77†� 31.35

22 RRF (XGB & Orig.)
Top 15

Based on ECNU 47.81†� 12.85 46.78 8.95 60.04 15.04 44.69 12.34 0.10 50.09 62.98 46.85
23 Based on KISTI 33.78 7.71 33.02 6.83 68.57 12.02 35.72 7.55 0.03 34.34 69.67 36.26
24 Based on BM25 26.85� 12.13 26.23� 7.48 66.64 15.98 31.52 12.13 0.07 28.35� 70.65 33.70
25 RRF (XGB & Orig.)

Top 20

Based on ECNU 46.49†� 15.16 45.48†� 9.11 59.95 17.12 43.69 14.54 0.12 49.95 64.30 47.01
26 Based on KISTI 32.72 8.45 31.97 7.00 69.06 12.77 35.14 8.28 0.04 33.83 70.83 36.29
27 Based on BM25 25.64†� 12.51 25.05†� 7.16 66.55 17.31 30.14 12.51 0.09 27.64� 71.79 32.96
28 RRF (XGB & Orig.)

Top 50

Based on ECNU 38.97†� 21.40 38.08†� 8.79 57.37 25.44 39.54 19.83 0.24 47.00 67.95 47.12
29 Based on KISTI 27.78� 11.24 27.13� 6.83 67.83 16.75 31.07� 11.24 0.09 31.33†� 73.06† 34.85
30 Based on BM25 19.28†� 17.11 18.86†� 7.00 57.40 27.02 22.78†� 17.11 0.19 25.06†� 71.56 30.26�

31

XGB LeToR

LTR 1 on BM25 24.86� 17.39 24.32� 7.81 55.60† 24.11 28.89� 17.39 0.22 29.67� 66.41 34.76
32 LTR 2 on BM25 30.72� 21.25 30.08� 8.46 48.87†� 28.82 31.76� 18.99 0.26 37.09� 61.89 39.17
33 LTR 3 on BM25 28.92� 24.35 28.32� 8.46 49.02†� 32.11 30.14� 23.83 0.31 37.32� 63.86 39.84
34 LTR 4 on BM25 25.65� 25.72 25.09� 8.30 49.00† 33.39 27.45†� 24.40 0.33 35.82� 66.14 38.21
35 LTR 5 on BM25 30.21� 20.79 29.59� 8.62 48.47†� 27.88 30.95� 19.99 0.25 37.11� 61.25 39.15

the unassessed document from the evaluation and look at the understandability of the
retrieved documents, i.e., RBP ∗u , we noticed that increasing k increases the amount of
easy-to-read documents retrieved. The topical relevance of these documents, measured
by RBP ∗r , however, decreases when k increases.

Indices 13–21 refer to using the XGB regressor trained with all features listed in Table 6.1
to estimate understandability (as described in Section 6.5). Similarly to when using
SMOG or DCI, as the cut-off increased, e.g., from k = 15 to k = 50, the documents
returned were more understandable but less relevant (in particular when the condensed
measure RBP ∗u is taken into account). For the same cut-off value, e.g., k = 15, the
machine learning method used for estimating understandability consistently yielded more
understandable results than SMOG or DCI (i.e., higher RBPu and RBP ∗u ).

113



8. Integrating Understandability into Search Engines

Table 8.3: Results obtained by integrating understandability estimations within retrieval
methods on CLEF 2016. Baseline runs are reported at table indices 1–3 (the index
column is labeled Idx). Re-ranking experiments are reported at indices 4–21. Fusion
experiments are reported at indices 22–30. Learning to rank experiments are reported at
indices 31–35. All measures were calculated up to rank n = 10. The highest result of
each set of experiments is reported in boldface for each measure. Statistically significant
differences compared to GUIR are indicated with �, while differences between an original
run (indices 1-3) and its modifications are indicated with † (paired, two-tail t-test with
Bonferroni correction, p < .00017 (.05 / 294)).

Idx Rerank Run CLEF 2016 Measures New Measures to Evaluate the Understandability in Retrieval

RBPr Res. uRBP Res. RBPu Res. MMRBP Res. Una@10 RBP ∗r RBP ∗u MM∗RBP

1
No Rerank

GUIR [182] (1st) 28.11 7.65 18.12 7.19 45.69 8.86 25.61 6.50 0.01 28.29 46.03 25.79
2 ECNU [184] (2nd) 27.70 7.37 17.55 7.34 43.89 8.66 25.35 6.26 0.01 27.77 44.18 25.48
3 BM25 Baseline 25.28 8.24 16.05� 6.94 42.08� 10.97 22.97� 7.19 0.06 26.01 43.89 23.93

4 Dale-Chall
Top 15

Based on GUIR 24.29†� 8.89 16.62 7.27 48.98†� 11.05 24.76 7.61 0.03 24.83†� 50.56†� 25.38
5 Based on ECNU 24.38†� 8.19 16.45 7.16 48.96† 10.10 24.68 6.86 0.03 24.88� 49.99†� 25.24
6 Based on BM25 23.22†� 8.78 15.85� 6.94 47.09†� 11.83 24.01 7.42 0.07 24.04� 48.60† 24.82
7 Dale-Chall

