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Kurzfassung

Anwendungen künstlicher Intelligenz (KI) in unserem Alltag gewinnen immer mehr an
Bedeutung. Umso wichtiger ist es, dass KI für Menschen sicher ist, z.B. im Bereich der
automatisierten Altersschätzung. Allerdings können nur wenige veränderte Pixel dazu
führen, dass neuronale Netze ein Bild falsch klassifizieren.

Der Schwerpunkt dieser Arbeit liegt daher auf der Analyse von White-Box- und Black-Box-
Angriffen gegen neuronale Netze im Bereich der Altersbestimmung. Bestehende Techniken
werden evaluiert und ein neuer, semi-orientierter Ansatz entwickelt. Mit Hilfe dieses
Ansatzes können Samples generiert werden, die zu einer widersprüchlichen Klassifizierung
durch das neuronale Netz führen. Der Ansatz kann immer dann angewendet werden,
wenn die Label der Klassifizierung geordnet sind oder zum Teil gebündelt werden können.

Obwohl sich diese Arbeit auf den Bereich der Altersschätzung konzentriert, impliziert die
Fähigkeit, widersprüchliche Samples zu generieren, dass neuronale Netzwerke nicht das
letzte Wort in sicherheitskritischen Anwendungen haben sollten.
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Abstract

As Artificial Intelligence (AI) is getting a greater impact in our everyday life, it is of
utmost importance that it is safe for humans. However, this thesis demonstrates that if
only several pixels in an image are changed, neural networks produce incorrect results.

The focus of this thesis is on white-box and black-box attacks against neural networks in
the age estimation domain. Existing techniques are evaluated and a new semi-targeted
approach is developed. Using the semi-targeted approach, adversarial samples can be
generated. This new approach can be used whenever labels can be somehow ordered or
even clustered.

Although this thesis focuses on the age estimation domain, the ability to craft adversarial
samples implies that neural networks should not have the final word in safety-critical
applications.
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CHAPTER 1
Introduction

As Artificial Intelligence (AI) is getting a greater impact in our everyday life, it is of
utmost importance that it is safe for humans.

One of the tools used in AI are deep neural networks (DNNs) and neural networks
in general. Deep neural networks are powerful learning models that achieve excellent
performance on visual recognition problems [KSH12]. Those results imply that DNNs
can be used in different industrial domains, e.g. traffic sign recognition, a domain in
which DNNs even outperform humans [SSSI12b].

Nevertheless, neural networks tend to have some peculiar properties as well. If only
a few pixels in an image are changed, some neural networks produce incorrect results
[SZS+13]. Such a behaviour is not desirable in safety-critical systems. For example, if an
autonomous car recognizes a STOP sign as anything else but a STOP sign, it can lead
to deadly consequences. Therefore, it is important to verify the system.

Three original and three adversarial samples that are crafted in one of the experiments
this thesis is presented in Figure 1.1.

1.1 Problem Definition

The assumption in the rest of this thesis is that the neural network is performing a
classification task - mapping an input (image) to a discrete output value (e.g. mapping
an image of a traffic sign to the name of the traffic sign). Output values are often called
labels or categories. There is a finite number of possible labels.

To find errors in a system where a neural network is used, we need a framework which
can trigger every possible output of the neural network. We want to achieve that by
using only one image as a starting point.

1



1. Introduction

(a) Original sample classified as 28 years old (b) Adversarial sample classified as 59 years old

(c) Original sample classified as 59 years old (d) Adversarial sample classified as 28 years old

(e) Original sample classified as 28 years old (f) Adversarial sample classified as 64 years old

Figure 1.1: Original samples (left) and adversarial samples (right)

2



1.2. Aim of the Work

Since for the same input we will always get the same output, modifications of that image
are necessary. For each different desired output, a different modification of the image
is performed. Then we repeat that process by changing our desired output in every
iteration and in that way, cover all possible outputs. The idea is that the modified image
is as close as possible to the original one. For example, an image of a STOP sign can
be modified as long as it still is an image of a STOP sign to a human observer. In that
case, with the variations of the STOP sign we cover all the possible outputs of the neural
network - all other traffic signs. Using this technique, we can trigger errors in the system
which can help us in the process of its verification.

Modifying an input for a neural network with a goal of reaching an output that is different
than the output of an unmodified input is an attack called misclassification. If an output
which an attacker wants to reach is one specific label, then a name of the attack is
targeted misclassification.

Creating a framework for targeted misclassification in the domain of age estimation as
well as comparison and evaluation of existing approaches is the main focus of this thesis.
In other words, the focus is on approaches how to trick a classifier to classify a person as
older or younger than he or she actually is.

1.2 Aim of the Work

The goals of this thesis, in order of chapters, are the following:

• write a short survey on adversarial algorithms.

– Three different white-box attacks and three different black-box attacks are
analyzed and discussed. All of them are used to attack the DNN used for age
estimation.

• create a classifier for age estimation;

– Implement a DNN which receives an image as an input and outputs how old
the person in the image is.

• attack the classifier in a white-box environment;

– In the white-box environment, an adversary has all the information about
the DNN under attack. The internal structure of the neural network, all
the implementation details and values of all the variables in any moment are
known to the attacker. In other words, the attacker has access to the source
code and nothing is hidden.

• attack the classifier in a black-box environment;

3



1. Introduction

– In the black-box environment, an adversary doesn’t have access to all the
information. Depending on the precise definition of "black-box", more or less
information is provided. In this thesis, the only capability of the black-box
adversary is to observe the labels assigned by the DNN to chosen inputs.

The contributions of this thesis, sorted by priority, can be enumerated as follows:

1. the new Semi-targeted Black-box Attack is introduced

• In the domain of age estimation, it makes sense to be less strict about the
targeted label. For instance, if an image of a minor is classified as an image of
a person over a fifty years old, this could lead to the same consequences (e.g.
access to an age-restricted content), no matter if the minor is classified as a
55 or 65 years old person.
Formally, if the goal is to hit any label outside a specific group of labels, I
define that attack as semi-targeted misclassification. A group of labels must
be greater than an empty set, otherwise the task is trivial. In general, this
attack makes sense in any environment where labels can be ordered or at least
clustered.
To this end, I adapted one already existing black-box approach to this more
relaxed setting. Such a relaxation is not yet introduced in the literature since
it is very domain specific. Consequently, the results can’t be compared against
previous work of that kind, but results are compared to targeted black-box
attacks.

2. adversarial algorithms are evaluated in different environments

• A natural question is which algorithm is the best one for the white-box attack
and which one for the black-box attack? Several algorithms are run in different
settings and the results are compared. That provides an answer to the question
which algorithm to use in which scenario.

3. a framework for the white-box and the black-box attacks is developed

• I developed the framework for a white-box and a black-box targeted misclas-
sification attack. In other words, while treating the DNN as a white-box
or a black-box, images can be constructed in a way that the targeted DNN
outputs a specific year. I also extended the framework with capability to craft
semi-targeted black-box misclassification attacks.

To achieve the goals of this thesis and consequently provide the contributions, I had to
face and overcome the challenges:

• Can the already existing attacks be adapted on the age estimation task?

4



1.3. Methodological Approach

– None of the attacks from related work is performed in the age estimation
domain.

• Does image size have an impact on the attack?

– Most of the attacks in related work are performed against the images with
the small dimensions.

• How to measure attacks?

– Is the accuracy of the classifier the only measure?
– If an image is changed too much, the attack becomes obvious.
– If an API used in the black-box environment is queried too many times, the

attack can easily get detected.

1.3 Methodological Approach
The methodological approach consists of the following steps:

1. I write about the background knowledge needed for training a neural network. The
goal is to give a brief introduction to this area so that a non-expert reader can
follow the rest of the thesis. Using that knowledge, I train a deep neural network
for age estimation of a person in the image.

2. I conduct a research about different state of the art methods for generating ad-
versarial examples, i.e. images which are not correctly classified by DNN. The
focus here is on the approaches that address targeted misclassification. While
treating a DNN from the first step as a white-box, I use those methods to construct
adversarial examples. Afterwards, I present and analyze the results of the attacks.

3. I make a literature survey on targeted black-box attack methods, explain those
methods and use them to generate adversarial inputs for the DNN from the first
step, but this time while treating it as a black box. I compare the results of different
algorithms.

4. As the last step, combining the domain knowledge and an existing attack method, I
implement a new adversarial algorithm and using that algorithm, I construct images
for semi-targeted misclassification. I compare results against targeted black-box
approaches.

1.4 Outline
In this chapter an introduction to the problem is provided. In the next chapter background
knowledge that is needed to follow the rest of the thesis is presented. In Chapter 3 state-
of-the-art attacks are presented and explained. In Chapter 4 results of the experiments
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1. Introduction

are presented. The Semi-Targeted Approach is discussed in Chapter 5. Threats to validity
and ideas for future work are presented in Chapter 6. Finally, summary of this thesis is
presented in Chapter 7.
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CHAPTER 2
Background

A formal definition of a machine learning algorithm is given by [Mit97]: "A computer
program is said to learn from experience E with respect to some class of tasks T and
performance measure P if its performance at tasks in T , as measured by P , improves
with experience E." From such a vague definition, it is obvious that a comprehensive
introduction to machine learning is a broad topic. Hence, in this thesis a brief introduction
to the image classification problem is provided only. That should be enough for a non-
expert to be able to read and to understand this whole thesis.

