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Kurzfassung

Die Blockchain in Mobile Edge Computing (MEC) hat in letzter Zeit die Aufmerksamkeit
der Forscher gewonnen. Die Entwickler stehen vor neuen Herausforderungen, wenn sie
blockchain-basierte Anwendungen in MEC implementieren. Sie müssen Designentschei-
dungen hinsichtlich der Auswahl einer geeigneten Bereitstellung der Funktionen der
Blockchain für die MEC-Komponente treffen. Die ressourcenbeschränkten Geräte des
Internets der Dinge (engl. Internet of Things-IoT) gehören zu jenen Komponenten. Durch
die Ausführung der Funktionen der Blockchain müssen die MEC-Komponenten komplexe
Operationen der Blockchain ausführen. Die komplexen Operationen verursachen einen
erheblichen Rechnenaufwand für die IoT-Geräte.
Um den Entwicklern bei der Bewältigung dieser Herausforderungen zu helfen, entwickeln
wir in dieser Arbeit ein Blockchain-Benchmarking-Framework. Unser Framework kann
verschiedene Muster von Blockchain-Interaktionen zwischen den MEC-Komponenten aus-
werten. Während einer Auswertung werden verschiedene Bereitstellungen der Funktionen
der Blockchain für die MEC-Komponenten evaluiert. Um die Funktionen der Blockchain
in den MEC-Komponenten ausführen zu können, ordnen wir den Funktionen ausführbare
Blockchain-Artefakte zu. Darüber hinaus kann das Framework bewerten wie gut die Inter-
aktionen unter Verwendung von verschiedenen Konfigurationen der zugrunde liegenden
Infrastruktur abschneiden. Unser Framework misst die Leistung und die Zuverlässigkeit
einer Auswertung anhand folgender Qualitätskennzahlen: die Transaktionsakzeptanzrate
und -zeit, die Skalierbarkeit und die Hardware-Auslastung der Infrastrukturressourcen.
Außerdem schlagen wir ein Experiment-Wissens-Service vor. Das Service verwaltet die
Daten der Auswertungen. Zweck des Services besteht darin, den Entwicklern das Wissen,
das durch die Auswertungen gesammelt wurde, zur Verfügung zu stellen. Die Entwick-
ler können dieses Wissen wiederverwenden, wenn sie ihre eigenen blockchain-basierte
Anwendungen in MEC-Umgebungen entwerfen.

Im Rahmen dieser Arbeit haben wir Prototypen des Frameworks und des Service imple-
mentiert. Eine Menge von Vehicle-to-Everything (V2X)-Kommunikationsszenarien wurde
verwendet um verschiedene Muster von Interaktionen zwischen den MEC-Komponenten
zu identifizieren. Um die Flexibilität unseres Frameworks zu demonstrieren haben wir 324
Experimente, basierend auf den identifizierten Interaktionen, erstellt und ausgewertet.
Wir haben erklärt was die Ergebnisse der Auswertungen für die Entwickler bieten. Wei-
ters haben wir konkrete Beispiele gezeigt wie die Entwickler von dem Service profitieren
können.
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Abstract

Blockchain in Mobile Edge Computing (MEC) environments has gained attention of
researchers recently. Developers face new challenges when implementing blockchain-based
applications in MEC. They have to make design decisions regarding choosing a suitable
deployment of blockchain features to MEC components, which include resource-restricted
Internet of Things (IoT) devices. By running the blockchain features, MEC components
have to carry out complex blockchain operations, which cause a lot of computational
overhead for the IoT devices.
To help the developers to address the challenges, we propose a blockchain benchmarking
framework in this thesis. The framework is able to evaluate different patterns of blockchain
interactions among MEC components. Various deployments of blockchain features to
MEC components, involved in the interactions, are also benchmarked. To be able to
deploy and execute the blockchain features in the MEC components, we map the features
into executable blockchain artefacts. Beside that, the framework can evaluate how
well the interactions perform when utilizing diverse configurations of the underlying
infrastructure. Our framework measures performance and reliability of a benchmark via
following quality metrics: transaction acceptance rate and time, scalability and hardware
utilization of infrastructure’s resources.
Furthermore, we propose an experiment knowledge service, which manages data related
to benchmarks. The purpose of the service is to provide knowledge gathered by the
benchmarks to developers. The developers can reuse the knowledge when designing their
own blockchain-based applications in MEC environments.

We have implemented prototypes of the framework and the experiment knowledge service
within the scope of this thesis. A set of Vehicle-to-Everything (V2X) communication sce-
narios have been utilized to identify various interaction patterns among MEC components.
To demonstrate the flexibility of our framework we have generated and benchmarked 324
experiments based on the identified interactions. We have explained what find outs do
the benchmarks provide to the developers. Furthermore, we have shown examples of how
the developers can benefit from the experiments knowledge service.
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CHAPTER 1
Introduction

1.1 Introduction

Brody et al [8] describe the future of Internet of Things (IoT) as "Internet of decentralized,
autonomous things" [8]. The authors of [8] and Sharma et al [49] identify the requirements
of the future IoT environment and state that, to address those requirements, a scalable
decentralized trust-less peer to peer messaging solution has to be developed. Those
requirements arise because the state-of-the-art (partially) centralized architectures [52],
[17] are not able to handle exponential growth of IoT devices [32], can’t address security
vulnerabilities of IoT devices [35] and aren’t able to overcome attempts by corporations,
or governments to take control over the data, produced by IoT devices [8].
Recently, many researchers have studied intensively a conjunction of blockchain technology
with IoT concept in their works [9], [35], [49], [19], [8], [18], [58], because blockchain has
the ability to address the requirements of the future IoT. Kshetri et al [35] summarized
a list of benefits brought by utilization of blockchain to IoT. Kshetri et al highlighted
that blockchain solution eliminates a need for centralized entity and thus avoids single
point of failure. No centralized entity implies that the blockchain-based IoT environment
could handle the exponential growth of IoT devices. Furthermore, the authors of [35]
explain acquisition of secure message communication among the IoT devices, since the
transactions are signed and verified cryptographycally. Therefore, blockchain-based IoT
eliminates a possibility of data hijacks. As stated by the authors of [46], blockchain
is basically an immutable ledger, thus helps to avoid manipulation of data stored in
blockchain.
It would be pretty challenging to manage so many IoT devices by humans in the future,
thus autonomous operations carried out by the devices are required [9]. Consider a use
case when an IoT device sends a request to chargeable API [22]. The IoT device has
to be charged, before using that API. That interaction has to take place automatically,
without any user’s intervention. Christidis et al [9] state that such challenge is possible
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1. Introduction

to address by utilizing blockchain’s smart contracts and associating each IoT device with
a cryptocurrency account.
Nevertheless, Dori et al [19] and Samaniego et al [47] state in their studies that deploying
blockchain to IoT will bring a set of new critical challenges. The developers, aiming
to implement a blockchain solution in the IoT environment, will have to deal with
frequently changing IoT topologies [17], which is challenging in blockchain environments
[34]. Furthermore, the developers have to find out where to host the blockchain, since the
IoT devices are restricted in computational resources and blockchain involves a mining
task, which is a particularly computationally intensive operation. The mining task is
time consuming, while in many IoT use cases, a low latency is desirable [52]. Dori et al
[19] state that scalability of blockchain is another challenge that is in contrary with IoT
topologies, which should be able to scale to large number of nodes. Further, the authors
of [19] state that the blockchain protocols create a lot of overhead traffic, which might be
unacceptable for some bandwidth-limited IoT devices.
To address the challenges of hosting complex blockchain features to resource limited IoT
devices, Xiong et al [58] propose an architecture, which offloads the mining tasks to the
edge nodes at base stations of Mobile Edge Computing (MEC) environment. The MEC
environment has been intensively studied by researchers in their works [52] [17]. Dorri et
al present a blockchain-based IoT in smart home environment in their study [18]. They
suggest to offload the blockchain’s mining to computational rich resources as well.

To summarize this section, we conclude that blockchain with IoT is a powerful concept.
Since blockchain involves computationally intensive operations, which can be too complex
for resource restricted IoT devices. There have been architectures proposing to offload
the computationally intensive operations to edge nodes of MEC. However there are still
open challenges for developers, who implement an application based on blockchain in
IoT environments.

1.2 Motivation Scenario
To motivate the work in this thesis, we illustrate a scenario in the domain of connected
vehicles [5]. Connected vehicles present a building block of Internet of Vehicles (IoV) [39].
IoV can be considered an instance of IoT within the MEC environment. Vehicular ad-hoc
network (VANET) [5] is a state-of-the-art framework enabling the communication among
vehicles, regarding exchange of their driving properties (velocity, acceleration, distance to
other vehicles, issued warnings about danger on the road, etc.). As stated by the authors
of [2] that kind of communication should enrich safety on the roads, improve the fluency
of traffic, and is a key step towards making the vehicles fully autonomous. Nevertheless,
VANET is utilizing cellular wireless networks, which are vulnerable to attacks [2].
The utilization of blockchain in this domain gained attention of researchers shown in
several published studies [60], [50], [20], [36], [59]. That is mainly because blockchain has
a potential to address the security vulnerabilities of VANET. In parallel, Benjamin et al
[36] research a possible utilization of smart contracts to enable autonomous interactions
among stakeholders involved in the vehicle communication environment.
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1.3. Research Questions

A scenario, which motivated us towards the research within this thesis, is the following:
Consider a developer aims to develop an application, which is utilizing blockchain, for
connected vehicles scenarios in MEC environment. The application, we use as an example
is a blockchain-based application addressing safe lane change scenario[6]. As depicted
in Figure 1.1, instances of the application are running in the components of MEC and
are interacting via blockchain by exchanging the driving properties. The application’s
instances running in vehicles are exchanging the driving properties with other vehicles
either directly or over a Road-side unit (RSU) [5] or an edge node. The cloud node is
utilized to track a history of the exchanged driving properties. The developer of the
application needs to make several design decisions, which involve answering the questions
below. We elaborate deeper on the scenario in Chapter 3.

1. Which topologies, representing interaction patterns among MEC components, could
arise in the scenario?

2. What blockchain features should be deployed to which nodes across the topology,
in order to achieve the desired functionality and certain quality metrics [55], [34]
for the topology?

3. Which blockchain implementation is most convenient for the scenario?

4. What are hardware requirements of resources of the underlying topology’s infras-
tructure?

Therefore, one of the goals of this thesis is to develop a blockchain benchmarking frame-
work, which can be used by developers to benchmark the blockchain interactions in the
topologies, against a set of quality metrics. The framework should help developers to
deal with blockchain, by answering the above-questions 2 to 4 above, during design phase
of an application in MEC environment. Please note that the first question has to be
answered by the developer.
Additionally we propose and implement a knowledge service, which stores data related
to the benchmarks. The main purpose of the service is to reuse knowledge gathered by
benchmarks to help developers during design phase of the application. For instance the
developers can benefit from the knowledge stored by the service by obtaining recommen-
dations, which help them to address the above-named questions 2 to 4 as well, without
repeating benchmarks.

1.3 Research Questions
Based on the scenario and goals discussion above, within the thesis we aim to answer the
following research questions:

• RQ1 Scenarios and Requirements What interactions among MEC components
could arise for an application addressing a scenario in blockchain-based MEC

3



1. Introduction

Figure 1.1: Motivation Scenario: Safe lane change [6] in MEC

environment? What metrics of quality do we consider as most important for the
developers, who are dealing with the blockchain-based MEC environment? What
are the developer’s requirements in terms of those quality metrics in the scenarios?
How can we map the blockchain features to executable blockchain artefacts, which
can be deployed to MEC’s components?

• RQ2 Benchmarks How do we design a benchmark? How does architecture and
workflow of the benchmark framework look like? How can the framework help the
developers in addressing the challenges they face when developing blockchain-based
application in MEC? Which of the identified interactions among MEC components
do we benchmark? What results have been achieved by benchmarking those
interactions? What insights do those results bring for the developers?

• RQ3 Knowledge Service Which data, related to the benchmarks, do we store
in the service? What service operations do we expose by the knowledge service to
enable management of the data? How can developers utilize the knowledge stored

4



1.4. Contribution

by the service? What specification/language do we use to represent a topology of
the application?

1.4 Contribution

Towards answering the research questions, the thesis contributes with the following
framework and service, supporting the listed key features.

• Benchmark Framework - It accepts a specification of an experiment, along with
a topology on input. The topology is representing MEC components interacting
via blockchain and is going to be benchmarked. In case there is no real MEC
infrastructure available for the developer, such that the developer can execute
the benchmarks on that infrastructure, the framework interfaces with a provider
of resources (VMs, networks, etc.). The resources are used to emulate the real
MEC infrastructure for the benchmarks. Furthermore, the framework can simulate
various qualities of the network connection between nodes of the topology. Our
framework has an ability to automatically deploy blockchain features and software
artefacts, responsible for executing the benchmarks, to the topology.

• Experiment Knowledge Service - Defines a clear structure of the data, related
to the benchmarks, which are stored by the service. The service exposes APIs to
enable management of the stored data. It interfaces with Benchmark Framework
via a Results Parser utility, which is used to transform outcome of a benchmark
from the framework to the format accepted by Experiment Knowledge Service.
Furthermore, it can be used by developers to obtain recommendations about
deployment of blockchain features and hardware properties of a MEC infrastructure
for an application’s topology.

We implemented prototypes of the proposed Benchmark Framework and Experiment
Knowledge Service and make them available in the GitHub repository under the follow-
ing link: https://github.com/rdsea/blockchainbenmarkservice. We run
extensive benchmarks by utilizing the framework, the obtained results are published in
the experiments directory in the repository.

The infrastructure resources (VMs, networks...), we utilized when running our benchmarks,
were funded by Google Cloud Platform Research Grant and TU Wien.

1.5 Structure of the work

The remainder of this thesis is structured as follows: In Chapter 2 we give an overview
of the State of the Art, required background information and related works. In Chapter
3 we present quality metrics, which we assume to be most important for developers

5
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1. Introduction

of applications based on blockchain in MEC. In the chapter we present scenarios, we
consider in blockchain-based MEC and identify interactions among MEC components,
which could occur in those scenarios. We formulate developer’s requirements in form of
the introduced metrics for the scenarios. In order to address the requirements, we create
and benchmark multiple experiments in Chapter 4. We discuss design of a benchmark.
Furthermore, we propose and implement a framework to execute the benchmarks. To
the end we create a set of experiments resulting from our scenarios, benchmark those by
utilizing the framework and evaluate what insights do the results bring for the developers.
In Chapter 5, we present a service to store the data related to the benchmarks. We
elaborate on the prototype of the service, and explain exposed operations. We describe
how the developers could benefit from the service. Finally, the Chapter 6 concludes this
thesis and gives future work.
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CHAPTER 2
State of the Art

2.1 Overview

In this chapter we begin by explaining the background (Section 2.2) for our research.
Within that we discuss blockchain in MEC environments, along with its key operations.
We describe two chosen implementations of blockchain (Ethereum and Hyperledger-
Fabric) that we selected for the purposes of this thesis and we justify why we selected
those. Further we elaborate on the connected vehicles domain. In Section 2.3 we
discuss the related work. We focus on topics concerning the cooperation of blockchain
with Vehicle-to-Everything (V2X) communication, as well the existing benchmarking
frameworks for blockchain systems.