Top 20

Based on GUIR 21.86†� 10.04 15.15†� 7.05 48.54 13.13 22.94 8.68 0.06 23.23†� 51.78†� 24.44
8 Based on ECNU 22.61†� 9.24 15.41� 6.94 48.45† 12.31 23.43 8.06 0.05 23.62†� 50.86†� 24.58
9 Based on BM25 21.58†� 9.51 14.83� 7.02 46.99† 13.00 22.89 8.06 0.09 22.93†� 49.55† 24.26
10 Dale-Chall

Top 50

Based on GUIR 16.07†� 15.31 11.50†� 6.80 41.41 24.34 17.95†� 14.48 0.23 20.80†� 53.07†� 23.14
11 Based on ECNU 16.72†� 17.64 11.67†� 7.27 40.46� 24.18 18.13†� 15.87 0.24 21.38†� 52.10†� 23.41
12 Based on BM25 15.06†� 15.35 10.55†� 6.62 40.03� 23.88 16.55†� 13.83 0.24 19.42†� 51.69†� 21.59�
13 XGB

Top 15

Based on GUIR 25.16†� 8.09 17.27 7.12 50.96†� 10.11 25.16 6.89 0.02 25.61†� 52.00†� 25.68
14 Based on ECNU 24.18†� 7.69 16.54 7.09 50.00†� 9.91 24.56 6.65 0.02 24.56†� 50.74†� 25.01
15 Based on BM25 22.79� 7.94 15.46 6.84 47.88† 11.65 23.10 7.08 0.07 23.46� 49.12† 23.80
16 XGB

Top 20

Based on GUIR 22.38†� 9.49 15.61†� 7.05 50.45†� 12.08 23.30 8.16 0.05 23.62†� 52.98†� 24.68
17 Based on ECNU 22.95†� 8.82 15.95 7.02 50.42†� 11.70 23.97 7.56 0.04 23.68†� 52.15†� 24.73
18 Based on BM25 20.77†� 9.26 14.51� 6.76 47.85† 13.24 22.04 8.24 0.08 22.10†� 50.28†� 23.32
19 XGB

Top 50

Based on GUIR 16.65†� 15.73 12.39†� 6.84 43.49 23.63 18.70†� 13.74 0.22 21.13†� 55.07†� 23.58
20 Based on ECNU 16.19†� 17.01 11.82†� 7.27 43.05 24.75 18.27†� 14.41 0.24 20.16†� 54.70†� 22.96
21 Based on BM25 15.55†� 14.92 11.44†� 6.59 42.29 23.21 17.60†� 13.00 0.25 19.58†� 53.94†� 22.19

22 RRF (XGB & Orig.)
Top 15

Based on GUIR 27.23 7.76 18.31 7.23 49.69†� 9.18 26.46 6.62 0.01 27.46 50.07†� 26.69
23 Based on ECNU 26.60 7.41 17.81 7.19 48.67†� 8.80 26.02 6.09 0.01 26.76 49.10†� 26.27
24 Based on BM25 24.64� 8.13 16.50 6.98 46.57† 11.02 24.14 7.11 0.06 25.39� 48.25† 25.04
25 RRF (XGB & Orig.)

Top 20

Based on GUIR 26.21†� 7.96 17.73 7.19 50.29†� 9.58 25.89 6.73 0.03 26.53†� 50.98†� 26.25
26 Based on ECNU 26.15 7.64 17.69 7.09 49.70†� 9.28 26.07 6.39 0.02 26.38 50.32†� 26.35
27 Based on BM25 24.10� 8.26 16.34 6.91 47.62† 11.34 24.10 7.37 0.06 24.92� 49.37†� 25.03
28 RRF (XGB & Orig.)

Top 50

Based on GUIR 24.09†� 9.44 16.85 7.02 50.55†� 11.76 24.76 8.01 0.07 25.08†� 52.84†� 25.84
29 Based on ECNU 24.17†� 8.67 16.75 7.12 50.63†� 11.66 25.00 7.61 0.07 24.90†� 52.50†� 25.84
30 Based on BM25 22.32†� 8.82 15.51 6.73 48.78† 12.84 23.14 7.78 0.10 23.45� 51.85†� 24.53

31

XGB LeToR

LTR 1 on BM25 20.42†� 17.61 13.00†� 7.41 32.17†� 24.61 18.39†� 14.41 0.28 25.25 43.19 23.83
32 LTR 2 on BM25 25.16� 19.95 15.85� 8.09 34.31†� 24.95 21.69� 17.43 0.28 30.60 45.37 27.57
33 LTR 3 on BM25 26.35 20.48 15.88� 8.16 34.73†� 24.69 21.81 17.41 0.22 32.25 45.44 28.22†
34 LTR 4 on BM25 16.16†� 19.48 10.76†� 7.27 36.75†� 28.51 16.77†� 17.80 0.29 22.20†� 50.06† 23.32
35 LTR 5 on BM25 26.76 20.48 16.19� 8.34 35.26†� 24.13 22.96 17.59 0.22 32.60 45.87 29.20†

8.3.2 Rank Fusion

Next, we report the results of automatically combining topical relevance and understand-
ability through rank fusion (indices 22 to 30). We used the XGB method for estimating
understandability, as it was the one yielding highest effectiveness for the re-ranking
method. Runs were thus produced by fusing the re-ranking with XGB and the original
run.

