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Abstract

In the last few years the first generation of novel color and depth (RGB-D) sensors
greatly pushed the frontier of robot perception. Dense depth data combined with color
information offers the opportunity to directly relate rich sensor signals to the three
dimensional operational space of the robot. Although RGB-D sensors are widely used,
only little is known about their properties.

Knowing the exact error modalities is essential to develop a sensor simulation model
which is necessary to test and desensitize algorithms for depth sensing errors with
large-scale synthetic datasets. Often it is impractical to desensitize an algorithm,
but at the same time it might be impossible to get decent depth estimates from the
sensor. That motivates methods which enable a correction of the depth information
in a post-correction step. If a correction of the depth measurements is not sufficient,
i.e. if a precise pixel-wise fusion of color and depth information is required, an accurate
calibration is necessary. However, the autonomous calibration of RGB-D setups is still
an open problem. In order to relate the sensor information to other components of the
robot, a holistic calibration should recover the rigid transformation between the sensor
and a robot-fixed reference system.
This work addresses these open challenges with five approaches. First, it evaluates

ten different RGB-D and depth sensors covering the three main sensor technologies:
Structured Light, Active Stereo, and Time of Flight (ToF). Second, it continues with
an intuitive and generic method to simulate characteristic systematic errors of the
investigated state-of-the-art depth sensors. Third, two alternative camera-model-
agnostic depth compensation methods are added that correct systematic depth sensing
errors, without altering the sensors internal parameters. Fourth, the alignment of RGB
and depth data is improved with a robust autonomous calibration algorithm that utilizes
structure from motion (SfM) and incorporates plane priors in the optimization. Fifth,
this work contributes an extrinsic pose calibration algorithm that uses the trajectory of
the robot to find an optimal rigid transformation between the camera and a reference
system.

The results of the sensor study show characteristic error modalities dependent on the
sensor technology. The systematic depth error simulation model replicates the charac-
teristic non-linear, and radial-shaped, local errors as well as linearly increasing errors of
the investigated sensors. The presented camera-model-agnostic depth compensation
methods successfully improve the trueness and the precision of the depth measurements.
The introduced auto-calibration method shows an significant improvement of the cali-
bration accuracy compared to the state of the art. In first experiments, the extrinsic
camera pose calibration recovers the camera pose relative to a reference system.

I



Kurzzusammenfassung

In den letzten Jahren erweiterten neuartige Farb- und Tiefensensoren (RGB-D) die
Grenzen der Roboterwahrnehmung. Hochauflösende Tiefendaten, kombiniert mit RGB
Information, ermöglichen es detaillierte Sensorsignale dem dreidimensionalen Raum
zuzuordnen. Allerdings ist nur wenig über die exakten Eigenschaften dieser Sensoren
bekannt.
Kenntnisse über die exakten Fehlermodalitäten sind für die Entwicklung eines Sen-

sorsimulationsmodells essentiell. Dieses ist wiederum notwendig um Algorithmen auf
Basis synthetischer Daten gegenüber Tiefenfehlern zu desensibilisieren. Oft ist eine
Desensibilisierung des Algorithmus nicht möglich, während die Sensoren zusätzlich
unzuverlässige Daten liefern. Dies motiviert Verfahren, die Tiefenfehler nachträglich
korrigieren können, jedoch ist eine Korrektur der Tiefendaten gelegentlich unzureichend.
Beispielsweise wenn eine pixelgenaue Assoziation zwischen RGB- und Tiefenwerten
benötigt wird, was eine exakte Kalibrierung erfordert. Die autonome Kalibrierung
von RGB-D Sensoren ist dabei ein noch ungelöstes Problem. Zusätzlich sollte eine
holistische Kalibrierung im Stande sein, die rigide Transformation zwischen dem Sensor
und einem roboterfesten Koordinatensystem zu bestimmen.
Diese Arbeit befasst sich mit den erwähnten Herausforderungen und präsentiert

fünf Lösungsvorschläge. Erstens werden zehn aktuelle Sensoren evaluiert, die die drei
häufigsten RGB-D Sensorfamilien abdecken. Zweitens wird ein generics Tiefenfehlersimu-
lationsmodell untersucht. Drittens werden zwei Kameramodell-unabhängige Methoden
präsentiert, die es erlauben Tiefenfehler nachträglich zu korrigieren. Viertens wird die
Assoziation von RGB- und Tiefendaten durch einen robusten autonomen Kalibrierungs-
algorithmus verbessert, der eine Structure from Motion (SfM) Rekonstruktion und
Annahmen über Ebenen im Raum mit einem Optimierungsproblem kombiniert. Fünf-
tens erweitert diese Arbeit den Stand der Technik um eine Methode zur automatischen
Kalibrierung der Sensorpose relativ zu einem roboterfesten Koordinatensystem.

Die Ergebnisse der Sensorstudie zeigen charakteristische Fehlermodalitäten abhängig
von der verwendeten Sensortechnologie. Das vorgestellte Simulationsmodell repli-
ziert die linearen, nicht-linearen und lokalen Fehler der untersuchten Sensoren. Die
Kameramodell-unabhängigen Kompensationsmethoden verbessern erfolgreich die Rich-
tigkeit und Präzision der Messungen. Die automatische Kalibrierungsmethode zeigt
gegenüber dem Stand der Technik eine signifikante Verbesserung der Assoziation von
Tiefen- und RGB Daten. Der Algorithmus zur Kalibrierung der Sensorpose extrahiert
in ersten Experimenten erfolgreich die rigide Transformation zwischen dem Sensor und
einem roboterfesten Referenzsystem.
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Chapter 1

Introduction

In the year 1986, Isaac Asimov, writer and professor of biochemistry, published a
collection of several images called “En L’An 2000” [1]. The series had been drawn
around the turn of the 19th to the 20th century and depicts scientific advances imagined
to be achieved in the year 2000. Among various still seemingly futuristic drawings are
images of autonomous and remote controlled machines that carry out everyday tasks
as: floor cleaning, constructing a building, farming and giving a costumer a haircut
(cf. Figure 1.1).

Figure 1.1: “En L’An 2000”. Drawings from late 19th and early 20th century showing
robotic devices. Re-published by Asimov [1].

Twenty years after “En L’An 2000” had been drawn, in his theater play “R.U.R. -
Rossumovi Univerzální Roboti” [2], Carl Čapek gave the concept of such autonomous
machines a name: Robot.

Now, nearly 100 years later, we are at the technological edge to realize those dreams.
Industrial Robots have become ubiquitous in modern factories, increase the produc-

tivity, and take over repetitive, hard, challenging, or even dangerous work.

1
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Figure 1.2: Field robot FRANC and floor washing robot FLOBOT.

During the last decade the first service robots made their way into our homes. Among
the first robots were automated floor cleaning (or vacuuming) systems. The task of
floor cleaning (vacuuming) provided many preconditions that paved the way for early
robot-based automation. Flat surfaces, a well-defined work space, and a simple task
made it possible to narrow down the robot’s functional requirements to the essentials:
wander around with an activated cleaning system and drive back to the docking station
as soon as the energy drops below a predefined level. These types of tasks are sufficiently
handled with low-level sensors and behavior-based control algorithms.

Over the years the technology advanced and educed more sophisticated robot systems.
The robots are targeted to solve more complex tasks and demand more detailed
information of the environment: The field robot FRANC [3], the floor washing robot
FLOBOT [4]–[6], and the personal assistant HOBBIT [7] are just a small subset of first
prototypes representing the bleeding edge of the current state of the art.

All these robots combine the information of various sensors to get the most accurate
and rich representation of the environment possible. Often, a color (RGB) camera is
combined with a depth sensor to a so-called RGB-D sensor. Recently, RGB-D sensors
became affordable and extend the list of state-of-the-art sensors in robotic research.
Although these sensors are widely used and become more and more popular, comparably
little is known about their exact properties.

1.1 Motivation
Since the introduction of Microsoft’s affordable depth sensor, Kinect [8] in the year
2010, RGB-D sensors have become an essential component for many methods and
applications using machine vision, especially in the field of robotics. A simple Google
Scholar1 search for the combination of the keywords "robotic" and "RGB-D" reveals a
steady growth of the field that started together with the release of the Kinect sensor
(cf. Figure 1.3).

1https://scholar.google.at/

https://scholar.google.at/


1.1 Motivation 3

Figure 1.3: Number of publications per year retrieved from a google scholar search with
the keywords: "RGB-D"+"robotic".

Nowadays RGB-D sensors are used in robotics applications such as object recognition
and tracking, 3D SLAM and navigation, and reconstruction [9]–[13]. The Kinect and
similar sensors provide not only 2D color data, but also depth measurements for each
pixel. The transition from 2D to high resolution and low cost “2.5D” opened up new
opportunities for researchers to develop more sophisticated algorithms.
A clear majority of leading research articles in the field of RGB-D data processing

is developed in close relation to the Microsoft Kinect or its direct succesors: the Asus
Xtion [14] or Primesense [15] RGB-D sensor series.

Now, seven years after their release, those sensors reached the end of the product
life cycle. Recent developments in the field of machine learning try to replace depth
sensors with algorithms that rely only on 2D images to estimate the corresponding 3D
information. I.e. Eigen et al. [16] show that depth maps can be generated from single
images with a multi scale deep network, and very recent research is pushing further
into the direction of 3D point and 6D pose estimation using Deep Networks [17]–[19].
However, until today they are far from reaching the accuracy of state-of-the-art depth
sensors.
Fortunately, the popularity of depth sensors has led to several successor systems

from different manufactures that use similar or different technologies to provide RGB-D
data. New sensors using Time of Flight (ToF) or Active Stereo promise to offer
similar or even better depth-sensing results and different characteristics for robotics
applications (cf. Figure 1.4). However, the sensor manufactures provide no, or only
limited, information regarding the sensors’ noise behaviors [14], [20]–[28]. To our
knowledge a comprehensive overview that quantitatively evaluates the new sensor
systems, including their noise characteristics in the robotics context, is still missing.
Many of the algorithms operating on RGB-D data incorporate the specific noise

characteristics of these sensors. For instance, SLAM algorithms include a model of
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Figure 1.4: Left: Robot used for sensor integration. Middle/right: Depth data gathered
with different sensors (middle: Orbbec 3D [21], right: KinectV2 [22]).

the decreasing accuracy (precision and trueness, ISO-15725 [29]) of the measurements
to determine the reliability of the measured data, which directly results in better
performance [8]. The same accounts for, but is not limited to, object recognition,
segmentation, 3D reconstruction, and camera tracking [10]–[13]. Hence, knowing the
correct noise models and sensor behavior lead already to better and more reliable results
in various fields of robot vision. Also novel data driven methods demand for proper
sensor models. Sünderhauf et al. highlighted in [30] the potential of deep networks in
the field of robotics. They emphasized the use of existing physic-based models and
their combination with deep networks, i.e. to use them for data augmentation and data
generation in order to robustify and prepare the methods for robotic vision, where
results will lead to real actions in the environment.

Apart from understanding the error modalities of depth sensors, one key step to reach
the full potential of RGB-D sensor setups is to relate the depth information pixel-wise
to the color information. Many algorithms are tailored to use the rich RGB information
e.g. for object detection [31], or as presented in [4] the detection of small particles that
would not be visible in the depth data. However, often it is not sufficient to detect
something in the image domain. The spatial information about the detected objects
or particles might be required, especially if a robot has to interact with the object or
manipulate the object. One way to get the spatial information is to precisely assign
depth measurements to pixels of the RGB image and using a perspective projection.
The projection requires the extrinsic and intrinsic camera parameters of the color
camera and the depth sensor. While the extrinsic parameters describe the spatial
relation between the RGB and depth camera, or more general two sensors, the intrinsic
parameters model the physical properties of the camera system itself, as the focal length,
the lens distortion, and the principal point. These parameters are usually estimated
in a calibration step with dedicated calibration methods. Most ready-to-use RGB-D
sensors on the market are shipped with a factory calibration that provides reasonable
registration results. However, the factory calibration is usually far from perfect. The
predefined setup limits the possible combination of RGB cameras and depth sensors, and
maybe an additional camera is added to the setup, resulting in a proprietary RGB-D
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Figure 1.5: Alignment of RGB and depth images using the inverse point-point distance
[32] (left) compared to the method presented in this work that adds the
point-plane distance (right). It shows improved convergence behavior and a
more accurate alignment of RGB and depth images, even on datasets that
offer motion blur and low image quality.

system. If the sensor setup is a proprietary RGB-D system, there is simply no factory
calibration available. Hence, to enable a precise perspective projection, it is necessary
to determine the intrinsic and extrinsic camera parameters.

Usually, the calibration of the sensor setup involves the use of checkerboard patterns
and has to be carried out by an expert. The property of the sensor setup might change
during operation, what requires a recalibration of the whole setup. Classic methods are
not suited for this scenario, and it might be impossible for a robot to autonomously
gather the information needed for a recalibration in the field, where it faces uncontrolled
environments. Hence, one of our ultimate goals is to develop an autonomous calibration
method that enables a sensor (re)calibration on a robot in the field using its own motion
without the need for a human expert or artificial calibration targets in order to precisely
register RGB and depth images.
Auto calibration methods for RGB-D sensors take one step into that direction and

have been addressed in the state of the art [32]–[34]. While those methods work well in
controlled environments and with a decent initialization by an expert, they still struggle
in real-life robotic indoor scenarios, where they face low image quality, motion blur,
and an inaccurate initialization.
Moreover, these methods do not take the calibration of the sensor pose relative to

the robot into account although this information is essential to transform the acquired
information into the domain of the robot.
To wrap up the motivation this chapter continues with the research questions and

gives a short overview of the contributions. After that it continues with a summary of
the most important related work and ends with a list of related publications.
All figures of this work are best viewed in color.
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Figure 1.6: The trueness and the precision of ten different depth sensors is evaluated
under various conditions. This work has been published in [37].

1.2 Research Questions and Contributions
The introduction of several new depth sensors and their steadily growing popularity
triggers our first research question:

1. How do state-of-the-art depth sensors for robotic vision differ from each other?
Are there any similarities in their accuracy? How do they impact other sensors in a
multi sensor setup, and how do different materials impact the accuracy?

To answer this question, Chapter 2 contributes a comprehensive evaluation and com-
parison with respect to i) different depth sensors and ii) different metrics (cf. Figure 1.6).
To be more precise, this work analyzes ten different sensors in terms of trueness and
precision as defined in [8], [35], [36] under various conditions. The experiments are
focused on indoor scenarios since sensors that rely on projected infrared patterns to
obtain depth data are not designed to deal with incident sunlight. The experiments are
tailored to extend the results of [8] and to give a comprehensive and general overview
without focusing on certain applications. Hence, several experiments are designed
to incorporate different distances, materials, and lighting conditions. This work also
investigates interference induced by other sensors, which is of special interest in robotic
and multi-robotic systems. The comparison includes seven wide-range sensors (Asus
Xtion Pro Live [14], Orbbec Pro [21], Structure IO [20], KinectV2 [22], ReaslSense
D435 [23], RealSense ZR300 [24], RealSense R200 [25]) and three near-range sensors
(RealSense SR300 [27], RealSense F200 [26], Ensenso N35 [28]).

A comprehensive statistical analysis using 40 experiments, evaluating over 50000
images guarantees an impartial comparison of the different sensors. This work is focused
on robotic related machine vision systems, hence all sensors are integrated on a robot
(cf. Figure 1.4) and evaluated using their standard configurations. This analysis is
of high interest for several robot perception tasks, i.e., where modeling the sensor
noise increases the performance of the algorithms. This includes tasks for navigation,
manipulation of objects that use RGB-D reconstruction, as well as object detection and
recognition. The results have been published in

G. Halmetschlager-Funek, M. Suchi, M. Kampel, et al., “An Empirical Evalua-
tion of Ten Depth Cameras: Bias, Precision, Lateral Noise, Different Lighting
Conditions and Materials, and Multiple Sensor Setups in Indoor Environments,”
IEEE Robotics Automation Magazine, pp. 1–1, 2018, issn: 1070-9932
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Figure 1.7: Overview of the depth error model that uses a virtual stereo camera pair.
It takes synthetic input data and augments them with the error model to
get realistic depth information including realistic errors.

The empirical sensor study compares different sensors and analyses their accuracy,
but does not answer the research question:

2. How to simulate the systematic error behaviors of the investigated errors? Is it
possible to define a generic model? How does the depth error impact other algorithms
that rely on accurate depth data?

Hence, Chapter 3 picks up the results of the sensor tests and comes up with an
intuitive generic method to simulate pixel-wise as well as image-wide systematic errors
of state-of-the-art depth sensors (cf. Figure 1.7). The proposed method reproduces
the characteristic sensor behaviors and is designed to be used together with synthetic
datasets. The model is evaluated by comparing the synthetically generated images with
real-life depth sensor data. The feasibility of the model is demonstrated by analyzing
the impact of systematic depth errors on a state-of-the-art reconstruction method.

While some of the investigated depth cameras do not provide access to the intrinsic
parameters, others allow only a calibration with manufacturer-specific methods which
fail to achieve good results. This leads to the research questions:

3. How to compensate depth errors without modifying the camera intrinsic parameters
that are used for the generation of depth images? Is it possible to use a generic model
as a post-processing step, and how does it impact other algorithms?

To resolve this challenge, Chapter 4 presents two alternative camera-model-free depth
compensation methods that optimize a depth compensation function and give a pixel-
wise depth dependent compensation value. Both compensation methods are evaluated on
synthetic and on real-life data. One compensation method is used together with a state-
of-the-art reconstruction algorithm. The reconstructions with uncorrected and corrected
depth data are qualitatively and quantitatively compared against a ground truth model.
The chapter ends with a short performance analysis of two different implementations of
the compensation method. One using an auto-differentiation technique and one, using
analytic derivatives.

The introduced compensation methods can be used in controlled environments only



8 1 Introduction

Figure 1.8: Overview of the camera model free depth offset compensation methods.

and demand manual ground truth measurements or special calibration setups. However,
together with classic camera calibration methods the RGB-D setup can be calibrated
and a precise alignment of RGB and depth data becomes possible. To conclude, rather
simple but powerful RGB methods as

A. Grünauer, G. Halmetschlager-Funek, J. Prankl, et al., “The power of GMMs:
unsupervised dirt spot detection for industrial floor cleaning robots,” in Annual
Conference Towards Autonomous Robotic Systems, Springer, 2017, pp. 436–449

can be easily combined with depth information, similar to our early work

G. Halmetschlager, J. Prankl, and M. Vincze, “Probabilistic near infrared and
depth based crop line identification,” in In Workshop Proceedings of IAS-13, 2014,
pp. 474–482

where we combine 3D and near infrared information to come up with a simple but
reliable method to segment crop rows for a crop line detection.

