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Kurzfassung v

Schwerpunkt der vorliegenden Arbeit ist die Bestimmung und Analyse von Ein- und Zwei-

Teilchen-Funktionen stark korrelierter Elektronensysteme. Gerade die Analyse der Zwei-Teil-

chen-Funktionen legt die Einführung neuer bosonischer Quasiteilchen, den π-tonen, nahe. Dies

geschieht durch Anwendung von Modellsystemen, konkret, dem Hubbard, erweiterten Hubbard

und Pariser-Parr-Pople Modell, sowie auf Basis unterschiedlicher Methoden.

Mit der Determinanten-Quanten-Monte-Carlo-Simulation wird die Ein-Teilchen Vertexfunk-

tion, die Selbstenergie Σ, bestimmt. Dabei wird eine Darstellung ausgearbeitet, welche den

zweidimensionalen Impulsvektor k auf die eindimensionale Dispersionsrelation εk abbildet, d.h.

Σk Ñ Σεk . Dies ermöglicht eine vollständige, intuitive Darstellung, mit deren Hilfe die einzel-

nen Beiträge auf ihre physikalischen Ursachen zurückgeführt werden können.

Die Analyse von Zwei-Teilchen-Funktionen setzt im Allgemeinen eine Methode voraus, die

Ein- und Zwei-Teilchen-Größen konsistent berücksichtigt. Deshalb wird auf den Parquetfor-

malismus, hier in der Parquetnäherung, zurückgegriffen. Ferner, wird die Wechselwirkung zwis-

chen den Elektronen auf eine verallgemeinerte Dichte-Dichte-Wechselwirkung erweitert. Damit

lassen sich Systeme, wie z.B. das eindimensionale Benzolmolekül in der Pariser-Parr-Pople

Näherung, simulieren. Hierbei kann ein verstärkter Einfluss der Zwei-Teilchen-Vertexfunktion

beobachtet werden. Die Ein-Teilchen-Vertexfunktion korreliert hingegen weniger stark. Auch

für ein Quadratgitter ist diese Tendenz bei immer stärker werdenden Ladungsdichtefluktuatio-

nen ersichtlich.

Für eine detaillierte Analyse, insbesondere der Zwei-Teilchen-Vertexfunktion, wird die Reak-

tion des Systems auf ein externes Feld durch die optische Leitfähigkeit bestimmt. Die Vertexko-

rrekturen der optischen Leitfähigkeit sind dabei von transversalen Teilchen-Loch Anregungen

verursacht. Da diese mit einem Impulsvektor q “ pπ, ..q verbunden sind, koppelt das ein- und

ausgehende Lichtquantum an je zwei Elektron-Loch-Paare. Dies scheint allgemein für stark ko-

rrelierte Elektronensysteme zu gelten und motiviert deshalb die Einführung der entsprechenden

Polaritonen als π-tonen.
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Abstract vii

Strongly correlated electrons are studied in one and two dimensions with a special focus on

one- and two-particle vertex functions; whereby the latter hints to new bosonic quasiparticles,

coined π-tons. The systems investigated are the Hubbard, extended Hubbard and Pariser-

Parr-Pople model using various approaches.

Firstly, the determinant quantum Monte Carlo simulation is utilized to investigate the one-

particle vertex function, the self-energy Σ. In many cases, even quite close to the pseudogap

phase or for doped systems, a convenient mapping of the two-dimensional momentum k onto

the one-dimensional dispersion relation εk, via Σk Ñ Σεk , is sufficient. This allows for a

convenient parametrization, a full visualization and thus, for an association to the underlying

physical principles.

Investigating of two-particle vertex functions calls for a method which treats one- and two-

particle vertex functions on the same footing. To achieve this goal, secondly, the parquet

formalism is applied in the parquet approximation. Extending the interaction also beyond its

local contribution enables the simulation of the benzene molecule by the Pariser-Parr-Pople

model. In this context, two-particle vertex corrections are found to be of major importance

although one-particle functions, such as the self-energy, display less correlated behavior of

the electrons. A similar tendency is observed for the two-dimensional square lattice when

approaching the regime of strong charge fluctuations.

Thirdly, the influence of the two-particle vertex function is analyzed from a different per-

spective; namely by looking at the optical conductivity, i.e. the response of the system to an

electromagnetic field. As the respective two-particle vertex corrections can be disentangled in

the parquet formalism, transversal particle-hole contributions, associated with the momentum

q “ pπ, ..q, are identified to be of significant impact. These fluctuations couple to the incom-

ing and outgoing light through two particle-hole pairs. This seems to be generally valid for

strongly correlated electron systems and suggests introducing the corresponding new polaritons

as π-tons.
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1

1. Introduction

Complexity of nature and thus its beauty is displayed in solid state physics especially when

going from microscopic to macroscopic length scale. Theory, in this sense and bearing in mind

more specifically this thesis, incorporates processes on the microscopic level which displays its

richness in macroscopic phenomena. Finite resources force the theory and thus the models to

sometimes harsh approximations. Consequently, theory needs to interpolate between simpli-

fying the description and still outlining the processes. The Hubbard model represents such a

compromise. Kinetic processes are simulated as tight binding Hamiltonian, by a hopping from

site to neighboring sites. Likewise, interactions among its participants are also only considered

within a limited discretized region. Only the local on-site interaction is taken, and only a

single orbital is considered. However, as the quantum statistical nature of the participants

is completely incorporated the interplay of these kinematics and interactions already leads to

a rich class of phenomena. For instance, the valence electrons of transition metal oxides can

be therewith described; thus explaining the origins of metal-insulator transitions, quantum

criticality or even high-temperature superconductivity.

In solid state theory the vast number of particles is in most cases the bottleneck of the

simulation. This happens, in particular, when processes have to be considered which describe

correlations between these particles. Mean-field theories provide an opportunity to overcome

this barrier. These theories map the many-body problem back to a one-particle problem which

is coupled to a mean field. In this sense many-body effects can be displayed. Depending on

the mean-field, the theory will however neglect fluctuations in space and/or time. In certain

limits, close to phase transitions or in low dimensional systems these fluctuations need to

be incorporated as these are the underlying driving force. An example of such a mean-field

theory is the Hartree-Fock method which neglects both spacial and temporal fluctuations;

dynamical mean-field theory (DMFT) only neglects the spatial correlations. Nevertheless,

mean-field theory still provides for many concepts a starting point. For instance, the parquet

method in the parquet approximation (PA) or in the diagrammatic vertex approximation

(DΓA) constitutes a diagrammatic extension to DMFT. A complete different approach is to

reduce the number of possible configurations and gain probabilities by sampling the selected

configurations with e.g. Monte Carlo methods. Both realizations are utilized in the course of

the thesis; however tackling different aspects of the strongly correlated electron problem.

The thesis is organized as follows: Chapter 2 introduces the underlying models, the (ex-
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tended) Hubbard model, as well as a specific application thereof, the Pariser-Parr-Pople (PPP)

model. Afterwards the thesis is subdivided into three parts. These parts in turn contain

an introductory, building the theoretical framework, and subsequently, the results, gathered

throughout this work. The first main part, Chapter 3, analyzes and parametrizes the mo-

mentum structure of the self-energy. In this respect, the necessary concept and method is

introduced; namely the Green’s function concept along with one-particle functions, such as

the self-energy, and the method of choice: the determinant quantum Monte Carlo (DQMC)

simulation. In the second main part, Chapter 4, the interaction term is extended to allow for

interactions also between more distanced electrons. As DQMC becomes excessively expensive,

the parquet method, is utilized. The considered systems are the benzene molecule within the

PPP model and the extended Hubbard model on a square lattice in two dimensions (2D). As

this method includes one-particle and two-particle functions on the same footing, the latter

can be directly used to deduce correlation functions. Therefore, the final main part, Chapter 5,

specifically shows optical conductivities for both the benzene and the 2D Hubbard model. The

necessary formulas are derived previously in this context. Finally Chapter 6 summarizes the

main results.
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2. Models and Hamiltonians

The following section, Sec. 2.1, outlines the Hubbard model [33;35;27] starting from basic solid

state physics [2] and quantum field theory. [47;18] Originally, the Hubbard model was intro-

duced by Gutzwiller, Hubbard and Kanamori in the early 1960s. Already in the 1950s, the

chemists Pariser, Parr and Pople explicitly utilized an extended Hubbard model, which was

not known under this name at that time, in order to describe unsaturated carbon-based or-

ganic molecules. [53;54;55] This model, specifically applied on the benzene molecule, is introduced

thereafter in Sec. 2.2. General notations are defined moreover in App. A.1.

2.1. Hubbard model

In principle, setting up the theory of solids is straightforward. It entails the kinematics and

interaction between all its particles. The dynamics of the much heavier atoms mostly need not

to be considered compared to the electrons; this justifies the Born-Oppenheimer approximation.

For a non-relativistic description,1 the corresponding Hamiltonian is thus of the form

H “

Ne
ÿ

i“1

«

~2k2
i

2m
´

N
ÿ

m“1

Zme
2

4πε0

1

|ri ´Rm|

ff

`
1

2

Ne
ÿ

ij‰i

e2

4πε0

1

|ri ´ rj|
. (2.1)

This defines the complex interplay in a solid for Ne electrons of charge ´e, mass m, position ri

and momentum ki with the N atoms of charges Zme and lattice positions fixed at Rm. ε0 and

~ denote the vacuum dielectric constant and Planck’s constant, respectively. In the following,

the physical constants are set to one (~ “ e “ 1). The main issue of solving this problem arises

out of the large number of electrons, their quantum statistical nature and their correlations

amongst each other.

For a solid the underlying lattice symmetry further simplifies the problem. It results in

a periodization of position (r space). The crystalline structure and the resulting discrete

translational symmetry is a main characteristic of solids. Mathematically this is stated within

the Bloch theorem. In order to set up a lattice structure, one defines a single building block,

which is called basis and comprises one or more atoms. This unit is periodically reoccurring

by multiple distances of the lattice vector ai, namely at positions Rm “ miai for m P Z and

1 The main corrections are the relativistic spin-orbit coupling and the electron-phonon coupling.
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for repeated indices to be summed (Einstein notation). Consequently, the lattice vectors span

the basis and the norm, ai, is conveniently set to one. If the Hamiltonian H exhibits this

symmetry, the system stays invariant when applying the translational operator TRm , shifting

r by Rm. Therewith simultaneous eigenfunctions φ for the Hamiltonian and the translational

operator can be chosen which fulfill

Hφkprq “ Ekφkprq (2.2)

TRmφkprq “ eikRmφkprq (2.3)

for each momentum k. Due to lattice periodicity, the Fourier transform can be expanded by

eiKpr`Rmq “ eiKr. This defines the reciprocal lattice with its basis vectors bi as K “ mibi.

Reciprocity is enforced by aibj “ 2πδij and allows to build the eigenbasis of the Hamiltonian

by means of φkprq “ eikrukprq for a lattice periodic function ukprq. This follows when applying

the operator TRm on the aforementioned equality, which results in the eigenequation, Eq. (2.3).

The periodicity in r space has the consequence, that if k is associated to such an eigenstate,

k`K is associated to the same eigenstate. Hence, calculations can be restricted to a smaller

range, spanned by the reciprocal lattice basis vectors bi. In case of the primitive cell in r space,

the range in k space is defined by the so-called first Brillouin zone (BZ); e.g. in one dimension

(1D) k P p´π, πq. For the numerical simulations, the k space is discretized to N points for

each dimension and furthermore defined on p0, 2πq instead of p´π, πq in the following.

In order to finally come up with the Hubbard Hamiltonian, the generality of Eq. (2.1) is

surely lost. However, simplifications are necessary for a quantum mechanical treatment in a

regime when correlations among electrons are comparable to the dynamics of the electrons

themselves.

For the Hubbard Hamiltonian, kinematics T are simulated by letting electrons hop on a

discretized lattice and thus, T is defined by a one-particle process. In this respect, a tight

binding of the orbitals is enforced. The interaction term U is modeled by a purely local

density-density potential and hence, by a two-particle quantity. Summarizing, the Hubbard

Hamiltonian reads

H “
ÿ

ij,σ

tijc
:

iσcjσ

”T

`
U

2

ÿ

i,σ

niσnip´σq

”U

(2.4)

for the local interaction constant U . As non-local density-density interactions are likewise

studied, the Hamiltonian is extended to

H “
ÿ

ij,σ

tijc
:

iσcjσ `
1

2

ÿ

ij,σσ1

Vi´jniσnjσ1

”V

. (2.5)

In the notation of second quantization, electrons of spin with z-component σ P tÒ, Óu are
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created (annihilated) on lattice site i by applying the creation operator c:iσ (and, respectively,

the annihilation operator ciσ). Quantum statistics, especially as electrons follow Fermi-Dirac

statistics, is considered in the algebra to which the operators belong. For fermionic particles

the Grassman algebra, meaning that the operators anticommute, is applied,

 

c:iσ, c
:

jσ1

(

`
“
 

ciσ, cjσ1
(

`
“ 0 (2.6)

 

ciσ, c
:

jσ1

(

`
“ δijδσσ1 . (2.7)

The density or more specific the particle number of electrons with spin σ on lattice site i is

denoted by niσ, which is nothing but niσ “ c:iσciσ. In the thesis, the hopping matrix element tij

is restricted to contribute only if the lattice site i is adjacent to site j and vice versa. Energy

units are given in units of t “ 1. Equally, the interaction strength Vi´j in Eq. (2.5) depends

only on relative distances |i´ j|; however, it is not necessarily restricted to neighboring sites.

As calculations are performed in k space, the Hamiltonian is denoted in its momentum

representation using the Fourier transformations defined in Eqs. (A.3) and (A.4),

H “
1

N

ÿ

k,σ

εkc
:

kσckσ `
1

2N3

ÿ

kk1q,
σσ1

vqc
:

kσc
:

pk1`qqσ1ck1σ1cpk`qqσ . (2.8)

The dispersion relation εk and potential vq reads

εk ” ´t
ÿ

lPZ1

e´irlk (2.9)

vq “ U ` Vq ”
ÿ

tZlu

ÿ

lPZl

Vle
´irlq “ V0

”U

`
ÿ

lPZ1

Vl
”V1

e´irlq `
ÿ

lPZ2

Vl
”V2

e´irlq ` . . . . (2.10)

The coordination number Zl accounts for the neighboring sites by l “ 1, next-neighboring sites

by l “ 2, and so forth. The dispersion relation and likewise, the interaction strength Vl depend

on the geometry of the lattice. For a 2D square lattice, one obtains

εk “´ 2t
ÿ

iPtx,yu

cospkiq (2.11)

vq “U ` 2V1

ÿ

iPtx,yu

cospqiq ` 2V2

ÿ

iPtx,yu

„

cosp2qiq `
1

2
cospqi ˘ qi`1q



` 2V3

ÿ

iPtx,yu

„

cosp3qiq ` cosp2qi ˘ qi`1q



` . . . . (2.12)

Furthermore, to calculate in the grand canonical ensemble, the term µN “ ´µ
ř

i ni with

the chemical potential µ has to be added to the Hamiltonian, Eq. (2.8). In this respect,

the dispersion relation is redefined as ξk “ εk ´ µ. As physics stays invariant in shifting

the Hamiltonian by constants the previous mentioned term is added such that the chemical

potential is zero at half-filling, meaning n “ Ne{N “ 1.
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For a symmetric system with respect to particles and holes, the energy for an empty filling,

n “ 0 with En“0 “ 0, has to be equal to the energy of a completely filled system, n “ 2. The

latter energy reads En“2 “ 2N
ř8

l“0 ZlVl ´ 2µN . For l “ 0 and V0 “ U , the Pauli principle

allows only for one spin combination, namely the one of opposite spin. Hence, an extra factor

of one half has to be considered. The chemical potential is shifted, finally, by

µ0 “
U

2
`

8
ÿ

l“1

ZlVl . (2.13)

Therewith the Hamiltonian is symmetric for particles and holes.

In general, the Hubbard model on its own is too simplistic to describe real materials. It

is of special importance as it completely incorporates quantum effects. Especially, for real

material simulations, the Hubbard model provides an ingredient to tackle complexity of solid

states if combined with other approaches; such as density functional theory. Furthermore, due

to its tunable parameters, t and V , realistic systems can be simulated to some extent. These

parameters can be evaluated approximately or fitted to experimental data. For instance, this

semi-empirical approach is done for the PPP model, introduced in the following, Sec. 2.2.

2.2. Pariser-Parr-Pople model

The Pariser-Parr-Pople (PPP) method provides a (low temperature) description of molecular

orbitals of unsaturated hydrocarbon molecules. [53;54;55] An ideal representative of this class is

the benzene molecule, C6H6, for which the numerical simulations are exclusively done in this

thesis.

The structural formula of benzene is displayed in Fig. 2.1. The atomic number of hydrogen

(H) is two and the atomic number of carbon (C) is six. The electronic configuration of hydrogen

is 1s1 and the configuration of carbon is rHes2s22p2. The 1s-orbital of hydrogen hybridizes

with the three orbitals 2s, px, py of carbon (excluding its pz-orbital) to form sp2-orbitals. This

so-called σ-bonds align by 120˝ around the carbon atoms, and hence connect the carbons by a

hexagonal ring with one hydrogen atom connected to each carbon. The remaining pz-orbitals

of the carbons likewise overlap via π-bonds. [42]

The σ-bonds are assumed to be completely filled in the PPP model and thus affect the

system, similar to the other core electrons, only via screening. The dynamics and correlation

constitutes solely of those for the electrons of the unsaturated π-electrons. Thus, in principle

any unsaturated hydrocarbon molecule can be approximated qualitatively with the PPP model.

The 1D extended Hubbard Hamiltonian, Eq. (2.5), is in this regard a second quantized

representation of the PPP model. The π-electrons of the molecule are mapped to the cp:q-
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H

Fig. 2.1.: Molecular structure of benzene (left) and in side view (middle). The solid lines
connecting the carbon and hydrogen atoms represent σ-bonds (single lines) and π-bonds (one
of the double lines). The pz-orbitals (green-shaded cones, middle figure) of the respective π-
bonds point out of the plane. [42] For the simulation within the PPP model, the pz-orbitals lead
to a hexagonal ring (right figure).

operators and for periodic boundary conditions the Hamiltonian for benzene reads

H “

6
ÿ

ij“1,σ

tijc
:

iσcjσ `
1

2

6
ÿ

i“1,
σσ1

niσ

„

Uniσ1δσp´σ1q ` V1npi˘1qσ1 ` V2npi˘2qσ1 `
V3

2
npi˘3qσ1



. (2.14)

The system is displayed in the right panel of Fig. 2.1. In principle, the hopping parameter

t and interaction strength, Vl P tU, V1, V2, V3u, can be deduced by specifying the underlying

process along with its transition probability when going from Eq. (2.1) to Eq. (2.5). In this

respect, tij is the overlap of the π-bonds among the carbon site i to its nearest neighbor j.

The interaction Vl interpolates between the Coulomb potential and a short-range potential of

the orbitals, e.g. realized via the Ohno parametrization,

Vl “
U

a

1` parlq2
. (2.15)

Following Bursill et al. [15] the parameters are finally obtained via fits to experimental data.

The constant a is set to a “ U{pα~cq “ U{p5.67tÅq and U in units of t. The inter-atomic

distance is labeled by rl. In benzene, the effective distance of two neighboring carbon atoms in

the ring is r1 “ 1.4 Å; the remaining distances are obtained by the geometry of the hexagon,

r2 “
?

3 r1 and r3 “ 2 r1. With t “ 1 and U “ 3.962t, the additional non-local interaction

constants are V1 “ 2.832t, V2 “ 2.014t and V3 “ 1.803t.
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3. One-particle quantities – related

method and outcome

The focus of the following chapter is on one-particle properties and especially on the DQMC

method [13;43] which is not explicitly on the level of two-particle or many-particle quantities.

Approximations within this method are made such that many-particle contributions do not

appear in a calculation. This is in contrast to the subsequent chapter, Chapter 4. Here,

approximations are made on the level of two-particle functions and consequently, these objects

also appear in computations of one-particle quantities.