As for re-ranking, also for the rank fusion approaches, we found that, in general, higher
cut-offs were associated to higher effectiveness in terms of understandability measures
on the one hand, but higher losses in terms of relevance-oriented measures on the other.
Overall, results obtained with rank fusion were superior to those obtained with re-ranking
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only, though most differences were not statistically significant.

8.3.3 Learning-to-Rank

Finally, we analyze the results obtained by the learning-to-rank methods (indices 31-35).
Unlike with the previous methods, it was not necessary to impose a rank cut-off on the
learning-to-rank approach as the document representation used here always includes
information retrieval features. Consequentially, it considers the signals regarding topical
relevance that are encoded in the IR features. Learning-to-rank was only applied to the
BM25 baseline, as we had no access to the IR features for the runs submitted at CLEF
(i.e., GUIR and ECNU for CLEF 2016).

When considering RBPr and uRBP , learning-to-rank exhibited effectiveness that was
significantly inferior to that of the GUIR, KISTI and ECNU baseline runs, though higher
than those for the BM25 baseline (for some configurations). The examination of the RBP
residuals (and the number of unassessed documents) revealed that this might have been
because measures were affected by the large number of unassessed documents retrieved
in the top 10 ranks. For example, the RBPr residual for learning-to-rank methods was
about double that of the baselines or other approaches. In fact, among the documents
retrieved in the top 10 results by learning-to-rank, there were at least 22% that were
unassessed, compared with an average of 3% for the other methods.

We thus should carefully account for unassessed documents by considering the residuals of
RBP measures, as well as the condensed measures that ignore unassessed documents (i.e.,
RBP ∗r , RBP ∗u and MM∗RBP ). When this was done, we observed that learning-to-rank
methods overall provided substantial gains over the original runs and other methods
(when considering RBP ∗r , RBP ∗u and MM∗RBP ), or large potential gains over these
methods (when considering the residuals). Next, we analyze these results in more detail.

No improvements over the baselines were found for LTR 1 (index 31) in both Tables 8.2
and 8.3. The high residuals for RBPr were not matched by other residuals or by
considering only assessed documents. Remember LTR 1 was a simple method that used
only IR features and was trained only on topical relevance.

Compared with LTR 1, LTR 2 (index 32) included the understandability features listed
in Table 6.1. This inclusion was as beneficial to the understandability measures as to the
relevance measures, with RBP ∗r , RBP ∗u andMM∗RBP all showing gains over the baselines.
LTR 3 obtained similar MM∗RBP values, though with higher effectiveness for relevance
measures (RBP ∗r ) than for understandability (RBP ∗u ). In particular, for the experiments
with CLEF 2015, LTR 3 reached the highest MM∗RBP of 39.84, an improvement of 3.4
percentile points over the baseline.

LTR 4 and 5 were devised based on a set understandability threshold: U >= 2 for
CLEF 2015 and U <= 40 for CLEF 2016. Although LTR 4 took into consideration
only documents that are easy-to-read, LTR 5 considered all documents, but boosted the
relevance score of easy-to-read documents. LTR 4 reached the highest understandability
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score for the learning-to-rank approaches for CLEF 2016 (RBP ∗u = 50.06), but it
failed to retrieve a substantial number of relevant documents (RBP ∗r = 22.20). In
turn, LTR 5 reached the highest understandability-relevance trade-off for CLEF 2016
(MM∗RBP = 29.20) and the third for CLEF 2015 (MM∗RBP = 39.15, just 0.69 smaller
than LTR 3 and 0.02 smaller than LTR 2). In particular for CLEF 2016, compared to the
BM25 baseline (on which it was based), LTR 5 largely increased both relevance (RBP ∗r
went from 26.01 to 32.60 – an increase of 6.59 percentile points) and understandability
(RBP ∗u went from 43.89 to 45.87 – an increase of 1.97 percentile points). Note that LTR
5 was also better than GUIR, the best run submitted to CLEF 2016, for both RBP ∗r
(increase of 4.3 percentile points) and MM∗RBP (increase of 3.41 percentile points).

8.4 Summary
This chapter aimed to demonstrate approaches to integrate understandability into retrieval
systems empirically.

A simple method such as re-ranking the retrieved results according to an understand-
ability estimator, such as DCI or SMOG, was our first step towards increasing the
understandability of results without losing retrieval effectiveness. We showed that as
we increased the number of documents to be re-ranked, we traded topical relevance for
understandability. In our experiments, the use of machine learning methods was shown
superior to the use of readability formulas as understandability estimators for re-ranking.

We then showed how it is possible to find a balance between topical relevance and
understandability automatically. For that, we proposed the use of ranking fusion methods.
In particular, we used the reciprocal ranking fusion method as it is based only on the
ranking position of documents and not on their scores.

