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Abstract
Besides airborne laser bathymetry and multimedia photogrammetry, spectrally derived bathymetry provides a third optical 
method for deriving water depths. In this paper, we introduce BathyNet, an U-net like convolutional neural network, based on 
high-resolution, multispectral RGBC (red, green, blue, coastal blue) aerial images. The approach combines photogrammetric 
and radiometric methods: Preprocessing of the raw aerial images relies on strict ray tracing of the potentially oblique image 
rays, considering the intrinsic and extrinsic camera parameters. The actual depth estimation exploits the radiometric image 
content in a deep learning framework. 3D water surface and water bottom models derived from simultaneously captured 
laser bathymetry point clouds serve as reference and training data for both image preprocessing and actual depth estimation. 
As such, the approach highlights the benefits of jointly processing data from hybrid active and passive imaging sensors. The 
RGBC images and laser data of four groundwater supplied lakes around Augsburg, Germany, captured in April 2018 served 
as the basis for testing and validating the approach. With systematic depth biases less than 15 cm and a standard deviation 
of around 40 cm, the results satisfy the vertical accuracy limit Bc7 defined by the International Hydrographic Organization. 
Further improvements are anticipated by extending BathyNet to include a simultaneous semantic segmentation branch.

Keywords  Spectrally derived bathymetry · Deep learning · Convolutional neural networks · Multispectral images · 
Airborne laser bathymetry

Zusammenfassung
BathyNet: Ein Deep Neural Network für die Wassertiefenkartierung aus multispektralen Luftbildern. Neben Flugzeugla-
serscanning und Mehrmedienphotogrammetrie stellt die Analyse von Multispektralbildern eine dritte optische Methode 
zur Ableitung von Wassertiefen dar. In diesem Beitrag präsentieren wir BathyNet, ein an U-Net angelehntes Convolutional 
Neural Network, das auf hochauflösenden RGBC-Luftbildern (rot, grün, blau, coastal blue) basiert. Der Ansatz kombiniert 
photogrammetrische und radiometrische Methoden: Die Vorverarbeitung der originalen Luftbilder beruht auf Strahlen-
verfolgung der potentiell schrägen Bildstrahlen unter Berücksichtigung der inneren und äußeren Kameraorientierung. Die 
eigentliche Wassertiefenschätzung erfolgt danach durch Auswertung des radiometrischen Bildinhalts in einem Deep Learning 
Framework. 3D-Wasseroberflächen- und Wasserbodenmodelle, die aus simultan erfassten Laserbathymetrie-Punktwolken 
abgeleitet wurden, dienen als Referenz- und Trainingsdaten sowohl für die Bildvorverarbeitung als auch für die tatsächliche 
Tiefenschätzung. Damit unterstreicht der Ansatz die Vorteile einer gemeinsamen Verarbeitung der Daten von hybriden 
Sensorsystem bestehend aus Laserscannern und Kameras. Für die Überprüfung und Validierung des Ansatzes wurden 
RGBC-Bilder und Laserscandaten von vier grundwassergespeisten Seen rund um Augsburg, Deutschland, herangezogen. 
Mit einem systematischen Tiefenfehler von weniger als 15 cm und einer Standardabweichung von etwa 40 cm entsprechen 
die erzielten Ergebnisse der Genauigkeitsklasse Bc7 des von der International Hydrographic Organization definierten Stan
dards für hydrographische Vermessungen. Weitere Verbesserungen sind durch die Erweiterung von BathyNet um simultane 
sematische Segmentierung zu erwarten.
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1  Introduction

Regular monitoring of water depths (i.e., bathymetry) is 
gaining ever more importance in the context of climate 
change and human interference in the sensitive littoral zone 
for both coastal areas and inland waters. On the coastal side, 
monitoring is required for documenting the impact of natural 
hazard events like earthquake sea waves or hurricanes (Sala-
meh et al. 2019; Bergsma et al. 2019), changes in benthic 
habitats (Parrish et al. 2016; Eugenio et al. 2017; Purkis 
et al. 2019), and sea level rise (Sam et al. 2018; Rasquin 
et al. 2020). For inland waters, remote sensing based bathy-
metric surveys are used to measure the depth of relatively 
clear and shallow rivers and lakes (Hilldale and Raff 2008; 
Kasvi et al. 2019) as the basis for monitoring flood extents, 
fluvial morphodynamics, and in-stream habitats (Mandl-
burger et al. 2015; Carrivick and Smith 2019). The impor-
tance of tracing fresh water resources on a trans-national 
level is also emphasized by three European Directives, 
namely the Water Framework Directive (European Union 
2000), the Flood Directive (European Union 2007), and the 
Fauna-Flora-Habitat Directive (European Union 1992).

While deeper areas beyond a water depth of approx. 20 m 
require sonar techniques for capturing underwater topogra-
phy, optical methods are well suited for data acquisition of 
the shallow littoral zone. In particular, airborne data acqui-
sition based on images or laser scans provide a seamless 
transition from under water via the water-land boundary 
to the dry part of the surrounding alluvial or coastal area. 
The three main optical remote sensing methods for deriving 
bathymetry (Kasvi et al. 2019) are: airborne laser bathym-
etry (ALB), also referred to as airborne laser hydrography 
(Philpot 2019; Guenther et al. 2000), multimedia photo-
grammetry, also referred to as photobathymetry (Westaway 
et al. 2001; Maas 2015; Dietrich 2016; Mandlburger 2019), 
and spectrally derived bathymetry (Lyzenga 1978; Lyzenga 
et al. 2006; Legleiter et al. 2009; Misra and Ramakrishnan 
2020; Hodúl et al. 2018). While the achievable depth of 
multimedia photogrammetry is inherently restricted to the 
Secchi depth (Effler 1988) and can reach about 1.5 times the 
Secchi depth for spectral methods (Gao 2009), the maximum 
depth performance of ALB sensors is around three times the 
Secchi depth (Mandlburger 2020).

Today, industrial cameras are available at a much lower 
price compared to bathymetric laser scanners. Such cam-
eras can be mounted on manned or unmanned airborne plat-
forms (Agrafiotis et al. 2019). For satellite remote sensing, 
the ICESat-2 mission provides bathymetric LiDAR (Light 
Detection And Ranging) data with global coverage every 
91 days (Parrish et al. 2019; Ma et al. 2020), but the spatial 
resolution (across track: 280 m) is lower compared to very 
high-resolution satellite image sensors (e.g., WorldView-3, 

Landsat 8, Pleiades, QuickBird, RapidEye, etc.) used for 
multispectral approaches (Sagawa et al. 2019; Cahalane 
et al. 2019). In summary, although laser bathymetry provides 
better depth performance in general, image based techniques 
are frequently employed due to lower costs and better avail-
ability of image data.

The recent generation of airborne bathymetric sensors 
include laser scanners and multispectral cameras on the 
same platform. This configuration enables joint processing 
of data from both active and passive sensors. However, to 
date there are few studies exploiting the benefits of concur-
rent scan and image data acquisition. Considering the rapid 
rise of machine learning in general and convolutional neural 
networks in particular, hybrid sensors open up the possibility 
of calibrating bathymetric models and products derived from 
multispectral images with concurrently acquired laser data 
as reference. This strategy is especially beneficial for deep 
learning approaches, which often require abundant training 
data.