One-particle functions possess importance even on the imaginary axis and even if these

functions are not directly accessible in experiments such as the self-energy. In this sense, there

is a short part on theory, in Sec. 3.1, which introduces the formalism of Green’s functions

and their representation via Feynman diagrams. [18;47;62] A detailed derivation of the formula to

compute the self-energy is done in App. A.2. Subsequently, the method of choice is introduced

in Sec. 3.2 (with more details to be found in App. B) [23;6;82] to finally obtain in Sec. 3.3 intriguing

insights for the self-energy. These results are already published in Pudleiner et al. [57]

3.1. Green’s function and representation

Solving a Hamiltonian, such as Eq. (2.1), means determining the N -particle eigenfunctions

φpr1 .. rNq and the respective eigenvalues E. The many-body eigenvalue problem is thus

Hφpr1 .. rNq “ Eφpr1 .. rNq . (3.1)

The time evolution of the system is obtained by solving the Schrödinger equation,

iBtφpr1 .. rNq “ Hφpr1 .. rNq , (3.2)

for the many-particle wave functions φ. These eigenfunctions describe the behavior of all N

particles involved in the system. In a macroscopic solid the number of particles is in the order

of the Avogadro constant, „ 1023. Consequently the calculation and especially the storage

of this many-particle wave function is impossible. But it is not necessary as the knowledge
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of each state for all these particles is not as much of interest as the collective behavior of all

participants. In this regard, the response of the complete system when exciting one, two or

more particles is computed; and therewith the respective Green’s function. [62]

In this regard, there is a change of focus from wave functions to operators and to second

quantization. The system evolves according to the time evolution of its operators, Optq “
eitHOe´itH. In this formalism, the time evolution of the system can be described by the

Heisenberg equation of motion (EoM),

iBtOptq “ tOptq,Hu´ . (3.3)

The expectation value at thermal equilibrium in a grand canonical ensemble reads

xOptqy “ tr
 

e´βpH´µN qOptq
(

Z
. (3.4)

This also defines the partition function Z as Z “ tr
 

e´βpH´µN q
(

. Furthermore, rotating

the real time argument t to the imaginary time τ “ it, restricts the time interval for t P

p´8,8q to τ P p´β, βq; and because of time translational invariance, effectively, to τ P

p0, βq. Consequently, the Green’s function can be expanded in a Fourier series with discrete

frequencies, the Matsubara frequencies. The corresponding EoM in imaginary time reads

BτOpτq “ tH,Opτqu´ . (3.5)

3.1.1. N -particle Green’s function

The one-particle, two-particle, and more generally, the N -particle Green’s function is defined

as

G12pτ2q ” Gp1qp12q “ ´
A

T
”

c2pτ2qc
:

1

ıE

(3.6)

Gp2qp12, 34q “
A

T
”

c4pτ4qc
:

3pτ3qc2pτ2qc
:

1

ıE

(3.7)

GpNqp1 .. 2Nq “ p´1qN
A

T
”

c2Npτ2Nq .. c2pτ2qc
:

1

ıE

. (3.8)

The indices include the position and spin via 1 ” px1, σ1q; and partially the time τ via

1 ” px1, τ1, σ1q. The time-ordering operator, denoted by T, orders the subsequent operators

according to their time argument. Operators, earlier in time, will be ordered to the right.

In the definitions of Eqs. (3.6)–(3.8), some symmetries of the Hamiltonian, Eq. (2.8), are

already exploited. For instance, the fermionic particle number is conserved and consequently,

the number of annihilation operators equals the number of creation operators. The time

translational invariance is exploited likewise and leads to the number of time arguments reduced

by one. For antiperiodic Green’s functions in τ , such as for fermions, the Fourier coefficients

belonging to even Matsubara frequencies vanish. Thus fermionic Matsubara frequencies are
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defined as νn “
π
β
p2n ` 1q for n P Z. In the same manner, bosonic Matsubara frequencies

are defined as ωn “
π
β
2n as the Green’s function is periodic in τ . For better readability, the

translational symmetry in r is not utilized in Eqs. (3.6)–(3.8). It also reduces the space indices

by one. The SUp2q-spin symmetry greatly diminishes the combinations with respect to the

spin which have to be finally computed. [62]

3.1.2. Dyson-Schwinger equation

The Dyson-Schwinger equation (DSEq.) is obtained by evaluating the derivation with respect

to the time argument of the one-particle Green’s function. In general, for the N -particle

Green’s function, this results in

Bτ2G
pNq
p1 .. 2Nq “p´1qNBτ2

A

T
”

c2Npτ2Nq .. c2pτ2qc
:

1

ıE

(3.9)

9˘ δpτ2 ´ τkqG
pNq
p1 .. 2Nq ` p´1qN

A

T
”

c2Npτ2Nq .. Bτ2c2pτ2qc
:

1

ıE

. (3.10)

The first term in Eq. (3.10) results from the derivation of the time-ordering operator. In this

respect the sign depends on the prefactor, p´1qN , and the ordering of operators and thus, on

the positioning of τ2 within the other time-slices τk for k P t3 .. 2Nu. The second contribution

to Eq. (3.10) is further evaluated by the EoM, defined in Eq. (3.5). This leads to

Bτ2c2pτ2q “

!

H, c2pτ2q

)

´
“ eHτ2

!

T ` V , c2

)

´
e´Hτ2 . (3.11)

The explicit relation when inserting the Hamiltonian, Eq. (2.8), is derived in App. A.2. In

general, it is of the form Bτ2c2 “ ´ε2c2 ´
ř

3,4 v3´4c
:

4c3c2`3´4. Reinserting this into Eq. (3.10),

results in an N -particle Green’s function and in an pN`1q-particle Green’s function; and thus,

a non-closed form. A closed form is immediately obtained when removing the interaction part

by vq “ 0 in Eq. (2.8). The non-interacting one-particle Green’s function in k space then reads

G0,k “
1

iνn ´ ξk
(3.12)

for ξk “ εk ´ µ and for the combined momentum-frequency notation k “ pk, νnq. In order to

obtain a similar closed form for the interacting problem, a general vertex function is introduced

which includes consequently all higher-order Green’s functions. For the one-particle Green’s

function, this is denoted as self-energy. The DSEq. is derived explicitly in App. A.2 and reads

Σk “´
1

pNβq2

ÿ

k1,q

Gk`qGk1Gk1`q

„

U

2
rFd ´ Fms

kk1q
` VqF

kk1q
d



´
1

Nβ

ÿ

k1

Gk1Vk1´k . (3.13)

The Hartree term is explicitly not considered, compared to the derived formula, Eq. (A.32), as

it will be canceled by shifting the chemical potential according to Eq. (2.13) for particle-hole

symmetry. With the definition of the self-energy the closed form, the Dyson equation (DEq.)
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for the one-particle Green’s function in k space finally reads

Gk “
1

iνn ´ ξk ´ Σk

. (3.14)

Furthermore, with the spectral representation, Eq. (C.9), the one-particle Green’s function is

written as

Gk “

ˆ
dν

Akpνq

iνn ´ ν
(3.15)

for real frequencies ν and with the use of the spectral function

Akpνq “ ´
1

π
ImGpk,ν`iδq ” ´

1

π
ImGR

pk,νq . (3.16)

The latter defines the retarded Green’s function GR which is analytic in the upper-half complex

plane. The spectral function allows for interesting insights in collective properties of the solid.

Thus, the k-integrated (local) spectrum, Aloc, specifies electronic properties of the system such

as metallic or insulating properties, on the one hand. These properties are extracted by the

size of the indirect spectral band gap, ∆, at the Fermi edge of the system. The k-resolved

spectral function, on the other hand, gives access to determine direct spectral band gaps, ∆k,

and thus, if present, features from a pseudogap.

3.1.3. Feynman diagrams

A graphical representation of Green’s function with its corresponding vertex functions is par-

ticularly useful. In this respect, the Feynman diagrams are introduced in the following, which

makes the Green’s function approach of the many-body theory more comprehensible. The

DEq. is as an infinite sum, by use of the non-interacting Green’s function, Eq. (3.12), and the

DEq. itself, Eq. (3.14). This leads to

Gk “

”

G´1
0,k ´ Σk

ı´1

“ G0,k

8
ÿ

n“0

rΣkG0,ks
n . (3.17)

This geometric series requires the self-energy to be one-particle irreducible, meaning that the

vertex function does not fall into two parts by cutting a one-particle Green’s function. In

this sense, the self-energy is a connected one-particle vertex function. As the self-energy

is directly linked to the interaction term V in Eq. (2.8) it consists of a composition of one-

particle Green’s functions with insertions from the interaction vertex. These compositions have

to be one-particle irreducible. This can be seen from Eq. (3.17), as all one-particle reducible

contributions already appear in the sum itself. Rigorously, it follows from Eq. (3.13).

This formalism becomes much more accessible by rewriting equations and quantities in

terms of Feynman diagrams. The expectation value of the one-particle Green’s function,
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Gk

1: kσ 2: kσ
=

G0,k

1: kσ 2: kσ
+

G0,k

Σk

Gk

1: kσ 2: kσ

Fig. 3.1.: Graphical representation of the DEq. with Feynman diagrams.

Eq. (3.6), is given by probing the system when putting a particle or hole into the system

with momentum and frequency k and destroying it afterwards. Graphically, this is done by

a line and shown by the first diagram in Fig. 3.1. A non-interacting and interacting particle-

propagation is differentiated by a dashed and solid line, respectively. Hence the second diagram

of Fig. 3.1 corresponds to the non-interacting one-particle Green’s function, G0. The self-energy

is considered as one-particle vertex function; thus it is represented as circle to which two lines

can be connected (cf. Fig. 3.1). In total, this results in Fig. 3.1, the graphical version of

Eq. (3.17).

For a non-interacting system, the self-energy is zero. The system is described completely by

the non-interacting Green’s function, Eq. (3.12). For finite interactions, the DEq., Eq. (3.14),

maps the non-interacting Green’s function, Eq. (3.12), onto the interacting Green’s function,

Eq. (3.6), by means of the self-energy. Hence, the bottleneck of treatability is intrinsically

encoded in the self-energy; simplifying the self-energy, Eq. (3.13), might solve the problem.

This is done, for instance, by DMFT [40;24] which assumes the self-energy to be solely local. In

infinite dimensions, this approximation becomes exact. [50]

3.2. Determinant quantum Monte Carlo method

The main idea of the determinant quantum Monte Carlo (DQMC) method [13] is to identify

within the (quantum) statistical expectation value a probability distribution pi for a corre-

sponding ensemble of configurations si for i P t1 ..Mu and some general M . Consequently,

results suffer in principle only from a statistical error. The expectation value, defined in

Eq. (3.4) for an operator O, is expressed in this sense by denoting the probability distribution

p with

p “
e´βH

Z
. (3.18)

The set of configurations appearing in the expectation value is now approximated by a smaller

finite set. In this respect the ensemble average si of states i P t1 ..Mu with probability pi is

utilized via

xOy “ lim
MÑ8

1

M

M
ÿ

i“1

piOpsiq . (3.19)
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In case of a fermionic system the Hamiltonian contains anticommuting cp:q-operators, thus the

definition of a probability in the mathematical sense is not straightforward. With a Hubbard-

Stratonovich (HS) transformation [77;32;30] the fermionic degrees of freedom can be integrated

out by introducing a bosonic field. Hence, the configuration space gets enlarged by this field

when the quantum problem is mapped onto a classical problem; however, real positive prob-

abilities can be now defined. By doing this the common Monte Carlo simulation can be used

to evaluate in principle any expectation value up to a statistical error.

3.2.1. Partition function of a HS-field configuration

In order to apply the HS transformation, the interaction part appearing in the exponent of

Eq. (3.18) and Z must be separated from its kinetic part. The interaction is subsequently

reformulated from an interaction among two electrons to a hybridization of an electron with a

bosonic field, namely the so-called HS field.

As fermionic operators do not commute the exponentials cannot be separated; this is because

of e´βpT `Vq ‰ e´βT e´βV . However the time interval p0, βq can be discretized into L-equidistant

steps of length ∆τ “ β{L. The Trotter-Suzuki decomposition [78;81] reads in this regard

e´βpT `Vq “
“

e´∆τpT `Vq‰L
“

„

e´∆τT e´∆τV
´

∆τ 2

2
tT ,Vu´ ` Op∆τ 3

q

L

(3.20)

“
“

e´∆τT e´∆τV‰L
´
β∆τ

2
tT ,Vu´ ` βOp∆τ 2

q . (3.21)

When computing expectation values according to Eq. (3.4), the second term in Eq. (3.21)

vanishes due to the cyclicality of the trace. Thus, the error of the Trotter discretization scales

quadratically in ∆τ . Calculating specifically the partition function Z, one obtains

Z “ tr
`

e´βH
˘

“ tr

«

L
ź

l“1

e´∆τT e´∆τV

ff

` Op∆τ 2
q . (3.22)

The ordering of the exponentials and operators is not important anymore as it can always be

expanded up to an order of ∆τ . The neglected terms will be at least of order ∆τ 2.

In the following the interacting part is transformed by the HS transformation to become

quadratic in the operators cp:q. The transformation inserts for every lattice site i and discretized

slice ∆τ a Gaussian integral and thus a bosonic field. As the particle number n only takes

two values, namely 0 and 1, it is sufficient to utilize a discretized field with two possible

configurations. [13;30] This can be done for each contribution appearing in V via a further HS

field; namely, one HS field is needed for the interaction part proportional to U , a second HS

field for the part proportional to V1 etc. Explicitly, it is shown for the local contribution U ,
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leading to

e´∆τUniÒniÓ “
1

2

ÿ

h“˘1

e2ahpniÒ´niÓqe´
∆τU

2 pniÒ`niÓq . (3.23)

The real constant a is defined as cosh paq “ e
∆τU

2 , for positive U . For an attractive interaction

or a more general interaction, altogether, a slightly different form of a has to be used. [30] The

exponential, e´
∆τU

2 pniÒ`niÓq, of Eq. (3.23) is quadratic in the cp:q-operators; thus it is considered

in

e´∆τT
Ñ e´∆τK

“ e´∆τKÒe´∆τKÓ , (3.24)

where one defines Kσ “ c:σKcσ in terms of a matrix K with elements

Kij “ tij `
∆τU

2
δij . (3.25)

The remainder reads in the same notation,

e´∆τV
Ñ

1

2

ÿ

hil“˘1

eVilσ “
1

2

ÿ

hil“˘1

e4ahilσniσ (3.26)

Vilσ “ c:σVlσcσ (3.27)

Vlσij “ 4ahilσδij . (3.28)

These definitions inserted in Eq. (3.22) results in

Z “ tr

«

L
ź

l“1

«

e´∆τc:
Ò
Kc
Ò
1

2

ÿ

hil“˘1

ec
:

Ò
VlÒc

Ò

ff

L
ź

l“1

«

e´∆τc:
Ó
Kc
Ó
1

2

ÿ

hil“˘1

ec
:

Ó
VlÓc

Ó

ffff

` Op∆τ 2
q (3.29)

“
1

2LN

ÿ

hil“˘1

tr
ź

σ

L
ź

l“1

”

e´∆τc:σKcσec
:
σVlσcσ

ı

` Op∆τ 2
q . (3.30)

The cp:q-operators appear quadratically in Eq. (3.30); meaning the summation over its states,

denoted by the trace, can be explicitly done. In this respect the trace is written in terms of

the eigenbasis of the annihilation operators. The overall calculation is performed in App. B.1

and finally results in [82]

Zh “
1

2LN
trh

ź

σ

det

«

1`
L
ź

l“1

e´∆τKeVlσ

”Blσ

ff

. (3.31)

The summation of the HS-field configurations is denoted by trh. The probability function
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defined in Eq. (3.18) consequently reads for a HS-field configuration

ph “
1

2LNZ

ź

σ

det

«

1`
L
ź

l“1

Blσ

ff

. (3.32)

For a particle-hole symmetric case this probability is well defined because the appearance of a

sign in the determinant of σ “Ò is canceled by the counterpart σ “Ó. This is not necessarily

the case without particle-hole symmetry and is denoted as minus-sign problem. It can be

overcome by enforcing positivity. In this sense the absolute value of Eq. (3.32) is utilized.

However, the statistical error increases for the same computational effort. This strongly limits

the regime apart from n “ 1.

All quantities are transformed such that only real matrices appear. The fermionic problem

with the original dimension of 4N is now mapped onto a classical problem within a configuration

of the dimension 2NL. However, due to this mapping, the usual Monte Carlo simulation can

be applied to finally compute quantities such as the partition function Z, Green’s functions or

more general expectation values. In this respect a sampling is done within the configuration

of HS fields and their respective probabilities. In the following the formula is shown that

allow for a computation of the one-particle Green’s function. The algorithm for the simulation

procedure is discussed in the section thereafter.

3.2.2. Green’s function of a HS-field configuration

The one-particle Green’s function, depending on a HS-field configuration, can be derived within

a path-integral formulation of field theory. [1;13] In this regard, the time evolution operator from

τ 1 to τ is defined as

Upτ, τ 1q “ T e
´

τ́

τ 1
dxHpxq

(3.33)

As the time interval p0, βq is sliced into L parts, the evolution operator, Eq. (3.33), can be

obtained by discretized contributions. In this regard the Hamiltonian appearing in Eq. (3.33)

is expanded at τ “ m∆τ . Hence the evolution from τ 1 “ pm´ 1q∆τ to τ “ m∆τ is given by

Um ” Upm∆τ, pm´ 1q∆τq “ e´∆τHm`Op∆τ3q . (3.34)

The Trotter-Suzuki decomposition is applied again to Eq. (3.34). Therewith the one-particle

Green’s function for 0 ă τ 1 ă τ ď L∆τ “ β is obtained according to [13;82]

Gijpτ, τ
1
q “ ´

A

cjpm∆τqc:i pm
1∆τq

E

(3.35)

“´

A

UpLqUpL´ 1q ..Upm` 1qcjUpmq ..Upm1
` 1qc:iUpm1

q ..Up1q
E

(3.36)

“´
“

BmBm´1 .. Bm1`1 p1` Amq
´1
‰

ij
, (3.37)
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and by use of the general definition,

Am ” BmBm´1 .. B1BL .. Bm`1 . (3.38)

The equal-time Green’s function (τ “ τ 1 in Eq. (3.37)) reads Gp0q “ r1` A1s
´1. In this regard,

the general definition of Gm as

Gm
” ´ r1` Ams

´1 . (3.39)

is nothing but a specific permutation of the equal-time one-particle Green’s function (obtained

by setting m “ 1).

3.2.3. DQMC simulation

So far the partition function and one-particle Green’s function are denoted in terms of the HS

field; more specific observables can be derived likewise. The missing part is to sample over all

these configurations with the respective probabilities.

The number of configurations in general is however too large (exponentially large). By

importance sampling the configuration space becomes numerical tractable. In this regard, the

set of possible states is reduced to a subset of most probable states. By doing this, one needs to

be careful that the final set of configurations is not correlated. Otherwise, the variance will be

clearly underestimated and consequently the results cannot be classified at all. Moreover, the

set of configurations needs to be ergodic meaning all essential configurations have to be reached;

if not, the expectation value thermalizes to a local minimum which might be completely off

compared to the actual solution (if existing) and thus, to the global minimum.

The sampling is realized by the Metropolis-Hastings algorithm. [49;28;46] This means a one-

rank update for the HS field with an acceptance or rejection criterion according to Metropolis

ratio which is given by

R “
ph1

ph
“

detpGlq

detpGl1q
“ 1`

“

1´Gl
ii

‰ `

∆l
ii ´ 1

˘

. (3.40)

for an update from hÑ h1 with the configuration l (l1). ph1{ph is the relative probability of the

new configuration compared to the old one. The definition of ∆l along with a more detailed

derivation of the Metropolis ratio is shown in App. B.2. For a one-rank update only a single

entry of the configuration is affected, namely hil. The update is in this respect done at site i

and time slice l to l1.

The ratio, Eq. (3.40), can be computed very quickly. If it is larger than a randomly chosen

number of the interval p0, 1q the new configuration is accepted, otherwise the previous one is

kept. By this random choice a convergence to a local minimum is more likely to be prevented.

In case of an acceptance the Green’s function, Eq. (3.37), needs to be updated. In this regard,

all contributions Gl, Eq. (3.39), need to be recomputed for l P t1 .. Lu via Gl1 “
“

1` Al∆l
‰´1
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and Gl`1 “ Bl1G
l1B´1

l1 . More efficiently, and thus avoiding a matrix inversion, the update,

Gl1 , can be obtained by Eq. (B.16). However, rounding errors prohibit an exclusive use of

Eq. (B.16).

As the HS field is initialized by a certain choice and due to the one-rank update the system

needs some time to thermalize. Hence the sampling is divided in a warm-up and a final phase

in which the actual sampling is performed. In particular, successive measurements for the

one-rank updating scheme are highly correlated. Thus the actual sampling of measurements

is further grouped into bins. From these bins, the mean value, variance and correlation matrix

is determined. [43]

Consequently the Monte Carlo simulation starts by initializing the HS field, for instance by

hil “ 1 for all i P t1 .. Nu and l P t1 .. Lu. The according probability is computed via Eq. (3.32).