2.2 Background

2.2.1 Blockchain in MEC Applications and Systems

Blockchain is a tamper-proof, cryptographically signed distributed ledger, with a perma-
nent store of all transactions, which ever took among the participants [46]. Blockchain is
known mainly as a backbone technology beyond Bitcoin [41]. Since then, many other
blockchain implementations have came into existence with new interesting features.
Ethereum introduced smart contracts [46]. As explained in the work by Crosby et al [14],
the smart contracts are small computer programs running at blockchain nodes, capable
of automatically executing the terms of a contract. When a certain predefined condition
is met, the smart contract’s code is automatically triggered to perform an operation
among involved entities. By utilization of the smart contracts, blockchain can eliminate
the need for a centralized authority. Crosby et al [14] also state that blockchain isn’t
very efficient for storing the data. In [14], the authors state that it’s advisable to store
only hash of the data to blockchain, while the data itself can be securely stored on an
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external storage provider.
Xiong et al [58] have studied intensively a deployment of blockchain to MEC. In their
architecture they propose to offload the mining task from IoT devices to the resource
richer edge computing nodes. A mobile blockchain application is running in the IoT
devices, enabling the interactions with edge computing service providers. The authors
explain that these interactions can be modeled as market activities, such that the edge
service providers sell data and computing power. The providers are then accordingly
being rewarded by IoT devices. This reward process can be considered as transactions in
the blockchain.
Dorri et al [18], [19] presented a case study of using IoT with blockchain for smart home
from the security point of view. They used an approach having a miner within each smart
home, which is responsible for the communication with outside world and preserves the
blockchain used for controlling the communication. In their approach, they offload the
mining from the smart devices to the miner, which may be a local PC or a smart hub.
We can map their architecture to the MEC environment, such that we consider local PC
and smart hubs as the edge nodes, while the smart devices are IoT instances.

We want to benchmark blockchain interactions among MEC components. To make
the interaction possible, several blockchain operations have to be carried out in the
components. Christidis et al [9] identifies those blockchain operations. Below we provide
an example of interaction, which involves the blockchain operations.
Assume a following situation: three vehicles (let’s call them vehicle1, vehicle2 and
vehicle3) and an edge node in a certain area are interacting over blockchain in the
MEC environment. The vehicles and the edge node are participants of a blockchain
network. Each of the participants deploys some blockchain features and a blockchain-based
application to address obstacle on the road scenario [27].

Create a transaction
The application in vehicles is subscribed to the data from vehicle’s sensors to detect
obstacles on the road. Let’s assume vehicle1 detects an obstacle and wants to inform
the vehicle2 and vehicle3 about that. The application in vehicle1 creates a
blockchain transaction, which should invoke a smart contract with data related to the
obstacle (location, size) as parameters. The smart contract will issue a warning about
the obstacle and send the warning to other vehicles.

Sign a transaction
The application has access to a private key of the vehicle1 (or its car owner or driver),
retrieves the private key and sign the created transaction.

Submit a transaction
We assume the vehicle1 runs a blockchain operation, which enables submitting the
transactions to the blockchain network. When the transaction is submitted, the appli-
cation is notified that transaction has been successfully submitted to the blockchain
network, but neither the edge node nor the nearby vehicles have received the warning
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yet, because the transaction hasn’t been included to the ledger yet.

Verify a transaction
Let’s suppose the vehicle2 and vehicle3 run a blockchin operation, which can
verify the submitted transaction. The verification is done by checking the validity of
transaction’s signature.

Achieve consensus
Since blockchain is decentralized, there emerge different transactions at various times,
which may disagree about what is the truth. E.g. a edge node contains transaction that
envelops a warning, which states that there is an obstacle at a particular location, but
according to vehicle1, there is no obstacle at that location. Therefore, consensus has
to be achieved to guarantee the correct ordering and validation of the transactions. In our
case, it’s pretty simple since we assume only a single transaction. However, the authors
of [46] explain the importance of consensus. There has to be one or more blockchain
nodes, called miners [9], which are responsible for achieving consensus. For our example
we assume the miner node is running in the edge node. Detail of consensus can be found
at [46] [47] [51] [48].

Accepting a block
When the consensus has been achieved, a new block containing the transaction has been
generated by the miner (edge node in our case). The new block is broadcast to other
participants of the blockchain network. Those participants (vehicle1, vehicle2 and
vehicle3) execute the transactions included in the block locally and append the block
to their blockchain ledgers. That involves executing the smart contract, which issues
warning about the obstacle on the road spotted by vehicle1.

As we explained in Section 1.2, one of the challenges faced by the developers, when
developing a blockchain-based application in MEC, is to find a deployment of blockchain
features to the MEC components. In order to obtain those blockchain features, we group
the blockchain operations to the features, such that each feature can be represented by
an executable blockchain artefact (more on that in Section 3.5). Then the blockchain
artefacts can be deployed to the interacting MEC components.

2.2.2 Implementations of Blockchain

In this section we describe two chosen implementations of blockchain, along with their
key operations. We utilize those implementations to test our benchmarking framework.
We aimed to concentrate on blockchains, which may be interesting for developers to use
in MEC, because of underlying consensus algorithms. There are consensus algorithms
[48], which might be promising for the resource-limited IoT devices and low-latency
applications. Beside that we preferred blockchains, which are open-source, well-known
with a strong community.
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2.2.2.1 Ethereum

The first open source implementation of the blockchain technology that we have chosen
is Ethereum [23]. We have chosen the Ethereum implementation, because of smart
contracts, its rich community and the promising scalability (according to the work by
Vukolic et al [57]), which seems to be very feasible for any IoT topology.
The high latency of Ethereum’s consensus algorithm is very challenging and may not
acceptable for the latency critical use cases. Thus we can consider Ethereum as kind of
a baseline in the benchmarks. The key-building blocks and operations, carried out on
interactions, of Ethereum are very similar to the general ones described in Section 2.2.1.

1. Create a transaction object.

2. Sign the transaction by creator’s private key.

3. Submit and validate the transaction. In this phase an Ethereum node verifies if
the transaction was signed by its creator.

4. Broadcast the transaction to the network.

5. Miner node mines a new block containing the transaction.

6. All blockchain nodes receive the new block and perform synchronization with their
local copy of the blockchain.

2.2.2.2 Hyperledger-Fabric

The other blockchain that can be used in MEC applications is Hyperledger-Fabric [28]
[29] [31]. We have chosen that because it utilizes the Simplified Byzantine Fault Tolerance
[48] [28] algorithm to achieve consensus. As stated in the work by Vukolic et al [57] that
algorithm can achieve minimal latency, and doesn’t add so much overhead to the network
as Proof-of-Work (PoW). Thus it might be feasible to use it with IoT devices in MEC
environment.
Hyperledger-Fabric has three types of nodes in the blockchain network, namely: client,
peer and orderer [28]. The client node is responsible for creating and submitting
transactions to the network. All peers contain a local copy of the ledger and chaincode
(chaincode is a smart contract by Hyperledger-Fabric). There are three types of peers
(anchor, endorser and leader) [28], each with a specific responsibility. The orderers takes
care of correct ordering of the transactions before they are added to the ledger. That is
the approach how Hyperledger-Fabric achieves consensus.
Further we proceed to explaining the operations carried out on interactions.

1. A client creates and signs a transaction proposal. The proposal is sent to the
endorsing peers.
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2. Endorsing peers execute the proposal locally and sign it as endorsed. Please note
that the endorsing peers only simulate the transaction on their copy of the data,
they don’t really change any data in this step.

3. As soon as the client receives enough signatures, such that endorsement policy
is accepted, it submits the transaction to the ordering service. The endorsement
policy might say, e.g. that a proposal is accepted, if and only if at least one peer
from each organization endorses it.

4. The ordering service receives the transaction, puts it to the correct order with the
other transactions and submits them to the ledger as a new block.

5. The leader peer is notified by the ordering service to distribute the update to all
peers.

6. All peers validate and execute the transactions in a new block locally. The data in
the ledger are modified in this step.

2.2.3 Connected Vehicles and V2X Communication

As we noted in Section 1.2, we centered our scenario around the domain of connected
vehicles in MEC environment. We want to help the developers to implement an application
based on blockchain in that domain. Therefore, the developers are interested in which
components they can use for deploying the application. Simultaneously, the developers
need to know what topologies, represented by the interactions among the components over
blockchain, can occur in that domain. The developers deploy blockchain features onto
the components and benchmark the interactions by utilizing our benchmark framework.
Connected vehicle is a vehicle equipped with networking capabilities, enabling it to
communicate over the internet or ad-hoc networks with other endpoints (vehicles, road
infrastructures, etc.). As stated by Faezipour et al [24], the concept of connected vehicles
has been introduced with its main objectives to improve safety on the roads, and fluency
of traffic and to save costs by optimizing the driving properties.
Harding et al [27] identified a set of applications within the domain of connected vehicles.
V2X communication systems are the key enablers for the connected vehicles. Baldessari
et al [5] identified following main components of the V2X communication system:

• Vehicle represents the vehicle itself. It can run various V2X applications and
exchange data with other vehicles and entities of the MEC infrastructure (road
signals, smart phones, etc.). At a lower level there are two V2X components within
the vehicle: on-board unit (OBU) and application unit (AU). The AU is a container
for V2X applications and is permanently connected to the OBU, which provides its
networking capabilities to the AU. For the purpose of this thesis we consider both
OBU and AU as a single part of vehicle component.
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• RSU is a physical networking device located along the roads. This provides
communication capabilities by extending the range of ad-hoc network for the
vehicles. It may be connected to the Internet and might run applications as well.

We want to obtain information about the interactions among those components for the
developers. That brings us to the domains of V2X system, explained in the manifesto by
Baldessari et al [5]:

• In-vehicle domain: comprises the communication within a vehicle. It’s composed of
OBU and AU. As already mentioned, we consider OBU and AU as one component
for the purpose of the thesis. Thus this domain is not interesting for our research.

• Ad-hoc domain (VANET): VANET is ad-hoc network optimized for the mobility of
its participants. It utilizes dedicated short range wireless communication technolo-
gies. This domain wraps Vehicle-to-Vehicle (V2V), V2I and V2X communications
[24]. In V2V vehicles are exchanging driving data (velocity, acceleration, etc.). In
V2I we consider passing warnings about obstacles/dangers on the road between
RSUs and the vehicles (V2I). V2X includes communication between vehicles and
other points of connection as smart phones, pedestrians, etc.

• Infrastructure domain: a vehicle might be connected directly to a cellular station
(edge node), which provides Internet connection for the vehicle. In this domain we
consider V2I and V2X communications.

According to the study by Xiong et al [58], VANET is a local mobile IoT network within
the MEC environment. Baldessari et al [5] support that by showing that edge node is
involved in the infrastructure domain of V2X. While the vehicles and RSUs are basically
instances of IoT devices connected to the edge node.
Figure 2.1 illustrates a physical layer of V2X in the MEC. It shows three main tiers of
MEC: IoT devices, edge tier and cloud tier. The vehicles and RSUs are considered as
instances of IoT devices. These communicate among each other and with the edge nodes,
which are located at cellular station. The edge node is connected to the cloud and is
utilizing capabilities (storage, processing, etc.) of the cloud.
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Figure 2.1: Physical view of V2X within the MEC environment, taken from Xiong et al
[58]

2.3 Related Work

2.3.1 Blockchain Benchmark Frameworks

Dinh et al [15] proposed a framework, called BLOCKBENCH, to benchmark a private
blockchain-based system. It provides APIs to integrate the framework with the private
blockchain-based system. The system is further benchmarked against prepared workloads,
based on real data and smart contracts. They utilized the following evaluation metrics
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to measure the performance of the system based on blockchain: throughput - number of
successful transactions per second, latency - response time per transaction, scalability -
how does the throughput and latency change when increased number of system’s topology
nodes, fault tolerance - how does a failed node affect throughput and latency. Currently,
their framework supports three major blockchains: Ethereum, Parity and Hyperledger-
Fabric.
In our work we reuse the BLOCKBENCH interpretation of the scalability metric. However,
BLOCKBENCH doesn’t suit needs of the developers, who we want to help by providing
our benchmark framework. That is because their focus lays on creating applications
based on blockchain in MEC, therefore our framework has to deal with interactions in
MEC. Furthermore, the requirement of the developers is to measure hardware utilization
of resources in the solution’s infrastructure, while BLOCKBENCH doesn’t consider that.
A benchmarking framework Caliper [30] has been developed by Hyperledger community.
It allows to test a blockchain solution via a set of predefined use cases. A benchmark
scenario is configured via a configuration file. In the configuration file a tester can define
how to start and stop the solution, set the number of transactions to be created, control
the submission rate of transactions and etc. Caliper supports currently only blockchain
solutions from the Hyperledger community, including the following: Burrow, Composer,
Fabric, Iroha and Sawtooth. However, they promise to support Ethereum in future as well.
Caliper considers the following performance indicators for its benchmarks: transaction
success rate, throughput, latency, resource consumption.
Caliper doesn’t address the requirements of developers, who we consider within this thesis,
because they need a framework which focuses on benchmarking blockchain interactions
among components in MEC.
A study by Thakkar et al [55] inquires into performance bottlenecks of Hyperledger-
Fabric. In the first phase of the work they gained knowledge about the impact of various
configuration parameters on the performance. Those parameters included: block size,
number of utilized channels, allocation of resources, endorsement policy and utilized state
database (GoLevelDB vs CouchDB). They found out that sequential endorsement policy
validation and verification, together with the CouchDB were the three major bottlenecks.
Based on their find outs, they proposed six guidelines for developers on how to set the
considered configuration parameters in order to improve performance of Hyperledger-
Fabric. In the second phase of their work, they tried to optimize Hyperledger-Fabric, by
addressing their find outs, and managed to improve the overall throughput by 16 times.
That study provides valuable insights for our framework, because our framework deploys
blockchain features of Hyperledger-Fabric to MEC components. We benefited from the
guidelines published in the work by Thakkar et al, when configuring the Hyperledger-
Fabric. As one of the guidelines recommends to use lower block size to minimize the
latencies. Therefore, we configured the block size to be 10. Although, the authors state
that the transaction throughput increases with bigger block size. The other guideline is
saying "To achieve a high performance, define policies with a fewer number of sub-policies
and signatures." [55]. Therefore, the endorsement policy we used is composed only of a
single sub-policy.
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2.3.2 Blockchain in V2X Communication

The authors of [2] and [38] state that VANET is vulnerable to attacks, which might be
very critical in connected vehicles domain. As stated by the authors of [37], [20], [58],
[59] blockchain could be used to address those vulnerabilities, because of its decentralized
and tamper-proof nature. Furthermore, blockchain’s smart contracts could be utilized to
automate various processes in the domain.
In the remainder of this section we elaborate on the studies concerning the blockchain in
V2X communication. The authors of [37] proposed CreditCoin, a "privacy-preserving
incentive announcement network based on blockchain". Their network should be able to
address the issues of vehicle networks: difficulty of forwarding a reliable announcement
without revealing the identities of users; lack of user’s motivation to forward announce-
ments. They have run extensive simulations and benchmarks to analyze performance
of the CreditCoin. However, their benchmarks are specific to V2X systems, while our
framework is intended for use in any MEC scenario.
Dorri et al [20] presented a blockchain-based architecture to protect data originated
from interconnected smart vehicles to avoid location tracking or vehicle hijacking. They
evaluate they architecture by illustrating scenarios (wireless remote software updates and
dynamic vehicle insurance fees), which could benefit from their solution and elaborate on
privacy and security issues addressed by their architecture. In our work we reuse the
dynamic vehicle insurance fees scenario. However, their evaluation doesn’t include any
generic benchmarks, which could be reused by our framework.
Xiong et al [58] presented an architecture in blockchain-based MEC, while they considered
VANET domain as well. They propose to offload the mining task from vehicles and
RSUs to the resource richer edge computing nodes. The authors explain that interactions
between vehicles, RSU and edge nodes can be modeled as market activities, such that
the edge nodes sell data and computing power. Nevertheless, the authors considered
only blockchains utilizing PoW to achieve consensus, they haven’t evaluated any other
protocols. While our goal is to support blockchains, using other consensus algorithms as
well.
The authors of [59] proposed a decentralized trust management scheme for vehicular
networks based on blockchain, to address security drawbacks associated with vehicular
networks. By following their approach, the involved parties (vehicles) validate the received
messages. The results of the validation is used to generate a trust rating of the vehicle,
which sent the message. The trust rating is subsequently uploaded to RSU and persisted
to the blockchain, hosted on all RSUs. They combined PoW and Proof-of-Stake consensus
mechanism to speed up the process of finding nonce for the hash function (PoW). Their
experiments have shown that their proposed approach is efficient in practical vehicular
networks. The authors performed a simulation and benchmarked their experiments
against a set of performance metrics. These metrics are interesting for our work, we reuse
the idea of their "transmission latency of messages" metric in our framework.
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2.3.3 Knowledge Services for Experiments

To the best of our knowledge there are currently no solutions, which we could reuse for
the Experiments Knowledge Service. The authors of [37], [20], [58], [59] didn’t provide
any information on what services have been utilized to store their experiments.