However, the calibration of such setups is tedious and requires a trained expert. Since
the calibration of the setup has a significant impact on the performance of the system
and can change during operation due to mechanical stress or other effects, they might
have to be recalibrated in the field by an expert, which might cause high costs and
down times. Fortunately, there are also auto-calibration methods for RGB-D setups
that do not require manual ground truth measurements or trained experts. Since these
methods are still far from being perfect the question is raised

4. How to improve auto-calibration methods in order to enable an autonomous
calibration of the robot in the field? Is it possible to incorporate priors to robustify these
methods?

State-of-the-art autonomous calibration methods use the information of the environ-
ment as calibration target, but do not explicitly incorporate assumptions about the
structure itself which impacts the quality of the results. Hence, Chapter 5 aims to
extend the state-of-the-art in autonomous calibration methods by incorporating plane
priors in two different ways into the calibration method, with the ultimate goal to enable
an autonomous calibration of a robotic system in the field. This work introduces the
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Figure 1.9: Overview of the autonomous auto calibration method that incorporates
plane priors for more accurate alignment of depth and RGB images. The
autonomous auto-calibration method has been published in [5].

point-plane distance as residual and adds a point-wise plane-based weighting function
(cf. Figure 1.9).

It defines a novel quantitative evaluation metric and uses it together with a quantita-
tive metric to evaluate the introduced algorithm in over 300 experiments on ten different
datasets. The evaluation demonstrates the benefit of the improved alignment between
RGB and depth images in a use case scenario where the output of the algorithm is
used to semi-automatically annotate depth images [9]. This part of the thesis has been
published in

G. Halmetschlager-Funek, J. Prankl, and M. Vincze, “Towards Autonomous Auto
Calibration of Unregistered RGB-D Setups: The Benefit of Plane Priors,” in In
Proceedings of 2018 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS), IEEE, 2018, pp. 5547–5554

To relate the spatial information acquired with an RGB-D sensor to another sensor,
it is necessary to extract the extrinsic transformation between the sensors. During
the manufacturing of a robotic setup these transformations have to be obtained to-
gether with the intrinsic parameters of the camera. In practice they are often manually
measured and fine-tuned. A holistic calibration of a RGB-D setup should include the
calibration of the RGB-D camera, the depth correction, and the calibration of the
camera’s pose relative to a reference system. That triggers the research question:

5. What are potential next steps towards a holistic autonomous auto calibration of
RGB-D cameras?

Chapter 6 gives an extensive outlook how a hand-eye calibration method can be
combined with the introduced auto calibration method to form a holistic calibration
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Figure 1.10: Overview of the hand-eye calibration method that estimates an optimal
rigid transformation between a laser ranger that is used for navigation and
a camera that is mounted on the robot.

method that includes the calibration of the camera pose relative to the robot. This
work extends our method presented in

F. Malekghasemi, G. Halmetschlager-Funek, and M. Vincze, “Autonomous Ex-
trinsic Calibration of a Depth Sensing Camera on Mobile Robots,” Proceedings of
the Austrian Robotics Workshop, pp. 29–35, 2018

by adding first results of an optimal method to estimate the rigid transformation
between the camera and a reference coordinate system on the robot, using only the
motion of the robot together with the RGB and depth information (cf. Figure 1.10).

Three different classic machine learning methods (Random Forrest, KNN, and Decision
Stump) are evaluated together with seven different features to develope a simple motion
blur detection algorithm that is used to filter the input images before they are piped
into the algorithm. The extrinsic camera pose calibration algorithm is tested on a
synthetic dataset and on a real-life dataset. The calibration results are evaluated by
using the estimated rigid transformation to align a laser scan with a point cloud from
the RGB-D camera and compute the point-point distance between the two scans.
Finally, this work ends with a short summary and points out limits and potentials,

as well as possible improvements for the presented algorithms.

1.3 Related Work
This section gives an overview of the state of the art regarding depth sensors, modeling of
depth sensing errors, the correction of depth errors, and hand-eye calibration methods.
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1.3.1 Sensor Calibration and Depth Error Models

Nguyen et al. [8] investigate different noise characteristics of a Kinect sensor and to our
knowledge it is the most important and considered work regarding RGB-D sensor noise.
They propose a 3D noise distribution for Kinect depth measurements in terms of axial
and lateral noise. Their work describes in detail all experiments and metrics they use
to quantize sensor noise in the context of reconstruction and tracking.

Han et al. [40] evaluate the potential of RGB-D sensors for enhanced computer vision
tasks. They review the vision methods of data preprocessing, object tracking and
recognition, human activity analysis, hand gesture analysis, and indoor 3D mapping.
They consider the impact the Kinect RGB-D sensor has had in research and new
technical challenges opened up by this sensor. It shows the importance of low cost depth
sensing devices for the field of computer vision. Moreover it gives a short introduction
to the technology used by the RGB-D sensors.
Andersen et al. provide a detailed analysis of the first Kinect sensor [41]. The

conducted experiments use sequences of depth images, allowing a statistical evaluation
of bias, precision, resolution, influence of other sensors, and lateral noise. This approach
is also used by Smisek et al. in [42] and Pramerdorfer [43]. The main difference of [41]
to this work is that the evaluation uses only an original Kinect sensor. Furthermore,
they only consider one or at most three distances, depending on the experiment, and
measure the influence of a single additional sensor. There is no evaluation of the sensor
performance for different materials and lighting conditions.
An evaluation of sensor behavior with respect to multiple materials was performed

by Berger et al. [44], including precision measurements on four materials. There are no
other evaluation metrics presented in their work.
Foix et al. [45] compared six different ToF cameras. Different to our evaluation the

work focuses solely on ToF cameras with respect to their limitations, advantages, and
existing calibration methods.
Langmann et al. [46] compare two ToF cameras with a Microsoft Kinect camera.

They use a ”Böhler Star” to compare the lateral resolution of the cameras. The depth
resolution is evaluate with a sinusoidal surface and the accuracy of the cameras is
measured.

The idea of including different materials was also used in the work of Pramerdorfer [43],
which evaluates Asus Xtion Sensors regarding their usability in fall detection scenarios.
The work includes a detailed description of the experiments conducted to evaluate
resolution, lateral resolution, precision, sensor influence by adding one additional sensor,
and bias. This work and [8] were the main input for designing the experiments in this
thesis.

However, this work extends the experiments with nine new sensors, six different mate-
rials, and substitutes the metric for lateral resolution of [43] with a similar measurement
for lateral noise as proposed in [8]. Overall, this results in 510 data points for five
different metrics.
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1.3.2 Camera Calibration

In [47], Yamazoe et al. present a method to model and correct the depth error of
projector based consumer depth cameras by performing a correction in the disparity
space. They use a distortion model for the projector and the infrared camera. Their
calibration method requires a dedicated calibration target.
Aside from the classic calibration methods that utilize checkerboard patterns to

achieve a camera calibration, several calibration methods have been developed that
fuse color and depth information. Many of them deal with laser range finders or ToF
cameras [48]–[50], but are not directly applicable to RGB-D sensors [51]. Fortunately
there is also related work specialized on the auto calibration of RGB-D sensors.
Teichmann et al. [33] introduced a depth multiplier image to compensate for depth

errors. Their method purely relies on depth data and exploits the property of the sensor
that close depth values are more accurate than distant ones. They come up with a
depth compensation function that requires 104 parameters. The algorithm needs a full
Visual SLAM (VSLAM) reconstruction extracted from the depth data. Contrary to
our method they only aim to find a way to compensate for depth errors and do not
consider the RGB camera.
Similarly, Quenzel et al. [34] use a VSLAM algorithm to compensate depth errors

and do not rely on planar geometry or a one-to-one pixel correspondence between
color and depth cameras. They use visual features gathered with the RGB camera to
triangulate points and compare the depth measurements with the expected distances.
In contrast to [32], [33], they introduce an online method that iteratively updates the
depth compensation. They compensate the depth values using thin plate splines, which
is similar to the bicubic interpolation introduced by [32]. Quenzel et al. demonstrate
improved reconstruction results and a sufficiently quick convergence of their calibration
method.

Basso et al. [51] address the extrinsic calibration problem by using a calibrated color
camera and a planar calibration target. While their method relies on fewer parameters
than [33], they still rely on a specific calibration target, a planar checkerboard. Their
algorithm shows improved results for the 3D structure estimation and the registration
of RGB and depth images. Similarly to [32], [33] the correction method results in a
radially symmetric error model for a Microsoft Kinect device and verifies the error
observations of Smisek et al. [42].

Zeisl and Pollefeys [32] present a calibration algorithm for the automatic calibration
of RGB-D sensors. The difference to other approaches [33], [34], [42], [51] is their
use of an SfM reconstruction instead of a depth dependent VSLAM algorithm or
a planar checkerboard. They favor the SfM reconstruction over VSLAM under the
assumption that constraints in the image domain are more accurate compared to depth.
They qualitatively evaluate their results against the factory calibration and a manual
calibration of the camera intrinsics by superimposing the depth map on the color image.
Our approach closely follows this method and adds plane priors to further improve
convergence behavior and the alignment between the RGB and depth image. This
work also adds a quantitative evaluation method that allows to make a quantitative
assessment of the calibration results.
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To conclude, several auto calibration methods for RGB-D sensors have been addressed
in the state of the art. While those methods work well in controlled environments
and with a decent initialization by an expert, they still struggle in real-life robotic
indoor scenarios, where they face low image quality, motion blur, and inaccurate
initializations. In contrast to other target-less auto calibration methods [32] utilize an
SfM reconstruction that tends to be more accurate for the alignment of RGB and depth
images than methods that purely rely on depth.
Our plane based weighting approach is inspired by the work of Rusinkiewicz and

Levoy [52]. They focus on Iterative Closest Point (ICP) [53], [54] methods and observe
an improved alignment error by introducing a normal space sampling. This work
improves the method presented in [32] by adapting the idea of normal space sampling
and point pair weighting to produce an adaptive residual weighting that favors a group
of normal vectors representing planes over points that do not have a supporting plane.
The weighting aims to reduce the number of observations while favoring more reliable
and stable points over potential outliers.

1.3.3 Rigid Transformation Calibration Between Sensors
Sinha et al. [55] introduce a method to calibrate the extrinsic parameters of a multi
camera setups from two silhouette sequences based on the constraints arising from the
correspondence of frontier points and epipolar geometry.
Carrera et al. [56] calibrate a multi-camera rig by performing several independent

SLAM reconstructions for every camera and match the resulting maps. The maps
are fused together by computing corresponding invariant features and solving for the
relative poses using bundle adjustment [57]. Different to Carrera et al. our method
is not limited to cameras and can be used together with every sensor that allows to
estimate the pose of the robot, i.e. the camera is calibrated relative to the coordinate
system used for the localization of the robot.
Miller et al. [58] present a method to calibrate the relative pose of several depth

cameras using the unstructured motion of objects in the scene to find potential corre-
spondences between the sensor pair. The acquired transformation is refined with an
energy minimization.
Li et al. [59] present an approach to calibrate the extrinsic parameters of multiple

depth sensors by using a skeleton tracker instead of an artificial pattern to calibrate
the setup. They use the joint positions to solve for the rigid transformation between
the cameras.
Other related methods deal with the extrinsic calibration of laser based sensors.

Levinson and Thrun [60] introduced a method to calibrate various sensor beams and
their corresponding orientation and distance-response function as well as a probabilistic
model. Moreover the method allows to recover the extrinsic pose of the sensor relative
to the robot coordinate frame by using the 3D information and known poses.
Maddern et al. [61] introduced a method to calibrate 2D and 3D LIDARs. They

optimize the extrinsic pose of the two sensors by optimizing a point cloud constructed
with the two sensors. Similar to Maddern et al., the method presented in this work
aims to calibrate a 2D LIDAR to another 3D sensor, but uses only the robot motion
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and not full point clouds.
Pandey et al. [62] calibrate the extrinsic parameters between a 3D LIDAR and a

camera system. The two sensors are calibrated by maximizing the mutual information
obtained between the sensor-measured surface intensities.

Similar to Schmidt et al. [63] the camera pose calibration method uses an SfM method
to estimate the camera trajectory. Different to the state of the art, the presented method
is tailored to be integrated into the auto calibration framework and allows to calibrate
the rigid transformation of two sensors that do not have to contain information from
the same domain. It directly uses the trajectories estimated with the sensors to find
the rigid transformation between them.

1.4 Related Publications
G. Halmetschlager-Funek, M. Suchi, M. Kampel, et al., “An Empirical Evalua-
tion of Ten Depth Cameras: Bias, Precision, Lateral Noise, Different Lighting
Conditions and Materials, and Multiple Sensor Setups in Indoor Environments,”
IEEE Robotics Automation Magazine, pp. 1–1, 2018, issn: 1070-9932

G. Halmetschlager-Funek, J. Prankl, and M. Vincze, “Towards Autonomous Auto
Calibration of Unregistered RGB-D Setups: The Benefit of Plane Priors,” in In
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Chapter 2

Depth Sensor Error Modalities

This chapter recaps three main state-of-the-art depth sensing technologies used for
the application of machine vision algorithms in indoor robotics: Time of Flight (ToF)
sensors, Active Stereo cameras, and sensors using a projected infrared pattern to acquire
depth information.
Subsequently, the study evaluates ten different near- and far-range depth sensing

devices, covering the three introduced sensing technologies (cf. Table 2.1). Thereby, it
facilitates thereby state-of-the-art methods [8], [29], [43] to benchmark the sensors with
respect to their trueness, precision, lateral noise, under varying lighting conditions, and
in multiple sensor setups. The study aims at refelcting the state-of-the-art of depth
sensing devices and to quantify their error characteristics. The chapter concludes with
a short summary and demonstrates the benefits of incorporating a simple noise model
in a state-of-the-art reconstruction method [64].

Table 2.1: Analyzed depth sensors and their specifications given by the manufacturers.

Sensor Xtion Pro Live [14] Structure IO [20] Orbbec Pro [21] KinectV2 [22] RS D435 [23]
Manufacturer ASUS Occipital, Inc. Orbbec 3D Microsoft Intel
Sensor Type RGB-D D RGB-D RGB-D RGB-D
Technology IR pattern IR pattern IR pattern ToF Act. Stereo
Depth Resolution 640x480 640x480 640x480 512x424 1280x720
Range [m] 0.8 to 3.5 0.4 to 3.5+ 0.6 to 8.0 0.5 to 4.5 0.2 to 10
Interface USB 2.0 USB 2.0 USB 2.0 USB 3.0 USB 3.0

Sensor RS ZR300 [24] RS R200 [25], [65] RS F200 [26] RS SR300 [27] Ensenso N35 [28]
Manufacturer Intel Intel Intel Intel Ensenso
Sensor Type RGB-D RGB-D RGB-D RGB-D D
Technology Act. Stereo Act. Stereo IR pattern IR pattern Act. Stereo
Depth Resolution 628x468 640x480 640x480 640x480 1280 x 1024
Range [m] 0.55-2.8 0.51 to 4.0 0.2 to 1.2 0.2 to 2.0 0.47 to 1.1
Interface USB 3.0 USB 3.0 USB 3.0 USB 3.0 Ethernet

15
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2.1 Sensing Technologies for Indoor Robotics
This work targets depth sensors that use an active light source together with an image
sensor to acquire depth information. One of the biggest advantages of those sensors
compared to other depth sensing approaches as LIDARs or laser range finders is that
they acquire high resolution depth information in an organized row and column structure.
Organized depth data contains an inherent pixel-wise neighborhood information of
adjacent points that allows for a significant speed-up of many algorithms. This work
focuses on Active Stereo systems, structured-light-like cameras, and ToF sensors.
Stereo cameras are used for several years to acquire 3D information for machine

vision applications. They consist of a pair of monocular cameras and estimate the
depth using the intrinsic camera parameters, the extrinsic camera parameters, and the
pixel offset between an observation in the left and the right camera (disparity). One
crucial and not completely solved problem is to find observations in one camera and
precisely locate exactly the same observation in the other camera. The detection of the
observations relies on texture, which might not be available in many scenarios. Active
Stereo cameras solve this problem by projecting a (infrared) pattern on the target that
provides the necessary texture to perform a stereo matching algorithm.
Structured Light cameras, as the Kinect, consist of an infrared projector and an

infrared-sensitive camera. The projector illuminates the target with a known (dot)
pattern that is detected with the infrared camera. Since the extrinsic parameters
between the projector and the camera, as well as the camera intrinsics are known, the
distance to the illuminated surface can be estimated using a standard triangulation
method.

Different to Active Stereo cameras and the very similar Structured Light cameras, ToF
cameras measure the distance to an object by measuring the time difference between
emitting the light and receiving the reflections from the surface. ToF cameras can be
split into two groups: pulsed ToF cameras and continuous-wave ToF cameras. Pulsed
ToF cameras illuminate the target for a very short period and accumulate the reflected
energy for every pixel. The accumulated electric charges can be used to compute the
distance. Pulsed ToF cameras are rather rare and require fast electronics to achieve
high accuracy. For instance, reaching an accuracy of 1mm requires a pulse of 6.6 ·10−12s.
In contrast, continuous-wave ToF sensors use the phase angle between the illumination
and the reflection to calculate the distance (cf. Figure 2.1). However, continuous wave
ToF sensors have the disadvantage that the scene has to be scanned several times with
different wave modulations in order to get a wider measurement range. For more details
on ToF sensors it is referred to [45], [66], [67].

2.2 Evaluation of Ten Different Depth Sensors
Depth sensors are known to have a growing depth inaccuracy with a growing distance
to the target. Moreover, this error is not constant throughout the image, which is
hard to quantize and strongly depends on the calibration of the sensor. These local
differences and calibration dependent inaccuracies make it difficult to benchmark the
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Figure 2.1: Function principle of continuous wave ToF cameras [45].

different sensors. This issue is circumvented by using only the sweet spot in the center
of the image to benchmark the different sensors.

2.2.1 Performance Characteristics
This section describes the performance characteristics used to evaluate the different
sensors. Following the review of related work and keeping in mind robotics applications
such as navigation, object detection, and human machine interaction, this work proposes
five different characteristics. These characteristics cover different aspects of accuracy,
reflection properties, the response to ambient illumination, and sensor interference.
Figure 2.2 depicts the relation between different error types, their characteristics and the
corresponding quantitative expressions. The performance characteristics are introduced
together with an outline how they capture the application requirements in an objective
and measurable way.

Performance Characteristics I and II - Trueness & Precision – Trueness
(ISO 5725-1) describes the deviation between the mean distance estimated by the sensor
and the ground truth distance. Precision quantifies the standard deviation of the depth
measurements. The definition of trueness and precision follows the official definitions of
trueness and precision according to ISO 5725-1 [29]. These two discrete values are used
to cover the full statistics of the measurement:

trueness =| dl − do − µd |, (2.1)

where dl is the measurement of the laser device, and do is the fixed distance offset
between the mounted laser device and the tested sensor. µd is the average depth defined
as:

µd = 1
N · n2

N∑
i=1

n∑
u,v

Ii(u,v), (2.2)

where N is the number of measurements, n is the size of the measured region, (u,v)
is the corresponding coordinate in the 2D depth image Ii. The precision is defined as
follows:
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Figure 2.2: Relation between the error types, the performance characteristics and the
quantitative expressions [68].

precision =

√√√√( 1
N · n2

N∑
i=1

n∑
u,v

Ĩi(u,v)2

)
− µ̃2

d, (2.3)

where Ĩi is the corrected fronto-parallel depth image, and µ̃d is the average depth of Ĩi
using (2.2).