Then the loop over all ∆τ -slices is performed for l P t1 .. Lu and for each l a loop for all sites

i P t1 .. Nu is carried out. For each pi, lq a new configuration is obtained via h1il “ ´hil. The

ratio, Eq. (3.40), is computed in order to decide if the new field configuration is accepted. In

case of an acceptance, the Green’s function, Eq. (3.37), is updated.

3.3. Results – momentum structure of the self-energy and

its parametrization

In the following, the self-energy of the 2D Hubbard model is computed by the DQMC method.

The results, along with a study in DΓA, [80;37] are already published in Pudleiner et al. [57]

In case of the DQMC self-energy, the DQMC simulation [43] according to Sec. 3.2 with some

necessary post-processing steps is performed.

Starting with some technical remarks, the statistical errors due to the binning of measure-

ments are in principle negligible. The data mainly suffers the systematic error because of the

Trotter-Suzuki decomposition. In principle, this so-called Trotter error can be handled by an

extrapolation of every data point to the limit of ∆τ Ñ 0. [25;64] As the simulations are done for

∆τ “ 0.01 an extrapolation leads only to minor modifications of the overall results but still

reveals the general tendencies. As the DΓA results additionally provide for the correct ther-

modynamic limit and due to the qualitative good agreement between both methods significant

finite-size effects can be ruled out. [57;71]

The self-energy is not determined straightforwardly by the use of the DEq., Eq. (3.14). The

inversion of the Green’s function with a statistical error leads to an amplification of errors,

especially in the high-frequency range. In the following, the direct inversion of the one-particle

Green’s function is avoided. In this sense, the spectral function, Eq. (3.16), is determined

for the one-particle Green’s function by the maximum entropy method (MEM, introduced

in App. C.2). [34;8] Computing from the spectral function the Green’s function, according to

Eq. (3.15), allows for an arbitrarily small resolution in τ . Therewith, the inversion can be done

to extract finally the self-energy.
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A general overview of the momentum structure of the self-energy for DQMC is given

in Sec. 3.3.1. In Sec. 3.3.2, the collapse of the self-energy onto the single εk-dependence

of the self-energy is shown numerically by DQMC. A simple parametrization of the ν and

εk dependence of the self-energy is provided in Sec. 3.3.3. This also allows us to gain, in

Sec. 3.3.4, a better understanding of the essential features of the self-energy and its global

structure in the pε, νq space. Sec. 3.3.5 discusses the case of an asymmetric lattice, and

Sec. 3.3.6 examines the doped Hubbard model. Finally, Sec. 3.3.7 provides a summary and

an outlook.

3.3.1. Momentum structure of Σ

By carefully examining the structure of the self-energy calculated by the DQMC and the

DΓA, we want to show in the following that a simplified k-dependence of the self-energy –

via the non-interacting dispersion εk – can be achieved. To see the advantage of such a

parametrization, let us first examine the self-energy in the full momentum-frequency space,

i.e. as a function of kx, ky and νn. Initially, we restrict ourselves to the case of isotropic

hopping on a square lattice and half-filling; for generalizations, see Secs. 3.3.5 and 3.3.6,

respectively. Results for the intermediate coupling U “ 4t are collected in Fig. 3.2. In this

coupling regime and at a temperature of βt “ 5.6, the system is in the regime where the

pseudogap opens. At lower temperatures, the paramagnetic phase becomes insulating [71]

and eventually also antiferromagnetic (AFM) at T “ 0.

The upper panel, Fig. 3.2.a, shows the imaginary part of the self-energy at k “ p0, kyq for

the first three Matsubara frequencies as a function of ky. The variations along this high-

symmetry cut through the BZ are seen to be quite significant, by a factor of about 10 at ν0

and still by a factor of about two at ν2. Evidently, DMFT would be completely inadequate in

this respect. Only at large frequencies, the self-energy becomes asymptotically momentum

independent: Σk
νnÑ8
ÝÑ U2{p4iνnq.

As seen in Fig. 3.2.b, the self-energy at Σpk,ν0q varies strongly also along the other mo-

mentum paths indicated in the inset of Fig. 3.2, without an obvious structure (except for

the evident mirror symmetry line kx “ ky). This dependence is not particularly smooth,

on the scale of our momentum grid. This indicates that approximations of the self-energy

by piecewise constant patches, as usually employed in the dynamical cluster approxima-

tion (DCA) [48] (on much coarser grids), may be problematic for small cluster sizes. Instead,

accurate approximation schemes would have to incorporate insights in the momentum struc-

ture of Σ (or use expansions of the self-energy that are not stepwise constant such as the

cumulant expansion [75;76;67;74;66;69]).
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the self-energy Σk vs. the non-interacting
dispersion εk from DQMC at U “ 4t and
βt “ 5.6. Different pkx, kyq points with the
same εk collapse onto a single curve.

3.3.2. Collapse of k dependence to an εk dependence

Fig. 3.3.a shows ImΣk at the first three Matsubara frequencies plotted versus the non-

interacting one-particle energy (i.e. band dispersion) εk. Specifically, the circles in Fig. 3.3.a

represent all the data of Fig. 3.2.b (corresponding to the lowest Matsubara frequency ν0).

Not surprisingly, this data set is peaked for k at the Fermi edge, εk “ 0; this is also true

at the higher frequencies ν1 and ν2. However, it is remarkable that each of these data sets

collapse on a single line with high accuracy, with the exception of only a very narrow region

around εk “ 0. Global collapses are also seen in the corresponding real parts, shown in

Fig. 3.3.b; here no low-εk deviations can be seen due to the linearity of ReΣ at low εk.

The significant momentum dependence of ImΣk at εk “ 0, on the other hand, is nothing

but the pseudogap physics exposed in cluster extensions of DMFT, [48;17;68] recent DQMC [63]

and DΓA studies: [71] The self-energy takes different values at the Fermi surface along the

nodal and antinodal directions, with variations of about 20%. In this respect, the nodal and

antinodal points are highlighted in Fig. 3.2.b as well as in the inset thereof. We learn from

Fig. 3.3.a that this physics is, however, narrowly confined to the momentum space around
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Fig. 3.5.: Imaginary (a) and real (b) part of
the self-energy Σpk,ν0q from DQMC at βt “
5.6 for different U -values.

the Fermi surface. Note that nodal/antinodal variations of the gap decay quickly both

towards higher and lower temperatures. [63] In this sense, the parameter choice of Fig. 3.3

(U “ 4t, βt “ 5.6) may be considered a worst case for parametrizing Σ via εk.

The collapse of the self-energy Σpk,ν0q onto a single εk-dependent Σpεk,ν0q remains unchanged

when changing the cluster size in the DQMC calculations. Fig. 3.4 compares results obtained

for different system sizes and geometries. In this respect, the self-energy at U “ 4t and

βt “ 5.6 is shown for two lattice systems with rectangular shape, 4 ˆ 20 and 8 ˆ 20, as

well as for a system with a regular square shape, having 16 ˆ 16 sites. We find that (i)

the collapse onto a single curve (vs. εk ‰ 0) is better for larger systems and (ii) that,

overall, the convergence seems to be quite rapid, which justifies in a qualitative way that we

skipped the extrapolation to an infinite system. The conclusion that our analysis is relevant

in the thermodynamic limit will be further verified in Sec. III.D of Pudleiner et al. [57] by

comparing DQMC data, as well as the self-energy parametrization discussed in Sec. 3.3.3,

with the results obtained from DΓA.

Very importantly, the collapse of data points with respect to εk is not restricted to certain

interaction strengths. The self-energy in different phases (bad-metallic towards insulating)

characterized by different values of U are shown in Fig. 3.5. Compared to the case of U “ 4t

where the phase transition approximately occurs (see Rost et al. [63]), the k variations scale

with a factor of 15 for U “ 8t; and a factor of 0.1 for U “ 2t. Despite the stronger εk-
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dependence at larger U regime, all data still collapse onto a single curve. That is, our

parametrization discussed in the next section can be equally applied to both, the weak and

strong coupling regime. It is not perturbative.

3.3.3. Parametrization of Σ

So far, we have discussed self-energies on the imaginary frequency axis, following a com-

mon practice especially within the quantum Monte Carlo community. While such data have

the advantages of direct accessibility from (imaginary-time) quantum Monte Carlo data and

easier comparisons with literature data, real-frequency results are obviously more physically

relevant and also more interesting. Such data, obtained via MEM analytical continua-

tion [34;8] iνn Ñ ν ` iδ on the level of the self-energy, are shown in Fig. 3.6.a as a function

of εk and ν at βt “ 5.6 and U “ 4t; the corresponding Green’s function, obtained via the

DEq., Eq. (3.14), can be seen in Fig. 3.6.b. Note that these data (Im Σ, Im G) are, up to

factors ´π, spectral functions which also fully determine the corresponding real parts via

Kramers-Kronig relations.

Figs. 3.7.a and 3.7.b show the same quantities but at a higher temperature βt “ 2.

Let us now discuss the structures seen in Figs. 3.6.a and 3.7.a. Both share a common

feature, namely broad bands at high frequencies (both positive and negative), which are

nearly dispersionless, i.e. with maxima fixed at |ν| „ 4t. However, at a given εk these two

dispersionless branches do not have the same weight. That is, with increasing εk (for εk ą 0)

spectral weight from the upper band (ν Á 2t) is shifted towards the lower band (ν À ´2t);

and vice versa for εk ă 0. In addition to this high-energy structure, a strong low-energy

feature with negative slope is seen at the lower temperature, in the pseudogap phase in

Fig. 3.6.a (precisely at ν “ ´εk). Overall, this implies a Z-shaped spectral distribution of

the self-energy.1 Its low-energy part splits the (Green’s function) spectral density at ν „ 0,

εk „ 0, i.e., introduces the pseudogap (see Fig. 3.6.b).

Consequently, it is clear that the overall structure must be different at higher energies,

above the pseudogap phase. However, it is surprising that the diagonal with negative unit

slope, observed before, is completely absent (instead of only being weakened) in Fig. 3.7.a

and replaced by another diagonal with positive unit slope, i.e. with maxima at ν “ εk. As

seen in Fig. 3.7.b, this leads to a (Green’s function) spectral density that is only broadened

in a wide frequency range, but gap-less, i.e. not split at ν „ 0.

To faithfully model the structure of the self-energy at both low and high temperatures,

we consider the following parametrization,

Σpε, νq “
m1

ν ` sε` id1{2
`

ÿ

α“˘

m2fαpεq

ν ` hαpεq ` id2{2
, (3.41)

which is obtained by decomposing the self-energy Fig. 3.6.a (Fig. 3.7.a) into three key fea-

tures (components): the two horizontal stripes (antisymmetric in ε) and one sharp diagonal
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stripe with s “ `1 (s “ ´1). Each component has a density profile, which is represented

by a Lorentzian function with weight m1p2q and width d1p2q. For the horizontal stripes, the

functions fα and hα describe the ε-dependent weight and the degree of the curvature, which

are taken as f˘pεq “ 1˘ b ε and h˘pεq “ ˘5 c˘ε
c˘ε`1

.

Please note the plus and minus sign (s “ ˘1) in front of ε in the first term of Eq. (3.41).

Depending on the temperature, the physics is quite different as discussed in Sec. 3.3.4 below.

This reflects in the two different signs. At low temperatures (model A1) we have the plus

sign (s “ `1) and at high temperature (model B) the minus sign (s “ ´1) for the first term

of Eq. (3.41). To fix the parameters, we first require that the model function in Eq. (3.41)

behaves asymptotically as U2{p4νq for ν Ñ 8, which reduces the independent parameters of

the model function by one (m1` 2m2 “ 4). The rest of the parameters are then determined

by fitting the Matsubara self-energy with a least-square approach, as shown in Fig. 3.8.

In Tab. 3.1 we list the different parameters of m1, d1, d2, b and c, for the low and high

temperature phases of the Hamiltonian in Eq. (2.4).

Despite the simple form of Eq. (3.41), the essential structure of the self-energy and its

temperature evolution can be nicely reproduced by this parametrization. In Figs. 3.6.c and

3.6.d the self-energy and the corresponding Green’s function calculated from Eq. (3.41) are

shown and compared to the numerically exact solution from DQMC on a finite k grid. As we

can see, model A nicely reproduces the three major structures of the self-energy, including

the two horizontal stripes at high energy and the linear dependence of εk at low energies. As

a result, the Green’s function in model A also nicely reproduces that of the DQMC shown

in Fig. 3.6.b.

At βt “ 2, we adopt the parameter set indicated as model B in Tab. 3.1. The com-

parison of model B with the DQMC results is shown in Figs. 3.7.a–3.7.d. At this higher

temperature, as clearly seen from the DQMC results, the horizontal stripes at high energy

remain, while the low-energy linear dependence on εk completely changes its sign as com-

pared to Fig. 3.6.a, which applies strong constraint on our model function, since a correct

parametrization should also faithfully reproduce the sign change on the εk dependence of

the self-energy at low-energy regime. From Fig. 3.7, we see that model B nicely generates

the correct εk-dependence, as well as the two horizontal stripes.

1 Such a Z-shaped structure can also be identified in Fig. 1.a of Sakai et al. [66] showing the zeros of the G.
Note that a maximum in Σ corresponds to a minimum (zero) in G. The high-energy zeros of G are split
in this figure into multiple poles because of finite-size effects. In Sakai et al. [69] the low-energy shape is
modeled by hidden Fermions.
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Fig. 3.6.: Imaginary part of the self-energy Σpε, νq and of the Green’s function Gpε, νq at
U “ 4t and βt “ 5.6. (a) and (b) contain the DQMC data. (c) and (d) represent continuous
parametrizations, denoted in Eq. (3.41) and Tab. 3.1.
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Fig. 3.8.: The self-energy at three different (higher) Matsubara frequencies at U “ 4t and
βt “ 5.6. Together with the asymptotic behavior of the Matsubara self-energy, these DQMC
data are used to fix the model parameters in Eq. (3.41). The fitted parameters can be found
in Tab. 3.1.

3.3.4. Physics associated to the parametrization of Σ

In the following, we want to show that the observed structure with weakly temperature-

dependent horizontal stripes and the strongly temperature-dependent linear low-energy fea-

tures are natural consequences of the essential particle-hole excitations and the magnetic

correlations of the Hubbard model on the square lattice. Correctly reproducing those two

physical processes in our self-energy model function is a strong validation of this parametriza-

tion. Our model function, can thus be used to describe the low-energy excitations in both

the charge and the spin sectors of this model.

We start from second-order perturbation theory of the self-energy, Eq. (3.13), which ef-

fectively describes the motion of electrons in the background of particle-hole excitations,

Σk “ ´
U2

pNβq2

ÿ

k1q

Gq´kGq´k1Gk1 . (3.42)

For the analytic continuation we utilize the Padé approximation. [85] Fig. 3.9 shows the cor-

responding self-energy and the Green’s function at two different temperatures βt “ 1 and

βt “ 5.6. At both low and high temperatures, the self-energy from the second-order per-
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m1 d1 d2 b c s

model A 0.6 1.0 3.0 0.12 5.8 `1
model B 0.4 2.1 3.0 0.12 4.5 ´1

Tab. 3.1.: Different choices of parameters for the two models derived from Eq. (3.41). A and B
correspond to the two best models for the self-energy at low (βt “ 5.6) and high temperatures
(βt “ 2), corresponding to Figs. 3.6 and 3.7, respectively.

turbation theory displays the two horizontal stripes at high energies. At high temperature,

the same ν “ εk stripe as in Fig. 3.7.a shows up. We thus conclude that the appearance of

the horizontal stripe is due to the particle-hole excitations, which exists at both high and

low temperatures.

In the low-energy regime, the linear dependence of the self-energy on εk disappears at low

temperature, e.g. it can be hardly seen in Fig. 3.9. But it is not replaced by a negative

linear dependence of the self-energy on εk as observed in Fig. 3.6.a. This clearly tells us

that the negative linear dependence in Fig. 3.6.a is not due to particle-hole excitations. We

find that it is, instead, an indication of the low-temperature spin-density wave (SDW) of

the 2D Hubbard model in the self-energy function. To see this, we consider a mean-field

description of the Hubbard model in Eq. (2.4) in the presence of SDW.2 The Fermi surface

of the half-filled Hubbard model on the square lattice is nesting which favors the formation

of SDW with magnetic wave vector Q “ pπ, πq. The corresponding magnetic Brillouin zone

(MBZ) is, then, only half of the original BZ, so that the Hubbard model, Eq. (2.4), can be

written as

H “
ÿ

k̃,σ

”

εk̃c
:

k̃σ
c
k̃σ
` εk̃`Qc

:

k̃σ
c
pk̃`Qqσ

ı

` U
ÿ

kk1

c:kÒcpk`QqÒc
:

k1Ócpk1`QqÓ , (3.43)

where the sum over k̃ is restricted to the MBZ, whereas the sum over k is in the original

BZ. After defining a mean-field order parameter for the SDW,

∆ “ U
ÿ

k

σc:kσcpk`Qqσ , (3.44)

the mean-field Hamiltonian can be written as

H “
ÿ

k̃,σ

”

εk̃c
:

k̃σ
c
k̃σ
` εk̃`Qc

:

k̃σ
c
pk̃`Qqσ

ı

´∆
ÿ

k

”

c:kÒcpk`QqÒ ´ c
:

pk`QqÓckÓ

ı

. (3.45)

If we restrict the sum over k in the second term to be also inside the MBZ and consider only

one spin component, we have the following compact form of the mean-field Hamiltonian,

H “
ÿ

k̃

´

c:
k̃
, c:

k̃`Q

¯

˜

εk̃ ´∆

´∆ εk̃`Q

¸˜

ck̃
ck̃`Q

¸

, (3.46)
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Fig. 3.9.: Self-energy and Green’s function calculated from second-order perturbation theory
at βt “ 1 (left) and βt “ 5.6 (right) for U “ 4t.

from which the one-particle Green’s function can be easily calculated as

G
pk̃,νq “

ν ´ εk̃`Q

pν ´ εk̃q
`

ν ´ εk̃`Q
˘

´∆2
“

1

ν ´ εk̃ ´
∆2

ν´εk̃`Q

. (3.47)

Thus, the self-energy of the Hubbard model from the SDW mean-field theory is

Σ
pk̃,νq “

∆2

ν ´ εk̃`Q
“

∆2

ν ` εk̃
, (3.48)

which leads to the strong negative linear-dependence ν “ ´εk at low energies. Since second-

order perturbation theory does not include the magnetic correlations of the system, it is

not surprising that, at low temperature, the self-energy calculated from it does not contain

such negative linear εk̃-dependence. We here want to note that, despite the simple form of

our model function in Eq. (3.41), it correctly describes the magnetic correlations which only

appear at higher orders of perturbation theory. Our model function can then be used to

describe the competition between the charge and the spin degrees of freedom which becomes

important when the temperature decreases.
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In Eq. (3.48) we have used that εk̃`Q “ ´εk̃ which holds for a square lattice where

Q „ pπ, πq. For general lattices, εk`Q is not uniquely related to εk. One might expect that

this leads to a somewhat more complicated self-energy parametrization: Σk Ñ Σpεk,εk`Q,νq.

3.3.5. Anisotropic Case

So far, we have considered the Hubbard model on an isotropic lattice. We found that

the two momentum degrees of freedom appearing (besides the frequency) as variables of the

self-energy can be replaced by one energy-like variable with good accuracy and for almost

all k: Σpk,νnq ” Σpεk,νnq. It is easy to see that such an replacement would be exact (globally)

in 1D (for nearest neighbor hopping): Then, there is only one momentum variable kx. Since

εkx monotonously increases with kx P p0, πq (in the case of hopping only between nearest

neighbors) and ˘kx are equivalent by symmetry, there exists a unique mapping k Ñ εk in

1D (within the reduced BZ).

The question to be addressed in this section is, whether the parametrization of Σ via εk

works also in the crossover region between these limits. For this purpose, we consider the

anisotropic 2D lattice with a hopping ratio 0 ď α “ tx{ty ď 1; in order to keep the kinetic

energy scale p2t2x ` 2t2yq
1{2 “ 2t fixed, we set ty “

a

2t2{pα2 ` 1q (and tx “ α ty).

Corresponding DQMC results are shown for α “ 1 (the isotropic case considered before),

α “ 0.8, and α “ 0.6 in the main panels of Fig. 3.10. It is immediately seen that the spread

of each data set, associated with an incomplete collapse, increases rapidly with increasing

anisotropy, both in the real and imaginary parts of the self-energy. Only in the 1D limit

(α “ 0), shown in the insets, the data fall, again, onto single curves (which are remarkably

similar to their 2D counterparts).

