International Journal of Data Science and Analytics
https://doi.org/10.1007/s41060-021-00281-1

REGULAR PAPER O‘)

Check for
updates

Identification of token contracts on Ethereum: standard compliance
and beyond

Monika Di Angelo'® - Gernot Salzer’

Received: 3 November 2020 / Accepted: 19 August 2021
© The Author(s) 2021, corrected publication 2022

Abstract

Next to cryptocurrencies, tokens are a widespread application area of blockchains. Tokens are digital assets implemented as
small programs on a blockchain. Being programmable makes them versatile and an innovative means for various purposes.
Tokens can be used as investment, as a local currency in a decentralized application, or as a tool for building an ecosystem
or a community. A high-level categorization of tokens differentiates between payment, security, and utility tokens. In most
jurisdictions, security tokens are regulated, and hence, the distinction is of relevance. In this work, we discuss the identification
of tokens on Ethereum, the most widely used token platform. The programs on Ethereum are called smart contracts, which—
for the sake of interoperability—may provide standardized interfaces. In our approach, we evaluate the publicly available
transaction data by first reconstructing interfaces in the low-level code of the smart contracts. Then, we not only check the
compliance of a smart contract with an established interface standard for tokens, but also aim at identifying tokens that are
not fully compliant. Thus, we discuss various heuristics for token identification in combination with possible definitions of a
token. More specifically, we propose indicators for tokens and evaluate them on a large set of token and non-token contracts.

Finally, we present first steps toward an automated classification of tokens regarding their purpose.

Keywords EVM bytecode - Heuristic - Interface - Smart contracts - Token standards - Transaction data

1 Introduction

Tokens (more specifically crypto tokens) are similar to the
coins of a cryptocurrency, with two main differences. First,
they do not have a blockchain or distributed ledger of their
own. Rather, they are a digital asset on top of a cryptocur-
rency or blockchain, representing the right to something. As
a medium of exchange, tokens can act as a currency them-
selves.

Secondly, tokens are programmable and can be used
beyond the mere exchange of value. In this respect, tokens
are part of an application, often a decentralized applica-
tion (DApp). DApps are applications on a P2P network
that are not controlled by a single entity. Decentralization
can be achieved by implementing critical components on a
blockchain. Governance of and access to DApps are often

B<XI Monika Di Angelo
monika.di.angelo@tuwien.ac.at

Gernot Salzer
gernot.salzer@tuwien.ac.at

I TU Wien, Vienna, Austria

Published online: 03 September 2021

controlled by application-specific tokens, but tokens can also
act as the local currency of a DApp.

In addition to these use cases (exchange of value, part
of an application), tokens may be linked to off-chain assets.
Moreover, they can serve as means of fundraising, pre-order
or investment, as well as means for building an ecosystem or
a community.

Tokens gained in importance, the more value was attached
to them. At the same time, they sparked the interest of regu-
latory bodies. With the proliferation of tokens, one may ask
what people intend to achieve by using tokens and how they
attempt to achieve it.

As Ethereum is the major platform for tokens, we search
for a clarification on the actual usage of tokens in its public
data. More specifically, we investigate the following regula-
tory and technological aspects of tokens:

— Which types of tokens can be distinguished?

Which standards for token contracts are in use?

How can token contracts be identified in transaction data?
— How can the type of a token be automatically inferred?

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s41060-021-00281-1&domain=pdf
http://orcid.org/0000-0002-4217-4530
http://orcid.org/0000-0002-8950-1551

International Journal of Data Science and Analytics

Our approach. We address these questions by analyzing
the transaction traces of Ethereum with regard to the deployed
bytecodes (static data) as well as the calls to token contracts
(dynamic data). Concerning methods, we discuss the auto-
mated identification and classification of token contracts. The
methods rely on reconstructing the interface of contracts from
bytecode as well as on observing the actual behavior of con-
tracts.

Contribution. Most work focuses on tokens with a high
market cap and on the flow of Ether and tokens. In contrast,
we view tokens as a particular group of smart contracts that
includes all contracts, from unused to top tokens. Like other
authors, we discuss tokens complying with the most prevalent
ERC-20 standard [37], but we include other token standards
as well. Furthermore, we give an account of the utilization
of the standards and depict their usage over time.

Based on our exploration of contract interfaces and activ-
ities, we derive indicators for detecting token contracts
that do not comply with any of the standards considered.
Moreover, we evaluate these indicators systematically on a
carefully selected ground truth of tokens and non-tokens.
Finally, we propose a heuristic approach to assess the type
of token contracts—security versus non-security—and eval-
uate it qualitatively against decisions of the US Securities
and Exchange Commission (SEC).

Overall, this paper advances the field of blockchain ana-
lytics, in particular regarding tokens on Ethereum.

Roadmap. Section 2 introduces blockchain tokens and
typical functionalities of token contracts. In Sect. 3, we
discuss types of tokens with an emphasis on regulatory
aspects. In Sect. 4, we summarize relevant token standards.
In Sect. 5, we compare our approach to related work. Sec-
tion 6 introduces terms and data. We present methods for the
identification of compliant tokens in Sect. 7 and discuss their
prevalence in Sect. 8. In Sect. 9, we characterize token con-
tracts beyond standard compliance and discuss indicators for
identifying non-compliant tokens. We compare the indicators
in Sect. 10. To assess the type of tokens, we introduce the
concept of purity in Sect. 11 and give examples in Sect. 12.
Section 13 concludes with a summary of our findings.

2 Token basics

Token contracts maintain a ledger that records the ownership
of tokens. Most contracts implement fungible tokens, which
are mutually indistinguishable. In this case, it suffices to store
the amount of tokens for each holder. Non-fungible tokens,
on the other hand, are uniquely identified by individual bit
patterns, like numbers, and the contract has to associate each
individual token with its owner. The ledger is safeguarded by
the cryptographic mechanics of the underlying blockchain.

@ Springer

The core functionality of token contracts consists of meth-
ods that allow holders to transfer some of their tokens to
a specified address. Moreover, the contracts often enable
administrators to create or destroy tokens (known as minting
and burning).

2.1 Benefits

Three main characteristics make tokens on a blockchain par-
ticularly attractive.

— Programmability: Token contracts facilitate an auto-
mated management of aspects like the enforcement of
regulations.

— Tamper evidence: The immutable traces of transfers on
the blockchain provide evidence whether the digital own-
ership has been tampered with.

— Liquidity: With tokens, ownership can readily be divided
into fractions, which increases the liquidity of otherwise
indivisible assets.

2.2 Acquisition and value

Tokens can be purchased (e.g., during an initial coin offer-
ing (ICO) or through a crypto exchange), traded on-chain or
received freely (e.g., during an airdrop or as a reward for a
service or behavior).

The value of a token depends on supply and demand as
well as on the trust of the participating community, which is
based on the credibility and service.

2.3 Design of token contracts

As tokens are a widespread application, coding patterns and
best practice examples are readily available, like in the col-
lections provided by ConsenSys' and OpenZeppelin.” Many
token contracts are generated by factories (on-chain or as a
web service) according to a given specification.

Most tokens aim at establishing trust and credibility by
disclosing their source code on Etherscan.io. As a service,
this platform checks that the deployed bytecode is the result
of compiling the source code with the given compiler settings
and labels it as ‘verified source code.’

3 Types of tokens

A common high-level categorization of tokens distinguishes
between payment, security, and utility tokens [30]. The need

1 https://consensys.github.io/smart-contract-best-practices/.

2 https://github.com/OpenZeppelin/openzeppelin-contracts.

https://consensys.github.io/smart-contract-best-practices/
https://github.com/OpenZeppelin/openzeppelin-contracts

International Journal of Data Science and Analytics

for clarifying the differences lies in the fact that in most juris-
dictions, security tokens are more strictly regulated than other
tokens. The main distinguishing feature is the investment pur-
pose of security tokens as opposed to the added value for the
functioning of a product that is typical of utility tokens. Pay-
ment tokens offer little to no other functionality beyond the
transfer of values. Legally, the distinction is still a gray area
in many jurisdictions.

3.1 Howey test

In [32], Rohr et al. base their discussion of legal aspects
of token sales under US law on a similar classification of
tokens and emphasize the importance of the so-called Howey
test. They argue that jurisdictions should provide ‘regulatory
certainty and a sensible path to compliance.’

The Howey test essentially identifies three criteria as char-
acteristic of securities. A financial instrument is considered
a security, if it requires (i) the investment of money, (ii) in
a common enterprise, (iii) with the expectation of profits
mainly from the efforts of others [35]. For crypto-tokens,
criterion (i) is met if the token is sold on-chain in exchange
for a cryptocurrency or other crypto-assets. Whether a token
is related to a ‘common enterprise’ mainly depends on the
legal assessment of off-chain factors. For criterion (iii), an
analysis of the underlying token contract may contribute to
the overall assessment of the token. In Sect. 11, we will intro-
duce our concept of ‘purity’ as an indicator that the token
contract itself does not provide any means that would allow
a token holder to make efforts on-chain.

3.2 Definitions

In this work, we rely on the distinction of token types as
stated by the Swiss FINMA [19] as a common ground for
US [32], EU [22], and other jurisdictions.

Security Tokens are ‘assets, such as a debt or equity claim
on the issuer. In terms of their economic function, therefore,
these tokens are analogous to equities, bonds or derivatives.’
Typically, it is a share in the issuing company (equity token).

Regarding legal compliance, there is an ongoing discus-
sion on how it could be integrated into a token standard (cf.
Sect. 4), as well as into wallets and exchanges (cf. [2]).

Utility Tokens are usually backed by a project, an appli-
cation, or a DApp with a definable benefit (like access) and
intend to ‘provide access digitally to an application or service
by means of a blockchain-based infrastructure. The issue of
utility tokens does not require supervisory approval if the dig-
ital access to an application or service is fully functional at
the time the tokens are issued.” The purpose of a utility token
may include voting rights, some sort of reward, or staking
governance.

3.3 Categorization

As these purposes and categories may overlap for a spe-
cific token, a finer-grained classification scheme may be
more adequate. Many tokens are hybrids concerning this
coarse categorization [22]. Based on a literature review and
a subsequent empirical study, Oliveira et al. [30] distill eight
archetypes of tokens.

It would be desirable to automatically identify the type of
a token that a contract implements. In this work, we discuss
first steps toward this goal.

4 Interface standards for tokens

Standardized interfaces for token contracts enable applica-
tions such as wallets to recognize tokens and to interact with
them. In this section, we first introduce accepted token stan-
dards and then proposed security token standards.

4.1 Accepted token standards

The community continuously discusses and establishes stan-
dard interfaces for tokens in the programming language
Solidity, which is prevalent on Ethereum. The following stan-
dards have been accepted so far.

ERC-20 Token Standard [37] is the most widely used and
most general token standard that ‘provides basic functionality
to transfer tokens, as well as allows tokens to be approved so
they can be spent by another on-chain third party.” It lists six
mandatory and three optional functions as well as two events
to be implemented by a conforming API.