Performance Characteristic III - Lateral Noise – This performance charac-
teristic quantifies the lateral noise around a vertical depth edge as a function of depth.
The maximum distance of the image pixels around a depth edge is used to quantify the
noise in pixels:

latnoise(d) = arg max
p∈P

(| ∆(p,l) |), (2.4)

where p is an instance in the set of detected edge pixels P within a selected region
(using Canny edges [69]), l is the least mean squares fitted line representing the edge,
and ∆(.) is the pixel-line distance function.
The lateral noise may be transformed into a lateral resolution by using the depth,

the lateral noise in pixels, and the calibration parameters of a sensor together with
its projective geometry. In other words, this performance characteristic evaluates the
precision of the sensor to quantize spatial expansions of objects and scenes in the image
space (while the pixel value gives the depth measurement).
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Performance Characteristic IV - Lighting & Materials – This performance
characteristic evaluates the precision depending on the reflectivity and absorption be-
havior of different materials in combination with the influence of ambient light. This
performance characteristic indicates the performance of the sensor for different materials
and under different lighting conditions.

Performance Characteristic V - Multiple Sensors – This performance char-
acteristic quantifies the precision of a sensor in a multiple sensor setup and the number
of invalid values in relation to the full sensor resolution (nan ratio). This is motivated by
the fact that sensors using the same measurement technology tend to interfere with each
other [27]. In other words, this performance characteristic measures the capability of the
sensor to deal with multi-sensor setups occurring in the field of robotics on a regular basis.

Why do the performance characteristics capture the requirements of e.g. SLAM or
reconstruction? SLAM and reconstruction algorithms include a model of the decreasing
precision and trueness of the measurements to determine the reliability of the measured
data and to incorporate the noise characteristics. It has been shown that incorporating
a noise model results in better performance [8]. The same accounts for, but is not
limited to, object recognition, segmentation, 3D reconstruction, and camera tracking
[10]–[13]. Although the main contribution of this thesis is an extensive evaluation of
ten different sensors, the relevance of the results are highlighted by showing preliminary
qualitative results of the reconstruction algorithm introduced in [64] that incorporates
the parametric error model.

2.2.2 Experimental Setup

This section describes the setup of the experiments and the method used to produce
results for the different performance characteristics introduced in the previous section.
There exist various publications regarding sensor calibration and depth offset com-

pensation methods [32], [33]. This work directly benchmarks the sensors and not the
underlying calibration methods, therefore it uses the raw sensor data together with the
factory calibration. However, it should be noted that this chapter is highly related to
sensor calibration. Most calibration methods rely on information regarding the noise
characteristics of raw sensor data to adapt the underlying noise and/or error model.
This chapter provides the necessary information.

The data is gathered using a mobile platform equipped with the Robot Operating
System (ROS) [70] and the publicly available ROS wrappers for the used sensors
(cf. Figure 2.3). The ground truth measurements are obtained using a laser range
measurement device. In addition, a luxmeter and a strong construction light are used
to evaluate the sensors’ capabilities under different lighting conditions.
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Figure 2.3: Robotic s other wordsystem.

Experiment I/II - Trueness, Precision & Lateral Noise

Gathering data for far-range sensors is done starting from the shortest distance at which
the sensor is able to gather depth information up to the furthest distance (∼ 7.0m)
using a step size of 0.5m. For near-range sensors, measurements are conducted from
approximately 0.3m to 2.0m with a step size of 0.1m. The distances are validated
using a laser measurement device. The depth offset between the sensor and the laser
measurement device is determined manually and taken into account for the experiments.
The sensor is positioned parallel to a planar surface. For each measurement, a region
of 20× 20 pixels on the target is recorded for 100 frames to make sure that temporal
noise is included in our evaluation. The ground truth laser measurement is subtracted
from the mean distance value obtained from the 100 frames to calculate the trueness.

For the precision, a plane is fitted to the target area to compensate for the non-exact
parallel alignment of the sensor to the target area. This achieves a fronto-parallel sensor
image. The obtained standard deviation gives a new data point for the precision of the
sensor at the current distance.
For both the trueness and the precision, a parametric error model is fitted:

f(d) = p0 + p1 · d+ p2 · d2, (2.5)

where d represents the depth and p0,p1,p2 are the coefficients of the quadratic error
model.
The determined error models for every sensor and the collected numerical data are
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Figure 2.4: Setup for multi-sensor and material tests.

publicly available on our web page1.
Similar to [8] the lateral noise is determined using the sharp vertical edge of the

target. First, a region of the depth map that contains the vertical edge of the target
is manually selected . Second, that edge is detected using Canny edges [69] and a
line model is fitted to the obtained pixels using least mean squares. This enables the
determination of the distance of each edge pixel to the fitted edge.

Experiment III - Lighting & Materials

In this setup, six different materials under four different lighting conditions (4lux, 36lux,
277lux, 535lux), at distances 0.7m (near-range), 1.0m, and 1.5m (far-range) are tested.
The different lighting conditions are achieved by adding three light sources, one after
the other, consisting of two ambient office lights and one strong spotlight.
The materials are chosen to cover a wide variety of reflective characteristics. This

includes aluminum, black plastic, blue shiny plastic, foam, paper, and textile. The
sensor is placed parallel to the objects. For each distance, object, and lighting condition,
a region of 20× 20 pixels is measured on the objects for 100 frames. The schematic of
the experimental setup is depicted in Figure 2.4.

Experiment IV - Multiple Sensors

Simulation of interference of additional sensors is achieved by placing one additional
sensor at a distance of 2m and an angle of 60°, and another at a distance of 1.1m
and an angle of 45° to the object (cf. Figure 2.4). The interference measurements are
conducted by adding one sensor after the other. Each measurement, consisting of 100
frames, is taken from a planar surface parallel to the sensor.

2.2.3 Results
This section gives a comprehensive overview of the results achieved by the experiments
including interpretations and explanations.

1https://www.acin.tuwien.ac.at/RGB-D-sensor-tests/

https://www.acin.tuwien.ac.at/RGB-D-sensor-tests/
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Trueness

While the KinectV2 offers a trueness over the whole range, a significant deterioration
of the trueness is observed for sensors using Structured Light starting from d > 3m.
While all three Structured Light sensors and the two Active Stereo cameras ZR300 and
D435 offer a better trueness than the KinectV2 for distances d < 1m, three sensors
(ZR300, Orbbec, Structure IO) offer an even better trueness for depth values d < 2.5m.
The results show a quadratic deterioration of the trueness for all sensors (Full range:
d = 0− 8m, Figure 2.5a; Zoom-in: d = 0m− 3m, Figure 2.5b). The near-range sensors
F200 and SR300 (cf. Figure 2.5c) show a slightly worse trueness than their far-range
counterparts, while Ensenso N35 provides a good trueness over the whole measurement
range.
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Figure 2.5: Trueness results for near and far range devices. Lower is better.

Precision

A quadratic decrease of precision is found in all far-range sensors (Full range: d =
0− 8m, Figure 2.6a; Zoom-in: d = 0m− 3m, Figure 2.6b), but the Structured Light
sensors differ in scale compared to KinectV2. Overall the R200 and the ZR300 sensors
have the worst performance, while the Structure IO and Orbbec sensors perform very
similar. For distances at d < 2.0m all Structured Light sensors generate less noisy
measurements than the KinectV2. Moreover, the D435 is able to gather more precise
results than the KinectV2 at distances d < 1m. The precision results for the D435
are more scattered than for the other sensors. The near-range sensors (cf. Figure 2.6c)
experience noise levels up to 0.007m. In the ranges specified by the manufacturers the
experiments obtain precision values under 0.004m.

Lateral Noise

The analysis of lateral noise shows similar results for the three far-range Structured
Light sensors and distances. For d < 3m the noise level is independent of the distance,
with 3 pixels for the Structured Light sensors and 1 pixel for the KinectV2 (cf. Table 2.2).
Two Active Stereo sensors (D435 and ZR300) offer a similar low lateral noise level as
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Figure 2.6: Precision results for near and far-range devices. Lower is better.

the KinectV2. The R200 achieves a lower lateral noise of 2 pixels for distances closer
than 2m. In the near-range the Ensenso N35 achieves the highest lateral noise value.

Materials

A total of 384 data points are gathered to determine how the precision of the sensors is
influenced by the reflection and absorption properties of six different materials in combi-
nation with four different lighting conditions from 4.2lux to 535.75lux (cf. Figure 2.10).

The tests reveal that the Structure IO sensor handles the varying object reflectances
and lighting conditions the best. Although it has a lower precision compared to the
other sensors for distances d > 1.5m, it is able to gather information for high reflective
surfaces, such as aluminum, and under bright lighting conditions. While the Structure
IO sensor gives a dense depth estimation, the Xtion is not able to determine a depth
value. It is also notable that the Orbbec completely fails to gather depth information
for four out of six surfaces under bright lighting conditions. The KinectV2 fails to
gather reliable depth data for aluminum at distances of d = 1m and d = 1.5m under
bright lighting conditions. The F200 and SR300 have a significantly lower precision
for bright lighting conditions. During the setup of the experiments we expected the

Table 2.2: Lateral noise of the different sensors.
Lateral Noise [pixel]

Sensor d=0..0.7m d=0.7..3m d=3..5m
Asus Xtion - 3 2
Structure IO - 3 2
Orbbec - 3 2
KinectV2 - 1 1
D435 1 1 2
ZR300 - 0.5-1.2 -
R200 - 2-3 -
F200 1.5 - -
SR300 2 - -
Ensenso 3 - -
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Noise Induced by Additional Sensors, 0.7m-1.5m
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Noise Induced by Additional Sensors, 0.7m-1.5m
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Figure 2.7: Precision and nan ratio (lower is better) in multi sensor setup. Indices
represent distance to the target: 07= 0.7m, 10= 1m,15= 1.5m.

Active Stereo cameras (Ensenso, R200) to be able to handle different lighting conditions
better than the Structured Light sensors due to the nature of their technology. This
expectation is partially fulfilled.

Additional Sensors

The results (cf. Figure 2.7) reveal that the far-range Structured Light sensors can handle
noise induced by one and two additional sensors. One exception is when the distance
to the target is d = 1.5m and two additional sensors are introduced to the scene. A
similar effect is not observed for the KinectV2. The sensor gives stable results for the
precision independent of one or two additional sensors. The near-range sensors F200
and SR300 are significantly less precise with an additional sensor. The Ensenso N35 is
only slightly affected by a third observing sensor. At this point it has to be noted that
the high nan ratio for the close range devices can partially be derived from the setup.
Half of the scene is out of the sensor’s range (cf. Figure 2.8).

In summary, the first experiment with one sensor provides a baseline for the measure-
ments with two and three sensors observing the scene. The first differences are already
visible if only one sensor is added. In particular, the SR300 and F200 show a significant
increase in the nan ratio if another RealSense device is added to the scene. For a closer
analysis the corresponding depth images are depicted. In Figure 2.8 it is clear that
the depth extraction is heavily influenced by an additional sensor. The Ensenso and
KinectV2 are nearly unaffected by the additional sensors.
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Figure 2.8: Influence of additional sensors. SR300. Number of sensors observing the
scene, from left to right: 1,2,3.

Use Case

Schreiberhuber et al. [64] develop a scalable reconstruction method that uses a mesh
to represent surfaces. In their work they incorporate the presented error model for
the precision of the RGB-D sensor. As an outcome, they show a significant quality
improvement of the reconstruction (cf. Figure 2.9).

Figure 2.9: Reconstruction method from [64]. The two RGB images show the same
location observed from different distances. The bottom images show the
reconstruction results of the highlighted region (red circle), without (left)
and with (right) the introduced error model.

2.3 Discussion
The three far-range sensors using Structured Light show similar results for trueness,
precision, lateral noise, and noise induced by additional sensors. Their precision differs
for different object properties and under varying lighting conditions. While the Structure
IO sensor gathers valid depth data under all lighting conditions for all materials, it
shows a slightly lower precision than the other sensors. The Orbbec sensor fails to
gather data under bright lighting conditions for four out of six materials at a distance
of 1m. The difference in performance under bright lighting conditions may be related to
the built-in IR cameras, their dynamic range, and the performance of the auto exposure.
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The RealSense R200 achieves a similar trueness than the Structured Light sensors, the
ZR300 shows a smaller trueness than the Structured Light sensors for d < 2m. However,
the ZR300 appears to be less precise than the Structured Light sensors, independent
of the target material. Moreover, they fail to gather depth data under bright lighting
conditions.

The Microsoft KinectV2 behaves significantly different compared to the other sensors.
The KinectV2 outperforms all sensors regarding trueness, lateral noise, and precision
for d > 2m. For the range of 0.7m < d < 2m the KinectV2 is less precise than the
Structured Light sensors. To conclude, the data provided by the KinectV2 is less
smooth and generates worse surface representations for mid-range depths.
The D435 gives scattered results for the precision and the trueness. For some

distances, the sensor achieves a similar trueness and precision as the Xtion. However,
other distances show large outliers. Due to the nature of the used Active Stereo
technology the D435 is not influenced by additional sensors.

For the near-range devices the experiments reveal that the F200 and SR300 sensors
are not able to handle noise induced by additional sensors. Their precision and nan
ratio are significantly influenced if a second sensor is added to the scene. In terms of
precision, the F200 and SR300 are superior compared to the Ensenso N35 Active Stereo
system. For all other performance characteristics the Ensenso N35 outperforms the two
sensors.
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Figure 2.10: Precision for different materials and lighting conditions. Lower is better. A
precision of zero indicates that the sensor is not able to gather any depth
information.





Chapter 3

Simulation of Systematic Depth Errors

The sensor study presented in Chapter 2 revealed that several depth sensors show
an exponential increase of the trueness and precision across different manufacturers.
Additionally, the sensors show pixel-dependent (local) variations of the depth map
accuracy (cf. Figure 3.1).

In theory, a well parameterized calibration model should be sufficient to compensate
these errors. Such a perfect calibration requires dedicated setups in a controlled
environment and might not be possible in practice. Especially if the intrinsic parameters
change during operation due to mechanical stress, a recalibration in the field might not
be possible. Moreover, it is not trivial to determine if a formally decent calibration is
still valid or not.

To conclude, it is very likely that algorithms have to deal with depth inaccuracies in
the field. One crucial step to bulletproof and robustify new algorithms is to test them
with large, real-life datasets. These datasets have to include realistic depth estimates
as well as ground truth information to enable an impartial analysis of algorithms.
Especially, novel data driven methods would require such realistic large scale datasets
to learn robust reliable algorithms that make reliable decisions, which directly result
in actions in the real world [30]. Unfortunately, large, real-life, ground-truth datasets
are very rare and hardly available. This problem is often circumvented by utilizing

Figure 3.1: Depth data of a flat wall gathered with a factory calibrated R200 (green).
The fitted plane highlights the radial error due to an imperfect calibration.
With courtesy of DAQRI.
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large synthetic datasets that provide the necessary ground truth information, but lack
realistic depth data and will give results that are far from the algorithm’s performance
under real-life conditions. One way to bridge the gap between synthetic and real-life
data is to make the synthetic data as realistic as possible, e.g. by incorporating sensor
models. We believe that modeling the exact systematic error behavior is a crucial step
towards the development of new robust algorithms. To our knowledge, there are hardly
any generic depth error models available that replicate all error behaviors that have
been observed in the empirical sensor study.
This chapter contributes a generic camera oriented model to simulate simple and

complex systematic depth errors. The method is inspired and derived from the principals
of stereo imaging and replicates the results of the sensor study.
The next sections present and evaluate a new comprehensive simulation method.

3.1 Error Model
Chapter 2 revealed that state-of-the-art depth sensors show a linear and/or exponential
increase of the precision and trueness over the measured distance, which can be modeled
with a second order polynomial. This quadratic error model is used to model errors
of a small sub region (u,v) ∈ S of the image, such that the depth error e ∼ N (µ,σ2)
becomes independent of the pixel location:

{S ⊂ U | e = f(u,v,z) ≈ f(z)}, (3.1)
where S is a small subset of the set of all pixels U , e is the error and z is the depth.
This simplified depth measurement error only gives a rough estimate of the sensor’s
accuracy. That is sufficient to benchmark the sensors, but is deficient if the error has
to be simulated in detail.

Why is it deficient? In addition to the linear and non-linear increase of the trueness
and precision, the sensor study presented in Chapter 2 revealed, systematic, radial
shaped local variations of the trueness for a tested Active Stereo Camera (cf. Figure
3.2). Similarly, Teichmann et al. [33] and Smisek et al. [42] document a variation of the
trueness across the image for a Structured Light sensor. Teichmann et al. locate the
source of this error at the projected pattern, which cannot be influenced by the user and
causes the error to persist in the raw depth data. It is simply impossible to cover this
error with (3.1) because it does not cover more complex systematic errors behaviors
that e.g. lead to locally variable errors across the depth image. Hence, it is necessary to
come up with a new model that is able to simulate all of the observed properties:

• Linear increasing trueness and precision

• Non-linear increasing trueness and precision

• Local variations of the trueness to simulate a radial shaped, oscillating error.

Different to (3.1) and [8], [37], the depth error is formally modeled as

{∀(u,v) ∈ U | e← f(u,v,z)}, (3.2)



3.1 Error Model 31

Figure 3.2: Total error of a R200 depth camera after factory calibration. The images
show a systematic radial shaped depth error that increases over the depth
and additional random noise.

where U is the set of all pixel coordinates, and e is the depth error that depends on the
pixel coordinates ({u,v}) and distance (z).
One of the evaluated Active Stereo cameras showed a combination of all observed

error modalities. That suggests the assumption that a virtual stereo camera with bad
calibration parameters can be used to model these errors. Figure 3.3 gives an overview
of the proposed method.
The method takes synthetic depth images of a virtual depth camera with known

intrinsic parameters as input data.
First, the depth image is unprojected to a 3D point in the coordinate system of the

left camera image by inverting the standard pinhole camera model

u = πGT (.) =
[
fx 0 cx
0 fy cy

] [
xn
1

]

xn =
[
x · z−1,y · z−1

]T
,

(3.3)

with fx,fy as the focal length, cx,cy as the principle point, and x,y,z as the 3D coordinates,
such that

x = π−1
GT (.) , (3.4)

with x = [x,y,z]T as a point in the coordinate system (COS) of the left camera.
Second, the 3D points are back projected onto the left and right image plane using a

standard pinhole model. The pinhole model is modified during the projection with the
error coefficients εn and includes a radial and tangential lens distortion model that will
introduce different disparity errors across the image. These disparity error will directly
result in depth errors. However, before the 3D points xl are reprojected into the right
camera, they have to be transformed into the right camera COS with
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unprojection
to 3D points

in left
camera COS
π−1
GT (.) → xl

projection to
left camera

πε(.)

transformation
to right

camera COS
lTr ◦ xl → xr

and pro-
jection to

right camera
πε(.)

disparity
calculation

and principal
point error

d = ux,l − ux,r
dε = d + εpp

depth
calculation
z = f · b · d−1

ε

Figure 3.3: Stereo error model overview. From left to right: First, the depth image is
unprojected into the 3D space using the ground truth camera parameters.
Second, the 3D points are back projected onto the left and right image
plane, using the modified camera model, including lens distortion. Third,
the depth image is recomputed based on the disparity values, the altered
focal length, and modified baseline.

xr =lTr ◦ xl

s.t. lTr =
[
R t
0 1

]
, R ∈ SO(3)

R =E, t =
[
−b 0 0

]T
(3.5)

where xr are the points in the right camera COS, xl are the 3D points in the left camera
COS, R ∈ SO(3) is the rotational part of the transformation, t is the translation part
of the transformation, and b is the baseline of the camera.
Since the same camera model is used for the left and right camera, the principal

point is not altered at this point, because it would not influence the resulting disparity.

u = π(x) =
[
fxεfx 0 cx

0 fy cy

] [
x̌
1

]
s.t. x̌ =L(r2)xn + t(xn)

xn =
[
x · z−1,y · z−1

]T
r2 = ‖xn‖2

2

L(r2) =1 + k1r
2 + k2r

4 + k3r
6

t(x) =
[

2xy r2 + 2x2

r2 + 2y2 2xy

] [
t1
t2

]
.