Note that ImΣ still shows a reasonably good collapse at α “ 0.8 (cf. Fig. 3.10.a), while

the deviations from a common curve are nearly an order of magnitude larger for ReΣ (cf.

Fig. 3.10.b). This distinction already hints at the physical reason why a parametrization of

the self-energy in terms of the free dispersion cannot work in full generality: In the absence

of sufficient symmetries, interactions modify the Fermi surface (while keeping its volume

constant at least in the Fermi liquid regime). This direction-dependent shift is encoded, to

first order, in ReΣk|εk“0,ν“0 which would vanish exactly in a parametrization via εk.

Thus, the analysis of this paper seems to apply directly only to the case of very weak (or

very strong) anisotropies. It remains to be seen whether the results of a parametrization

such as that performed in Sec. 3.3.4 could be useful also in the cases where the true self-

energy does not have this form (as for α “ 0.6) or if the analysis can be extended in order

to incorporate Fermi surface deformation.

2 For a review on phenomenological theories of the pseudogap in terms of such mean-field descriptions see
Rice et al. [61]
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Fig. 3.10.: Imaginary (a) and real (b) part of
the self-energy Σpk,ν0q from DQMC at U “

4t and βt “ 5.6 but for various degrees of
anisotropies α. Green and red lines are guides
to the eye only, not fits to the parametrization
model as in the other figures.

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

Im
 Σ

(k
,ν

0)

(a)

n= 1.00
n= 0.93
n= 0.89
n= 0.76
n= 0.25

−4 −3 −2 −1 0 1 2 3 4
εk

−2.0

−1.5

−1.0

−0.5

0.0

0.5

Re
 Σ

(k
,ν

0)

(b)

Fig. 3.11.: Imaginary (a) and real (b) part of
the self-energy Σpk,ν0q from DQMC at U “ 4t,
βt “ 3.6 and L “ 8ˆ 8 for doped systems.

3.3.6. Doping

So far, we have considered the Hubbard model at half-filling (n “ 1). Similar insights with

respect to the structure of the self-energy would be even more welcome for doped systems,

as these are directly relevant for high-temperature superconductivity, i.e., physically even

more interesting, and also particularly challenging. However, as DQMC simulations then

suffer from the notorious ’minus-sign’ problem, due to the lack of particle-hole symmetry,

the numerical effort is much greater (at fixed statistical error). Consequently, we need to

reduce the lattice size to 8 ˆ 8 in our calculations. We should stress, as a caveat, that the

resulting reduction in the number of inequivalent k points implies a much sparser ε grid

which makes it more difficult to check for a collapse of Σ versus εk.

Away from half-filling (n ‰ 1), the self-energy becomes asymmetric with respect to εk “ 0,

as shown in Fig. 3.11 for the isotropic 2D case. In this figure, we show the (a) imaginary and

the (b) real part of the self-energy at five different doping levels characterized by the different

values of the electronic density n. Symbols in Fig. 3.11 correspond to the DQMC data, the

dotted and dashed lines are obtained by fitting these data with model A in Tab. 3.1.

The first observation for the doped case is that the spread of the self-energy (in imaginary

part) remains at εk “ 0 and quickly disappears by increasing doping. Thus, for a given
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doping level the self-energy again collapses onto a single curve which makes a parametrization

possible, as in the half-filled case. Note that in order to fit the data in Fig. 3.11, in addition

to model A, we added a constant (with imaginary and real part) and take a different fit

model for εk ą 0 and εk ă 0. This way, model A still nicely describes the curvature of the

DQMC self-energy.

For the doped case we observe deviations from model A (in its original form presented in

Eq. (3.41)), but the general form Σpk,νnq Ñ Σpεk,νnq still holds. Again (as in the anisotropic

case), the deviations from a smooth dependence of Σ on εk can be understood as resulting

from deformations of the Fermi surface.

3.3.7. Summary

Despite the fundamental importance of the self-energy Σk within the Hubbard model, little

was known about its momentum-frequency structure in the most interesting and challenging

cases of d “ 2 and d “ 3 spatial dimensions. One complicating factor in earlier analysis

was certainly the high dimensionality pd` 1q of the momentum-frequency parameter space,

making a full global visualization impossible already in two spatial dimensions.

This situation is changed by our finding that the momentum dependence of the self-energy

reduces, with remarkably high precision and scope, to a dependence on the non-interacting

energy εk at each point in momentum space, i.e. Σpk,νnq Ñ Σpε,νnq on a square lattice, where

ε “ εk. Thereby, we could not only fully visualize the numerically obtained self-energy in

the density plots of Figs. 3.6.a and 3.7.a at temperatures in and above the pseudogap phase,

respectively (note that this spectral data also determines ReΣ), but also derive complete

parametrizations that highlight the interesting physics previously hidden in this system.

We could trace back the strong Z-shaped low-T structure to the generation of (self-energy)

spectral density at ν “ εk`Q “ ´εk by AFM fluctuations. For other lattices εk`Q ‰ ´εk,

suggesting a parametrization Σpεk,εk`Q,νnq.

Given this explanation, one might have expected the spectral features to decay only weakly

towards higher temperatures, similarly as the nearest-neighbor spin correlation function.

However, the higher-T results completely lack any (lower-energy) features at ν “ ´εk and

show, instead, significant contributions at ν “ εk, leading to an overall Z -shaped structure

that appears also in second-order perturbation theory.

Note that our ansatz for the self-energy is the most general one consistent with the func-

tional form of the Green’s function G ” Gpεk,νnq that is valid also within DMFT. However,

it is clear that DMFT taps only a very limited subspace of this class of Green’s functions.

Limitations of the ansatz Σ ” Σpεk,νnq become apparent both directly at the Fermi surface

in the pseudogap phase and, more globally, in the case of strongly anisotropic lattices. In

the former case, the breakdown is inevitable, since an anisotropic gap cannot possibly be

described by a self-energy that is constant along the Fermi surface (at each fixed frequency).

This also holds at temperatures somewhat above the pseudogap phase, where the scattering
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rates at the nodal and antinodal point of the Fermi surface are very different. In the latter

case, the physics behind the deviation is the deformation of the Fermi surface. For the

doped square lattice the general form Σpk,νnq Ñ Σpεk,νnq is still applicable, albeit our model

parametrization does not work any longer.

Another fascinating feature of our ansatz is that it allows for a direct comparison of

self-energies associated with systems of different spatial dimensionality (such as shown in

the insets of Fig. 3.10), as the parameter space is always two-dimensional. In fact, it is

reasonable to assume that the analysis of this paper would work even better (with even

greater reductions of the complexity) for cubic lattices, i.e. in three dimensions. However, a

reliable verification would require quite large lattices (at still high numerical precision) and

was, therefore, beyond the scope of this work.
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4. Two-particle quantities – related

method and outcome

Compared to the DQMC method, the parquet method [10] provides a different strategy to

tackle the strongly correlated electron problem. This method can be seen as a diagrammatic

extension of DMFT. In this respect, approximations are on the two-particle level and thus,

the expansion in terms of diagrams might be more intuitive compared to methods such as the

DQMC simulation. However, treating one-particle and two-particle quantities on the same

level causes heavy requirements on computing power.

In the following two-particle functions are introduced in Sec. 4.1 as well as the relations

between them, in Secs. 4.2 and 4.3. [11;62] A set of equations arises building the framework of

the parquet formalism. In Sec. 4.4, the formalism is introduced based on the joint project and

implementation victory (i.e. VIenna Computational TOol depositoRY), a parquet equations

(PEqs.) solver, which is already published jointly in Li et al. [44;45] Details are provided in

App. D. Systems, such as single-band Hubbard models, can be solved numerically with the

use of certain approximations, e.g. the PA [12;11] or the DΓA. [80;37] The results, in particular of

the PA, are finally displayed in Secs. 4.5–4.7. Sec. 4.6 is published in Pudleiner et al. [58]

4.1. Definitions and symmetries

The connected two-particle Green’s function, Eq. (3.7), is more conveniently written with the

use of two-particle vertex functions. The approximations are then made on contributions to the

vertex function and not on the functional dependence of the Green’s function itself. This is in

analogy to the definition of the self-energy in Sec. 3.1. In general, an N -particle vertex function

is obtained by removing the N external legs of its connected N -particle Green’s function; thus

for the two-particle case one obtains

Gc
p12, 34q “ ´G111G212F p1

121, 3141qG3,31G414 (4.1)

Gc
pp12, 34q “ ´G111G221Fp p1

121, 3141qG31,3G414 . (4.2)

From a physical point of view, the full two-particle vertex function F describes the probabilities

for scattering events of a particle with a hole or with another particle; the latter is formally
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Γkk
′q

ph,σσ′

1: kσ 4: k′σ′

2: q + kσ 3: q + k′σ′

Γkk
′q

pp,σσ′

1: kσ 4: k′σ′

2: q − kσ 3: q − k′σ′

Fig. 4.1.: Feynman diagrams for the particle-hole and particle-particle vertex function with
their explicit momentum labeling

denoted by the subindex p. Due to indistinguishability of the particle and hole species, the

functions F and Fp are related by symmetry. Consequently, Eq. (4.2) provides no additional

information than already obtained by Eq. (4.1): It is a matter of notation. [11]

The full vertex function can be unambiguously categorized into certain classes according

to the concept of reducibility. In the one-particle case, all irreducible diagrams contribute to

the one-particle vertex function, the self-energy. In case of two-particle functions, at least two

Green’s functions need to be removed to result in two unconnected diagrams in order for the

diagrams to be called reducible.

In this regard the reducible particle-hole, transversal particle-hole and particle-particle vertex

functions Φph, Φph and Φpp are introduced, since there are three different possibilities for the

two one-particle Green’s functions to be cut. A diagram contributing to Φpp can only be split

into two diagrams by cutting two one-particle Green’s functions going in the same direction.

Particle-hole reducibility can be subdivided further into a horizontal and a transversal channel,

by either cutting such that a particle-hole pair is left horizontally or vertically, respectively. [62]

Due to this channel-dependent reducibility, it is convenient to define vertex functions which

are irreducible in one channel by Γr “ Fppq ´ Φr for r P tph, ph, ppu. These irreducible vertex

functions are depicted (including the outer legs) in Fig. 4.1. The actual vertex operator (on

its own) is obtained by

Γph “
ÿ

1234

Γphp12, 34qc4c
:

3c2c
:

1 “
ÿ

1234

Γ
14p2´1q
ph c4c

:

3c2c
:

1 (4.3)

Γph “
ÿ

1234

Γphp12, 34qc4c
:

3c2c
:

1 “
ÿ

1234

Γ
14p2´1q

ph
c4c

:

3c2c
:

1 (4.4)

Γpp “
ÿ

1234

Γppp12, 34qc4c3c
:

2c
:

1 “
ÿ

1234

Γ14p2`1q
pp c4c3c

:

2c
:

1 . (4.5)

The numbers are a short-hand convention for 1 ” pr1, τ1, σ1q in r space, and respectively, in k

space with 1 ” pk1, ν1, σ1q. Exploiting symmetries of the Hamiltonian, namely, translational

symmetry in space and time, and, spin conservation, leads to a reduction of the number of

indices. This is considered partly in the notation of the vertex function in Eqs. (4.3)–(4.5), by

writing e.g. for the ph channel Γphp12, 34q “ Γ
14p2´1q
ph . For the derivation of further relations,
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this definition is quite convenient; e.g., in order to obtain the ph channel from the ph channel,

the labels 2 and 4 need to be exchanged and relabeled in Eq. (4.3). This results in the crossing

relation,

Γph “ ´
ÿ

1234

Γphp12, 34qc2c
:

3c4c
:

1 “ ´
ÿ

1234

Γ
ph
p14, 32qc4c

:

3c2c
:

1 (4.6)

Γphp12, 34q “ ´Γphp14, 32q . (4.7)

Relating the pp channel to the ph channel, the labels 2 and 3 require to be swapped in Eq. (4.3);

hence, [11]

Γph “ ´
ÿ

1234

Γphp12, 34qc4c2c
:

3c
:

1 “ ´
ÿ

1234

Γppp13, 24qc4c3c
:

2c
:

1 (4.8)

Γphp12, 34q “ ´Γppp13, 24q . (4.9)

Due to SU(2)-spin symmetry, only two explicit spin-labels are required. Hence, the spin is

abbreviated with [62]

ph : σσ1 ”σσσ1σ1 pp : σσ1 ” σσ1σσ1

σσ1 ”σσ1σ1σ σσ1 ” σσ1σ1σ (4.10)

for the order 1–4. As already denoted in Fig. 4.1, the convention for the indices using energy

and momentum conservation in k space reads

ph : 1 Ñ k pp : 1 Ñ k

2 Ñ q ` k 2 Ñ q ´ k

3 Ñ q ` k1 3 Ñ q ´ k1

4 Ñ k1 4 Ñ k1 . (4.11)

Furthermore, the Bethe-Salpeter Eq. (BSEqs., presented in Sec. 4.2) turn out to be diagonal

in a spin representation, namely in its density (d), magnetic (m), singlet (s) and triplet (t)

channel. The two-particle functions in the respective channels are obtained via

F
14p2´1q
d{m “ F kk1q

d{m “

”

FÒÒ ˘ FÒÓ

ıkk1q

(4.12)

F
14p1`2q
t{s “ F kk1q

t{s “

”

Fp,ÒÓ ˘ Fp,ÒÓ

ıkk1q

. (4.13)

Because of SU(2)-spin symmetry, the following applies, [62]

F kk1q
m “ F kk1q

ÒÓ
(4.14)

F kk1q
t “ F kk1q

p,ÒÒ . (4.15)
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The crossing relation, Eqs. (4.7) and (4.9), read

Γkk
1q

ph,ÒÓ “ ´Γ
kpk`qqpk1´kq

ph,ÒÓ
(4.16)

Γkk
1q

ph,ÒÓ “ ´Γ
kk1pq`k`k1q
pp,ÒÓ (4.17)

and finally, Eqs. (4.1) and (4.2) read

Gc,kk1q
σσ1 “´GkGq`kF

kk1q
σσ1 Gq`k1Gk1 (4.18)

Gc,kk1q
p,σσ1 “´GkGq´kF

kk1q
p,σσ1Gq´k1Gk1 . (4.19)

4.2. Bethe-Salpeter equations

The full vertex function F is a channel independent function as it includes all two-particle

functions irrespective if reducible or irreducible in the two-particle context. Depending on the

choice of the channel, tph, ph, ppu, three versions of the Bethe-Salpeter equations (BSEqs.) are

obtained by explicitly writing the reducible vertex function in its respective channel. This is

done with the use of Feynman diagrams which are illustrated in Fig. 4.2. With the help of the

Feynman diagrams, the BSEqs. read in matrix representation,

F p12, 34q “Γphp12, 34q ` Φphp12, 34q (4.20)

“Γphp12, 34q ` Γphp12, 3141qG4111G2131F p1
121, 34q (4.21)

F p12, 34q “Γphp12, 34q ´ Φphp14, 32q (4.22)

“Γphp12, 34q ` Γphp12, 3121qG2111G4131F p1
141, 34q (4.23)

Fpp12, 34q “Γppp12, 34q ` Φppp12, 34q (4.24)

“Γppp12, 34q ´
1

2
Γppp12, 3141qG4111G3121Fpp1

121, 34q . (4.25)

The factor of 1
2

in the pp notation prevents from summing topological equivalent diagrams.

This is not the case for the ph notation as here the two Green’s function which connect the

reducible vertex with the full vertex oppose in direction. The additional sign can be traced

back to the ordering of the cp:q-operators relatively to the ph notation. When using energy and

momentum conservation, 11 ´ 41 is labeled by k1 and respectively, 31 ´ 21 by q ˘ k1. Summing

over internal indices labeled k1 and writing out the internal spin sum explicitly, the BSEqs.

read

F kk1q
d{m “

”

Γph,ÒÒ ˘ Γph,ÒÓ

ıkk1q

`
ÿ

k1,σ

Γkk1q
ph,ÒσGk1

Gq`k1

”

Fph,σÒ ˘ Fph,σÓ

ık1k1q

(4.26)

“Γkk
1q

d{m `
ÿ

k1

Γkk1q
d{mGk1

Gq`k1
F k1k1q
d{m (4.27)
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Fig. 4.2.: BSEqs. in Feynman diagrams [11]

F kk1q
t{s “

”

Γpp,ÒÓ ˘ Γ
pp,ÒÓ

ıkk1q

´
1

2

ÿ

k1,σ

Γkk1q
pp,ÒÓσp´σqGk1

Gq`k1

”

Fpp,p´σqσÒÓ ˘ Fpp,p´σqσÓÒ

ık1k1q

(4.28)

“Γkk
1q

t{s ˘
1

2

ÿ

k1

Γkk1q
t{s Gk1

Gq´k1
F k1k1q
t{s . (4.29)

To obtain F these equations can either be inverted or directly used in an iterative scheme. For

an inversion the following equations need to be solved

F kk1q
d{m “

ÿ

k1

”

δkk1 ´ Γkk1q
d{mGk1

Gk1`q

ı´1

Γk1k1q
d{m (4.30)

F kk1q
t{s “

ÿ

k1

„

δkk1 ¯
1

2
Γkk1q
t{s Gk1

Gq´k1

´1

Γk1k1q
t{s . (4.31)

To verify phase transitions, the susceptibility in each spin channel is evaluated by

χd{m,q “ ´
ÿ

k

GkGq`k

«

1`
ÿ

k1

F kk1q
d{mGk1Gq`k1

ff

(4.32)
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χpp,q “ ´
ÿ

k

GkGq´k

«

1`
ÿ

k1

F kk1q

p,ÒÓ
Gk1Gq´k1

ff

. (4.33)

The susceptibility is in this respect nothing but a summation of the two-particle Green’s

function for k and k1, namely the connected part, Eqs. (4.18) and (4.19), and its disconnected

contribution. Phase transitions are expected when a certain scattering rate diverges; this is

equivalent to a divergence of certain contributions to the full vertex function. For instance, a

transition to a magnetic or charge ordered state can be read of when the contribution within

the square brackets of Eq. (4.30) is zero. A cross over to a superconducting state is expected

analogously for a divergence in Eq. (4.31). [70] The dominating channels can be obtained by

analyzing the respective eigenvalue problem of these contributions for each q. In this respect

the characteristic equation for eigenvectors φ and eigenvalues λ read

λd{m,q φ
kq
d{m “

ÿ

k1

Γkk1q
d{mGk1Gk1`qφ

k1q
d{m (4.34)

λpp,q φ
kq
pp “

ÿ

k1

Γkk1q

pp,ÒÓ
Gk1Gq´k1φ

k1q
pp . (4.35)

Here, q is chosen such that the λ is maximal. Possible divergences of the full vertex function

and thus phase transitions can be identified by eigenvalues with λ “ 1.

4.3. Parquet equations

The parquet equations (PEqs.) [19;20] set up the full vertex function F from a different perspec-

tive. Opposed to the BSEqs., Eqs. (4.27) and (4.29), which are nothing but a geometric series

(so to say a DEq. on the two-particle level), the PEqs. sum the fully irreducible two-particle

vertex function Λ and the two-particle reducible vertex functions Φ for all channels. In this

regard, the Feynman diagrams are constructed (cf. Fig. 4.3) and finally lead to

F p12, 34q “Λp12, 34q ` Φphp12, 34q ` Φ
ph
p12, 34q ` Φppp13, 24q (4.36)

Fp p12, 34q “Λpp12, 34q ` Φppp12, 34q ` Φphp13, 24q ` Φ
ph
p13, 24q . (4.37)

Due to the prevalent SU(2)-spin symmetry, the PEqs., Eqs. (4.36) and (4.37), are written in

spin-diagonal form. The corresponding definitions are denoted in Eqs. (4.12)–(4.15). With the

explicit use of the abbreviation, Eq. (4.10), the following is obtained

Fd{mp12, 34q “
”

FÒÒ ˘ FÒÓ

ı

p12, 34q (4.38)

“Λd{mp12, 34q ` Φd{mp12, 34q

´

”

Φph,ÒÒ ˘ Φ
ph,ÒÓ

ı

p14, 32q `
”

Φpp,ÒÒ ˘ Φpp,ÒÓ

ı

p13, 24q (4.39)

“Λd{mp12, 34q ` Φd{mp12, 34q ´
1

2

”

Φd ` Φm

ı

p14, 32q
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Fig. 4.3.: PEqs. in Feynman diagrams [11]
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¯ Φmp14, 32q ` Φtp13, 24q ˘
1

2

”

Φt ` Φs

ı

p13, 24q (4.40)

Ft{sp12, 34q “
”

Fp,ÒÓ ˘ Fp,ÒÓ

ı

p12, 34q (4.41)

“Λt{sp12, 34q ` Φt{sp12, 34q

`

”

Φph,ÒÓ ˘ Φ
ph,ÒÓ

ı

p13, 24q ´
”

Φ
ph,ÓÒ

˘ Φph,ÒÓ

ı

p14, 23q (4.42)

“Λt{sp12, 34q ` Φt{sp12, 34q `
1

2

”

Φd ´ Φm

ı

p13, 24q ˘ Φmp13, 24q

´ Φmp14, 23q ¯
1

2

”

Φd ´ Φm

ı

p14, 23q . (4.43)

Utilizing the energy and translational symmetry, reduces further the number of indices. This

results in the final form for the PEqs. with

F kk1q
d “Λkk1q

d `Φkk1q
d

”Φph

´
1

2
rΦd ` 3Φms

kpk`qqpk1´kq

”Φph

`
1

2
rΦs ` 3Φts

kk1pk`k1`qq

”Φpp

(4.44)

F kk1q
m “Λkk1q

m ` Φkk1q
m ´

1

2
rΦd ´ Φms

kpk`qqpk1´kq
´

1

2
rΦs ´ Φts

kk1pk`k1`qq (4.45)

F kk1q
s “Λkk1q

s ` Φkk1q
s `

1

2
rΦd ´ 3Φms

kpk`qqpk1´kq
`

1

2
rΦd ´ 3Φms

kk1pk`k1`qq (4.46)

F kk1q
t “Λkk1q

t ` Φkk1q
t `

1

2
rΦd ` Φms

kpk`qqpk1´kq
´

1

2
rΦd ` Φms

kk1pk`k1`qq . (4.47)

The definitions of a ph, ph and pp reducible vertex function in a specific spin channel becomes

for the separation of correlation functions useful. For the current-current correlation func-

tion, Eq. (5.6), the vertex contributions for the density-spin channel defined in Eq. (4.44) are

exploited (cf. Eqs. (5.26)–(5.29)).