ERC-721 Non-Fungible Token Standard [17] concerns
tokens where each token is distinct (aka non-fungible) and
thus enables the tracking of distinguishable assets. Each asset
must have its ownership individually and atomically tracked.
This standard requires compliant tokens to implement 10
mandatory functions and three events.

ERC-777 Token Standard [8] defines advanced features to
interact with tokens while remaining backwards compatible
with ERC-20. It defines operators to send tokens on behalf
of another address and hooks for sending and receiving in
order to offer token holders more control over their tokens.
This standard requires compliant tokens to implement 13
mandatory functions and five events.

ERC-1155 Multi Token Standard [31] allows for the man-
agement of any combination of fungible and non-fungible
tokens in a single contract, including transferring multiple
token types at once. This standard requires compliant tokens
to implement six mandatory functions and four events.

@ Springer

International Journal of Data Science and Analytics

4.2 Proposed security token standards

Apart from the accepted standards, several others are pro-
posed and discussed, but not yet finalized. From the legal
perspective, the following security token standards seem
interesting. While the first one is rather general, the other
two are project-specific and company-backed.

ERC-1462 Base Security Token [25] is a minimal exten-
sion to ERC-20 that ‘provides compliance with securities
regulations and legal enforceability’ and aims at general use-
cases, while additional functionality and limitations related
to projects or markets can be enforced separately. Further-
more, it includes ‘KYC (Know Your Customer) and AML
(Anti Money Laundering) regulations and the ability to lock
tokens for an account, and restrict them from transfer due to
a legal dispute.” Moreover, it provides means to attach doc-
uments to tokens. This standard requires compliant tokens
to implement four further mandatory checking functions (on
top of ERC-20) and two optional documentation functions.

ERC-1450 LDGRToken [33] is a ‘security token for
issuing and trading SEC-compliant securities’ that extends
ERC-20. This standard ‘facilitates the recording of owner-
ship and transfer of securities sold in compliance with the
Securities Act Regulations CF, D and A.” Apart from its
own mandatory functions, it makes optional parts of ERC-
20 mandatory. Moreover, it requires certain modifiers and
constructor arguments to be implemented.

ERC-1644 Controller Token Operation Standard [15]
‘allows a token to transparently declare whether or not a con-
troller can unilaterally transfer tokens between addresses.’
This is motivated by the fact that ‘in some jurisdictions the
issuer (or an entity delegated to by the issuer) may need
to retain the ability to force transfer tokens.” This standard
requires compliant tokens to implement three mandatory
functions and two events.

ERC-1644 is part of ERC-1400 [16], a library of stan-
dards for security tokens, which requires the contained
standards to be backwards compatible with ERC-20 and via
extensions also with ERC-777. Additionally, the library con-
tains ERC-1410 for differentiated ownership and transparent
restrictions, ERC-1594 for on- and off-chain restrictions, and
ERC-1643 for document and legend management.

5 Comparison to related work

Most of the distantly related work focuses on the financial
aspects (specifically the transfer of assets), network aspects
(like address clustering), or cryptocurrency platforms other
than Ethereum.

@ Springer

5.1 Ethereum token networks and transactions

The work mentioned here is related to our approach to the
extent that it deals with Ethereum tokens and transaction data.

Ethereum transactions. Chan et al. [4] analyze the trans-
actions as a graph in order to de-anonymize addresses. With
the aim to address security issues, Chen et al. [5] analyze
the transaction graph in regard to money transfer, contract
creation, and contract call. Applying network science the-
ory onto the transaction graph, Guo et al. [21] conclude
that ‘transaction volume, transaction relation, and compo-
nent structure, exhibit a heavy-tailed property and can be
approximated by the power law function.” Likewise, Chen et
al. [7] employ a graph approach to analyze the token ecosys-
tem by constructing a graph each for the creators, holders,
and transfers of tokens.

ERC-20 token networks. Somin et al. [34] study the token
trading network in its entirety by analyzing it as a graph
and show power-law properties for the degree distribution.
Similarly, Victor et al. [36] measure token networks, which
they define as the network of addresses that have owned a
specific type of token at any point in time, connected by the
transfers of the respective token.

Our Approach. Rather than de-anonymization, security
issues, or trading aspects, our investigation puts a focus on the
identification of token contracts that comply to an interface
standard, fully or partially. Furthermore, we aim at automat-
ically inferring the type of an implemented token. To this
end, we consider transactions not from a network or graph
perspective, but on the level of contract deployment (for the
bytecode of the contract) and event logs as well as call fre-
quency of functions and contracts. Moreover, we employ the
analysis of calls as an add-on to the analysis of bytecode in
order to identify aspects of deployed contracts more reliably
than we can achieve by relying merely on bytecode.

5.2 EVM bytecode analysis

The work mentioned here is related closely to our approach
since we employ bytecode analysis for identifying both stan-
dard compliant and non-compliant token contracts.

Code Clones. To detect code clones, He et al. [23] first
de-duplicate contracts by ‘removing function unrelated code
(e.g., creation code and Swarm code), and tokenizing the
code to keep opcodes only.” Then, they generate fingerprints
of the de-duplicated contracts by a customized version of
fuzzy hashing and compute pairwise similarity scores. In
another approach to clone detection, Liu et al.[27,28] char-
acterize each smart contract by a set of critical high-level
semantic properties. Then, they detect clones by computing
the statistical similarity between the respective property sets.
On source code level, Kondo et al. [24] applied a tree-based

International Journal of Data Science and Analytics

clone detector to 33,000 verified contracts from Etherscan
up to the year 2018.

ERC-20 Compliance. Frowis et al. [20] as well as Norvill
et al. [29] demonstrate the feasibility to identify ERC-20
compliance over the interface of a contract. To detect token
systems automatically, Frowis et al. [20] compare the effec-
tiveness of a behavior-based method combining symbolic
execution and taint analysis, to a signature-based approach
limited to ERC-20 compliant tokens. They demonstrated that
the latter approach detects 99% of the tokens in their ground-
truth data set. Extracting function signatures and restoring the
interface is also reported in our previous work [10,13].

Partial Compliance. Moreover, Frowis et al. [20] consider
partially ERC-20 compliant tokens when they implement at
least 5 of the 6 mandatory functions. While the usage of sig-
natures of the interface is in line with [20,29], our previous
work extends it beyond ERC-20 compliance by including
other standards as well and by discussing partial compli-
ance [13].

Type Distinction. Next to employing a graph approach to
analyze the token ecosystem, Chen et al. [7] try to classify
token contracts by reading the descriptive texts in their source
code, albeit less than 1% of the tokens provide such a text.
In our previous work [14], we infer the token type over a
semantic classification of the token interface.

Our Approach. The method of computing code skele-
tons is comparable to the first step for detecting similarities
by [23]. Instead of fuzzy hashing as a second step though,
we rely on the set of function signatures extracted from the
bytecode and manual analysis, as our purpose is to identify
token contracts reliably. This is in line with previous work
on ERC-20 standard compliance [10,13,20,29].

Regarding non-compliant tokens, we devise further meth-
ods for their identification that extend our previous work [13].

Additionally, we aim at an automatic distinction of token
types. In contrast to [7] where Chen et al. use descriptive texts
from source code, we work at bytecode level and approach
it over the concept of pure token contracts that we define via
the set of implemented functions in the bytecode and apply
this concept to exemplary security tokens.

6 Terms and data

In this section, we introduce relevant terms and describe the
data used for the analysis. Throughout the paper, we abbre-
viate the factors 1000, 1,000,000 and 1,000,000,000 by the
letters k, M, and G, respectively.

6.1 Terms

We assume the reader to be familiar with blockchain tech-
nologies and cryptocurrencies in general. Regarding the
specifics of Ethereum, we refer to [3,18,38].

6.1.1 Accounts, transactions, and messages

Ethereum distinguishes between externally owned accounts,
often called users, and contract accounts or simply contracts.
Accounts are uniquely identified by addresses of 20 bytes.
Users can issue transactions (signed data packages) that
transfer value to users and contracts, or that call or create
contracts. These transactions are recorded on the blockchain.
Contracts need to be triggered to become active, either by a
transaction from a user or by a call (a message) from another
contract. Messages are not recorded on the blockchain since
they are deterministic consequences of the initial transac-
tion. They only exist in the execution environment of the
Ethereum Virtual Machine (EVM) and are reflected in the
execution trace and potential state changes. We use ‘mes-
sage’ as a collective term for any (external) transaction or
(internal) message.

6.1.2 Abstract binary interface (ABI)

Most contracts in the Ethereum universe adhere to the ABI
standard [1], which identifies functions by a particular hash of
the header. More precisely, such a function signature consists
of the first four bytes of the Keccak-256 hash of the function
name concatenated with the parameter types. The bytecode
of a contract contains instructions that compare the first four
bytes of the call data to the signatures of its functions. The
latter can be usually found literally in the deployed bytecode
and indicate that the contract implements functions with these
headers.

Another component of the interface are events. Emitting
an event during the execution of a contract results in a log
entry that can be observed by off-chain programs. Events are
implemented via the instruction LOG whose first argument
is the hash of the event header. The presence of the hash in
the bytecode indicates the ability to issue the corresponding
event.

@ Springer

International Journal of Data Science and Analytics

6.2 Database

Our analysis is based on the transaction data of the Ethereum
main chain up to block 10.5M, which was mined on July
21, 2020. We retrieve the blocks, transactions, and execu-
tion traces via the RPC interface of the Ethereum client
OpenEthereum v3.0.1. To speed up the analysis of contracts,
we use the verified source code of contracts at Etherscan. If
not available, we resort to disassembling or decompiling the
bytecode.

For efficient querying, we store the data in a Postgres
database. Each of the 2 G messages (creations, calls, and self-
destructions) is uniformly represented by a record composed
of an abstract timestamp, the message type, the success sta-
tus, the addresses of context, sender and recipient, the input
and output data, and the transferred amount of Ether.

6.2.1 Contracts

For each of the 28.1 M successful creation messages, our
table of contracts contains an entry with the timestamps of
start and end of deployment, of the contract’s first use after
deployment, and of an optional self-destruction. Moreover,
we store the deployment and the deployed bytecode, the
deployment address, and the address of the creator.

6.2.2 Bytecodes

Frequently, contracts share the same bytecode. For each of
the 300k distinct codes, our table of codes contains the func-
tion and event signatures. Moreover, we maintain dictionaries
with 400k function and 60k event headers that allow us to
reconstruct the headers for the majority of signatures. See
the next section for details.

6.2.3 Logs

For each of the 710M instructions LOG that have been exe-
cuted so far, our table of log entries records a timestamp,
the context address and several fields with log data. The
first field holds the hash of the event header. We are par-
ticularly interested in the standardized event accompanying
token transfers, accounting for 60% of the entries.