(3.6)
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After the projection the disparity values are calculated for each 3D point, using the
ux coordinate of its observation in the left image ux,l, respectively right image ux,r with

d = ux,l − ux,r, (3.7)

where d is the calculated disparity. To simulate a misplaced principal point, a constant
pixel offset εpp is added. The biased disparity value is calculated with

dε = d+ εpp (3.8)

Finally, the resulting disparity image is transformed to a depth image with

z = fx · b · εb
dε

(3.9)

where z represents the depth value, fx the ground truth focal length, b the ground truth
baseline, and dε the erroneous disparity value.
So far the model does not take the finite resolution of the disparity values into

account. Classic stereo vision algorithms derive the location of the correspondences
from n discrete pixels coordinates. With that, the resolution of a feature location is
limited to 1

n
[px]. To simulate this quantization error the pixel locations ux,r and ux,l

are discretized with

ûx = integer(ux · n)
n

(3.10)

where ûx is the discretized pixel value.
To simulate a potential smoothing of the depth images, the synthetic depth maps are

downscaled to half of their size and subsequently upscaled back to their original size
using a bilinear interpolation.

To simulate the non-overlapping field of view of the stereo pair, the very left border
pixels of the images are set to zero. The size of the zero-pixel region is selected to
correspond to a target at a distance of z = 0.5m, which is approximately the lower
bound of the operational range of a real-life far-range depth sensor.

With that the error model is defined and covers errors due to: disparity offset (wrong
principle point), focal length error, baseline error, lens distortion, quantization, and
depth interpolation.

3.2 Evaluation
To get realistic distortion and camera parameters, the intrinsic parameters of an Active
Stereo camera are recovered using a standard calibration method.

The retrieved parameters are summarized in Table 3.1 and used for the evaluation of
the error model.

The error model is applied to 66 synthetic depth maps from 0.5 m ≤ z ≤ 7 m with a
step size of 0.1 m. To quantify the impact of the different errors, the RMSE and the
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Table 3.1: Virtual Camera Parameters.

Tangential Distortion t1 −0.0043
t2 −0.0021

Radial Distortion
k1 0.069
k2 −0.5463
k3 1.0740

Focal Length [fx,fy] [445.4344,444.9822]
Focal Length Error εf 1.03

Baseline b 0.07
Baseline Error εb 1.03

Principle Point [cx,cy] [236.775,177.484]
Disparity Offset εp 0.32

Quantization Step 1
n

1
25

Resolution [480× 360]
Interpolation [480× 360]→ [640× 480]

precision (cf. (2.3)) are calculated. Although the precision quantifies the variation of the
error across the image, it is not suitable to reflect the local influence of non-Gaussian
errors on a pixel neighborhood. Hence, to visualize non-Gaussian errors, a 3D surface
representation is generated that depicts the radial distortion error and the tangential
distortion error.
To demonstrate the feasibility of the error simulation model, it is tested together

with a reconstruction algorithm.

3.2.1 Simulated Error Modalities
The results reveal that the quantization error, baseline error, focal length error, disparity
offset, and the interpolation error do not influence the precision of the depth sensor,
but have strong influences on the RMSE (cf. Figure 3.4 and Figure 3.5).

As expected, the focal length error and the baseline error result in a linearly increasing
RMSE (cf. Figure 3.4a, Figure 3.4b).
The model simulates a miss-calibrated principle point by adding a constant dis-

parity offset εd. This offset causes a non-linearly increasing RMSE of the form 1
n+x

(cf. Figure 3.4c) and has a significant impact on the estimated depth values.
The disparity error reflects the finite precision of the stereo correspondences in the

image space. Figure 3.4d depicts the RMSE caused by this quantization. Since the
disparity quantization resolution is constant over the whole distance, and close depth
values have a high disparity value, the influence is more significant for distances > 3 m.
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(a) Focal length error. (b) Baseline error.

(c) Principal point error. (d) Disparity quantization error.

Figure 3.4: RMSE for focal length error, baseline error, principal point error and
disparity quantization error.

Figure 3.5a shows the results for the interpolation error. As expected, the interpolation
error has no influence on the RMSE for the given input data. Since the evaluation
deals with synthetically generated data of fronto-parallel, perfectly flat surfaces, the
interpolation value matches the ground truth value.

The model introduces radial distortion coefficients with the goal to simulate an
alternating shift of the correspondences’ coordinates, dependent on the position of a
point in 3D space. Figure 3.6 shows exactly this behavior. The radial distortion error
alters the pixel observation in the left and right image dependent on the observation’s
3D location, which directly impacts the disparity value, and with that the estimated
depth. The radial distortion error shows a linear impact on the RMSE (cf. Figure 3.5b),
and on the precision (cf. Figure 3.6a), while it clearly causes a radial shaped error in
the depth image (cf. Figure 3.6b).

Usually the tangential distortion is used to model a not perfectly parallel aligned lens
and image sensor. The emulation model turns this around to simulate the effects of
this misalignment. Figure 3.7b depicts the resulting precision, as well as the typically
tilted depth map.
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(a) Interpolation error. (b) Radial distortion error.

Figure 3.5: RMSE for interpolation error and radial distortion error.

(a) Precision. (b) Surface.

Figure 3.6: Radial distortion error.

3.2.2 Synthetic Data Augmentation

The introduced error model is meant to be applied to a synthetic dataset to simulate
realistic depth errors. This section provides a feasibility study that applies the model
to the synthetic ICL-NUIM dataset [71], which offers ground truth camera poses and
depth maps of an indoor scene. The enriched dataset is used to investigate how depth
errors impact a state-of-the-art reconstruction algorithm. The reconstruction algorithm
is based on truncated signed distance functions (TSDF) [72] to acquire a detailed 3D
surface representation. It relies on both, good depth data, and very accurate camera
poses. The feasibility study focuses on the impact of poor depth data.
The results are qualitatively and quantitatively evaluated against a ground truth

reconstruction, which is generated using the unmodified RGB-D data, the ground truth
camera intrinsics, and the ground truth camera poses from the dataset. Similarly,
the augmented depth images are also piped into the reconstruction algorithm. The
reconstructions are analyzed and compared in order to get qualitative results. Each of
the erroneous reconstructions is aligned with the ground truth reconstructions using an
ICP [54] algorithm. The distance between the two aligned reconstructions is extracted
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(a) Precision. (b) Surface.

Figure 3.7: Tangential distortion error.

(a) 3D reconstruction. (b) Histogram.

Figure 3.8: Reconstruction generated with perfect depth and camera pose information.
The generated 3D scene and the error histogram of the cloud-cloud distance
between the CAD data and the reconstructed scene represent the baseline,
and the absolute limits of the used reconstruction algorithm.

with [73] and together with the corresponding error histograms gives a quantitative
measure.

Figure 3.8a shows the acquired ground truth reconstruction. The walls are perfectly
flat, without showing any reconstruction artifact. However, the error histogram between
the CAD data of the scene and the reconstructed scene shows a slight deviation. These
errors mostly originate from the used reconstruction method itself (TSDF with 1 cm
grid size) and slightly from the used depth data representation which limits the depth
resolution to 1 mm.
The experiments are repeated for each individual error modality and provide the

reconstructions and error histograms. They reveal a direct relation between the error
type (local or global) and the impact on the quality or the absolute accuracy of the
reconstruction: The interpolation error, radial distortion error, and tangential distortion
error are all local errors, hence they might be different for each individual pixel of the
acquired depth map. Given that, they have the highest impact on the perceived surface
quality, especially for flat surfaces (cf. Figure 3.9 and Figure 3.10), while they still
achieve reasonable quantitative results for the absolute accuracy.
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Figure 3.9: Impact of the interpolation error (orange), radial distortion error (blue),
and tangential distortion error (turquoise) on the image quality.

On the other hand, the focal length error, principal point error, and baseline error
depend only on the depth and are independent of the 3D observation on the image
plane. The experiments show that these errors tend to have less influence on the
perceived quality of the reconstruction, but strongly impact the absolute accuracy of
the reconstruction (cf. Figure 3.10). To conclude, these errors have less influence on
neighboring pixels on a flat surface because the surface tends to have similar depth values
or only gradually changing depth values. Figure 3.11 visualizes the significant impact
of the baseline error on the absolute accuracy, while the surface of the reconstructions
shows nearly no impact. High resolution reconstructions for the individual errors can
be found in the appendix.

3.3 Discussion
This chapter develops a generic, camera-model-oriented method to simulate systematic
depth errors. It is demonstrated how the error model can be used to analyze the
capability of a state-of-the-art algorithm to handle systematic linear, non-linear ((x+
n)−1), radial-shaped, and pixel-location-dependent errors (cf. Figure 3.12).
The systematic depth errors are simulated with a virtual stereo camera model that

uses a slightly modified pinhole camera model and a radial and tangential distortion
model.
The generic model replicates systematic depth errors of various sensor technologies
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(a) Ground truth. (b) Quantization. (c) Interpolation. (d) Rad. distortion.

(e) Tan. distortion. (f) Principal point. (g) Focal length. (h) Baseline.

Figure 3.10: Reconstruction error histograms, showing the point-point distance between
the reconstructed scene and the ground truth CAD data. (a) Ground truth
reconstruction; (b) quantization error; (c) interpolation error; (d) radial
distortion error; (e) tangential distortion error; (f) principal point error;
(g) focal length error; and (h) baseline error.

and shows close-to-real-life results for the trueness and the precision of the sensor.
I.e. it models non-linear and radial-shaped, local errors that are characteristic of
Structured Light and Active Stereo cameras as well as linear increasing errors which
are characteristic of ToF cameras.

The presented feasibility study applies the model to a synthetic dataset and investi-
gates how imperfect depth data impacts a state-of-the-art reconstruction algorithm. It
reveals that the accuracy of the reconstruction is not necessarily connected to the per-
ceived surface quality. Hence, the results suggest that the often used pure qualitatively
evaluation of reconstruction methods might be misleading and highlights the necessity
of ground truth data together with realistic noise models for an impartial evaluation.

Figure 3.11: Left: ground truth reconstruction, right: reconstructed scene with applied
baseline error. While the surface quality shows only slight flaws, the
absolute accuracy shows a significant impact of the baseline error.
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(a) R200 bias. (b) Modeled trueness using the
principal point error.

(c) R200 radial local error. (d) Modeled local error us-
ing the radial distortion
error.

Figure 3.12: Real data, left. Synthetically generated data, right.

The evaluation shows that synthetic datasets combined with the presented model are
well suited for that purpose.

The introduced systematic error simulation model suggests that it should be possible
to avoid most of the systematic errors by applying a decent calibration. For some
reasons it might not be possible to directly access and correct the intrinsic parameters
of a sensors, which cause the erroneous depth measurements. That motivates advanced
methods, which enable a depth error compensation without modifying the intrinsic
sensor parameters. The next chapter presents such an advanced method.



Chapter 4

Camera-Model-Free Compensation of
Systematic Depth Errors

The sensor study presented in Chapter 2 revealed that state-of-the-art depth sensors
show significant depth sensing inaccuracies. Chapter 3 shows that these errors have a
negative impact on state-of-the-art algorithms. In theory a perfect calibration should
correct these errors, as long as the camera’s physical properties follow the calibration
model. Often it is not possible to achieve perfect calibration results due to practical
limitations, especially if the intrinsic camera parameters are not exposed to the user
or if the required calibration models are not available. That motivates the use of
alternative, camera-model-free depth compensation methods. This chapter contributes
two such methods, one using a discrete compensation model, and the other a continuous
compensation model. The discrete model consists of a set of compensation maps for
several discrete distances, and the continuous model combines a single compensation
map with an exponential function to continuously model the depth dependency.

The next section continues with a short introduction to the applied optimization and
interpolation methods. After that the two error models are described in detail and
evaluated on synthetic and real-life data.

4.1 Methods for Camera Model Free Depth
Correction

This approach optimizes a camera-model-free depth error compensation model. It
corrects depth sensing errors independent of the underlying camera model or depth
sensing principals. The following two sections give a short introduction to the used
optimization method and the function that is used to interpolate the compensation
lattice.

4.1.1 Levenberg-Marquardt Algorithm
The Levenberg-Marquardt algorithm is an iterative, multidimensional, second-order
optimization algorithm.

Iterative optimization algorithms aim to continuously update the parameter vector xk
to minimize a given multidimensional objective function f(xk). The algorithms thereby

41
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focus on determining a search direction sk and a step width αk to get the updated
parameter vector

xk+1 = xk +αk · sk. (4.1)
Different to zero- and first-order methods, second-order methods incorporate the

gradient as well as the second-order derivatives (Hessian matrix, H(x)) to find the
correct search direction sk. Zero-order methods determine the search direction solely
based on f(x), while first-order methods incorporate the gradient ∇f(x) as well.
In [74] Treiber deduces the Levenberg-Marquardt algorithm as follows. Levenberg

[75] combines the Gauss-Newton method with Gradient Descent in order to find the
search direction and step width at once. Therefore, and for the sake of simplicity
the combination of the search direction and the step width is further denoted as sk.
While the Gauss-Newton method adds a quicker convergence if the initial solution x0 is
already close to the optimal solution x∗, the Gradient Descent method adds robustness,
if x0 is far from the optimal solution x∗. To understand how the Levenberg-Marquardt
algorithm works, the Newton Method, and the Gauss-Newton method are summarized
first.

The Newton method approximates the objective function with a second-order Taylor
expansion,

f(x) ∼= T (∆x) = f(xk) +∇f(xk) ·∆x + 1
2∆xT ·H(xk) ·∆x (4.2)

which holds for small ∆x.
Setting the first derivative to zero ∇T (∆x) = 0, and solving the linear equation

system for x leads to an extremum of this function. If the solution represents a local
minimum, the first derivative is going to be zero, and the Hessian H(xk) is positive
definite. With that, the update rule derived from the Newton method is

xk+1 = xk + sk = xk −H(xk)−1 · ∇f(xk) (4.3)
The Gauss-Newton method is a specialization of the Newton method and deals with

objective functions f(x), which are composed of a sum of squared values,

f(x) =
m∑
i=1

ri(x)2 with x = [x1 . . . xn]T (4.4)

where ri are residuals (deviations from a regression function).
If the objective function is composed as given in (4.4), ∇f(x) simplifies to

∇f(x) = 2 · Jr(x)T · r with Jr(x) =


∂r1
∂x1

· · · ∂r1
∂xn... . . . ...

∂rm

∂x1
· · · ∂rm

∂xn

 . (4.5)

Moreover, H(x) can be derived from ∇f(x) with

Hij = ∇fj(x)
∂xl

= 2
m∑
i=1

(
∂ri(x)
∂xl

· Jij(x) + ri(x) · ∂Jij(x)
∂xl

)

= 2
m∑
i=1

(
Jil(x) · Jij(x) + ri(x) · ∂

2ri(x)
∂xj · ∂xl

) . (4.6)
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With two assumptions, (4.6) can be further simplified. First, if the current solution xk
is already near the optimum, the residuals ri(x) will be very small and the second order
derivatives will not have too much influence on H. Second, near the current solution
xk, f(xk) can be approximated with a linear function such that the second-order terms
are small. If one of these two assumption holds, the influence of the quadratic part can
be ignored, and the Hessian can be approximated with

H(x) ≈ 2 · Jr(x)T · Jr(x) (4.7)

To conclude, considering an objective function of the form (4.4), and given that the
initial solution is already near the optimal solution, or if f(x) can be approximated
with a linear function respectively, Newton’s update rule simplifies to

xk+1 = xk + sk = xk −
(
Jr(x)T · Jr(x)

)−1 · Jr(x)T · r (4.8)
However, most likely these two assumptions might not hold in practice, especially

if x0 is far from x∗. Levenberg [75] approached that by combining the Gauss-Newton
method with Gradient Descent. Gradient Descent uses the negative gradient

sk = −∇f(xk) = −2 · Jr(x)T · r (4.9)
to determine the search direction.
The influence of Gradient Descent can be controlled with an additional factor λ, such

that
xk+1 = xk + sk = xk −

(
Jr(x)T · Jr(x) + λ · I

)−1 · Jr(x)T · r. (4.10)
λ has a big impact on the convergence behavior. Situations with a high curvature

and a small gradient lead to very small steps and a poor convergence rate.
Hence, Marquardt [76] extended the algorithm by scaling the gradient by the curvature,

which is estimated from the approximated Hessian. This extension results in the well-
known Levenberg-Marquardt algorithm, and the update rule

xk+1 = xk + sk

= xk −
(
Jr(x)T · Jr(x) + λ · diag

(
Jr(x)T · Jr(x)

))−1 · Jr(x)T · r
(4.11)

Summarized, the Levenberg-Marquardt algorithm is a robust, well-known optimization
method that combines the Gauss-Newton method with Gradient Descent and scales
the gradient according to the curvature to adjust the step size.
For more detailed information regarding the Levenberg-Marquardt algorithm, es-

pecially for more information on how to select the correct λ, it is referred to [74]–
[77].

4.1.2 Bicubic Interpolation
There are several ways to interpolate a low-resolution lattice to achieve high resolution
images. Three of the most commonly used methods are the Nearest-Neighbor Interpo-
lation 4.1a, the Bilinear Interpolation 4.1b and the Bicubic interpolation 4.1c. Figure
4.1 depicts the different interpolation results of the three methods.
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(c) Bicubic.

Figure 4.1: Three different interpolation methods: The Nearest Neighbor interpolation
is the simplest method and takes the value from the closest point without
any interpolation between the points. The bilinear interpolation considers
the value of the four corner points and interpolates between them. The
bicubic interpolation considers the four corner points and their derivatives.