In this article, we therefore propose a comprehensive 
framework for deriving bathymetry from multispectral 
aerial images using a deep neural network (DNN) based on 
concurrently acquired laser bathymetry data used for train-
ing, testing, and validation. Our approach combines strict 
geometric and photogrammetric preprocessing of the wide-
angle aerial images and actual bathymetry estimation based 
on the radiometric content of RGB images and an additional 
coastal blue wavelength (RGBC) using an U-Net Convolu-
tion Neural Network (CNN) (Ronneberger et al. 2015). In 
a first step, the laser bathymetry point clouds are classified 
into water surface, dry and wet ground, and other (vegeta-
tion, buildings, water column, etc.). The water surface points 
are used to generate a Digital Water Surface Model (DWSM) 
which, in turn, serves as the basis for laser pulse travel time 
and refraction correction (Westfeld et al. 2017) of the water 
bottom points. The corrected bottom points comprise the 
input for interpolating a Digital Terrain Model (DTM) of 
the underwater topography. Next, the precise (interior and 
exterior) image orientations are derived within a standard 
Structure-from-Motion workflow. We then intersect each 
image ray with the DWSM and the refracted image ray with 
the DTM. This results in the slanted in-water distance that 
serves as the basis for running the U-Net CNN with the mul-
tispectral RGBC information as input channels. The network 
delivers water depth estimates for every pixel. The CNN is 
then applied to unseen data for testing, and the resulting 
point clouds are subject to further post-processing where the 
high overlap of 90% is exploited for median-based filtering 
of the final product.

Our main contribution is, therefore, the combination of 
rigorous geometric and deep learning based radiometric data 
processing. In the absence of concurrently acquired laser 
data, the trained net can be used for pure radiometry based 
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depth estimation. In all other cases, the simultaneously cap-
tured laser data serve for fine tuning the pre-trained models 
when applied to water bodies with different characteristics. 
To a certain extent, the approach is also capable of bridg-
ing data voids in areas beyond the maximum penetration of 
the LiDAR and, therefore, increases the completeness of 
the derived underwater DTM. This expectation is fuelled 
by literature reports stating a depth penetration of 1.5–2 
times the Secchi depth using spectral methods (Gao 2009; 
Duplančić Leder et al. 2019) whereas high-resolution topo-
bathymetric laser scanners only achieve 1–1.5 Secchi depths 
(Mandlburger 2020).

While traditional, regression based methods for spec-
trally derived bathymetry are simpler to use and the derived 
explicit model parameters are interpretable, we opt for a 
CNN-based approach, as CNNs (i) can approximate arbi-
trary functions and (ii) incorporate spatial context. This 
suggests that CNN based depth retrieval might outperform 
traditional optical inversion methods by using all input chan-
nels of multispectral images in parallel for analysing the 
complex backscatter of solar radiation interacting with the 
water surface, column, and bottom.

The remainder of the article is structured as follows: 
Sect. 2 provides a brief review of SDB related publications 
with a specific focus on machine learning techniques. In 
Sect. 3, the study area around Augsburg, Germany is intro-
duced together with the image and laser datasets captured 
in April 2018. The area comprises a dozen groundwa-
ter supplied artificial lakes located within the Lech River 
floodplain. Section 4 contains a detailed description of our 
BathyNet depth retrieval framework. In Sect. 5, we show the 
results of four selected lakes including network performance 
and error metrics. Section 6 critically discusses the achieved 
results and also highlights the limitations of the approach. 
Section 7, finally, summarizes the main findings and conclu-
sions together with an outlook on future work.

2 � Related Work

The derivation of water depths based on multispectral 
images has a long tradition with the fundamental physical 
models described in Lyzenga (1978), Stumpf et al. (2003), 
and Lyzenga et al. (2006). The most prominent parameter 
concerning light interaction with water is the wavelength 
dependent exponential decay of the radiance within the 
water column due to scattering and absorption, which is 
why most of the models use logarithmic expressions to 
establish the relation between reflectance and depth. To 
minimize the influence of varying bottom reflectivity, the 
individual radiometric channels (coastal blue, blue, green, 
red) of multispectral images are used within the depth esti-
mation procedure. In this context, the Optimal Band Ratio 

Analysis (OBRA) algorithm has gained broad attention in 
the SDB literature (Legleiter et al. 2009).

In the recent years, several studies have been published 
based upon the above mentioned publications: Salameh 
et  al. (2019) provide a review of spaceborne remote 
sensing for monitoring beach topography and nearshore 
bathymetry. Muzirafuti et al. (2020) use log-band ratio 
and OBRA methods for deriving shallow water bathym-
etry from multispectral QuickBird satellite images. Rossi 
et al. (2020) apply the methods of Lyzenga et al. (2006) 
and Stumpf et al. (2003) to multispectral Unmanned Aerial 
Vehicle (UAV) images featuring the same spectral bands 
as the WorldView-2 satellite sensor. For mapping bathym-
etry of inland running waters, Gentile et al. (2016) use 
UAV hyperspectral images and apply empirical models for 
depth retrieval, which are applicable under a range of spe-
cific field conditions. Starek and Giessel (2017) combine 
multimedia photogrammetry and band ratio based optical 
inversion for generating seamless topo-bathymetric eleva-
tion models. Bué et al. (2020) focus on the intertidal zone 
and even include the IR band, which exhibits a high atten-
uation coefficient in water, for mapping very shallow water 
bathymetry. They propose a logistic regression approach 
and estimate three parameters of a sigmoid function based 
on the IR channels of Sentinel-2 images.

Hernandez and Armstrong (2016) employ World-
View-2 multispectral images to derive bathymetry of a 
coastal scene and validate their results against bathymet-
ric maps from ship acoustic surveys and ALB. While the 
authors invested in thorough preprocessing of the image 
data based on Fast Line-of-Sight Atmospheric Analysis of 
Spectral Hypercubes (FLAASH) and the Cloud Shadow 
Approach (CSA) for atmospheric corrections, they only 
apply a simple band ratio model as basis for their col-
our-to-depth regression. Zhang et al. (2020) developed 
an Inherent Optical Parameters Linear Model (IOPLM) 
to estimate shallow water bathymetry of a coastal scene 
based on WorldView-2 and Sentinel-2A multispectral 
images. Cahalane et al. (2019) compare different satellite 
datasets (Landsat 8, RapidEye, and Pleiades) and use a log 
ratio transform to derive bathymetry. Legleiter and Fos-
ness (2019), finally, discuss the limits of spectrally based 
depth mapping for rivers containing both optically deep 
and shallow areas. They developed a technique for infer-
ring the maximum detectable depth based on their OBRA 
algorithm utilizing multibeam sonar data and hyperspec-
tral images of a large and deep river. They furthermore dis-
cuss the portability of the depth-reflectance relation cali-
brated at a certain section of the river to other sites along 
the same river and underline the importance of model 
calibration incorporating a broad range of water depths.

All cited articles so far employ SDB approaches based on 
traditional data processing pipelines. In the following, we 
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briefly review contributions using machine learning (ML). 
Agrafiotis et al. (2019), Agrafiotis et al. (2020) apply a Sup-
port Vector Regression (SVR) framework to compensate for 
the refraction effect on 3D underwater point clouds obtained 
from raw Structure-from-Motion (SfM) and Multi-View Ste-
reo (MVS) processing pipelines. The authors validated their 
approach with dense bathymetric LiDAR point clouds and 
terrestrial surveys with a total station as ground truth and 
achieved mean deviations of 0–20 cm as well as a standard 
deviation of 10–40 cm, which is close to the Special Order 
accuracy limit defined by the International Hydrographic 
Organization (IHO) of ± 25 cm (IHO 2020). While their 
approach does not exploit the multispectral image content 
for actual depth estimation in the first place, it constitutes a 
combination of geometric-photogrammetric data process-
ing and machine learning, an idea, which is also present in 
our approach. Sagawa et al. (2019), in contrast, used SVR 
directly on multispectral Landsat 8 images to solve a con-
vex optimisation problem for estimating multi-temporal 
bathymetry of a coastal scene. Compared to echo sounding 
as reference, they achieved a Mean Absolute Error (MAE) 
in the range of 1 m.