6.2.4 Messages

The dynamic data, i.e., the calls to and from contracts as
well as the emitted events, are sparse and noisy. For most
contracts, only a small fraction of the offered functions has
ever been called, and many events have never been emitted.
Moreover, observing a call to a contract with a particular
signature does not mean that the corresponding function
is indeed implemented; often a so-called fallback function

@ Springer

catches unknown signatures without raising an error. Only
if a function is frequently called, it is safe to assume that it
is part of the interface. To get a more complete picture, we
accumulate the dynamic data for all contracts with the same
bytecode.

6.2.5 Proxies

Furthermore, proxies are a phenomenon to be considered.
They forward incoming calls to a central contract via a partic-
ular type of call. This way the proxy contract may implement
an interface without containing the corresponding signatures
in its bytecode. We identify proxies statically via their byte-
code as well as dynamically by detecting the forwarding of
calls.

7 Methods for ERC-compliant token
contracts

In this section, we concentrate on contracts that comply with
the token standards in Sect. 4, referring to them as ‘fully com-
pliant’, and summarize methods to identify them. In Sect. 9,
we consider methods for token contracts that are partially or
not compliant.

Behavior-oriented approach. The central task of a token
contract is bookkeeping. Each token contract maintains a
data structure that maps user ids like addresses to quantities
of fungible tokens or lists of non-fungible ones. Moreover, it
usually implements functions for querying the data structure
and for transferring tokens between users.

Chen et al. [6] observe the EVM execution trace to cap-
ture changes in the bookkeeping of a token. Then, they try
to match the found changes with emitted events in order to
detect inconsistencies.

Frowis et al. try to detect bookkeeping by symbolic exe-
cution and taint analysis of the bytecode in order to identify
token contracts. Due to the difficulty of the problem, this
method is still less effective than the interface approach [20].
We therefore resort to interface methods in our analysis.

Interface-oriented approach. Token contracts need to be
accessible by wallets and exchanges; hence, they offer stan-
dardized interfaces. We therefore expect fully compliant
token contracts to be identifiable by the functions and events
they implement. It is unlikely that a contract offers six or more
functions with the profiles prescribed by a standard without
implementing token semantics. We found a single bogus con-
tract whose interface pretends to be a token contract but that
does not record token holdings.

Figure 1 gives an overview of the procedure for interface
reconstruction. In the first step, we split the raw bytecode into
sections. Then, we locate all function entry points as well as
selected events in the first code section; their signatures form

International Journal of Data Science and Analytics

the interface. For many signatures, we are able to restore the
original headers, which helps to understand the purpose of
the contract. In the following, we describe the algorithms in
more detail.

7.1 Skeletons

To detect functional similarities between contracts, we com-
pare their skeletons. They are obtained from the bytecodes of
contracts by replacing meta-data, constructor arguments, and
the arguments of the operations PUSH uniformly by zeros and
by stripping trailing zeros. The rationale is to remove variabil-
ity that has little to no impact on the functional behavior (like
the swarm hashes added by the Solidity compiler or hard-
coded addresses of companion contracts). Skeletons allow
us to transfer knowledge gained about one contract to others
with the same skeleton.

As an example, the 28.1 M contract deployments corre-
spond to just 140k distinct skeletons. This is still a large
number, but more manageable then 298 k distinct bytecodes.
By exploiting creation histories and the similarity via skele-
tons, we are able to relate 13.7M contract addresses to one
of the 92k source codes on Etherscan, an increase from 0.3
to 49%.

7.2 Sectioning EVM bytecode

As preparation for code analysis techniques like code skele-
tons, signature extraction, and control flow graphs, we
decompose the bytecode of contracts into code, data, and
meta-data sections, as otherwise parts of the bytecode may
be misinterpreted. Apart from the proper contract code at
the beginning, the bytecode may contain the code of further
contracts to be deployed as well as literals. Moreover, the
Solidity compiler adds meta-data with information on the
source code and the compiler version. Meta-data may be fol-
lowed by constructor arguments. Some bytecodes consist of
more than 40 sections with as many as 14 meta-data parts.
The decomposition takes place in three stages. First, meta-
data can be unambiguously detected as CBOR encoded
mappings that contain one of the keys bzzr0, bzzrl or
ipfs. Second, the byte strings before, between and after
meta-data, are split at instruction sequences that are char-
acteristic for the start of a new contract; they are marked as
code. Finally, the parts after meta-data that do not start with a
characteristic sequence are labeled as constructor arguments.
Evaluation. To validate our method, we count the number
of good and bad jumps. For each instruction JUMP(I) pre-
ceded by a PUSH of the target address, we determine whether
the target instruction is JUMPDEST (good jump) or not (bad
jump). Bad jumps raise an exception that reverts the entire
transaction, so they are used only infrequently in regular
code. If, on the other hand, the sectioning algorithm deter-

mines the start of a code section incorrectly, then virtually
all jumps will be bad jumps. We find that our decomposi-
tion heuristics works correctly for 99.9% of the bytecodes.
The first code section, relevant for extracting function signa-
tures (see below), is faulty for only 0.03% of the bytecodes.
Among others, the faulty cases are ‘contracts’ that are actu-
ally data repositories for other contracts and are not meant to
be executed.

7.3 Extracting function signatures

When calling a contract that adheres to the standard for
abstract binary interfaces (ABI), the first four bytes of
the call data identify the function to be executed. The
contract compares these bytes to the signatures of the imple-
mented functions and branches to the respective code. To
aid code analysis, tools like Mythril® identify heuristically
byte sequences involved in comparisons, look them up in a
database and, if successful, annotate the code with the func-
tion header found. Since a function header exists, chances
are high that the byte sequence indeed is a signature.

Our goal is different, as we want to reconstruct the inter-
faces reliably, regardless of whether signatures correspond to
known function headers or not. We need to avoid that arbi-
trary data or signatures of other code sections are mistaken
as part of the interface. Therefore, we identify the first code
section of the contract and then apply algorithm 1. It uses
eight pairs of regular expressions, where the first expression
in each pair locates the code that reads the call data, and
the second one is applied repeatedly to extract the signatures
from the comparisons. Tables 1 and 2 show one such pair.

Algorithm 1 Extracting signatures from bytecode.

REDATA|:=(RE for pushing first four bytes of calldata on stack)
RESIG|:=(RE for comparing four bytes to signature, returning latter)

... 7 more pairs (REDATA;, RESIG;) ...

function EXTRACTSIGNATURES(code)
code = REMOVEDATASECTION(code)

sigs =0
for (reData, reSig) in [(REDATA|, RESIG)), ...] do
¢ = code

if reData matches ¢ then
¢ = REMOVEMATCHEDPART(c)
while reSig matches ¢ do
sigs = sigs U {(signature returned by reSig)}
¢ = REMOVEMATCHEDPART(c)
if sigs #) then
break
return sigs

Evaluation. We evaluated the algorithm on the bytecodes
of 81,000 verified contracts from Etherscan, using the ABIs

3 http://github.com/ConsenSys/mythril.

@ Springer

http://github.com/ConsenSys/mythril

International Journal of Data Science and Analytics

bytecode constructor arguments function signatures
60806040 0x0000. . .4711
52348015
61001057 code sections /
22282822 2, 0x00 PUSH1 0x80 /
/%/ 0x02 PUSH1 0x40| —— 2, [0%00c0%tes

36106103 2 s
576000 & > |0x04 MSTORE o
seeocor 3 0x05 CALLVALUE £

ellc el =~
80638d4e \5\ g .

S . event signatures
40831161 S
02125780 meta-data
63bc694e {"bzzr1": h’08BE...’,
"solc": h’00050C’}

function headers

0xa9059¢cbb | —M8MM > |transfer(address,uint256) |

0x6£c2790e | — > | hatchFgg (uint256,uint256) |

event headers

U01)B.I0)SAI JIpedy

0xddf2...b3ef | — > |Transfer (address,address,uint256) |

0x8c5b...b925 | — > | Approval (address,address,uint256) |

Fig.1 Interface reconstruction: after decomposing the bytecode into code sections, data and meta-data, we extract the function and event signatures
from the first code segment. Using dictionaries with known headers, we are able to restore most function and event headers

Table 1 One of the regular
expressions reData; . It specifies
44 equivalent code fragments
that push the first four bytes of
the calldata on the stack.

PUSH 22%* is shorthand for a
reg.exp. describing five ways of

(PUSH Oxffffffff)?

(PUSH 222, PUSH 0x00, CALLDATALOAD, DIV

| PUSH 0x00, CALLDATALOAD, PUSH 2224, SWAP1, DIV
| PUSH 0x00, CALLDATALOAD, PUSH 0xe0, SHR

), (PUSH OxEfffFEfEE, AND)?, (AND)?,

putting the constant 222* on the
stack. Question marks with the
same index denote elements that
are simultaneously present or
missing

Table 2 One of the regular
expression reSig; . It specifies

(PUSH signature, DUP2 | DUP1, PUSH signature), EQ, PUSH offset, JUMPT

two equivalent code fragments
that compare signature to the
top of the stack and, on equality,
jump to offset

listed by Etherscan as ground truth. The signatures extracted
by our tool differed from the ground truth in 71 cases. We
verified manually that our tool was correct also in these cases,
whereas the ABIs on Etherscan did not faithfully reflect the
signatures in the bytecode (e.g., due to compiler optimiza-
tion or library code). The validation set consisted almost
exclusively of bytecode generated by the Solidity compiler
(covering most of its releases), with just a few samples of
LLL and Vyper code. We therefore regard the validation as
representative of the 12.5 M deployed contracts generated by
the Solidity compiler.*

Another group of contracts consisted of 11.4M short
contracts, mainly gasTokens, but also proxies (contracts redi-
recting calls elsewhere) and contracts involved in attacks.
They do not have entry points, and our algorithm also does

4 Deployed code generated by solc can be identified by the first
few instructions. It starts with one of the sequences 0x6060604052,
0x6080604052, 0x60806040818152, 0x60806040819052,
or 0x60806040908152. In the case of a library, this sequence is
prefixed by an instruction PUSH followed by 0x50 or 0x3014.

@ Springer

not detect any. The same holds for a third large group of
4.2M contracts that self-destruct at the end of the deploy-
ment phase.

After subtracting these groups from the total of 28.1 M,
we are left with 3.1k contracts (732 skeletons). For these,
our tool shows an error rate of 8%, extrapolated from a ran-
dom sample of 60 skeletons that we manually checked. This
amounts to an error rate below 107 in relation to all deploy-
ments.

7.4 Extracting event signatures

On source code level, so-called events are used to signal state
changes to the world outside the blockchain. On machine
level, an event is implemented as the instruction LOG with the
unabridged Keccak-256 hash of the event header as identi-
fier. We currently lack a tool that extracts the event signatures
as efficiently and reliably as the function signatures. The
instructions LOG and its arguments are harder to detect,
as they are distributed throughout the code. We can check,
however, whether known event signatures occur in the code

International Journal of Data Science and Analytics

section of the bytecode, as the 32-byte sequences are virtu-
ally unique. This heuristic fails in cases where the event is
actually implemented in another contract that is called via
DELEGATECALL, where the signature is kept in the data
section, or where the signature is missing in our collection of
58 k event signatures. In spite of that, event signature extrac-
tion performs reasonably well: Evaluating the method with
the most frequent Transfer event and the 81k source codes
from Etherscan yields less than 0.2k mismatches.

