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Abstract
Debugging cyber-physical system (CPS) models is a cumbersome and costly activity. CPS models combine continuous and
discrete dynamics—a fault in a physical component manifests itself in a very different way than a fault in a state machine.
Furthermore, faults can propagate both in time and space before they can be detected at the observable interface of the model.
As a consequence, explaining the reason of an observed failure is challenging and often requires domain-specific knowledge.
In this paper, we propose approach, a novel CPSDebug that combines testing, specification mining, and failure analysis, to
automatically explain failures in Simulink/Stateflow models. In particular, we address the hybrid nature of CPS models by
using different methods to infer properties from continuous and discrete state variables of the model. We evaluate CPSDebug
on two case studies, involving two main scenarios and several classes of faults, demonstrating the potential value of our
approach.

Keywords Cyber-physical systems · Testing · Debugging · Model-based development · Property mining · Failure explanation

1 Introduction

Cyber-physical systems (CPS) are the emergent ICT systems
that are characterized by tight interactions between com-
putational and physical components in unpredictable envi-
ronments. Model-based paradigms are increasingly adopted
to cope with the inherent complexity of CPS and to enable
their cost-effective design. As a consequence, the quality and
correctness of these models are essential characteristics for
successful CPS development.
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The complexity of CPS models is manifold: these models
typically combine discrete and continuous dynamics with an
interplay between many variables, signals, state machines,
look-up tables and components. Detecting problems in the
early stages of CPS design [2,5,9,19,20] is of uttermost
importance, before they propagate to the actual CPS with
potentially catastrophic consequences.

While verification and testing tasks enable such early
detection of faults, they are not sufficient on their own to
debug CPS models. Indeed, it has been shown that debug-
ging CPS models by identifying the causes of failures can be
as challenging as identifying the problems themselves [18].

MathWorksTM Simulink environment is a de-facto stan-
dard for modeling and concept design of CPS. Falsification-
based testing (FBT) [2,4,25,29] is a search-based approach
for effectively finding faults in Simulink/Stateflow models.

FBTmeasures how far is a simulation trace from violating
requirements expressed in a formal specification language,
such as Signal Temporal Logic (STL) [23]. This measure is
then used to systematically explore the input space and find
the sequence of inputs that brings the system to violate the
requirement.

This approach has been successfully adopted in various
applications and applied to many case studies. However, this

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10009-020-00599-4&domain=pdf


784 E. Bartocci et al.

method does not provide a useful information for resolving
the violation and debugging the model.

Trace diagnostics [13] addresses this limitation by iden-
tifying segments of the observable model behavior that are
sufficient to imply the violation of the formula. As a result,
this method provides a failure explanation at the level of
the model’s input/output observable interface. However, this
black-box technique does not explain faults in terms of the
internal model’s structure.

In this paper, we propose CPSDebug, a debugging tech-
nique that combines testing, specificationmining, and failure
analysis to identify the causes of failures. CPSDebug first
simulates the CPSmodel under analysis by running the avail-
able test suite, while partitioning executions into passing and
failing according to their evaluation against requirements for-
malized as a set of STL formulas.

While running the test cases, CPSDebug instruments the
CPSmodel and records information about its internal behav-
ior. In particular, it collects the values of all the internal
system variables at every timestamp. CPSDebug uses the
values from passing test executions to infer properties about
the variables and components involved in the computations.
These properties capture the correct and intended behavior
of the system.

The failed test executions are then evaluated w.r.t. the
mined properties to identify internal variables, and its corre-
sponding components, that are responsible for the violation
of the requirements.

Finally, CPSDebug analyzes the failure evidence to detect
the violation times and cluster violations accordingly [15],
finally producing a time-ordered sequence of snapshots that
shows where the anomalous variables values originated from
and how they propagated within the system. CPSDebug thus
overcomes the limitation of the existing procedures that only
provide a static explanation of the failure, such as the inputs
or code locations.

The sequence of snapshots given by CPSDebug provides
a step-by-step illustration of the failure with explicit indica-
tion of the faulty behaviors. We evaluated CPSDebug against
three classes of faults and two CPSmodels. Results show the
effectiveness of our approach in supporting debugging activ-
ities of CPS models.

This paper extends our preliminary work on CPSDebug
[6] as follows:

– We refine and improve our property mining procedure by
adopting TkT [28], a timed-automata learning library, in
addition toDaikon [12].WeuseDaikon to infer invariants
of real-valued signals and TkT to learn real-time relations
between events originating from statemachines and look-
up tables.

– We compare these two approaches in two case studies.
We demonstrate that by learning properties in the form of

timed automata, we can derive meaningful explanations
for failures resulting from time-dependent anomalies in
enumerated variables. This class of anomalies are not
captured and explained by Daikon-generated invariants.

The rest of the paper is organized as follows. We provide
background information in Sect. 2, and we describe the case
study in Sect. 3. In Sect. 4, we present our approach for
failure explanation, while in Sect. 5, we provide the empirical
evaluation. We discuss the related work in Sect. 6, and we
draw our conclusions in Sect. 7.