Finally, our experiments with learning-to-rank methods suggested that models can be
specially trained to promote more understandable search results, while still providing an
effective trade-off with topical relevance.
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CHAPTER 9
Discussion and Conclusion

We reach the end of this work by discussing, in Section 9.1, the research questions
introduced in Chapter 1 and by listing, in Section 9.2, the limitations of this work and
future directions.

9.1 Discussion of Research Questions

The research questions of Parts II, III and IV are respectively reviewed and answered,
and conclusions are drawn from the answers, in the following sections.

9.1.1 User Search Behavior in the Health Domain

Part II of this thesis started with a detailed study of health information search behavior
through query logs. We analyzed what users search for and how users search in the
health domain, comparing our results to other search log based studies. For that, we
used MetaMap to annotate the queries. As only a few studies evaluated MetaMap for
mapping short queries to health concepts, we performed a full evaluation with a part of
our dataset. In Part II, we also built a classifier to distinguish between health consumers
and health experts based on their search queries. Search engines, such as Google, HON
or PubMed, could make use of the classifier proposed here to personalize the results for
their users, e.g., promoting content that, while topically relevant, has the highest level of
understandability.

The research questions of Part II were:

1. Chapter 3: What and how do consumers and health professionals search in the
health domain? We found that the way experts and health consumers search is
different. On average in our experiments with search logs, health experts issued

119



9. Discussion and Conclusion

longer queries both regarding characters and words per query (with a small effect
as measured by the Cohen’s d value). We also found that search sessions of health
experts were longer both in terms of the mean number of queries per session as well
as the amount of time spent per session. These longer sessions might indicate that
health experts are more persistent, i.e., they interact more often with the search
engine reformulating their queries to find relevant information, or might indicate
that they often struggle to find relevant information for their queries.
A significant difference concerning what is published in the literature was noticed
when analyzing what the users are searching for. Our analysis showed that diseases
were the focus of the largest number of sessions (20.9%–58.2%), as opposed to
symptoms (63.8% in [27]). This difference is mainly due to the criteria used by other
researchers to extract medical queries from the search logs of a general purpose
search engine, which skewed the results toward symptoms. This result suggests that
the occurrence of cyberchondria [208] is less prevalent, especially on domain-specific
medical search engines.

2. Chapter 3: How suitable is an automatic health text annotator, such as UMLS
MetaMap, to analyze and annotate short Web queries? Our study relied on the accu-
racy of MetaMap to identify the intent of the searchers. As MetaMap was designed
for annotation of documents and not queries, we evaluated its performance for
short queries. Using an existing dataset of 10,000 manually annotated queries [136],
we evaluated MetaMap on two of the categories used in our experiments: cause
and remedy. The category symptom was not evaluated as it is not included in the
dataset used. We found that MetaMap can annotate the cause category with an
F1 of 78% and the Remedy category with an F1 of 72%. While these values are
not directly comparable to other results published, they correspond to the level of
accuracy measured for related tasks: MetaMap was shown to map disease concepts
in queries with an F1 of 70% [137], and a mapping into five classes in [140] on 1000
queries was also done with an F1 of 70%. Most importantly, the inter-annotator
agreement for the manual annotation of the query corpus by Névéol et al. [137] was
73%. This demonstrates that the results obtained by annotating the queries by
MetaMap are at the same level as those obtained by manual annotation, implying
that the MetaMap annotations are sufficiently accurate for this study.

3. Chapter 4: Can we automatically infer user health expertise through user search
behavior? The feature set devised from the query-log analysis made in Chapter 3
was directly applied in Chapter 4 showing that it is possible to distinguish between
health experts and consumers based on search behavior characteristics.

4. Chapter 4: What are the most useful features to infer user health expertise through
search behavior automatically? We grouped the features devised in this work into
five distinct sets: user behavior features, part-of-speech tagging features, semantic
features, UMLS features, and consumer health vocabulary features. Features from
the three last feature sets are all domain-specific ones. Our experiments showed
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that while classifiers exploring each feature set alone are not highly effective in
distinguishing between health consumers and health experts, a classifier using all
features combined can be effective for the task. Our feature importance analysis
concluded that the average number of characters (behavior feature) was the most
influential feature. Domain-specific features, such as the features based on health
vocabularies, were important for the task. Two crucial domain-specific features were
the average number of UMLS sources and the average CHV scores of the terms in a
query. Both features potentially measure how common a term is: the latter directly
measures how easy to understand a term is, while the former indirectly measures
how popular a term is, as a term that occurs in multiple health vocabularies is
potentially a common one (i.e., heart attack is in 26 vocabulary sources while the
rare disease Morgellons appears only in two).

9.1.2 Understandability Estimation of Web Documents

Part III analyzed methods to estimate the understandability of Web documents, with
special care for the role that preprocessing and sentence boundary identification choices
have on the estimation of understandability of such Web documents.