7.5 Header restoration

To understand the purpose of a contract, we try to recover the
original function and event headers from the signatures. This
reverse translation of the (partial) hashes is accomplished
with a database of headers (plain text) with corresponding
signatures (hash). We use our own collection® of signatures
that extends the verified contracts of the main chain by sig-
natures from test nets as well as from 600 projects we found
on GitHub.

For event signatures, we always succeed, as the method
in the last section detects the signatures of only those 58k
event headers that we have collected from various reposito-
ries. There are no ambiguities, since the signature is a 256-bit
cryptographic hash of the header.

Our method for extracting function signatures, on the other
hand, will detect any signature. Up to block 10.5M, a total
of 312k different signatures was in use. Over time we have
collected 402k function headers with their signatures. By
using this dictionary in reverse, we are able to restore 60%
of the extracted signatures. Taking the deployment frequency
into account—some signatures are used more frequently than
others—the ratio rises to 90%. In contrast to the event signa-
tures, we may encounter collisions for the 32-bit signatures
of function headers. These are rare, however: Of the 402k
signatures, only 27 occur with a second header in the dictio-
nary.

For example, when extracting the function signatures
by applying Algorithm 1 on the bytecode of the address
0x776£55fa27644705156a46e8clb2dc28cal
22832 created in block 268036, we obtain the signa-
tures 0x41c0elb5, 0x6b590248 and Oxecfc0073.
Our dictionary translates the first two signatures to the head-
ers kill () and getDigit (), whereas the header for
Oxecfc0073 remains unknown.

3 https://ethereum.logic.at/dictionary.

Table 3 Full compliance of deployed token contracts

Standard Deployments Bytecodes Skeletons
ERC-all 221,232 114,654 40,144
ERC-20 214,528 112,606 38,439
ERC-721 6588 1983 1642
ERC-777 312 141 113
ERC-1155 125 73 71
ERC-1462 3 3 3
ERC-1450 0 0 0
ERC-1644 36 8 8
IS S SN IR S R G N
(LQ\" %@Q’ (],Q\Q’ q,Q\(\ %Qi\ %Q\‘b %&q, %“\% (LQ@ (19%“
1 1 1 1 1 1 1 1 1 I1
320 4 ERC-721
@ W ERC-777 |
g mes ERC-1155 Mt
£ 240 - W ERC-1462 M
S = ERC-1644 i I
& 160 - ol ||I
*é 80 - |
bl(;ck M M oM oM 10IM

Fig. 2 Creation of ERC-compliant token contracts other than ERC-
20. The lower horizontal axis indicates the Ethereum blocks, while the
upper axis shows the corresponding dates. Each bar represents a bin of
100,000 blocks (corresponding roughly to 2 weeks)

8 ERC-tokens over time

In this section, we show the results of extracting interfaces
from all deployed bytecode on Ethereum for identifying
ERC-compliant token contracts.

A contract is called fully ERC-compliant when provid-
ing at least one of the standard interfaces mentioned in
Sect. 4. Table 3 lists the number of compliant token contracts,
including the numbers of unique bytecodes and skeletons.
With over 214k deployments (97%), ERC-20 is by far the
most commonly used standard. The remaining 3% are almost
exclusively contracts adhering to the ERC-721 standard for
non-fungible tokens. The other standards are deployed in
small numbers. A few token contracts comply with more
than one standard and are counted more than once. In total,
we count 221k fully ERC-compliant token contracts.

Figure 4 in Sect. 11 shows the deployment of ERC-20
compliant tokens on a time line, while the contracts com-
plying with other standards are depicted in Fig. 2. The mass
deployment of ERC-20 tokens started in the middle of 2017,
peaked in the first half of 2018 and later stabilized at about
1000 deployments per week. The deployment of ERC-721
compliant contracts started in 2018, with the numbers ris-
ing steadily to 150 deployments per week at the beginning

@ Springer

https://ethereum.logic.at/dictionary

International Journal of Data Science and Analytics

of 2020. Since then, the numbers have fallen to 60 deploy-
ments per week. The other standards start to appear in small
numbers at the beginning of 2019.

9 Identification of non-compliant tokens

In this section, we focus on methods for identifying non-
compliant token contracts. In order to be able to evaluate
these methods, we first need to clarify the notion of tokens
and token contracts. Based on our definition of tokens, we
compile a list of contracts that we manually classify as tokens
or non-tokens, serving as a ground truth for the evaluation.
Then, we discuss four indicators regarding their potential
effectiveness in detecting token contracts. The indicators rely
on the bytecode techniques described in Sect. 7, on message
statistics as well as on some additional techniques described
with the indicators below.

9.1 When is a contract a token contract?

Related work. Oliveira et al. [30] introduce several token
archetypes that go beyond the common distinction into secu-
rity, utility, and payment token. The semantic characteriza-
tion of the numerous types demonstrates that understanding
the purpose of a token involves more factors than just the
code. Moreover, the level of code analysis required for most
distinctions is not readily automatable.

Chen et al. present the tool TokenScope [6] that monitors
transfer events, transfer calls as well as changes to the token
balance in storage. Whenever any two of them differ, the
contract is flagged as behaving inconsistently with regard
to the ERC-20 standards. The concept of token contract is
closely tied to the standard.

Lambert et al. [26] put a focus on security token offerings
(STOs) as opposed to initial coin offering (ICOs) and clar-
ify how security tokens differ from both utility and payment
tokens. According to them, ‘a security token is a digital repre-
sentation of an investment product, recorded on a distributed
ledger, subject to regulation under security laws.’

Darisi et al. [9] propose mechanisms for the exchange of
tokens within and between blockchains. They characterize
tokens by the basic parameters name, symbol, initial supply,
decimals, and fungibility.

Our Definition of token contracts. Our aim is to develop
criteria that enable us to determine whether a contract can be
considered a token or not. The criteria should neither be too
abstract as we need to apply them to code, nor should they
refer to particular standards.

The main functionality of token contracts comprises the
maintenance of a ledger that records token holdings and the
ability to change token ownership by modifying the ledger.
The change of ownership may take different forms, includ-

@ Springer

Table 4 Contracts for the evaluation of the indicators (ground truth)

Type Deployments Bytecodes Skeletons
Non-compliant

Etherscan 14,877 644 270
Manual 943 148 63
Non-token

Wallet 5,956,205 1885 752
Manual 435915 1727 19

ing simple transfers initiated by the owner, safe transfers
where the recipient has to claim the approved tokens, the
distribution of tokens via airdrops, and the trading of tokens
for other crypto-assets. Additionally, token contracts may
implement features like administrative roles, token locking,
contract halting, and getters/setters for state variables.

As a minimum requirement, a token contract has to satisfy
the following criteria:

— Bookkeeping: The token contract maintains a ledger that
maps the id of token holders (e.g., their addresses) to the
tokens they own.

— Token flow: The token contract provides functionality
to transfer tokens between holders, to trade tokens for
crypto-assets, and/or to consume tokens.

Whether and in which way the values in a ledger represent
tokens depends on the code semantics. In our manual assess-
ment of contracts, we encountered only a small number of
borderline cases.

9.2 A ground truth for token contracts

To evaluate the indicators below, we compile a collection
of contracts, or rather bytecodes, for which we determine
whether they are non-compliant (not fully ERC-compliant)
token contracts or non-tokens. Table 4 provides an overview
of this collection.

Etherscan offers a list of several thousand contracts
labeled as tokens, of which we selected the non-compliant
ones. In prior work [12], we identified numerous wallet
contracts. These are interesting, as they interact with token
contracts and sometimes include functions similar to token
contracts. For the manually classified samples, we selected
the bytecodes of frequently deployed or called contracts as
well as arandom assortment of less active contracts that share
some function with the ERC-20 standard.

Limitations. It remains unclear how Etherscan identifies
token contracts. We asked the maintainers about the criteria,
but have not yet received an answer. Among the manually
classified contracts, there are some tokens that fit our defini-

International Journal of Data Science and Analytics

tion but with hardly any similarities to standard tokens. For
example, in the lottery game ‘Fomo3DSoon’, a player buys
‘keys’ that later can be exchanged for the reward. We there-
fore expect that none of our simple indicators will be able to
recognize such tokens.

9.3 Indicator /;: single ERC-20 signatures

As interfaces are collections of signatures, we evaluate the
predictive power of single ERC-20 signatures. Table 5 lists
the frequencies of the most common ones. The first nine
signatures are precisely the mandatory and optional functions
of the ERC-20 standard. The next two signatures are used in
all sorts of contracts (including tokens) to manage ownership,
while the last three are again related to tokens.

Limitations. This approach has the same issues as the inter-
face method in Sect. 7.

9.4 Indicator /3: multiple ERC-20 signatures

Non-compliant token contracts often implement at least some
of the mandatory functions. Hence, we investigate subsets of
the ERC-20 interface and attempt to find a threshold.

Clearly, transfer functions play a central role, as is doc-
umented by both Tables 5 and 6. Table 6 lists the most
frequently called signatures, with the function transfer
being by far the most common. A variant of the transfer func-
tion is listed as the third most common.

Even though the function transfer is essential, it is
not specific to tokens contracts. Therefore, we investigate its
interplay with the other ERC-20 functions. Table 7 lists the
number of contracts that provide a subset of the six mandatory
ERC-20 signatures. We differentiate the numbers according
to the presence or absence of the function transfer and
indicate the actual deployments on-chain, the corresponding
unique bytecodes, and the respective skeletons.

Table 7 shows that 224.5k deployed contracts implement
the mandatory ERC-20 interface. Moreover, there are 211.2k
contracts that provide only the function transfer but none
of the other mandatory ERC-20 functions. These contracts
are remarkably uniform as the small set of just 660 bytecodes
and 579 skeletons shows, corresponding to a code reuse fac-
tor of several hundreds. This hints toward factory-produced
non-token contracts (e.g., wallets) implementing a function
transfer.

The numbers in Table 7 do not suggest a threshold for
the number of functions in order to detect tokens. At the
same time, the number of contracts implementing two to
five mandatory functions is nonnegligible. For this indicator,
we therefore compare different thresholds for the number of
ERC-20 signatures, with and without the transfer function.

Limitations. This approach has the same issues as the
interface method in Sect. 7. Additionally, it hinges on the
threshold.

9.5 Indicator /3: contract name

For some deployed contracts, the source code has been
uploaded to Etherscan (cf. Sect. 6). In these cases, the name
of the contract assigned by the developers may reveal its pur-
pose. This indicator considers all bytecodes for which any
corresponding source code has a contract name that ends
with ‘token’ or ‘coin’ (case insensitive).

Table 8 lists the number of deployed contracts and respec-
tive bytecodes that we can associate with a name from
Etherscan. In the first line, the high number of over 3M
deployments with associated names mainly results from wal-
lets, since a high factor between bytecodes and deployments
is atypical for tokens, but typical for wallets [12].