2.4 Summary
As we found out in this chapter, there are numerous works and studies centered around
blockchain in MEC. Many researchers study a potential of blockchain in the V2X environ-
ment. Various blockchain benchmarking frameworks have been developed, which could
be utilized by developers when creating an application based on blockchain. The related
frameworks share various aspects, which include supported blockchain implementations or
metrics of quality, with our framework. However, any of the related frameworks doesn’t
focus on benchmarking blockchain interactions for blockchain-based applications in MEC.
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CHAPTER 3
Scenarios and Requirements

3.1 Overview
In this chapter we firstly introduce a set of scenarios in MEC, which we consider in this
thesis. We look on those scenarios from a developer’s point of view, who wants to create
blockchain-based applications for those scenarios.
The developer faces challenges, explained in Section 1.2, when developing the applications.
We discuss quality metrics, which we contemplate as most relevant to the developer.
Furthermore, we identify MEC components, services and stakeholders, which are relevant
to our scenarios. We show that there are various patterns of interaction between the
identified components. It’s not always the case that all components participate in every
interaction. We emphasize the importance of the interactions for the developer. To
the end, we explain how we group blockchain operations (identified in Section 2.2.1)
into blockchain features, such that a feature is represented by an executable blockchain
artefact. The blockchain artefacts can be deployed to the MEC components by the
developer.

3.2 Focused Scenarios in V2X Domain
In this section we will briefly introduce a set of scenarios within the V2X domain. In
Section 3.4 we identify interactions among MEC components in those scenarios. These
form a basis for our benchmarks later in the thesis.

• Safe lane change [27] - a vehicle wants to overtake another slow-driving vehicle.
Thus it has to determine, whether there isn’t any vehicle traveling in opposite
direction, which might potentially endanger the overtake maneuver.

• Obstacle on the road warning [27] - a vehicle spots an obstacle on the road and
warns other vehicles nearby about the obstacle.
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• Toll payments [61] - a vehicle pays toll automatically when exiting the highway.

• Car insurance ([20], [36]) - a vehicle performs an automatic claim of payments in
case of an incident.

3.2.1 Components, Services and Stakeholders

The developer needs to know the components of MEC, because instances of the blockchain-
based application and blockchain features are going to be deployed to those components.
In the following list we present the identified components.

• vehicle, RSU - discussed in Section 2.2.3.

• edge node - communicates with RSUs and vehicles and provides internet connec-
tion to them.

• cloud node - communicates with the edge nodes and provides storage capabilities.

Resources are required for the components to build a real MEC infrastructure. A vehicle
equipped with an embedded powerful computer for the vehicle component, a single board
computer with networking capabilities for the RSU and powerful servers for the edge
and cloud nodes. We discuss more on the resources what we used for our benchmarks in
Section 4.2.2.

We assume the application needs functionalities provided by the following software
services. The assumed services are deployed to the identified MEC components as well.

• V2X Platform-as-a-Service (V2X PaaS) - This service wraps the functionali-
ties and capabilities required for the V2X communication to work. These include
reading data from vehicle’s sensors, obtaining driving properties in a vehicle, VANET
implementation in the involved components etc. Since we are not interested in the
exact functionality of the service, we consider it as a black box, which provides
interfaces for other services.

• Message Broker, Pub/Sub Broker - Serving as a reliable communication
service between software components.

• Streaming/Processing - Streaming/Processing of the data between services.

Figure 3.1 sketches a sample deployment of the discussed services, application and some
blockchain features to the identified components. In the depiction, topology of the
application consists of interacting vehicle, RSU, edge and cloud nodes. An instance of
the application and blockchain features are deployed to every involved component.

Additionally these stakeholders are involved in the scenarios:
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• Developer - is a key stakeholder in our scenarios. We look on the scenarios from
the developer’s point of view, because our key focus is to help him/her to deal with
blockchain in the scenarios.
The developer aims to implement an application, to address a scenario. The
application utilizes blockchain and has to achieve certain quality metrics, depending
on the requirements.

• Vehicle owner - might own a cryptocurrency account and an issued smart contract
with other stakeholders.

• Insurance company - collects evidence information about an incident from other
stakeholders, issues contracts for various car owners and has an account to repay
the incident’s costs to their customers.

• Repair shop - can provide additional material to the insurance company to claim
a repayment.

• Highway management - tracks vehicles entering and leaving a highway and
issues toll payments for the drivers.

• Cloud storage - provides capabilities to store relevant material regarding the
payments, or incident evidence.
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Figure 3.1: A sample deployment of the application, blockchain and services to the
components of MEC
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3.3 Quality Metrics

There are many quality metrics [34] [10] [44], which have to be considered by developers
when developing blockchain-based applications. However, in this section we present
metrics of quality, which we consider as most relevant to the developers implementing
an application based on blockchain in MEC. The goal of those metrics is to help the
developers to address the challenges (identified in Section 1.2) their face when developing
the application.

3.3.1 Transaction Acceptance Rate

The first metric we consider is the transaction acceptance rate. It’s expressed via the
ratio of accepted transactions to the ones which have been submitted to blockchain.
We consider this metric, because we help the developers by benchmarking blockchain
interactions between MEC components and this metric provides information whether an
interaction took place (a transaction was accepted) or not (a transaction was rejected).
Furthermore, this metric provides insights for the developers towards the reliability of
the application.
In blockchain systems we face throughput and bandwidth issues [34]. These extend even
more in MEC environment, since IoT devices are producing a lot of data, which should
be exchanged over blockchain in form of transactions.

3.3.2 Synchronization State

As explained in the previous section, some transactions might be non-accepted by
blockchain. If there are too many non-accepted transactions in a particular node of
blockchain’s topology, then the node might be removed from blockchain’s topology and
consequently lost synchronization state. Therefore, we use this metric, which is measured
by the number of blockchain nodes, which have been removed from a blockchain’s topology
during a period of time. For the purpose of this thesis the period of time is a time-span
of a simulation performed by our benchmark framework, more on that in Section 4.3.
This metric provides further insights for the developers towards reliability of the applica-
tion as well, while the reliability is critical in the domain of V2X [27].

3.3.3 Transaction Acceptance Time

This metric is measured by the time it takes to accept a transaction by blockchain. Since
we want to help the developers by benchmarking blockchain interactions among MEC
components. We assume this metric is relevant to the developers, because it states how
long does an interaction take.
In blockchain enabled systems we witness latency issues [34], since achieving consensus is
usually a time-consuming operation. Those issues are relevant to the MEC, because there
are computationally restricted IoT devices, on which it might take a long time to run the
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consensus algorithms. This metrics provides information regarding the performance of
the applications for the developers.

3.3.4 Scalability

Scalability is one of issues, we face in blockchain systems [34]. In MEC environment that
issue gained even bigger relevance, since the IoT topologies can be large, and change
frequently. This metric is defined by Dinh et al [15] and is measured as changes in
transaction acceptance rate and time and in synchronization state, when increasing the
number of nodes in the application’s topology.

3.3.5 Infrastructure Resources Utilization

In this metric we observe hardware utilization of the application’s underlying infrastruc-
ture’s resources. That provides relevant information to the developers about whether an
infrastructure suits the requirements of their applications, as well what are the costs of
such infrastructure. This metric is measured by hardware utilization of the resources.
The % utilization of a CPU core and amount of consumed RAM memory in MBs are
measured. Beside the hardware utilization, the developers would like to consider quality
of network connection, between the nodes of application’s topology, in this metric. Since
it may affect the costs of the infrastructure as well.

3.4 Components Interaction Scenarios and Requirements

In this section we look on the scenarios, introduced in Section 3.2, from a developer’s
point of view. When the developer is developing a blockchain-based application for the
scenarios then he/she finds out that different possible patterns of interaction among
the MEC components could arise. The instances of the application are running in the
MEC components, which participate in an interaction, and are exchanging data over
blockchain among each other. It’s very important for the developer to identify those
interactions, because each interaction results in a different topology of the application.
The developer needs to know how does a blockchain interaction between the instances
of the application perform in the view of the quality metrics. To determine that the
developer can utilize the benchmarking framework, developed in this thesis. As already
noted in Section 1.2, the developer has to deal with the challenges listed below when
developing the application.
We deploy services, identified in Section 3.2.1, instances of application and blockchain
features to the interacting MEC components. Further we identify participating stake-
holders and emphasize a list of requirements in a form of introduced quality metrics for
every scenario.

• Which blockchain implementation to be used for a scenario?
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• What interaction does perform the best, in the view of selected quality metrics, for
a particular scenario ?

• Which blockchain features should be deployed to which nodes of a topology, rep-
resenting an interaction, in order to achieve the desired functionality and certain
quality metrics for the topology?

• What are the requirements in terms of hardware for the application’s underlying
infrastructure?

3.4.1 Vehicle to Vehicle Interaction

Assume a developer wants to implement a blockchain-based application to address the
lane change scenario [27]. The developer finds out that the scenario involves vehicles
interacting between each other. No further MEC components are involved in the scenario.
Utilizing blockchain in the scenario enriches safety by forcing integrity of exchanged
messages, because of tamper-proof capability of blockchain. This means that the vehicles
may continue using VANET to exchange messages between vehicles, but the message’s
payload (driving data) is hashed and the hash is stored in blockchain.
The diagram on Figure 3.2 sketches this interaction. The topology representing this
interaction consists of two vehicles (vehicle1 and vehicle2). Both deploy some
blockchain features, run an application to address the lane change scenario and utilizes
the services described in Section 3.2.1.
The Streaming/Processing service, running in vehicle1, pulls driving data from V2X
PaaS and filters the events, which are related to an overtake operation. These are further
streamed to the application. The application connects to vehicle2, to determine if it’s
safe to perform overtaking maneuver. To find out that the application in vehicle2 asks
it’s V2X PaaS to spot the surroundings by its sensors (e.g. return the distance to and
velocity of a vehicle traveling in opposite direction). The returned sensor’s data are being
passed back to vehicle1 and the hash of the data is stored to blockchain asynchronously.
Then the application in vehicle1 uses blockchcain to verify the integrity of the returned
sensor’s data by comparing its hash with the one stored in blockchain. As soon as the
data’s integrity has been successfully verified, the application can answer to V2X PaaS
whether it is/isn’t safe to overtake.
In this case, the developer has to decide what blockchain features should be deployed
within the blockchain nodes in the vehicles. Since this is a safety application, the
developer is focused to find a deployment, which maximizes the transaction acceptance
rate and synchronization state, while minimizing the transaction acceptance times of
blockchain. Please note that when verifying the data’s integrity, increased waiting times
are occurring in the application of vehicle1. Because it has to be waited until the
transaction (created in vehicle2) is accepted and visible for vehicle1. The goal of
the developer is to find such deployment, which minimizes those waiting times.
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Interaction id 1
Pattern vehicle - vehicle
Stakeholders Developer

Requirements high tx acceptance rate and synchronization state,
short tx acceptance time

Description A V2V communication application,
two or more vehicles exchanging driving data.

Scenario Example lane change scenario

Figure 3.2: Lane change scenario in blockchain-enabled V2V
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3.4.2 Vehicle to RSU Interaction

The first interaction we consider for the obstacle on the road scenario [27] includes
vehicles and RSUs. The application for the scenario should warn the drivers about an
obstacle (an accident or a fallen tree branch) on the road. In this interaction a RSU
is involved, beside vehicles. Because we assume a vehicle wants to pass a warning to
another, but cannot do it directly, because of the distance between the vehicles. Thus a
RSU is utilized for a multihop communication between the vehicle.
In this scenario blockchain is used to verify integrity of messages being passed between
vehicles and RSUs. That is done by storing hashes of the messages in blockchain. It
enriches VANET communication by providing more security.
Figure 3.3 illustrates the scenario’s interaction on service level. The depiction shows
two vehicles (vehicle1 and vehicle2) and a RSU rsu1. The Streaming/Processing
filters data from sensors of vehicle1, which may observe an obstacle on the road.
Based on that data, a warning is created in the application. It’s is published to a queue
of RSU’s message broker. Simultaneously, the transaction wrapping hashed warning is
created and submitted to blockchain asynchronously. When another vehicle (vehicle2)
enters the communication range of RSU, and subscribes to its queue, it receives the
warning. The integrity of the warning is verified via its hash stored in blockchain. If the
integrity’s correct, then the vehicle takes an appropriate action (slow down or change the
line).
In this interaction the developer has to find out, what blockchain features to deploy to
the blockchain nodes in vehicles and RSU. As it was the case in previous interaction,
waiting times (when verifying integrity of the warning) might be experienced in the
application in vehicle2. While the developer’s intention is to develop system, which
guarantees the message’s integrity in shortest possible time. Thus the requirements are
to maximize the transaction acceptance rate and synchronization state, while minimizing
the acceptance time.

Interaction id 2
Pattern vehicle - RSU - vehicle
Stakeholders Developer

Requirements high tx acceptance rate and synchronization state,
short tx acceptance time

Description A multi-hop communication between two or
more vehicles over a RSU.

Scenario Example An obstacle on the road warning scenario
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Figure 3.3: An obstacle warning scenario in blockchain-enabled V2X over RSU

3.4.3 Vehicle to Edge Interaction

The second interaction, we assume for the obstacle on the road scenario [27], is using edge
node instead of RSU. That might occur, if there isn’t a working RSU near the vehicle.
Therefore, it has to connect and communicate over the edge node, which is computational
more powerful than a RSU. The involved services, message exchange, role of blockchain
and requirements in this case are the same as in the previous interaction (Section 3.4.2).
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Interaction id 3
Pattern vehicle - edge node - vehicle
Stakeholders Developer

Requirements high tx acceptance rate and synchronization state,
short tx acceptance time

Description Communication between vehicles, over an edge node
as middleware, since there is no RSU nearby.