The research questions of Part III were:

5. Chapter 5: What is the effect of preprocessing pipelines on readability formulas
when estimating the understandability of Web documents? Our experimental results
indicate that the choice of preprocessing pipelines has a significant impact on the
estimation of understandability scores of Web documents. This impacts on the order
relations among documents that can be obtained from readability formulas. Our
findings suggest that more attention should be given to the choice of preprocessing
settings when measuring the understandability of Web documents. In particular,
advanced boilerplate removal tools, such as Boilerpipe and JusText, should be
preferred over simpler HTML cleansing methods that only get rid of HTML tags,
as they provide more stable results across different preprocessing settings.

6. Chapter 5: Among the readability formulas, what are the most and the least robust
ones? Which readability formula should we use? Our experiments revealed that the
Coleman-Liau Index (CLI) was the most robust readability formula across choices
of preprocessing tools and sentence boundary identification strategies. On the other
extreme, the Automated Readability Index (ARI) was the least robust one with the
choice of preprocessing methods deeply impacting its score estimations. The results
from the correlation with human assessments introduced in Chapter 6 did not find
a unique best readability formula to use, however it identified that Automated
Readability Index (ARI) should be avoided, as in both CLEF 2015 and CLEF 2016
it was the least correlated formula with human assessments and significantly worse
than the best formula for each collection.
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7. Chapter 6: What are the best understandability estimators among the various
studied?
We experimented with a large number of understandability estimators to infer
the understandability level of documents from both CLEF 2015 and CLEF 2016
collections, as human assessments for the understandability of relevant documents
in these collections were provided. We divided our experiments into two parts:
in the first part, we focus on the correlation of each estimator with the human
assessments. In the second part, we combine all these weak estimators to build
strong machine learning models that predict the understandability of documents.
In the first part of our experiments, we found that the understandability estimators
that better correlated with human assessments of understandability were based on
machine learning techniques trained on the auxiliary data extracted from Reddit,
Wikipedia and PubMed. These machine learning methods correlated better with
human assessments of understandability than other groups of methods including
the traditional readability formulas, which are often used by health information
providers on the Web as references to measure whether or not a text is too hard
to understand. In the second part of our experiments, each estimator becomes a
feature for a machine learning model. We grouped the devised features into ten
semantically related groups and we trained machine learning models with various
settings. In particular, to measure how strong each group of features was, we trained
models using only one single group at the time and compared their performance to
models trained with all features. The best results were achieved by classifiers and
regressors trained with features from the natural language group, which included
features such as the distribution of part-of-speech classes and the percentage of
stopwords in a text.

8. Chapter 6: How do preprocessing pipelines affect methods of understandability es-
timation? Our experiments demonstrated that the preprocessing pipelines affect the
various understandability estimation methods. We first evaluated the preprocessing
pipelines only on the readability formulas and then on all the methods to estimate
understandability. In both experiments, we found that the highest correlations with
human assessments were achieved by preprocessing documents with the JusText
approach, the differences were significantly higher than using the Boilerpipe or
the Naïve preprocessing. No significant differences were found when comparing
ForcePeriod to DoNotForcePeriod. We empirically learned that the Naïve method
should be avoided as in both experiments it was the preprocessing strategy that
yielded the lowest correlation with human assessments, being significantly worse
than Boilerpipe when preprocessing documents to apply readability formulas.

9.1.3 Understandability Integrated into Search Engines

Part IV of this thesis focused on the evaluation of information retrieval system when more
than one relevance dimension is taken into account. For that, we studied frameworks
that consider other relevance dimensions, such as understandability, and, with such
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frameworks, we evaluated various strategies to integrate understandability estimation
into search engines.

The research questions of Part IV were:

9. Chapter 7: How can we incorporate other relevance dimensions (e.g., understand-
ability) into existing system evaluation metrics? UBIRE, the understandability-
biased IR evaluation framework, builds upon the gain-discount framework of evalu-
ation measures used in information retrieval, such as nDCG or RBP. It extends
the gain-discount framework to consider cases where relevance is modeled beyond
topicality to contemplate other dimensions, such as understandability, explicitly.
UBIRE assumes that dimensions are independent and do not affect each other.
Based on the same assumptions, we defined the MM framework, which calculates
a value for each dimension separately with respect to its gain and discount, and
then combines these values into a unique effectiveness measure with a weighted
harmonic mean.

10. Chapter 7: What is the limitation of the state-of-the-art multidimensional evalua-
tion framework and how can we overcome its limitation? The UBIRE framework,
which is the current state-of-the-art multidimensional evaluation framework, lacks
interpretability as it does not permit the quantification of the contribution that
each dimension has on the evaluation measure. In turn, the MM framework pro-
posed here has the advantage of allowing experimenters to easily understand how
each relevance dimension affects their system performance, as well as carefully
tune the trade-off between topical relevance and other dimensions. We conducted
experiments with the systems submitted to both CLEF 2015 and 2016 to evaluate
whether UBIRE and MM would rank the system similarly and we found that the
system rankings correlation of these two frameworks was higher than 0.90, meaning
that while they both perform a very similar job in ranking systems, MM provides
explainability to the experimenters on why a system performed better than another.