The last line in Table 8 shows that there is a substantial
number of deployments (and bytecodes) that are not ERC-
compliant but where the contract name ends with ‘token’ or
‘coin.” Therefore, this indicator seems worth to be investi-
gated.

Limitations. Even though token contracts are more likely
to have their source code on Etherscan (as a means of building
trust), the source and thus the name of many contracts is
not available. Moreover, this approach misses tokens named
differently or may yield false positives.

9.6 Indicator /4: transfer events

Token standards usually require compliant contracts to emit
an event when transferring tokens. It indicates the affected
token contract as well as the sender and receiver. Thus, events
may help to identify token contracts.

We use two approaches to associate tokens with events.
First, we search the bytecode for the signature of relevant
events (see Sect. 7.4 for details). Secondly, we search the log
entries for events that actually happened. Both methods com-
plement each other, as events overlooked by static extraction
(e.g., because of proxying) show up as log entries at their
first use, whereas extraction detects events even if they have
not been emitted so far.

Indicator 14 considers bytecodes that contain the signature
of the event Transfer(address,address,uint256) or if one of
the deployments of the bytecode actually emitted this event.
This particular event accounts for 61% of the 710M log
entries and signals that the number of tokens given as third
argument has been transferred from the first to the second
address. All standards in Sect. 4 require this event, except
for ERC-1155 that replaces it by TransferSingle and Trans-
ferBatch.

@ Springer

International Journal of Data Science and Analytics

Table 5 Top signatures ranked

by the number of bytecodes they Signature Header Bytecodes

appear in. The six functions 70A08231 balanceOf(address) 131,254

mandated by ERC-20 are kept in

bold, the three optional ones in 06FDDEO3 name() 128,363

italic 18160DDD totalSupply() 126,082
95D89B41 symbol() 125,933
A9059CBB transfer(address,uint256) 125,862
313CE567 decimals() 121,825
23B872DD transferFrom(address,address,uint256) 117,577
095EA7B3 approve(address,uint256) 117,150
DD62ED3E allowance(address,address) 116,972
8DA5CB5B owner() 116,480
F2FDE38B transferOwnership(address) 87,924
CAE9CA51 approveAndCall(address,uint256,bytes) 40,046
42966C68 burn(uint256) 37,525
79CC6790 burnFrom(address,uint256) 23,602
A9059CBB transfer(address,uint256) 314,764,683
70A08231 balanceOf(address) 68,465,404
23B872DD transferFrom(address,address,uint256) 45,083,909
18160DDD totalSupply() 21,550,045

Table 7 Implemented ERC-20 functions with and without transfer

Sigmatures Deployments Bytecodes Skeletons
Incl. transfer Excl. transfer Incl. transfer Excl. transfer Incl. transfer Excl. transfer
6 of 6 214,528 - 112,606 - 38,439 -
5of6 3975 88 2274 70 1684 59
40f6 3730 6538 2881 1977 873 1647
30of 6 9753 1288 5217 692 2950 517
20of 6 3601 3034 2163 709 944 591
1of6 211,239 31,766 660 3598 579 2612

Limitations. This approach misses contracts if they do not
implement the event, or if the signature cannot be detected in
the code and the event is never emitted because the contract
remains unused. In rare cases, non-token contracts use this
event for other purposes.

According to the token standards, both addresses are
indexed, whereas the token amount is added as further

data. Some token contracts choose other indexing schemes,
leading to ambiguities in the interpretation of log entries.
Moreover, a few contracts do not use regular Ethereum
addresses but idiosyncratic addresses. Both situations do not
occur with fully compliant tokens.

Table 8 Contracts with
associated names

Contract with Deployments Bytecodes Skeletons
Name exists 3,531,310 90,090 50,444
Name ends with ‘token’ 113,315 22,195 11,249
Name ends with ‘coin’ 7680 5233 2673
Token/coin and non-ERC 48,467 1627 1132

@ Springer

International Journal of Data Science and Analytics

Table9 Indicator /;: single ERC-20 signatures

Header Precision Recall
allowance(address,address) 100% 26%
approve(address,uint256) 100% 23%
balanceOf(address) 66% 71%
decimals() 59% 50%
name() 22% 70%
symbol() 65% 70%
totalSupply() 100% 68%
transfer(address,uint256) 64% 64%
transferFrom(address,address,uint256) 98% 24%

10 Comparison of indicators for
non-compliant tokens

In this section, we first compare the effectiveness of the indi-
cators for non-compliant token contracts on our token ground
truth (TGT), measured by precision and recall. Then, we dis-
cuss combinations of indicators.

Let tp (true-positive) denote the number of positive TGT
instances classified correctly as a token, let fp (false-
positive) be the number of negative TGT instances classified
wrongly as a token, and let fn (false-negative) be the number
of positive TGT instances classified wrongly as a non-token.
Precision is computed as the quotient tp/(tp + fp). Itis the
ratio of token contracts correctly identified to all contracts
identified as token. A precision value close to one means that
the number of non-tokens mistaken as tokens is small; if the
indicator classifies a bytecode as a token, then it most likely
is one. Recall is computed as the quotient tp/(tp + fn). Itis
the ratio of token contracts correctly identified to all token
contracts. A recall value close to one means that the number
of positive instances not recognized as tokens is small; if the
indicator is applied to a token contract, then it is most likely
classified as such.

10.1 Indicator /1: single ERC-20 signatures

In Table 9, we list precision and recall for the indicator that
tests for the presence of a specific ERC-20 signature in the
interface of a bytecode.

Only four ERC-20 signatures with values of about 100%
are sufficiently precise to serve as indicator. Of these, only
the function totalSupply is able to detect the majority
(68%) of non-compliant tokens in the ground truth. Thus,
the indicator ‘implements totalSupply ()’ is distinctive,
even though the function is not present in about a third of the
tokens contracts of or our sample.

Table 10 Indicator /,: multiple ERC-20 signatures, in three varieties:
unrestricted selection, always including and always excluding the sim-
ple transfer function. ‘6 of 6° does not apply to non-compliant contracts.
None of the samples in the ground truth satisfies ‘5 of 6 signatures excl.
transfer’

Threshold Any signature Incl. transfer Excl. transfer

Prec. Recall Prec. Recall Prec. Recall
50f6 100% 20% 100% 20% - -
4 0of 6 100% 45% 100% 41% 100% 24%
30f6 100% 67% 100% 61% 100% 47%
20of 6 67% 71% 64% 63% 99% 69%
1of6 66% 72% 64% 64% 67% 71%
Table 11 Indicator /3: Contract name
Names ends with Precision Recall
“Token’ 99% 9%
‘Coin’ 100% 2%
“Token’ or ‘coin’ 99% 11%

The low precision of the three optional functions name,
symbol, and decimals stems from the fact that they also
appear in wallets and thus have a low specificity.

10.2 Indicator /: multiple ERC-20 signatures

In Table 10, we list precision and recall for indicators that
test whether the number of signatures that an interface shares
with the ERC-20 standard is above a given threshold. Due
to the significance of the transfer function, we consider also
the variant where the transfer function has to be among the
shared ones as well as the one where the transfer function is
omitted when counting the overlap.

Two indicators stand out, the one testing for the presence
of at least three out of six ERC-20 functions and the one with
a threshold of two out of five functions (with transfer
excluded). Both have a precision close to 100% and a recall
of almost 70%. The other indicators are either far worse in
precision or in recall.

The reason for the slightly better recall in the absence of
the function transfer may lie in its low specificity.

10.3 Indicator /5: contract name

In Table 10, we list precision and recall for the indicator that
tests for specific endings in the contract names in the source
code.

All variants show a high precision: A contract called coin
or token is indeed a token. Recall is poor, as we do not have
associated source code for most bytecodes. Moreover, even

@ Springer

International Journal of Data Science and Analytics

Table 12 Indicator I4: Transfer events

Transfer event Precision Recall
Is implemented 99% 66%
Has been emitted 99% 68%
Either of the two 99% 80%

a token contract with available source code may have a non-
descriptive name.

Because of its high precision, however, this indicator may
still be helpful when combined with others.

10.4 Indicator /: transfer events

In Table 12, we list precision and recall for the indicator that
considers the event Transfer(address,address,uint256) in the
bytecode or among the log entries.

The high precision shows that this event is indeed typical
of tokens. The two ways of detecting the event apparently
complement each other, as their combination shows a signif-
icantly better recall.

10.5 Combination of indicators

After having analyzed the four indicators individually, we
look for combinations that reduce the number of false neg-
atives and positives even better. Table 13 ranks the best
individual indicators from above as well as the best com-
binations that we found.

As demonstrated above, the best single indicator is not
related to function signatures, but to events. It can be
improved by a few percent when using it in conjunction with
one of the other top indicators, like a test for the function
totalSupply. Adding even more indicators may increase
the recall at the price of lowering precision.

One may wonder about the remaining 16% token contracts
that go undetected. A few of them are the manually selected
samples that conceptually are tokens but that bear no resem-
blance with the ERC standards. To detect such contracts, we
need more sophisticated methods that analyze the code. The
majority of undetected ‘tokens’ are contracts labeled as such
by Etherscan. Closer inspection of random samples reveals
that these contracts are in fact not tokens. As future work, we
will have to clean the data to get a better picture.

10.6 Non-compliant tokens

Based on the evaluation of indicators above, we regard a con-
tract as a non-compliant token if it complies with none of the
ERC standards, but has a transfer event in the bytecode or
the log entries or shows at least two of five ERC-20 signa-

@ Springer

el < © A A Gl & S & Q
N > N 3\ 3\ N N N > 2
M S R R N
1 1 1 1 1 1 1 1 1 1
B ERC-compliant
» § .
£ ok - EEE non-compliant I
S
<
= |
S 4k -
—
]
= 3k -
g |
1=
«©
£
5 1k -
5]
4|._..-....,....!nuiHInlll
1 1 1 1 1
block 2M 4M 6M 8M 10M

Fig. 3 Deployment of all token contracts, differentiated into ERC-
compliant ones in green and non-compliant ones in blue. The lower
horizontal axis indicates the Ethereum blocks, while the upper axis
shows the corresponding dates. Each bar represents a bin of 100,000
blocks corresponding roughly to 2 weeks (color figure online)

tures (ignoring transfer (address,uint256)) in its
interface.

Figure 3 depicts the creation of 221k (81%) compliant
and 51k (19%) non-compliant tokens over time. Both groups
show the same level of activity: 648 M (82%) of the messages
are related to compliant tokens, and 141k (18%) to non-
compliant ones. Together, tokens are responsible for 40% of
the total message volume on Ethereum.

The high number of non-compliant tokens may come as a
surprise. While it took a while in the beginning for ERC-20 to
be finalized and adopted, we still see many newly deployed
non-compliant tokens. It should be noted that for a token
to be usable, not all features of a standard are needed (e.g.,
approve, transferFrom, allowance).

11 Purity of token contracts

In this section, we focus on the distinction between security
and utility tokens. As laid out in section 3, a utility token
should provide some service or product for the token holder.
Our aim is to detect the absence of such a service or product
in the code of a token contract as an indicator for a potential
security token.