The nearest neighbor interpolation sets the pixel that has to be interpolated to the
closest interpolation coefficient. The method is easy to implement, offers the least
computational costs but shows strong interpolation artifacts. The linear interpolation
takes four corner points into account and interpolates linearly between them. Compared
to nearest neighbor, the linear interpolation offers smooth transitions but results in
non-continuous derivatives over the boundaries. The bicubic interpolation interpolates
the current area based on the four neighboring points and their derivatives, extracted
from the point neighborhood. The bicubic interpolation offers continuous derivatives
over the image boundaries and is therefore well suited to be used in an optimization
problem.

Together with Figure 4.2, the bicubic interpolation and the corresponding Jacobians
are derived as follows: With the four corner points and the derivatives ∂f

∂x
= fx, ∂f∂y = fy,
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Figure 4.2: Bicubic interpolation scheme.
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∂2f
∂x∂y

= fx,y, the interpolation function f(.) is constructed with

f(x,y) =
3∑
i=0

3∑
j=0

ai,jx
iyj ∀x,y ∈ [0,1] (4.12)

under the conditions

f(0,0) = β6 f(1,0) = β7

f(0,1) = β10 f(1,1) = β11

fx(0,0) = β7−β5
2 fx(1,0) = β8−β6

2
fx(0,1) = β11−β9

2 fx(1,1) = β12−β10
2

fy(0,0) = β10−β2
2 fy(1,0) = β11−β3

2
fy(0,1) = β14−β6

2 fy(1,1) = β15−β7
2

fxy(0,0) = β11−β9−β3+β1
4 fxy(1,0) = β12−β10−β4+β2

4
fxy(0,1) = β15−β13−β7+β5

4 fxy(1,1) = β16−β14−β8+β6
4 ,

(4.13)

where βi are the interpolation coefficients.
Solving the equation system and rewriting it in matrix form results in

c(x,y,β) =gT (x,y) ·A · β
gT (x,y) =

[
1 x x2 x3 y xy x2y x3y y2 xy2 x2y2 x3y2 y3 xy3 x2y3 x3y3

]
βT =

[
β1 . . . β16

]
A ∈ R16×16

(4.14)

where A is constant (cf. Appendix), β is a vector containing the 16 necessary interpola-
tion coefficients, and x,y are the coordinates of the point that has to be interpolated.
Further simplifying (4.14) results in

c(x,y,β) = γT (x,y) · β, γT ∈ R16. (4.15)

With (4.15), it is trivial to calculate the corresponding Jacobian Jc to

Jc(x,y,β) =
[
∂c

∂x
,

∂c

∂y
,

∂c

∂β

]

=
[
∂gT

∂x
·A · β, ∂gT

∂y
·A · β, γT (x,y)

]

=
[
∂γT

∂x
· β, ∂γT

∂y
· β, γT (x,y)

]
Jc ∈ R18

(4.16)

With that the bicubic interpolation is defined and ready to be used together with a
Levenberg-Marquardt optimizer.
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Figure 4.3: Depth compensation with depth-discrete compensation models.

4.2 Discrete and Continuous Offset Compensation
Models

With (3.2), Chapter 3 defines a comprehensive model for the systematic depth sensing
error e. It depends on the depth z as well as the pixel coordinates u,v. This section
presents two approaches to compensate such depth-dependent and pixel-dependent
errors without taking a classic camera model into account.
First, the error is modeled with a depth-discrete set of independent functions

e(u,v,z)→ C = {fz0(u,v),...,fzn(u,v)}, (4.17)

where every fzi
represents a bicubic interpolation of the form c(u,v,βi), at a given

distance zi. To conclude, the first method determines the parameter vectors βi of several
bicubic interpolations to compensate the depth image at specific distances (cf. Fig-
ure 4.3).
Second, the connection between the independent functions is modeled to come up

with a depth-continuous model of the form

e(u,v,z)→ f(z) · c(u,v,β), (4.18)

where c(u,v,β) is a single bicubic interpolation to model the local variation of the
systematic error and f(z) is an exponential function to continuously model the depth
dependency of the pixel-wise errors (cf. Figure 4.4).

4.2.1 Depth-Discrete Model
This section in detail describes a depth-discrete method to compensate depth errors
with a set of correction images of the form

C = {fz0(u,v),...,fzn(u,v)}. (4.19)

The model is optimized for an input set of erroneous depth images and ground truth
depth maps. If the data includes only systematic error components, a single image of
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Figure 4.4: Depth compensation with one compensation map and a depth-continuous
exponential function.

a perfectly flat surface for each distance is sufficient to determine the compensation
parameters. However, in practice the input data also includes random error components
which are normally distributed. Hence, several depth images are recorded for every
distance, and the whole set Si = {Dij} is used for the optimization. The optimization
will result in an optimal parameterization as long as the errors are normal distributed.
The necessary sets are usually generated by placing the camera at known distances zGT
as parallel as possible to a planar target that covers the full camera image (cf. Figure 4.5).

In practice, the sensor might be imperfectly placed relative to the flat surface. Hence,
the orientation of the camera relative to the surface Ri ∈ SO(3) is initially optimized
and added to the residual. With that, it is possible to compensate for the imperfect
alignment of the camera.

The input tuples Ui = (Si,zGT,i) are used to construct an optimization problem with
corresponding parameter set θi = {βi,Ri} for every distance i.

Figure 4.5: Input images recording setup.



48 4 Camera-Model-Free Compensation of Systematic Depth Errors

The residual is defined as

rD,ijm = zGT,i − zijm,c − ci (uijm,vijm,βi)
s.t. xc = Ri ◦ xijm = [uijm,c vijm,c zijm,c]T

xijm = [uijm vijm Dij(uijm,vijm)]T ,
(4.20)

with i as the index of the current input tuple Ui, j as the index of the depth map of the
input image set Si, and m as the index of the image coordinates for the current sampled
depth map Dij. Ri defines the rotation in the image space and with that avoids the
use of the camera intrinsic parameters.

A qualitative analysis revealed that the depth data includes gross outliers that could
negatively influence the optimization result. Hence, to increase the robustness of the
optimization and the quality of the result, a Tukey loss function [78], [79] of the form

ρ(r2
i ) = ρ(s) =

 a2

6 · (1−
(
1− s

a2

)3
) for s ≤ a2

a2

6 for s > a2
(4.21)

is introduced. It sets the Jacobians of gross outliers to zero and eliminates their impact
on the optimization.
With that n independent optimization problems of the form

min
θi

∑
j,m

ρ(‖rD,ijm‖2) (4.22)

are constructed.

Jacobians

The optimization is two-fold. First, it optimizes only the orientation of the camera
relative to the plane. It utilizes auto-differentiation techniques to derive the Jacobians
for the SO(3) operation.

J =
[
∂rC,ijm
∂θ

]
=
[
∂rC,ijm
∂zijm,c

· ∂zijm,c
∂Ri

]
(4.23)

Second, the camera orientation is kept constant and only the bicubic interpolations
are optimized.
We exploit automatic differentiation as well as analytic differentiation to determine

the Jacobians for the second step optimization problem.
Since the lookup coordinates (u,v) can be held constant during the optimization, the

Jacobians of the compensation functions (4.16) simplify to.

Jc(x,y,β) =
[
∂c

∂x
,

∂c

∂y
,

∂c

∂β

]
=
[
0, 0, γT (x,y)

]
Jc ∈ R18

(4.24)
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Figure 4.6: Sampling of several separate model and the resulting connection between
the offset compensation models.

4.2.2 Depth-Continuous Model

The depth-discrete model introduced beforehand parameterizes one bicubic compensa-
tion function for each measured distance, which results in a set of n independent bicubic
compensation functions. The data presented in Chapter 3 indicates that the shape of
the systematic pixel-dependent error is constant but has a varying magnitude over the
distances. To investigate if the magnitude variation can be modeled with a model of
the form f(z), the connection between the compensation functions has to be analyzed.
Therefore, 24× 28 (672) uniformly distributed pixel coordinates are analyzed and the
magnitude of the corresponding correction values δi is extracted for all n distances,
ending up with 672 sets (C1 . . . C672) of n correction values. To compare the shape of
the resulting curves, the correction values are normalized with

C1 = {δ1,1, . . . ,δ1,n} · arg max
i

(δ1,i)−1

...
C672 = {δ672,1, . . . , δ672,n} · arg max

i
(δ672,i)−1

(4.25)

using the maximal correction value of the set.
Figure 4.6 depicts the sampling procedure and the resulting plot. It indicates that

the change in the error magnitude can be modeled with an exponential function of the
form

f(z) = exp(a0 − a1 · z−1). (4.26)

Figure 4.7 shows a plot of (4.26), where [a0,a1] = [0.5,1.5].
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Figure 4.7: Plot of f(z) = exp(a0 − a1 · z−1).

With that the continuous offset compensation model is defined as

f(u,v,z) = f(z) · c(u,v,β),
= exp(a0 − a1 · z−1) · c(u,v,β)

(4.27)

Different to the depth-discrete model, the depth-continuous model parameterizes
a single bicubic interpolation function together with an exponential function that
continuously models the z-dependency of the offset’s magnitude. To conclude, the
method constructs an optimization problem for all input tuples Ui = (Si,zGT,i) and the
parameter set θ = {a0, a1,β, {Ri}}. That results in the new residual

rC,ijm = zGT,i − zijm,c − δ(uijm,vijm,β,a0,a1)
= zGT,i − zijm,c − exp(a0 − a1 · z−1

ijm,c) · c (uijm,vijm,β)
s.t. xc = Ri ◦ xijm = [uijm,c vijm,c zijm,c]T

xijm = [uijm vijm Dij(uijm,vijm)]T ,

(4.28)

with i as the index of the input tuple Ui, j as the index of the depth map of the input
image set Si, and m as the index of the image coordinates for the current sampled
depth map Dij.

A Tukey loss function ρ(.) is used to reject gross outliers. With that the optimization
problem has the form

min
θ

∑
j,m,i

ρ(‖rC,ijm‖2). (4.29)
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Jacobians

As for the depth-discrete error model described in Section 4.2.1, the optimization is
two-fold. First, the method optimizes the orientation of the camera relative to the
plane using the auto-differentiation capabilities of the used solver.

Second, the camera orientation is kept constant and only the bicubic interpolation is
optimized together with the exponential function that models the z-dependency. The
necessary Jacobian for the optimization is

J =
[
∂rC,ijm

∂θ

]
=
[
∂δ

∂a0
,

∂δ

∂a1
,

∂δ

∂β

]
=
[
δ(.), −z−1

ijm,c · δ(.), γT (x,y) · exp(a0 − a1 · z−1
ijm,c)

]
.

(4.30)

4.3 Evaluation
The evaluation utilizes the simulation model developed in Chapter 3 to generate a
synthetic dataset. The synthetic dataset is used together with a real-life dataset to
test the two newly introduced error compensation models. This section analyses the
impact of the compensation models on the RMSE (trueness) and the standard deviation
(precision) of the results. Since the precision might be dominated by the random errors,
the results are qualitatively evaluated by comparing the depth maps before and after
the correction was applied.

In addition, the depth-continuous model is used together with the augmented synthetic
dataset to evaluate the impact of the correction on the results of a state-of-the-art
reconstruction algorithm.
Finally, the performance of two different implementations is analyzed in terms of

computational speed. The first implementation uses only the automatic differentiation
capability of the solver, while the second makes use of handcrafted analytic Jacobians.

4.3.1 Datasets
The synthetic dataset consists of several synthetic depth images which are augmented
with the error simulation model introduced in Chapter 3. The dataset contains depth
maps for distances from 0.5m to 6.9m at an interval of 0.1m and does not include
random noise components.

The real-life dataset is collected using an Active Stereo camera (Intel RS200) which
is placed as parallel as possible in front of a flat target. The distance of the camera
to the target was gradually increased from 0.4m to 2.1m using varying intervals. For
every distance 40 consecutive depth frames are recorded and the ground truth distance
is manually measured to construct the input tuples for the optimization.
To test the impact of the depth-continuous compensation method on a TSDF re-

construction algorithm, a third dataset is generated that contains a sequence from the
ICL-NUIM living room dataset [71]. The publicly available dataset is augmented with
the simulation model introduced in Chapter 3. The same error model is used that is
also utilized to construct the first dataset.
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(a) Trueness. (b) Precision.

Figure 4.8: Trueness and precision for the synthetic dataset before (blue) and after
(orange) applying the depth-discrete error compensation model.

Figure 4.9: Depth images for d = 6.9m of the synthetic dataset before and after
applying the discrete compensation model. Blue represents small errors
yellow represents high errors.

4.3.2 Depth-Discrete Error Compensation Model

First, the depth-discrete error compensation model is evaluated on the synthetic dataset.
Our discrete model optimizes an individual compensation model for every depth distance,
ending up with an optimal compensation for every input tuple. Since the synthetic
dataset contains only systematic noise, the model is able to unfold its full capabilities
and drastically reduces the introduced errors (cf. Figure 4.8).
Figure 4.9 enables a qualitative analysis of the depth images before and after the

correction. It shows that the corrected images contain only minor quantization artifacts
with a magnitude around 1e−3m.

Second, the experiments are repeated on the real-life dataset. The experiments
revealed significant improvements of the trueness, but show less impact on the precision
(cf. Figure 4.10). As expected, the precision seems to be dominated by the random error
components which mask the compensation of local errors. Hence, for the experiments
with real-life data, the qualitative results are extended by an image of the applied
correction (cf. Figure 4.11) and a mesh of the gathered surface measurements. To
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(a) Trueness. (b) Precision.

Figure 4.10: Trueness and precision for the real-life dataset before (blue) and after
(orange) applying the depth-discrete error compensation model.

Figure 4.11: Depth at d = 1.2m before (left) and after (center) applying the discrete
compensation model (right). Blue represents small errors, yellow represent
high errors.

better illustrate the magnitude of the errors, the mesh and the depth images are colored
according to the minimum and maximum value. Blue represents small values yellow
represents high values.
Figure 4.12 and Figure 4.11 compare the depth images and meshes, respectively, of

the original and the corrected images, showing measurement results of a flat target
observed from 1.2m. The red line indicates the ground truth value. The left image
shows the uncompensated data, including a measurement trueness for the whole image,
systematic surface irregularities especially in the image center, and random noise across
the whole image. The systematic noise is reflected in a slightly yellow and green region
in the center of the original image (left), which is compensated in the center of the right
image by the applied depth-discrete compensation model.

4.3.3 Depth-Continuous Error Compensation Model
Different to the discrete model, the continuous model consists of a single bicubic inter-
polation function and an exponential function that implicitly models the z dependency
of the error. Hence, it is possible to extract an offset compensation value even for depth
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(a) Original. (b) Compensated.

Figure 4.12: Surfaces before (left) and after (right) applying the depth-discrete error
compensation model.

values that are not represented in the input dataset, without the need to interpolate
between two sets.
Similar to the evaluation of the depth-discrete model, the depth-continuous model

is evaluated with the synthetically augmented dataset first. Figure 4.13 shows that
the depth-continuous model improves the trueness and the precision, but shows worse
results than the depth-discrete model, especially for shorter distances. These results are
in line with the introduced model and the form of the exponential function to implicitly
model the z dependency. It results in small compensation values for distances close to
zero and models a stronger compensation for larger distances (cf. Figure 4.7), hence it
has less influence on near depth measurements.

(a) Trueness. (b) Precision.

Figure 4.13: Trueness and precision for the synthetic dataset before (blue) and after
(orange) applying the depth-continuous error compensation model.

Next, the compensation model is applied to the real-life dataset, which contains
systematic depth errors and random errors. The experiments revealed that the depth-
continuous model and the depth-discrete model achieve comparable results for correcting
the trueness and the precision. Similar to the results for the discrete model, the
continuous model has less influence on the precision since it is dominated by the random
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(a) Trueness. (b) Precision.

Figure 4.14: Trueness and precision for the real-life dataset before (blue) and after
(orange) applying the depth-continuous error model.

Figure 4.15: Depth at d = 1.2m before (left) and after (center) applying the continuous
compensation model (right).

error (cf. Figure 4.14).
Figure 4.15 depicts the qualitative results of the compensation model. It shows the

depth image before and after the compensation, as well as the applied compensation
and shows similar improvements as the depth-discrete error model. The improvements
are especially visible in the center of the image: The original image shows a yellow
region that indicates higher depth errors, while the bright yellow region is not visible
anymore in the compensated image. In addition, Figure 4.16 depicts a mesh of the
surface before and after correcting the depth image. The red line indicates the ground
truth value and the color the magnitude of the error.

In opposite to the discrete model, the continuous model allows to calculate compen-
sation values for distances that are not represented in the input set. Therefore, it is
easily possible to apply the model to the synthetic test sequence of an indoor scene that
is augmented with the error simulation model developed in Chapter 3. The synthetic
scenes are correct with the depth-continuous error model and piped into a TSDF based
[72] reconstruction method.
Figure 4.17 shows significant improvements of the surface quality, especially for

surfaces that have been observed from longer distances (i.e. ceiling, wall). Surfaces
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Figure 4.16: Compensation with Full Model.

(a) Without correction. (b) With correction.

Figure 4.17: Reconstruction using a corrected/uncorrected synthetic dataset of an
indoor scene. The dataset is augmented with the depth simulation models
presented in Chapter 3.

that have been observed from shorter distances show less or even no improvements.
These results are in line with Figure 4.13, which shows that the model has only little
or no influence for small depth values. While the introduced exponential functions
suppress gross corrections for close observations it allows more significant corrections
for far distant observations. This makes perfect sense for real-life sensor data which
has exactly these properties (cf. Chapter 2), but falls short together with the synthetic
data.
For a quantitative evaluation the reconstructed scene is compared with a ground

truth point cloud, extracted from CAD data of the scene. Figure 4.18 depicts the
error histograms for the point-plane distance between a point of the reconstruction and
the closest least-squares fitted plane (using 6 points) of the ground truth model. The
correction significantly reduces the cloud-cloud distance.

4.3.4 Limitations
Figure 4.19 shows that the optimization of the interpolation lattice tends to be unstable
close to the image borders. The instability originates from interpolation coefficients
which are actually outside of the image and necessary for the bicubic interpolation, but
are not directly influenced by the error observations. However, the corrected image
can simply be clipped to remove these artifacts. Another possible solution might be
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(a) Without compensation. (b) With compensation.

Figure 4.18: Cloud-Cloud distance error histogram, between reconstruction and ground
truth CAD model. Absolute cloud-cloud distance to a least-squares fitted
plane, k=6.

(a) Original image. (b) Compensated image with artifacts.

Figure 4.19: Limitations due to sampling in border regions.

to increase the sample density at the image borders. That would directly increase
the number of residuals and with that the runtime of the optimization. Moreover
the non-uniform sampling might lead to an overrepresentation of border pixels in the
optimization problem.