Sagawa et al. (2019) apply Random Forest machine 
learning and multi-temporal Landsat 8 satellite images 
to create a generalized depth estimation model. Their 
approach reached a Root Mean Square Error (RMSE) of 
1.4 m for water depths between 0 and 20 m compared 
to bathymetric LiDAR and Single Beam Echo Sounding 
(SBES) as reference. Misra et al. (2018) use a nonlinear 
Support Vector Machine (SVM) machine learning tech-
nique based on Multi Beam Echo Sounding (MBES) data 
as reference and Landsat 7 and 8 multispectral images 
for bathymetry estimation along Sint Maarten Island and 
Ameland Inlet, The Netherlands. Splitting the MBES ref-
erence data in 80% for training and 20% for validation, 
they achieve a depth error of 8–14.5% of the water depth 
(maximum penetration depth: 15 m). The authors report 
that the SVM results outperform the conventional linear 
as well as the blue-green band ratio transform models. 
As the final example in this group, Legleiter and Harri-
son (2019) applied a generalized version of the ORBA 
algorithm and a K-nearest neighbour machine learning 
algorithm to multispectral satellite and hyperspectral UAV 
images. The authors found that the K-nearest neighbours 
algorithm showed higher observed-versus-predicted R2 
values and that preprocessing of satellite images was not 
necessary for depth retrieval. The latter is considered an 
important general statement for machine learning based 
depth retrieval, as the models tend to learn the required 
correction parameters themselves. This especially applies 
to deep networks like, e.g. Convolutional Neural Networks 
(CNN), which are able to approximate arbitrary functions 
(Zhou 2020). As our contribution is in its core a CNN 

approach, we now review recent papers employing neural 
networks for bathymetry estimation.

Makboul et al. (2017) use the logarithms of Landsat 8 
band reflectance values as input for a simple Artificial Neu-
ral Network (ANN) with one hidden layer to estimate the 
bathymetry of a harbor area. After correcting the images 
for atmospheric and sun glint effects, the first three bands 
(coastal blue, blue, green) were employed to train the 
ANN relying on Global Positioning System (GPS) and 
SBES measurements as depth reference. A similarity to 
our approach with respect to the data basis is the use of 
the water penetrating coastal blue wavelength. The authors 
report increased R2 values of the ANN compared to conven-
tional log-ratio based depth estimation.

Li et al. (2018) propose a deep convolution neural net-
work named (DeepUNet) for sea-land separation of high-
resolution optical remote sensing images. They compared 
their classification result with other convolutional networks 
(original U-Net, SegNet, SeNet) and report an accuracy gain 
of 1–2%. As in our approach, they apply a U-Net framework, 
but DeepUNet is not aiming at estimating bathymetry. Dick-
ens and Armstrong (2019) combine DeepUNet for coastline 
detection with a Recurrent Neural Network (RNN) to predict 
water depth using Orbview-3 images, preprocessed depth 
reference data for training, and nautical charts for validation. 
They achieve a MAE in the meter range, which fails to meet 
the IHO standards 1a, 1b, and Special Order (IHO 2020). 
Liu et al. (2018) propose a locally adaptive back-propaga-
tion neural network (LABPNN) for depth retrieval. Their 
approach extends regular back-propagation networks and 
deals with non-stationarity by estimating water depth with 
an ensemble of LABPNNs, which are inversely weighted 
by the distance of an estimation point to the next training 
sample. The authors tested their method with multispectral 
data from different satellite sensors (IKONOS-2, Landsat 7) 
and report an accuracy increase of 5–7% compared to regres-
sion based depth retrieval.

Ma et al. (2020) employ bathymetric LiDAR data from 
the ICESat-2 ATLAS (Advanced Topographic Laser Altime-
ter) instrument (Parrish et al. 2019) as reference for classical 
regression based depth estimation of Sentinel-2 multispec-
tral images. The main advantage of such an approach is that 
both image and depth reference data acquisition takes place 
with only a short time delay due to the high revisit cycles, 
especially of Sentinel-2. In our work, we even go beyond this 
idea by employing simultaneously captured laser bathymetry 
data as the reference for our CNN-based spectrally derived 
bathymetry approach. The idea of using concurrently cap-
tured reference data is also pursued by Slocum et al. (2020). 
Their approach bases on reference points derived via mul-
timedia photogrammetry (Maas 2015) for regression or 
shallow neural network based depth estimation. While the 
majority of SDB approaches rely on ortho-rectified images, 
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the approach of Slocum et al. (2020) uses the raw, perspec-
tive aerial images as basis and employ ray-tracing and proper 
refraction correction in their processing pipeline. We also 
believe that this is the best choice, especially for wide-angle 
images commonly used in manned and unmanned aerial 
photography. In that sense, their overall processing strategy 
is similar to our approach. As stated above and in contrast 
to Slocum et al. (2020), our approach incorporates concur-
rent laser bathymetry point clouds as reference. This exhib-
its the following main advantages: (i) the accuracy level of 
laser bathymetry is generally higher compared to multime-
dia photogrammetry as, e.g., reported by Maas (2015) and  
Mandlburger (2019), (ii) laser bathymetry depth perfor-
mance is usually beyond the visual depth (Philpot 2019) 
while multimedia based techniques are inherently restricted 
to the Secchi depth, and (iii) laser bathymetry does not rely 
on image texture, which is especially important in areas fea-
turing very homogeneous bottom type (e.g., sand). Apart 
from that, the approach of Slocum et al. (2020) differs from 
ours concerning the underlying SDB method. While Slo-
cum et al. (2020) focus on the photogrammetric part of 

the processing pipeline, we combine geometric pre- and 
postprocessing with state-of-the-art CNN-based depth 
estimation.

3 � Materials

3.1 � Study Area

The study area is located in the floodplain of the Lech river 
east of the City of Augsburg, Bavaria, Germany ( 48◦ 22′ N, 
10◦53 ′ E). The Lech is a 255 km long alpine river, which 
deposited gravel sediment in the floodplain area around 
Augsburg. Open pit mining of gravel led to the formation 
of around a dozen groundwater supplied clear water lakes 
within the floodplain. Four of these artificial lakes (Auto-
bahnsee, Helenensee, Friedberger See, and Kuhsee) served 
as specific study sites for developing the proposed BathyNet 
water depth retrieval approach and for validating the results. 
Figure 1 shows an overview map of the study area (Fig. 1a) 
and RGB orthophoto maps of the four lakes (Fig. 1b–e).

Fig. 1   Study area Augsburg, Bavaria, Germany; a overview map 
including location of study area within Germany and selected lakes 
marked with red rectangles; Orthophoto maps of Autobahnsee  (b), 

Friedberger See (c), Helenensee (d), and Kuhsee (e); Coordinate Ref-
erence System: ETRS89/UTM32 (EPSG:25832)
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3.2 � Datasets

To test the feasibility of BathyNet for deriving high-reso-
lution shallow water bathymetry, an airborne data acquisi-
tion was carried out on April, 9th, 2018. The hybrid sensor 
system comprised two IGI DigiCAM 100 cameras (pixel 
size: 4.6 × 4.6μm2 , image size: 11608 × 8708 pixel) and a 
RIEGL VQ-880-G topo-bathymetric laser scanner (pulse 
repetition rate: 550 kHz, laser beam divergence: 1.1 mrad). 
The imaging system consisted of a standard RGB camera 
and a pan-chromatic sensor, which was restricted to Coastal 
Blue ( � = 400 to 460 nm) radiation with a filter mounted in 
front of the lens. Both cameras were equipped with a 50 mm 
wide-angle lens. A more detailed description of the camera 
system including the transmission curves of the individual 
spectral channels is provided in Mandlburger et al. (2018).