4.4. Parquet method

The parquet formalism [10] consists of a set of equations: the BSEqs., Eqs. (4.27) and (4.29), the

PEqs., Eqs. (4.44)–(4.47), DSEq., Eq. (3.13), and the DEq., Eq. (3.14), which are evaluated

iteratively within the parquet code victory. [44;45] Consequently, one- and two-particle quan-

tities are treated on the same footing. Inspecting Eq. (3.13), enforces this to be, in principle,

a necessary requirement for computations.

The bottleneck of the method are the requirements on memory; the full and either the

irreducible or the reducible vertex function, i.e. F and Γ or Φ, need to be stored and accessed

in each spin channel for the combined momenta and frequency k, k1 and q. Consequently, these

need to be cut to finite boxes; namely, the momentum to the number of lattice sites N and

the frequency to Nf (for both positive and negative frequencies). Whenever the momentum

exceeds this box the translational symmetry provides a mapping back. For the frequency,

one- and two-particle vertex asymptotics are utilized to recover the correct dependence of
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1. initialize Λkk1q
r with r P td, s,m, tu, Σk and Gk

2. set F kk1q
r “ Γkk

1q
r “ Λkk1q

r

7. iterate with Σ“Σnew until convergence, i.e. ||Σold´Σnew||ăε.

3. calculate the reducible vertex function, Φkk1q
r :

Φr “ Γr ˝GG ˝ Fr , Eqs. (4.48) and (4.49)

4. determine the kernel functions, Kq
1,r, K

kq
2,r and Kk1q

2,r ,
Eqs. (4.51)–(4.53)

5. calculate the full vertex function, F kk1q
r :

F “ Λ` Φph ` Φph ` Φpp , Eqs. (4.44)–(4.47)

and update the irreducible vertex function, Γr “ Fr ´ Φr

6. calculate the self-energy Σk:

Σ “ V ˝GGG ˝ F , Eq. (4.54)

and update the Green’s function, G “ piν ´ ξ ´ Σq´1

8. determine response functions, e.g. σq, χr,q, λr, . . .

Fig. 4.4.: Flow diagram in victory [45]

the one- and two-particle Green’s function in victory. For two-particle quantities, these are

denoted as kernel functions. [44] Due to time invariance and lattice symmetry, the q index of

the two-particle function, can be further restricted to positive frequencies ω and momenta q

within the irreducible BZ (IBZ), only. [45] A distribution among multiple computer cores is,

however, unavoidable. Therewith, communication processes among the cores are required for

the evaluation of the PEqs., Eqs. (4.44)–(4.47), because of coupling of shifted momentum and

frequency of the contributions stemming from the ph, ph and pp channel.

More details follow by successively discussing the parquet formalism, exemplarily for vic-

tory. In this regard, Fig. 4.4 illustrates the sequential steps; namely,

1. The fully irreducible vertex function Λ is supposed to be given by some other means. A

useful approximation might be a restriction to the local part, Λloc; referring thus to the

diagrammatic vertex approximation (DΓA). [80;37] Λloc is deduced by solving an Anderson

impurity problem with exact diagonalization (ED, for the specific case of two sites see

also Sec. 4.5.1) [88] or with continuous-time quantum Monte Carlo simulations, [65;26;87]

for instance. Within certain limits, the first order contribution of the fully irreducible
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vertex function provides likewise a sufficient approximation. This is known as parquet

approximation (PA, cf. App. D.1). [12;11] Furthermore, the self-energy is provided a priori

or set to zero which likewise defines the one-particle Green’s function via the DEq.,

Eq. (3.14). All parameters specific for the model, such as the interaction strength and

for the lattice, such as the number of sites N are read in. The number of frequencies Nf

is likewise fixed to define the range of Matsubara frequencies in which the one-particle

and two-particle quantities will be stored.

2. Within the initialization, the full vertex function F and the (channel-dependent) irre-

ducible vertex function Γ are set to Λ for each spin channel td,m, s, tu.

Therewith the actual cycle of the iterative scheme can be started.

3. The reducible vertex function is updated by use of the BSEqs., Eqs. (4.27) and (4.29).

For each q value, a regular matrix multiplication can be performed. A symmetrization

of the BSEqs. by swapping the order of F and Γ stabilizes the approach. Particularly, a

high-frequency regulation seems to be of great importance. The first order approximation

of the BSEqs. is added and subtracted, in Matsubara-frequency space for one thing, and

for another thing by the Fourier-transformed quantity in imaginary-time space. This

is explicitly derived in App. D.2. Summarizing the high-frequency regulation for the

BSEqs., the reducible vertex function is updated via

Φkk1q
d{m “

1

Nβ

ÿ

k1

Γkk1q
d{mGk1

Gk1`q
F kk1q
d{m ´ Φ̃kk1q

d{m ` Φ̂kk1q
d{m (4.48)

Φkk1q
s{t “¯

1

2Nβ

ÿ

k1

Γkk1q
s{t Gk1

Gq´k1
F kk1q
s{t ¯ Φ̃kk1q

s{t ˘ Φ̂kk1q
s{t (4.49)

with the use of Eqs. (D.8)–(D.10). Whenever the one-particle Green’s function exceeds

the frequency box an extrapolated Green’s function is utilized. Namely, the self-energy

is replaced by its high-frequency value Σk Ñ Σpk,ν˘Nf{2q
. For the momentum, the trans-

lational symmetry is applied to obtain the exact value. Additionally a mixing factor fm

is utilized which accounts for the old solution to some degree, Φnew “ fmΦ`p1´ fmqΦold

for fm P p0, 1q.

4. Before the PEqs. can be utilized in order to update the full vertex function, the kernel

functions are determined. These functions describe the high-frequency asymptotics of

the reducible vertex function Φ. The reducible vertex function can be represented exactly

by three components, namely the kernel functions, K1 and K2, and the remainder, R,

which differ in its k dependence via [89]

Φkk1q
r “ Kq

1,r `K
kq
2,r `K

k1q
2,r `R

kk1q
r (4.50)

for each spin channel r P td,m, s, tu. The specific class of diagrams are visualized in
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Kq
1,ph = + F

Kk q
2,ph = Kk′q

2,ph = Rkk′q
ph =

Φph

1 4

2 3

= Γph

1 4’

2 3’

F

1’ 4

2’ 3

Fig. 4.5.: Separation of the reducible vertex function Φph into the kernel functions, K1,ph and
K2,ph, and the remainder Rph according to Wentzell et al. [89] The black circles corresponds to
bare interactions, i.e. Eqs. (D.6) and (D.7), and the gray-shaded region belong to the remaining
vertex function to result in the respective kernel function.

Fig. 4.5. Due to momentum and frequency conservation for each bare interaction vertex,

Eqs. (D.6) and (D.7), inserted according to Fig. 4.5, the number of the external k-indices

reduces by one. This is done successively to obtain the first kernel function, the second

kernel function and finally the remaining function. In the high-frequency limit, diagrams

of class R will not contribute and consequently, the reducible vertex function can be

restored exclusively by K1 and K2. [89;44] These are determined by scanning the edges

according to

Kq
1,r “ Φ

kNf
k1Nf

q

r (4.51)

Kk q
2,r “ Φ

kk1Nf
q

r (4.52)

Kk1q
2,r “ Φ

kNf k
1q

r (4.53)

for k
p1q

Nf
” pkp1q, ν

p1q

˘Nf{2
q. Moreover, the kernel functions are set to zero if the transfer

frequency q “ pq, ωnq exceeds the stored frequency range. By this means, the reducible

vertex function is provided for a much larger frequency box.

5. The full vertex function is updated with the use of the PEqs., Eqs. (4.44)–(4.47). The

evaluation of the PEqs. requires excessive communications among the different cores.

This is illustrated in Fig. 4.6 schematically. Because of storage limitations, the vertex

functions are split according to the transfer vector q to a certain amount of computer

cores. The frequency and momentum coupling appearing in the PEqs. demand for

broadcasting among the cores. This quite limits the computational time. However, for

the study of 2D systems, for instance, a reduction of matrix sizes by parallelization is

unavoidable (for more details see Li et al. [45]).
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core 1

Φkk′q1
r

core 2 core 3 core 4

core 2

Φkk′q2
r

. . .

F kk′q1
r F kk′q2

r F kk′q3
r F kk′q4

r

F kk′q1
r F kk′q2

r F kk′q3
r F kk′q4

r

Fig. 4.6.: Broadcasting process illustrated successively for four cores; thus q Ñ tq1, q2, q3, q4u.
Each two-particle vertex function is stored only for qi components on core i with i P t1 .. 4u.
Hence, to update F in the PEqs., each core needs to send its stored Φ to all other cores. [45]

6. Finally, the self-energy is computed according to Eq. (3.13). Similar to the evaluation of

the BSEqs., high-frequency regulations according to App. D.2 are exploited and lead to

Σk “´
1

pNβq2

ÿ

k1,q

Gk`qGk1Gk1`q

„

U

2
rFd ´ Fms

kk1q
` VqF

kk1q
d



´ Σ̃k ` Σ̂k ` Σ̂F
k . (4.54)

The Fock contribution is determined with use of Eq. (D.12). The explicit high-frequency

regulation is defined via Eqs. (D.13) and (D.14). Therewith, the one-particle Green’s

function, Eq. (3.14), can be updated.

7. The maximum norm of the newly calculated self-energy with respect to the previous one

defines the convergence criterion. If this norm is larger than a specific value ε, typically

in the order of ε „ Op10´4q, the loop is iterated again (go back to 3). Otherwise, the

cycle is aborted.

8. For the converged one- and two-particle functions, finally, quantities such as conductivi-

ties (cf. Chapter 5), susceptibilities (Eqs. (4.32) and (4.33)) or the eigenequation of the

BSEqs. (Eqs. (4.34) and (4.35)) can be deduced. By use of the one-particle propaga-

tors, so-called ladder diagrams of a specific channel can be additionally constructed. For
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instance, results are shown for pp-ladder diagrams in Sec. 5.3.

4.5. Results – two-site benchmark

Before tackling full complexity regarding the many-particle problem the system size is reduced

to two sites. In this respect the parquet code victory in the PA is benchmarked with the

analytical solution. The latter is obtained by ED [88] utilizing a linear algebra package, i.e.

lapack. The explicit derivation of the formulas to be implemented is shown in Sec. 4.5.1.

Special focus is put on the non-local contribution to the interaction strength. Beside this

benchmark, some specifics, related to the frequency box Nf and the Fock term, already appear

at this level and are discussed in Sec. 4.5.2.

4.5.1. Exact diagonalization for two sites

The extended Hubbard model for two sites is solved by exact diagonalization (ED). [88] The

number of states is small enough such that a matrix representation of the Hamiltonian,

Eq. (2.5), within an appropriate basis can be straightforwardly diagonalized by lapack rou-

tines.

The obtained basis set allows to determine all kind of expectation values such as the one-

particle Green’s function. The representation, which will be utilized, is the occupation number

representation. The Hilbert space is spanned by |i1, i2y with i1,2 P t0, Ò, Ó, ÒÓu. Exploiting

symmetries, greatly simplifies the diagonalization procedure. The matrix, which has to be

diagonalized, can be written in a block diagonal form. Hence, the eigenvalue problem of much

smaller matrices has to be solved.

Here, the conservation of the particle number N , meaning tN ,Hu´ “ 0, and the invariance

of the Hamiltonian with respect to the z-component of the spin operator S, tSz,Hu´ “ 0,

are exploited. Therefore, different subspaces with constant particle and spin quantum num-

ber are obtained and visualized in Tab. 4.1 via blocks of equal color. All these submatrices

are diagonalized and the eigenbasis with its corresponding eigenvalues are listed in Tab. 4.1.

Observables are computed by a representation within this eigenbasis. Amongst others, the

partition function is needed and reads

Z “
ÿ

tiu

e´βEi “ 2eβpµ´tq ` 2eβpµ`tq ` 3e´βa ` e´βb ` 2e´βpc`tq ` 2e´βpc´tq ` e´2βpc`µq

` e´βpd`b`eq ` e´βpd`b´eq ` 1 . (4.55)
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d
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tcom

e

N Sz T V0 V1 µN Etiu ptiu

|0, 0y 0 0 0 0 0 0 0 |0, 0y

|Ò, 0y ´t |0, Òy 0 0 ´µ |Ò, 0y

|0, Òy
1
2 ´t |Ò, 0y 0 0 ´µ |0, Òy

´µ˘ t 1?
2
r|Ò, 0y ¯ |0, Òys

|Ó, 0y ´t |0, Óy 0 0 ´µ |Ó, 0y

|0, Óy

1

´1
2 ´t |Ó, 0y 0 0 ´µ |0, Óy

´µ˘ t 1?
2
r|Ó, 0y ¯ |0, Óys

|Ò, Óy ´tr|ÒÓ, 0y ` |0, ÒÓys 0 2V |Ò, Óy ´2µ |Ò, Óy

|Ó, Òy tr|ÒÓ, 0y ` |0, ÒÓys 0 2V |Ó, Òy ´2µ |Ó, Òy

|ÒÓ, 0y ´tr|Ò, Óy ´ |Ó, Òys U |ÒÓ, 0y 0 ´2µ |ÒÓ, 0y

|0, ÒÓy

0

´tr|Ò, Óy ´ |Ó, Òys U |0, ÒÓy 0 ´2µ |0, ÒÓy

p‹q

|Ò, Òy 1 0 0 2V |Ò, Òy ´2µ |Ò, Òy a |Ò, Òy

|Ó, Óy

2

-1 0 0 2V |Ó, Óy ´2µ |Ó, Óy a |Ó, Óy

|Ò, ÒÓy t |ÒÓ, Òy U |Ò, ÒÓy 4V |Ò, ÒÓy ´3µ |Ò, ÒÓy

|ÒÓ, Òy
1

t |Ò, ÒÓy U |ÒÓ, Òy 4V |ÒÓ, Òy ´3µ |ÒÓ, Òy
c˘ t 1?

2
r|ÒÓ, Òy ˘ |Ò, ÒÓys

|Ó, ÒÓy t |ÒÓ, Óy U |Ó, ÒÓy 4V |Ó, ÒÓy ´3µ |Ó, ÒÓy

|ÒÓ, Óy

3

-1
t |Ó, ÒÓy U |ÒÓ, Óy 4V |ÒÓ, Óy ´3µ |ÒÓ, Óy

c˘ t 1?
2
r|ÒÓ, Óy ˘ |Ó, ÒÓys

|ÒÓ, ÒÓy 4 0 0 2U |ÒÓ, ÒÓy 8V |ÒÓ, ÒÓy ´4µ |ÒÓ, ÒÓy 2c` 2µ |ÒÓ, ÒÓy

Etiu ptiu

a 1?
2

“

|Ò, Óy ` |Ó, Òy
‰

b 1?
2

“

|0, ÒÓy ´ |ÒÓ, 0y
‰

p‹q

d` b˘ e 1
2
?
e2˘de

”

4t
“

|ÒÓ, 0y ` |0, ÒÓy
‰

´ pd˘ eq
“

|Ò, Óy ´ |Ó, Òy
‰

ı

Tab. 4.1.: The eigenvalues Etiu and eigenvectors ptiu for the two-site extended Hubbard model are listed. Successive rows which are colored
the same correspond to the same subspace which is diagonalized. Moreover, the abbreviations are used: a “ 2V ´ 2µ, b “ U ´ 2µ,
c “ U ` 4V ´ 3µ, d “ a´b

2
and e “ 1

2

a

pa´ bq2 ` 16t2.
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One-particle Green’s function

The one-particle Green’s function is obtained by using Eq. (4.55) and evaluating the expecta-

tion value, Eq. (3.4), according to

Gijpτq “
1

Z

ÿ

sl

e´pβ´τqEse´τEl
A

ps|cj|pl

EA

pl|c
:

i |ps

E

. (4.56)

The Fourier transform of these quantities is done, by using Gk“0{πpτq “ G11pτq ˘ G12pτq

for the r- to k-space transformation. The transformation to frequency is proportional to

Gνn9
´ β

0
dτ Ceτpiνn`Aq “ C eβpiνn`Aq´1

iνn`A
for some arbitrary τ -independent function C and A. The

one-particle Green’s function in k space reads finally

G
pk“0{π,νnq

“´
1

Z

ÿ

sl

e´βEl ` e´βEs

iνn ` Es ´ El

”A

ps|c1|pl

EA

pl|c
:

1|ps

E

˘

A

ps|c2|pl

EA

pl|c
:

1|ps

Eı

(4.57)

“
1

Z

«

eβpµ˘tq ` 1

iνn ` µ˘ t
`

3

2

e´βa ` eβpµ¯tq

iνn ´ µ˘ t´ a
`

3

2

eβp˘t´cq ` e´βa

iνn ˘ t` a´ c
`
e´2βpµ`cq ` e´βpc˘tq

iνn ´ 2µ˘ t´ c

`
1

2

e´βb ` eβpµ¯tq

iνn ´ µ˘ t´ b
`

1

2

eβp˘t´cq ` e´βb

iνn ˘ t` b´ c
`
p2t˘ d˘ eq2

4pe2 ` deq

e´βpc˘tq ` e´βpd`b`eq

iνn ¯ t` b´ c` d` e

`
p2t¯ d¯ eq2

4pe2 ` deq

e´βpb`d`eq ` eβpµ˘tq

iνn ´ µ¯ t´ b´ d´ e
`
p2t˘ d¯ eq2

4pe2 ´ deq

e´βpc˘tq ` e´βpd`b´eq

iνn ¯ t` b´ c` d´ e

`
p2t¯ d˘ eq2

4pe2 ´ deq

e´βpb`d´eq ` eβpµ˘tq

iνn ´ µ¯ t´ b´ d` e

ff

(4.58)

With this lengthy explicit form of Eq. (4.58) and with the help of Tab. 4.1 the one-particle

Green’s function can be calculated. However it is more efficient to use the lapack package

to diagonalize the problem numerically and utilize the matrix representation of Eq. (4.57) in

order to obtain the Green’s function.

Half-filled case and atomic limit

For a particle-hole symmetric Hamiltonian, the chemical potential is shifted by Eq. (2.13).

Hence, at half-filling the chemical potential is shifted by µ Ñ U{2 ` 2V . The basis states of

the particle number representation for a paramagnetic filling, Sz “ 0, is built up from |ÒÓ, 0y,

|0, ÒÓy, |Ò, Óy and |Ó, Òy. The first two states correspond to a charge-density wave (CDW) and

the remaining states to a SDW. In particular, the states forming the SDW consist only of Néel

states.