2 Background

2.1 Signals and signal temporal logic

We define S = {s1, · · · , sn} to be a set of signal vari-
ables. A signal or trace w is a function T → R

n , where
T is the time domain in the form of [0, d] ⊂ R. We can
also see a multi-dimensional signal w as a vector of real-
valued uni-dimensional signals wi : T → R associated with
variables si for i = 1, · · · , n. We assume that every sig-
nal wi is piecewise-linear. Given two signals u : T → R

l

and v : T → R
m , we define their parallel composition

u‖v : T → R
l+m in the expected way. Given a signal

w : T → R
n defined over the set of variables S and a subset

of variables R ⊆ S, we denote by wR the projection of w to
R, where wR = ‖si∈Rwi .

LetΘ be a set of terms of the form f (R)where R ⊆ S are
subsets of variables and f : R|R| → R are interpreted func-
tions. The syntax of STL with both future and past operators
is defined by the grammar:

ϕ : :=� | f (R) > 0 | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 U I ϕ2 | ϕ1 S I ϕ2 ,

where f (R) are terms in Θ and I are real intervals with
bounds in Q≥0 ∪ {∞}. As customary, we use the shorthands
♦I ϕ ≡ �U I ϕ for eventually, �I ϕ ≡ ¬♦I ¬ϕ for always,
♦- I ϕ ≡ �S I ϕ for once, �- I ϕ ≡ ¬♦- I ¬ϕ for historically,
↑ ϕ ≡ ϕ∧�S ¬ϕ for rising edge and↓ ϕ ≡ ¬ϕ∧�S ϕ for
falling edge.1 We interpret STL with its classical semantics
defined in [22].

2.2 Daikon

Daikon is a template-based property inference tool that, start-
ing from a set of variables and a set of observations, can infer
a set of properties that are likely to hold for the input variables
[12]. More formally, given a set of variables V = V1, . . . , Vn
defined over the domains D1, . . . Dn , an observation for these

1 We omit the timing modality I when I = [0,∞).
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variables is a tuple v = (v1, . . . , vn), with vi ∈ Di . In our
domain, variables are either signals or enumerated variables
(e.g., a variable that represents the current state of a stateful
component).

Given a set of variables V and multiple observations
v1 . . . vm for these same variables, Daikon can be represented
as a function D(V , v1 . . . vm) that returns a set of properties
{p1, . . . pk}, such that vi |� p j∀i, j , that is, all the observa-
tions satisfy the inferred properties.

The inference of the properties is driven by a set of tem-
plate operators that Daikon instantiates over the input vari-
ables and checks against the input data. Since template-based
inference can generate redundant and implied properties,
Daikon automatically detects them and reports the relevant
properties only. Finally, to guarantee that the inferred prop-
erties are relevant, Daikon computes the probability that the
inferred property holds by chance for all the properties. Only
properties that are statistically significant with a probability
higher than 0.99 are assumed to be reliable and are reported
in the output.

In our approach, we use Daikon to automatically generate
properties that capture the behavior of the individual com-
ponents and individual signals in the model under analysis.
These properties can be used to detect misbehaviors and their
propagation. In a case study about an aircraft system that
we studied in this paper, Daikon mined several interesting
properties about signals. For instance, it discovered that the
enumerated variable s32, which represents the state of the
component that decides whether the gear should be in steady
state or should shift up/down, only covers a subset of the
possible states. This is specified by the property:

�[0,∞]((s32 == 0) ∨ (s32 == 1) ∨ (s32 == 3)).

Daikon also discovered useful relations between contin-
uous signals, such as �[0,∞](s47 ≥ 0.0), �[0,∞](s51 > s47)
and �[0,∞](s33 ≤ s47). Interestingly, these properties show
that when executions terminate correctly, s47 cannot be
assigned with negative values, and its value is always below
the value of signal s51 but is greater or equal than the value
of signal s33.

2.3 Timed k-Tail

Timed k-Tail (TkT) is an automata learning technique that
can generate timed automata from timed traces [28]. A timed
trace is an ordered sequence of events event1 . . . eventn
with eventi = (opi , typei , timei ), where opi indicates an
operation whose execution is either starting (t ypei =↑) or
finishing (t ypei =↓), and timei indicates the timestamp of
the event. The timed trace to be well-formed must list events
with non-decreasing timestamp values, every started opera-
tion must eventually finish at some point in the trace, and the

operations must be properly nested, that is, an operation o2
started after another operationo1 must finish before operation
o1 finishes.

TkTonly requires positive samples to learn timedautomata,
that is, the model can be learnt from a set of timed traces that
must be accepted by the resulting automaton. TkT starts by
generating a tree-shaped automaton, where each branch of
the tree accepts exactly one timed trace. In particular, every
event in the trace is mapped to a transition in the correspond-
ing branch.Moreover, every time a transition accepts an event
that represents the beginning of an operation (t ypei =↑), a
clock reset is added to the transition. Similarly, a transition
that accepts an event that represents the conclusionof anoper-
ation (t ypei =↓) is associatedwith a constraint thatmeasures
the duration of the operation, exploiting the clock that is reset
at the beginning of the same operation. The specific duration
used in the constraint is derived from the timestamps (e.g., if
an operation starts at timestamp 10 and finishes at timestamp
15, the constraint requires the duration of the operation to be
equal to 5). TkT may also add constraints on a global clock,
which is reset on the first transition and checked on all other
transitions.