The captured data set comprised around a dozen of 
groundwater supplied lakes, form which the four lakes 
depicted in Fig. 1 were chosen as specific test sites due to 
their favourable water transparency. With a flying height 
of approximately 600 m above ground level (AGL), the 
ground sampling distance (GSD) of the RGB/Coastal Blue 
images was 5 cm and the image footprints on the ground 
were 600 × 450m2 . Due to the limited size of the captured 
water bodies, the images generally featured enough dry land 
areas to enable proper image orientation. In total, approxi-
mately 20 flight strips were captured with an along-strip 
image overlap of 90%. The high redundancy is exploited in 
data postprocessing for smoothing the depth estimates and 
filtering of random measurement errors.

The LiDAR penetration depth varied between 1.5 and 7.5 m  
depending on water turbidity and bottom reflectance. Full 
water bottom point coverage was achieved for three of the 
four selected lakes (Autobahnsee, Helenensee, Kuhsee), and 
only Friedberger See contained an area with water depths 

larger than 8 m beyond the penetration depth of the VQ-
880-G sensor, which features a claimed maximum depth 
penetration of 1.5 times the Secchi depth. In addition to 
the airborne data, 12 black and white checker board targets 
were measured at Friedberger See and Autobahnsee with a 
Trimble RTK GNSS (Global Navigation Satellite System) 
receiver. The checker board targets served as control points 
for image bundle block adjustment.

While the captured laser bathymetry point clouds mainly 
act as reference data for training, testing, and validation, the 
multispectral images constitute the main source for our deep 
learning based depth retrieval approach. As a preliminary 
processing step, the simultaneously exposed coastal blue and 
RGB images were merged to a single 4-band-RGBC image 
using homography (Szeliski 2011). All remaining processing 
steps are described in Sect. 4.

4 � Methods

This section describes the details of our approach starting 
with a coarse outline of the data processing pipeline and 
some underlying rationale (Sect. 4.1), followed by an in-
depth description of the main processing stages, namely ref-
erence data generation (Sect. 4.2), actual CNN based depth 
retrieval (Sect. 4.3), and 3D point cloud derivation thereafter 
(Sect. 4.4).

4.1 � Overview

Lyzenga et al. (2006) formulate a simple physically based 
SDB model, which is the starting point for many other con-
tributions in the field. According to this model, the relation 
between subsurface reflectance R(h) and water depth h can 
be written as:

Fig. 2   Conceptual sketch of 
aerial image ray paths interact-
ing with water
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Parameter rv denotes the reflectance due to volume scatter-
ing of an effectively infinite water column, rb is the bottom 
reflectance, and � the effective attenuation coefficient (sum 
of coefficients for upwelling and downwelling light). Equa-
tion 1 represents an approximation to the radiative transfer 
solution and directly relates wavelength dependent radiance 
with depth h. This, however, is only applicable for nadir 
images with a sufficiently small opening angle, which is 
given for many high-resolution optical satellite images. In 
all other cases, the radiometric information stored in the 
image pixels relates to the slant distance between the inter-
section point of an image ray with the water surface and the 
corresponding second intersection of the refracted image ray 
in water with the water bottom. Slocum et al. (2020) coined 
the term in-water slant range (IWSR), which we adopted in 
this manuscript. Figure 2 illustrates the path of individual 
image rays refracted at the water surface and reflected at the 
water bottom. Calculation of the slant ranges for arbitrary 
image pixels requires continuous models of the water surface 

(1)R(h) = rv + (rb − rv)e
−�h and bottom, which in our approach are derived from concur-

rently captured laser bathymetry data.
Figure 3 illustrates the overall depth estimation work-

flow. The upper box is dedicated to data preprocessing and 
reference data generation, while the lower box sketches 
pixelwise depth retrieval and data postprecessing includ-
ing 3D point cloud generation and median filtering of the 
predicted water bottom exploiting the high image overlap. 
Reference data generation comprises classification of the 
laser bathymetry point cloud into water surface, water bot-
tom and (dry) ground points, the interpolation of gridded 
digital water surface and terrain models (DWSM, DTM), 
and water-land boundary (WLB) derivation. After merging 
the separate coastal blue channel with the RGB bands and 
image alignment based on SfM, the image rays are inter-
sected with the DWSM, and the bent, sub-aqueous rays are 
intersected with the DTM providing the reference IWSR as 
the primary output. The RGBC channels together with the 
corresponding IWSR constitute the input for the BathyNet 
CNN. After training and testing the network, the model is 
applied to unseen data. BathyNet basically predicts IWSR 

Fig. 3   Overall BathyNet depth retrieval workflow
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values (in image space), which are transformed into a 3D 
point cloud by reconstructing the 3D image rays based on 
the exterior and interior image orientation parameters and 
by performing ray tracing with the water surface, followed 
by refraction correction. The 3D bottom points are finally 
calculated by multiplying the refracted image unit ray vec-
tor with the predicted IWSR. Smoothing of the final water 
bottom model can be achieved by median filtering the 3D 
point clouds of overlapping images. While the standard 
deviation of the bottom point heights derived from indi-
vidual images constitutes a measure of precision, the mean 
error (ME) calculated as the difference between the heights 
of the reference laser DTM and the predicted water bottom 
provides quantitative evidence of any systematic effects.

4.2 � Reference Data Generation

4-band images (red, green, blue, coastal blue) serve as input 
data for deriving in-water slant ranges within our BathyNet 
CNN framework. The necessary steps are listed in the 
following:

•	 Fine geo-referencing of the laser bathymetry point 
clouds: We employed the rigorous strip adjustment 
approach described in Glira et al. (2016) as implemented 
in the scientific laser scanning software OPALS (Pfeifer 
et al. 2014). The RTK-GNSS surveyed control point tar-
gets served as the basis for co-registration of the concur-
rently captured laser and image data.

•	 Water surface estimation, Fig.  3a+c: To calculate a 
DWSM in regular grid structure (grid size: 10 m), we 
adopted the statistical approach of Mandlburger et al. 
(2013).

•	 Refraction correction: The raw 3D laser points need to 
be corrected due to laser ray refraction at the air–water 
interface and reduced propagation speed in water accord-
ing to Snell’s law. Refraction correction was carried out 
with OPALS using the laser beam vector (in 3D space) 
and a DWSM as basic input.

•	 ALB ground point filtering and DTM interpolation, 
Fig. 3b+c: Hierarchical robust interpolation (Pfeifer 
and Mandlburger 2018) was used to filter ground points 
above and below the water table. Thereafter, all ground 
points served as basis for interpolating a DTM in regular 
0.5 m grid structure with linear prediction (Pfeifer and 
Mandlburger 2018).

•	 Water-Land Boundary (WLB), Fig. 3d: Intersection of 
DTM and DWSM yields the WLB-polygon as the zero-
level contour line of the DTM-DWSM height differ-
ence model. The WLB is later used within the BathyNet 
framework to identify image patches containing either 
water areas only or both water and land.