11. Chapter 8: How can understandability estimations be integrated into retrieval
methods to enhance the quality of the retrieved health information? We experimented
with three different strategies to integrate understandability into retrieval methods.
The first was a simple re-ranking in which the retrieved results were ranked
according to an understandability estimator, such as DCI, SMOG or even a machine-
learned model to predict understandability of documents. We showed that as we
increased the number of documents to be re-ranked, we traded topical relevance for
understandability. We also showed that machine learning methods were superior to
readability formulas as understandability estimators for re-ranking. The second
approach, the fusion methods, aimed to find a balance between topical relevance
and understandability automatically. The third method, the learning-to-rank
experiments, yielded the best results. In particular, the combinations LTR 3 and
LTR 5 that explored both the topical and understandability features, reached the
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best results for CLEF 2015 and CLEF 2016, respectively, highly suggesting that
models can be specially trained to promote more understandable search results
while still providing an effective trade-off with topical relevance.

9.2 Limitations and Future Work

In Part II of this thesis, a limitation of our query log study was the lack of click-through
information, which would have allowed us to perform a more detailed analysis of search
behavior. Another limitation was that MetaMap can only annotate English text. Health
consumers, in particular, prefer to query in their own language, as clearly noted by
the high number of non-English queries that were removed from the Health on the Net
search logs for this study. There is undoubtedly a vast amount of work to be done for
supporting a multilingual scenario. A query analysis for languages other than English
has many additional challenges, such as the lack of detailed language resources for many
languages. A possible solution might be to increase the effort on automatic translation
of resources such as the MeSH vocabulary. Another challenge identified concerns the
automatic language detection of very short queries, which could be accomplished by
exploring geolocation clues and user search history. The age of the query logs used in
this thesis is yet another limitation. One of the consequences of the fast evolution of the
Web is that user behavior analysis, such as the ones made in this thesis, might quickly
become outdated (for example, the demographics of the search engine users have very
likely changed in the last 15 years). Although we could not replicate our experiments
in more recent search logs, we advocate that other researchers do so, assessing to what
extent our findings are still valid.

Part III relied on data collected through the CLEF 2015 and CLEF 2016 evaluation
campaigns to evaluate the effectiveness of methods that estimate the understandability
of the Web documents. These assessments were obtained by asking ratings from medical
experts and practitioners. Although they were asked to estimate the understandability
of the content as if they were the patients they treat, there might have been noise
and imprecisions in the collection mechanism because of the subjectivity of the task.
Section 6.3 highlights this by showing that the agreement between assessors is relatively
low. As future work, we may directly recruit health consumers: the task would still
be subjective but could capture real ratings, rather than inferred or perceived ones.
Despite this, our previous work had shown that no substantial differences were found
in the downstream evaluation of retrieval systems when we acquired understandability
assessments from health consumers for a subset of the CLEF 2015 collection [153].
Comparing our results with the newest developments in the natural language processing
field, such as word embeddings and recurrent neural networks [80, 28], is left as future
work.

A question left open in Part IV is whether MM correlates with human preferences and
how it compares with UBIRE in this respect. To answer this, future work needs to
consider user-based validation and comparison of the two multidimensional evaluation
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frameworks. As seen in the experiments, the topical relevance assessments on the CLEF
2015 and 2016 collections are incomplete [77, 106], i.e., not all top ranked Web documents
retrieved by the investigated methods have an explicit relevance assessment. This is often
the case in information retrieval, where the validity of experiments based on incomplete
assessments has been thoroughly investigated [171]. Nonetheless, we carefully controlled
for the impact unassessed documents had in our experiments by measuring their number
and using measures such as RBP that account for residuals and condensed variants. An
important task left as future work is to investigate the effect of incomplete assessments
on multidimensional evaluation frameworks.

There has been an increased concern regarding the inherent bias present in machine
learning and retrieval models [45, 53, 132, 95, 42]. While this thesis aims to build
retrieval systems for excluded populations, e.g., those with low-literacy rate, our models
are not exempt from bias. For example, our results in Chapter 6 and our related
research [153] show how assessing the understandability of documents can be highly
subjective. We consider that having a more diverse group of assessors when collecting
document understandability assessments would help to alleviate the bias in our systems.
However, this task is left as future work.

The machine learning experiments described in Parts III and II, as well as the retrieval
experiments described in Part IV of this thesis are strictly technical evaluations. Real
users were involved in the collection of the ground truth assessments, but not in measuring
how these systems impact their lives. Assessing how our findings translate to actual user
experience is left as future work. An experimental setup similar to the one described by
Pogacar et al. [163], in which a controlled laboratory study is conducted to investigate
the effect of search results on choices of medical treatment, could be employed to assess
the impact on people’s decision when facing retrieved documents with different level of
difficulty.

Finally, the methods investigated here do not provide a fully personalized search, with
respect to how much of the health content consumers with different health knowledge
might be able to understand. Instead, we focus on making the results understandable
by anyone, and thus promote in the search results content that has the highest level of
understandability. Although easy-to-read documents can be retrieved for the purpose of
a direct handout (i.e., as a printout) to patients during a consultation, consumers with a
more than average medical knowledge might benefit more from specialized content. We
leave this personalization aspect, i.e., the tailoring of the understandability level of the
promoted content with respect to the user’s knowledge and abilities, to further work.
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APPENDIX A
CLEF eHealth Data

A.1 Introduction

CLEF eHealth1 is an evaluation lab organized within the Conference and Labs of the
Evaluation Forum (CLEF). The aim is to build resources and methods to support
health consumers, their next-of-kin, clinical staff, and health scientists in understanding,
accessing, and authoring eHealth information in a multilingual setting. The lab has been
running annually since 2013 [189, 107, 77, 106, 78] and historically has been built upon
three main tasks in the health domain: information extraction, information management
and information retrieval. We cover in this Appendix the latter task.