As explained in Section 1.1, image classification is the task of assigning a label or a
class to an image. If an input is an n-dimensional vector and there are k classes, then
the learning algorithm is usually asked to produce a function f : Rn → {1, ..., k}. One
other variant of a classification task would be to produce a function f which outputs a
probability distribution over classes, i.e. how likely each class is. In such a scenario, the
next step usually is to assign a label according to the most likely class, but this need not
to be the case. A model that is used for classification is called a classifier.

After defining a task, it is important to know how to measure the performance of a
model. Depending on the domain of a system, this measure can vary. The accuracy
of the model is usually measured for a classification task. It is the fraction of correct
predictions of the model. For example, if the prediction of the model was correct for 8
out of 10 samples, the accuracy of that model (on those 10 samples) is 0.8 or 80%. An
equivalent information can be obtained by measuring the error rate. It is defined as the
fraction of incorrect predictions of the model.

Usually we are interested how good the model is on previously unseen data, because that
way we can see how well will it work in the real world application. Therefore, we measure
its performance on a set of data that is not used during training. Such a set of data is
called test set. A test set is subset of an entire dataset.

7



2. Background

A dataset is a collection of samples. One of the oldest datasets used in Machine Learning
is the Iris flower dataset [FIS]. That dataset consists of 50 samples from each of three
species of Iris. For each sample, four measures are taken: the length and the width of the
sepals and petals, in centimeters. A measurable property of a sample is called a feature.
Hence, Iris dataset has 3 classes, 150 samples and each sample has 4 features. A classifier
for that dataset could be modelled as a function f : R4 → {0, 1, 2} where 0, 1, 2 encode
the first, the second and the third type of Iris, respectively.

For every sample in a dataset, information is provided that defines what a class of that
sample is. That information is called ground-truth label. It is usually used as a vector.
Assume there are N different classes in a dataset. Then every class can be indexed from
0 to N − 1. Let there be a sample such that its ground-truth label has the index p. Then
a ground-truth vector 111p represents a vector with dimensionality N and all the values
are 0, except for the index p where the value is 1. In other words, a vector 111p encodes a
ground-truth label.

Most machine learning algorithms have hyperparameters, settings that we can use to
control the algorithms’ behaviour. Hyperparameters are values which are set before the
learning algorithm begins. In contrast, the values of other parameters are derived via
training.

If a classifier has a high accuracy on a test dataset, we say it generalizes well. However, if
it has a high accuracy on the training samples, but a low accuracy on a test dataset, we
say it overfits. To avoid overfitting, training samples are split into two non overlapping
subsets: the training subset and the validation subset.

The validation subset can be used to find good hyperparameters. The training subset
is used to adjust parameters of a model. The validation subset is verifying that any
increase in accuracy over the training dataset actually yields an increase in accuracy over
a dataset that has not been shown to the model before, or at least the model hasn’t
been trained on it. If the accuracy over the training dataset increases, but the accuracy
over the validation dataset stays the same or decreases, then a model is overfitting.
The test accuracy, an accuracy we are typically interested in, is computed on the test
dataset. That means that an original dataset is split into three disjoint subsets: training,
validation and test subset.

A problem can occur if there is not enough data, i.e. an original dataset is too small.
That makes the training, the validation and the test subset not big enough. For instance,
it can happen that the training dataset doesn’t have any instances of some specific class
or there are too few of them. That problem can be solved by the k-fold cross-validation
procedure.

That procedure is based on the idea of repeating the training and testing computation
on different splits of the original dataset. The original set is split into k equal disjoint
subsets. Of the k subsets, a single subset is retained as the validation set for testing the
model, and the remaining k − 1 subsets are used as training data. The process is then

8



2.1. Feedforward neural networks

Input #1
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Output
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Figure 2.1: An example of the feedforward neural network architecture

repeated k times, with each of the k subsets used exactly once as the validation data.
The k results can then be averaged to determine the test accuracy.

So far, the basics of the machine learning are covered. A goal for the rest of this chapter
is to provide a brief introduction to the deep learning area. In Section 2.1 an introduction
to basic neural networks is provided. After that, in Section 2.2 the Gradient Descent
algorithm and variations of it are introduced. Gradient descent is used for optimization of
functions based on the derivations of them. The backpropagation algorithm, an efficient
algorithm to compute a derivation of a function represented by a neural network, is
introduced in Section 2.3. Finally, in Section 2.4 convolutional neural networks are
presented. A convolutional neural network represents a typical choice of architecture of
the neural network when it comes to the computer vision domain.

2.1 Feedforward neural networks

Feedforward neural networks or multilayer perceptrons (MLPs) are the essential deep
learning models. A feedforward neural network defines a mapping f(xxx;θθθ) = yyy and learns
the value of the parameters θθθ that result in the best function approximation.

A neural network consists of several layers. There is always one input layer, followed by
one or more hidden layers and finally, there is an output layer. The number of layers
(without the input layer) defines the depth of the model. There is no precise definition,
but neural networks with more than three layers are called deep neural networks.

When it comes to feedforward neural networks, a network is a directed acyclic graph.
Vertices of such a graph are called units or neurons and edges are called weights. Vertices
represent scalar functions of an input. Weights are the parameters θθθ which a neural
network learns. Edges define data flow. One example of such a model is shown in the
Figure 2.1.

9



2. Background
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Figure 2.2: A single processing unit in a neural network

A typical architecture of one neuron can be seen in the Figure 2.2. That specific neuron
performs an operation f(net) = y where net = x1 ∗ w1 + x2 ∗ w2 + x3 ∗ w3 + bias. Bias
is usually modelled as an additional input with the corresponding weight w = 1. Then a
neuron performs the operation f(xxx×www) = y where × denotes cross-product between two
vectors. Function f is called an activation function and usually is the same for all neurons
in the same layer. In the input layer the activation function is mapping from input to
output, i.e. f(x) = x, but those in the other layers are usually non-linear functions.

Usually we are interested in probabilities for every class, i.e. what’s the probability that a
given sample belongs to a specific class. In that case, we want a vector of the probabilities
as an output of a neural network. If there are N different classes, the vector will have
dimensionality of N . The sum of the probabilities for all classes must be equal to 1.
Then, if we want to find out a predicted label for a given sample, we take the class that
corresponds to the index with the highest probability. The layer that provides such a
vector as an output is called softmax layer and usually represents the last layer in a
neural network that is used for classification. Sometimes the softmax layer is not even
considered part of a neural network, but only as a function used for post-processing an
output of a neural network. In this thesis, when it matters, it is clear from the context if
the last layer is a softmax layer or not.

Convolutional Neural Networks (CNNs), which are described in Subsection 2.4, are a
specific kind of feedforward neural networks. They are most popular in the computer
vision domain. In domains where a context is important, for instance in Natural Language
Processing, cycles are introduced in a computing graph so that the context can be stored
in a state of a neural network. The Recurrent Neural Networks (RNNs) are an example
of a neural network with cycles. However, RNNs are out of the scope of this thesis and
will not be further discussed.

10



2.2. Gradient descent

2.2 Gradient descent
The accuracy of a parametric model depends on the data provided to train it and the
parameters used. The same holds for neural networks. The parameters in the neural
networks are weights and during the training we are trying to find the best weights. To
find them, we express how bad the model is using the loss function or cost function. It
expresses how wrong the model is (for a given data) using the given weights. When
such a function is defined, all we do is try to find an input to that function, i.e. weights,
such that the output of that function, i.e. the loss, is minimal. Most machine learning
algorithms have some kind of optimization built in. Optimization refers to the task
of finding xxx s.t. f(xxx) is maximal or minimal. In this thesis, optimization will always
mean minimization, except when stated otherwise. Maximization can be accomplished
by minimizing the function −f(xxx).

Since training a neural network is actually minimizing a loss function that is represented
by the neural network, two things need to be decided: the loss function that will be used
and the optimization algorithm that will be used to find its minimum.

For the rest of this thesis, I assume that a reader is familiar with the basics of linear
algebra, differential calculus, probability theory and statistics. If not, please consult
[GBC16], for instance.

The most popular classification loss function is cross-entropy. Given two probability
mass functions (a mass function is a function that gives the probability that a discrete
random variable is exactly equal to some value) uuu and vvv in RT , i.e. uuu = (u1, ..., uT ) and
vvv = (v1, ..., vT ), the cross-entropy between uuu and vvv is

H(uuu,vvv) = −
T∑

t=1
utlnvt (2.1)

Let uuu encode the ground-truth label and let vvv be the predicted softmax class scores. Now
H measures how dissimilar the true and predicted probabilities are for a single sample.