TkT then generalizes the behavior accepted by the tree-
shaped automaton merging equivalent states, by following
the same heuristics used in the k-Tail algorithm [8]. That is,
two states are assumed to be equivalent and redundant repre-
sentations of a same state if they accept the same sequences of
events of length k, where k is a parameter of the technique.
As a consequence of the state merging process, the initial
tree-like shape evolves into an automaton with branches and
cycles, if necessary. During this merging process, also clock
constraints can be merged and generalized with intervals of
the form v1 ≤ c ≤ v2, where v1 and v2 are two constants
and c is a clock. The resulting finite statemodel and time con-
straints are guaranteed to accept all the input traces used for
the inference process. The interested reader can learn more
about TkT in the paper by Pastore et al. [28].

In the context of this paper, TkT is exploited to mon-
itor stateful components and reconstruct their behavior. A
Simulink/Stateflow block may consist of several enumerated
signals, each signal leading to an inferred TkT automaton.
For example, Fig. 1 shows the inferred timed model obtained
by monitoring the stateful component that governs the gear
in the Automatic Transmission Control System used as one
of the case studies. Each transition of the model represents
a change in the value of the enumerated signal s32, and the
time constraints capture the normal timing of these state tran-
sitions.

Note that TkT produces information complemental to
Daikon. Daikon derives properties about both continuous
and enumerated signals, but cannot reconstruct the stateful
behavior of a component, nor can it derive information about
the timing of the operations. On the contrary, TkTworkswith
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Fig. 1 Timed automaton
inferred by TkT for a
component that controls the gear
in an Automatic Transmission
Control System

enumerated signals only, but it can nicely reconstruct state-
ful computations, including timing information. We show in
the evaluation how properties mined by Daikon and timed
automata inferred by TkT can be jointly exploited to analyze
failures.

3 Case study

We now introduce a case study that we use as a running
example to illustrate our approach step by step. We con-
sider the Aircraft Elevator Control System [14] to illustrate
model-based development of a Fault Detection, Isolation and
Recovery (FDIR) application for a redundant actuator control
system.

Figure 2 shows the architecture of an aircraft elevator con-
trol system with redundancy, with one elevator on the left
and one on the right side. Each elevator is equipped with
two hydraulic actuators. Either actuator can position, but
at most one shall be active at any point in time. There are
three different hydraulic systems that drive the four actu-
ators. The left (LIO) and right (RIO) outer actuators are
controlled by a Primary Flight Control Unit (PFCU1) with
a sophisticated input/output control law. If a failure occurs,
a less sophisticated Direct-Link (PFCU2) control law with
reduced functionality takes over to handle the left (LDL) and
right (RDL) inner actuators. The system uses state machines
to coordinate the redundancy and assure its continual fail-
operational activity.

This model has one input variable, the input Pilot Com-
mand, and two output variables, the position of left and right
actuators, as measured by the sensors. This is a complex
model that could be extremely hard to analyze in case of
failure. In fact, the model has 426 signals, from which 361
are internal variables that are instrumented (279 real-valued,
62 Boolean and 20 enumerated—state machine—variables)
and any of them, or even a combination of them, might be
responsible for an observed failure.

The model comes with a failure injection mechanism,
which allows to dynamically insert failures that represent
hardware/ageing problems into different components of the
system during its simulation. This mechanism allows inser-
tion of (1) lowpressure failures for each of the three hydraulic
systems, and (2) failures of sensor position components in
each of the four actuators. Due to the use of redundancy in the
design of the control system, a single failure is not sufficient
to alter its intended behavior. In some cases, even two failures
are not sufficient to produce faulty behaviors. For instance,
the control system is able to correctly function when both a
left and a right sensor position components simultaneously
fail. This challenges the understanding of failures because
there are multiple causes that must be identified to explain a
single failure.

To present our approach, we consider the analysis of a sys-
tem failure caused by the activation of two failures: the sensor
measuring Left Outer Actuator Position failing at time 2 and
the sensor measuring Left Inner Actuator Position failing at
time 4. To collect evidence of how the system behaves, we
executed the Simulink model with 150 test cases with differ-
ent pilot commands and collected the input–output behavior
both with and without the failures.

When the system behaves correctly, the intended position
of the aircraft required by the pilot must be achieved within
a predetermined time limit and with a certain accuracy. This
can be captured with several requirements. One of them says
thatwhenever Pilot Command cmd goes above a thresholdm,
the actuator position measured by the sensor must stabilize
(become at most n units away from the command signal)
within T + t time units. This requirement is formalized in
STL with the following specification:

ϕ ≡ �(↑ (cmd ≥ m) → ♦[0,T ] �[0,t](|cmd − pos| ≤ n))

(1)
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Fig. 2 Aircraft Elevator Control
System [14]

Fig. 3 Expected behavior of AECS

Fig. 4 Failure of the AECS

Figures 3 and 4 show the correct and faulty behavior of
the system. In Fig. 4, the control system clearly stops follow-
ing the reference signal after 4 seconds. The failure observed
on the input/output interface of the model does not give any
indicationwithin themodel on the reason leading to the prop-
erty violation. In the next section, we present how our failure
explanation technique can address this case producing a valu-
able output for engineers.