•	 Image alignment via SfM, Fig. 3e: We employed Pix4D-
Mapper (Strecha et al. 2012) for orienting the aerial 
images. Precise trajectory data based on GNSS and IMU 
(Inertial Measurement Unit) data served as basis for geo-
referencing. In addition, RTK-GNSS surveyed ground 
control points (checker board targets) were available for 
two lakes (Autobahnsee, Friedberger See).

•	 Ray tracing, Fig. 3f: The intersection of the 3D image 
rays with the DWSM, subsequent ray direction correction 
due to refraction at the air–water interface, and intersec-
tion of the refracted ray with the DTM constitute the core 
part of the preprocessing pipeline. We first construct the 
3D image ray vector using the exterior image orientation, 
the focal length, and the image pixel coordinates, and 
employ the Ebree library (Wald et al. 2014) for ray trac-
ing. The main output of this processing step is the IWSR 
for each image pixel within the water domain represent-
ing the reference values for depth retrieval via BathyNet.

4.3 � BathyNet

The core idea of our approach is to estimate depth infor-
mation solely from airborne imagery. We opt for approxi-
mating a depth function D by employing a ML model (cf. 
Fig. 3g) in order to avoid fine tuning of the parameters of an 
analytical model (Lyzenga et al. 2006; Stumpf et al. 2003; 
Legleiter et al. 2009). Here, we distinguish between two core 
approaches, (i) feature-driven and (ii) data driven models. 
The first one relies on hand-crafted features like logarithms 
of certain spectral bands or band ratios (Makboul et al. 2017; 
Legleiter et al. 2009). Especially for 2D imagery such fea-
tures are often hard to design, so that fitting a model directly 
to the data and learning the features automatically from the 
measurements is preferable (Sonogashira et al. 2020).

The most prominent representative of the latter are Con-
volutional Neural Networks, which are a more specific type 
of neural network that can be used to process images effi-
ciently by taking advantage of their spatial structure (LeCun 
et al. 2015). This is realised by performing convolutions in 
the individual layers. Depending on the size of the kernel, 
small areas of e.g. 3 × 3 pixels from one layer provide infor-
mation for a corresponding neuron in a deeper layer. By 
repeated pooling operations (i.e., sub-sampling) traversing 
deeper into the network, step by step a receptive field cover-
ing the initial image layer is established. Assuming homoge-
neity and translation invariance, effective feature extracting 
convolution kernels can be useful not only at one position, 
but anywhere in the image. Therefore, only one kernel is 
trained for the entire layer instead of training different ker-
nels that refer to specific regions in the image. Thus, instead 
of training weights for each neuron in each layer, only the 
weights for one kernel need to be trained. This allows for 
deeper architectures with more layers to include high-level 
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features, but still be efficient in terms of training time and 
required training data.

In the following, we focus on our specific architecture 
(Sect. 4.3.1) and on the specific adaption for our regression 
problem (Sect. 4.3.2).

4.3.1 � Employed Architecture

As stated above, we intend to use our network for estimat-
ing continuous depth values for each individual pixel of a 
presented optical image. Therefore, an architecture where 
the input is both en- and decoded preserving the original 
shape of the input is required. For this, we rely on the state-
of-the-art U-Net architecture as originally proposed by Ron-
neberger et al. (2015), which is commonly used for semantic 
segmentation of both 2D and 3D data (Rakhlin et al. 2018; 
Schmohl and Sörgel 2019).

The basic structure of U-Net is displayed in Fig. 4. Gen-
erally, U-Net is composed of an encoding and a decoding 
branch, which means that input images are first abstracted 
to a deep representation/understanding (which is located at 
the bottom of the “U”), where spatial context is mainly lost. 
In other words, we strive to find a mapping between a given 
high dimensional image space into a low dimensional rep-
resentation such that we maintain the essence of the image 
content while spurious details and noise are suppressed. 
Afterwards, this deep representation is upsampled again to 
the original dimension but instead of the input channels, the 
prediction is obtained.

For encoding, each level composes two convolutional lay-
ers, followed by a Max Pooling layer for bisecting the input 
size, so that the maximum value of a respective sliding win-
dow is selected. This means that we set the receptive field 
to integrate the values of 4 pixels (filter size 2 × 2 ) in every 
second column and row (i.e., stride of 2, cf. Goodfellow 
et al. (2016)). This means that in each level of the encoding 
branch, we reduce the size of the input with the intention of 
allowing more convolutional filters (i.e. increase depth and 
allow a deeper understanding of the input images). More 
precisely, in the first level 32 filters per convolution are used, 
whereby the number of filters is doubled at each of our 4 
levels to 512 filters at the end of the encoding branch, i.e., 
the deepest representation of our input image (cf. Fig. 4).

The subsequent upsampling (Dumoulin and Visin 2018) 
within the decoding branch is built in an analogous manner 
mainly differing in replacement of the Max Pooling layers 
by deconvolution layers, which are able to learn individual 
upconvolving filters and avoid the necessity of predefined 
functions such as nearest neighbour or bi-linear interpo-
lation. While the encoder is able to efficiently encode the 
images, spatial context is lost due to the Max Pooling steps. 
Therefore, explicit connections between the encoding and 
decoding branch are built at each level. Precisely, the output 
of each respective encoding level together with the current 
state of representation is concatenated and used as input for 
each decoding level. For accelerating the whole learning 
process, batch normalisation is applied before each convolu-
tional block. Following each convolution step, we use ReLU 

Fig. 4   Adapted U-Net architecture re-purposed for depth estimation
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as activation function allowing the approximation of a non-
linear function.

Eventually, a 1 × 1 convolution is employed for map-
ping pixelwise feature vectors to the number of classes for 
semantic segmentation. As activation function typically the 
sigmoid function is used to turn the set of arbitrary out-
put values into a-posteriori probabilities p(c|x) that pixel x 
belongs to class c.

4.3.2 � Reformulating U‑Net for Water Depth Estimation 
as BathyNet

As stated above, we aim at using U-Net to estimate water 
depth. In contrast to the original formulation for semantic 
segmentation, we therefore need to adapt the architecture 
in order to allow pixelwise prediction of continuous depth 
values for our regression problem.

For this, we need to alter the last convolutional layer from 
feeding an output of the size of the input image times the 
number of classes (i.e. bands) to feeding only one band, 
which consists of the estimated IWSR values. Consequently, 
using a sigmoid as the activation function of this last con-
volution is not appropriate. In order to (i) allow continuous 
floating point values and (ii) avoid prediction of negative 
depth values (we interpret depth as positive floating point 
numbers), we make use of the ReLU activation function:

Additionally, the root mean squared error (RMSE) is our 
objective function, for which we compare the depth value ŷi 
predicted by the current state of our model to the reference 
value yi:

The kernel size of the convolutional layers is set to 25 × 25 
pixels (empirically determined). For avoiding size reduction 
due to only partially filled filters at the border of the respec-
tive feature maps, we apply padding. Although CNNs incor-
porate by far fewer learnable parameters than NNs, we still 
need to provide informative training datasets. Overfitting 
might occur if insufficient data is provided for training due 
to the lack of examples of all possible real world scenarios. 
This means that the model learns overly specific character-
istics from the provided data. In order to restrict this behav-
iour, we make use of Dropout layers at each U-Net level both 
for the encoding and decoding branch, where we randomly 
ignore a fixed percentage of neurons in each forward pass 
(25% of neurons in this case).