Let D be a dataset such that D = {(xxxs,wwws)}Ss=1 where xs is an input vector and ws is a
vector encoding the ground truth (i.e. all indices have value 0, except for the index of
the class which xs represents where the value is 1).

On this basis, cross-entropy loss on D is defined as

L(θθθ) = 1
S

S∑
s=1

H(wwws, softmax(f(xxxs;θθθ))) (2.2)

Models trained with this loss function are called softmax classifiers. If T = 2, it is also
called logistic regression. Classifiers learn to predict probabilities per class label.

After we defined the loss function L(θθθ) as in 2.2, we need to find an optimization algorithm
to find its minimum. Since the function is not linear in θθθ, a nonlinear optimization
algorithm is needed. A popular choice in deep learning is Gradient Descent.

11



2. Background

Gradient Descent is an iterative optimization algorithm that is used for finding the
minimum of a function. It is based on the first derivative of the function whose minimum
needs to be found. This means that the function must be differentiable.

Let ∇f be a vector of all partial derivatives of a function f : RN 7→ RN and let fxi

denote the partial derivative of f with respect to xi, i.e. fxi = ∂f
∂xi

. Then ∇f(xxx) =
(fx1(xxx), ..., fxn(xxx)) encodes how fast f changes with all arguments x1, ..., xn, which is
exactly what is needed for optimizing L(θθθ). Compute the direction of the greatest
increase, i.e. ∇L(θθθ), and move in the opposite direction. The size of that move is called
step size and it is defined by the learning rate - hyperparameter α.

The pseudo code for gradient descent is presented in Algorithm 2.1.

Algorithm 2.1: Gradient Descent
Input: θθθ, L, α

1 while true do
2 θθθ

′ ← ∇L(θθθ);
3 if ‖θθθ′‖ ≈ 0 then
4 return;
5 end
6 θθθ ← θθθ − α ∗ θθθ′ ;
7 end

This algorithm is simple and efficient. Simple since the only requirement is that f is
differentiable and efficient because it requires only first derivatives. A problem that can
occur is that ‖θθθ′‖ ≈ 0 can happen at all critical points - minimum, maximum and saddle
points.

To speed up convergence, momentum is introduced using hyperparameter β. It increases
step size dynamically by using velocity vvv. Velocity builds up momentum if successive
gradients are similar. The pseudo code for gradient descent with momentum is shown in
Algorithm 2.2

The idea behind gradient descent with Nesterov Momentum, which works often better
than standard Gradient Descent with momentum, is not to evaluate the gradient at the
current point, but at the point which would be the next, i.e. evaluate the gradient at
θθθ + vvv instead of at θθθ. The pseudo code is shown in Algorithm 2.3

So far, L(θθθ) is computed based on the whole training dataset D. Therefore, time
complexity increases linearly with number of samples in D. That can be problematic
if D is large. Instead of having a whole dataset D as a batch, we can evaluate L(θθθ) on
a subset of the training dataset with S number of samples. If S = |D|, the gradient
descent algorithm is called Batch Gradient descent. But we can split the training dataset
D into several minibatches (subsets) of cardinality S and process them one by one (one
per iteration). One full run through the training set is called an epoch. Usually training

12



2.2. Gradient descent

Algorithm 2.2: Gradient Descent with momentum
Input: θθθ, L, α, β

1 vvv ← 000;
2 while true do
3 θθθ

′ ← ∇L(θθθ);
4 if ‖θθθ′‖ ≈ 0 then
5 return;
6 end
7 vvv ← βvvv − α ∗ θθθ′ ;
8 θθθ ← θθθ + vvv;
9 end

Algorithm 2.3: Gradient Descent with Nesterov momentum
Input: θθθ, L, α, β

1 vvv ← 000 ;
2 while true do
3 θθθ

′ ← ∇L(θθθ + vvv);
4 if ‖θθθ′‖ ≈ 0 then
5 return;
6 end
7 vvv ← βvvv − α ∗ θθθ′ ;
8 θθθ ← θθθ + vvv;
9 end

takes many epochs. The resulting algorithm is called Minibatch Gradient Descent (or
Stochastic Gradient Descent (SGD) if S = 1). In practice, it is often called SGD even if
S > 1. The time for a single iteration is now independent of the dataset size and depends
only on the size of a minibatch. Typically, S is 64, 128, 256, or 512. In general, S is
usually 2N because of efficiency reasons (data parallelism). Decreasing S decreases the
computation time per iteration, the amount of memory required on GPU (minibatch
processed as whole) and the accuracy of the gradient estimate. It is important to sample
minibatches randomly to break (possible) ordering in a dataset. In practice, usually the
training set is shuffled once or before every epoch and then processed sequentially in
minibatches.

There are many alternatives to the gradient descent algorithm which have an advantage
of not having to choose the learning rate. An interested reader can find an overview of
gradient descent optimization algorithms in [Rud16].

13



2. Background

2.3 Backpropagation

Now we already know how to train a neural network. We can use a cross-entropy loss
function L(θθθ) and minibatch gradient descent with (Nesterov) momentum. For gradient
descent, we must calculate ∇L(θθθ).

One way to obtain ∇L(θθθ) is numerical differentiation. Let p ∈ [1, dim(θθθ)], ε ∈ R be
arbitrary small, and 111p encode a ground-truth label. Then directly by definition of the
derivative we obtain 2.3

∇L(θθθ) = (L(θθθ + 111pε)− L(θθθ))/ε (2.3)

Sometimes is 2.4 used instead of 2.3.

∇L(θθθ) = (L(θθθ + 111pε)− L(θθθ − 111pε))/2ε (2.4)

This approach is easy to implement, but it’s only an approximation (ε cannot be
arbitrary small) and it is too inefficient in practice because L must be evaluated dim(θθθ)
times (modern DNNs have millions of parameters). Instead of numerical differentiation,
preferable way is to obtain the analytic gradient, i.e. obtain ∇L(θθθ) analytically using
calculus. This approach is more accurate (no approximation) and much more efficient
(single evaluation).

A neural network is actually a computational graph composed of other functions. The
loss function L of the neural network is again a computational graph. Derivatives in
such graphs can be computed iteratively using the chain rule. The chain rule is used for
computing the derivative of composition of two or more functions.

Let f : R 7→ R, g : R 7→ R and F : R 7→ R s.t. F (x) = f(g(x)). Then by the chain rule,
F ′(x) = f ′(g(x))g′(x).

Based on the chain rule, the gradient of every weight can be efficiently computed and
then updated as defined in the gradient descent method. The paper in which this famous
algorithm is introduced is [RHW86].

2.4 Convolutional neural networks

Since the focus of this thesis is on the computer vision domain, this background chapter
wouldn’t be complete without mentioning the most popular choice of neural networks for
image classification, namely Convolutional Neural Networks (CNNs/ConvNets).

Convolutional Neural Networks are a well-known deep learning architecture inspired
by the natural visual perception mechanism of living creatures. Among different types
of deep neural networks, CNNs have been most extensively studied. ConvNets are
feed-forward neural networks which contain one or more convolutional layers. Neurons in
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2.4. Convolutional neural networks

this architecture are purposely spatially arranged to form feature maps. The ConvNet
architectures make the explicit assumption that the inputs are images, which allows a
creator of it to encode certain properties into the architecture. These properties make the
forward function more efficient to implement and vastly reduce the amount of parameters
in the network.

Unlike a regular Neural Network as introduced in the previous subsection, the layers of a
ConvNet have neurons arranged in 3 dimensions: width, height, depth (not the same
as depth of the network). This makes sense, because an image has width, height and
number of channels (depth). To reduce number of parameters, the neurons in a layer are
only connected to a small fixed-size region of the layer before it and weights are shared
among neurons in the same feature map (layer). Such a layer is called a convolutional
layer. Except for convolutional layers, in the CNN architecture, there are usually Pooling
Layers (POOL) and Fully-Connected Layers (FC), which are classic layers as introduced
in a previous subsection. In CNNs, activation functions are also often referred to as
separate layers. One of the most popular activation functions among CNNs is the ReLU
activation function. It is defined as in 2.5

f(x) = max(0, x)1 (2.5)

and its graph can be seen in the Figure 2.3.
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Figure 2.3: ReLU function

Pooling Layers are used to perform a downsampling operation along the spatial dimensions
(width, height). After all, we must reduce an input image dimensions to produce an

1This function is not differentiable at x=0, but software implementations of neural network training
usually return one of the one-sided derivatives rather than reporting that the derivative is not defined or
raising an error. Such a solution works well in practice.
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output of expected dimensions. It is common to periodically insert a Pooling layer
in-between successive convolutional layers in a ConvNet architecture.

A simple CNN for classification could have the architecture [INPUT - CONV - RELU -
POOL - FC]. A similar architecture is shown in the Figure 2.4.

For more information about CNNs, please consider the original paper[KSH12].