4 Failure explanation

In this section, we describe how CPSDebug works with help
of the case study introduced in Sect. 3. Figure 5 illustrates the
main steps of the workflow. Briefly, the workflow starts from
a target CPS model and a test suite with some passing and
failing test cases and produces a failure explanation for each
failing test case. The workflow consists of three sequential
phases:

(i) Testing, which exercises the previously instrumented
CPS model with the available test cases to collect infor-
mation about its behavior, both for passing and failing
executions,

(ii) Mining, whichmines properties from the traces produced
by passing test cases; intuitively, these properties capture
the expected behavior of the model,

(iii) Explaining, which uses mined properties to analyze the
traces produced by failures and generate failure expla-
nations, including information about the root events
responsible for the failure and their propagation.

4.1 Testing

CPSDebug starts by instrumenting the CPS model. This is
an important pre-processing step that is done before testing
the model and that allows to log the internal signals in the
model. Model instrumentation is inductively defined on the
hierarchical structure of the Simulink/Stateflowmodel and is
performed in a bottom-up fashion. For every signal variable
having the real, Boolean or enumeration type, CPSDebug
assigns a unique name to it and makes the simulation engine
to log its values. Similarly, CPSDebug instruments look-up
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Fig. 5 Overview of the failure
explanation procedure

tables and state machines. Each look-up table is associated
with a dedicated variable which is used to produce a simula-
tion trace that reports the unique cell index that is exercised
by the input at every point in time. CPSDebug also instru-
ments state-machines by associating two dedicated variables
per state-machine, one reporting the transitions taken and
one reporting the locations visited during the simulation. We
denote by V the set of all instrumented model variables.

The first step of the testing phase, namelyModel Simula-
tion, runs the available test cases {wk

I |1 ≤ k ≤ n} against the
instrumented version of the simulationmodel under analysis.
The number of available test cases may vary case by case,
for instance in our case study the test suite included n = 150
tests.

The result of the model simulation consists of one sim-
ulation trace wk for each test case wk

I . The trace wk stores
the sequence of (simulation time, value) pairs wk

v for every
instrumented variable v ∈ V collected during simulation.

To determine the nature of each trace, we transform the
informal model specification, which is typically provided in
form of free text, into an STL formula φ that can be auto-
matically evaluated by a monitor. In fact, CPSDebug checks
every trace wk against the STL formula φ, 1 ≤ k ≤ n and
labels the trace with a pass verdict P if wk satisfies φ, or a

fail verdict F otherwise. In our case study, the STL formula 1
in Sect. 3 labeled 149 traces as passing and 1 trace as failing.

4.2 Mining

In the mining phase, CPSDebug selects the traces labeled
with a pass verdict P and exploits them for property mining.

Prior to the property inference, CPSDebug performs sev-
eral intermediate steps that facilitate the mining task. First,
CPSDebug uses cross-correlation to reduce the set of vari-
ables V to its subset V̂ of significant variables. Intuitively,
the presence of two highly correlated variables implies that
one variable adds little information on top of the other one,
and thus the analysis may actually focus on one variable
only. The approach initializes V̂ = V and then checks
the cross-correlation coefficient between all the logged vari-
ables computed on the data obtained from the pass traces.
The cross-correlation coefficient P(v1, v2)between twovari-
ables v1 and v2 is computed with the Pearson method, i.e.,
P(v1, v2) = cov(v1,v2)

σv1σv2
which is defined in terms of the

covariance of v1 and v2 and their standard deviations.When-
ever the cross-correlation coefficient between twovariables is
higher than 0.99, that is P(v1, v2) > 0.99, CPSDebug non-
deterministically removes one of the two variables (and its
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Fig. 6 Timed automaton for the state variable mode in the Left Outer
Hydraulic Actuator block

associated traces) from further analysis, that is, V̂ is updated
to V̂ \ v1. In our case study, |V | = 361 and |V̂ | = 121,
resulting in a reduction of 240 variables.

In the next step,CPSDebug associates each variable v ∈ V̂
to (1) its domain D and (2) its parent Simulink-block B.
We denote by VD,B ⊆ V̂ the set {v1, . . . , vn} of variables
with the domain D associated with block B. CPSDebug col-
lects all observations v1 . . . vn from all samples in all traces
associated with variables in VD,B and uses the Daikon func-
tion D(VD,B, v1 . . . vn) and TkT automata learning engine
to infer a set of properties {p1, . . . , pk} related to the block
B and the domain D. As mentioned in Sect. 2.3, TkT is used
to monitor stateful components which means that TkT infers
properties only on state variables. Running property mining
per model block and model domain allows to avoid (1) com-
binatorial explosion of learned properties and (2) learning
properties between incompatible domains.

Finally, CPSDebug collects all the learned properties from
all the blocks and the domains. Each Daikon property p is
transformed to an STL assertion of type � p. The TkT prop-
erties are in form of timed automata describing the behavior
of the state variables and do not need any transformation for
further use.

In our case study, Daikon returned 96 behavioral prop-
erties involving 121 variables and TkT returned 20 timed
automata, one automaton for each state variable. Hence,
CPSDebug generated an STL property ψ with 96 temporal
assertions, i.e., ψ = [ψ1 ψ2 ... ψ96], from Daikon proper-
ties. Equations 2 and 3 show two examples of behavioral
properties inferred from our case study by Daikon and trans-
lated to STL. Variables mode, LI_pos_fail, and LO_pos_fail
denote internal signalsMode, Left Inner Position Failure, and
Left Outer Position Failure from the aircraft position control
Simulink model. The first property states that the Mode sig-
nal is always in the state 2 (Passive) or 3 (Standby), while the
second property states that the Left Inner Position Failure is
encoded the same than the Left Outer Position Failure.