4.3.5 Performance Analysis
The optimization of the compensation models requires the calculation of the correspond-
ing Jacobians and the use of a linear solver. Today automatic differentiation techniques
represent the state-of-the-art and are perfectly suited to get quick first results, but
might have a poor runtime performance. Hence, the implementation utilizes automatic
differentiation techniques that make use of dual numbers and their multidimensional
representations (Jets) [80], as well as handcrafted analytic derivatives. In particular,
the models include a lower dimensional [m × n] interpolation lattice that is used to
correct the depth images. Section 4.1.2 shows that the Jacobians for this interpolation
depend only on 16 entries of the lattice, while all other ((n × m) − 16) entries will
result in zero. Regardless of that, the underlying Jets will be of size m× n, which will
result in several unnecessary calls when the cost function is evaluated on the Jets. To



58 4 Camera-Model-Free Compensation of Systematic Depth Errors

Figure 4.20: Step 1 and Step 2, performance of analytic differentiation automatic
differentiation.

circumvent the unnecessary calls, the implementation makes use of analytic Jacobians,
which only perform expensive calculations for non-negative entries. To evaluate the
impact of analytic and automatic differentiation techniques on the performance, two
implementations are tested and compared.

Figure 4.20 shows the total time needed for the two steps of the optimization. While
the optimization of the camera orientation shows only a slight impact, the optimization
of the compensation function was dramatically reduced.
Figure 4.21 depicts the CPU usage over time during eleven minimization steps. It

compares the usage of automatic differentiation (blue) and analytic Jacobians (orange).
The Jacobian evaluation is parallelized, while the linear solver is not. Therefore it is
possible to distinguish the Jacobian evaluation from the linear solving by looking at the
maximum CPU usage (1 core 100%, 16 cores: 1600%). The use of analytic Jacobians
reduces the total time for the minimization from 1060s to 380s. While the time for the
linear solver stayed the same, the Jacobian evaluation per iteration step is reduced by
95%, from 55s to 3s.

4.4 Discussion
This chapter presents two depth error compensation methods that use flat targets as
input data.
Both methods optimize a comparably small set of interpolation parameters which

result in high-resolution, pixel-wise, depth-dependent compensation maps. They do
not rely on a dedicated sensor model and are directly applied to the depth image as a
post-correction step.
The depth-discrete model uses several compensation images for discrete depth dis-

tances of the input data and does not implicitly model the depth dependency. In
opposite, the depth-continuous model uses only a single compensation image and mod-
els the depth dependency with an exponential function, resulting in significantly less
parameters than the depth-discrete model.
Both methods are evaluated on synthetic and real-life data. The continuous com-
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Figure 4.21: Performance of the optimization using automatic differentiation (blue) and
handcrafted analytic Jacobians (orange).

pensation method is additionally evaluated together with a reconstruction algorithm
and a synthetic dataset of an indoor scene. The synthetic datasets are combined with
the depth error simulation method presented in Chapter 3 and provide close-to-real-life
depth images together with ground truth information.
The depth-discrete and the depth-continuous model succeeded in improving the

trueness and precision on synthetic and real-life data. While the discrete model
performs significantly better on the synthetic dataset, the two methods perform equally
on the real-life dataset.
The continuous model allows to directly extract continuous depth values even for

distances that are not contained in the input dataset. Hence, it is directly applied to
the synthetic dataset of an indoor scene. The model shows a clear impact on the surface
quality and the map accuracy. It significantly improves the results of the state-of-the-art
reconstruction algorithm and generates more precise and accurate depth estimation.
This is especially useful for robotic tasks, e.g. grasp planning or the detection of tiny
objects.
Both methods significantly improve the depth measurements using planar targets.

However, the methods require an expert for the tedious input data collection and
therefore might not be feasible under real-life conditions. The next chapter introduces
plane-priors into an autonomous calibration method that avoids the complicated data
collection step and does not need dedicated calibration targets.





Chapter 5

Autonomous Calibration and Depth Error
Compensation of RGB-D Setups

Chapter 2, 3, and 4 focus on depth sensors, their characteristic error behavior, and
present methods to simulate and compensate depth errors.

This chapter focuses on the autonomous calibration of RGB-D sensors, which combine
a depth sensor with an RGB camera. Depth data alone alreday provides rich information,
adding RGB information allows to combine the benefits of both worlds, RGB and
depth. For instance, it is easily possible to run 2D object detection methods on the
RGB data, and extract the necessary spatial information from the depth data [4].
One key step is to relate the depth information pixel-wise to the color information.
Precisely assigning depth measurements to pixels of the color images, requires a precise
perspective projection, a decent camera model, and reliable depth information. With
these requirements a good calibration is de rigueur. Performing such a good calibration
is usually tedious work and requires an expert in the loop. In addition, the calibration
might be easily corrupted during operation, what would require a recalibration step in
the field during operation. Classic calibration methods are not suited for that scenario:
Usually the calibration of sensor setups involves the use of checkerboard patterns and
has to be carried out by an expert (cf. Figure 5.1). The required checkerboards and the
expert operator might not be available in the field.
Moreover, classic calibration methods do not explicitly compensate a depth offset.

Although Chapter 4 contributes two methods for exactly that purpose, they suffer from
the same limitations as classic checkerboard-based calibration methods: it might be not
feasible or even impossible to autonomously collect the required input data of planar
targets together with ground truth information during operation.
Luckily, auto-calibration methods for RGB-D sensors have been addressed in the

Figure 5.1: Camera Calibration to get the intrinsic parameters of the used R200 Active
Stereo camera.
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state of the art. These methods address some of the limitations of classic methods, but
are still far from being perfect. While they work well under controlled environments
and with a decent initialization by an expert, they still struggle in real-life robotic
indoor scenarios, where they face low image quality, motion blur, and an inaccurate
initialization. In [32], Zeisl and Pollefeys develop a promising approach that uses an
SfM reconstruction as calibration target. Summarized, the calibration optimizes several
parameters to i) optimize the SfM reconstruction, ii) align the depth maps with each
other and iii) to align the depth maps with the SfM reconstruction. The method
assumes that the SfM reconstruction in general is more precise than the corresponding
depth information. Zeisl and Pollefeys do not incorporate any additional assumption
about the environment into their method. Unfortunately, SfM reconstructions are not
necessarily more precise than depth estimations, which in some situations causes a bad
convergence behavior and unsatisfying calibration results. However, SfM reconstructions
are usually very precise for feature-rich flat targets that allow close-to-perfect point
triangulations. That suggests to directly favor flat areas (planes) during the calibration.
Chapter 4 shows that flat areas are well suited calibration targets to optimize an

offset-compensation function, which is similar to the one used in [32].
Moreover, the state of the art indicates that the alignment of 3D point clouds is

improved by incorporating plane priors [52].
Hence, this chapter extends the state of the art with an autonomous calibration

method that incorporates plane priors in two different ways. First, they are used to
favor SfM points which are supported by a plane, and second by using the point-plane
distance to improve the alignment between the SfM map and the depth maps. The
presented method enables a more robust RGB-D sensor (re)calibration on a robot in the
field. The method neither requires a human expert for collecting the data, nor artificial
calibration targets. It uses the robot’s motion together with an SfM reconstruction to
calibrate the sensor and perform a depth offset compensation with the goal to precisely
align RGB and depth images.
The following sections present and evaluate the new approach.

5.1 SfM Auto Calibration With Plane Priors
Similar to [32] this work utilizes a sparse map generated by the SfM method presented in
[81] as calibration target. SfM maps of texture-rich flat areas tend to be more accurate
than reconstructions recovered with just the depth information of a structured-light-like
sensor as the Microsoft Kinect. This is due to the fact that color images provide
high mega-pixel resolution, which enables a fine-grained feature localization and well
constrained 3D point triangulations on flat areas. Moreover, loop closures, even over
geometricaly simple scenes, give additional constraints and allow more precise camera
pose estimations [32].

First, it is assumed that the SfM reconstruction is given. It provides the camera poses
Tv within the SfM coordinate space, a sparse map M consisting of the 3D reconstructed
feature points {x′i}, and 2D observations of the feature points for every view {uobs}
(cf. Figure 5.2). Moreover, it also provides initial camera parameters for the RGB
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camera: [fx,fy,cx,cy] for the pinhole camera model, [p1,p2] to model tangential distortion
and [k1,k2] to model the radial distortion. Given that, Tv ◦ x′i transforms a point from
the global reference frame into any other view.
The classic pinhole camera model in combination with a radial and tangential

distortion term projects an arbitrary point x from the 3D space onto the image plane
with

u = π(x) =
[
fx 0 cx
0 fx cy

] [
x̌
1

]
s.t. x̌ =L(r2)xn + t(xn)

xn =
[
x · z−1,y · z−1

]T
r2 = ‖xn‖2

2

L(r2) =1 + k1r
2 + k2r

4 + k3r
6

t(x) =
[

2xy r2 + 2x2

r2 + 2y2 2xy

] [
t1
t2

]
.

(5.1)

Now, the model is extended to incorporate the presence of the depth sensor. TR
models the relative pose between the cameras and s as the constant scale factor that is
necessary to get a to-scale SfM reconstruction. With that it is possible to transform a
point x′i from the sparse map into the current depth camera frame as xD = TR◦s◦Tv◦x′i.

The related work presents several depth compensation methods that strongly vary in
their complexity. Due to its simplicity and optimization-friendly properties the depth
offset compensation from [32] is used which is similar to the depth-continuous model
introduced in Chapter 4. It interpolates a lower dimensional lattice β with a bicubic
interpolation c(u) and combines it with an exponential function. The depth offset
compensation δ is given as

δ(u,d) = c(u) · exp(a0 − a1d). (5.2)

The exponential function is parameterized over the inverse depth d [82] and two
coefficients a0 and a1. For more details about the bicubic interpolation, especially the
Jacobians, see Chapter 4.

With that the calibration model is finalized and equivalent to the model used in
[32]. The calibration parameters are denoted as θ = {x′i,Tv,s,TR,πc,πD,β,a}, where
πc,D represent the intrinsic parameters of the depth and color camera.

5.1.1 Residuals

The approach introduces four residuals. The first three residuals (reprojection error,
inverse point-point distance, and the residuals that maintain the alignment between
views) are already discussed in a comprehensive manner in related work [32], [34], [57].
Hence, the motivation is briefly repeated before a fourth residual that maintains the
alignment to the map by utilizing the point-plane distance is added .
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(a)

(b)

(c)

TR

TR

view{0}

view{k}

color camera...
depth camera...

sparse reconstruction...
sfm point observation...

structure...
color image...

Tv

Figure 5.2: Overview of the calibration problem. (a) Depicts the reprojection error rB
vi

that is used for the bundle adjustment. (b) Shows the projection of an SfM
map point into the depth camera frame, used for the inverse point-point
distance rIvi and the point-plane distance rP

vi. (c) Visualizes the projection
of the depth value from one depth camera into a second view, used for the
residual that models the alignment between a view pair j,k with rVjk.

Reprojection Error

The reprojection error models the deviation between the observation of the feature in
the color image and the reprojection of the 3D feature into the image (cf. Figure 5.2
(a)). The residual prevents strong deformations of the map and camera poses. A Huber
loss function ρB reduces the influence of outliers.

rB
vi(θI) = uobs − u

s.t. u = πc(Tv ◦ x′i),
(5.3)

with uobs as the feature based 2D point observation of x′i for the current view, πC as
the camera model for the color camera, Tv transforming a 3D point into the current
view, and x′i as the observed point from the sparse map.

Depth Map Alignment Between Views

This residual considers only the depth measurements of the depth cameras (cf. Fig-
ure 5.2 (c)). It wraps the alignment of the depth maps into the calibration problem.

rVjk(θ) = (Tjk ◦ ỹj)−1
z −Dk(u)−1 − δ(u,Dk(u)−1)

s.t. u = πD(Tjk ◦ ỹj)

Tjk = TR ◦ s ◦Tk ◦Tj
−1 ◦ 1

s
◦TR

−1

ỹj = πD
−1(v,yj,z)

y−1
j,z = Dj(v)−1 + δ(v,Dj(v)−1),

(5.4)
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with Tjk transforming a 3D point from view j into view k, ỹj as a point gathered from
a depth lookup Dj(v) in view j, δ as the offset compensation, and πD as the camera
model for the depth camera.

Inverse Point-Point Distance

The inverse point-point distance is similar to the ICP algorithm. It aims to align
each depth map Dv to the sparse map M (cf. Figure 5.2 (b)). The inverse depth
parameterization is used, to inherently model the close range accuracy. A Tukey loss
function rejects outliers of the sparse map.

rIvi(θ) = x−1
D,z −Dv(u)−1 − δ(u,Dv(u)−1)

s.t. xD = TR ◦ s ◦Tv ◦ x′i
u = πD(xD)

(5.5)

Point-Plane Distance

The motivation for the incorporation of plane priors into the optimization is two-fold.
First, man-made indoor scenes are dominated by planes and points on a plane tend to
be more stable than points that are on fine structures. Second, the first tests revealed
that in some situations the inverse point-point distance fails to perfectly align the
depth values to the SfM map, especially when the initial parameters for s and TR
are too far off. The sparsity of the SfM reconstruction in combination with the use of
the aggressive Tukey loss function directs the problem into a local minimum, which
restricts the solution to converge to the desired result (cf. Figure 5.3). One solution
that may work in some situations is to simply adapt the Tukey loss function for every
new problem. However, tweaking optimization parameters for each and every single
scene is not an option for an unsupervised calibration that is re-run autonomously
on a robot. As such, (5.6) introduces a residual that models the point-plane distance
for an improved convergence behavior in indoor scenes that are often dominated by
planes. During the first iterations it acts as the point-point distance, but as soon as the
two planes are aligned they can move freely at zero cost, using the plane to guide the
solution.
The residual that models the distance between a sparse point of the map and the

corresponding plane of the depth map is given as

rP
vi(θ) = n(u) • (xD − x̃δ)

s.t. xD = TR ◦ s ◦Tv ◦ x′i
u = πD(xD)

x−1
δ,z = D(u)−1 + δ(u,D(u)−1)
x̃δ = πD

−1(u,xδ,z),

(5.6)

with n(u) as the normal vector at a location u in the depth frame, and xD as the 3D
feature point transformed to the current view of the depth camera. x̃δ represents the
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Figure 5.3: Alignment of two point sets, point-point distance (left) vs. point-plane
distance (right). While the point-point distance prevents movements of the
points within the plane, the point-plane distance, allows movements at zero
costs.

back projected depth value observed at the location u corrected with the depth offset.
With the normal vector n(u) and the two points xD and x̃δ the point-plane distance is
calculated using the inner product.
The calibration will directly affect the depth values which are used to calculate the

normal vectors. However, since the corrections will be smooth and not radical it can
be assumed that the calibration will not heavily influence the normal vectors of the
dominant planes. It is therefore possible to pre-compute the normal vectors for every
depth map to reduce computational costs during the optimization. In addition, the
depth maps are smoothed with a Gaussian filter before the computation of the normal
vectors, with the goal to achieve smooth normal vector transitions and derivatives.

5.1.2 Weighting Functions

To achieve proper convergence behavior, optimization problems demand loss functions
that penalize outliers. Finding and defining the correct parameters for the loss function
is often tedious work. The same applies to the weights, which have the potential to
significantly influence the convergence behavior and the contribution of the different
residuals. Hence, different weighting strategies are implemented and investigated that
i) incorporate a plane prior and ii) balance the introduced residuals.

Equalized Plane Weighting (WIPD,WPLD)

The approach assumes that points on a plane tend to be more stable and accurate than
single points that are not supported by a plane and may represent small structures.
Based on this assumption, it introduces a weighting that favors points supported by a
plane. Therefore, the method runs a simple plane detection on the sparse reconstruction.
If the scene is dominated by large planes such as walls or the floor, those planes may
dominate the calibration problem, suppressing the influence of tiny planes that would
provide additional information. To avoid that, the sum of the weights for every plane
that is considered within the optimization is limited to 1. That equalizes the influence of
the planes, independent of their size, and favors points on tiny planes (e.g. on objects).
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wIPD,PLD = 1
m
, (5.7)

with m as the number of plane inliers for the currently observed plane. This weighting
strategy is incorporated into the experiments for both, the inverse point-point distance
(IPD) and the point-plane distance (PLD) using the additional weights wIPD,vi, wPLD,jk
for each residual instance.

Residual Balancing (rB)

Since the number of residual instances per residual group strongly depends on the
dataset, it is unclear how much each residual group will contribute to the optimization
problem, and how it will influence the result. However, it is possible to control the
influence of every residual with the weights λ. To regain more control and add dataset
independence without manually adapting λ for every residual and calibration problem,
the preset residual group weighting factors λ̌ are normalized with the number of
corresponding residual instances n, if the equalized plane weighting is enabled with∑
wIPD,PLD respectively.

λB,V = λ̌B,V
n

λI,P = λ̌I,P∑
wIPD,PLD

(5.8)

With the weighting strategies, the optimization problem is finally formalized as

min
θ
λB

∑
v,i

ρB
(
‖rB

vi(θ)‖2
)

+

λV
∑
j,k

ρV
(
‖rVvi(θ)‖2

)
+

λI
∑
v,i

wIPD,vi · ρI
(
‖rIvi(θ)‖2

)
+

λP
∑
v,i

wPLD,jk · ρP
(
‖rPvi(θ)‖2

)
,

(5.9)

with ρB representing a Huber loss function and ρV,I,P a Tukey loss function.

5.1.3 Optimization
For the optimization it is necessary to calculate the Jacobians with respect to the
parameter vector θ. Chapter 4 discusses already the Jacobians of the depth correction
method. To calculate the partial derivatives for the newly introduced point-plane
distance, the Jacobians for the normal vectors n are needed. It is assumed that the
depth correction will not radically influence the normal vector obtained from the depth
map. With this assumption, it is trivial to compute the Jacobians for the normal vector.
Moreover, they can be computed in advance to speed up the optimization problem.[

∂n
∂u

]
=
[
∂nx

∂u ,
∂ny

∂u ,
∂nz

∂u

]T (5.10)
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The unprojected point x̃δ depends on the inverse projection function πD
−1(·) which

cannot be solved in closed form. Because of this, first tests were carried out with
the numeric differentiation functionalities to obtain the Jacobians. However, the tests
revealed no noticeable improvements in the results or for the convergence behavior, hence
the corresponding entries in the Jacobian are set to zero to speed up the calibration.

For the rest of the optimization problem the implementation makes heavy use of the
Ceres solver library [77] and its automatic differentiation capabilities.
The optimization itself contains five steps.
Step 0 : Since the third party SfM reconstruction technique presented in [81] is used,

the optimization reruns the Bundle Adjustment using the reprojection error residual,
with fixed RGB camera intrinsics.

Step 1 : Optimizes over the scale factor s, the relative pose between the RGB camera
and the depth sensor TR, and the intrinsic parameters of the depth camera, but keeps
the distortion coefficients constant.
Step 2 (v4): Optimizes solely for the exponential function, setting the lattice to 1.
Step 3 : Exclusively optimizes the parameters for the depth offset compensation δ.