(2)f (x) = max(0, x)

(3)RMSE =

√

√

√

√
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(ŷi − yi)
2

4.3.3 � Data Preparation and Augmentation

Since we cannot directly train on a complete, full resolu-
tion image due to memory limitations, we generate image 
patches, i.e., we crop a limited area from the original image. 
The size of the patches needs to be divisible by 24 = 16 , in 
order to receive a natural number of pixels in width and 
height after the fourth and last pooling layer. We use a patch 
size of 480 × 480 pixels. This is a compromise between 
losing the complex characteristics of shore areas when 
using patches that are too small and minimizing memory 
consumption.

A certain number of these patches are extracted from each 
image of the training set. The patch count is set relative to 
the number of water pixels in the image, which we refer to 
as valid pixels. To be more precise, the number of patches is 
derived as ratio between pixels in the respective image and 
the filter size multiplied by an empirically derived factor of 
2.7. For cropping these patches, we center our 480 × 480 
pixel mask at a random position in the image. If less than 
25% of pixels within this mask are valid pixels, we reject 
this patch. Otherwise we use it for training. This procedure 
ensures that, (i) each patch contains a reasonable number of 
valid pixels, (ii) no patches contain only land (i.e. invalid 
pixels), and (iii) shallow littoral areas are also present in the 
training set, which is crucial in order to cover a maximum 
range of depth values to be trained on.

Another option to enlarge the training data set is aug-
mentation. Therefore, our training set is enhanced by flip-
ping each patch generated around the x- and y-axis, trans-
posing and rotation by 90 degrees both clockwise and 
counterclockwise.

4.4 � 3D Point Cloud Derivation

BathyNet yields depth (IWSR) predictions for every image 
pixel. In order to obtain 3D coordinates of the water bot-
tom, generally the same steps as described in Sect. 4.2 are 
necessary including construction of the 3D image ray vector, 
intersection with the DWSM, and calculation of the direc-
tion of the refracted, subaqueous image ray. Thus, a water 
surface model needs to be available not only for training 
but also for depth retrieval via the trained deep learning 
model. For obtaining the final 3D bottom point coordinates, 
the subaqueous image ray unit vector is multiplied with the 
predicted IWSR and added to the position vector of the air-
water intersection point.

Overlapping images result in redundant depth estimations 
from individual images at approximately the same XY-posi-
tion. This redundancy can further be exploited for smoothing 
the final bottom model. For this, we aggregate bottom points 
from all images within 20 cm raster cells and calculate the 
final bottom point elevation of a certain raster cell as the 
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median elevation of all points in the cell (cf. Fig. 3h). Fur-
thermore, we calculate the standard deviation �z of the cell 
point elevations which characterizes the precision of the bot-
tom estimation. Wherever ground truth (i.e., a laser DTM) 
is available, we further calculate the bias dZ for each cell as:

with zref  denoting the laser DTM height and zBathyNet the esti-
mated bottom height of a single raster cell derived with the 
described deep learning framework. We also calculate the 
mean error (ME) as the simple average of all dZ-values for 
each individual water body:

5 � Results

In this section, we present the results of our BathyNet depth 
mapping approach. As detailed in Sect. 4.3, the employed 
U-Net CNN generally predicts in-water slant ranges for 
every pixel of an aerial image subject to prior model training 

(4)dZ = zref − zBathyNet

(5)ME =

n
∑

i

dZi

n

with simultaneously captured laser bathymetry reference 
data. Thus, the initial results are in image space. In contrast, 
the final product is a continuous water depth model in object 
space, obtained by transforming the predicted IWSR values 
as outlined in Sect. 4.4. In the following, we assess the qual-
ity of the BathyNet derived in-water slant ranges (image 
space) and water depth maps (object space) by comparison 
to the respective laser reference data.

The implementation of BathyNet is realized in Python 
(Van Rossum and Drake 1995) using the deep learning 
library keras (Chollet et al. 2015) with tensorflow backend 
(Abadi et al. 2015). All computations were carried out on a 
desktop computer and the network was trained on a GeForce 
GTX 1070 GPU. When using all images of Helenensee, 
training of BathyNet takes about 156 minutes. Inference 
on individual images is carried out in less than 6 minutes. 
BathyNet is trained by usage of Adam optimizer. Learning 
rate was set to 0.00019 and training is conducted for 100 
epochs.

Figure 5 summarizes the BathyNet results for Auto-
bahnsee both in image and object space. Figure 5a shows 
a heat map of BathyNet-predicted IWSRs compared to the 
laser reference. The plot comprises the data of all available 
images used during training as well as testing. Most of the 

Fig. 5   BathyNet results for Autobahnsee; comparison of IWSR-values between laser reference and BathyNet predictions in image space as heat 
map (a) and histogram (b); nominal-actual water depth deviations in object space as colour coded DoD map (c) and histogram (d)
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values (yellow colour tones) are concentrated around the 
principal diagonal indicating a good coincidence between 
predicted and reference IWSR values. The histogram in 
Fig. 5b provides the corresponding quantitative analysis. The 
distribution is approximately unbiased (median: −2 cm) and 
the dispersion measures around 30 cm (conventionally esti-
mated standard deviation StdDev: 34 cm, robustly estimated 
standard deviation StdDevMAD: 28 cm).

Figure 5c depicts a colour coded DEM of Difference 
(DoD) map, where each pixel contains the deviation between 
the reference depth obtained from the laser DTM and the 
BathyNet derived water bottom. The prevailing light green 
and orange colour tones indicate deviations of less than  
20 cm. In contrast to the IWSR comparison, the depth deviation  
histogram (Fig. 5d) reveals a positive bias of 15 cm cor-
responding to the predominant greenish colour tones of the 
DoD map. Median filtering of the 3D point clouds derived 
from highly overlapping images, in turn, led to a decrease of 
the standard deviation to 20 cm, equivalent to roughly 5% of 
the maximum depth of 4.5 m.

The impact of using the additional Coastal Blue band 
is illustrated in the depth distribution histograms of Fig. 6, 
again exemplified for Autobahnsee. The laser reference 
depth distribution on the left side (Fig. 6a) is compared to 
those derived from BathyNet using RGB only (b) and includ-
ing the additional Coastal Blue band (c), respectively. The 
depth model derived from RGBC images outperforms the 
RGB model in all statistical parameters. The RGB derived 
mean water depth (3.06 m), for instance, deviates from the 
reference value (2.70 m) by 26 cm, while the difference is 
only 3 cm when using RGBC images as input for BathyNet. 
Thus, the use of the Coastal Blue spectral band has a positive 
impact on depth retrieval in our shallow water study area.

The results shown so far only document the performance 
of BathyNet for data of the same water body. That is, train-
ing and testing relied on images of a single water body with 
consistent, uniform water quality and bottom texture. In the 
following, we therefore focus on the portability of trained 
BathyNet networks. For this, we trained BathyNet on one of 

the four lakes and inferred the depths of the remaining three 
lakes applying the trained model. Figure 7 summarizes the 
results for Autobahnsee (a), Friedberger See (b), and Kuhsee 
(c) trained with RGBC images of Helenensee.