ϕ1 ≡ �(mode ∈ {2, 3}) (2)

ϕ2 ≡ �(LI_pos_fail == LO_pos_fail) (3)

Figure 6 shows the timed automaton for the state variable
mode in the Left Outer Hydraulic Actuator block generated
by TkT.

4.3 Explaining

This phase analyzes a tracew collected from a failing execu-
tion and produces a failure explanation. TheMonitoring step
analyzes the trace w.r.t. the mined properties and returns the
signals that violate the properties and the time intervals in
which the properties are violated. CPSDebug subsequently
labels with F (fail) the internal signals involved in the vio-
lated properties and with P (pass) the remaining signals
from the trace. To each fail-annotated signal, CPSDebug also
assigns the violation time intervals of the corresponding vio-
lated properties returned by the monitoring tool and TkT.

In our case study, the analysis of the left inner and the
left outer sensor failure resulted in the violation of 17 mined
properties involving 19 internal signals.

For each internal signal, there can be several fail-annotated
signal instances, each one with a different violation time
interval. CPSDebug selects the instance that occurs first
in time, ignoring all other instances. That way, CPSDebug
focuses on the events that cause observablemisbehaviors first
to reach the root cause of a failure.

Table 1 summarizes the set of property-violating signals,
the block they belong to, and the instant of time the signal has
first violated a property for our case study. We can observe
that the 17 signals participating in the violation of at least one
mined property belong to only 5 different Simulink blocks.
In addition, we can see that all the violations naturally clus-
ter around two time instants -- 2 seconds and 4 seconds. This
suggests that CPSDebug can effectively isolate in space and
time a limited number of events likely responsible for the fail-
ure. Figure 6 illustrates the timed automaton inferred by TkT
for the variable mode in the Left Outer Hydraulic Actuator
block in AECS. In Table 2, we observe that all faults detected
by TkT are also captured byDaikon since no guards are vio-
lated. However, if such faults exist in the model, TkT is able
to capture such failures since the time bounds are inferred.
This can be observed in Table 2 for ATCS example where
TkT efficiently captures the guard violation. Since proper-
ties mined by Daikon capture the quali tative behavior and
not t iming, Daikon does not capture the faulty guard in the
example.

The Clustering & Mapping step then (1) clusters the
resulting fail-annotated signal instances by their violation
time intervals and (2) maps them to the corresponding model
blocks, that is, to the model blocks that have some of the
fail-annotated signal instances as internal signals.

Finally, CPSDebug generates failure explanations that
capture how the fault originated and propagated in space
and time. In particular, the failure explanation is a sequence
of snapshots of the system, one for each cluster of prop-
erty violations. Each snapshot reports (1) the mean time
as approximative time when the violations represented in
the cluster occurred, (2) the model blocks {B1, ..., Bp} that
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Table 1 Internal signals that
violate at least one learned
invariant and Simulink blocks to
which they belong

Index Signal Name Block τ(s)

s252 LI_pos_fail:1→Switch:2 Meas. Left In. Act. Pos. 1.99

s253 Outlier/failure:1→Switch:1 Meas. Left In. Act. Pos. 1.99

s254 Measured Position3:1→Mux:3 Meas. Left In. Act. Pos. 1.99

s255 Measured Position2:1→Mux:2 Meas. Left In. Act. Pos. 1.99

s256 Measured Position1:1→Mux:1 Meas. Left In. Act. Pos. 1.99

s55 BusSelector:2→Mux1:2 Controller 2.03

s328 In2:1→Mux1:2 L_pos_failures 2.03

s329 In1:1→Mux1:1 L_pos_failures 2.03

s332 Right Outer Pos. Mon.:2→R_pos_failures:1 Actuator Positions 2.03

s333 Right Inner Pos. Mon.:2→R_pos_failures:2 Actuator Positions 2.03

s334 Left Outer Pos. Mon.:2→L_pos_failures:1 Actuator Positions 2.03

s335 Right Inner Pos. Mon.:3→Goto3:1 Actuator Positions 2.03

s338 Left Outer Pos. Mon.:3→Goto:1 Actuator Positions 2.03

s341 Left Inner Pos. Mon.:2→L_pos_failures:2 Actuator Positions 2.03

s272 LO_pos_fail:1→Switch:2 Meas. Left Out. Act. Pos. 3.99

s273 Outlier/failure:1→Switch:1 Meas. Left Out. Act. Pos. 3.99

s275 Measured Position1:1→Mux:1 Meas. Left Out. Act. Pos. 3.99

s276 Measured Position2:1→Mux:2 Meas. Left Out. Act. Pos. 3.99

s277 Measured Position3:1→Mux:3 Meas. Left Out. Act. Pos. 4.00

The column τ(s) denotes the first time that each signal participates in an invariant violation

Table 2 Scope reduction and cause detection

sys #vars fault Daikon Daikon+TkT
# ψ # suspicious vars

(reduction)
fault detected # ψ # suspicious vars

(reduction)
fault detected

AECS 426 lilo 96 17(96%) � 96 + 20 17 + 15(92%) �
h1h2 96 44(90%) � 96 + 20 44 + 15(86%) �

ATCS 51 guard 41 1(98%) 41 + 5 1 + 2(94%) �
eng_lt 39 4(92%) � 39 + 5 4 + 2(88%) �

originate the violations reported in the cluster, (3) the proper-
ties violated by the cluster, representing the reason why the
cluster of anomalies exist, and (4) the internal signals that
participate to the violations of the properties associated with
the cluster. Intuitively, a snapshot represents a new relevant
state of the system, and the sequence shows how the execu-
tion progresses from the violation of the set of properties to
the final violation of the specification. The engineer is sup-
posed to exploit the sequence of snapshots to understand the
failure, and the first snapshot to localize the root cause of
the problem. Figure 7 shows the first snapshot of the failure
explanation that CPSDebug generated for the case study. We

can see that the explanation of the failure at time 2 involves
the Sensors block and propagates to Signal conditioning and
failures andController blocks. By opening the Sensors block,
we can immediately see that the sensor measuring the left
inner position of the actuator is marked as a possible cause
of the failure. Going one level below, we can see that the sig-
nal s252 produced by LI_pos_fail is suspicious -- indeed the
fault was injected exactly in that block at time 2. It is not a
surprise that the malfunctioning of the sensor measuring the
left inner position of the actuator affects the Signal condi-
tioning and failures block (the block that detects if there is a
sensor that fails) and the Controller block. However, at time
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2 the failure in one sensor does not affect yet the correctness
of the overall system; hence, the STL specification is not
yet violated. The second snapshot (not shown here) gener-
ated by CPSDebug reveals that the sensor measuring the left
outer position of the actuator fails at time 4. The redundancy
mechanism is not able to cope with multiple sensor faults;
hence, anomalies manifest in the observable behavior. From
this sequence of snapshots, the engineer can conclude that
the problem is in the failure of the two sensors—one mea-
suring the left inner and the other measuring the left outer
position of the actuator that stop functioning at times 2 and
4, respectively.

5 Empirical evaluation

In order to verify the improvement over the approach from
our preliminary work [6] which only used Daikon, we
repeated the evaluation from [6] by using also TkT in addi-
tion to Daikon and compared the results. More precisely, we
empirically evaluated our two approaches, i.e.,with andwith-
out TkT, against three classes of faults: multiple hardware
faults in fault-tolerant systems, which is the case of multi-
ple components that incrementally fail in a system designed
to tolerate multiple malfunctioning units; incorrect look-up
tables, which is the case of look-up tables containing incor-
rect values; and erroneous guard conditions, which is the
case of imprecise conditions in the transitions that deter-
mine the state-based behavior of the system. Note that these
classes of faults are highly heterogenous. In fact, their analy-
sis requires a technique flexible enough to deal with multiple
failure causes, but also with the internal structure of complex
data structures and finally with state-based models.

Weuse twodifferent systems to introduce faults from these
three classes. We use the fault-tolerant aircraft elevator con-
trol system (AECS) [14] presented in Sect. 3 to study the
capability of our approach to identify failures caused bymul-
tiple overlapping faults. In particular,we study cases obtained
by (1) injecting a low pressure fault into two out of three
hydraulic components (fault h1h2), and (2) inserting a fault
in the left inner and left outer sensor position components
(fault lilo).

We use the automatic transmission control system (ATCS)
[16] illustrated in Fig. 8 to study the other classes of faults.
The automatic transmission control system is composed of
51 variables, includes 4 look-up tables of size between 4 and
110 and two finite state machines running in parallel with 3
and 4 states, respectively, as well as 6 transitions each. We
used the 7 STL specifications defined in [16] to reveal failures
in this system. We studied cases obtained by (1) modifying a
transition guard in the StateFlow chart (fault guard), and (2)
altering an entry in the look-up table Engine (fault eng_lt).

To study these faults, we considered two scenarios. For the
aircraft elevator control system, we executed 150 test cases
in which we systematically changed the amplitude and the
frequency of the pilot command steps. These tests were exe-
cuted on a non-faulty model. We then executed an additional
test on the model to which we dynamically injected h1h2 and
lilo faults. For the automatic transmission control system, we
executed 100 tests in which we systematically changed the
step input of the throttle by varying the amplitude, the offset,
and the absolute time of the step. All the tests were executed
on a faulty model. In both cases, we divided the failed tests
from the passing tests. CPSDebug used the data collected
from the passing tests to infer models necessary for the anal-
ysis of the failed tests.

We evaluated and compared the output produced by the
two approaches, i.e., Daikon and Daikon + TkT, considering
four main aspects: Scope Reduction, Cause Detection, Qual-
ity of the Analysis, and Computation Time. Scope Reduction
measures how well each approach narrows down the number
of elements to be inspected to a small number of anomalous
signals that require the attention of the engineer, in compari-
son with the set of variables involved in the failed execution.
Cause detection indicates if the first cluster of anomalous
values reported by each approach includes any property vio-
lation causedby the signal that is directly affected by the fault.
Intuitively, it would be highly desirable that the first cluster
of anomalies reported by our technique includes violations
caused by the root cause of the failure. For instance, if a
fault directly affects the values of the signal Right Inner
Pos., we expect these values to cause a violation of a prop-
erty about this same signal.We qualitatively discuss the set of
violated properties reported for the various faults and explain
why they offer a comprehensive view about the problem that
caused the failure. Finally, we analyze the computation time
of CPSDebug and its components and compare it to the sim-
ulation time of the model. In summary, our analysis shows
that TkT improves the performance of CPSDebug at low cost
in terms of computation time.