Namely, the interpolation coefficients and the exponential function parameterized over
the inverse depth [β,a].
Step 4 : Optimizes over all parameters for a last refinement.

5.1.4 Implementation

The implementation heavily utilizes the Ceres solver library -solver for the optimization,
together with OpenCV [83] and the PCL [84]. The SfM reconstruction is obtained using
the openMVG framework [85]. The application of the calibration uses Streaming SIMD
Extensions (SSE) and utilize openMP [86] for parallelization. With that it extracts a
corrected and projected depth map in average within 12ms and a colored point cloud
in average within 17ms.

5.2 Evaluation
All in all the approach introduces five different extensions of the state of the art that
use the inverse point-point distance (IPD) to align the depth to the SfM reconstruction:
The use of the point-plane distance (PLD); two weighting functions, incorporating plane
priors (WPLD, WIPD); the residual Balancing (rB); and the additional optimization
Step 2 (v4). The experiments are automatized to execute experiments with every
possible combination of the newly introduced extensions and add additional noise to
the SfM reconstruction in order to test the robustness of the algorithm on low quality
data.

The approach is evaluated against the baseline algorithm presented in [32]. Therefore,
the evaluation replicates the qualitative experiments presented to verify the alignment
capabilities of the introduced algorithm. Additionally, it comes up with two quantitative
evaluation methods that aim to measure the quality of the results. Finally, this section
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Figure 5.4: Results for the ICL-NUIM dataset using the method from [32]. The circles
highlight the improved alignment of color and depth data.

shows the usability of the calibration in the use case of semi-automatically annotating
an RGB-D dataset for deep learning.

5.2.1 Baseline Validation

Zeisl and Pollefeys [32] did not publish their datasets or algorithm, hence their algo-
rithm is reimplemented to provide a baseline for the experiments. To verify that the
implementation of [32] is working as expected, it is tested on the ICL-NUIM dataset [71].
The dataset provides artificial scenes and hard ground truth data for all parameters
that are determined during the calibration. Noise is added to the parameters and the
optimization is run to verify that the implementation of the related work converges to
the ground truth parameters (cf. Figure 5.4). However, although the implementation
conscientiously follows the steps presented in [32] and the results show that the method
succeeded in determining the ground truth calibration parameters on the ICL-NUIM
sequence, it still cannot be guaranteed that the reimplementation will give exactly the
same results as the original work.

5.2.2 Datasets

After the first tests nine different datasets are collected showing indoor scenes, two sets
containing heavily motion blurred images. Additionally, the publicly available TUM
dataset sequence "fr3/structure_texture_far" [87] is added to the test set. Table 5.1
gives an overview of the used datasets.
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Table 5.1: Dataset Overview
Dataset #views #features #observations

TUM STF [87] 91 3177 36926
office 150 3726 34164
office+blur 194 4161 37343
home 1 218 6729 124024
home 2 110 3674 19892
home 2+blur 147 4187 23454
corner 1 128 3062 35906
corner 2 47 1586 12977
corner 3 65 1704 18795
workplace 124 2198 30246

5.2.3 Qualitative and Quantitative Evaluation
In [32] Zeisl and Pollefeys evaluate their method against the factory calibration and a
manual calibration by superimposing the projected depth image and the corresponding
RGB image. The evaluation replicates this qualitative method and verifies the results
against the reference method and a handcrafted initial parameterization.
The experiments show that the manual evaluation tends to be ambiguous in some

situations. Hence, the experiments are extended with two quantitative evaluation
metrics:

They are designed to give a quantitative measurement that on one hand verifies the
qualitative results, and on the other hand may be used in future as quality indicator
for a completely autonomous calibration. However, simply using the final residuals of
the optimization as quality criteria would not be sufficient to compare the different
optimization problems, because they use different weighting functions and residuals.
Hence, this work comes up with a more general but straight forward approach.

The optimization aims to achieve two goals: First, it tries to align the depth maps as
precise as possible to the SfM reconstruction. Second, it aims at aligning depth maps
from different views as precise as possible. The residuals introduced try to achieve
exactly those two goals. Hence, a depth map corrected with a perfect calibration and
aligned to a flawless SfM reconstruction will result in an alignment error of zero for all
points. The same accounts for the alignment of two depth maps from different views.
With that assumption two quantitative metrics QMSfM and QMDepth are defined.

First, QMSfM calculates the cloud-cloud distance between the scaled SfM reconstruc-
tion (SfM cloud) and a point cloud extracted from the depth information of the view that
offers the most observations (depth cloud). The information needed is extracted using
the software CloudCompare1. Due to the sparseness of the SfM cloud, the depth cloud
is used as reference. With that the evaluation does not use any interpolation strategy

1CloudCompare (version 2.9) [GPL software]. (2017). Retrieved from http://www.cloudcompare.org/,
PCL interfaces developed by Luca Penasa
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Figure 5.5: QMSfM results for the reference method [32] and the presented method
(only PLD enabled) on the office+blur dataset.

that may influence the results. Figure 5.5 shows the histogram of the quantitative
results using QMSfM. It depicts the results of the method and the reference method on
the "office+blur" dataset. To quantitatively compare the histograms of all experiments,
outliers are removed with a simple thresholding and the mean cloud-cloud distance is
extracted, what finally provides QMSfM.
Second, QMDepth verifies the quality of the depth compensation with a similar

method. It extracts the view with the highest number of observations and searches for
the view that has an observation overlap ratio

η(Dmax,Dj) = #observations(Dj)
#observations(Dmax) , (5.11)

of at least to = 0.5 and maximizes the difference of the means of the two corresponding
depth maps.

max
j

(µ(Dmax,Dj))

w.r.t. η(Dmax,Dj) > to

s.t. µ =
∣∣∣µmax(Dmax)− µj(Dj)

∣∣∣
µmax,j(Dmax,j) = 1

n+m

n,m∑
x,y

Dmax,j(x,y).

(5.12)

Then, the point clouds for the two views are generated and the mean distance between
the two clouds is computed as QMDepth.

5.2.4 Results
The evaluation performs a total of over 300 experiments on 10 different datasets, without
manually adapting the optimization or loss function parameters to the datasets. The
experiments are summarized in Table 5.2.
The implementation automatically generates an RGB and depth overlay for all

experiments and all images of the datasets. The overlay is used to manually rate the
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Table 5.2: Qualitative and quantitative results of the calibration method and combina-
tions outperforming the state of the art. Example: Method that gives the
overall best result (see column "∑"): PLD enabled. Method that gives the
best qualitative result (see column "man"): PLD, IPD, and WIPD enabled.
A full table with all results can be found in the appendix.

Experiments Results

# PLD IPD WPLD WIPD v4 rB QMDepth QMSfM man ∑
1 1 0 0 0 0 0 211 198 228 637
2 0 1 0 0 1 1 214 217 157 588
3 1 0 1 0 0 1 197 179 189 565
4 0 1 0 1 0 0 197 144 221 562
5 1 1 1 0 0 1 194 218 149 561
6 1 1 0 1 0 0 167 151 240 558
7 0 1 0 0 0 1 189 209 150 548
*8 0 1 0 0 0 0 172 185 190 547
* Reference method introduce in [32]

results according to the qualitative method described in the previous section. Figure
5.6 shows an excerpt of the results for two different scenes.

After extracting both the qualitative and the quantitative results the different methods
are ranked and points are assigned according to their score. The experiments achieving
the best results got 32 points (=#experiments) while the weakest experiment, and
experiments that were already removed during the qualitative evaluation received 0
points. The higher the score, the better the result. All scores are separately summed
up over the different datasets for the qualitative and the quantitative measures. The
six highest scores are printed bold, while the best result is printed bold and italic. The
experiments in Table 5.2 were ranked based on the sum over all scores (cf. Table 5.2, ∑).
Experiment 8 is the reference method from [32]. The 0/1 indicates which method is used
for the experiment. i.e. "PLD:1, IPD:0, WPLD:0, WIPD:0, v4:0, rB:1" indicates that
the point-plane distance was used (PLD:1), while the inverse point-point distance was
not added to the problem (IPD:0), the plane-based weighting functions were deactivated
(WIPD:0, WPLD:0), the optimization skipped step 2 (v4:0), and the residual balancing
was enabled (rB:1).

The results revealed seven new residual and weighting combinations that achieved
better results than the reference method.

5.2.5 Use Case Scenario
Loghmani et al. [9] recently introduced a novel dataset that is designed to verify deep
learning results on real-life RGB-D data gathered with a robot.

Even for a trained expert in some situations it is impossible to assign the correct label
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Figure 5.6: Qualitative results of the calibration. From left to right: scene, initial
parameterization, reference method (IPD, [32]), the introduced method that
gives the best qualitative result, using PLD, IPD, and WIPD. Figure best
viewed in color.

to regions of a depth image because the information is ambiguous. However, usually it
is easy to spot the correct label and boundaries in the RGB domain. For this reason,
the dataset is labeled in the RGB domain. To extract the correct labels for the depth
data, the camera is calibrated and the data is corrected using the presented method.
The depth data is projected into the RGB domain and achieves more precise labeling
results than with a manual calibration. Figure 5.7 shows the results with and without
the presented calibration.

5.3 Discussion
This chapter presents an autonomous calibration method for RGB-D setups. The
approach makes use of an SfM reconstruction as calibration target and formulates an
optimization method that incorporates plane priors to improve the pixel-wise alignment
of RGB and depth images. It introduces a new residual that uses the point-plane distance
for a better convergence behavior and adds different weighting strategies that i) balance
the residuals independent of their dataset-dependent over- or underrepresentation and
ii) increase the influence of plane points which tend to be more stable.

The evaluation contains over 300 experiments performed on ten datasets. It qualita-
tively and quantitatively evaluates different variants of the newly introduced methods
against a reimplementation of a state-of-the-art auto-calibration method. Therefore,
two novel quantitative evaluation methods are defined that use the cloud-cloud distance
for an impartial analysis of the auto-calibration results. The quantitative methods could
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(a) (b) (c) (d)

Figure 5.7: Annotation results for a scene (a) of the dataset presented in [9]. (b) Shows
the manual annotation in the RGB domain. The last two columns show the
depth annotation results for a manual calibration (c) and with the presented
calibration (d).

be used in the field to check if the autonomous calibration was successful. The results of
the qualitative and the quantitative evaluation show significant improvements which are
reflected in more precisely aligned RGB and depth images, as well as more precise depth
measurements. I.e. the results revealed seven new residual and weighting combinations
that achieved better results than the reference method. Moreover, the performance of
the reference method was improved by adding the equalized plane weighting (WIPD).
The best qualitative results was achieved by combining the point-plane distance with an
equalized plane weighted inverse point-point distance (PLD, IPD, WIPD). The results
also show that the quantitative measures (QMSfM, QMDepth) confirm and support
the qualitative results (man) that were obtained manually.
The usability of the calibration method is demonstrated in the use-case scenario of

semi-automatically annotating the depth information of a novel RGB-D dataset for
deep learning, recorded with a robot [9]. In the presented use-case scenario the RGB
data has been labeled manually, but given a good camera calibration it is easily possible
to use existing RGB classification methods to label depth data by simply utilizing a
perspective projection.

The introduced auto-calibration method calibrates the intrinsic and extrinsic param-
eters of an RGB-D sensor and corrects the depth information. In order to relate the
improved depth information to a reference coordinate system it is necessary to find a
rigid transformation between the involved coordinate systems. To our knowledge so far
there is no auto-calibration method for RGB-D sensors that combines the calibration of
the sensor intrinsics parameter, the sensor extrinsic parameters, a depth offset correction
method, and the calibration of the sensor pose relative to a reference coordinate system
into one holistic approach. Hence, the next chapter develops a camera pose (hand-eye)
calibration method that can be easily combined with the presented auto calibration
approach into one holistic solution.



Chapter 6

Towards Holistic Autonomous Calibration

Chapter 5 introduces a method for the autonomous calibration of RGB-D setups. It
covers the estimation of the intrinsic camera parameters, the rigid transformation
between the RGB and depth camera, as well as a depth offset compensation. With that,
the camera itself is completely calibrated. However, on a robotic system the sensor
information might be useless if they cannot be related to other components on the robot,
for instance the navigation system to avoid detected obstacles or grasp detected objects.
Hence, it is necessary to define the rigid transformation between the cameras and a
fixed reference coordinate system on the robot. The rigid transformation is usually
manually measured and error prone.
We introduced in [39] a method to replace the manual measurement with an au-

tonomous calibration approach. It uses the robot’s kinematic configuration, together
with predefined circular, respectively linear trajectories and a ground plane detection.
Although the method proves its applicability in practice, it has some limitations: it
requires the robot to perform specific motions which strongly depend on the robot’s
kinematic configuration and does not take any positioning errors into account.
This chapter breaks up these restrictions and briefly presents first results of an

extrinsic pose calibration algorithm that could extend the introduced auto-calibration
method to form a holistic calibration approach. It filters the input data using a
motion blur detection algorithm to gain robustness and uses the filtered input data
to reconstruct the motion of the robot to calibrate the rigid transformation between
the camera and a reference system. The optimal method does not rely on predefined
trajectories and is not restricted to a special kinematic configurations. The introduced
solution is related to the classic hand-eye calibration problem, except that there is no
precise estimation of the robot trajectory available and it aims to calibrate the rigid
transformation between two sensors using the three dimensional (x,y,θ) motion of the
robot.

6.1 Camera Pose Calibration
This section introduces a method which is tailored to use information that is already
available on most state-of-the-art robotic systems (cf. Figure 6.1). The approach
calibrates the rigid transformation between the two coordinate systems and makes
use of the camera trajectory and the robot’s trajectory. It formulates a simple target
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Figure 6.1: Sensor configuration of the experimental platform. Orange: RGB-D sensors,
blue: Laser scanner.

function which is used together with a Levenberg-Marquardt optimization and a ground
plane detection to estimate the required parameters.

6.1.1 Robot Trajectory Estimation

Many state-of-the-art indoor robots use a line laser scanner for robust localization
and mapping. More accurately, the navigation and relocalization system estimates the
current pose of the laser scanner relative to a map. The robot makes use of a rigid
transformation between the sensor and the other robot components to relate them to a
global coordinate system.
The research robot used in this work and depicted in Figure 6.1 combines the

laser measurements with a Monte Carlo Localization (MCL) method introduced by
Fox et al. in [88]. MCL is a sample based algorithm that uses particles (samples) to
represent the current pose estimate and the corresponding multi-modal distribution
of the robot pose and enables a global relocalization and tracking of the robot. The
algorithm is known to be efficient, fast, and robust under various conditions.

However, the calibration approach is agnostic to the underlying localization method. If
necessary, the MCL algorithm can be replaced with any other state-of-the-art localization
method.



6.1 Camera Pose Calibration 77

6.1.2 Camera Trajectory Estimation

Similar to the auto calibration approach in Chapter 5, the camera trajectory is estimated
using the SfM technique presented in Moulon et al. [81]. It is combined with an additional
bundle adjustment [57] step to get the optimal camera trajectory and the corresponding
structure of the environment which is used to initialize the scale of the camera trajectory
(cf. Chapter 5). With that it can be easily combined with the previously introduced
auto-calibration method.
The camera trajectory could be alternatively estimated with a dedicated camera

tracking method as presented in [89]–[91].

6.1.3 Extrinsic Pose Calibration

The extrinsic pose calibration uses the camera trajectory and the robot trajectory to
estimate the rigid transformation TExt. TExt transforms the motion of the robot from
one reference system into the other.

Figure 6.2 shows that TExt can be expressed together with the relative pose changes
of the two coordinate systems as

TExt ◦ L,iTL,i+1 ◦T−1
Ext = s · C,iTC,i+1 (6.1)

where L,iTL,i+1 is the transformation between the robot’s pose at time i and i+ 1, s as
the scale, and C,iTC,i+1 as the transformation between two camera poses at time i and
i+ 1.
This definition has two major advantages: First, the relative motion between two

consecutive frames tends to have less errors. Second, it is independent of the origin of
the two coordinate systems.
With that, it is possible to formulate a residual with

r = Text ◦ L,iTL,i+1 ◦T−1
exts

−1 · (C,iTC,i+1)−1 = [x,y,z,ax,ay,az]T (6.2)

where [x,y,z,ax,ay,az]T is a 6D pose, with the translation [x,y,z] and the rotation in
angle-axis notation [ax,ay,az]. If the rigid transformation is correctly parameterized
Text, [x,y,z,ax,ay,az]T = 0T. That results in an optimization problem of the form

min
Text

∑
i

ρ(‖ri‖2). (6.3)

where ρ represents a Tukey loss function to reject gross outliers.
Since a classic service robot moves only in a 3D space (x,y,θ), but the camera pose

has to be determined in 6D, additional assumptions have to introduced to overcome
the ambiguity of the solution. Similar to our prior work presented in [39], the method
detects the ground plane to estimate the height of the camera and fixes it during the
optimization.
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Figure 6.2: Transformations for camera pose calibration.

6.1.4 Motion Blur Detection

To filter out motion blurred images, a motion blur detection method is introduced
which is based on the work of Pertuz et al. [92]. Six focus measures are extracted
and used as features for a machine learning based motion blur detection: modified
Laplacian (LAPM) [93], diagonal Laplacian (LAPD) [94], variance of Laplacian (LAPV)
[95],sum of wavelet coefficients (WAVS) [96], variance of wavelet coefficients (WAVV)
[96],ratio of wavelet coefficients (WAVR) [97]. An additional feature is added which is a
combination of [93] and [95], variance of modified Laplacian (LAPMV), to end up with
seven features for the classification problem.
Three classic machine learning algorithms are tested and benchmarked together

with the introduced features. KNN (k = 3, k = 5), a Random Forrest (RF), and an
easy to implement Decision Stump. All algorithms are trained on the CERTH motion
blur dataset [98] and on a newly created dataset (v4rMB). While the CERTH dataset
covers a variety of images, including high quality topographies and outdoor scenes, the
v4rMB dataset is focused on indoor scenes recorded with a low quality color camera
(cf. Figure 6.3).

6.2 Evaluation

This section presents the first results of the motion blur detection algorithm and the
extrinsic pose calibration method.
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(a) CERTH. (b) v4rMB.

Figure 6.3: Two different datasets that are used to train the motion blur detection
algorithm.

6.2.1 Datasets
Three different datasets are created to evaluate the method. A synthetic dataset to
validate the implementation, a real-life dataset recorded with a robot, and an evaluation
dataset to verify that the rigid transformation is correctly estimated.

Synthetic Dataset

First, a synthetic sine-shaped trajectory is generated. The ground truth extrinsic trans-
formation Text,GT is used to express the sine-shaped trajectory in an other coordinate
system, resulting in a second trajectory and completing the synthetic dataset.

Real-Life Dataset

Second, real-life sequences are recorded with an experimental robot, equipped with
a laser ranger, and an RGB-D camera. The MCL is periodically triggered, while the
RGB-D information and the laser scans are stored together with the most recent pose
update.