We approach the task by assessing whether a token
contract implements functionality beyond token and user
management. Our heuristic method uses a set of pattern-
based rules to partition the signatures of an interface into
the three groups ‘token-related’, ‘neutral’ and ‘other’ (see
below for details).

Definition of Purity. We call a token contract pure if its
interface consists exclusively of functions that our algorithm
classifies as ‘token-related” or ‘neutral.” For a pure token
contract, our method finds no evidence that it offers a genuine
service or product on-chain; it thus may be a security token.
Non-pure tokens, on the other hand, are more likely to be

International Journal of Data Science and Analytics

jl'ab]e 13 Combination O.f Indicator Precision Recall
indicators for non-compliant

tokens. Legend: ‘coin/token’ I coin/token 98.9% 11.3%
stands for ‘name ends with coin . .

or token’; ‘> 3 sigs’ for ‘at least 2 > 3 sigs 100.0% 67.0%
three ERC-20 signatures’; I totalSupply 100.0% 68.0%
‘totalSupply” and “approve’ fpr L+ totalSupply or approve 100.0% 68.9%
tf?li;?gsrirslz}cl: ionftét:l;;zzs;l)‘e;:tlzve I > 2 sigs excl transfer 99.3% 69.0%
sigs excl transfer’ for ‘at least Iy ETransfer 99.1% 80.0%
two ERC-20 signatures, but not I3+ Iy ETransfer or coin/token 98.9% 81.9%
;‘g"g‘?sjfj(g‘?r‘iﬁ;:f 'f‘;falt b+l ETransfer or > 3 sigs 99.1% 83.9%
transfer event in the bytecode or L+ 14 ETransfer or totalSupply 99.1% 84.1%
the log entries L+ 1 ETransfer or > 2 sigs excl transfer 99.1% 84.2%

utility tokens, implementing a service by means of the ‘other’
functions.

Limitations. This approach considers contracts in isola-
tion, disregarding companion contracts and off-chain com-
ponents. A pure token might in fact be part of a decentralized
application that, as a whole, offers a service. A comprehen-
sive assessment requires a manual analysis of the context in
which the token contract operates.

11.1 Grouping function headers

A precise classification of function headers in large quantities
would require an automated code analysis that checks for
semantic properties, which is a difficult problem and not yet
adequately solved. Instead, we present a heuristic test that is
based on the observation that the functions of token interfaces
can be categorized into the following three groups.

The token-related group comprises the core functions
mandated by the standards, as well as related functions to cre-
ate, destroy, and distribute tokens. The second group contains
the neutral functions that can appear in any type of contract,
like getters and setters for public variables or role manage-
ment. The third group consists of the remaining functions,
which may rely on tokens but are not necessary for operating
them.

Algorithm 2 classifies functions according to their name.
For a given header, it repeatedly applies rules like those in
Table 14. Each rule consists of an inclusion pattern, an exclu-
sion pattern, and a label. If the inclusion but not the exclusion
pattern matches the function header, then the header is tagged
with the label.

For our proof of concept, we specified 22 rules that divide
headers into 17 categories. The categories token, distribution,
auction, minting, approval, kyc, ico, transfer, crowdsale, air-
drop, and burning determine the group of ‘token-related’
headers, whereas the categories control, math, getter, setter,
trading, and roles constitute the ‘neutral’ group. Function

Algorithm 2 Classifying a function header wrt. its purpose.
REIN|:=(regular exp. for inclusion of header)
REEX|:=(regular exp. for exclusion of header)
LABEL|:=(label identifying class)

... 21 more triples (REIN;, REEX;, LABEL;) ...

function CLASSIFYHEADER(header)
classification = ()
for (r1, rE,) in [(REIN|, REEX|, LABEL}), ...] do
if I matches header and rE does not match header then
classification = classification U {l}
return classification

headers without a tag as well as signatures without restored
header form the ‘other’ group.

In general, we cannot expect to understand the purpose
of a contract by just looking at the names of its functions.
However, the names in the first and second group are quite
uniform and stereotypical as the functions perform standard-
ized tasks. Therefore, this heuristic seems worthwhile in the
context of token contracts.

Limitations. The effectiveness of this method hinges on
the careful choice of the rules. Moreover, for the first and
second group, the method assumes that names of func-
tions indicate the implemented functionality. Finally, 6%
of ERC20-compliant tokens delegate some function calls
to another contract (like a library) such that the signatures
extracted from the contract represent only parts of the inter-
face. To simplify our analysis, we neglect such contracts.

11.2 Share of pure token contracts

When applying the semantic classification of the function
signatures as described above, we arrive at a share of pure
contracts a listed in Table 15 and depicted in Fig. 4.
Regarding the function signatures in the 215k deployed
ERC-20 tokens, we find 59 k distinct signatures, of which we
can decode 45 k to function headers. Our algorithm classifies
37k headers as ‘token-related’ or ‘neutral’, while 8 k remain

@ Springer

International Journal of Data Science and Analytics

Table 14 Three of 22 classification rules

Rule REIN;

REEX;

LABEL;

1 (get|is|total|balance)’

‘issue’

‘getter’

If header starts with ‘get’, ‘is’, ‘total’, or ‘balance’, but not with ‘issue’, then label it as ‘getter.’

2 ‘ico’

‘unicorn|icoin’

‘ico’

If header contains ‘ico’ but neither ‘unicorn’ nor ‘icoin’, then label it as ‘ico’-related.

3 ‘icoinfo’

‘ico’

If header contains ‘icoinfo’, then label it as ‘ico’-related.

Table 15 Purity of ERC-20 compliant token contracts

other functions Bytecodes Deployments Received calls
=0 (pure) 84,639 159,239 268,909,820
>0 27,967 55,289 243,520,411
all ERC-20 112,606 214,528 512,430,231
) Q & $) $ & O &
%Q@’Q @\@9 %Qx’\’g %&9 @@Q %Q&b q?@p r&x‘f %@99
1 1 1 1 1 1 1 1 1
B with additional features |
6k - pure contracts |
5k -
I
4K - ll || ||||”
3k | | |
g
1 ! Il
2% il i
1k - !
bodk M au oM oM 1oM

Fig. 4 Deployment of ERC-20 token contracts, divided into pure
(peach) and non-pure (green) tokens. The lower horizontal axis indicates
the Ethereum blocks, while the upper axis shows the correspond-
ing dates. Each bar represents a bin of 100,000 blocks corresponding
roughly to 2 weeks (color figure online)

untagged. The latter form the ‘other’ group, together with the
14k signatures that we cannot decode.

Based on this classification of signatures, we distinguish
ERC-20 token contracts with respect to their purity and list in
Table 15 the respective numbers of bytecodes, deployments
and received calls. Interestingly, 85k distinct bytecodes
(corresponding to 159 k deployments) implement only token-
related and neutral functions. According to our definition,
they are pure tokens that do not implement a recognizable
service or product and therefore could be security tokens.

The remaining 28k bytecodes (55 k deployments) imple-
ment also functions from the ‘other’ group. For the 22k
signatures in this group, it is not apparent how to decide auto-
matically whether the corresponding code offers a genuine
service or product.

For a temporal perspective, Fig. 4 shows the deployment
of pure and non-pure tokens over time. Most of the time, a

@ Springer

vast majority of deployed tokens is pure. Only since the end
of 2019, non-pure tokens begin to dominate.

12 Purity for sample tokens

In this section, we look at several examples of tokens
to evaluate the purity approach qualitatively. We searched
for complaints, litigation, and press releases from the US
Securities and Exchange Commission (SEC)® that concern
Ethereum tokens. The summary of the settlements underlines
the importance of clarifying the type of a token (for which
we presented first steps).

12.1 Ethereum tokens and the SEC

The SEC considered the tokens in Table 16 as securities vio-
lating the Securities Act, with the exception of TKJT and Q2,
for which it issued a no-action letter.

Table 16 shows the number of token-related, neutral
and other functions for these tokens. From Etherscan, we
included the number of token holders, token transfers, and
the fully diluted market cap on October 17, 2020. For many
security tokens, the number of ‘other’ functions is zero, as
we would expect.

For tokens with ‘other’ functions, Table 17 lists the
restored headers. For CTR, all function names refer to cards,
which fits the token’s purpose as a financial service. For
BOON, ICOS, PRG, and XD, the headers indicate token-
related or administrative (neutral) functionality. A refined
set of rules might classify these cases correctly. The remain-
ing three cases are inconclusive, either because the function
header cannot readily be interpreted or because the signatures
cannot be restored.

Regarding the non-security tokens TKJT and Q2, we
expect the number of other functions to be greater than zero.
This is only the case with Q2, which is linked to playing video
games. TKJT (linked to air charter services) does not pro-
vide a service or product on the chain. Even though we have

6 https://www.sec.gov/search/search.htm.

https://www.sec.gov/search/search.htm

International Journal of Data Science and Analytics

Table 16 Ethereum tokens

assessed by SEC Token Related Neutral Other Holders Transfers Market cap (USD)
AGL 11 6 0 1 0 0
AIR 16 14 0 3792 20,748 2203k
B2G 10 2 0 1 1 0
BLV 12 0 0 140 309 0
BOON 15 6 1 1630 3802 7k
BQ 9 4 0 20,823 205,214 35k
CAT 19 5 0 220,353 292,583 430k
CTR 13 22 6 15,401 97,196 1648k
EOS 11 8 2 330,689 3,570,224 0
FLIK 15 6 0 676 5285 173k
FMT 6 2 1 91 123 0
GLA 12 5 0 9550 23,721 552k
HLTH 16 6 0 0 0 0
ICOS 11 1 1 739 10,278 249k
KIN 14 3 0 49,140 504,130 46,900k
MUN 16 2 0 0 0 0
OPP 10 1 0 1 1 0
PLX 12 1 0 22,672 95,648 5010k
PRG 10 3 1 7573 44,216 470k
Q2 17 11 5 299 511 0
SHOP 17 19 19 2638 3174 0
TKJT 16 0 0 1 2 0
TON 12 8 0 5 6 0
UKG 11 5 0 9870 46,421 1,267k
VERI 10 1 0 22,774 266,425 249,536k
XD 22 20 1 1248 13,889 102k
ZWC 10 1 0 4 6 0

no information on the originally planned off-chain services
around TKIJT, the lack of ‘other’ functions shows that the
smart contract does not provide any support in this respect.

12.2 Settlements and orders

The information in this section is a terse summary taken from
the collected SEC documents and offers a glimpse into the
downside of the token world.

Argylecoin (AGL) continued a Ponzi scheme run by Nat-
ural Diamonds in 2017 and was charged with fraud in 2019.

End of 2018, AirToken (AIR) settled with the SEC for
the ICO in 2017 by returning funds and paying USD 250k
penalty.

In August 2020, the SEC ordered Boon Tech (BOON) to
pay USD 150k penalty and disgorgement of USD 5M plus
prejudgment interest of USD 600k for the ICO in 2017/2018.