Scenario Example An obstacle on the road scenario

Figure 3.4: An obstacle warning scenario in blockchain-enabled V2X over edge node
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3.4.4 Vehicle to RSU and Edge Interaction

This is the third interaction, which is considered for the application, dealing with obstacle
on the road scenario [27]. In this interaction both RSU and edge node are involved beside
the vehicles. While the messages flow from one vehicle to another, through a RSU, and
an edge node. The edge node enriches the topology by providing more computational
capabilities. This may bring benefits for blockchain’s requirements. Thus it’s interesting,
from the developer’s point of view, to benchmark this interaction against the one utilizing
RSU (Section 3.4.2), or edge node (Section 3.4.3).

Interaction id 4
Pattern vehicle - RSU - edge node - vehicle
Stakeholders Developer

Requirements high tx acceptance rate and synchronization state,
short tx acceptance time

Description Communication between vehicles, over a RSU,
while utilizing edge node’s capabilities.

Scenario Example An obstacle on the road scenario

Figure 3.5: An obstacle warning scenario in blockchain-enabled V2X over RSU and edge
node
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3.4.5 Vehicle to Edge and Cloud Interaction

Assume a developer develops a blockchain-based application for automatic costs reclaiming
in case of an incident [20] [61]. He/she considers an interaction among vehicles, edge
nodes and cloud nodes components. Although, in this case the message exchange in
the interaction doesn’t happen synchronously and in a sequence, as it was the case in
previous interactions. But rather we have a set of stakeholders collaborating via the
components.
Figure 3.6 illustrates the scenario with the involved services and stakeholders. The figure
shows one instance of vehicle (vehicle1), edge node (edge1) and cloud node(cloud).
There is a smart contract running in blockchain, which should trigger an action to claim
costs in case of an incident. The responsibility of the application in the vehicle is to
obtain relevant data from the car’s systems about the incident. These data are submitted
to blockchain directly. In some cases these data aren’t enough to trigger the blockchain’s
smart contract. Therefore, other stakeholders like repair shop in our scenario have to
provide additional information and submit it to the blockchain. As soon as there is
enough data as a proof of the incident then the smart contract is executed and credits
are transferred from crypto-currency account of the insurance company to the driver’s
crypto-currency account. Issuing new smart contracts and management of the existing
ones is under the responsibility of the insurance company.
For the topology representing this interaction, the developer has to decide what blockchain
features to deploy to the blockchain node running in vehicles, edge node and cloud node.
The goal of the developer is to propose a blockchain-based architecture, which doesn’t
require expensive infrastructure while ensures a sufficient rate of accepted transaction
and state of synchronization.

Interaction id 5
Pattern vehicle - edge node - cloud node
Stakeholders Developer, Driver, Insurance company, Repair shop

Requirements
low infrastructure costs,
sufficient transaction acceptance rate and
synchronization state

Description

A vehicle needs to communicate with services
running in edge nodes and cloud nodes. These cannot
be deployed in a RSU, since may require more
computational power, than provided by RSU.

Scenario Example Automatic reclaim of costs in case of an incident
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Figure 3.6: Automatic reclaim of costs in case of an incident in blockchain-enables V2X
environment

3.4.6 Vehicle to RSU, Edge and Cloud Interaction

In this case, a developer implements a blockchain-based application to address autonomous
toll payments scenario [61]. A message exchange among vehicle, RSU and edge node,
while utilizing storage capabilities of the cloud node is considered in the scenario. By
utilizing blockchain and smart contract, we could automate the process of toll payments
without using the central authority, which is utilized by the state-of-the-art automatic
payment systems [3] [54].
A smart contract is implemented, which listens for an event, when a vehicle leaves the
highway. The smart contract will trigger an action to make a payment by the driver to
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the highway management. Furthermore, some relevant information (e.g. photo, recipe,
location and time of the exit) are stored to the cloud storage.
Figure 3.7 sketches the interaction in a blockchain enabled autonomous toll payment
scenario. In the first step, there is a RSU, placed on exit of the highway, ordering a
vehicle to pay toll. The vehicle connects to the RSU and sends toll data (this include all
necessary information required to pay the toll) to RSU’s message broker, which forwards
the data to the pub/sub broker in edge node. Simultaneously, in the vehicle the hash of
the data is calculated and submitted to vehicle’s blockchain node. The RSU, edge node
and cloud node are other peers of our blockchain network. As the toll data are consumed
by the toll payments application in the edge node, blockchain is utilized to verify whether
the message hasn’t been tampered along the interaction. If the integrity is valid, then
the relevant data are stored to the cloud storage, while smart contract executes an action
to make payment to the highway management by the user.
In this interaction we assume that the developer’s task is to minimize the costs of
underlying infrastructure, while a sufficient rate of accepted transactions and state of
synchronization should be achieved.

Interaction id 6
Pattern vehicle - RSU - edge node - cloud node
Stakeholders Developer, Driver, Highway Management, Cloud Storage

Requirements
low infrastructure costs,
sufficient transaction acceptance rate and
synchronization state

Description

A vehicle requires services running in the edge node,
or utilizes the capabilities of the cloud node, while the
communication with those services isn’t direct, it
flows over a RSU station.

Scenario Example Toll payments
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Figure 3.7: Automatic toll payments in blockchain-enabled V2X environment
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3.4.7 Summary

Based on our assumptions regarding to the developer’s requirements, presented in Section
3.4. We summarize the relevance of the quality metrics on our scenarios in Table 3.2
(Sign +++ stands for the most, + for the least relevant).

Table 3.2: Summary of quality metrics for interactions

Shortest Tx
Acceptance Time

Highest Tx
Acceptance Rate &
Highest Sync state

Scalability
Infrastructure

Resource
Utilization

Lane change
scenario 3.4.1 ++ +++ ++ +

Obstacle on
the road
warning 3.4.2
3.4.3 3.4.4

++ +++ ++ +

Insurance
scenario 3.4.5 + ++ ++ +++

Toll payments
3.4.6 + ++ ++ +++

3.5 Blockchain Artefacts

In the preceding sections we identified the main components of MEC and a set of scenarios
with corresponding interactions among the MEC components. Blockchain has been used
to enable those interactions, but it hasn’t been clarified which blockchain features run
in the components. The developer has to decide that. To execute the features in the
components, we have to create executable artefacts representing the blockchain features.
To achieve that we must obtain knowledge about how are those features implemented in
the chosen blockchain implementations (refer to Sections 2.2.2.1 and 2.2.2.2).
In Section 2.2.1 we have described blockchain operations, which have to be carried out
to enable the interactions. We aim to group those operations into blockchain features.
We do the grouping, based on our intention to separate the achieve consensus operation
from the other operations. The reason for that is its complexity and is deeper elaborated
in Section 2.2.1.
Let’s start with grouping the blockchain operations to the features.

• Creator feature: We consider the following list of operations within this feature:

– Create a transaction
– Sign a transaction
– Submit a transaction
– Verify a transaction
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– Accept a block

• Consensus feature: This is an atomic feature composed of the following operation:

– Achieve consensus

Furthermore, we determine how the chosen blockchain implementations implement those
features. Therefore, we create a mapping (illustrated in Table 3.3) of the operations
included in the features to their corresponding representation in concrete blockchain
implementations. Based on the mapping, the developers see implementations of the
blockchain features in Ethereum and Hyperledger-Fabric blockchains.
In Section 2.2.1 we explained that there are various types of blockchain nodes and not
every operation can be executed by every node (i.e. only a node known as miner can
achieve consensus). Based on that, we infer two types of blockchain nodes, such that
each node is responsible for running a particular feature. These nodes are marked in
bold in Table 3.3. The nodes are:

• standard node - responsible for running the creator feature.

• miner node - can run consensus feature.

Based on the mapping of operations, we can map the blockchain nodes to their represen-
tations in blockchain implementations. The mapping of blockchain nodes is presented
in Table 3.4. Deriving from that mapping we conclude that an Ethereum node can be
used to execute the creator feature, but only miner node is capable of executing the
consensus feature. In Hyperledger-Fabric the peer node is responsible for running the
creator feature and orderer node is used to run the consensus feature.
These blockchain nodes represent the executable blockchain artefacts. Please note that in
Ethereum, the miner node is simultaneously a standard node. In contrast to Hyperledger-
Fabric where the orderer and peer nodes don’t share any functionalities regarding to the
blockchain operations.
To conclude this section we list the identified blockchain artefacts, which should be
deployed by the developer to the MEC components in our scenarios.

• Ethereum: standard node

• Ethereum: miner node

• Hyperledger-Fabric: peer node

• Hyperledger-Fabric: orderer node
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Table 3.4: Mapping of blockchain roles

Generic blockchain Hyperledger-Fabric Ethereum
Standard
blockchain node Peer nodes (endorser, anchor, leader) Standard node,

Miner node
Miner
blockchain node Orderer node Miner node

3.6 Summary
In this chapter we have shown that, for a single scenario, there might occur different
patterns of interaction among MEC components. Further we identified four executable
blockchain artefacts, representing blockchain features, which can be deployed to the MEC
components. While we left multiple questions opened:

• What interaction does perform the best, in the view of selected quality metrics, for
a particular scenario ?

• Which blockchain artefacts should be deployed to which nodes of a topology,
representing an interaction, in order to achieve the desired functionality and certain
quality metrics for the topology?

• What are the requirements in terms of hardware for the application’s underlying
infrastructure?

These questions have to be answered by the developer, who creates a blockchain-based
application to address a scenario. To help the developer to deal with those questions, we
propose a blockchain benchmark framework in the next chapter.
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CHAPTER 4
Benchmarks

4.1 Overview

In order to help developers to address the challenges they face, when creating blockchain-
based applications in MEC environments, we propose a benchmarking framework in this
chapter. The framework can benchmark blockchain interactions among MEC components.
The developer creates a benchmark according to the design explained in Section 4.2 and
submits it to the framework. We elaborate on the prototype of the framework in Section
4.3. In Section 4.4 we create and benchmark experiments related to our scenarios. We
evaluate the results of those experiments. Furthermore, we explain what insights do the
results provide to the developers.

4.2 Benchmark Design

4.2.1 Topology

A topology in the context of benchmarks is a graph consisting of MEC’s components
(identified in Section 3.2.1) presenting nodes of the graph. The edges in the graph
represent blockchain interactions among the MEC components. Such that a set of
blockchain features (identified in Section 3.5) is deployed to each component.
In this section we aim to propose deployments, which assign a set of the features to each
of the MEC components in the topology. To obtain a diversity of the benchmarks, we
create multiple different deployments, for each of the interactions (refer to Section 3.4).
Let’s formalize the construction of deployments a bit. We group our components to
a set CMEC = {Cloud, Edge, RSU, vehicle}. Furthermore, we define a set FBC =
{creator, consensus}, denoting the blockchain features we would like to deploy. A
deployment is then an assignment of a set of elements from FBC to each element from
CMEC .
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Table 4.1: A deployment of blockchain features for Interaction 1

Interaction id Blockchain features deployment

1 ID vehicle RSU Edge Cloud
0 all - - -

Table 4.2: A deployment of blockchain features for Interaction 2

Interaction id Blockchain features deployment

2

ID vehicle RSU Edge Cloud
0 creator all - -
1 creator consensus - -
2 all creator - -
3 all consensus - -
4 all all - -

Table 4.3: A deployment of blockchain features for Interaction 3

Interaction id Blockchain features deployment

3

ID vehicle RSU Edge Cloud
0 creator - all -
1 creator - consensus -
2 all - creator -
3 all - consensus -
4 all - all -

Tables 4.1 to 4.6 propose all deployments, which we assumed might be meaningful for
the developers to evaluate, regarding the respective interactions (see Sections from 3.4.1
to 3.4.6). Note we used a keyword all to denote a set of {creator, consensus}). When
constructing the deployments, we followed these constraints:

• Always deploy creator feature in to the vehicle component, because vehicles are
creating data in all considered interactions.

• For each deployment, the union of the features used across the components has to
be a super-set of {creator, consensus}.

• There has to be one deployment for each interaction, which deploys all blockchain
features to each involved MEC component, while the other deployments assign less
features to the components.

38



4.2. Benchmark Design

Table 4.4: A deployment of blockchain features for Interaction 4

Interaction id Blockchain features deployment

4

ID vehicle RSU Edge Cloud
0 creator consensus creator -
1 creator all creator -
2 creator creator all -
3 creator creator consensus -
4 creator consensus consensus -
5 creator all consensus -
6 creator consensus all -
7 creator all all -
8 all all all -
9 all consensus all -
10 all creator all -
11 all creator creator -
12 all consensus creator -
13 all all creator -
14 all creator consensus -
15 all consensus consensus -
16 all all consensus -

Table 4.5: A deployment of blockchain features for Interaction 5

Interaction id Blockchain features deployment

5

ID vehicle RSU Edge Cloud
0 creator consensus creator -
1 creator all creator -
2 creator creator all -
3 creator creator consensus -
4 creator consensus consensus -
5 creator all consensus -
6 creator consensus all -
7 creator all all -
8 all all all -
9 all consensus all -
10 all creator all -
11 all creator creator -
12 all consensus creator -
13 all all creator -
14 all creator consensus -
15 all consensus consensus -
16 all all consensus -
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Table 4.6: A deployment of blockchain features for Interaction 6

Interaction id Blockchain features deployment

6

ID vehicle RSU Edge Cloud
0 creator creator creator consensus
1 creator creator creator all
2 creator creator consensus consensus
3 creator creator consensus all
4 creator creator consensus creator
5 creator creator all creator
6 creator creator all consensus
7 creator creator all all
8 all creator creator creator
9 all creator creator all
10 all creator consensus consensus
11 all creator consensus creator
12 all creator consensus all
13 all creator all consensus
14 all creator all creator
15 all creator all all
16 all all all all

4.2.2 Infrastructure Resources

In the context of benchmarks we interpret the infrastructure as resources necessary to
build a MEC infrastructure (see Section 3.2.1) and quality of the network connection
between nodes of a topology. In Section 3.2.1 we identified MEC components and the
resources required to build a real MEC infrastructure. We don’t have a real vehicle,
RSU and edge node. Therefore, we need to emulate the resources representing those
components. However, we do have access to cloud services. The principle of emulating
the unavailable resources and combining them with real resources is called symbiosis test
specification, sketched on Figure 4.1.

The unavailable resources are emulated by utilizing containers or virtual machine (VM)s.
Such that those VMs/containers have to meet certain requirements in terms of hardware
configurations to be able to substitute the real resources. Those requirements are listed
in Table 4.7. In the list below we present how we emulate the resources.

• vehicle: To emulate a single vehicle, we require multiple software components. For
example V2X Communication Emulator to emulate the V2X scenarios, Hyperledger-
Fabric peer node and/or Hyperledger-Fabric orderer node for blockchain artefacts
and possibly other services like Kafka [25], Zookeeper [26], etc., depending on the
deployment (those software components are explained in Section 4.3). All those
software components can be executed in a single VM. In that case one vehicle is
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emulated by that VM and the hardware of the VM is configured according to the
Table 4.7. However, there might be a case, when N instances of those services,
would be deployed to a single VM. That would mean that the VM emulates
N vehicles and the hardware of the VM is N-multiple of a configuration from
the Table 4.7. We assume the developers want to benchmark different hardware
configurations of emulated vehicle resource. Therefore, we propose light, medium
and big configuration in the Table 4.7.