Evaluation Dataset

Third, an evaluation dataset is collected that contains a corner of a room in the camera’s
and laser’s field of view. This dataset is used to evaluate the alignment between the
laser and the RGB-D data after applying the estimated rigid transformation.

6.2.2 Implementation and Evaluation Framework
The implementation makes use of several libraries and frameworks.

The optimization is implemented using the Ceres optimization library while the PCL
[84] is used to detect the ground plane to estimate the height of the camera.
Several ROS [70] packages are used for recording the input data on a robot system

and for the evaluation of the results: The input dataset is recorded using rosbag and
the built-in message synchronization method to extract synchronized pairs of camera
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Figure 6.4: Accuracy of algorithms trained on all data.

images and pose estimations. The robot uses the amcl package to localize the robot
in order to extract its current pose based on the laser scan. The calibrated rigid
transformation is published into the ROS framework as TF and picked up by the
point_cloud_to_laser_scan package to extract a virtual laser scan from the depth
cloud.
The extracted virtual laser scan is compared with the line laser scanner using

CloudCompare1.
Weka [99] is used to evaluate the three different machine learning algorithms and

their suitability as motion blur detection algorithm.

6.2.3 Result
This section wraps up the first results towards a holistic autonomous calibration method.

Motion Blur Detection

The three machine learning algorithms are trained on the v4rMB dataset and on a
combined dataset that consists of both, the CERTH dataset and the v4rMB motion
blur dataset. In order to get impartial results for the different classifiers, the selected
algorithms are evaluated using a ten-fold cross validation. The results of the differ-
ent algorithms are compared using a paired t-test to check if one of the algorithms
significantly performs better than the others.

Figure 6.4 shows the results of the four different classifiers on the combined dataset.
All classic machine learning approaches achieved good results, but the Random Forrest
and KNN 1 clearly outperform the other two methods.

The experiments are repeated solely on the v4rMB dataset which is tailored to indoor
scenes captured with a VGA resolution color camera. Figure 6.5 shows that the decision
stump performs on the indoor scenes as good as the random forest, and achieves an
accuracy of 92%.
The decision stump is selected as motion blur detection method, since the target

platform will face indoor scenes and due to its simplicity and efficient implementation.
1CloudCompare (version 2.9) [GPL software]. (2017). Retrieved from http://www.cloudcompare.org/
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Figure 6.5: Accuracy of algorithms trained on v4rMB scenes.

Figure 6.6: Decision stump on different features.

The experiments are repeated with the decision stump for every introduced feature.
Figure 6.6 shows that the decision stump performs best together with LAPV as feature.
Hence, the decision stump is implemented and used together with LAPV to filter the
input data.

Extrinsic Pose Calibration

The synthetic dataset is used to verify the correctness of the implementation and to
verify the implementation of the introduced method. The first tests revealed that the
convergence behavior strongly depends on the initialization of the scale s which has
to be sufficiently close to the real value. Similar to Chapter 5 the SfM map is used
together with depth measurements to estimate the scale.

The first results on the real-life dataset show that the method succeeds in extracting
the correct rigid transformation between the laser and the depth camera. The histogram
of the cloud-cloud distance between the laser scan and the projected depth data shows
an overall low alignment error of approximately 0.01m (cf. Figure 6.7a). Figure 6.7b
shows that the laser scan and the projected depth information are precisely aligned,
indicating a correct rigid transformation between the two sensors.
In order to evaluate the impact of the motion blur detection on the calibration,
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(a) Histogram. (b) Scans.

Figure 6.7: (a) Histogram of the distance between the RGB-D depth sensor estimations
and the laser-scan. (b) A pseudo-laser scan is extracted from the point
cloud which is compared with the laser scan data of the robot. The two
scans are well aligned and indicate a correct rigid transformation between
the two systems.

the experiments are run with and without enabling the input data filtering. Figure
6.8 shows that our algorithm performs significantly better with the enabled motion
blur detection. The overall alignment error that indicates the correctness of the rigid
transformation decreases if the filtering is enabled.

(a) Without motion blur detection. (b) With motion blur detection

Figure 6.8: Results for the distance between the RGB-D pseudo laser scan and the real
laser scan.

6.3 Discussion
This chapter presents first results towards a holistic auto calibration method for RGB-D
cameras that are mounted on a robot. It is tailored to extend the method presented in
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Chapter 5 and similarly uses an SfM method to extract the camera pose and a sparse
map of the environment. Two trajectories and the ground plane are used to optimize a
rigid transformation between the camera trajectory and the reference trajectory, while
the sparse map is used together with the depth sensor to correctly initialize the scale
for the optimization problem. Additionally, the approach introduces a simple and easy
to implement motion blur detection algorithm that uses a single feature together with a
decision stump to filter out blurred images. First results highlight the potential of this
method to find a correct rigid transformation and show that the motion blur detection
improves the optimization results.
The introduced method is a first step towards a holistic autonomous calibration of

an RGB-D sensor on a robot system.





Chapter 7

Conclusion

This chapter finally presents a summary of the individual sections and gives a short
outlook on future work.

7.1 Summary
Chapter 2 evaluates ten different depth sensors using five metrics, aiming to achieve
representative and comparable results to benchmark different depth sensors in the
context of robotic vision. Therefore, 510 data points are semi-automatically collected,
each based on 100 depth frames. The results provide valuable information about state-
of-the-art depth sensors for research in robotic perception and related applications.
Our investigation suggests the use of far-range Structured Light cameras for any

application where the quality of the surface representation is more relevant than the
trueness of the depth measures. This can include common robot tasks such as object
modeling and recognition within the manipulation distance of a robot, i.e. distances
below 2m for approaching and handling an object. Moreover the Asus Xtion and
Structure IO sensor are able to gather data under all tested lighting conditions for all
materials. Hence, they are especially useful for robots operating under uncontrolled
conditions.
The ZR300 offers a low trueness for < 4m but may fail to gather depth data under

bright lighting conditions. Applications where the trueness is more relevant than the
precision of the measurements fit the domain of this sensor.

The D435 provides a remarkable wide range from 0.2m to 7m and performs especially
well for depth ranges < 1m. However, it failed during the experiments to gather depth
measurements under bright lighting conditions and had scattered results for precision
and trueness.

For large distances > 4m, the tested ToF sensor (KinectV2) gathers the most reliable
measurements, even under bright lighting conditions.
The Ensenso Active Stereo camera offers the best trueness within its narrow range

from 0.5−1m. It satisfies applications requiring low biased measurements from a sensor
that can be used out of the box.

The RealSense ZR300, R200, and D435 offer various parameters to adapt the sensor
properties to the scene. During the experiments the factory presets for high accurate
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measurement have been used without any adaptation to the current lighting and mate-
rial.

Chapter 3 introduces an easy to use and intuitive depth error simulation model, which
makes use of a virtual stereo camera with slightly modified intrinsic parameters. It
aims to simulate the characteristic error behavior of the investigated depth sensors and
is targeted to be used together with synthetic datasets. The generic model is evaluated
against state-of-the art depth sensors and successfully replicates systematic depth errors
of various sensor technologies. It shows close-to-real-life results for the trueness and the
precision of the sensor. In explicit it models non-linear, and radial-shaped, local errors
that are characteristic for Structured Light and Active Stereo cameras as well as linear
increasing errors which are characteristic for ToF cameras.

A feasibility study applies the generic model to a synthetic dataset and analyzes the
results of a state-of-the-art reconstruction method under different depth error charac-
teristics. The tested reconstruction algorithm showed to be sensitive to different error
types which impact the surface quality as well as the trueness of the reconstruction. It
also revealed that the surface quality of a reconstruction does not necessarily reflect the
trueness of the results. Ideally, new algorithms should be evaluated against ground-truth
data, e.g. laser scans of the scene. If ground-truth real-life data is not available, the
introduced model can be used to generate close-to-real-life depth data which allows an
impartial analysis of the algorithm.

Chapter 4 presents two camera-model-free methods to compensate systematic depth
errors using planar targets. Since the two methods do not use a camera-model to
compensate the depth error, they are agnostic to the sensor technology of the target
system.

The first method parameterizes for several distances several individual lower dimen-
sional compensation lattices. The second method optimizes a single lower dimensional
compensation lattice together with an exponential function to inherently model the
distance dependency of the depth error. It allows to directly interpolate compensation
values for distances that were not originally observed in the input set.

Both models are evaluate on synthetic and real-life datasets. The synthetic datasets
are augmented using the depth error simulation model presented in Chapter 3. The
results show that both methods improve the trueness and the precision of the depth
data. While the depth-discrete error model performs better on the synthetic dataset,
both methods equally perform on real-life data.
A case study evaluates the depth-continuous compensation model together with a

reconstruction algorithm. The algorithm reconstructs a scene using the depth data
before and after the depth-continuous compensation model has been applied. The case
study reveals that the model significantly improves the results of the state-of-the-art
reconstruction algorithm, giving more precise and accurate reconstruction results.

Chapter 5 presents a method for the autonomous auto calibration of RGB-D sensor
setups. It improves the state of the art by adding plane priors to the optimization
problem which favor more stable points and have the ability to guide the solution along
planes.
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In total over 300 experiments are performed and a comprehensive result summary is
given. Two novel quantitative evaluation methods are defined that use the cloud-cloud
distance for an impartial analysis of the auto-calibration results. The results of the
qualitative and the quantitative evaluation show significant improvements which are
reflected in more precisely aligned RGB and depth images, as well as more precise depth
measurements. I.e. the results revealed seven new residual and weighting combinations
that achieved better results than the reference method.

A use-case scenario demonstrates the usability of the auto calibration method. It ap-
plies the calibration method to a dataset which is used to semi-automatically annotating
the depth information of a novel RGB-D dataset for deep learning.

Chapter 6 provides first results of a camera pose calibration method which calibrates
the camera pose relative to a reference coordinate system. It introduces a novel, easy
to implement motion blur detection algorithm to filter the input data. The calibration
method uses the 3D motion of the robot together with the RGB-D camera to estimate
the rigid transformation between the navigation sensor and the depth camera.

The convergence behavior of the method is validated using a synthetic dataset. The
calibration results are evaluated using real-life data record with an experimental robot
platform. The robot is equipped with a state-of-the-art sensor setup that consists
of a RGB-D camera and a laser scanner that is used for the pose estimation of the
robot. The results show that the method accurately estimates the extrinsic camera
pose. The motion blur detection algorithm further improves the results by filtering
out unreliable camera- or robot poses. The introduced method can be easily combined
with the autonomous calibration method presented in Chapter 5, to form a holistic
autonomous calibration method for RGB-D sensors.

7.2 Outlook
This section presents a short outlook for every individual chapter.

Future work could extend the sensor study by evaluating the different sensors under
outdoor lighting conditions and could add new sensors that continuously enter the
market. Experiments I and II (trueness and precision) are easy to reproduce. Users
with new sensors should be able to gather data in a similar way to i) benchmark their
sensor against the presented results and ii) apply the introduced easy to use error model.
Furthermore, the experiments regarding precision, trueness, and lateral noise could be
extended for different viewing angles. The setup may be extended by replacing standard
drivers with more advanced methods. E.g. [100] implements a method to calculate a
disparity map for Structured Light sensors, and [101] adds a filter to the Freenect2
driver to extend the sensor range, which may be of relevance to robotics applications.
Chapter 3 shows that the simulation model can be easily combined with existing

datasets to generate realistic, close-to-real-life depth data together with ground truth
information. Future work may incorporate the models into a simulation environment
to model close-to-real-life depth errors. The simulated data could be used to generate
large scale, more realistic synthetic datasets, which are well suited for the training of
data-driven machine learning methods.
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Figure 7.1: Coverage statistic for one of the used datasets for auto calibration. The
color information encodes the number of SfM point re-projections for the
corresponding depth pixel. The histogram gives additional information
regarding the covered distances.

The offset compensation methods presented in Chapter 4 require an input dataset
that contains flat surfaces which might be hard to collect. Future work could adapt the
method to remove this constraints. The depth-discrete error compensation model does
not inherently allow to interpolate correction values that are not contained in the input
dataset. However, it might be possible to linearly interpolate between the separate
models to get compensation values for depth distances that are not inherently modeled.
That might give comparable or even better results than the depth-continuous model.

Although the time for the Jacobian estimation has been already drastically reduced by
incorporating handcrafted residuals, the whole optimization itself takes several minutes.
Since the slowest part is the linear solver, future work could analyze the approximated
Hessian in order to use the most appropriate solver for the problem structure.
As next step the auto-calibration method and the quantitative evaluation methods

presented in Chapter 5 can be utilized to fully autonomous (re)calibrate an RGB-D
camera on a robotic system and to automatically estimate the quality of the calibration.
It might be possible to replace the SfM reconstruction or add a high accurate laser
scan of the environment to further improve the calibration results. Future work could
investigate the inverse depth parameterization for the point-plane distance and may
answer the question how the calibration could work in an online fashion, even in dynamic
environments.
As a next step data awareness could be added to the algorithm. For instance

by extracting a coverage statistic for the input data of the optimization problem
(cf. Figure 7.1). This statistic could be used to optimize the trajectory of the robot to
specifically add information that is not included in the input data. This statistic could
be also used to extract a pixel-wise confidence value for the compensated depth image.

A crucial step towards a robust holistic camera calibration is to robustify and further
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investigate the extrinsic camera pose calibration. One way to gain robustness is to
identify unreliable trajectory points in order to reduce their influence on the optimization
problem. So far the introduced method makes use of a Tukey loss function to reduce
the influence of outliers. However, an even more sophisticated method might be to
incorporate the Mahalanobis distance [102] to incorporate the uncertainty of the camera
poses. The necessary inverse covariance (information matrix) could be directly extracted
from the bundle adjustment problem after resolving the gauge ambiguity. This could
be realized either by fixing two camera poses to remove the gauge freedom or by
incorporating the work presented in [103]. The necessary covariance propagation for
the transformations could be derived using a linear error propagation. Blanco presents
in [104] a tutorial on SE(3) transformation and summarizes how uncertainty can be
incorporate into different transformation representations. Barfoot and Furgale [105]
investigated 2014 how uncertainties can be associated with 3D poses. Both works might
be a good starting point to improve the optimal hand-eye-calibration. Together with a
Cholesky decomposition [106] and the Mahalanobis distance it should be possible to
incorporate the uncertainty into the optimization problem, to achieve more accurate
calibration results.
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Figure A.1: Impact of the baseline error on the reconstruction.

Figure A.2: Impact of the principal point error on the reconstruction.
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Figure A.3: Impact of the focal length error on the reconstruction.

Figure A.4: Impact of the interpolation error on the reconstruction.
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Figure A.5: Impact of the quantization error on the reconstruction.

Figure A.6: Impact of the tangential distortion error on the reconstruction
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Figure A.7: Impact of the radial distortion error on the reconstruction.

Figure A.8: Impact of the all errors in combination on the reconstruction.
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Figure A.9: Impact of the camera pose error on the reconstruction.

Figure A.10: Ground truth reconstruction.



Appendix B

Bicubic Interpolation

Equation (4.14) uses the constant 16× 16 matrix A,

A =



0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 −1

2 0 1
2 0 0 0 0 0 0 0 0 0

0 0 0 0 1 −5
2 2 −1

2 0 0 0 0 0 0 0 0
0 0 0 0 −1

2
3
2 −3

2
1
2 0 0 0 0 0 0 0 0

0 −1
2 0 0 0 0 0 0 0 1

2 0 0 0 0 0 0
1
4 0 −1

4 0 0 0 0 0 −1
4 0 1

4 0 0 0 0 0
−1

2
5
4 −1 1

4 0 0 0 0 1
2 −5

4 1 −1
4 0 0 0 0

1
4 −3

4
3
4 −1

4 0 0 0 0 −1
4

3
4 −3

4
1
4 0 0 0 0

0 1 0 0 0 −5
2 0 0 0 2 0 0 0 −1

2 0 0
−1

2 0 1
2 0 5

4 0 −5
4 0 −1 0 1 0 1

4 0 −1
4 0

1 −5
2 2 −1

2 −5
2

25
4 −5 5

4 2 −5 4 −1 −1
2

5
4 −1 1

4
−1

2
3
2 −3

2
1
2

5
4 −15

4
15
4 −5

4 −1 3 −3 1 1
4 −3

4
3
4 −1

4
0 −1

2 0 0 0 3
2 0 0 0 −3

2 0 0 0 1
2 0 0

1
4 0 −1

4 0 −3
4 0 3

4 0 3
4 0 −3

4 0 −1
4 0 1

4 0
−1

2
5
4 −1 1

4
3
2 −15

4 3 −3
4 −3

2
15
4 −3 3

4
1
2 −5

4 1 −1
4

1
4 −3

4
3
4 −1

4 −3
4

9
4 −9

4
3
4

3
4 −9

4
9
4 −3

4 −1
4

3
4 −3

4
1
4



,

(B.1)

99



Appendix C

Autonomous Calibration of RGB-D Setups
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Table C.1: Qualitative and quantitative results of the presented calibration method and
combinations outperforming the state of the art. Example: Method that
gives the overall best result (see column "∑"): PLD enabled. Method that
gives the best qualitative result (see column "man"): PLD, IPD, and WIPD
enabled.

Experiments Results

# PLD IPD WPLD WIPD v4 rB QMDepth QMSfM man ∑
1 1 0 0 0 0 0 211 198 228 637
2 0 1 0 0 1 1 214 217 157 588
3 1 0 1 0 0 1 197 179 189 565
4 0 1 0 1 0 0 197 144 221 562
5 1 1 1 0 0 1 194 218 149 561
6 1 1 0 1 0 0 167 151 240 558
7 0 1 0 0 0 1 189 209 150 548

*8 0 1 0 0 0 0 172 185 190 547

9 1 0 1 0 0 0 199 167 176 542
10 1 0 0 0 1 0 187 158 183 528
11 1 1 1 1 0 0 186 147 169 502
12 1 1 1 0 1 1 170 210 110 490
13 1 1 0 0 1 1 155 174 145 474
14 1 1 1 0 1 0 141 175 149 465
15 0 1 0 1 1 1 152 165 135 452
16 1 1 0 0 1 0 122 161 164 447
17 1 1 1 1 0 1 126 165 148 439
18 1 0 1 0 1 1 147 138 153 438
19 0 1 0 0 1 0 127 147 157 431
20 1 1 0 0 0 0 118 151 155 424
21 1 1 1 0 0 0 130 157 122 409
22 0 1 0 1 0 1 116 138 128 382
23 0 1 0 1 1 0 161 75 132 368
24 1 1 0 0 0 1 122 140 104 366
25 1 0 1 0 1 0 124 98 123 345
26 1 1 1 1 1 1 96 118 127 341
27 1 1 0 1 1 0 119 71 143 333
28 1 1 1 1 1 0 119 85 112 316
29 1 1 0 1 1 1 73 91 67 231
30 1 0 0 0 1 1 71 73 70 214
31 1 1 0 1 0 1 31 34 32 97
32 1 0 0 0 0 1 2 5 26 33
* Reference method introduce in [32]
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