The information retrieval (IR) tasks, which started in 2013 and currently is running its
fifth edition in 2018 [75, 76, 154, 226, 155, 103], embraces the TREC-style evaluation
process, with a shared collection of documents and queries. Every year a task is proposed
with a set of queries; teams submit runs in answer to the queries and their runs contribute
to the subsequent formation of relevance assessments and evaluation. Tasks investigate
the problem of retrieving Web pages to support the information needs of health consumers
that are confronted with a health problem or medical condition and that use a search
engine to seek a better understanding of their health. The use of the Web as a source of
health-related information is a widespread practice among health consumers [130] and
search engines are commonly used as a means to access health information available
online [65].

The earlier iterations of this task, i.e., the 2013 and 2014 CLEF eHealth Lab Task 3 [75, 76],
aimed at evaluating the effectiveness of search engines to support people when searching
for information about their conditions, e.g., to answer queries like “thrombocytopenia
treatment corticosteroids length”. These two evaluation exercises have provided valuable

1https://sites.google.com/site/clefehealth/
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resources and an evaluation framework for developing and testing new and existing
techniques.

In 2015, the IR task took a different focus, explicitly centering on supporting consumers
searching for self-diagnosis information [154], an important type of health information
seeking activity [65]. The motivation for the shift was recent research showing that
current commercial search engines are still far from being effective in answering such
unclear and underspecified queries [225].

An important innovation of 2015’s task consisted of assessing for the first time how
difficult to understand were the content of retrieved Web pages. Previous research has
shown that exposing people with no or scarce medical knowledge to complex medical
language may lead to erroneous self-diagnosis and self-treatment and that access to
medical information on the Web can lead to the escalation of concerns about common
symptoms (e.g., cyberchondria) [17, 207].

In 2016, the IR task expanded on the 2015 task, by considering not only self-diagnosis
information needs but also needs related to treatment and management of health con-
ditions [226]. Apart from understandability assessments, assessors were asked to assess
pages on how trustworthy the content of the page was.

Finally, in 2017, the IR task continued the growth path identified in past years and
focused on conducting assessments on deeper pooled sets than was possible in previous
years of the task. As the assessments were just released, we do not include them in this
thesis.

In the rest of this Appendix, we study the assessments made in CLEF eHealth 2015 and
2016.

A.2 Query Sets

In CLEF eHealth 2015, queries aimed to simulate the situation of health consumers
seeking information to understand symptoms or conditions they may be affected by. This
was achieved by using imagery or video stimuli of 23 symptoms or conditions as prompts
for the query creators. A cohort of 12 query creators was used and each query creator
was given the imagery of 10 conditions for which they were asked to generate up to 3
queries per condition. Each condition/image pair was presented to more than one person.

The task collected a total of 266 possible unique queries; of these, 67 queries (22 conditions
with 3 queries and 1 condition with 1 query) were selected to be used as part of the CLEF
2015 task. We selected the three query variants using to the following procedure: a initial
query was randomly chosen for each condition (this query was called the pivot query), then
five native English speakers were recruited to select, for each query, the most and the least
similar query variant compared to the pivot one. Examples of queries, query variations
and imagery material used for the query creation are provided in Table A.1. After the
query set was released, one typo was found in query 62, which could compromise the
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Table A.1: Examples of queries from the CLEF eHealth 2015.

Image Information Need Query Type QueryId Query Variation

Ringworm
Pivot 03 dry red and scaly feet in children
Most similar 38 scaly red itchy feet in children
Least similar 45 dry feel with irritation

Scabies
Pivot 04 itchy lumps skin
Most similar 43 itchy raised bumps skin
Least similar 21 common itchy skin rashes

Onycholysis
Pivot 61 fingernail bruises
Most similar 19 bruised thumb nail
Least similar 44 nail getting dark

Rocky Mountain
Spotted Fever

Pivot 27 return from overseas with mean spots on legs
Most similar 01 many red marks on legs after traveling from us
Least similar 58 39 degree and chicken pox

translations. In order to keep consistency between the English query and all translations
made by the experts, query 62 was excluded. See [154] for more details on the query
creation method.

In CLEF eHealth 2016, we considered real health information needs expressed by the
general public through posts published in public health web forums. Forum posts were
extracted from the AskDocs section of Reddit2. This section of Reddit allows users to post
a description of a medical case or ask a medical question seeking medical information such
as diagnosis, or details regarding treatments. Users can also interact through comments.