Accounting only for the interaction (atomic limit), the critical value V for a transition from

a SDW to a CDW can be determined. The energy for a CDW is, according to Tab. 4.1,

ECDW “ NU and for the SDW states it is ECDW “ 2NV . Hence, a transition is expected

at U “ 2V . In this regard, the interaction V is given in units of U{2 such that 2V {U “ 1

corresponds to the transition point in the atomic limit.
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Fig. 4.7.: Self-energy for a two-site system at βt “ 2, U “ 2t and half-filling for the PA (circles
with dashed lines) and ED (diamonds with solid lines). The top figure shows the imaginary
part and the bottom figure shows the real part except for the Fock contribution. As the
insets solely display the data for 2V {U “ 1 (note in the atomic limit, 2V {U “ 1 corresponds
the phase transition), the Fock term is included. Here, finite frequency effects are shown by
plotting the self-energy for the zeroth, first and tenth Matsubara frequencies against 1{N2

f , the
number of positive and negative frequencies.

This result is independent of the dimension and number of sites. Hence, for the coordina-

tion number Z, the transition occurs at ZV {U “ 1; [7] at weak couplings this holds likewise. [90]

Inbetween these limits, the transition between SDW and CDW is approximately at ZV {U „ 1

(starting from a strong coupling expansion up to fourth order). [83] For finite temperatures this

is equally the case, as the system is strongly influenced by the corresponding fluctuations, mag-

netic and/or charge. Thus the definition of this relative parameter is convenient to identify the

regime of predominate magnetic fluctuations for ZV {U ă 1 (weak V -limit) and predominate

charge fluctuations for ZV {U Á 1 (strong V -limit).
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4.5.2. Self-energy

The self-energy is computed for the two-site system exactly (ED) and compared to the parquet

code victory in the PA. The results are shown in Fig. 4.7 for βt “ 2, U “ 2t with V “ 0

and 2V {U “ 1 at half-filling. For the PA, the frequency box is set to Nf “ 96, the number of

positive and negative frequencies (main panel of Fig. 4.7).

The PA correctly reproduces the self-energy as the data sets for both V -terms lie on top

of the exact solution. The high-frequency behavior is in excellent agreement with the ED.

Deviations are solely visible for the self-energy of the first three Matsubara frequencies which

is an artifact of the PA. [44;38]

Increasing the non-local interaction strength pushes the system moreover to a phase transi-

tion, namely towards a charge ordered regime. Forcing the system across any phase transition

leads to a loss of symmetry in the Hamiltonian. Consequently, such a new ground state and in

general, its broken symmetry has to be considered explicitly in the code. In case of a charge or-

dering which is described by a CDW the Brillouin zone needs to be enlarged twice to correctly

describe the CDW in victory.

Frequency-box study and Fock term

An increase in the interaction for both the local part and non-local part lead to more complex

contributions in the vertex functions. These are in general larger in magnitude and larger

in extension referring to the frequency range. Furthermore, the functions are treated only

asymptotically by the kernel functions, Eqs. (4.51)–(4.53), for high frequencies (larger than

Nf ). To account for this magnification the frequency box Nf has to be enlarged such that the

kernel approximations are applied when the functions actually reach their asymptotics. Hence,

computations within victory will still be in accordance to the exact result. Similar, when

going to lower temperatures the frequency box needs to be enlarged as the Matsubara frequency

scales with π
β
. Hence, all matrices grow in size and enforce consequently more computational

power. The same argument holds when increasing the momentum space.

In the current study of two sites and at a moderate interaction these requirements for memory

are not serious. However, already for these parameters the general trend can be visualized.

The insets of Fig. 4.7 analyze the effect of the inner frequency-box Nf . In this regard the

self-energy at a certain frequency, namely for ν0, ν1 and ν10, is plotted versus the inverse of

N2
f . The upper inset displays the imaginary part of the self-energy and the lower inset shows

the real part of the self-energy. Both studies include only data points for 2V {U “ 1. The

real part includes here explicitly the Fock term, whereas it is subtracted in the main panel of

Fig. 4.7.

Comparing the two insets, it can be concluded that the dominating deviations stem from the

Fock term. Firstly, at half-filling, the contribution is solely real and secondly, it is frequency

independent which results from Eq. (3.13). In this respect the various colored lines in the

insets of Fig. 4.7 for the real part are shifted by an overall constant. In contrast, frequency-
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dependent changes correspond to various offsets among the three curves. The frequency-

independent deviations quickly converge to the exact result when increasing the frequency box

Nf . Consequently, the kernel functions progressively capture the correct asymptotics with an

increase of Nf .

The frequency-dependent variations are clearly seen in the imaginary part of the self-energy

(upper inset), as there is no contribution similar to the Fock term. Already for a frequency

box of Nf “ 32 the high-frequency tail of the imaginary part of the self-energy is correctly re-

produced. As the kernel functions mainly affect the high-frequency asymptotics, this behavior

likewise speaks for the validity of the kernel functions. Larger deviations are only obtained

for smaller frequencies (ν0 and ν1). As these deviations are not so strongly dependent on the

frequency box size Nf its origin is suspected to result from the incomplete knowledge of the

fully irreducible vertex function; and thus the PA. [44;38]

4.6. Results – benzene molecule

Allowing for interactions among all electrons in a six-site ring, irrespective of their distance,

the benzene molecule can be simulated within the PPP model (see Sec. 2.2). The parameters

are set to U “ 3.962t, V1 “ 2.832t, V2 “ 2.014t and V3 “ 1.803t in the PA. [15] In order

to study the influence of non-local interactions the data is compared to a study with local

interactions only, namely with U “ 3.962t and V1,2,3 “ 0 (coined U -only model). Whenever

interesting insights are obtained, the outcome of the extended Hubbard model is consulted;

with U “ 3.962t, V1 “ 2.832t and V2,3 “ 0 (here denoted as U`V1 model). Furthermore the

inverse temperature and filling are βt “ 10 and n “ 1. The number of Matsubara frequencies

(including positive and negative frequencies) is set to Nf “ 320. The momentum is written

with a bold symbol despite the one dimensionality.

In this regard, the full two-particle vertex function, Sec. 4.6.1, the eigenvalues of the BSEqs.,

Sec. 4.6.2, the self-energy, Sec. 4.6.3, and the spectral function, Sec. 4.6.4, are studied in the

following. A short summary is provided in Sec. 4.6.5. These results are likewise published in

Pudleiner et al. [58]

4.6.1. Full two-particle vertex function

Fig. 4.8 shows the full vertex function F kk1q
d . The focus is restricted to the density channel, as

it is the most dominating channel, especially for the PPP model.

The major difference when including a non-local interaction displays in a strong momentum

selectivity. The non-local contribution to F provides a k-dependent offset. These offsets can

be seen in the various colored momentum patches pk,k1q for the PPP model (top row of the

3D plot in Fig. 4.8) compared to the monotonous coloring of the pk,k1q patches in the U -

only model (bottom row). A major contribution stems from the bare interaction vertex Ukk1q

defined in Eqs. (D.6) and (D.7); and thus from the fully irreducible vertex function Λ. Due
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Fig. 4.8.: Full vertex function in its density channel in the PA for a benzene ring at βt “ 10
and half-filling within the PPP model (top row) and the U -only model (bottom row). The

first and second column show F kk1q0
d for q0 “ p0, ω0q and F kk1q1

d for q1 “
`

π
3
, ω0

˘

, respectively, in
the pk, k1q plane. For each subbox pk,k1q the full frequency dependence pνn, ν

1
nq is visualized.

The 2D plot (on top) shows in this respect the complete pk, k1q plane. For specific momenta,
namely pk,k1q “

`

0,
 

0, π
3
, π
(˘

and for
` 

0, π
3
, 2π

3
, π, 4π

3
, 5π

3

(

, π
3

˘

, a 3D plot is provided below.

The third column corresponds to vertex contributions rFd ´ Uds
k1k11q0 for q0, k1 “ pπ, νnq and

k11 “ p0, ν
1
nq.

to the frequency independence of the offset, the remaining part is attributed to the so-called

dressed bubble contributions of the reducible vertex functions (the corresponding Feynman

diagram is displayed in the second row of Fig. 4.5). This contribution likewise defines the first

kernel function, K1, Eq. (4.51). The expected plus structure [89] for q ˘ kp1q “ const. which is

also included in K1 is not pronounced for this parameter set.

Apart from these various offsets, the vertex functions for the U -only and PPP model are quite

comparable. The similarity refers to the main diagonal that is visible in almost all momentum

patches of Fig. 4.8 at q0 “ p0, ω0q and q1 “
`

π
3
, ω0

˘

. These diagonals, q ´ k ` k1 “ const.,

originate from the second kernel function, Kqkp1q

2 , defined in Eqs. (4.52) and (4.53). Likewise,

Fig. 4.5 provides the corresponding Feynman diagram. The secondary diagonal, q ` k ` k1 “

const., of the K2 is also strongly suppressed for this parameter set. The third column of Fig. 4.8

displays in this regard, exemplarily for the momentum patch pk,k1q “ pπ, 0q and q0, merely

the main diagonal. The bare interaction is subtracted for this instance.

These 2D plots presented in the third column Fig. 4.8 illustrate a quite general observation;

namely that the values on the diagonal in frequency reach asymptotics slower when non-local

interactions are considered. In order to reach the asymptotic regime larger frequency boxes Nf

need to be utilized for qualitatively comparable results among studies with local and non-local
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Fig. 4.9.: Leading eigenvalues of Eqs. (4.34) and (4.35) in the d, m and pp channel for the
U -only, U`V1 and PPP model within PA (for parameters see Fig. 4.8).

interactions. This problem is also discussed for the two-site system in Sec. 4.5.2.

4.6.2. Eigenvalues of the Bethe-Salpeter equations

The eigenvalues, obtained by Eqs. (4.34) and (4.35), are evaluated for each q.1 The leading

eigenvalues for the density and magnetic channel correspond to q “ pπ, ω0q. The dominant

eigenvalue in the particle-particle channel is at q “ p0, ω0q. These eigenvalues are displayed in

Fig. 4.9. For all three models the d and m channels are the important channels; whereas the

eigenvalues in the pp channel are small.

A superconducting instability can thus be excluded and the influence from the corresponding

particle-particle fluctuations can be neglected. Dominating eigenvalues with q “ π relate to

an alternating ordering among neighboring sites. Hence, for the U -only model, the system

shows a stronger tendency to an AFM ordering than ordering within the density. The PPP

model shows no specific pronounced channel. As the eigenvalues, λm and λd for q “ π, are

nevertheless quite large, influences from strong AFM and CDW fluctuations are expected. For

the U`V1 model, λd is almost one, indicating a regime close to a CDW phase transition.2

1 Currently, the evaluation of the frequency sum in Eqs. (4.34) and (4.35) is performed only within the
frequency box Nf . Thus the overall values might change slightly, when considering the kernel approximations
and enlarging herewith the frequency sum. However, no drastic change is expected but small shifts of the
absolute values in the same direction.

2 Song et al. [73] predict a phase transition from a magnetic to a charge ordering at V „ 1.76t by a second
order perturbation of the ground state energy for the U V̀1 model. A phase transition in a strong coupling
expansion is predicted likewise at V “ 1.68t in second order perturbation theory and at V “ 1.45t including
the fourth order. [83]
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Fig. 4.10.: Self-energy for DMFT, ED and PA for the U -only and PPP model. In the latter
case, the Fock contribution is subtracted in the main figures, but explicitly shown in the insets.
The inset shows a comparison for the PPP model between ED (triangles) and PA data sets
(circles) on the scale 1{N2

f . The first and second column corresponds to data sets with k “ 0
and k “ π

3
. The high-frequency asymptotics is displayed in the third column; for ImΣ ¨ νn

at k “ 0 for both the PPP and U -only model (top figure) and for Re
“

Σ´ ΣF
‰

¨ ν2
n (bottom

figure) merely for the U -only model but all distinct k’s (for parameters see Fig. 4.8).

4.6.3. Self-energy

In Fig. 4.10, the self-energy is shown for the PPP model and the U -only model. The plots

comprise the two distinct k-points, namely k “ 0 and k “ π
3
. For a better comparison of the

two models, the Fock term is explicitly subtracted in the main figures, and solely regarded in

the insets. The third column of Fig. 4.10 displays the asymptotic behavior of the self-energy.

The results are obtained by computation within the parquet formalism for the PA, as well as

in DMFT and ED. For a six-site system a diagonalization of the corresponding matrices is still

feasible; and thus, allows for a comparison to the exact solution (provided by Hörbinger [31]).

The (k-independent) DMFT self-energy is obtained by continuous-time quantum Monte Carlo

simulations in the interaction expansion. [65;26]

Focusing on the imaginary part of the self-energy in Fig. 4.10, the DMFT self-energy provides

a good description for the U -only parameter settings. It roughly corresponds to a k-average of

the ED data. The real part of the self-energy in DMFT is however completely off. This term

is zero due to particle-hole symmetry of the local Green’s function.

The PA slightly underestimates the self-energy, both for the imaginary and real part. How-

ever the correct tendency in k space is provided; namely larger contributions in absolute terms

for the low-frequency range for k “ π
3

than for k “ 0. The underestimation can be traced

back to the PA (cf. likewise Sec. 4.5.2). This weak coupling approximation seems to reach

its limits, especially for the U -only model. Results enormously improve by considering also

the local contributions to the irreducible vertex function (DΓA) and not only its first order

contribution (PA) as input function of the parquet solver. This issue is already studied for

local interactions in Li et al. [44] and in Kauch et al. [38]
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Including non-local interactions by going from the U -only model to the PPP model com-

pletely modifies the self-energy. The imaginary contributions are drastically suppressed and

the frequency-dependent contributions to the real part are likewise smaller in magnitude. The

PA provides now an excellent description for the PPP model. This can be attributed to the

fact, that non-local interactions actually rescale the effective interaction into a weaker corre-

lated regime. When considering the extreme case for which all interaction strengths are of

equal size, that is U “ V1 “ V2 “ V3, no site is preferential for the electrons; as the interaction

is always the same. The PPP model might be regarded as a setting lying inbetween the U -only

parameters and this extreme case.

The insets of Fig. 4.10 display the dependency on the frequency box Nf for the PPP model in

the PA including the Fock term. In this respect, the real part of the self-energy at three various

Matsubara frequencies is plotted vs. 1{N2
f . The exact solution is likewise considered at Nf Ñ 8

(ED). As the Fock term corresponds to the high-frequency contribution, e.g. ΣF „ ΣνnÑ8 its

error corresponds to the variations of the largest (plotted) Matsubara frequency, namely ν20,

compared to the exact solution. For this regime the results converge to the exact solution

and deviations for Nf “ 320 are already minor. This data set for the PA is therefore also

displayed in the main panels of Fig. 4.10. For the low-frequency range a convergence to the

exact solution by an increase of the frequency box is likewise obtained; however, not of the

same quality as for the high-frequency range (νn Á ν20). For any finite interaction regime the

PA will always deviate from the exact solution. This appeared for the two-site system alike

(cf. Sec. 4.5.2). This approximation can be improved by updating in an outer loop the fully

irreducible vertex function or already starting with its local contribution Λloc (DΓA). By doing

so, the parquet method is not only self-consistent in the two-particle vertex functions F , Γ,

Φ and the one-particle functions G and Σ but also, hence fully self-consistent, on the input

function Λ. However, the computational time increases noticeably and needs to be carefully

assessed. As the PA already provides good accordance such a scheme is for this parameter

setting not really justified.

Returning to the high-frequency behavior of the self-energy the third column of Fig. 4.10

gives further insights. The parquet method reproduces the 1{νn dependence for the imaginary

part and the 1{ν2
n dependence for the real part. Comparing to other methods this behavior

is of special importance. For instance, in ladder DΓA the 1{νn dependence is only obtained

by means of a Moriya λ-correction. [37] The dual fermion approach correctly reproduces the

asymptotics of the self-energy; however, merely if theory is truncated to two-particle vertex

functions. [36;60]

4.6.4. Spectral function

The spectral function, Eq. (3.16), is deduced by means of the Padé interpolation which is

introduced in App. C.1 for the data sets obtained by PA and DMFT. In case of the ED the

analytic continuation is performed straightforwardly by iνn Ñ ν ` iδ with a broadening of
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Fig. 4.11.: Spectral function for the DMFT, ED and PA k-integrated (locally, first row) and
momentum-resolved, i.e. k “ 0 (second row) and k “ π

3
(third row). The left column contains

the results for the U -only model; whereas the right column displays the outcome for the PPP
model. The insets show a zoom into the region indicated (for parameters see Fig. 4.8).

δ “ 0.05t. The spectral function is displayed in Fig. 4.11. The k-integrated (local) spectrum

Aloc is displayed in the first row of Fig. 4.11. The analytic continuation is performed after the

k summation. Consequently the PA spectrum displays not the single peaks but a smeared

spectrum. A more detailed study is enabled by the k-resolved function. The corresponding

spectral functions Ak for k “ 0 and k “ π
3

are the only distinct spectra of the six-site system

and are shown in the second and third row of Fig. 4.11, respectively. The positions of peaks

appearing in the k-dependent spectra of Fig. 4.11 are explicitly listed in Tab. 4.2 (green-shaded

columns). The direct and indirect spectral band gaps, labeled ∆A
k and ∆A, respectively, are

also extracted and listed in Tab. 5.1.

By allowing for non-local interactions the spectral gap ∆ increases. This happens smoothly

when going from the U -only model towards the U`V1 model, and finally, towards the PPP

model. The gaps are (slightly for the PA and considerably for the DMFT) underestimated

compared to the ED. This feature is also observed in the self-energy (cf. Fig. 4.10). As the real

part of the DMFT self-energy is zero this similarity in case of the U -only model and likewise,
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U -only PPP

k εk ε˚k εPA εED ReΣpk,ν0q Zk ε˚k εPA εED ReΣpk,ν0q Zk

0 -2 -2.0 -1.9 -2.0 -0.38 0.83 -3.3 -3.1 -3.3 -1.47 0.96
π
3

-1 -1.1 -1.1 -1.3 -0.34 0.80 -2.1 -2.1 -2.2 -1.23 0.94
2π
3

1 1.1 1.1 1.3 0.34 0.80 2.1 2.1 2.2 1.23 0.94

π 2 2.0 1.9 2.0 0.38 0.83 3.3 3.1 3.3 1.47 0.96

Tab. 4.2.: Parameters of the Fermi-liquid-like renormalization, i.e., quasiparticle energy ε˚k and
quasiparticle weight Zk, compared to the non-interacting energies εk and the (predominant)
peaks εPApEDq of the PA (ED) spectra from Fig. 4.11. ReΣ corresponds to the PA at ν0 “

π
β

(parameters are the same as in Fig. 4.8).

the discrepancy with respect to the PPP model is quite expected.

The gap in the non-interacting spectrum is comparable to the gap observed for the U -only

model; compare εPA,k“π
3
„´1.1 to εk“π

3
“ ´1 of Tab. 4.2. The gap size in the non-interacting

system is thus given by ∆εk “ εk“ 2π
3
´ εk“π

3
“ 2. This is of the same order as ∆PA „ 2.2 for

the U -only model (for ED: ∆ED „ 2.6). The gap for the PPP model is twice as large with

∆PA/ED „ 4.5.

This can be understood in the context of Fermi liquid theory. In this respect, the renormal-

ization is deduced, from the slope of the imaginary part of the self-energy displayed in Fig. 4.10

for νn Ñ 0, namely according to

Zk “

„

1´
ImΣk

νn

ˇ

ˇ

ˇ

ˇ

νnÑ0

´1

. (4.59)

In order to obtain the limit appearing in Eq. (4.59) a second order polynomial is fitted to ImΣ

of the first three Matsubara frequencies of the PA. This allows for the extrapolation to νn Ñ 0.

The renormalization factors Zk are listed in Tab. 4.2 and confirm the findings of almost no

renormalization for the PPP model, as Zk „ 1, in contrast to the U -only model, Zk „ 0.8.

This is likewise observed in the self-energy Fig. 4.10.

In order to deduce the quasiparticle excitation energy also the real part of the self-energy

for νn Ñ 0 enters via

ε˚k “Zk

“

εk ´ µ` ReΣk|νnÑ0

‰

. (4.60)

Because of the symmetry with respect to ˘νn, ReΣ|νnÑ0 is approximated by ReΣ|ν0 . The

explicit results are specified in Tab. 4.2.

Due to the large Fock term for finite non-local interactions the gap increases proportional

to the non-local interaction strength (second term in Eq. (3.13)). The gap size is not so much

influenced by the renormalization factor. Thus the result for the U -only model (ε˚k“π
3
„ ´1.1

that fits the peak position of PA εPA,k“π
3
„ ´1.1) is more comparable to the non-interacting
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gap function (εk“π
3
“ 1), although the renormalization Zk for the U -only model hints to a

more correlated regime.