The first two rows show the validation results in image 
space (IWSR comparison), and the latter three rows the 
respective results in object space (water depth maps). As 
in Fig. 5a and b, the first row of Fig. 7 depicts reference 
vs. BathyNet derived IWSR heat maps and the second row 
the corresponding histograms. Applying the model trained 
for Helenensee to Autobahnsee and Kuhsee yields accept-
able results with a maximum mean offset of 15 cm and a 
standard deviation of 50 cm. The standard deviation is higher 
by a factor of 2.5 compared to the results achieved when per-
forming training on the same water body (cf. Fig. 5b). For 
Friedberger See, both the heat map (b1) and the histogram 
(b2) reveal severe inaccuracies. The yellow (hot) areas of the 
heat map are not concentrated along the main axis diago-
nal as is the case for Autobahnsee (a1) and Kuhsee (c1). 
The mean depth deviation amounts to −1.07 m ± 1.18 m. 
Although the fact that Friedberger See is deeper compared 
to Autobahnsee and Kuhsee needs to be considered when 
judging the higher error values, these measures indicate a 
sub-optimal performance of BathyNet for this lake.

The water depth model validation shown in rows (3)–(5) 
of Fig. 7 generally exhibits the same tendency as the IWSR 
comparison. The systematic bias amounts to 12 cm for Auto-
bahnsee and Kuhsee and the standard deviation is approxi-
mately 40 cm for both lakes. While training of BathyNet 
with images from Helenensee does not increase the sys-
tematic depth biases for Autobahnsee and Kuhsee, the stan
dard deviation increases by a factor of 2. For Autobahnsee, 
the increased spread measures approximately 10% of the 
maximum depth. The same holds for Friedberger See with a 
mean water depth underestimation of 1 m and a dispersion of  
75 cm.

The last row of Fig. 7 shows a colour coded map of 
local depth deviations derived from the 3D point cloud of 

Fig. 6   Depth distribution histograms; laser reference (a), BathyNet predictions based on RGB (b) and RGBC images (c)
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overlapping images. Each pixel shows the standard devia-
tion of the point heights within a 20 cm raster cell. This 
measure is an indicator for the locally varying water depth 
uncertainty. The predominant green and blue colour tones 
for Autobahnsee (a5) and Kuhsee (c5), denoting a disper-
sion less than 30 cm, confirm a good repeatability of the 
BathyNet depth retrieval from independent images with 
varying viewing geometry (image overlap: 90%). Only 
the deeper, northwestern part of Kuhsee reveals standard 
deviations greater than 50 cm. In contrast, saturated red 
colour tones corresponding to standard deviations ≥ 1 m 
dominate the dispersion map of Friedberger See (b5), high-
lighting once again that the network trained on Helenensee 
is not directly applicable to Friedberger See due to differ-
ences in (i) water depth, (ii) water quality, and (iii) bottom 
reflectance.

6 � Discussion

In this section, we first discuss the results reported in Sect. 5 
including statements concerning the limitations of the pre-
sented framework in its present form. Based on the drawn 
conclusions, we anticipate an extension of BathyNet for 
simultaneous depth retrieval and classification of bare water 
bottom and submerged vegetation.

6.1 � General Discussion of Results

Spectrally based depth retrieval works best in areas with 
homogeneous bottom texture whereas geometry based meth-
ods like multimedia photogrammetry inherently require tex-
ture, i.e. spatial variations in the spectral response (Slocum 
et al. 2020). While it is possible to reduce the depth estima-
tion errors to a certain extent by means of multispectral algo-
rithms (Lyzenga et al. 2006; Legleiter and Fosness 2019), 
reflectance variations still pose a fundamental problem, 
especially in the very shallow littoral zone where submerged 
vegetation is the main source of spectral differences rather 
than the homogeneity of the water bottom substrate (Heb-
linski et al. 2011). In addition, the existence of underwater 
vegetation is also problematic for the generation of reference 
data, for which echo sounding or laser bathymetry are the 
most prominent capturing techniques (Lyzenga et al. 2006; 
Song et al. 2015; Kasvi et al. 2019; Rossi et al. 2020; Brown 
et al. 2011; Kogut and Bakuła 2019). Both methods are gen-
erally capable of penetrating (loose) vegetation and therefore 
often provide reference depths related to the bottom whereas 
image based techniques tend to deliver the topmost surface 
of the vegetation canopy (Ressl et al. 2016).

All of the groundwater supplied lakes in this study com-
prise both bare gravel areas as well as littoral vegetation 

featuring variable brightness and vegetation height. While 
some species cover the ground and thereby change the bot-
tom reflectance, other species tend to reach the water surface 
in the spring season and therefore substantially extend above 
the water bottom. Both effects hamper SDB methods in gen-
eral and also limit the accuracy of our BathyNet approach 
in particular. Still, the achieved error values are satisfac-
tory, especially considering the aforementioned external 
influences. BathyNet derived water depth models showed a 
systematic deviation (mean error) in the range of 0–15 cm 
and a standard deviation of 20–40 cm after median filtering 
of the point clouds from overlapping images. This is equiva-
lent to approximately 5% of the maximum depth. Compared 
to other published SDB approaches, BathyNet performs rea-
sonably well. Kasvi et al. (2019) report ME and standard 
deviations in the dm-range for clear gravel bed rivers with 
homogeneous bottom texture. In contrast, the RMSE values 
in Hernandez and Armstrong (2016) measure 1–2 m for a 
band ratio SDB approach based on WorldView-2 images of a 
scene with heterogeneous bottom reflectance (seagrass etc.). 
Thus, when comparing the reported error metrics of different 
publications, all influencing factors like bottom homogene-
ity, water transparency, etc. need to be considered for judg-
ing the results.

A further investigation addressed the question whether the 
Coastal Blue band provides added value for our BathyNet 
depth retrieval. In prior work (Mandlburger et al. 2018), we 
have disclosed the transmission curves of the used sensor and 
also provided exemplary images revealing more pronounced 
bottom features in the Coastal Blue band ( � ≈430 nm) com-
pared to the regular blue band ( � ≈ 480 nm) in some areas, 
although water penetrability generally decreases towards the 
ultraviolet domain of the spectrum. The quantitative compari-
son of two model variants, one with RGB only and the other 
with the additional Coastal Blue channel, clearly confirmed a 
positive impact of this extra radiometric channel in our study. 
The deep neural network was better able to approximate the 
laser reference data, and the results clearly outperformed the 
RGB-only model in every aspect of the statistical depth dis-
tribution analysis.

Besides the pure accuracy of the method (i.e., its ability to 
predict water depths based on spectral information as input), 
the portability of trained models to other water bodies was 
another point of focus. With three rather similar lakes con-
cerning bottom reflectance, water transparency, and depth 
distribution (Autobahnsee, Helenensee, Kuhsee; cf. Fig. 1) 
and one lake with different characteristics (Friedberger See), 
training BathyNet with one of the prior lakes and predicting 
the depths of all remaining lakes exhibits mainly consistent 
results, which can be summarized as follows:

•	 Training the network with a subset of the images and test-
ing the trained model with the remaining images of the 
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same lake gives the best results. This scenario is relevant 
for mapping large extended water bodies, where refer-
ence data is available for a small portion of the area.

•	 Inference of water depths using a model trained on a dif-
ferent lake with similar characteristics does not affect 
the mean error but increases the standard deviation by a 
factor of around 2.

•	 The latter behaviour was observed for depth predictions 
of Autobahnsee and Kuhsee with a model trained on 
Helenensee. The results are less favourable when train-
ing on Autobahnsee and inferring depths of Helenensee.

•	 Helenensee (mean/max depth: 3.5 m/7.0 m) covers a 
larger depth range compared to Autobahnsee (mean/
max depth: 2.9 m/4.5 m) and Kuhsee (mean/max depth: 
1.5 m/5.3 m). Thus, training the network on Helenen-
see results in interpolation when inferring the depths 
of Autobahnsee and Kuhsee, whereas this would lead 
to depth extrapolation for Helenensee. The importance 
of representative training data was also highlighted by 
Legleiter and Fosness (2019).