Bitqy token (BQ) refers to a market place. In 2019, the
SEC settled with Bitqyck after an alleged fraud.

Table 17 Security tokens and the functions classified as ‘other’

token other header

BOON 1 allocations(address)

CTR 6 cards_gold(uint256)
cards_start(uint256)
cards_titanium(uint256)
cards_blue(uint256)
cards_black(uint256)
cards_black_check(address)

EOS 2 push(address,uint128)
pull(address,uint128)

FMT 1 no translation

ICOS 1 approve(address,uint256,uint256)

PRG 1 approve(address,uint256,uint256)

SHOP 19 removeShop(address)
addShop(address)
no translation for 17 signatures

XD 1 upgrade(uint256)

@ Springer

International Journal of Data Science and Analytics

In May 2020, Bitclave (CAT) was ordered disgorgement
of USD 25.5M, prejudgment interest of USD 3.4M, and a
civil penalty of USD 400k.

Centra token (CTR) refers to financial services. All three
co-founders were indicted for fraud.

In 2018, the company behind EOS launched its own main-
net and was ordered to pay USD 24 M penalty for their ICOs
from mid-2016 to mid-2017.

Gladius token (GLA) is linked to a DDoS protection ser-
vice. The company reported itself and refunded the proceeds
from the ICO in 2017 to avoid a fine from the SEC.

In 2019, SimplyVital (HLTH) settled with the SEC by
returning all proceeds from the pre-sale to the investors and
by not generating any tokens (as can be seen in Table 16).

In 2019, the SEC ordered ICOBox (ICOS) to pay dis-
gorgement and prejudgment interest totaling over USD 16 M.

Kin token (KIN) is linked to a social media platform. In
mid-2019, the token migrated to its own mainnet, while the
SEC charged KiK Interactive with conducting a USD 100M
unregistered ICO in 2017.

In 2017, the SEC files charge against PlexCorps (PLX) to
halt an alleged initial coin offering (ICO) fraud that raised
up to USD 15M.

In 2020, the SEC ordered Paragon (PRG) to pay penalty
in the amount of USD 250k.

In a settlement in 2020, UnitedData (SHOP) was ordered
to pay USD 450k for its fraudulent ICO.

In June 2020, the SEC released that Telegram (TON) had
to return USD 1200M to investors and pay USD 18.5M
penalty to settle SEC charges.

In 2020, Unikrn (UKG) settled with the SEC by being
ordered to pay USD 6.1 M penalty.

In 2019, Veritaseum (VERI) was charged in fraudulent
ICO and was ordered to pay nearly USD 9.5 M.

The company SoluTech (XD) is insolvent and has ceased
business operations; it settled with the SEC paying USD 25k
penalty.

LongFin (ZWC) offered the SEC a settlement for a fraud
and violation charge.

For the other security tokens, the SEC filed a complaint.

12.3 Services and games

As a further small ground truth, we analyzed several highly
active token contracts, for which we present the results in
Table 18. The upper four examples provide diverse services
that are not reflected in the respective token contracts (as the
number of other functions is O to 1). In contrast, the lower
five examples are games that implement at least part of the
application in the corresponding token contract (6 to 47 other
functions). Games are a typical application category with a
genuine service or product.

@ Springer

It should be noted that some applications implement the
features in several interacting contracts that include a (plain)
token contract, while the logic of the application is imple-
mented in separate contracts. These tokens would show 0
other functions as well.

In summary, our approach is able to detect if a token con-
tract implements nothing but token and account management.
If the token is part of an application that claims to provide
a product or service, it has to be found elsewhere, either in
another contract or off-chain.

13 Conclusions

The overarching theme of this work is the identification and
classification of token contracts, based on the publicly avail-
able transaction data of the Ethereum main chain. Unlike
other work, we do not stop at ERC-20 compliance, but con-
sider also other ERC standards as well as non-compliant
tokens. We focus on the contract code rather than its activ-
ity, meaning that our analysis encompasses unused and top
tokens alike. As ‘token’ is a fuzzy, semantic concept, our
methods approximate it by characteristics that are readily
accessible, like the signatures of the interface or log data. We
even explore the extent to which this approach can be used
to assess the type of a token.

Compliant Tokens. The basic standard for fungible tokens,
ERC-20, is implemented by 97% of the tokens that comply
with any of the ERC standards. The standard ERC-721 for
non-fungible tokens accounts for the remaining 3%, except
for a few hundred contracts (0.2%) that implement one of
the other standards. Contracts complying with standards for
security tokens are virtually non-existent, which may be due
to unclear legal regulations. Interestingly, new token con-
tracts keep being deployed at a rate of 200 per day, which
leaves us wondering at their purpose.

Non-compliant Tokens. We developed feasible indicators
to identify a great number of non-compliant tokens that add
another 25% to the number of token contracts. They show a
similar level of activity as the compliant ones, as judged by
the number of messages. The total number of token contracts
on Ethereum up to block 10.5 M thus amounts to 272k.

Token Type. The distinction between security, utility, and
payment tokens is essential for legal consequences. As our
compilation of rulings concerning security tokens shows, the
number of SEC complaints is rising, with settlements involv-
ing fines and refunds of millions of US dollars. To support
the assessment of token types at large, we propose to divide
the functions of contract interfaces into those implementing
token-related, neutral and other functionality. We define a
token to be pure if it offers exclusively token-related and
neutral functions. Pure tokens amount to 70% of the com-
pliant tokens. According to our hypothesis, pure tokens are

International Journal of Data Science and Analytics

Table 18 Assessment of sample

. Related Neutral Other Name Purpose

tokens (services and games)
12 6 0 DxToken platform for computing
16 6 1 Dragon payment for entertainment
14 4 0 MANAToken marketplace (Decentraland)
18 7 0 SNT wallet app (Status)
9 7 13 Centurions Crypto Rome
13 18 6 Etheremon Ether monsters
11 4 7 CryptoSaga RPG
10 10 47 HyperDragons strategy battle game
18 7 46 Gods Unchained eSports

more likely to be security tokens, whereas non-pure tokens References

tend to be utility tokens. As qualitative evidence, we found

the hypothesis to be in line with the SEC filings. 1. Contract ABI Specification. https://solidity.readthedocs.io/en/

Future Work. To improve the assessment of tokens, we latest/abi-spec.html (2019). Accessed 9 June 2021
’ P ’ 2. Bittrex: Controlled wallet. https://etherscan.io/address/

need a better understanding of individual contracts and of
the context in which they are embedded. On the one hand,
we need tools for analyzing the bytecode of contracts seman-
tically, e.g., to detect data structures and code related to token
functionality. On the other hand, we need methods that detect
groups of on- and off-chain components that form an appli-
cation and have to be considered as interrelated entities.

Declarations

Funding Open access funding provided by TU Wien (TUW). The
authors declare that they have no extra funding but their employment at
the university.

Conflict of interest The authors declare that they have no conflict of
interest. In particular, they are neither invested in Ethereum nor have
ties to companies of its ecosystem.

Availability of data and materials We use publicly available transaction
data from the main chain of Ethereum (see Sect. 6). Information on
groups of smart contracts that we analyzed can be found on our website
https://ethereum.logic.at.

Code availability Our scripts are available at https://github.com/
gsalzer/ethutils.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

10.

11.

12.

0xA3C1E324CA1CE40DB73ED6026C4A177F099B5770#
code (2017). Accessed 12 Oct 2019

. Buterin, V.: Blockchain and smart contract mechanism design chal-

lenges (slides) (2017). http://fcl7.ifca.ai/wtsc/Vitalik %20Malta.
pdf. Accessed 9 Aug 2018

. Chan, W., Olmsted, A.: Ethereum transaction graph analysis. In:

12th International Conference for Internet Technology and Secured
Transactions (ICITST), pp. 498-500. IEEE (2017). https://doi.org/
10.23919/ICITST.2017.8356459

. Chen, T, Li, Z., Zhu, Y., Chen, J., Luo, X., Lui, J.C.S., Lin,

X., Zhang, X.: Understanding Ethereum via graph analysis. ACM
Trans. Internet Technol. TOIT 20(2), 1-32 (2020). https://doi.org/
10.1145/3381036

. Chen, T., Luo, X., Zhang, Y., Wang, T., Li, Z., Cao, R., Xiao,

X., Zhang, X.: TokenScope: automatically detecting inconsistent
behaviors of cryptocurrency tokens in Ethereum. In: Proceedings of
the ACM Conference on Computer and Communications Security,
pp. 1503-1520 (2019). https://doi.org/10.1145/3319535.3345664

. Chen, W.,, Zhang, T., Chen, Z., Zheng, Z., Lu, Y.: Traveling

the token world: a graph analysis of Ethereum ERC20 token
ecosystem. In: Proceedings of The Web Conference 2020, pp.
1411-1421. ACM, New York, NY, USA (2020). https://doi.org/
10.1145/3366423.3380215

. Dafflon, J., Baylina, J., Shababi, T.: ERC-777 token standard

(2015). https://eips.ethereum.org/EIPS/eip-777. Accessed 11 May
2021

. Darisi, M., Savla, J., Shirole, M., Bhirud, S.: STEM: secure token

exchange mechanisms. In: Advances in Cyber Security, vol. CCIS
1132. Springer (2020). https://doi.org/10.1007/978-981-15-2693-
0_15

Di Angelo, M., Salzer, G.: Mayflies, breeders, and busy bees in
Ethereum: smart contracts over time. In: Proceedings of the Third
ACM Workshop on Blockchains, Cryptocurrencies and Contracts,
BCC 19, pp. 1-10. ACM, New York, NY, USA (2019). https://
doi.org/10.1145/3327959.3329537

Di Angelo, M., Salzer, G.: A survey of tools for analyzing Ethereum
smart contracts. In: 2019 IEEE International Conference on Decen-
tralized Applications and Infrastructures (DAPPCON), pp. 69-78.
IEEE (2019). https://doi.org/10.1109/DAPPCON.2019.00018

Di Angelo, M., Salzer, G.: Characteristics of wallet contracts on
Ethereum. In: 2nd Conference on Blockchain Research and Appli-
cations for Innovative Networks and Services (BRAINS’20). IEEE
(2020). https://doi.org/10.1109/BRAINS49436.2020.9223287

@ Springer

https://ethereum.logic.at
https://github.com/gsalzer/ethutils
https://github.com/gsalzer/ethutils
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://solidity.readthedocs.io/en/latest/abi-spec.html
https://solidity.readthedocs.io/en/latest/abi-spec.html
https://etherscan.io/address/0xA3C1E324CA1CE40DB73ED6026C4A177F099B5770#code
https://etherscan.io/address/0xA3C1E324CA1CE40DB73ED6026C4A177F099B5770#code
https://etherscan.io/address/0xA3C1E324CA1CE40DB73ED6026C4A177F099B5770#code
http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf
http://fc17.ifca.ai/wtsc/Vitalik%20Malta.pdf
https://doi.org/10.23919/ICITST.2017.8356459
https://doi.org/10.23919/ICITST.2017.8356459
https://doi.org/10.1145/3381036
https://doi.org/10.1145/3381036
https://doi.org/10.1145/3319535.3345664
https://doi.org/10.1145/3366423.3380215
https://doi.org/10.1145/3366423.3380215
https://eips.ethereum.org/EIPS/eip-777
https://doi.org/10.1007/978-981-15-2693-0_15
https://doi.org/10.1007/978-981-15-2693-0_15
https://doi.org/10.1145/3327959.3329537
https://doi.org/10.1145/3327959.3329537
https://doi.org/10.1109/DAPPCON.2019.00018
https://doi.org/10.1109/BRAINS49436.2020.9223287