Determining not only the local spectral function but also the momentum-dependent spectra,

is not only interesting from a physical point of view but also from a technical point of view.

The Padé method provides the most dominant peaks; however smaller subpeaks tend to only

broaden the main peak and are not resolved as separate peaks. This manifests itself when

comparing the exact result to the PA in the first row of Fig. 4.11. The detailed spectrum

can be reproduced when the spectrum for each k-value is deduced separately. The respective

results are displayed in the second and third row of Fig. 4.11. These are in agreement with

the most dominant peaks obtained by ED. Similarly the DMFT spectrum might be seen as

smeared-out spectrum.

4.6.5. Summary

In this section, Sec. 4.6, the properties of a six-site ring are analyzed within Hubbard-like

models (Hubbard, extended Hubbard and PPP models) with focus on non-locality. This is done

at two levels: non-locality in terms of correlations and non-locality in terms of interactions.

First of all, the study of non-local correlations is provided by a comparison of the PA results

to the DMFT results. Taking into account only local, though dynamical quantum fluctuations

as in DMFT well describes the one-particle functions, the self-energy or spectral function, in

the U -only model. The DMFT results can be regarded here as a momentum-averaged solution;

but for the PPP model and also for the more quantitative analysis in the U -only model, non-

local dynamical quantum fluctuations need to be included. In this regard the PA is employed.

This method treats non-locality in the one and two-particle functions consistently and provides

an adequate tool.

Secondly, the degree of non-locality with respect to the interaction is considered. For the

PPP model, which includes all possibilities for interactions of a density-density type between

electrons of the six-site system, the PA is clearly sufficient as the comparison to the exact result

shows. For the U -only model where the interaction is purely local, the frequency dependence

of the fully irreducible vertex function needs to be taken into account, either within DΓA, [44;38]

Λ „ Λloc, or in a fully self-consistent DΓA scheme which updates additionally Λ. The latter

scheme becomes important if non-local interactions are included because DMFT overestimates

electronic correlations in Λloc if non-local interactions are present.

In the parquet method with its one- and two-particle consistency, namely in G, Σ, F , Γ and

Φ, the two-particle functions are also accessible and available for study. Hence, the eigenvalues

of the BSEqs. and therewith the dominating quantum fluctuations can be extracted. A direct

comparison of the full two-particle vertex function F between the different models, PPP and

U -only model, gives insights into corresponding frequency structures. A major difference is

the contribution stemming from the first order approximation of the fully irreducible vertex

function, Λ „ Ukk1q, which results in the various momentum-dependent offsets. For stronger
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electronic correlations than in the PPP model, contributions that go beyond PA are expected.

For such systems, the parquet method has to be operated fully self-consistently; including the

update of the fully irreducible vertex function in the iterative approach. In this regard, the

necessity of a DΓA compared to a PA can be deduced. As diagrams are generated iteratively

and for a fully self-consistent approach, Λ „ Ukk1q instead of Λloc ` U
kk1q might be sufficient.

In doing so, the method could be applied independently of other methods from which Λloc is

usually obtained. [87] The convergence time, nevertheless, will be clearly affected, as diagrams

which already appear in Λloc, need to be generated first.

With respect to the one-particle vertex function, i.e. the self-energy, the PPP model can be

classified as a less correlated system compared to the U -only model. Although more interactions

are considered in the PPP model, the self-energy is strongly suppressed. However, considering

the PPP model as a non-interacting system is insufficient for the spectral function. The size

of the (one-particle) spectral gap is drastically enlarged also compared to the U -only model.

The origin of this can be attributed mainly to the finite Fock term.

4.7. Results – 2D square lattice

Extending the system to 2D calls for excessive parallelization. This prolongs computational

time due to necessary broadcasting during the evaluation of the PEqs., Eqs. (4.44)–(4.47).

The number of transfer momenta q is reduced by restricting the computation to the IBZ. This

allows for a study of system sizes with 6 ˆ 6 sites, an inverse temperature of βt “ 6, and

interaction of U “ 4t at half filling in PA. Also some results for U “ 2t (explicitly mentioned)

are included. In the following, non-local interactions are solely considered among nearest

neighbors. Thus, the V -term is labeled by V “ V1. Furthermore, a frequency box of Nf “ 96

is used and considered sufficient.

Sec. 4.7.1 gives an idea of the phase diagram of the 2D extended Hubbard model concerning

literature. Eigenvalues of the BSEqs. and susceptibilities are discussed in Sec. 4.7.2, the self-

energy in Sec. 4.7.3, the spectral function in Sec. 4.7.4 and the full two-particle vertex function

in Sec. 4.7.5. Finally, a summary is provided in Sec. 4.7.6.

4.7.1. Phase diagram

In the atomic limit, i.e. considering only the interaction and setting the hopping to zero,

the phase transition occurs at U “ 4V for a 2D square lattice with 4 nearest neighbors (cf.

Sec. 4.5.1). [83;7] Therefore, the V term is given in units of U{4 in the following. This is displayed

by the strong coupling regime for Hartree-Fock in the phase diagram of Fig. 4.12. Furthermore,

the regime corresponding to predominate magnetic fluctuations (being paramagnetic (PM)

and/or AFM) with 4V {U À 1 is referred to as weak V -limit and for the onset of predominate

charge fluctuations, the regime is identified as strong V -limit with 4V {U Á 1 for fixed U .

In an 1{d strong-coupling expansion up to fourth order (d being the dimension), van Don-
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Fig. 4.12.: Phase diagram of the extended Hubbard model in Hartree-Fock [86] (gray solid line),
DMFT [86] (black dashed circles) and PA; the end points (of largest V ) for the light-blue
(U “ 2t) and dark-blue (U “ 4t) triangles can be regarded as the crossover from the PM
to the CDW phase observed in PA for a 6 ˆ 6 square lattice at βt “ 6 and half-filling. The
triangles for smaller V correspond to all performed PA simulations.

gen [83] states the transition to occur at 4V {U ą 1 for 2D; though quantitative predictions are

less accurate in this 1{d expansion. Nevertheless, this tendency is also observed in DQMC

simulations [91] and DMFT results. [86] The latter results are also displayed in Fig. 4.12. Note,

the non-local interactions in the aforementioned DMFT scheme enters in a Hartree-Fock or

random-phase like way in the irreducible ph-vertex. [51]

The extended dynamical mean-field theory (EDMFT), [72] integrates the non-local interaction

from the start. In the vicinity of strong couplings, this method provides profound insights and

confirms the transition at 4V {U ą 1 for all U values. However, as any DMFT approach, non-

local dynamical correlations, which become crucial in low-dimensional systems, are neglected.

In this sense, diagrammatic extensions on top of EDMFT such as the dual boson approach [84]

capture the strong coupling regime through EDMFT but hints to a suppression of the transition

closer to 4V {U “ 1 (still 4V {U ą 1) in the intermediate coupling regime. This tendency is

likewise verified by DCA results. [79]

Only, the EDMFT`GW [5;4] approach hints to a transition occurring at 4V {U ă 1. How-

ever, the missing vertex contributions are identified in van Loon et al. [84] and might explain

this mismatch. A universal approach which accounts for one- and two-particle contributions

unbiasedly seems consequently essential and leads back to the parquet method with the out-

come discussed in the following sections. The respective performed simulations are additionally

displayed in Fig. 4.12.
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Fig. 4.13.: Leading eigenvalues and inverse susceptibilities within PA for the d, m and pp
channel subjected to a non-local interaction V for a 6 ˆ 6 square lattice at half-filling and
βt “ 6. The solid dark lines correspond to data for U “ 4t and the dashed light lines to
U “ 2t, respectively. All results are shown in units of U{4 as 4V {U “ 1 corresponds to the
phase transition in the atomic limit.

4.7.2. Eigenvalues and susceptibilities

In order to study instabilities of the system subjected to non-local interactions the full ver-

tex function is checked for divergences. In this respect, the eigenvalues defined in Eqs. (4.34)

and (4.35) and the susceptibility of Eqs. (4.32) and (4.33) are computed for the density, mag-

netic and particle-particle channel. The results are shown in Fig. 4.13 as a function of increasing

V -terms for q-vectors chosen such that the largest eigenvalue and susceptibility are obtained.

For small V (for V “ 0 up to 4V {U „ 0.8) the eigenvalues in Fig. 4.13 remain almost

constant. Changes are visible in the charge susceptibility, χd, which increases slightly if V is

enhanced, but not surpassing the magnetic susceptibility, χm. The inverse of χm is close to zero

and likewise, its corresponding eigenvalue is in the order of one. As the largest contributions

are obtained for the wave vector q “ pπ, πq, for both the magnetic channel and the density

channel, neighboring sites will mainly have opposite spin and different charge, respectively. In
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the regime of small V , the system is predominantly affected by AFM fluctuations.

When increasing V , the density eigenvalue and the corresponding susceptibility quickly

increase. As these correspond again to q “ pπ, πq, strong CDW fluctuations are present. In

the strong V -limit, 4V {U Á 1, these fluctuations finally dominate the AFM fluctuations. For

smaller local interactions, namely U “ 2t instead of U “ 4t (cf. Fig. 4.13), this regime occurs

for slightly larger V -terms. This is in agreement with the strong coupling expansion for this

model [83;7] and with fourth-order perturbation theory. [83] A phase transition for 4V {U ą 1

is observed numerically quite generally [79;84;86;72;91] (disregarding EDMFT`GW results, [5;4] cf.

Sec. 4.7.1). The predominant fluctuations of the system seen in Fig. 4.13 indicate that also in

the PA the phase transition is for 4V {U ą 1.

The influence of the particle-particle channel is at no time remarkable. A phase transition

is furthermore not observed in any channel as the critical value λ “ 1 and at the same time

1{χ “ 0 are never (exactly) obtained. The absolute values of λd and χd at q “ pπ, πq indicate a

regime on the verge of a phase transition for 4V {U Ñ 1.06 for U “ 4t and 4V {U Ñ 1.2 for U “

2t, respectively. DQMC results predict a phase transition in the regime of 4V {U P t1, 1.25u for

U “ 4t and 4V {U P t1, 1.4u for U “ 2t. [91] In agreement are also the DCA data: 4V {U “ 1.04

for U “ 4t and 4V {U “ 1.216 for U “ 2t. [79] For lower temperatures (βt “ 12.5), the dual

boson approach identifies the phase transition at 4V {U “ 1.08 for U “ 4t and 4V {U “ 1.04

for U “ 2t. [84]

Increasing V beyond the value of 4V {U “ 1.06 (for U “ 4t) resulted in a first analysis merely

in a reduction of λd and χd. Assuming this value already belongs to a charge ordered state,

the results are not unexpected as the utilized parquet method does not respect the underlying

broken symmetry of this state. This explanation seems in agreement with the DCA result; [79]

meaning that the phase transition has been slightly missed.

Moreover, the absence of the phase transition might be due to strong fluctuations in 2D and

finite temperatures (note though that the symmetry to be broken is Z2, for which the Mermin-

Wagner theorem does not hold) but it can also be a finite size effect. For instance, within

a finite size system coarse graining is a legitimate method but might suppress instabilities at

single points due to its averaging property. Furthermore the long-range ordering effects, the

system is subjected to when going towards the phase transition, cannot be captured correctly

by small systems. An extrapolation to the thermodynamic limit should provide the correct

tendency and thus allow to see the actual phase transition. Such studies require memory

allocations which currently are not possible.

4.7.3. Self-energy

The imaginary part of the self-energy is plotted in Fig. 4.14. The columns of Fig. 4.14 refer to

results for U “ 4t and U “ 2t. Each row of Fig. 4.14 displays a different k-point of the BZ,

namely p0, 0q, p0, πq and
`

π
3
, 2π

3

˘

for the first, second and third row. The latter two k-points,

p0, πq and
`

π
3
, 2π

3

˘

, correspond to the Fermi level at half-filling.
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U “ 4t and similarly in the second column, the local interaction strength is set to U “ 2t (for
further parameters see Fig. 4.13).

The influence of the increase of the non-local interaction strength in the self-energy is of

comparable size as observed in the susceptibilities and eigenvalues. For 4V {U “ 1.2 at U “ 2t,

i.e. when charge fluctuations get huge, there is a dramatic effect apparent.

Apart from the Fermi edge, the overall contribution to the self-energy becomes smaller (in

absolute terms) when increasing V . At the Fermi edge, the trend is similar for 4V {U ă 1.

Calculations performed for 4V {U “ 0.2 and 4V {U “ 0.4 at U “ 4t and U “ 2t (not shown)

verify this tendency. At 4V {U „ 1 (slightly smaller for U “ 2t) there is a turning point; the

low-frequency regime of ImΣ increases in absolute values at the Fermi edge. Especially at an

interaction strength of 4V {U “ 1.2 at U “ 2t the global structure entirely changes towards a

more diverging self-energy at ν Ñ 0. One can conclude for this system an insulating tendency

and at least expect bad metallic properties. The physical origin behind this, are the largely

enhanced charge fluctuations (cf. the eigenvalues and susceptibilities in Fig. 4.13).3

3 For the PPP model (1D six-site system) a suppression of the self-energy compared to the U -only model
is observed likewise. This observation is much more apparent and might be explained by the much larger
non-local interactions. The relative interaction for the PPP is in the order of 2V1{U “ 1.4. However, the
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4.7.4. Spectral function

The spectral function Aloc is obtained by MEM of the k-integrated spectral function Ak,

Eq. (3.16); and is shown in Fig. 4.15. The method is introduced in App. C.2. For 2V {U “ 1.2t

at U “ 2t the Padé interpolation is likewise provided (cf. App. C.1 for details). The two panels

of Fig. 4.15 display the results for fixed U , e.g. U “ 4t and U “ 2t, and various V -values.

Independent of the non-local interaction V at U “ 4t (also for U “ 2t apart from 4V {U “

1.2), the spectra consist of three contributions stemming from the dominant quasiparticle peak

at zero frequency and the upper and lower Hubbard bands at ν „ ˘U
2

. In case of U “ 2t,

the peak positions of the Hubbard bands are slightly displaced, ν „ ˘2t. This is consistent as

comparison to the phase transition of the atomic limit at 2V1{U “ 1 (thus neglecting V2 and V3) cannot
be done straightforwardly. This larger value appears to originate from the remaining V -terms, V2 and V3,
which are of comparable size in the PPP model.
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the Hubbard bands are expected at U
2

only in the atomic limit. For smaller U -values, these

bands are shifted to larger/smaller values than ˘U
2

. By this three-peak structure, the coupling

regime is identified as an intermediate strongly correlated regime.

Increasing V progressively, suppresses and broadens the quasiparticle peak. This can be

explained by a steady increase of fluctuations, namely in the density channel (cf. Fig. 4.13).

To quantify this effect, the Fermi liquid parameters, namely the renormalization factor and

scattering rate, are extracted from the self-energy. Its imaginary part is fitted to a second

order polynomial function for the first three Matsubara frequencies. Errors are obtained from

a fit to a polynomial of third order. Subsequently, the renormalization according to Eq. (4.59)

and the scattering rate,

Γk “ |ImΣk|νnÑ0 , (4.61)

are determined at k “
`

π
3
, 2π

3

˘

. The outcome is displayed in the upper and lower insets

of Fig. 4.15, respectively. A slight increase (for 4V {U À 1 in the weak V -limit) up to a

drastic increase (for 4V {U ą 1 in the strong V -limit) of the renormalization factor is obtained.

Similarly, the scattering rate slightly decreases until 4V {U „ 1; then, when antiferromagnetic

fluctuations are suppressed, it substantially grows.

With increasing V , charge fluctuations increase and finally impose a charge ordering. These

fluctuations are dominant at 4V {U “ 1.06 and cause the sudden increase of the scattering rate

and thus a broadening and suppression of the quasiparticle peak. In total the weight of the

quasiparticle peak increases and therewith the quasiparticle weight Zk. In the strong V -regime,

the system is no longer a Fermi-liquid; scattering at charge fluctuations is too strong.

At 4V {U “ 1.2 for U “ 2t, the spectral function of the Padé interpolation alludes to an

opening of a gap in Fig. 4.15. This agrees with the divergent tendency of the self-energy at

the Fermi edge (see Fig. 4.14). Apart from this specific value, the spectral functions obtained

by MEM provide the same features as seen in the self-energy.

4.7.5. Full two-particle vertex function

The full two-particle vertex function F kk1q is displayed in Fig. 4.16, resolved in its frequency

arguments, νn and ν 1n, and resolved within its momentum, in Fig. 4.17 for k1 and in Fig. 4.18

for q, respectively. The channels are chosen to visualize possible instabilities in the density,

magnetic and particle-particle channel when going from V “ 0, to 4V {U “ 0.8 and 4V {U “ 1

at U “ 4t.

When increasing V , the most dominant effects are observed in the density channel. For

instance this can be verified in Fig. 4.16: For V “ 0, the full vertex function is mainly described

by the main diagonal with νn “ ν 1n. Already for 4V {U “ 0.8, the predominant contributions are

from the entire regime apart from the main diagonal. Especially for this interaction regime the

background is approximately given by its first order contribution, 2Vq“pπ,πq´Vk1´k“p0,0q “ ´12t.
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Fig. 4.16.: Frequency-resolved full vertex function for fixed k “ pk, νnq “ p0, 0, νnq, k
1 “
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with V “ 0 (first row), 4V {U “ 0.8 (second) and 4V {U “ 1 (third); further parameters are
specified in Fig. 4.13.

In the vicinity of strong charge fluctuations (4V {U „ 1), these contributions significantly

increase. For the magnetic and particle-particle channel (cf. second and third row of Fig. 4.16)

the structure of F stays invariant compared to the density channel. On closer inspection, the

broadening of the plus-structure, e.g. along ν0 and ν 10, of Fm is quite apparent at 4V {U “ 1.

This causes a slight suppression of contributions in the magnetic channel compared to V “ 0

and 4V {U “ 0.8. In this regime, likewise the magnetic eigenvalue and magnetic susceptibility

decrease (see Fig. 4.13).

Analyzing the full vertex function with respect to the momenta, namely k1 and q, which are

displayed in Fig. 4.17 and Fig. 4.18, respectively, leads to the same conclusion. Predominant

effects are seen in Fd for finite V -terms. For the magnetic contributions a global suppression

occurs for 4V {U “ 1. However for smaller non-local interactions, this effect is negligible.

Similarly, one can conclude the contributions of the particle-particle channel stay invariant

when the system is subjected to non-local interactions.
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Fig. 4.17.: k1-resolved full vertex function for k0 “ p0, 0, ν0q, k
1 “ pk1, ν 10q and q1 “ pπ, π, ω0q

within the PA; otherwise the figure is the same as Fig. 4.16 (for parameters see Fig. 4.13).

4.7.6. Summary

The extended Hubbard model is analyzed for a 2D square lattice for several values of nearest-

neighbor non-local interaction. In effect, the transition from a system which is strongly influ-

enced by AFM quantum fluctuations towards a system in which CDW quantum fluctuations

dominate is studied. Thanks to the parquet method, one- and two-particle vertex functions are

directly accessible. Thus, correlation functions, such as susceptibilities e.g. for the magnetic,

density and particle-particle channels, can be determined in order to visualize the cross-over

from prevailing fluctuations from a spin ordered state to a charge ordered state. Identifying

an actual transition point requires probably a finer resolution in V and/or an extrapolation

to the thermodynamic limit. The latter is currently beyond reach, as requirements in memory

and computational power increase profoundly.
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Fig. 4.18.: q-resolved full vertex function for k0 “ k10 “ p0, 0, ν0q and q “ pq, ω0q within the
PA; otherwise the figure is the same as Fig. 4.16 (for parameters see Fig. 4.13).

Nevertheless, the determination of the respective susceptibility and eigenvalue of the BSEqs.

display the strong influence of charge fluctuations; however, only in the strong V -limit and thus,

only immediately before the phase transition. The corresponding influence is subsequently

studied in the self-energy and spectral function; but also in the full two-particle vertex function.

The latter provides unbiased access to prevailing contributions. By a decomposition of the full

vertex function, essential vertex contributions might be identified and assigned to underlying

processes; similar as has been done in van Loon et al. [84] Such decompositions of the full vertex

function is done in context of the optical conductivity, which is contained in the following

chapter, Chapter 5.
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5. Physical response – optical

conductivity

The merits of the imaginary-time basis have been exploited without any apparent downside

compared to the real-time basis, so far. In order to obtain physical predictions of the models

and allow for comparisons with experiments the continuation to real time is however inevitable.

In this regard, correlation functions are analytically continued to provide for the actual coupling

of the system to external perturbations. Details on the utilized analytic continuation methods

are given in App. C.