• RSU: To emulate a RSU we deploy an emulator container, blockchain artefacts and
eventually other required services like Kafka, Zookeeper, etc. to a VM. In Section
4.3 we discuss further information about those services and the emulator container.
However, we utilize the same principle as in the case of vehicle, when we aim to
emulate multiple RSUs in a single VM.

• edge node: For emulating the edge node we utilize exactly the same principles as in
the case of vehicles or RSUs.

• cloud node: We don’t need to emulate the cloud node, since we have access to real
cloud services.

Figure 4.2 illustrates and example of emulated MEC environment. We elaborate how our
benchmark framework creates and deploys the emulated resources in Section 4.3.2.

Furthermore, we emulate different network qualities (listed in Table 4.8) by constraining
the latency and bandwidth of a network interface, utilized for the communication. We
evaluate the qualities of the network within the benchmarks, since we assume it might
provide valuable insights for the developers. In the V2X communication scenario there
might be a case when vehicle is moving in the city, having a reliable internet connection
or driving in the countryside with a weak low-quality connection. Referring back to the
interactions in Section 3.4 we can identify all connections between the MEC components.
For the purpose of the benchmarks we assume that the connection between cloud and
edge nodes is wired and thus always reliable. But all other connections (edge node to
vehicle, edge node to RSU, RSU to vehicle and vehicle to vehicle) are wireless and could
be low-quality under some circumstances.

Figure 4.1: Symbiosis Test Specification
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Figure 4.2: Example deployment of emulated MEC infrastructure

Table 4.7: The hardware configuration of resources (emulated and real)

Component Configuration CPU RAM Storage OS

Cloud
Intel Xeon E5
Sandy Bridge 2.6GHz
4vCPU

16 GB 60 GB SSD Ubuntu 18.04

Edge
Intel Xeon E5
Sandy Bridge 2.6GHz
4vCPU

16 GB 60 GB SSD Ubuntu 18.04

RSU
Intel Xeon E5
Sandy Bridge 2.6GHz
1vCPU

2 GB 16 GB SSD Ubuntu 18.04

vehicle
light

Intel Xeon E5
Sandy Bridge 2.6GHz
1vCPU

2 GB 20 GB SSD Ubuntu 18.04

medium
Intel Xeon E5
Sandy Bridge 2.6GHz
2vCPU

4 GB 20 GB SSD Ubuntu 18.04

big
Intel Xeon E5
Sandy Bridge 2.6GHz
4vCPU

8 GB 20 GB SSD Ubuntu 18.04
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Table 4.8: Network configurations

Network Latency Bandwidth
3G 200ms 1000kbps
4G 100ms 10000kbps
5G 5ms 54mbps

4.3 Benchmark Framework

Figure 4.3: Component diagram of the framework

A framework to generate and execute the benchmarks has been developed within the
scope of this thesis. Its architecture is illustrated in Figure 4.3. Figure 4.4 provides a
class view of the framework. A basic workflow of the framework is following: Bench-
marksExecutor loads a specification of an experiment and a topology of benchmarks (see
Section 4.2.1) at input. InfrastructureBuilder creates VMs, necessary for infrastructure
of the benchmarks, by utilizing ResourceProviderConnector. Then ArtefactsInstaller
installs prerequisites onto the machines and deploys blockchain artefacts into the topology
according to the specification of the experiment. NetworkConfigurator setups a quality
of network connections between nodes of the topology.
The EmulatorRunner deploys and executes Emulator containers in every node across
the deployed topology. Those containers are responsible for running the benchmarks,
by emulating the blockchain interactions in form of message exchange among MEC
components. Therefore, the Emulator must be connected to a blockchain artefact. That
makes the Emulator a producer and receiver of the messages. Emulator is a customized
component and can be provided by the developer to emulate different blockchain interac-
tions. We have used dockerized V2X Communication Emulator for our experiments. In
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Figure 4.4: Class diagram of the framework

the subsequent sections we elaborate deeper on the workflow of the benchmark framework.

4.3.1 Experiment Specification

In this section, we explain the format of experiment specification and topology of bench-
marks accepted on input of the benchmark framework. A Listing 4.1 shows an example
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of experiment specification. The feature of our benchmark framework is that beside the
execution of benchmarks, it can generate benchmarks according to the configuration.
The generated benchmarks are obtained by combining values of bcImplementations, with
bcDeployments, vehicleContainerConfiguration and networkQualities. While each single
combination of them is going to be benchmarked. Please note that for the specification
in Listing 4.1, we evaluate two blockchain implementations, four deployments, three
hardware configurations with three network qualities. That results in 27 generated and
executed benchmarks.
Next we explain the parameters, used in Listing 4.1, to specify experiments. The purpose
of name and description parameters is to provide a human-readable identification of
benchmarks. WorkloadEmulator specifies the Emulator component, which is aimed to
emulate interactions among MEC components via blockchain. That component is a
separate application. For the benchmarks executed within this thesis, we emulated
V2X communication scenarios by utilizing V2X Communication Emulator, running in
docker and identified via its imageTag. The framework currently supports only a docker
container for the workload emulator. Parameter roundsNr defines how many transactions
should be issued by each of the workload emulator instances during an emulation.
The other parameters are optional. They specify the benchmarks, which should be
generated and executed by the framework. bcImplementations says to the framework,
what blockchain implementations should be used for interactions, when running the
benchmarks. Currently we support Ethereum and Hyperledger-Fabric blockchains. Via
the bcDeployments parameter, we define deployment of blockchain features to topologies
as explained in Section 4.2.1. Please note that bcDeployment is an array, because the
goal is to benchmark multiple deployments. Furthermore, there is an array of vehicle-
ContainerConfigurations, used to specify hardware configurations of vehicles’ resources,
and networkQualities to configure quality of the network connection among the nodes of
our topology.

As explained in Section 4.2.1, the topology is represented as a graph. The nodes of the
graph are instances of the Node class, depicted in Figure 4.5. A JSON representation
of the graph is required on input. When the framework is generating benchmarks, it
injects the values of bcImplementations, bcDeployment, vehicleContainerConfigurations
and networkQualities from experiment specification to the respective fields of the topology
(bcArtefact, hostMachine, netQuality). Therefore, those topology’ fields don’t need to be
provided. However, there might be use cases, when the developer wants to benchmark
a specific topology. For example a topology where vehicle1 runs creator feature,
while vehicle2 runs consensus feature. Therefore, the developer provides values for
bcArtefact field in the topology specification, and doesn’t want to let it be overwritten by
the framework. To achieve that the parameters bcImplementations and bcDeployment
cannot be defined in the specification of experiment. In another use case, the developer
might want to benchmark various deployments of blockchain features to a topology,
where vehicle1 is running in a container with 1vCPU, while vehicle2 requires
4vCPU. To achieve that the topology’ hostMachine field has to be defined, while the
vehicleContainerConfigurations cannot be defined in the experiment specification.
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All experiment specifications and topologies, which have been used for the benchmarks
in this thesis are available in experiments directory of the following GitHub repository:
https://github.com/rdsea/blockchainbenmarkservice.

Listing 4.1: Definition of experiments 0..26, as accepted by the benchmark framework
1 name : i n t e r a c t i o n 2
2 d e s c r i p t i o n : Experiments f o r I n t e r a c t i o n 2
3
4 workloadEmulator :
5 type : docker
6 imageTag : f i l i p r y d z i /v2x_communication
7 roundsNr : 100
8
9 bcImplementations :

10 − eth
11 − hypfab
12
13 bcDeployments :
14 − id : 4
15 featuresMapping :
16 − nodeType : rsu
17 f e a t u r e : a l l
18 − nodeType : v e h i c l e
19 f e a t u r e : a l l
20 − id : 2
21 featuresMapping :
22 − nodeType : rsu
23 f e a t u r e : c r e a t o r
24 − nodeType : v e h i c l e
25 f e a t u r e : a l l
26 − id : 0
27 featuresMapping :
28 − nodeType : rsu
29 f e a t u r e : a l l
30 − nodeType : v e h i c l e
31 f e a t u r e : c r e a t o r
32
33 v e h i c l e C o n t a i n e r C o n f i g u r a t i o n s :
34 − name : smal l
35 vCPUcount : 1
36 memory : 2
37 storageSSD : 10
38 storageHDD : 0
39 os : ubuntu18 .04
40 − name : medium
41 vCPUcount : 2
42 memory : 4
43 storageSSD : 10
44 storageHDD : 0
45 os : ubuntu18 .04
46 − name : l a r g e
47 vCPUcount : 4
48 memory : 8

46

https://github.com/rdsea/blockchainbenmarkservice


4.3. Benchmark Framework

49 storageSSD : 10
50 storageHDD : 0
51 os : ubuntu18 .04
52
53 networkQua l i t i e s :
54 − name : 3G
55 la t ency : 200ms
56 bandwidth : 1000 kbps
57 − name : 4G
58 la t ency : 100ms
59 bandwidth : 10000 kbps
60 − name : 5G
61 la t ency : 5ms
62 bandwidth : 54mbps

Figure 4.5: Topology format accepted by benchmark framework

4.3.2 Building of Infrastructure

BenchmarkExecutor invokes InfrastructureBuilder, which is responsible for building the
infrastructure. At first it uses ResourceProviderConnector to create and start neces-
sary VMs in the cloud. Currently, the framework supports Google Compute Engine
[21] as provider of the resources(VMs, networks), but can be extended to work with
other providers as well. ResourceProviderConnector utilizes a Node.js client library 1 to
interact with the Google Compute Engine. Then the ArtefactInstaller installs necessary
prerequisites onto the machines. That includes, installing docker and docker-compose.

1https://github.com/googleapis/nodejs-compute
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Furthermore, the ArtefactInstaller deploys and links blockchain artefacts to the topology
of benchmarks, by using respective ITopologyDeployer implementation. The currently
supported blockchain artefacts are running in docker containers across the topology.
We have used geth docker image 2 for Ethereum. The official docker images 3 have
been provided by Hyperledger-Fabric to run peer node, orderer node, tools, certificate
authority, Kafka and Zookeeper.
Figure 4.2 depicts an example deployment of blockchain artefacts. Please note that a
single VM can run multiple software services representing the MEC components. In this
case one vehicle is represented by the V2X Communication emulator and Hyperledger-
Fabric peer node. Hyperledger-Fabric orderer node is deployed on RSUs and edge, while
other software services (Kafka, Zookeeper and certificate authority) are deployed to the
edge node as well.
NetworkConfigurator is utilized by InfrastructureBuilder to configure quality of network
connections among nodes of the benchmark’s topology. NetworkConfigurator uses a tool
called tc 4, to manipulate the traffic control.
As soon as the built infrastructure isn’t required anymore, InfrastructureBuilder in-
vokes ArtefactInstaller to kill containers representing blockchain artefacts. Then the
InfrastructureBuilder invokes ResourceProviderConnector to stop VMs in the cloud.

4.3.3 Benchmark Execution

The EmulatorRunner deploys and executes Emulator containers in every node across the
deployed topology. The Emulator container connects to a blockchain artefact. Then the
Emulator starts producing messages and emulates blockchain interactions via exchanging
the messages with other nodes of the topology. The blockchain interactions involve invo-
cation of features (refer to Section 3.5) in the blockchain artefact, which are necessary for
emulation of the blockchain interactions. Emulator can be customized by the developer
to emulate specific blockchain interactions.
We have used V2X Communication Emulator to address the V2X communication sce-
narios for our experiments. The V2X Communication Emulator is deployed to vehicle
nodes of the benchmark’s topology. It’s a separate NodeJS [43] application, developed in
Typescript [56], running in a docker container and is provided to the EmulatorRunner
by an external container repository (DockerHub [16]). The responsibility of V2X Com-
munication Emulator is to emulate interactions by exchanging data among the nodes
of benchmark’s topology via blockchain. DrivingDataProducer in V2X Communication
Emulator produces a stream of random driving data. Listing 4.2 shows a concrete
example of the data stream, consisting of five data instances, produced by a single
emulated vehicle (V2X Communication Emulator instance). The parameter roundsNr
has been set in experiment specification (refer to Section 4.3.1) and defines how many
times a new driving data instance have to be produced and pushed into the stream.
OperationAnalyser receives the data from DrivingDataProducer and delivers them to

2https://github.com/ethereum/go-ethereum
3https://github.com/hyperledger/fabric
4http://manpages.ubuntu.com/manpages/bionic/man8/tc.8.html
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IDrivingDataDAO, which executes the blockchain’s creator feature to persist the data
into blockchain. Then the data become visible for other V2X Communication Emulator
instances, thus the V2X Communication Emulator is used as a data source and data
receiver as well. OperationAnalyser observes some aspects of the interactions. Those
aspects include for example transaction acceptance time, as well other factors important
for the quality metrics (see Section 3.3).
As soon as all V2X Communication Emulators have finished running the benchmarks.
The framework will use ResultsPuller to download the logs and results of the benchmarks
from all nodes across our topology. The results are mapped to the quality metrics (refer
to Section 3.3), supported by the framework.

The developed framework is open-source and is available in the GitHub repository:
https://github.com/rdsea/blockchainbenmarkservice. It can be used to
run other benchmarks and is open for extensions. It can be extended to work with other
implementations of blockchain, other cloud providers, or use another component for
emulations than the V2X Communication Emulator.

Listing 4.2: Samples of stream of driving data used for benchmarks
1 {
2 id : 7785705911 ,
3 timestamp : 2019−30−3 2 0 : 2 7 : 5 8 . 1
4 v e l o c i t y : 50 ,
5 a c c e l e r a t i o n : 1
6 } ,
7 {
8 id : 7785705912 ,
9 timestamp : 2019−30−3 2 0 : 2 7 : 5 8 . 2

10 v e l o c i t y : 51 ,
11 a c c e l e r a t i o n : 5
12 } ,
13 {
14 id : 7785705913 ,
15 timestamp : 2019−30−3 2 0 : 2 7 : 5 9 . 1
16 v e l o c i t y : 56 ,
17 a c c e l e r a t i o n : −10
18 } ,
19 {
20 id : 7785705914 ,
21 timestamp : 2019−30−3 2 0 : 2 8 : 0 1 . 9
22 v e l o c i t y : 46 ,
23 a c c e l e r a t i o n : −20
24 } ,
25 {
26 id : 7785705915 ,
27 timestamp : 2019−30−3 2 0 : 2 8 : 0 3 . 6
28 v e l o c i t y : 26 ,
29 a c c e l e r a t i o n : −1
30 }
31 . . .
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4.4 Experiments

4.4.1 Experiment Design

In this section we create and benchmark a set of experiments for the identified interactions
(refer to Section 3.4), which we believe might provide relevant information for the
developers. In the list below we explain and justify, what interactions and deployments
do we choose to benchmark.

• Interactions 2 and 3 (explained in Sections 3.4.2 and 3.4.3): In interaction 2,
vehicles and RSU have been involved, while in interaction 3, message exchange
among vehicles and edge node has taken place. From a developer’s point of view, it
might be important to know, how does the utilized MEC component (RSU or edge),
influence the benchmark’s outcome. Since we know that RSU is a computationally
weak machine with network capabilities, while edge node is computational powerful.
For these interactions the same deployment models have been proposed (refer to
Tables 4.2 and 4.3).