Figure 2.4: A simple deep neural network, image taken from floydhub.com
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CHAPTER 3
State-of-the-Art

Machine learning (ML) is a rapidly evolving field and a lot of papers have been published
in ML area in the last few years. However, since the focus of this master thesis is on
generating adversarial examples, the related work can be separated into two categories,
one in which DNNs are treated as a white-box and one where they are treated as a
black-box.

In terms of white-box attacks, the Fast Gradient Sign Method (FGSM) attack is presented
in [GSS15]. The attack computes an adversarial image for a non-targeted attack based
on the direction of the gradient of a DNN. The FGSM attack is presented in more details
in Section 3.1.

In [PMJ+15], the Jacobian-based Saliency Map Attack (JSMA) for generating adversarial
examples is introduced. The attack is based on identifying regions in an image which have
a higher impact on a DNN’s output during the classification. JSMA attack is presented
in more details in Section 3.2.

In [CW16], the Carlini & Wagner (CW) attack is presented. The attack is based on
formulating an attack as an optimization problem and then using a state-of-the-art
optimizer to solve it. The attack is presented in more details in Section 3.3.

All three attacks, FGSM, JSMA, and CW are evaluated in the experiments in this thesis.

On the black-box side of the attacks, the transfer-based approach introduced in [PMG+16]
is a popular choice. This approach uses a subsitute DNN that is trained on a similar
dataset as the targeted DNN. More details about the transfer-based approach can be
found in Section 3.4.

In [LCLS16], the authors show that adversarial samples for a targeted misclassification
don’t transfer as well as in a pure misclassification attack. The authors suggest an
ensemble approach which is described in Section 3.5.
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In [B18], the authors implement a completely different attack and call it Boundary Attack.
The attack starts with an image of a targeted class and then, step by step, the image
is changed to an image of some other class while staying adversarial, i.e. classified as a
target class by a DNN under the attack. The boundary attack is described in Section 3.6.

I direct the interested reader to the survey [AM18] of the different attack strategies and
defenses for a more detailed overview.

3.1 Fast Gradient Sign Method (FGSM)
The FGSM attack perturbs an image to increase the loss of the classifier on the resulting
image. The target label in the original paper [GSS15] is always a label with the least
probability for an unmodified image. An adversarial example is crafted then by perturbing
the unmodified image in a way that the cost function is being maximized.

Let θθθ be the parameters of a model, xxx the input to the model, y the target associated
with xxx, and J(θθθ,xxx, y) be the cost fucntion used to train the neural network. Then an
adversarial perturbation is computed as

ρρρ = ε ∗ sign(∇xxxJ(θθθ,xxx, y)).

An adversarial example can be crafted then by adding the adversarial perturbation to
the original input

xxx = xxx+ ρρρ.

The authors evaluate their method on the ImageNet dataset [DDS+09], a dataset used
for a large-image recognition task with 1000 classes, and achieve good results for misclas-
sification. Targeted misclassification was not evaluated. Similar results are achieved on
the MNIST dataset [LC10], a dataset used for a digit-recognition task (0-9), and on the
CIFAR-10 dataset [KNH], a dataset used for a small-image recognition task, also with 10
classes as in MNIST. From Figure 3.1, a reader can get the intuition for the attack. For
more details, I refer the reader to the original paper.

3.2 Jacobian-based Saliency Map Attack (JSMA)
This attack is based on a greedy algorithm that picks pixels to modify one at a time,
increasing the likelihood of the targeted class in each iteration. Adversarial Saliency
Maps - maps that measure an impact of a pixel on an image being classified as a target
class - are created. If a value in this map is large, it means that changing that pixel will
increase the likelihood of the image being classified as a target class.

The idea is, given the saliency map for a target class, the algorithm picks the pixel with
the highest impact and modifies it. In the next iteration, the second most important
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3.2. Jacobian-based Saliency Map Attack (JSMA)

Figure 3.1: Image taken from the [GSS15]

pixel is changed and so on. This continues until either the attack succeeds to trick the
classifier or too many pixels get changed and the attack becomes detectable.

In the actual implementation of the algorithm, instead of picking one pixel, a pair of
pixels is picked because selecting pixels one at a time is too strict and very few pixels
would meet the heuristic search criteria introduced below. A pair of pixels is more likely
to match the conditions because one of the pixels can compensate a minor flaw of the
other pixel. Larger group of pixels comes at a greater computational cost. For further
details, I refer the reader to the original paper [PMJ+15].

Formally, let t be the target class, xxx be the input to the classifier and FFF be the output of
the softmax layer s.t. FFF (xxx)t denotes output of the softmax layer for a class t on the input
xxx, i.e. FFF (xxx)t denotes the probability that xxx belongs to the class t. Then the adversarial
saliency map in terms of pair pixels p, q is defined as:

αpq =
∑

i∈{p,q}

∂FFF (xxx)t

∂xxxi
,

βpq = (
∑

i∈{p,q}

∑
j 6=t

∂FFF (xxx)j

∂xxxi
)− αpq

so that αpq represents the impact of changing the both pixels p and q on the input being
classified as t, and βpq represents how much changing p and q will change all the other
outputs of the softmax layer.

Now the algorithm picks p and q such that the target class gets more likely (αpq > 0),
but other classes get less likely (βpq < 0) and that combination is as strong as possible,
i.e. that −αpq · βpq is as large as possible. This can be formalized as:
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(p∗, q∗) = argmaxp,q(−αpq · βpq)
s.t. αpq > 0 and βpq < 0

Starting with an original input, two by two pixels are picked and perturbed by a constant
offset ε. The authors [PMJ+15] show that JSMA attack can effectively produce MNIST
samples that are correctly classified by human subjects, but misclassified into a specific
target class by a DNN with a high success rate.

3.3 Carlini & Wagner (CW)

To quantify similarity between two images, different distance metrics can be used.
Quantification of similarity can be used when comparing how much an adversarial image
is different from the original input. There are three widely-used distance metrics in the
literature for generating adversarial examples, all of which are Lp distances. The Lp

distance is written ||xxx−xxx′||p, where the p-norm for purposes of this thesis can be defined
as

||vvv||p =


|{i|vi 6= 0}|, if p = 0
(
∑n

i=1 |vi|p)1/p, if p ∈ [1,∞)
max{|v1|, |v2|, ..., |vn|} if p =∞

(3.1)

In other words, L0 measures how many pixels are changed, L2 measures standard
euclidean distance and L∞ measures the maximum change to any of the coordinates.
It is open for discussion which metric performs the best job in measuring the human
perceptual of similarity, but neither of the Lp metrics is optimal for that.

The authors [CW16] introduce three new attacks for the L0, L2, and L∞ distance metrics.
It is worth mentioning that their L0 attack is the first published attack which can cause
targeted misclassification on the ImageNet dataset. All three of them are based on
optimization techniques.

In this thesis, L2 is used in the attack and hence I explain it now.

The authors start by using the initial formulation of adversarial examples [SZS+13] and
define the problem of finding an adversarial sample xxx as follows:

minimize D(xxx,xxx+ δδδ)
such that C(xxx+ δδδ) = t

xxx+ δδδ ∈ [0, 1]n

20



3.3. Carlini & Wagner (CW)

where t is the target class, δδδ is perturbation added to the original input xxx, C is a function
performed by the classifier, and D is either L0, L2 or L∞.

Since the constraint C(xxx+ δδδ) = t is highly non-linear and therefore hard to solve directly
for existing algorithms, the authors introduce the function f such that C(xxx+ δδδ) = t if
and only if f(xxx+ δδδ) ≤ 0. Now problem can be formulated as

minimize D(xxx,xxx+ δδδ)
such that f(xxx+ δδδ) ≤ 0

xxx+ δδδ ∈ [0, 1]n

or using the alternative formulation:

minimize D(xxx,xxx+ δδδ) + c · f(xxx+ δδδ)
such that xxx+ δδδ ∈ [0, 1]n

where c > 0 is a suitably chosen constant. The authors in their implementation use a
modified binary search to find the optimal value of c.

Let ZZZ be the output of the targeted DNN second-to-last layer, the logits, with ZZZi as an
output for the class i.

The function f that the authors find the most effective is:

f(xxx+ δδδ) = max(max({ZZZ(xxx+ δδδ)i : i 6= t})−ZZZ(xxx+ δδδ)t, 0). (3.2)

To ensure the modification yields a valid image, there is a constraint xxx + δδδ ∈ [0, 1]n.
The authors refer to this constraint as a "box constraint". The Adam [KB14] optimizer
does not support box constraints natively and the authors modify the box constraint as
follows in order to be able to use the Adam optimizer. A new variable ωωω is introduced
and instead of optimizing over the variable δδδ, an optimization is done over ωωω, setting

δi = 1
2(tanh(ωi) + 1)− xi.

Now the solution will automatically be valid since from −1 ≤ tanh(ωi) ≤ 1 it follows
that 0 ≤ xi + δi ≤ 1.