We selected posts that were descriptive, clear and understandable. Posts with information
regarding the author or patient (in case the post author sought help for another person),
such as demographics (age, gender), medical history and current medical condition, were
preferred. Figure A.1 shows an example of post extracted to generate queries. Each
of the selected forum posts was presented to 6 query creators with different medical
expertise: these included 3 medical experts (final year medical students undertaking
rotations in hospitals) and 3 lay users with no prior medical knowledge. A total of 300
queries were created, 6 for each one of the 50 forum posts.

In Figure A.2 we show variants 1, 2 (both generated by laypeople) and 4 (generated
by an expert) created for post number 103 (posts started from number 101), shown in
Figure A.1. The assessments for different query variants were made separately but pooled
together in the analysis made in this Appendix. See [226] for more details on the query
creation method.

2https://www.reddit.com/r/AskDocs/
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Figure A.1: Post from Reddit’s Section AskDocs. It was used to generate queries ranging
from 103001 to 103006 in CLEF eHealth 2016.

<queries>
...
<query>

<id> 103001 </id>
<title>headaches relieved by blood donation</title>

</query>
<query>

<id> 103002 </id>
<title>high iron headache</title>

</query>
...
<query>

<id> 103004 </id>
<title>headaches caused by too much blood or

"high blood pressure"</title>
</query>
...

</queries>

Figure A.2: Extract from the query set released in CLEF eHealth 2016. The assessments
for all variants were pooled together in the analysis of this Appendix.

A.3 Assessments
Assessments made for CLEF eHealth 2015 and 2016 were performed by paid final year
medical students or medical doctors who had access to queries, documents, and relevance
criteria. In all the years that the IR task ran, documents were assessed with respect to
their relevance using the following grades: 0 for Not Relevant, 1 for Somewhat Relevant
and 2 for Highly Relevant.

Since 2015, understandability assessments are collected for the documents in the assess-
ment pool. In 2015, these assessments were obtained using the following 4 grades: 0 for
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it is very technical and difficult to read and understand, 1 for it is somewhat technical
and difficult to read and understand, 2 for it is somewhat easy to read and understand
and 3 for it is very easy to read and understand. In 2016, we decided to experiment with
a larger scale for understandability allowing assessors to use a slider to determine how
hard a document was. The scale mapped assessments to an integer value between 0 and
100, however now lower values were used for documents that were easy to understand.
All assessments were collected through a purposely customized version of the Relevation!
toolkit [112]. Figure A.3 shows an instance of the assessments made in 2015 (top) and
2016 (bottom).

A.4 CLEF eHealth 2015

In 2015, 12,092 documents were assessed with respect to their topical relevance and
understandability. Out of those, 2,515 (21%) were assessed as Somewhat Relevant or
Highly Relevant and 8,039 (67%) were assessed as Easy or Somewhat Easy. Figure A.4
shows, independently, the distribution of both topicality (left-hand side) and understand-
ability (right-hand side) assessments. In Figure A.5, we depict how the understandability
assessments are distributed for each different topical relevance level.

The full assessment distribution per topic of both topical and understandability relevance
is shown in Figure A.6. No topically relevant documents were found for query 42, patchy
bleeding under skin, and the largest number of topically relevant documents was found for
query 46, baby cough. With respect to understandability, query 20, parkinson’s disease,
presented the lowest average understandability score, while query 30, weird sounds when
breathing, presented the highest one.

A.5 CLEF eHealth 2016

In CLEF eHealth 2016, instead of considering each query variant as a unique query, we
grouped the variants together and considered the assessments for each topic. Thus, each
topic has 6 query variants. Five hundred documents were assessed per topic, in total
25,000 document assessments for the 50 topics.

Figure A.7 shows that most of the assessed documents were assessed as Not Relevant
(85%). The overall distribution of understandability assessments is shown in Figure A.8:
an understandability label close to 0 was assigned to easy-to-read documents and close to
100 was assigned to difficult-to-understand documents. It is important to mention that
the default value for understandability assessments was 50, the mean value. Assessors
had to compulsorily move the slider that controls the understandability assessment. Thus,
assessors explicitly decided to assess 6,181 documents as average understandability (=
label 50). Figure A.9 shows how the understandability assessments were distributed for
each different topical relevance level.
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Figure A.10 shows the distribution of topical relevance per topic. Topic 50 (with query
variants such as foley catheter bruising and painful erection following foley catheter
worsening) is the one with the lowest number of relevant documents: only one document
assessed as Somewhat Relevant. The other extreme is Topic 2 (e.g., anal skin tag removal
pain and do I need general anaesthetic for anal skin tag removal) with 336 relevant
documents from which 126 were assessed as Highly Relevant.

Likewise, Figure A.11 shows the distribution of understandability assessments per topic.
Topic 17 (e.g., tylenol cold benylin extra strength combo risks and can I take Tylenol
Cold and Benylin at same time?) is the one with the easiest documents with an average
understandability label of 21.71, while Topic 31 (e.g., biopsy HSV benign penile skin
mild infiltration explained and lymphocytic infiltration) is the most difficult one with an
average understandability score of 73.91.
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Figure A.3: Screenshots of Relevation!, the system used to collect assessments at CLEF
eHealth in 2015 (top) and 2016 (bottom).
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