– Deployment 4: This one deploys each blockchain feature to every of the
involved components. This deployment is interesting to observe, because it
should be the most complex one and thus the developer can use it as a baseline
for other deployments.

– Deployment 0 and 2: The goal of the developer is to deploy less blockchain
features to the components, because it decreases complexity, while simultane-
ously aiming to achieve better results. One of the lighter deployments is 0:
creator feature is executed in vehicles, while RSU|edge node stays the same as
in deployment 4. The drawback is that there are only a few nodes achieving
consensus, which makes the network partially centralized. Similar principle
holds for deployment 2, all vehicles deploy every blockchain’s feature, while
RSU|edge node deploy only the creator feature.

• Interaction 4 (explained in Section 3.4.4): This interaction involves vehicles,
RSUs and edge. It’s the third one identified for the Obstacle on the road warning
scenario. Therefore, it’s important for the developer to know, what interaction
does perform the best for that scenario. That’s the reason, why we choose this
interaction to be benchmarked. Deployment models for interaction 4 have been
proposed in Table 4.4.

– Deployment 8: As in the previous interactions, the developer wants to begin
with the most complex deployment to serve as the baseline. The goal is to
keep improving the baseline by utilizing other deployments.

– Deployment 7, 6 and 11: Each of these deployments present a less complex
deployment. In the deployment 7, the features in RSU and edge node stay the
same as in deployment 8, while vehicle is only a creator. In the deployment
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6 we proceed to a lighter deployment by removing creator from RSU. The
deployment 11 places creator to RSU and edge, while vehicle stays the same
as in deployment 8.

• Interaction 1 (explained in Section 3.4.1): This interaction includes only one
single deployment, thus won’t be benchmarked in this thesis.

• Interaction 5 and 6 (explained in Sections 3.4.5 and 3.4.6): These interactions
might be interesting to evaluate as well, but their topology is similar to interactions
3 and 4 respectively, thus we favored those within the thesis.

For each of the chosen deployments, multiple hardware configurations of resources emulat-
ing the vehicles have been evaluated. As explained in the Table 4.7, there are three such
configurations, one another configuration for RSU and one for edge node. Furthermore,
all network qualities listed in Table 4.8 have been benchmarked. It means that we have
nine experiments for each of the deployments. We chose ten deployments, for each we
create nine experiments, totals in 90 experiments.
As we explained in Section 2.2.2, the developer needs to know, what blockchain imple-
mentation to use. Therefore, we evaluate how the experiments behave on the chosen
blockchain implementations. This doubles the count of experiments we have to create.
Since scalability is one of the considered quality metrics relevant to the developers, we
include the scale to the experiments as well.

• Small scale: This compromises only the nodes mentioned in the interactions,
explained in Section 3.4. Meaning that for interaction two we have two vehicles
and a RSU. In third there are two vehicles and one edge. And for the fourth one,
we consider an edge node with two RSUs and two vehicles.

• Large scale: For this scale, we have the same number of edges and RSUs as for
small scale, but we increased the count of vehicles to 48. If we think of a situation,
having vehicles driving on a four-lane highway, means 12 vehicles are traveling in
each lane on average. Assuming that each vehicle needs to occupy ca 50 meters on
a highway (according to valid traffic rules for safe driving on highways in Austria
[45]). That totals in 600 meters long fleet on a full highway, what is a pretty long
distance for a RSU and sufficient long for an edge node. That should be fair enough
for a large scale experiment.

When running benchmarks, each of the vehicles created and submitted 100 transactions
when emulating the interactions. In total we have 200 transactions for each small scale
experiment, and 4800 transactions for large scale case.
Table 4.9 lists all 180 experiments created for Ethereum blockchain. Table 4.10 presents
the experiments created for Hyperledger-Fabric, but we have only 144 experiments here
since we didn’t benchmark large scale for interaction 4 (see Section 3.4.4). That gives us
324 created experiments in total.
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All experiment specifications and topologies, which have been used for the benchmarks
in this thesis are available in experiments directory of the following GitHub repository:
https://github.com/rdsea/blockchainbenmarkservice.

4.4.2 Evaluation

A subset of benchmarks’ results is depicted in Table 4.11. The table shows the experiments,
which performed the best, regarding to the quality metrics, among all deployments and
infrastructures for each interaction, blockchain implementation and scale. The semantic
of the first row is following: when running the benchmarking experiment 24, all nodes
executed 200 transactions altogether, all of them have been accepted, achieved stated
acceptance times. Each node was synchronized, when simulation has finished. A vehicle
node fully utilized all 4 CPU’s cores, while a single CPU core is an Intel Xeon E5 Sandy
Bridge 2.6 GHz as defined in Table 4.7, 1192.4 MB of RAM. A RSU node fully utilized
one CPU core and 235.5 MB of RAM, edge node isn’t involved in interaction 2.
In this section we present how the developers could benefit from the framework by
explaining the results of benchmarks, executed by the framework. When choosing the
best results we interpret the requirements of developers, formulated in Section 3.4.7, in
form of the quality metrics as follows:

• High Synchronization State and High Transaction Acceptance Rate: We
assumed, the developers would prefer benchmarks with the least number of nodes,
which lost their synchronization during simulations. In case of equality, they would
choose the one with least number of failed transactions.

• Short Transaction Acceptance Time: The developers pick benchmark achiev-
ing the shortest median of transaction acceptance times. In case two benchmarks
have achieved equal medians, they choose the one with smaller average time.

• Low Infrastructure Resources Utilization: Benchmarks’ results with the
smallest CPU utilization for vehicles have been preferred.
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4.4.2.1 Results of interaction 2 (Vehicle to RSU)

These results relate to the obstacle warning scenario explained in Section 3.4.2. Plots
in Figures 4.6 and 4.7 depict a dependency between the infrastructure and medians of
transaction (tx) acceptance times; infrastructure and tx acceptance rate respectively,
among all blockchain deployments for this interaction. For small scale topology, the
benchmarks have shown that 100% tx acceptance rate has been achieved for both
blockchain implementations. Concerning the median times deployments 2 and 4 in
Ethereum seem to depend on a used infrastructure in a direct proportion. Although
for deployment 0 a more powerful infrastructure results to longer median times. That
might be caused by a centralized nature of the deployment, meaning that we deploy
every blockchain feature to the RSU, but vehicles are executing only the creator feature.
Based on that, we assume that the better hardware we use for the vehicles, the more txs
are submitted. While the RSU is not powerful enough to accept them all. In contrast to
Ethereum, for Hyperledger-Fabric the plots follow the same pattern for every deployment
and vehicle resource configuration. Concretely, the plots are showing that better quality of
the network leads to shorter acceptance times of the txs. The developer can conclude that
experiment number 188 performed the best concerning the preferred quality metrics for
small scale (deriving from Table 4.11). That’s Hyperledger-Fabric blockchain, deployment
0, big VM configuration type for the vehicles and 5G network for connections between
vehicles and RSUs. However, the deployment 0 has a downside, because it makes the
network partially centralized. Since only RSUs are used to run consensus feature and
we expect to have only a few RSUs and more vehicles. While Ethereum experiments
suggested deployment 4, which leaves the network decentralized as the principles of
blockchain are saying, but decentralization isn’t one of our preferred quality metrics.
For large scale topology, the only deployment for which we measured 100% tx acceptance
rate is deployment 0. The reason is that deployment 0 is centralized (consensus feature is
deployed only to RSU), thus it’s easier to synchronize. Nevertheless, the acceptance rate
of deployment 2 and 4 seems to depend on the used infrastructure in a direct proportion.
Regarding the median times we witness a similar pattern as in small scale for Ethereum.
While Hyperledger-Fabric in large scale reports the same behavior as for small scale
concerning the network quality. However, it’s interesting that the better hardware we
use for the vehicle node, the worse performance we get. That might be caused that the
vehicles create more txs when utilizing more powerful hardware, thus it takes longer to
synchronize. Hyperledger-Fabric has shown much better results for large scale in the
interaction. Thus the best deployment and infrastructure is the one used for experiment
272 on large scale.

Deriving from all results and the above observations, the developer might choose
Hyperledger-Fabric blockchain, deployment 0, small machine type for vehicles and 5G
network. As we obtained the best results among all experiments for both scales concerning
the reliability and performance for the interaction. However, deployment 0 makes the
network partially centralized, which might break the principles of blockchain.
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4.4.2.2 Results of interaction 3 (Vehicle to Edge)

The benchmarks we executed for this interaction are the same as in the previous in-
teraction. The only difference is that we have used edge node instead of RSU in the
interaction’s topology. Thus we assume to obtain better results, since edge node has
more computational power than RSU (this is shown in Table 4.7).
The median times depicted in Figure 4.8 follow similar patterns as in the previous
interaction for both blockchain implementations and scales. For the developer, an inter-
esting observation is that even the deployment 0 in Ethereum seems to depend on the
infrastructure in contrast to the previous interaction. This matches our assumption that
we should obtain better results than before, because edge node is more powerful than
RSU. Deployment 0 is partially centralized here as well, thus running consensus only in
the edge node takes shorter time than in RSU.
In this interaction we face a non-reliable behavior for deployment 2 when using Ethereum
in small scale. That is surprising, but a reason is probably that the edge node cannot
accept txs in time. Altogether, we have 19920 rejected txs for Ethereum in large scale
for this interaction. However, we had 18034 rejected transactions in the previous. Al-
though we assumed that we would have had less rejected txs in this interaction. But
in deployment 2 we observed an increased number of rejected txs for the big machine
types for vehicles. That might be again caused by too many created txs, which cannot
be accepted in time. For all other deployments in large scale, we faced the same patterns
as in previous interaction.

For the developer is interesting to observe that experiment number 53 performs the best
for small scale. That gives a recommendation to use Ethereum blockchain, deployment 4
(defined in Table 4.3), big machine type for vehicle nodes and 5G network. Hyperledger-
Fabric blockchain (experiment 302) outperformed Ethereum when running large scale
benchmarks for the interaction. Precisely for deployment 0, medium machine types for
vehicles and 5G network we got the best results.
After analyzing all benchmarks for the interaction 3. Our framework could provide a
hint to the developer that Hyperledger-Fabric blockchain, deployment 0, medium machine
type and 5G network are considered as best deployment and configuration among all
evaluated for interaction 3.
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4.4.2.3 Results of interaction 4 (Vehicle to RSU and Edge)

The results we present here refer to the interaction explained in Section 3.4.4. Let’s discuss
the median times (depicted in Figure 4.10 ) and tx acceptance rates (Figure 4.11) of this
interaction. We begin with the simplest case, namely plot showing results for Ethereum in
large scale. We observe the same dependency in the plot as we observed in the interaction
2. There is a direct dependency between the infrastructure and median times. The same
pattern as in previous interaction is shown in Hyperledger-Fabric for small scale, and it
achieves 100% acceptance rate in this interaction. The median times of accepted txs in
Ethereum, small scale seems to depend on the used infrastructure, while for the small
machine types, no txs have been accepted. All other experiments for Ethereum-small
scale achieved almost 100% rates as well. Concerning the acceptance rates of large scale
Ethereum, the plots seems to show a dependency between infrastructure and number of
rejected txs.

For experiment number 260 we achieved the best results according to the benchmarks.
In the small scale case Hyperledger-Fabric performed better as in the previous two
interactions. It utilized big machine type for vehicle nodes, 5G network and deployment
6. That places every blockchain feature in the edge node, while RSU is responsible only
for consensus and vehicles for creating txs. We benchmarked only Ethereum blockchain
for large scale in this interaction and achieved the best results for experiment 149. We
get those for deployment 8, medium machine types for vehicle and 5G network. These
results provide insights from the benchmarks of interaction 4 to the developers.
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4.5. Summary

4.4.2.4 Discussion

Since all three interactions above are related to the obstacle on the road warning scenario.
The developer might be interested in interaction, which performed the best among all for
that scenario.

• small scale - We see that all interactions achieved 100% acceptance rates, while
for interaction 2 we got the best results regarding median times. That matches our
assumption that interaction with edge node should perform better than the one
with RSU. That may be the reason why interaction 3 outperformed interaction 2,
and surprisingly interaction 4 as well, although it uses both RSU and edge.

• large scale - For the large scale, interactions 2 and 3 achieved 100% acceptance
rates, unlike interaction 4, where we got 182 rejected txs. That might be caused by
too many nodes in the topology, which weren’t able to accept all txs, created in
a short time-span. Regarding the median times, interaction 2 was better than 3.
That is in contrast to small scale and is surprisingly against our assumption that
we should get better results for interaction 3 than 2.

All in all, deriving from the benchmarks the developer can conclude that interaction
2 performed the best. Namely, Hyperledger-Fabric blockchain, deployment 0, small
machine type for vehicles and 5G network achieved the best results concerning reliability
and performance among all interactions for the scenario. Nevertheless, the suggested
deployment and infrastructure might still not be sufficient for the real obstacle warning
scenario. Because as Bettisworth [6] et al. defined a maximum latency to 100ms in safety
application. None of the executed experiments managed to meet that requirement.