Finally, for D = L2, the attack can be formalized as follows. Given the original sample xxx
and the target class t, search for ωωω that solves 1

1Here 111 represents a vector of same dimensionality as xxx and ωωω, it has value 1 at every index and it
shouldn’t be confused with a ground-truth vector 111p.
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minimize (||xxx− 1
2(tanh(ωωω) + 111)||2)2 + c · f(1

2(tanh(ωωω) + 111))

with f similar to the objective function defined in 3.2, but this time defined as

f(xxx′) = max(max{ZZZ(xxx′)i : i 6= t} −ZZZ(xxx′)t,−κ)

where κ is a parameter that controls the confidence with which the misclassification
occurs. The authors in their implementation set κ = 0. The adversarial example is then
crafted as xxx′ = xxx+ δδδ. For more details about the attack, please consider [CW16].

According to the authors, this attack is often much more effective (and never worse) than
all the others presented in the literature. Attacks are evaluated on the three datasets:
ImageNet, MNIST and CIFAR-10. They also report that the JSMA attack, an attack
introduced in Section 3.2, is not able to craft an adversarial example when the ImageNet
dataset is used due to memory complexity of the algorithm, i.e. dimensions of images
in ImageNet dataset are too big for JSMA attack. This implies that the JSMA attack
would not work in my thesis as well if an image of a person is too big. Reported results
for the CW attack are showing 100% success against all three datasets.

3.4 Transfer based approach
This technique is used to attack the DNN in the black-box settings. The idea is to create
a substitute DNN which should be similar to the targeted DNN. A precise definition
of the similarity is omitted here because it’s not well defined, but the substitute DNN
should solve the same task as the targeted DNN.

Adversarial images are crafted then for a substitute DNN using a white-box approach,
for instance the FGSM attack introduced in Section 3.1. Created adversarial images are
used then as adversarial images for the black-box DNN as well. The main idea is that
similar classifiers will have similar boundaries for a specific class and therefore the same
adversarial example should be adversarial for both networks.

The dataset on which the substitute neural network is trained should be similar to the
dataset on which the targeted neural network is trained. Ideally, that would be the same
dataset, but the assumption is that an attacker doesn’t have access to that data.

The attacker therefore generates a Synthetic Dataset. He or she starts generating the
dataset by querying the targeted DNN with several examples and obtaining labels for
them. Afterwards, he or she expands the dataset using the Jacobian-based Dataset
Augmentation and trains the substitute neural network. For more details how to generate
the synthetic dataset, please consult the original paper [PMG+16].

The authors present good results for misclassification attacks against the MNIST dataset
and the GTSRD dataset [SSSI12a]. Targeted misclassification is not presented in the
paper.
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3.5 Ensemble approach

The authors of [LCLS16] show that using the transfer based approach, introduced in
Section 3.4, the target labels don’t transfer well for the targeted misclassification attack.
The transfer based approach seems good for a misclassification task, but not for a targeted
misclassification task. The goal of the ensemble-based approach is to solve this issue.

The ensemble-based approach is also based on transferability of an adversarial image, but
instead of generating an adversarial image for one substitute neural network, an attacker
generates it for several of neural networks - the ensemble of the models. The underlying
assumption is that if an adversarial example works as expected among several models,
there is a higher probability that it will work as expected for the one more as well.

Formally, given k white-box models with softmax outputs being JJJ1, ..., JJJk, an original
image xxx, and its ground-truth vector yyy, the ensemble-based approach solves the following
optimization problem:

argminxxx∗(−log((
k∑

i=1
αiJJJ i(xxx∗)) · yyy∗) + λd(xxx,xxx∗)) (3.3)

where yyy∗ is a vector encoding the target label specified by the adversary,
∑k

i=1 αiJJJ i(xxx∗)
is the ensemble model, and αi are the ensemble weights s.t.

∑k
i=1 αi = 1.

The authors use two approaches to solve this problem: optimization-based and fast
gradient-based. The optimization-based approach uses a state-of-the-art optimizer to
solve the optimization problem defined in Equation 3.3. The authors observe that the
optimization-based approach outputs a large proportion of targeted adversarial images
whose target labels transfer. The exact percentage depends on the architectures used for
the ensemble models and for the targeted DNN and can vary from 11% up to 99%. The
fast gradient-based approach using the ensemble model gives result no better than using
the single model.

3.6 Boundary attack

This approach is also used in black-box settings and it is completely different from the
attacks introduced in Sections 3.4 and 3.5. The boundary attack has nothing to do with
either a substitute DNN or transferability of the adversarial examples.

The attack starts with an image of a targeted class and then, step by step, it changes it
to an image of some other class while staying adversarial, i.e. classified as a target class
by a DNN under the attack. In every iteration of the attack, the image is changed a
little bit towards a class which will be in the image in the end, at least according to a
human observer. More specifically, in every iteration of the attack, a perturbation that
reduces the distance of the perturbed image (adversarial sample) towards the original
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input (an image of a class that is presented to a human observer) is added. For specific
details how this perturbation is selected, please consult the original paper [B18].

After every change, the targeted DNN is queried to check if the image is still adversarial,
i.e. classified as a target label. If not, the change is reverted. In this way, the attacker
doesn’t need any substitute neural network.

However, this attack comes at cost of a large number of queries to the targeted DNN.
For the targeted attack, the authors needed around 104 queries to get an adversarial
example. The real world systems could notice such intensive querying of their APIs and
detect the attack. On top of that, the attacker needs both an image of the targeted class
and an image of the class that will be presented to a human observer. That could be an
obstacle when the number of classes is high because it can happen that it is not easy to
find an image of a particular class.

The authors compare their boundary attack with the white-box CW attack, introduced
in Section 3.3, on MNIST and CIFAR-10 dataset and produce only a bit worse results,
although this attack is treating a targeted DNN as a black-box. For more information
about this approach, please consult the original paper [B18].

24



CHAPTER 4
Experiments

In this chapter, I evaluate the effectiveness of the methods proposed in Chapter 3 for
producing adversarial examples.

First, I present my evaluation methodology. Then I present evaluation results for whitebox
attacks. Finally, I present results for blackbox attacks.

4.1 Methodology

To evaluate effectiveness of the attacks, I trained a classifier for age estimation. First I
describe the dataset I used to train the classifier and then I present results of training.

For training data, I created a dataset based on two datasets: the APPA-REAL dataset
[EA17] and the UTK Face dataset 1.

The APPA-REAL dataset contains 7,591 images with associated age labels. The dataset
is split into 4113 training, 1500 valid, and 1978 test images. For each image in the dataset,
there is also the corresponding image which contains the cropped face. The distribution
of samples over age for training dataset is presented in Figure 4.2.

The UTK Face dataset consists of 23252 images with associated age labels. I preprocessed
every image to extract the face2 from it. For face detection, I used the Dlib [Kin09]
library. The distribution of samples over age is presented in Figure 4.1.

I constructed my training dataset as union of all images from the UTK Face dataset and
training images from the APPA-REAL dataset. For my validation dataset and my test
dataset I used validation images and test images from the APPA-REAL validation and
test dataset, respectively.

1https://susanqq.github.io/UTKFace/
2every face is cropped with 40% margin

25



4. Experiments

Figure 4.1: Number of samples per age in the UTK Face Dataset

Instead of training a DNN from scratch, I used a pretrained DNN that is trained on the
ImageNet dataset and fine-tuned it for age estimation. In other words, I downloaded
already existing model of a DNN and re-trained it for my specific task, i.e. age estimation.
This technique is called transfer learning and more information about it can be found in
[YCBL14].

If a person who is 65 years old gets classified as 66 years old, a classifier did actually a
good job although it didn’t predict the correct class. However, if a person who is 65 years
old gets classified as 6 years old, that is a significantly bigger mistake than classifying it
as 66 years old. Yet, when computing an accuracy, there is no difference if a predicted
class is 6 or 66 if a ground truth is 65. That is the reason why in age estimation usually
a mean absolute error (MAE) of a classifier is measured instead of accuracy.

When it comes to (targeted) misclassification, there is something in the age estimation
domain that needs to be taken care of. If a person is classified a year or two older, it
is not a huge success for a (targeted) misclassification. In the experiments that follow,
targeted version of attacks is used, but a label is set as follows. If a person is under 50
years old, the target label is 90 years old. If a person is 50 years old or older, the target
label is 10 years old.
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Figure 4.2: Number of samples per age in the APPA-REAL Training Dataset

Formally, let y be the ground truth label of an input sample xxx. Then function f(y) is a
function that outputs the target label for the corresponding sample xxx. The function f is
defined as

f(y) =
{

10, y ≥ 50
90, otherwise (4.1)

The idea behind such a setting is to maximize the mean absolute error, i.e. make the
classification as wrong as possible, using the targeted version of known attacks. This is
how I reused targeted attacks in a novel setting. Initially I put targeted labels to 0 and
100 instead of 10 and 90, respectively, but I observed a worse performance, probably
because they are on the edge of the considered age range.