•	 Regardless which of the three lakes was used for train-
ing, the predicted depths for Friedberger See were always 
sub-optimal. Friedberger See is the deepest of the four 
studied lakes with a maximum depth of around 12 m 
beyond the laser penetration depth of 8 m, and the lake 
contains large continuous underwater vegetation areas 
and an overall lower percentage of bare gravel bottom. 
Furthermore, the lake is used for recreational purposes 
with many artificial objects (floating platforms, infra-
structure for water skiing, etc.), which also hampers 
spectrally based depth estimation. Therefore, this lake 
was not used for training but only for inference.

•	 Despite the unfavourable accuracy, the Friedberger See 
test site reveals a benefit of SDB in general and BathyNet 
in particular, namely the possibility to obtain a gapless 
depth map. Although parts of the lake exceeded the max-
imum penetration depth of the laser, it is still possible to 
derive a realistic depth model with restricted accuracy 
due to extrapolation.

•	 Our approach combines strict geometric processing of 
the generally oblique image rays including refraction cor-
rection at the water surface and radiometry based depth 
retrieval. This implies that training as well as depth infer-
ence requires a continuous water surface model. While 
the DSWM could be derived from the laser measure-

ments in our study, availability of laser bathymetry data 
is not given for image-only surveys. In this case, the 
DSWM can for instance be reconstructed from the mul-
tispectral images (Frazier and Page 2000; Wang et al. 
2020) or from tidal data.

Although BathyNet is capable of predicting continuous 
water depth values, we conclude that the main factor limit-
ing the accuracy of our BathyNet is the abundant occur-
rence of littoral vegetation. Seasonal changes of underwater 
vegetation and water transparency pose another issue in this 
context. The basic idea to circumvent these limitations is 
outlined in the following.

6.2 � Expansion of BathyNet

The BathyNet framework described in Sect. 4 does not dis-
tinguish between bare underwater soil and aquatic vegeta-
tion. This means that BathyNet approximates the same func-
tion D for all input data. However, as the impact of bottom 
reflectance variations on depth errors can only be mitigated 
using multispectral algorithms (Lyzenga et al. 2006), we aim 
at combining underwater land cover classification and depth 
estimation in a comprehensive deep learning framework. In 
particular, our goal is to enhance BathyNet in such a way 
that a vegetation mask M is predicted on top of depth values. 
The prior constitutes a binary semantic segmentation, for 
which U-Net was originally designed (cf. Sect. 4.3.1).

Although training two U-Nets, one for semantic segmen-
tation deriving M and one for the regression approximating 
D, is straightforward, we would have to train twice as much 
weights as before. Furthermore, since we would feed the 
exact same input to the two nets, we opt for incorporating 
both interpretation tasks in one joint U-Net, so that weights 
can be shared for both tasks. Precisely, we only add a second 
output branch ( 1 × 1 convolutional layer) eventually obtain-
ing two different outputs, namely (i) pixelwise depth values 
(shape: input dimension ×1 ) and (ii) a two-class semantic 
segmentation result (shape: input dimension ×2 classes).

To demonstrate the general feasibility, Fig. 8 shows a 
raw image (left), the corresponding ground truth vegetation 
polygons provided by limnologists (middle), and the derived 
BathyNet vegetation mask (right). Further development of 
the combined model and proper quantitative error assess-
ment of both bathymetry and binary classification is beyond 
the scope of this paper and subject of future work.

7 � Conclusions

In this article, we presented a comprehensive method for 
water depth retrieval from multispectral aerial images. Our 
BathyNet approach combines rigorous geometric image 

Fig. 7   Transfer of BathyNet results trained on Helensee to Autobahn-
see (a), Friedberger See (b), and Kuhsee (c); rows (1)+(2): IWSR 
comparison in image space; rows (3)–(5): water depth model compar-
ison in object space; (1) heat maps of reference vs. BathyNet-derived 
in-water slant ranges; (2) corresponding depth deviation histogram; 
row (3): colour coded nominal-actual water depth DoD map; row 
(4): corresponding depth deviation histogram; row (5): colour coded 
standard deviation map

◂
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ray path modelling, including refraction correction at the 
air–water interface, and spectrally based estimation of in-
water slant ranges (IWSR) within a deep learning frame-
work. For the latter, we adapted the U-Net Convolutional 
Neural Network architecture, originally designed for seman-
tic segmentation, for the purpose of pixelwise depth estima-
tion. Thus, BathyNet connects rigorous photogrammetric 
treatment of the image geometry and state-of-the art CNN-
based processing of the multispectral image content.

Neural networks generally require a vast amount of train-
ing data for estimating the model parameters (weights of 
filter kernels, etc.). In our study, we employed concurrently 
captured laser bathymetry data for generating reference data. 
Due to the increasing availability of hybrid sensor systems 
comprising both laser scanners and multispectral cameras, 
we believe that such data combinations will gain importance 
in the future. Data preprocessing involved the generation of a 
continuous water surface model needed for proper refraction 
correction of the laser and image rays, as well as the inter-
polation of an underwater DTM (i.e., water bottom model). 
Both models served as the basis for the calculation of IWSRs 
for every image pixel. Together with the Red, Green, Blue, 
and Coastal Blue (RGBC) spectral bands, the slant ranges 
constituted the input for training of our BathyNet model. 
After training, the model was capable of predicting IWSRs 

on a per pixel basis. A smooth water depth model was finally 
achieved by transforming the predicted slant ranges into 
object space and median filtering of the resulting 3D point 
clouds from overlapping images.

In a real-world application scenario, where multispectral 
images but no laser data are captured, the necessity of a 
DWSM for depth estimation seems a specific drawback of 
our method. However, our approach does not only deliver 
relative water depths at the time of data acquisition, but 
absolute 3D bottom topography in a specific coordinate ref-
erence system. From this point of view, any SDB method 
aiming at 3D reconstruction of underwater topography 
requires a model of the water surface. Assuming a horizontal 
water surface, it is feasible to derive the water level height at 
the time of data acquisition from the images by identifying 
the water-land boundary either manually or automatically. 
Answering the question how deviations from such a simpli-
fied water surface model impact the results of BathyNet is 
beyond the scope of this article and subject of future work.

We tested our approach with RGBC images of four 
groundwater supplied lakes located around Augsburg, Ger-
many. The lakes feature a mean depth of 2–5 m and a maxi-
mum depth of 4.5–12 m. Training of BathyNet on a repre-
sentative lake and inferring the depths from unseen images of 
the other lakes resulted in a mean systematic offset of 15 cm  

Fig. 8   Comparison of a raw image (left), ground truth vegetation mask (middle), and predicted vegetation mask (right) for the Kuhsee test site
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and a standard deviation of approximately 40 cm, corre-
sponding to 5–10% of the maximum water depth. These 
error values meet the vertical accuracy limit Bc7 defined by 
the International Hydrographic Organization (IHO 2020), 
but not to the more rigorous standards (Order 1, Special 
Order, Exclusive Order). While the use of the additional 
Coastal Blue band had a clear positive impact on the con-
sistency of the predicted depths, the frequent change of bot-
tom reflectance from bright gravel to dark littoral vegetation 
limited the accuracy. This observation was the starting point 
for an envisaged extension of BathyNet from a pure depth 
retrieval framework to a comprehensive method featuring 
simultaneous semantic segmentation (ground/vegetation) 
and bathymetry estimation. While the general feasibility of 
such an approach could already be verified in preliminary 
tests, further refinement of the method including proper 
quality assessment is subject of future work.
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