4.5 Summary
In this chapter we contribute a blockchain benchmark framework, which is able to
benchmark blockchain interactions among MEC components. We present an architecture
and prototype of the framework. To demonstrate flexibility of our framework we created
and benchmarked 324 experiments for interactions identified and described in Chapter 3.
We have shown what insights do the benchmarks bring for the developers, dealing with
blockchain-based applications addressing our scenarios.
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CHAPTER 5
Experiments Knowledge Service

5.1 Overview

In the previous chapter we created and benchmarked a set of experiments against quality
metrics (see Section 3.3). We want to provide the achieved benchmarks along with
their topologies and infrastructures to developers, such that they can reuse knowledge
gathered by the benchmarks. Furthermore, developers will execute another benchmarks
in the future, which might add relevant information to the knowledge. Therefore, we
propose and develop Experiments Knowledge Service, which stores and manages data
related to the benchmarks. By means of the service, the developers can gain insights
about infrastructures, blockchain interactions among the MEC components and software
artefacts, which have been used for the benchmarks. We consider blockchain artefacts
and eventually artefacts representing other services like Kafka or Zookeeper (see Section
4.3.2) as the software artefacts. Furthermore, the service utilizes the stored benchmarks
data to give recommendations about deployment of blockchain artefacts to topology of a
blockchain-based application running in MEC. Via the recommendations, the developers
reuse the knowledge, stored by the service, so they don’t need to run benchmarks again.
In this chapter we propose a structure for the data in Section 5.2. The service exposes
a set of APIs enabling to manage the data and we explain operations exposed via the
APIs in Section 5.3. In Section 5.4 we elaborate on the prototype of the service. We
show concrete examples on how the developers can benefit by utilizing the Experiment
Knowledge Service in Section 5.5.
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5.2 Architecture and Models

5.2.1 Experiments Knowledge Service Architecture

Figure 5.1 depicts a high-level architectural overview of the Experiments Knowledge
Service. The Experiments Knowledge Service is internally composed of multiple services,
each has a specific responsibility. In this section we explain their functionality.
Via Deployment Pattern Service a developer can manage all deployment patterns stored
by the Experiments Knowledge Service. A deployment pattern is a graph consisting of
MEC components, presenting graph’s nodes, while edges of the graph represent blockchain
interactions among the MEC components. Consider the following example: a deployment
pattern for interaction identified in Section 3.4.2 is vehicle-RSU-vehicle. The deployment
pattern is basically a topology of a benchmark (see Section 4.2.1). However it’s composed
by pure MEC components without any blockchain features deployed on the components.
This service exposes a set of APIs enabling to list all, delete or create new deployment
patterns in the Experiments Knowledge Service.
Infrastructure Service manages metadata about resources, which have been utilized for
infrastructure of a benchmark (see Section 4.2.2), stored in by the Experiments Knowledge
Service. The resources, we have used for the benchmarks have been provided by an
external provider. The resources’s metadata reference to that provider. This service
provides APIs to operate on the stored metadata.
The responsibility of Software Artefact Service is to manage metadata, stored in Experi-
ments Knowledge Service, of software artefacts, used in the benchmarks. We consider
blockchain artefacts, emulator and other software services (see Section 4.3), which have
been deployed to the MEC components when running the benchmarks. The Experiments
Knowledge Service doesn’t own any repository of the software artefacts. Therefore, we
store only metadata concerning those artefacts. The metadata provide enough informa-
tion for developers to execute those artefacts. The artefacts themselves are stored at an
external provider (e.g. DockerHub [16]). The Software Artefact Service exposes APIs
enabling to manage the stored metadata.
Blockchain Benchmark DaaS provides benchmarks’ data, stored in the Experiments
Knowledge Service. These data include an experiment, which is going to be/has been
benchmarked, a topology of the experiment and quality metrics measured when bench-
marking the experiment. Please note that experiments, which haven’t been benchmarked
yet, might be stored. A topology of the experiment is a deployment pattern, such that
software artefacts (from Software Artefact Service) are deployed to the MEC components
involved in the pattern. Each of MEC components in an experiment’s topology has a
resource (from Infrastructure Service) associated with it, which is used as a container for
the MEC component. This service provides a set of APIs which enables the developers to
create, delete and list all experiments with their topologies and achieved quality metrics.
The purpose of Recommendation Service is to give recommendations about deployment of
blockchain artefacts to MEC components involved in a topology of blockchain-based ap-
plication. The application is represented by a model, submitted to the Recommendation
Service by a developer. The Recommendation Service identifies blockchain interactions
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among the MEC components in the model and gives a recommendation based on those
interactions. Furthermore, the service advises what infrastructure should be used for the
application. The recommendations are proposed based on preferred quality metrics of the
developer. This service utilizes other services to provide data for the recommendations.
We elaborate further on the supported format of the application’s model and on the
process of giving recommendations in Section 5.3.

Figure 5.1: High-level overview of Experiments Knowledge Service

5.2.2 Experiment Knowledge Service Data Model

Figure 5.2 illustrates a model of data managed by Experiment Knowledge Service. In
Sections 5.2.3 to 5.2.7 we provide an extensive explanation of the classes in the model.
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Figure 5.2: Model of data stored in the Experiments Knowledge Service70
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5.2.3 Specification of Deployment Patterns

The class diagram in Figure 5.3 defines a data model, used to represent a deployment
pattern in our Experiments Knowledge Service. The DPNode class stands for a MEC
component participating in a deployment pattern. In Section 3.2.1 we explained that
there are four different MEC components. These are represented by DPNode’s subclasses
(DPCloud, DPEdge, DPRSU and DPVehicle). These inherit all properties from DPNode.
The model is extendable to support new MEC components, which can be introduced by
a new DPNode’s subclass. Each DPNode is identified by its id. Attribute name presents
its caption. A DPNode’s peers are other DPNodes, which are connected to the DPNode
by an edge in the graph representing a deployment pattern. DeploymentPattern is a class
representing deployment pattern. It has a reference to root DPNode, representing root
node in the graph, of a particular deployment pattern.

Figure 5.3: Deployment Pattern data model

5.2.4 Specification of Software Artefacts Information

A class SoftwareArtefact depicted in Figure 5.4 presents a data model representation
of metadata concerning software artefacts in the Experiments Knowledge Service. A
software artefact in general is an executable piece of software. The artefact is deployed and
runs in an execution environment, which might be a docker container, operating system,
etc. That is specified via executionEnvironment property. The Experiments Knowledge
Service doesn’t own any repository of the artefacts, therefore we use an external one.
Variable repositoryTag is an identification of the artefact within the external repository.
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For example if we use a docker container as our execution environment, the repositoryTag
might be the id of container’s image in DockerHub.
We create BlockchainArtefact class, representing blockchain artefacts, as a subtype of
SoftwareArtefact. Figure 5.5 illustrates an Ethereum’s miner node as an instance of the
BlockchainArtefact. Other specific software artefact is the Emulator. There might be
other software artefacts represented as instances of the SoftwareArtefact class in the
Experiments Knowledge Service (see Section 4.3).

Figure 5.4: Software artefacts data model

Figure 5.5: Ethereum’s miner node represented as BlockchainArtefact in the Experiments
Knowledge Service

5.2.5 Infrastructures Specification

The data models depicted in Figure 5.6 show what metadata do we store for an infras-
tructure. In Section 4.2.2 we explained that the infrastructure, in our work, is composed
of resources for the MEC components and configuration of network between the MEC
components. The ResourceConfiguration class is identified via its name. We store the
key hardware properties including: number of virtual CPU cores, memory in GBs and
storages of the resources. Some metadata about a provider of the resource might be
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stored as well. That might include information about whether it’s a real or emulated
MEC resource. If it’s an emulated one then it might be stored whether it’s a virtual
machine or a docker container. The concrete structure of the data, which is stored under
infrastructure, is left to the developer. Furthermore, we persist operating system running
on the resource. The NetworkQuality identified by a name and characterized via its
bandwidth and latency.

Figure 5.6: Infrastructure data model

5.2.6 Experiments Information Model

An experiment is represented by the Experiment class, depicted in Figure 5.7. An
experiment is associated with a topology, represented by the Topology class. A topology
of experiment is a graph composed of instances of Node class, presenting graph’s nodes,
with a root stored under structure. Instance of the Node class is a representation of
MEC component. The edges of the graph represent blockchain interactions among the
Node’s instances (MEC components). The Node class is the same as DPNode, however,
there are softwareArtefacts deployed to the MEC components, represented by instances
of Node, and there is a known infrastructure specified via container of the Node class.
NetworkQuality as an association class representing quality of a network connection
between two Node instances is also considered. Therefore, the topology of an experiment
is the same as a deployment pattern, however, software artefacts are deployed to the
Node instances (MEC components) and there is a known infrastructure of the topology.
A Node instance is globally identified via its id, while the name attribute must be unique
per Experiment instance. Beside the structure, we store specificationLang for the topology,
that indicates the deployment language (TOSCA [13], AWS Cloud Formation [4], etc.)
used to specify the topology. While the specification itself is stored in the specification
attribute.
Furthermore, we store reference to a DeploymentPattern in the Experiment class. That’s
the deployment pattern, which is related the topology of the experiment. By the definition
of the model, it implies that a single deployment pattern might have multiple topologies.
But we always have to ensure that topology’s structure matches the structure of the
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deployment pattern, related to the topology. Since that is not constrained on the design
level, we have to assure that in a service layer. Please note that we decided to store the
same structure twice (once as a structure of a deployment pattern and the second time
as structure of the topology) to make it easier for developers to see an exact topology
which has been/is going to be benchmarked within an experiment.

Figure 5.7: Experiment data model

5.2.7 Specification of benchmark result

When an experiment is benchmarked, a result represented as BenchmarkResult in the
model depicted in Figure 5.8 is obtained. A BenchmarkResult is a set of quality metrics
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(see Section 3.3) which have been measured when benchmarking the experiment. A
QualityMetric is an abstract class identified via its id, having a description explaining the
metric. The subclasses of QualityMetric are concrete quality metrics. Let’s look at the
metrics (QualityMetric subclasses) supported by the Experiments Knowledge Service:

• DataExchangeAnalysis: This is the accepted transaction rate and time metric.
Within a benchmark multiple transactions have been created and some results have
been achieved (txResults). We count the transactions, which have been accepted
(acceptedTxCount attribute) and which failed (failedTxCount). If a transaction
has been accepted we store its metadata in data attribute of TransactionResult.
Otherwise, we store an error message in errorMsg. TransactionAnalysisWrapper
stores acceptanceDuration and creationDuration meaning how long did it take
to accept and create the transaction. Attribute payloadData is an object, which
represents a payload of an interaction, carried out via the transaction. The
DataExchangeAnalysis class references a Node class, which represents an instance
of Node where the transactions have been created.

• ResourceUtilization: cpuUtil is a number in percentage stating the utilization of
a CPU core, memoryUtil presents how many MBs of RAM have been consumed
when running a benchmark. The nodeRef is a Node’ instance in which this metric
have been measured.

• SynchronisationState: this is the Synchronization State metric. It references Node’
instances via the nodesOutOfSync field, which lost the synchronization with the
rest of a blockchain network during execution of a benchmark.

The data model is extendable. If a new quality metric is introduced, new subclass has to
be defined.
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Figure 5.8: Benchmark result data model

76



5.3. Service Operations

5.3 Service Operations

In this section we explain design and exposed operations of services, which compose the
Experiment Knowledge Service.

5.3.1 Deployment Pattern Service

Via Deployment Pattern Service a developer can manage all deployment patterns stored
by the Experiments Knowledge Service. Deployment Pattern Service exposes a set of
REST endpoints to enable the developer to interact with the service. Those endpoints
are listed in Table 5.1. Figure 5.9 presents a traditional three-tier architecture used in
the implementation of the service. We use a Neo4J [42] database to store the deployment
patterns. We have chosen the Neo4J because it provides a clear visual overview of the
interacting MEC components involved in a deployment pattern for the developer.

Table 5.1: Operations of Deployment Pattern Service

Endpoint Input Output Description

POST /dep_pattern DeploymentPattern DeploymentPattern
Create a new
DeploymentPattern
in the service.

GET /dep_pattern - DeploymentPattern[]
Retrieves all
DeploymentPattern
stored in the service.

GET /dep_pattern/:id string DeploymentPattern

Retrieves a
DeploymentPattern
with the id
stored in the service.

DELETE /dep_pattern/:id string boolean

Deletes a
DeploymentPattern
with the id
from the service.

Figure 5.9: Architectural overview of Deployment Pattern Service
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5.3.2 Software Artefacts Service

The responsibility of Software Artefact Service is to manage metadata of software artefacts,
used in benchmarks, stored by the Experiments Knowledge Service. A set of REST
endpoints (listed in Table 5.2) is provided by the service to enable interactions with the
service. The service uses a collection in the Experiment Knowledge Service’s MongoDB
[40] database to store metadata concerning the software artefacts. However, the artefacts
themselves are stored in an external repository of artefacts (e.g. DockerHub [16]). This
service implements a three-tier architecture, depicted in Figure 5.10.

Table 5.2: Operations of Software Artefact Service

Endpoint Input Output Description

POST /software_artefact SoftwareArtefact SoftwareArtefact
Create a new
SoftwareArtefact
in the service.

GET /software_artefact - SoftwareArtefact[]
Retrieves all
SoftwareArtefact
stored in the service.

GET /software_artefact/:id string SoftwareArtefact

Retrieves a
SoftwareArtefact
with the id
stored in the service.

DELETE /software_artefact/:id string boolean

Deletes a
SoftwareArtefact
with the id
from the service.

Figure 5.10: Architectural overview of Software Artefact Service
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5.3.3 Infrastructure Service

Infrastructure Service manages metadata about infrastructure resources and quality of
network connections, which have been used for a benchmark, stored by the Experiments
Knowledge Service. The Infrastructure Service exposes REST endpoints, listed in Table
5.3, to enable management of the metadata. Only metadata of the resources are stored
and the resources themselves are provided by an external provider. The metadata are
stored in a collection of the MongoDB database. We have followed a three tier architecture
when implementing this service, as it’s illustrated in Figure 5.11.

Table 5.3: Operations of Infrastructure Service

Endpoint Input Output Description

POST
/resource_config ResourceConfiguration ResourceConfiguration

Create a new
ResourceConfiguration
in the service.

POST
/net_quality NetworkQuality NetworkQuality

Create a new
NetworkQuality
in the service.

GET
/resource_config - ResourceConfiguration[]

Retrieves all
ResourceConfiguration
stored in the service.

GET
/net_quality - NetworkQuality[]

Retrieves all
NetworkQuality
stored in the service.

GET
/resource_config/:id string ResourceConfiguration

Retrieves a
ResourceConfiguration
with the id
stored in the service.

GET
/net_quality/:name string NetworkQuality

Retrieves a
NetworkQuality
with the name
stored in the service.

DELETE
/resource_config/:id string boolean

Deletes a
ResourceConfiguration
with the id
from the service.

DELETE
/resource_config/:id string boolean

Deletes a
NetworkQuality
with the id
from the service.
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Figure 5.11: Architectural overview of Infrastructure Service

5.3.4 Blockchain Benchmark DaaS

The Blockchain Benchmark DaaS provides REST endpoints, listed in Table 5.4, to enable
management of experiments stored in the Experiments Knowledge Service. As depicted
in Figure 5.12, the service internally manages experiments’ topologies and eventually
benchmarks achieved by the experiments. The experiment, topology and achieved bench-
mark are stored in separate collections of the MongoDB database.
This service requires functionality provided by DeploymentPatternService, SoftwareArte-
factService and InfrastructureService because, as shown on Figure 5.2, an experiment
object is associated with a deployment pattern. Topology of the experiment is composed
of Node instances, which are associated with software artefacts and infrastructure.
If a developer utilized our benchmark framework (refer to Section 4.3) for running the
benchmarks. Then the benchmarks produced by the framework can be converted by
Results Parser to the format accepted by the endpoints of The Blockchain Benchmark
DaaS. The ResultsParser is an utility application, which has been developed within
this thesis and is available in GitHub repository: https://github.com/rdsea/
blockchainbenmarkservice.
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Table 5.4: Operations of Blockchain Benchmark DaaS

Endpoint Input Output Description

POST /experiment Experiment Experiment
Create a new
Experiment
in the service.

GET /experiment - Experiment[]
Retrieves all
Experiments
stored in the service.

GET /experiment/:id string Experiment
Retrieves a
Experiment with the id
stored in the service.

DELETE /experiment/:id string boolean
Deletes a
Experiment with the id
from the service.

Figure 5.12: Architectural overview of Blockchain Benchmark DaaS

5.3.5 Recommendation Service

The workflow of Recommendation Service when giving recommendations involves the
following three key steps:

1. Load model of a blockchain-based application in MEC, for which a developer wants
to obtain recommendation, and preferences on quality metrics.
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2. Find one among all deployment patterns stored by the Experiments Knowledge
Service, which is most similar to topology of the application.

3. Look for a benchmarked experiment, which achieved best preferred quality metrics
and is associated with the most similar deployment pattern.