Two different optimizers are used in the experiments for minimizing a loss function: SGD,
introduced in Section 2.2, and Adam [KB14]. Three different DNN architectures are
used for training: VGG16 [SZ14], ResNet-50 [HZRS15], and InceptionResNetV2[SIV16].
Results of training the models based on the ResNet-50 architecture and the Inception-
ResNetV2 architecture are presented in Table 4.1.
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Id Architecture Optimizer Validation Loss Validation MAE
1 ResNet-50 SGD 3.436 5.151
2 ResNet-50 Adam 3.456 6.772
3 InceptionResNetV2 SGD 3.086 4.505
4 InceptionResNetV2 Adam 3.268 3.922

Table 4.1: Different models trained

The VGG16 architecture didn’t show nearly as good results as the other two did, i.e. it
always predicted the value of the most frequent label. Hence, I do not present the results
of training the VGG16 in Table 4.1 and I do not evaluate any adversarial attack against
it. However, if the VGG16 architecture is trained on the significantly larger IMDB-WIKI
dataset, it can produce good results [RTG16].

For the evaluation of attacks, 100 random samples are taken from the APPA-REAL test
dataset. Neither of the models from Table 4.1 has ever been trained on any of these
samples before.

4.2 Whitebox attacks
When it comes to whitebox attacks, I evaluated three approaches: FGSM, CW and
JSMA. Hyperparameters used in the FGSM and the CW attack are listed in Table 4.2
and Table 4.3, respectively. In Table 4.5 and 4.6 results are presented for FGSM attack
and CW attack, respectively. In Table 4.4 results of all three attacks are presented.

It is interesting to notice that the FGSM attack managed to change the MAE for the
model with id 2 from 9.5 to 47.79. In other words, the targeted model on average
predicted that a person in the adversarial image is 38 years younger or older than a
person in the original image!

Several original samples and the corresponding adversarial samples crafted using the
FGSM attack are presented in Figure 4.3. It can be observed that the attack adds a
similar pattern to every image. However, when hyperparameter eps is reduced to 1.0, it
is almost impossible to notice the perturbation as it can be seen in Figure 4.4. But it
still can be noticed that there is some perturbation. Lines in adversarial images are not
that sharp as in original images and some pixels are not natural, e.g. the line between
left cheek and the background in the image (d).

The CW attack, given the hyperparameters in Table 4.3, managed to move the MAE for
the model with id 1 from 6.69 to 29.35. In other words, the targeted model on average
predicted that a person in the adversarial image is 23 years younger or older than a
person in the original image. This is not that much as FGSM managed for the model
with id 2, but it is significant.

It is also interesting to observe that amount of perturbation added to an original sample
varies a lot when the CW attack is used. From the value 0.00 for minimal perturbation

28



4.2. Whitebox attacks

(a) Original sample classified as 28 years old (b) Adversarial sample classified as 85 years old

(c) Original sample classified as 59 years old (d) Adversarial sample classified as 23 years old

(e) Original sample classified as 28 years old (f) Adversarial sample classified as 85 years old

Figure 4.3: Original samples (left) and adversarial samples (right) crafted using the
FGSM algorithm (eps set to 5.0) and evaluated against the model with id 2
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(a) Original sample classified as 28 years old (b) Adversarial sample classified as 59 years old

(c) Original sample classified as 59 years old (d) Adversarial sample classified as 28 years old

(e) Original sample classified as 28 years old (f) Adversarial sample classified as 64 years old

Figure 4.4: Original samples (left) and adversarial samples (right) crafted using the
FGSM algorithm (eps set to 1.0) and evaluated against the model with id 2
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eps 5
clip min 0
clip max 255
y_target 10 or 90

Table 4.2: Values of the hyperparameters used in the FGSM attack

it can be observed that attack sometimes does not manage to find an adversarial sample
and sometimes the added perturbation is rather huge. For example, the maximal value
for L2 distance between the original and the adversarial sample using CW attack for
model 1 is 16419.60, but when FGSM is used, that value is 1939.89.

Several original samples and the corresponding adversarial samples crafted using the
CW attack are presented in Figure 4.5. It can be observed that the attack adds a very
strong pattern to every image, i.e. introduces high perturbation. This is a consequence
of chosen values for the number of iterations and the learning rate.

Since the CW attack wasn’t able to find any adversarial sample for the model with id 2
with the given hyperparameters in Table 4.3, further experiments are performed against
that model with different values for learning rate and maximum number of iterations.

Results of those experiments are presented in Table 4.7. The results show that it is not
easy for the CW attack to find any adversarial sample for the specific model. Since no
adversarial sample is found, I performed no further exploration of combination of learning
rate and number of iterations. Further argumentation of this decision can be found in
Section 6.1.

It is also interesting to notice that for the models with id 1 and 2, the attacks find
stronger adversarial samples (i.e. bigger change in MAE) than for models with id 3 and
4. Could it be that bigger models3 are more resistant to adversarial samples?

As expected from the analysis of the paper [CW16] in Section 3.3, the JSMA attack
failed due to memory complexity of the algorithm.

Finally, I upload several original samples and corresponding adversarial samples to
Microsoft’s service for age estimation4 to check if there is any transferability between
adversarial samples. Usually, results are as expected as it can be seen in Figure 4.6.
However, as it can be seen in 4.7 , sometimes an adversarial sample manages to trick
Microsoft’s service for age estimation as well!

3ResNet50 architecture that is used for model 1 and 2 has 25,636,712 parameters and InceptionRes-
NetV2 architecture that is used for model 3 and 4 has 55,873,736 parameters.

4https://www.how-old.net/
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4. Experiments

(a) Original sample classified as 36 years old (b) Adversarial sample classified as 79 years old

(c) Original sample classified as 55 years old (d) Adversarial sample classified as 10 years old

(e) Original sample classified as 35 years old (f) Adversarial sample classified as 84 years old

Figure 4.5: Original samples (left) and adversarial samples (right) crafted using the CW
algorithm and evaluated against the model with id 1
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4.2. Whitebox attacks

binary_search_steps 8
y_target 10 or 90

abort_early True
max_iterations 5000
learning_rate 1
clip_max 255
clip_min 0

initial_const 0.1

Table 4.3: Values of the hyperparameters used in the CW attack

FGSM CW JSMA
model
id

clean
MAE

adv
MAE

avg
L2

adv
MAE

avg
L2

adv
MAE

avg
L2

1 6.69 32.25 1879.63 29.35 2977.28 - -
2 9.50 47.79 1879.49 9.50 0.00 - -
3 5.40 19.32 2510.92 7.51 1307.51 - -
4 4.62 15.03 2511.10 6.79 1104.78 - -

Table 4.4: Results of different adversarial attacks. The "-" sign means that an attack
couldn’t be executed.

model id clean MAE adv MAE avg L2 std dev L2 min L2 max L2
1 6.69 32.25 1879.63 77.23 1637.33 1939.89
2 9.50 47.79 1879.49 77.26 1649.43 1939.90
3 5.40 19.32 2510.92 100.00 2201.44 2589.42
4 4.62 15.08 2511.10 99.53 2204.20 2589.41

Table 4.5: Results of FGSM attack

model id clean MAE adv MAE avg L2 std dev L2 min L2 max L2
1 6.69 29.35 2977.28 3532.85 0.00 16419.60
2 9.50 9.50 0.00 0.00 0.00 0.00
3 5.40 7.51 1307.51 2969.74 0.00 11071.88
4 4.62 6.79 1104.78 3070.10 0.00 17673.81

Table 4.6: Results of CW attack
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4. Experiments

max iterations learning rate clean MAE adv MAE avg L2
5 000 1 9.5 9.5 0.0
10 000 1 9.5 9.5 0.0
10 000 0.1 9.5 9.5 0.0
10 000 10.0 9.5 9.5 0.0
100 000 0.01 9.5 9.5 0.0

Table 4.7: Results using the CW attack with different values of hyperparameters against
model with id 2

Figure 4.6: Correct evaluation by Microsoft’s service for age estimation

(a) Original sample (b) Adversarial sample

Figure 4.7: Adversarial sample tricked Microsoft’s service for age estimation
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4.3. Blackbox attacks

4.3 Blackbox attacks
When it comes to blackbox attacks, the transfer based approach introduced in Section 3.4
is evaluated as well as the boundary attack from Section 3.6. It is worth mentioning that
in this thesis a blackbox attack means that the adversary can only query the targeted
neural network and obtain an associated label. The adversary has no information about
the confidence of the network in the prediction or any kind of list of most probable labels.

In the transfer based approach, as described in Section 3.4, the goal is to train a
substitute network that will learn similar decision boundaries for every class as the
targeted network. This implies that the total number of possible classes must be the
same, but an architecture of the substitute network may be different from the architecture
of the targeted network.

To get information about boundaries of the targeted neural network, I take 778 samples
that are previously unknown to the targeted neural network, obtain labels for those
samples and train a substitute neural network based on those results. The distribution
of samples over age is presented in Figure 4.8.