International Journal of Data Science and Analytics

16.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

. Di Angelo, M., Salzer, G.: Tokens, types, and standards: identi-

fication and utilization in Ethereum. In: International Conference
on Decentralized Applications and Infrastructures (DAPPS). IEEE
(2020). https://doi.org/10.1109/DAPPS49028.2020.00-11

Di Angelo, M., Salzer, G.: Towards the identification of security
tokens on Ethereum. In: 2021 11th IFIP International Conference
on New Technologies, Mobility and Security (NTMS), pp. 1-5
(2021). https://doi.org/10.1109/NTMS49979.2021.9432663

. Dossa, A., Ruiz, P, Vogelsteller, F., Gosselin, S.: Controlled

token standard proposal (2019). https://github.com/ethereum/
ElPs/issues/1644. Accessed 11 May 2021

Dossa, A., Ruiz, P., Vogelsteller, F., Gosselin, S.: Security
token standard proposal (2019). https://github.com/ethereum/
ElPs/issues/1411. Accessed 11 May 2021

Entriken, W., Shirley, D., Evans, E., Sachs, N.: ERC-721 non-
fungible token standard (2018). https://eips.ethereum.org/EIPS/
eip-721. Accessed 11 May 2021

Ethereum Wiki: A next-generation smart contract and decentral-
ized application platform. https://github.com/ethereum/wiki/wiki/
White-Paper. Accessed 2 Feb 2019

FINMA. https://www.finma.ch/en/documentation/dossier/
dossier-fintech/entwicklungen-im-bereich-fintech/. Accessed
12 Oct 2019

Frowis, M., Fuchs, A., Bohme, R.: Detecting token systems on
Ethereum. In: International Conference on Financial Cryptography
and Data Security. Springer (2019). https://doi.org/10.1007/978-
3-030-32101-7_7

Guo, D., Dong, J., Wang, K.: Graph structure and statistical prop-
erties of Ethereum transaction relationships. Inf. Sci. 492, 58-71
(2019). https://doi.org/10.1016/].ins.2019.04.013

Hacker, P., Thomale, C.: Crypto-securities regulation: ICOs, token
sales and cryptocurrencies under EU financial law. Eur. Co. Financ.
Law Rev. 15(4), 645-696 (2018). https://doi.org/10.1515/ecfr-
2018-0021

He, N., Wu, L., Wang, H., Guo, Y., Jiang, X.: Characterizing code
clones in the Ethereum smart contract ecosystem. In: International
Conference on Financial Cryptography and Data Security, pp. 654—
675. Springer (2020). https://doi.org/10.1007/978-3-030-51280-
435

Kondo, M., Oliva, G.A., Jiang, Z.M., Hassan, A.E., Mizuno, O.:
Code cloning in smart contracts: a case study on verified con-
tracts from the Ethereum blockchain platform. Empir. Softw. Eng.
(2020). https://doi.org/10.1007/s10664-020-09852-5

Kupriianov, M., Svirsky, J.: Base security token standard draft
(2019). https://eips.ethereum.org/EIPS/eip-1462. Accessed 11
May 2021

Lambert, T., Liebau, D., Roosenboom, P.: Security token offerings.
SSRN Electr. J. (2020). https://doi.org/10.2139/ssrn.3634626
Liu, H., Yang, Z., Jiang, Y., Zhao, W., Sun, J.: Enabling clone detec-
tion for Ethereum via smart contract birthmarks. In: IEEE/ACM
27th International Conference on Program Comprehension (ICPC),
pp- 105-115. IEEE (2019). https://doi.org/10.1109/ICPC.2019.
00024

@ Springer

28.

29.

30.

31.

32.

33.

34.

35.
36.

37.

38.

Liu, H., Yang, Z., Liu, C,, Jiang, Y., Zhao, W., Sun, J.: EClone:
detect semantic clones in Ethereum via symbolic transaction
sketch. In: Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2018, pp.
900-903. ACM (2018). https://doi.org/10.1145/3236024.3264596
Norvill, R., Fiz, B., State, R., Cullen, A.: Standardising smart con-
tracts: automatically inferring ERC standards. In: 2019 IEEE Inter-
national Conference on Blockchain and Cryptocurrency (ICBC),
pp.- 192-195. IEEE (2019). https://doi.org/10.1109/BLOC.2019.
8751350

Oliveira, L., Zavolokina, L., Bauer, 1., Schwabe, G.: To token or
not to token: tools for understanding blockchain tokens. In: Inter-
national Conference on Information Systems (ICIS). AIS eLibrary
(2018). https://doi.org/10.5167/uzh- 157908

Radomski, W., Cooke, A., Castonguay, P., Therien, J., Binet, E.,
Sandford, R.: ERC-1155 multi token standard (2015). https://eips.
ethereum.org/EIPS/eip-1155. Accessed 11 May 2021

Rohr, J., Wright, A.: Blockchain-based token sales, initial coin
offerings, and the democratization of public capital markets. Hast-
ings LJ 70, 463 (2019)

Shiple, J., Marks, H., Zhang, D.: Ldgrtoken standard draft (2019).
https://eips.ethereum.org/EIPS/eip-1450. Accessed 11 May 2021
Somin, S., Gordon, G., Altshuler, Y.: Network analysis of ERC20
tokens trading on ethereum blockchain. In: International Confer-
ence on Complex Systems, pp. 439-450. Springer (2018). https://
doi.org/10.1007/978-3-319-96661-8_45

U.S. Supreme Court: SEC v. W.J. Howey Co., 328 U.S. 293 (1946)
Victor, F,, Liiders, B.K.: Measuring Ethereum-based ERC20 token
networks. In: Goldberg, I., Moore, T. (eds.) Financial Cryptography
and Data Security (FC), LNCS, vol. LNSC 11598, pp. 113-129.
Springer, New York (2019). https://doi.org/10.1007/978-3-030-
32101-7_8

Vogelsteller, F., Buterin, V.: ERC-20 token standard (2015). https://
eips.ethereum.org/EIPS/eip-20. Accessed 11 May 2021

Wood, G.: Ethereum: A secure decentralised generalised trans-
action ledger. Technical report, Ethereum Project Yellow Paper
(2019). https://ethereum.github.io/yellowpaper/paper.pdf

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

https://doi.org/10.1109/DAPPS49028.2020.00-11
https://doi.org/10.1109/NTMS49979.2021.9432663
https://github.com/ethereum/EIPs/issues/1644
https://github.com/ethereum/EIPs/issues/1644
https://github.com/ethereum/EIPs/issues/1411
https://github.com/ethereum/EIPs/issues/1411
https://eips.ethereum.org/EIPS/eip-721
https://eips.ethereum.org/EIPS/eip-721
https://github.com/ethereum/wiki/wiki/White-Paper
https://github.com/ethereum/wiki/wiki/White-Paper
https://www.finma.ch/en/documentation/dossier/dossier-fintech/entwicklungen-im-bereich-fintech/
https://www.finma.ch/en/documentation/dossier/dossier-fintech/entwicklungen-im-bereich-fintech/
https://doi.org/10.1007/978-3-030-32101-7_7
https://doi.org/10.1007/978-3-030-32101-7_7
https://doi.org/10.1016/j.ins.2019.04.013
https://doi.org/10.1515/ecfr-2018-0021
https://doi.org/10.1515/ecfr-2018-0021
https://doi.org/10.1007/978-3-030-51280-4_35
https://doi.org/10.1007/978-3-030-51280-4_35
https://doi.org/10.1007/s10664-020-09852-5
https://eips.ethereum.org/EIPS/eip-1462
https://doi.org/10.2139/ssrn.3634626
https://doi.org/10.1109/ICPC.2019.00024
https://doi.org/10.1109/ICPC.2019.00024
https://doi.org/10.1145/3236024.3264596
https://doi.org/10.1109/BLOC.2019.8751350
https://doi.org/10.1109/BLOC.2019.8751350
https://doi.org/10.5167/uzh-157908
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1155
https://eips.ethereum.org/EIPS/eip-1450
https://doi.org/10.1007/978-3-319-96661-8_45
https://doi.org/10.1007/978-3-319-96661-8_45
https://doi.org/10.1007/978-3-030-32101-7_8
https://doi.org/10.1007/978-3-030-32101-7_8
https://eips.ethereum.org/EIPS/eip-20
https://eips.ethereum.org/EIPS/eip-20
https://ethereum.github.io/yellowpaper/paper.pdf

	Identification of token contracts on Ethereum: standard compliance and beyond
	Abstract
	1 Introduction
	2 Token basics
	2.1 Benefits
	2.2 Acquisition and value
	2.3 Design of token contracts

	3 Types of tokens
	3.1 Howey test
	3.2 Definitions
	3.3 Categorization

	4 Interface standards for tokens
	4.1 Accepted token standards
	4.2 Proposed security token standards

	5 Comparison to related work
	5.1 Ethereum token networks and transactions
	5.2 EVM bytecode analysis

	6 Terms and data
	6.1 Terms
	6.1.1 Accounts, transactions, and messages
	6.1.2 Abstract binary interface (ABI)

	6.2 Database
	6.2.1 Contracts
	6.2.2 Bytecodes
	6.2.3 Logs
	6.2.4 Messages
	6.2.5 Proxies

	7 Methods for ERC-compliant token contracts
	7.1 Skeletons
	7.2 Sectioning EVM bytecode
	7.3 Extracting function signatures
	7.4 Extracting event signatures
	7.5 Header restoration

	8 ERC-tokens over time
	9 Identification of non-compliant tokens
	9.1 When is a contract a token contract?
	9.2 A ground truth for token contracts
	9.3 Indicator I1: single ERC-20 signatures
	9.4 Indicator I2: multiple ERC-20 signatures
	9.5 Indicator I3: contract name
	9.6 Indicator I4: transfer events

	10 Comparison of indicators for non-compliant tokens
	10.1 Indicator I1: single ERC-20 signatures
	10.2 Indicator I2: multiple ERC-20 signatures
	10.3 Indicator I3: contract name
	10.4 Indicator I4: transfer events
	10.5 Combination of indicators
	10.6 Non-compliant tokens

	11 Purity of token contracts
	11.1 Grouping function headers
	11.2 Share of pure token contracts

	12 Purity for sample tokens
	12.1 Ethereum tokens and the SEC
	12.2 Settlements and orders
	12.3 Services and games

	13 Conclusions
	References