A developer can submit a specification of the model to the Recommendation Service via
the REST endpoints, listed in Table 5.5. The developer can set priorities, which describe
his/her preferences on quality metrics. Those are submitted as parameters of an url
query in form of numbers, higher number means higher priority. Those priorities will be
considered by the service when looking for a benchmarked experiment, which achieved
quality metrics according to the priorities.
Currently the service supports two types of specifications of the model:

• Model specified via an instance of the Topology class (see Section 5.2.6): Since
the purpose of the Recommendation Service is to give recommendations about
deployments of blockchain artefacts to MEC components involved in the model and
to propose an infrastructure for the application. The submitted topology doesn’t
have to include any BlockchainArtefact instances in softwareArtefacts attribute of
involved Node instances. Neither the container field in the Node instances, nor
latency and bandwidth of NetworkQuality have to be provided.

• Topology and Orchestration Specification for Cloud Applications (TOSCA) [7]
specification of the model: We have decided to use TOSCA, because via TOSCA
the developer can specify what nodes are involved in an application’s topology,
what’s underlying infrastructure of the application and what software artefacts
are deployed to nodes of the topology. Since the Recommendation Service has to
find a deployment pattern stored by the Experiments Knowledge Service, which
is most similar to topology of the application, and deployment pattern is a graph
of MEC components, the model in TOSCA has to contain the MEC components
as well. Therefore, we provide TOSCA definitions of node types representing the
MEC components. Figure 5.14 depicts the node types, these are derived from
node types defined by Cloudify [11]. The node types, which are interacting among
each other must be connected via filip.relationships.nodes_network connection type.
Please note that those node types are custom TOSCA containers implementing
properties we considered in infrastructure’s resources (see Section 5.2.5). Those
properties don’t have to be included in the submitted model. The same holds for
BlockchainArtefacts contained in the node types of application’s topology. The
explanation why those properties don’t have to be included is given in the previous
item of this list. Internally, the service converts the TOSCA specification to an
instance of the Topology class. That conversion from/to TOSCA representation is
done by TOSCATopologyAdapter, depicted in Figure 5.13.

As soon as the model is loaded to the Recommendation Service, the next step is to find
a most similar deployment pattern. We have to develop an algorithm to address that.
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We know that both deployment pattern and application’s topology are graphs, composed
of MEC components representing nodes of the graph. Therefore, a trustworthy solution
would be to find a largest common subgraph. Nevertheless, that problem is known to be
NP-hard [1]. Thus, we aim to look for a more feasible approach.
In Listing 5.1 we propose our idea, described in pseudo-code, used to find the most
similar deployment pattern. Firstly, it iterates over all stored deployment patterns and
splits them to interaction pairs. An interaction pair is a pair of nodes (representing
MEC components) connected by an edge in the graph. Consider following example: a
deployment pattern "vehicle - RSU - edge node - RSU - vehicle", has the following list of
interaction pairs: (vehicle, RSU), (RSU, edge node), (edge node, RSU), (RSU, vehicle).
The deployment pattern for which we find the largest number of matching interaction
pairs with the topology of the submitted application model is considered to be the most
similar one. This algorithm is implemented in DeploymentPatternMatcher, depicted in
Figure 5.13.
When the most similar deployment pattern is obtained, the Recommendation Service can
proceed to the second step of the workflow. In the second step, the service looks among
all experiments associated with the deployment pattern to find one, which benchmarks
have shown best results according to the preferred quality metrics, set by developer.
That is done by employing respective MongoDB queries.
When the experiment is found then its topology is returned on output. Eventually,
if the developer submitted a topology in TOSCA, then TOSCA representation of the
experiment’s topology is returned. The service adds software artefacts represented by
filip.nodes.SoftwareArtefact to nodes of the topology. That is specified via Cloudify
relationship of type cloudify.relationships.contained_in. It would be advisable to propose
an algorithm that maps the experiment’s topology to the one submitted on input, such
that the resulting topology could be further used instead of the submitted one. Such an
algorithm is out of the scope of this thesis, but can be added within a future work.
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Table 5.5: Operations of Recommendation Service

Endpoint Input Query
Parameters Output Description

POST
/recommendTopology Topology

syncState,
txAcceptRate,
txAcceptTime,
infRes

Topology

Return a topology associated
with an experiment, which achieved
best benchmarks according to
preferred quality metrics set via URL
query. This endpoint accepts a Topology
as defined in the Experiments Information
Model (see Section 5.2.6) on input.

POST
/recommendTopologyTOSCA string

syncState,
txAcceptRate,
txAcceptTime,
infRes

string

Return a TOSCA representation
of a topology associated
with an experiment, which achieved
best benchmarks according to
preferred quality metrics set via URL
query. This endpoint accepts a topology
specified in TOSCA on input.
We elaborate on an exact format in this
section.

Figure 5.13: Architectural overview of Recommendation Service
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Figure 5.14: Definitions of infrastructure and software artefacts in TOSCA Cloudify
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Listing 5.1: Finding most similar deployment pattern
1 Node [ ] deployment_patterns ;
2 Node input ;
3
4 f indS imi larDepPattern ( deployment_patterns , input ) {
5 I n t e r a c t i o n P a i r [ ] i nputPa i r s = s p l i t T o I n t e r a c t i o n P a i r s ( input ) ;
6 I n t e r a c t i o n P a i r [ ] pa t t e rnPa i r s ;
7
8 maxMatchesCount = 0 ;
9 bestPattern = null ;

10
11 for each pattern in deployment_patterns {
12
13 matchesCount = 0 ;
14 pat t e rnPa i r s = s p l i t T o I n t e r a c t i o n P a i r s ( pattern ) ;
15 boolean [ ] usedPair = new boolean [ pa t t e rnPa i r s . l ength ] ;
16
17 for each inputPai r in inputPa i r s {
18 j = 0 ;
19 for each pat te rnPa i r in pat t e rnPa i r s {
20 i f ( inputPai r . equa l s ( pat te rnPa i r ) && ! usedPair [ j ] ) {
21 usedPair [ j ] = true ;
22 matchesCount++;
23 break ;
24 }
25 j ++;
26 }
27 }
28 i f ( maxMatchesCount < matchesCount ) {
29 maxMatchesCount = matchesCount ;
30 bestPattern = pattern ;
31 }
32 }
33 return bestPattern ;
34 }
35
36 I n t e r a c t i o n P a i r [ ] s p l i t T o I n t e r a c t i o n P a i r s (Node node ) {
37 i f ( i s V i s i t e d ( node ) ) {
38 return ;
39 }
40 markNodeAsVisited ( node ) ;
41 for each peer in node . pee r s {
42 NodeTypePair pa i r = ( node . type , peer . type ) ;
43 i f ( peer . pee r s == null | | peer . pee r s . l ength == 0) {
44 return [ pa i r ] ;
45 } else {
46 return s p l i t T o I n t e r a c t i o n P a i r s ( peer ) . push ( [ pa i r ] ) ;
47 }
48 }
49 }
50
51 class I n t e r a c t i o n P a i r {
52 NodeType a ;
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53 NodeType b ;
54
55 boolean equa l s ( I n t e r a c t i o n P a i r that ) {
56 return ( this . a == that . a && this . b == that . b ) | |
57 ( this . b == that . a && this . a == that . b) ;
58 }
59 }

5.4 Prototype

Figure 5.15: Architectural overview of Experiments Knowledge Service prototype

The Experiment Knowledge Service prototype encapsulates and implements all opera-
tions described in the previous section. An architectural overview of the prototype is
depicted in Figure 5.15. The prototype has been developed in Typescript [56], runs in a
NodeJS [43] environment and can be executed inside a docker container. It uses a single

87



5. Experiments Knowledge Service

MongoDB and a Neo4J database for the repository layer. The Experiments Knowledge
Service exposes a set of REST APIs to manipulate the data (see Section 5.3). The REST
endpoints are documented with Swagger.io [53] (according to OpenAPI Specification 2.0
[33]).
The Blockchain Benchmark, Infrastructure and Software Artefact services store their
data in the MongoDB database, each of the services in a separate collection. While the
Deployment Pattern Service is utilizing the Neo4J database.
The implementation and documentation of the prototype is published in the GitHub repos-
itory: https://github.com/rdsea/blockchainbenmarkservice. The defini-
tion of required TOSCA node types is provided in
experiments_knowledge_service/tosca_node_types.yaml file in the repository.

5.5 Examples

5.5.1 Search benchmarking information

Let’s assume the developer wants to use Ethereum blockchain to enable interactions in
his/her application. He/she wants to use the Experiment Knowledge Service for the
recommendations (see Section 5.3.5). Since the developer wants to use Ethereum, he/she
is interested in whether our Experiment Knowledge Service stores some benchmarks,
which utilized Ethereum. To determine that, he/she invokes /software_artefact endpoint
(see Section 5.3.2) to obtain a list of all software artefacts used in the benchmarks.
Figure 5.16 depicts a subset of returned software artefacts. Now the developer can
see that the Experiments Knowledge Service might contain some benchmarks, which
utilized Ethereum blockchain. Therefore, the developer can proceed to actually obtaining
recommendations. There are plenty of similar use cases, which involve searching some
benchmarking information. Those might help the developers in the same way, as we have
shown it for this use case.

5.5.2 Search benchmarking pattern

A developer might be interested in whether any patterns stored by the service occur
in a system model of his/her blockchain-based application in MEC. If some patterns
from the service match with the application’s model. Then the developer can conclude
that he/she can use the Experiments Knowledge Service to obtain recommendations.
Otherwise, he/she has to use a benchmark framework to benchmark the interactions in
his application. To list all deployment patterns, the developer can invoke /dep_pattern
endpoint (see Section 5.3.1). There is another possibility that the developer connect
directly to the Neo4J database, execute the following query MATCH (n) RETURN n
and obtain a visual overview about the deployment patterns (as depicted in Figure 5.17).
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5.5. Examples

Figure 5.16: A subset of software artefacts stored by the Experiment Knowledge Service

Figure 5.17: Deployment patterns, as stored in Neo4J database
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5.5.3 Obtain recommendations

Suppose a developer wants to utilize blockchain for interactions among the instances of
his application, which are running across a MEC infrastructure. However, he/she doesn’t
know which deployment of blockchain artefacts to involved MEC would be most suitable
for him/her. Let’s assume for the developer, the highest transaction acceptance rate and
shortest acceptance time are most important quality metrics. Therefore, the developer
can benefit from the Experiment Knowledge Service by obtaining recommendations about
the deployment.
The developer has TOSCA specification of an application’s model, depicted in Figure
5.18. Figure 5.19 shows visualization of the specification in Cloudify Composer [12].
He/she executes POST request to /recommendTopologyTOSCA endpoint (see Section
5.3.5) with the following parameters: txAcceptRate=2&txAcceptTime=1 and the
TOSCA specification as the request’s payload. The Experiment Knowledge Service
carries out the operations, which are involved in obtaining recommendations (those
are explained in Section 5.3.5) and return TOSCA specification containing deployed
blockchain artefacts and properties for underlying infrastructure. The returned TOSCA
specification is depicted in Figures 5.20 and 5.21. A visualization via Cloudify Composer
[12] is illustrated in Figure 5.22. In this case the returned TOSCA specification can be
directly used by the developer to deploy the blockchain artefacts into topology of the
application.
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Figure 5.18: TOSCA representation of an application system model, used as input for
Recommendation Service

Figure 5.19: Input for Recommendation Service, as depicted by Cloudify Composer [12]
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Figure 5.20: TOSCA representation of an application system model, as output by the
Recommendation Service
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Figure 5.21: TOSCA representation of an application system model, as output by the
Recommendation Service cont.

Figure 5.22: Output from Recommendation Service, as depicted by Cloudify Composer
[12]
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5.6 Summary
In this chapter we propose and implement a prototype of Experiments Knowledge
Service, which manages data related to benchmarks. It’s main purpose is to provide
knowledge gathered from benchmarks to developers of blockchain-based applications in
MEC. Such that the developers can reuse the knowledge from benchmarks for design of
their applications.
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CHAPTER 6
Conclusion and Future Work

6.1 Conclusion

In this thesis we contribute a blockchain benchmark framework, which is able to bench-
mark blockchain interactions among MEC components. We have emphasized a require-
ment of introducing the framework by discussing challenges faced by developers when
implementing blockchain-based application in MEC. There are numerous works and
studies centered around utilization of blockchain in MEC and benchmarking frameworks
able to evaluate different blockchain solutions. However, none of the related works focuses
on benchmarking blockchain interactions among MEC components and, therefore, don’t
addresses our requirements. To obtain a better understanding of the challenges, we
have reused scenarios in the V2X domain and have looked on those scenarios from a
developer’s point of view. We have assumed that the developer implements an application,
which addresses one of the scenarios and interacts over blockchain. Based on that, we
have identified different interactions among MEC components, which might arise for the
scenarios. Furthermore, we have identified blockchain features and have mapped them
to executable blockchain artefacts, which can be deployed to MEC components by the
developers, to enable the interactions.
A prototype of the framework has been implemented. To demonstrate flexibility of the
framework, 324 experiments, based on the identified interactions, have been created and
benchmarked. However, we haven’t created all those experiments manually, since the
framework implements a feature, which enables to generate and benchmark experiments
automatically based on a submitted specification. Deriving from the benchmarks’ result
we have elaborated on what insights do the results bring for the developers and how does
the framework can help towards addressing the challenges.
In most cases, our benchmarks have shown a direct proportion between the underlying
infrastructure, used for the benchmarks and observed quality metrics. Although, we
witness a surprising found out that an interaction employing RSU instead of an edge
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node has performed better. In general, for the considered scenarios Hyperledger-Fabric
blockchain outperformed Ethereum in terms of the quality metrics.
Furthermore, we introduce an Experiment Knowledge Service, which manages data
related to the benchmarks. The developers can benefit from the service by obtaining
information about infrastructures, software artefacts or topologies which have been uti-
lized in the benchmarks. Furthermore, the developers can obtain recommendations about
deployment of blockchain artefacts to MEC components involved in a blockchain-based
application, and infrastructure for the application without having to run the benchmarks.
The main purpose of the service is to reuse knowledge gathered by benchmarks to help
developers during design phase of the application. In our work we have shown concrete
examples on how developers can benefit from the service. A prototype of the service has
been developed within this thesis as well.

6.2 Future Work
There are numerous opportunities for future works in our benchmark framework. Cur-
rently, it supports two well-known blockchain systems: Ethereum and Hyperledger-Fabric,
however it can be extended to work with other blockchain systems as well. We have
described quality metrics which are considered and measured by the framework. Those
metrics measure only some basic qualities thus it would be beneficial if the framework
would support other metrics e.g. fault tolerance i.e. how does a system behave on a
blockchain’s node failure. A developer can implement other emulators of blockchain
interactions than the one we used, which emulates interactions in form of exchanging
small pure text data.

The Experiment Knowledge Service can extended as well. An interesting feature would
be to enable autonomous collaboration of the benchmark framework with the Experiment
Knowledge Service. When an experiment is benchmarked by a benchmark framework,
then the experiment and achieved benchmarks can be automatically stored to the service.
Another very interesting feature would be that if a developer adds blockchain artefacts
of a new blockchain implementation to the Experiments Knowledge Service, then the
experiments stored in the service would be automatically benchmarked again while
utilizing the new blockchain implementation. There are numerous use cases which could
be addressed and implemented by adding the collaboration between the framework and
the service.
A future work improving the algorithm used to find the most similar deployment pattern
implemented in Recommendation Service (see Section 5.3.5) would be appreciated as
well. Furthermore, in Section 5.3.5 we left a possibility for future work open. That is the
algorithm mapping a topology of experiment to the one submitted to the Recommendation
Service.
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