Figure 4.8: Number of samples per age in the dataset that is used for training a substitute
neural network by querying a targeted blackbox neural network

Next, I take 200 random samples that are yet unseen by both networks and evaluate
MAE of the targeted neural network and the substitute network on those 200 images.
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4. Experiments

Then I craft adversarial samples for the substitute neural network using those 200 images.
Target labels for adversarial samples are set in the same manner as in whitebox attacks,
i.e. label 90 if a person is under 50 years old and label 10 if a person is over 50 years old.

Finally, I evaluate the MAE of the targeted neural network and the substitute network
on the 200 adversarial samples crafted in the previous step.

In my first attempt, I tried to use the InceptionResNetV2 architecture as a substitute
network. However, the experiment failed due to memory consumption when the Jacobian
augmentation of the dataset was performed.

In my second attempt, I used the ResNet50 architecture for the substitute network
instead of the InceptionResNetV2 architecture. However, the experiment again failed
due to the memory exhaustion when the Jacobian augmentation of the dataset was
performed.

In my third attempt, I used a vanilla CNN with three convolutional layers followed by a
flatten layer and a softmax layer used for classification. However, the experiment failed
again due to the same reason.

Finally, I skipped the step of the Jacobian augmentation of the dataset in the transfer
based approach and managed to run the experiments. The Jacobian augmentation is a
heuristic that computes how to expand the existing dataset so that new samples are closer
to the boundaries of being classified as a certain class. Instead of using this heuristic,
I query once the targeted neural network, train the substitute network based on the
associated labels provided by the targeted neural network and execute the attack. This
way the substitute network does learn information about classification boundaries of the
targeted neural network, but less than it would learn using the Jacobian augmentation.
Further justification of this decision can be found in Section 6.1.

Results of this modified transfer based approach are presented in Tables 4.8, 4.9, 4.10,
4.11, 4.12, 4.13, 4.14, and 4.15. Two things can be observed.

The first observation is that the InceptionResNetV2 architecture with the SGD optimizer
is a combination of the neural network architecture and the optimizer that learned the
most from the black-box network in terms of age estimation task. The substitute network
managed to have an MAE under 10.0 on clean samples as can be seen in Tables 4.12 and
4.14.

The second observation is regarding the black-box accuracy after the attack, i.e. against
the adversarial samples. Only the FGSM attack managed to increase the MAE of the
black-box above 10.0 and only against the black-box model with id 2 as can be seen
in Tables 4.12 and 4.8. However, since the MAE of the black-box model against clean
samples is 6.99, this is not a large increase in MAE. This observation implies the result
of the experiment.

The result of the experiment is that this approach is not successful. No matter which
combination of an attack, a substitute network, and an optimizer used for training a
network is used, there was no huge impact on the performance of a black-box model.
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4.3. Blackbox attacks

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 12.42 6.92 19.14 1890.86 58.77 1580.84 1939.89
2 6.99 11.52 10.20 23.15 1891.01 59.07 1565.25 1939.89
3 5.29 14.28 5.79 25.69 1891.34 58.79 1559.34 1939.89
4 3.75 11.40 4.92 19.08 1891.43 58.15 1575.75 1939.89

Table 4.8: Substitute network: ResNet50 architecture with SGD optimizer; Attack:
FGSM

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 20.28 6.99 19.91 1890.10 60.31 1555.87 1939.89
2 6.99 11.94 7.44 12.15 1921.91 21.20 1809.24 1939.89
3 5.29 24.99 4.91 26.1 1893.30 58.41 1534.87 1939.89
4 3.75 10.53 4.0 9.75 1900.11 48.29 1662.20 1939.89

Table 4.9: Substitute network: ResNet50 architecture with Adam optimizer; Attack:
FGSM

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 13.73 6.17 14.90 369.75 1407.87 0.0 6269.29
2 6.99 10.54 6.99 10.54 0.00 0.00 0.00 0.00
3 5.29 16.58 5.37 17.67 369.31 468.55 0.00 7710.35
4 3.75 11.83 4.00 11.58 33.56 473.54 0.00 6713.73

Table 4.10: Substitute network: ResNet50 architecture with SGD optimizer; Attack: CW

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 17.45 6.08 17.45 0.00 0.00 0.00 0.00
2 6.99 10.53 6.99 10.53 0.00 0.00 0.00 0.00
3 5.29 21.43 5.29 21.43 0.00 0.00 0.00 0.00
4 3.75 11.92 3.75 11.92 0.00 0.00 0.00 0.00

Table 4.11: Substitute network: ResNet50 architecture with Adam optimizer; Attack:
CW

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 10.20 7.57 13.63 2524.84 77.62 2097.67 2589.41
2 6.99 11.09 10.66 18.59 2525.10 76.92 2105.15 2589.41
3 5.29 21.02 5.57 25.09 2527.32 73.56 2143.89 2589.41
4 3.75 8.25 4.25 14.75 2525.40 76.66 2111.09 2589.41

Table 4.12: Substitute network: InceptionResNetV2 architecture with SGD optimizer;
Attack: FGSM

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 10.31 6.32 9.50 2529.29 71.93 2142.99 2589.41
2 6.99 10.73 9.83 6.99 2535.28 63.24 2227.84 2589.41
3 5.29 25.88 5.19 24.74 2544.61 49.88 2368.79 2589.41
4 3.75 11.82 3.92 10.50 2537.30 79.94 1996.58 2589.41

Table 4.13: Substitute network: InceptionResNetV2 architecture with Adam optimizer;
Attack: FGSM
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4. Experiments

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 18.55 6.08 18.55 0.00 0.00 0.00 0.00
2 6.99 14.82 6.99 4.82 0.00 0.00 0.00 0.00
3 5.29 30.20 5.29 30.20 0.00 0.00 0.00 0.00
4 3.75 8.17 3.83 8.09 157.46 1276.19 0.00 10773.81

Table 4.14: Substitute network: InceptionResNetV2 architecture with SGD optimizer;
Attack: CW

clean samples adversarial samples
blackbox model id blackbox MAE substitute MAE blackbox MAE substitute MAE avg L2 std dev L2 min L2 max L2

1 6.08 11.70 6.08 11.70 0.00 0.00 0.00 0.00
2 6.99 11.37 6.99 11.37 0.00 0.00 0.00 0.00
3 5.29 24.83 5.29 24.83 0.00 0.00 0.00 0.00
4 3.75 10.25 3.75 10.25 0.00 0.00 0.00 0.00

Table 4.15: Substitute network: InceptionResNetV2 architecture with Adam optimizer;
Attack: CW

Regarding the boundary attack, it’s hard to do any quantitative analysis because the
attack, as described in Section 3.6, is fundamentally different than the transfer based
approach.

One sample can be seen in Figure 4.9 and the corresponding results in Figure 4.12. It is
interesting to observe what is happening during the attack.

In the beginning of the attack, as presented in Figure 4.10, the original sample is classified
as 68 years old and the targeted image, as presented in Figure 4.11, is classified as 4
years old.

As the attack performs more queries, the adversarial sample is looking more and more like
the targeted image, but the values that the network is predicting also start to correspond
to the targeted image. This can be seen in Figure 4.12.

Finally when the attack is finished, the adversarial sample seems as the targeted image
and the network is very aware of it, i.e. there is a high probability that the adversarial
sample is classified as 4 years old. However, probability that the person in the adversarial
image is 68 years old is just a bit higher than the probability that the person is 4 years
old and that is enough for the network to classify the person as 68 years old.
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4.3. Blackbox attacks

(a) The starting image (b) 1000 queries

(c) 2000 queries (d) 4000 queries

(e) 8000 queries (f) 12000 queries

(g) 16000 queries (h) Final adversarial sample

Figure 4.9: Although an adversary is changing the image, the blackbox classifier is not
changing the prediction (68 years old)

39



4. Experiments

(a) Starting image (b) Predictions for the starting image

Figure 4.10: Starting image and the corresponding prediction

(a) The targeted image (b) Predictions for the targeted image

Figure 4.11: Targeted image and the corresponding predictions
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4.3. Blackbox attacks

(a) 3000 queries (b) 4000 queries

(c) 8000 queries (d) The final adversarial sample (77 000 queries)

Figure 4.12: Predictions of the blackbox classifier for images corresponding to Figure 4.9.
In all the graphs, age 68 is predicted with the maximum probability.

41





CHAPTER 5
The Semi-targeted Approach

In Section 4.3 I made the observation that the transfer based approach expects more
memory than is available to me. In the same section I also present poor results of the
transfer-based approach without Jacobian Augmentation. In this chapter I introduce an
adaptation of the transfer-based approach.

5.1 Motivation

High memory expectation, poor results without Jacobian augmentation, and higher trans-
ferability of adversarial samples crafted in misclassification attacks than transferability
of adversarial samples crafted in targeted misclassification attacks [LCLS16] motivated
me to modify the transfer-based approach.

In the modified approach the substitute network has a lower number of classes than the
black-box model is expected to have and the goal of an attack against the substitute
network is not a targeted misclassification, but only a misclassification. I call the modified
approach the semi-targeted approach.