In the following, we report the results that we obtained for
each of the analyzed aspects.

5.1 Scope reduction, cause detection, and
qualitative analysis

Table 2 shows the degree of reduction achieved for the
analyzed faults in a comparative way for the purely Daikon-
based approach and its improved version which uses in
addition TkT. Column system indicates the faulty application
used in the evaluation. Column # vars indicates the size of the
model in terms of the number of its variables, including both
real-valued signals and state signals. Column fault indicates
the specific fault analyzed. Column # ψ gives the number
of learned invariants. We emphasize that, whereas Daikon
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Fig. 7 Failure explanation as a sequence of snapshots—part of the first snapshot

derives invariants from both real-valued and state signals, the
TkT-related invariants are timed automata derived from state
signals only. Column # suspicious vars (reduction) indicates
the number of variables involved in the violated properties
and the reduction achieved. Column fault detected indicates
whether the explanation included a variable associated with
the output of the block in which the fault was injected.

We can see from Table 2 that CPSDebug successfully
detected the exact origin of the fault in only 3 out of 4 cases

when it used only Daikon. On the other hand, when CPS-
Debug used both Daikon and TkT, the fault was detected
in all 4 cases. In the aircraft elevator control system, CPS-
Debug clearly identified the problem with the respective
sensors (fault lilo) and hydraulic components (fault h1h2)
also without the help of TkT. TkT identified 15 additional
suspicious variables but none of these turned out to be exclu-
sively responsible for some fault. That is, these (unuseful)
additional suspicious variables determined a slightly worse
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Fig. 8 Automatic Transmission Control System (ATCS)

reduction in the number of variables to be inspected when
both Daikon and TkTwere used. However, the overall reduc-
tion of 92%, resp. 86%, was still considerably high, allowing
engineers to focus on a small subset of the suspicious signals.

In the case of the automatic transmission control, CPSDe-
bug associates the misbehavior of the model with the Engine
look-up table and points correctly to the faulty entry without
the help of TkT, by only using Daikon. However, TkT turned
out to be crucial for detecting the exact origin of the guard
fault which could not be detected by using Daikon alone.
This happens because the faulty guard alters only the timing
but not the qualitative behavior of the state machine. Since
Daikon is able to learn only invariant properties, the purely
Daikon-based approach is not able to discriminate between
passing and failing tests in that case. This is exactly where
the timed automata provided by TkT can help.

5.2 Computation time

Table 3 summarizes computation time of CPSDebug applied
to the two case studies. In order to assess the overhead added
by TkT, the computation times of the TkT- and Daikon-
related activities are reported separately. The simulation and
instrumentation activities are required and have the same
costs, regardless of whether CPSDebug uses also TkT or
not. There are several conclusions we can make from these
experimental results:

– the overall computation time of CPSDebug-specific
activities is comparable to the overall simulation time,

– Daikon property mining dominates by far the computa-
tion of the explanation, whereas TkT property mining
and explanation computation times are similar and low,
and

– the overall TkT computation time is by far lower than the
overall Daikon computation time.

We finally report in the last row for both Daikon and TkT
the translation of the Simulink simulation traces recorded in
the Common Separated Values (csv) format to the specific
input format that is used by Daikon and TkT, respectively.
Sincemining properties for TkT are performed only on state-
based variables, we provide the time taken byDaikon tomine
properties for comparison. In our prototype implementation
of CPSDebug, we use an inefficient Daikon format transla-
tion that results in excessive time. We believe that investing
additional effort can result in improving the Daikon transla-
tion time by several orders of magnitude. The computation
time required by the TkT format translation is considerably
higher than for the TkTmining and explanation activities but
still by several magnitude orders lower than the total CPSDe-
bug computation time. Overall, the accuracy of CPSDebug
can be increased by using TkT in addition to Daikon without
paying any significant cost in terms of computation time.

5.3 Discussion

In CPS engineering, teams are multidisciplinary, for instance
they include both control and system engineers. Our results
show that CPSDebug can be useful to all the categories of
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Table 3 CPSDebug computation time

Aircraft Transmission

# tests 150 100

# samples per test 1001 751

time (s)

Simulation 654 35

Instrumentation 1 0.7

Daikon

Mining 501 52

Monitoring properties 0.7 0.6

File format translation 2063 150

Daikon (state-based signals)

Mining 31 4

Monitoring properties 0.7 0.3

File format translation 80 26

TkT

Mining 9.3 2.1

Monitoring properties 9.5 2.1

File format translation 37 13

Analysis 1.5 1.6

engineers. In the aircraft elevator control system, CPSDebug
reports a useful feedback to system engineers by isolat-
ing multiple faulty components responsible for an injected
failure. In the automatic transmission control case study,
CPSDebug provides an insightful feedback to the control
engineers by isolating the fault present in the lookup table.

We note that certain faults can be masked by redundant
components. This can for instance happen in the aircraft ele-
vator control system. CPSDebug is able to detect masked
faults as long as there is an observable violation of the over-
all specification. For example, if the left inner, left outer
and right inner actuator position components fail, CPSDe-
bug identifies anomalies in all three components, including
the right inner actuator position component whose fault is
masked by the right outer actuator position component. In
contrast, CPSDebug is not able to detect a masked fault if it
does not impact the satisfaction of the system-level specifi-
cation. The specification violation is the prerequisite to even
start the fault explanation analysis.

Although our evaluation focuses on Simulink models,
CPSDebug is a quite general approach. In fact, as long as
the individual components of the system under analysis can
be observed, CPSDebug can be used to analyze failures.
Clearly, some cases might be harder to address than others.

For instance, hardware components are sometime difficult to
instrument.

6 Related work

The analysis of software failures has been addressed with
two main classes of related approaches: fault localization
and failure explanation techniques.

Fault localization techniques aim at identifying the loca-
tion of the faults that caused one or more observed failures
(see the extensive survey in [31]). Spectrum-based fault-
localization (SBFL) [1] is an efficient statistical technique
that, by measuring the code coverage in the failed and suc-
cessful tests, can rank the program components (e.g., the
statements) that are most likely responsible for a fault.

SBFL has been recently employed to localize faults in
Simulink/Stateflow CPS models [5,9,19–21], showing sim-
ilar accuracy as in the application to software systems [21].
The explanatory power of this approach is, however, lim-
ited, because it generates neither information that can help
the engineers understand if a selected code location is really
faulty nor information about how a fault is propagated across
components. Furthermore, SBFL is agnostic to the nature of
the oracle requiring to know only whether the system passes
or not a specific test case. This prevents the exploitation of
any additional information concerning why and when the
oracle decides that the test does not conform with the desired
behavior. In Bartocci et al. [5], the authors try to overcome
this limitation by assuming that the oracle is a monitor gener-
ated from an STL specification. This approach allows the use
of the trace diagnostic method proposed in Ferrère et al. [13]
to obtain more information (e.g., the time interval when the
cause of violation first occurs) about the failed tests improv-
ing the fault-localization.

Although this additional knowledge can improve the con-
fidence on the localization, still little is known about the root
cause of the problem and its impact on the runtime behavior
of the CPS model.

CPSDebug complements and improves SBFL techniques
generating information that helps engineers identify the
cause of failures, understand how faults resulted in chains of
anomalous events that eventually led to the observed failures
and produce a corpus of information well-suited to support
engineers in their debugging tasks.

Failure explanation techniques analyze software fail-
ures in the attempt of producing information about failures
and their causes. For instance, a few approaches combined
mining and dynamic analysis in the context of component-
based and object-oriented applications to reveal [27] and
explain failures [3,7,24]. These approaches are not, how-
ever, straightforwardly applicable to CPS models, since they
exploit the discrete nature of component-based and object-
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oriented applications that is radically different from the
data-flow oriented nature of CPS models, which include
mixed-analog signals, hybrid (continuous and discrete) com-
ponents, and a complex dynamics.

CPSDebug originally addresses failure explanation in the
context of CPS models. The closest work to CPSDebug is
probablyHynger [17,26],which exploits invariant generation
to detect mismatches between an actual and an inferred spec-
ification in Simulink models. Specification mismatches can
indicate the presence of problems in the models. Differently
fromHynger, CPSDebug does not compare specifications but
exploits inferred properties to identify anomalous behaviors
in observed failures. Moreover, CPSDebug exploits cor-
relation and clustering techniques to maintain the output
compact, and to generate a sequence of snapshots that helps
comprehensively defining the story of the failure. Our results
show that this output can be the basis for cost-effective debug-
ging.

A related body of research consists of approaches for
anomaly detection of cyber-physical systems [10,30]. How-
ever, anomaly detection approaches aim at detecting misbe-
haviors, rather than analyzing failures and detecting their root
causes as CPSDebug does.

Finally, we mention the recent work of analyzing neigh-
borhoods of falsifying traces in CPS [11] where the authors
use search-based testing to characterize how “robust” is the
falsifying trace. This provides an alternative and complemen-
tary way of understanding properties of the violation.

7 Future work and conclusions

We have presented CPSDebug, an automatic approach for
explaining failures in Simulink models. Our approach com-
bines testing, specification mining and failure analysis to
provide a concise explanation consisting of time-ordered
sequence of model snapshots that show the variable exhibit-
ing anomalous behavior and their propagation in the model.
Our approachdifferentiates between learning properties from
discrete and from real-valued variables -- we use Daikon
for inferring invariants over continuous signals and TkT
for learning timed automata from time-stamped enumer-
ated sequences of events. We evaluated the effectiveness of
CPSDebug on two models, involving two use scenarios and
several classes of faults.

We believe that this paper opens several research direc-
tions. We plan to study systematic ways to explain failures in
the presence of heterogeneous components. In this paper, we
consider the setting in which we have multiple passing tests,
but we only use a single fail test to explain the failure. We
will study whether the presence of multiple failing tests can
be used to improve the explanations. In this work, we have
performedmanual fault injection and our focuswas on study-

ing the effectiveness of CPSDebug on providing meaningful
failure explanations for different use scenarios and classes of
faults. We plan in the future to develop automatic fault injec-
tion and perform systematic experiments for evaluating how
often CPSDebug is able to find the root cause. Finally, we
will investigate how to combine automated test generation
with our approach to improve the quality of explanations.
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