In the semi targeted approach a substitute neural network has only several classes and
every class represents a certain age interval. If a misclassification occurs in such a scenario,
that means that the classifier is tricked at least for the amount of years corresponding to
the age interval. In this thesis all age intervals have the same length, but in general this
is not necessary.

Let me provide an example. Assume a substitute network with only three classes that
represent age intervals 0-33, 34-66 and 67-99 years. Now if a person who is 50 years old
gets misclassified, that means the person got classified as 0-33 years old or as 67-99 years
old. In either case, the mistake is greater than getting classified as 51 or 49 years old as
it would be the case when the substitute network would have 100 classes. Finally, if that
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5. The Semi-targeted Approach

clean samples adversarial samples
blackbox model id blackbox MAE substitute accuracy blackbox MAE substitute accuracy avg L2 std dev L2 min L2 max L2

1 6.08 0.52 6.16 0.31 1891.38 56.60 1668.86 1939.89
2 6.99 0.56 8.40 0.28 1891.56 57.99 1577.01 1939.89
3 5.29 0.41 5.39 0.32 1890.05 61.06 1540.43 1939.89
4 3.75 0.54 3.92 0.30 1892.46 55.13 1666.18 1939.89

Table 5.1: Substitute network: ResNet50 architecture with SGD optimizer; Attack:
FGSM

clean samples adversarial samples
blackbox model id blackbox MAE substitute accuracy blackbox MAE substitute accuracy avg L2 std dev L2 min L2 max L2

1 6.08 0.60 6.17 0.60 1856.08 271.20 0.00 1939.89
2 6.99 0.60 8.41 0.60 1871.71 153.83 0.00 1939.89
3 5.29 0.59 5.50 0.60 1213.41 911.17 0.00 1939.89
4 3.75 0.60 3.75 0.60 0.00 0.00 0.00 0.00

Table 5.2: Substitute network: ResNet50 architecture with Adam optimizer; Attack:
FGSM

clean samples adversarial samples
blackbox model id blackbox MAE substitute accuracy blackbox MAE substitute accuracy avg L2 std dev L2 min L2 max L2

1 6.08 0.67 6.00 0.37 2525.36 76.90 2102.57 2589.41
2 6.99 0.68 9.25 0.30 2525.20 76.96 2103.83 2589.41
3 5.29 0.69 7.75 0.35 2525.43 76.61 2108.77 2589.41
4 3.75 0.74 4.83 0.34 2525.48 76.57 2105.55 2589.41

Table 5.3: Substitute network: InceptionResNetV2 architecture with SGD optimizer;
Attack: FGSM

adversarial sample transfers to targeted black-box network, then the black-box model
will also have a large error.

5.2 Evaluation

In Section 4.3 it is shown that FGSM has better results and it is used in this approach.
To make the semi-targeted approach and the transfer based approach comparable,
hyperparameters of the FGSM attack as well as training and test samples are completely
the same as in Section 4.3.

Jacobian Augmentation is performed for three iterations before executing an attack as
described in Section 3.4 that describes the transfer based approach. I also tried with four
iterations for Jacobian Augmentation, but the system crashed.

In my experiments, the substitute network recognizes four classes: 0-25, 26-50, 51-75,
and 76-99 years old. The number of epochs used for training the substitute network is
set to 40.

Since the substitute network is trained on four classes, accuracy is used as a measure for
evaluation of the network. For the targeted black-box neural network, MAE is used as a
measure. Results are presented in Tables 5.1, 5.2, 5.3, and 5.4.
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5.2. Evaluation

clean samples adversarial samples
blackbox model id blackbox MAE substitute accuracy blackbox MAE substitute accuracy avg L2 std dev L2 min L2 max L2

1 6.08 0.07 6.08 0.07 0.00 0.00 0.00 0.00
2 6.99 0.06 7.5 20.54 2525.54 77.47 2102.78 2589.41

Table 5.4: Substitute network: InceptionResNetV2 architecture with Adam optimizer;
Attack: FGSM

The experiment corresponding to Table 5.4 is not evaluated further since the substitute
network did not manage to learn, i.e. the accuracy was under 10%.

From the results in Tables 5.1, 5.2, and 5.3 one can observe that although the substitute
neural network achieves a decent accuracy (around 60%) and get attacked successfully
(accuracy reduced to 30%), the adversarial samples do not transfer significantly. That
means the substitute neural network did not manage to learn the same boundaries as
the targeted neural network.
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CHAPTER 6
Threats to Validity and Future

Work

6.1 Threats to Validity
• Decision: Skipping the Jacobian-based Dataset Augmentation step in the transfer-

based approach.

– Argumentation: One could argue that without the Jacobian augmentation,
the transfer based approach is an incomplete algorithm. Given the hardware
resources1, every time during the call for Jacobian augmentation, the process
would get killed by the kernel due to memory consumption. The implementa-
tion of the Jacobian augmentation that is used is the offical one provided by
the author [PFC+18]. I tried to contact the author 2, but even he couldn’t
find a solution 3. However, I observed that when the number of potential
classes is lower, the jacobian-based augmentation can be performed for the
same network.

– Potential consequences: Since the transfer-based approach is not evaluated
using the hardware that would support a complete execution of the attack,
the results differ from those reported when a complete execution of the attack
is supported.

• Decision: Number of iterations for Jacobian-based Dataset Augmentations is too
low in semi-targeted approach.

1Intel(R) Core(TM) i5-8500 2 CPU @ 3.00GHz, 16GB RAM, GeForce GTX 1080 8GB
2https://github.com/tensorflow/cleverhans/issues/974
3https://stackoverflow.com/questions/54580105/memory-consumption-of-jacobian-dataset-

augmentation/54718059
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6. Threats to Validity and Future Work

– Argumentation: Using the given resources, that are described above, it was
not possible to perform more iterations.

– Potential consequences: The results are probably not as good as they
would be when more iterations would be executed.

• Decision: Not trying more than 100 000 iterations for CW attack in the whitebox
experiment discussed in Section 4.2.

– Argumentation: The attack using 100 000 iterations takes a week to finish
given the hardware resources. I believe that the hardware resources used in
this thesis are hardware resources that an average adversarial user might have
at hand and I don’t see a motivation to run the attack for one sample for
more than one week.

– Potential consequences: Given more iterations, an optimizer might do a
better job.

6.2 Future Work
Reducing the complexity of Jacobian-based dataset augmentation would allow more
people to experiment in this field without the need for too expensive resources. If the
complexity can not be reduced, maybe another, memory efficient, heuristic can be used
for obtaining boundaries of the targeted network. Eventually, this would allow attacks
from cheap computers and raise the awareness about the security of neural networks.

If the resources allow, it would be interesting to evaluate the ensemble approach on this
problem. A cluster can be constructed that would train different networks which would
train based on the results of the black-box network. Then an adversarial sample for all
of them would probably be adversarial against the black-box network as well.

It would be interesting to evaluate the black-box attacks presented in this thesis against
the real world systems for age estimation that are publicly available. Microsoft Azure 4

is one such system which offers age estimation service. Before the evaluation against the
real system, the experiments for black-box attacks should show better results.

4https://azure.microsoft.com
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CHAPTER 7
Summary

This thesis describes several adversarial attacks, trains four classifiers for age estimation
and presents the results of the adversarial attacks against them in a white-box and a
black-box scenario.

Three white-box attacks are evaluated. The JSMA attack was not able to craft a single
adversarial sample because image dimensions were too large. This is confirmation of the
result presented in [CW16].

The FGSM attack presents the best performance by successfully increasing the mean
absolute error of one of the classifiers from 9.5 years to 48 years! Depending on the
allowed perturbation in the image, adversarial samples are sometimes imperceptible from
the original samples.

The CW attack is sometimes successful, but sometimes it fails to find an adversarial sample
for a given neural network entirely. This optimization-based approach is significantly
slower than the FGSM attack, but not necessarily more successful. It does not seem to
be easy to find correct hyperparameters that should be used in this attack.

Two existing black-box approaches are evaluated. The Boundary attack is successful
for every sample, but the cost is a high number of queries for every sample to the
targeted black-box network. Around 16 000 queries are needed for one sample to become
adversarial and adversary has to have two images to execute the attack.

The transfer-based approach trains a substitute network, attacks the substitute network
and the adversarial samples then transfer to the targeted black-box network up to
a certain extent. However, training of the substitute network such that the decision
boundaries are similar as in the targeted network does not seem to scale up successfully
with higher number of classes.

A new black-box attack, the semi-targeted approach, is introduced that is based on the
transfer based approach.
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7. Summary

Instead of having a substitute network with the same number of classes as the targeted
network, the number of classes is reduced. If a sample is misclassified by the substitute
network and misclassification transfers to the targeted network, the range of misclassi-
fication by the targeted network will be greater than if the substitute network would
have the same number of classes as the targeted network. This approach can be used
whenever labels can be ordered or even clustered. Results show that there is still a place
for improvement in this approach.
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