This section deals with couplings to electromagnetic fields. Hence, the current-current cor-

relation function within linear response theory [29] and its respective physical observable, the

optical conductivity, is derived first in Sec. 5.1 with further details presented in App. E. The

starting point is the derivation of the conductivity for nanoscopic systems [52] before turning to

the optical conductivity. The corresponding results are shown afterwards in Secs. 5.2–5.4, and

comprise optical conductivities for the benzene ring and the 2D square lattice. These results

are partly published in Pudleiner et al. [58] and Kauch, Pudleiner et al. [39]1

5.1. Derivation within linear response

The system is now subjected to an external time-dependent field at, such as an electric field

Epr,tq. In general, the influence is quantified by measuring an observable, A, which couples

to this field. In linear response theory, this coupling is assumed to be linear and hence, the

Hamiltonian is modified by an additional term Jt “ ´atA. In the specific case of an electric

field, not the E-field itself couples to the observable but the vector potential A and scalar

potential φ to provide gauge invariance of the Hamiltonian. By choosing the Coulomb gauge

the scalar potential can be set to zero, φ “ 0. If a measurement is now performed of a general

observable B, i.e. by xByJ , the response of the system to the applied external field aptq is

given by xByJ ´ xByJ“0. This response is assumed to be linear in the field aptq and the

1 First authors with equal contributions.
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proportionality is given by the correlation function χBA via

xByJ ´ xByJ“0 “

tˆ

´8

dt1χBA,t´t1at1 . (5.1)

By strictly exploiting a linear behavior the response of the system reads with the Kubo-Nakano

formula,

χBA,t´t1 “ iΘpt´ t1q
@

tBt, At1u´
D

J“0
(5.2)

χBA,ωn “

βˆ

0

dτ eiωnτ xBτA0yJ“0 . (5.3)

In the specific case of an electric field E, the observable of interest is the current operator J.

The correlation function, namely the conductivity (or its inverse, the resisitivity), connects J

to E linearly; hence, the equation reads

@

Jpr,tq
D

J ´ xJryJ“0 “

ˆ
d3r

tˆ

´8

dt1σpr´r1,t´t1qEpr1,t1q . (5.4)

A linear coupling of the vector potential A to the Hamiltonian H is provided by the minimal

substitution (ensuring gauge invariance) k Ñ k´ qA. In this regard, the current operator, the

observable which couples to the external field, is identified by

Jr “
q

2m
φ:prq

”

´i
´

ÝÑ∇ ´
ÐÝ∇
¯

´ 2qA
ı

φprq

“jr ´
q2

m
nrA . (5.5)

This results in a paramagnetic contribution j to the current J and a diamagnetic contribution

(second part of Eq. (5.5)) which is already linear in the vector potential. For the derivation

of the current-current correlation function this diamagnetic term can be excluded for now.

In order to obtain a similar form (linear in the external field) for the paramagnetic term

the Kubo-Nakano formula, Eqs. (5.2) and (5.3), is utilized. [29] The paramagnetic correlation

function consequently reads

χjj,pr´r1,t´t1q “ iΘpt´ t1q
A

 

jpr,tq, jpr1,t1q
(

´

E

J“0
(5.6)

and its Fourier transform,

χjj,q “

βˆ

0

dτ eiωnτ xjqpτqj´qyJ“0 . (5.7)
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If the calculation is fixed to the Coulomb gauge, the electric field relates in frequency space to

the vector potential via E “ iωA. The conductivity can be linked consequently to read

xJqyJ “
χjj,q ´

q2nq

m

irω ` iδs

σq

Eq (5.8)

for real frequencies ω and the corresponding four-vector q “ pq, ωq. By the use of Sokhotski-

Plemelj’s formula, 1
x`iδ

“ P
x
´ iπδpxq, the conductivity is separated into a singular part and

regular part,

Reσq “ ´πδpωq

„

Reχjj,q ´
q2nq

m



` P Imχjj,q
ω

(5.9)

Imσq “ ´πImχjj,qδpωq ´ PReχjj,q ´
q2nq

m

ω
. (5.10)

respectively. Determining the conductivity according to Eqs. (5.9) and (5.10), however, involves

an analytical transformation to real frequencies of the current-current correlation function χjj,q.

The approach, here is to first compute the correlation function via Eq. (5.7). Subsequently,

the function is transformed to the real-frequency axis by the Padé interpolation. By use of

Eqs. (5.9) and (5.10), the conductivity is finally determined.

The conductivity at ω “ 0 is not considered explicitly. Hence, the focus of interest is foremost

in the regular part of Reσq. Furthermore, useful insights, especially beneficial when perform-

ing the analytic continuation, are obtained by identifying the symmetries of the correlation

function. These are shortly listed in App. E.1.

5.1.1. Current operator in a discretized system

In order to evaluate Eq. (5.7) the paramagnetic current operator (defined in Eq. (5.5)) needs

to be discretized. In this end the continuity equation with Btn `
ÝÑ∇ ¨ j “ 0 is discretized. If

the field points along a direction distinguished by one of the lattice vectors, say E “ Eaα, the

continuity equation can be reduced to this direction aα. The time dependence of the density

operator can be evaluated at lattice site i by the EoM, Eq. (3.3), via

Btni “ itH, niu´ “ i
ÿ

jPaα,σ

tij

”

c:jσciσ ´ c
:

iσcjσ

ı

. (5.11)

The Hamiltonian, Eq. (2.8), is explicitly assumed to be time independent. Meaning, the

influence of the external field is dropped in H and hence, more complex back-coupling terms

are neglected. [59]

The divergence of the current operator is likewise written as
ÝÑ∇ ¨ j “ ji`α ´ ji for the

distinguished direction aα of the external field in units of the lattice distance. Consequently,
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SL
LS SL

R
RSSR

Fig. 5.1.: Schematics of the system S coupled to two leads, L and R (blue-/green-shaded area).

the current operator can be identified as

ji “ it
ÿ

σ

”

c:iσcpi`αqσ ´ c
:

pi`αqσciσ

ı

(5.12)

jq “
it

N

ÿ

σk

“

e´ipk`qqaα ´ e´ikaα
‰

c:kσcpk`qqσ . (5.13)

5.1.2. Current-current correlation function

Before the focus is shifted to the conductivity for the bulk, the system is connected to two

leads in order to allow for currents. This external part is considered to be non-interacting and

thus a perfect metal. The set of sites, being element of the system and consequently to the

interacting, highly correlated part, is denoted by S. The environment is denoted by E and

specifically by a left (L) and right (R) lead. Furthermore, the sites which connect the system

with the L (R) lead are labeled by SL Ø LS pSR Ø RSq. This is illustrated for a 1D system

in Fig. 5.1. The additional terms appearing in the Hamiltonian and the Green’s functions

connecting the system with the leads and vice versa are explicitly written in App. E.2.

The response is chosen to be computed from the left to the right lead. In this respect the

current operator, Eq. (5.13), reads for LS Ñ SL and for SR Ñ RS

jSL “ itE
ÿ

σ

”

c:SLσcLSσ ´ c
:

LSσ
cSLσ

ı

(5.14)

jRS “ itE
ÿ

σ

”

c:RSσcSRσ ´ c
:

SRσ
cRSσ

ı

. (5.15)

In App. E.3, a detailed derivation is given in order to obtain the following explicit form of the

current-current correlation function as

χE,q “
2

pNβq2

ÿ

kk1

γν
1ω
E γνωE GkGq`kF

kk1q
d Gq`k1Gk1

”χver
E,q

`
2

Nβ

ÿ

k

rγνωE s
2Gq`kGk

”χbub
E,q

. (5.16)

The frequency refers explicitly to Matsubara frequencies; and additionally the couplings of the
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system to the non-interacting leads are defined as

γνωE “ tE

”

gEpω ` νq ´ gEpνq
ı

. (5.17)

The explicit form of the leads is unknown and should, certainly, not dominate the more in-

triguing interacting system. Assuming non-interacting leads, the couplings are zero at the

zeroth Matsubara frequency ω0 “ 0. Consequently, if the remaining factors in Eq. (5.16) do

not diverge, the current-current correlation function is likewise zero. This is in contradiction to

Eqs. (E.4) and (E.5). From symmetry arguments it is derived that χjj is a monotonic declining

function with a maximum at ω0. In the simplest approach, the couplings are assumed to be

constant, and consequently this issue is bypassed. A constant coupling results in a dynamic

compressibility or is obtained when an electric field is applied perpendicular to the 2D system

in the limit of infinitesimally small perpendicular hopping (in z direction). Due to currents in z

direction, the coupling is independent of k
p1q
x,y and the sum with respect to k

p1q
z is independently

performed to result in constant couplings (here γE Ñ γC ” 1). This results in

χC,q “
2γ2

C

pNβq2

ÿ

kk1

GkGq`kF
kk1q
d Gq`k1Gk1

”χver
C,q

`
2γ2

C

Nβ

ÿ

k

Gq`kGk

”χbub
C,q

. (5.18)

The derivation without couplings to external leads is also done in App. E.3. Here, the applied

field is assumed to be in direction of a lattice vector. The Peierls approximation can be utilized

and leads to a current-current correlation function of the form

χP,q “´
2

pNβq2

ÿ

kk1

γ
kq

2
P γ

k1 q
2

P GkGq`kF
kk1q
d Gq`k1Gk1

”χver
P,q

´
2

Nβ

ÿ

k

”

γ
kq

2
P

ı2

GkGq`k

”χbub
P,q

(5.19)

with the coupling defined as

γkqP “ Bαεk`q . (5.20)

For the considered systems, the variation in space of the electric field can be neglected. Thus,

it is sufficient to restrict the calculations to q “ 0 and thus, to the optical conductivity. The

current-current correlation function according to Eqs. (5.18) and (5.19) is determined in the

following.

5.2. Results – technical details

For a non-interacting system, the current-current correlation function χC,q, Eq. (5.18) for

γC ” 1, can be determined analytically. The vertex contribution is zero. The frequency sum

appearing in the bubble contribution can be performed via contour integration which results
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Fig. 5.2.: Current-current correlation function, χC,q, in the non-interacting limit at q “ 0 for
a six-site system at βt “ 10 and half-filling obtained by the parquet code. The red solid line
corresponds to results obtained by a direct evaluation in Matsubara-frequency space; whereas
the blue dashed line displays data for which the frequency sum is determined by a FFT of the
respective τ -space evaluated contribution (high-frequency regulated).

in the so-called Lindhard function,

χ0C,q ” χbub
C,q “

2γ2
C

Nβ

ÿ

k

G0,q`kG0,k (5.21)

“
2γ2

C

Nβ

ÿ

k

«

1

iνn ` iωn ´ ξq`k

1

iνn ´ ξk

ˇ

ˇ

ˇ

ˇ

q‰0

`
1

piνn ´ ξkq2

ˇ

ˇ

ˇ

ˇ

q“0

ff

(5.22)

“
2γ2

C

N

ÿ

k

«

fpξkq ´ fpξq`kq

iωn ` ξk ´ ξq`k

ˇ

ˇ

ˇ

ˇ

q‰0

` βfpξkq
“

fpξkq ´ 1
‰

ˇ

ˇ

ˇ

ˇ

q“0

ff

. (5.23)

Consequently, the optical conductivity (q “ 0) will be zero except for ω0 as the Fermi-

distributions f exactly cancel in the first summand of Eq. (5.23). Thus, at zero frequency,

the optical conductivity is determined by the singular part of Eq. (5.9) consisting of the real

part of the current-current correlation function and the diamagnetic contribution; this is also

obtained, for imaginary frequencies, by the parquet code and shown in Fig. 5.2.

For finite frequencies, Eq. (5.23) is reproduced. Fig. 5.2 contains results when evaluating

Eq. (5.21) straightforwardly in νn space and when utilizing the fast Fourier transform (FFT).

For the FFT result, the frequency sum in Eq. (5.21) is performed in τ space and afterwards

the Fourier transform is applied. This is in analogy to the high-frequency regulations done in

the BSEqs., Eqs. (4.27) and (4.29), and in Eq. (3.13) (cf. App. D.2).

Due to the cut-off in the frequency sum to a finite value Nf , the correlation function is

underestimated and results in a zero crossing. By utilizing the high-frequency asymptotics for
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the Green’s function the sum is enlarged to 104Nf (with Nf “ 160) such that the zero crossing

is not so severe as Fig. 5.2 shows. For finite interactions, especially for the bubble contribution

the same number of frequencies is needed to obtain results of comparable quality. The bubble

contribution is consequently always performed in τ space with a subsequent FFT. This results

in the correct high-frequency behavior as Fig. 5.2 displays. For the current-current correlation

function χP,q with γP , defined in Eqs. (5.19) and (5.20), respectively, the bubble contribution

is treated likewise as the coupling depends only on momentum.

For the vertex contribution, the sum is performed directly in frequency in the following.

Due to the kernel approximations the sum is enlarged to 6Nf . This results already in a stable

output irrespective of the frequency range. In principle, high-frequency regulations in analogy

to App. D.2 can also be performed for the vertex correction. However, in this thesis, the

high-frequency regulation is only applied for the bubble contribution as outlined above.

5.3. Results – benzene molecule

The current-current correlation functions χC and χP , according to Eqs. (5.18) and (5.19),

respectively, are determined for the six-site ring for the PPP, U`V1 and U -only model in the

PA. In analogy to the parameters used in Sec. 4.6, the inverse temperature is βt “ 10 and

the filling is n “ 1. By Padé interpolations of the correlation functions, the corresponding

real-frequency function is obtained and therefore, the optical conductivity.

In Sec. 5.3.1, the obtained results are firstly presented for the benzene ring and also published

in Pudleiner et al. [58] This is supplemented secondly by a more detailed analysis: In Sec. 5.3.2,

a special focus is provided for a fit with a Lorentzian function verifying the Padé interpolations.

Sec. 5.3.3 examines the vertex corrections to the current-current correlation function which is

included in Kauch, Pudleiner et al. [39]2

5.3.1. Optical conductivity

The six-site ring is either subjected to an electric field, perpendicular to its plane leading to

a response χC , or to a magnetic field, likewise in the same direction resulting in χP . The

magnetic field induces a circular electric field along the ring and thus allows for the Peierls

approximation; therefore the labeling P . In case of the electric field perpendicular to the ring,

the coupling γ is approximated by a constant (γC ” 1, thus the subindex C) valid in the limit

of infinitesimally small hopping in field direction. The respective current-current correlation

functions, χC and χP , as well as the optical conductivities, σC and σP , are shown in Figs. 5.3

and 5.4. The positions of the peaks in the optical conductivity are listed additionally in

Tab. 5.1.

Irrespective of the applied field, if electric or magnetic, the optical band gaps, ∆σ
C{P , deter-

mined by the conductivities of the bubble (one-particle) contribution, are in the order of the

2 First authors with equal contributions.
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Fig. 5.4.: Optical conductivity response to a
perpendicular magnetic field in the PA; other-
wise the figure is the same as Fig. 5.3 (see also
for parameters).

smallest possible direct spectral gaps, ∆A (for ED and PA), seen in the spectral function Ak

(cf. line labeled bub in Tab. 5.1 and more generally in Fig. 4.11). As for optical transitions, no

momentum q is transferred, the momentum k of the spectral function Ak remains unaffected.

Furthermore the spectral gap is determined by the difference of the unoccupied to the occupied

levels. All possibilities are listed in Tab. 5.1; as well as the direct spectral gap obtained by the

local spectra.

The lowest direct spectral gap (observed at k “ π
3
) is of the size ∆A „ 3.9 for the U -only

model and ∆A „ 6.9 for the PPP model. These are reproduced by the peak positions of

the bubble conductivity, which is almost independent of the kind of external field applied:

∆σ
C „ 4.9 and ∆σ

P „ 4.3 for the U -only model; ∆σ
C „ 7.4 and ∆σ

P „ 7.1 for the PPP model.

Hence the deviations for the U -only model are |∆σ´∆A|{∆A „ 26% when applying an electric

field (C) and 10% when applying an magnetic field (P ). For the PPP model variations are

smaller with 7% for the electric-field case and 3% for the magnetic-field case. This deviation

from the bubble conductivity might be further improved by doing a DΓA instead of a PA for

the U -only model.
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DMFT U -only PPP

k ∆ ∆σ
C ∆σ

P ∆A
PA ∆A

ED ∆σ
C ∆σ

P ∆A
PA ∆A

ED

local 1.4 2.4 2.6 4.5 4.5

0 8.4 8.3 11.0 10.3

6.7 6.8 9.1 8.8
π
3

6.2 6.0 10.4 9.9

bub 4.9 4.3 3.9 3.9 7.4 7.1 6.9 6.9

Γbub
2 5.7 7.5

bub` ver 4.8 5.3 5.2 4.1

Γbub`ver
2 4.2 4.2

Tab. 5.1.: Indirect spectral band gap ∆A (first row) from the local spectral function (Ak shown
in Fig. 4.11) and direct spectral gap ∆A

k obtained by the k-resolved spectral function Ak
(k “ 0 second/third row, k “ π

3
fourth/fifth row) for the DMFT, PA and ED. Additionally,

a comparison of the peak positions ∆σ
C{P of the optical conductivities σC{P ex- and including

vertex corrections is provided (fifth/subsequent rows). The peak positions obtained by the
Lorentzian fit (cf. Sec. 5.3.2) are listed in the rows labeled Γ2 (parameters are the same as in
Fig. 5.3).

A further general tendency despite the different external fields can be seen in the vertex cor-

rections: For finite non-local interactions, vertex contributions reduce the optical gap. Con-

sidering only local interactions (U -only), this effect is not so decisive. The position of the

main peak only slightly differs and are accompanied by large broadenings: p4.9 Ñ 4.8qC and

p4.3 Ñ 5.3qP . For the U`V1 and PPP model this shift is more discernible: p7.6 Ñ 6.7qC and

p7.1 Ñ 5.7qP for the U`V1; and p7.4 Ñ 5.2qC and p7.1 Ñ 4.1qP for the PPP.

A major difference between the application of magnetic and electric field is observed in the

overall magnitude of the response. It is much larger (by a factor of 10) if a magnetic field is

applied than if an electric field is applied. Magnetic field will induce a magnetic flux and thus

an electric field along the ring and especially in direction of the hopping matrix elements of the

electrons. A perpendicular electric field affects only the pz-orbitals of the benzene ring which

point in the same direction. Consequently response is only obtained by the infinitesimally

small assumed hopping in z direction and thus, by much weaker polarization effects.3

5.3.2. Verification of Padé interpolation

Understanding the similarities of the peak positions of the optical conductivities, σC and σP ,

despite apparent inconsistencies on the Matsubara-frequency axis can be explained by assum-

ing a Lorentzian shape. For instance, in the U -only model vertex corrections for imaginary

3 A comparison of the optical conductivities to experimental results is quite difficult. Electron-impact stud-
ies [41;21] observe a rich structure of resonances. The trivial peak structure in Figs. 5.3 and 5.4 might be
a smearing effect of the analytical continuation method; and therefore, the theoretical results cannot be
resolved into individual peaks that can be compared to experimental spectra.
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Fig. 5.5.: Optical conductivity, σC , in the PA (colored solid lines) compared to an analytically
continued Lorentzian fit (dashed dark lines) including the variance (dashed light lines) of the
fit. The insets display the actual data (circles) fitted by Lorentzian functions (dashed lines)
on the Matsubara-frequency axis. Otherwise, the color code and parameters are the same as
in Fig. 5.3.

frequencies have even different sign (cf. the insets of Figs. 5.3 and 5.4). In this respect, the

input data, shown in the insets, is not only used for a Padé interpolation to obtain the optical

conductivity but also for a non-linear least square fit to a Lorentzian function of the form,

χL,pq“0,ωnq “
1

π

Γ1

ω2
n ` Γ2

2

, (5.24)

for the two fit parameters, height Γ1 and bandwidth Γ2. This function is continued to real

frequencies by iωn Ñ ω ` iδ. The small shift δ is chosen to roughly approximate the height

and width of the Padé conductivities. In practice, these are in the range of 0.1 up to 0.4. The

explicit form of the optical conductivity for the Lorentzian function of Eq. (5.24) is

σL,ω “
Γ1

π

2δ

rω2 ´ Γ2
2s

2
` 4δ2ω2

. (5.25)

The results are displayed in Fig. 5.5; compared to Fig. 5.3, the results for the Lorentzian

function are added. The peak position Γ2 of the Lorentzian function is furthermore listed in

Tab. 5.1.

Qualitatively good results are especially obtained for the bubble contribution of the PPP

model. Deviations are larger for the total contribution and in general, for the U -only model
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(note the finite response in the low-frequency range). The fit errors included as light dashed

lines in Fig. 5.5 cannot be consulted to justify these deviations. Changing the set of input

data has also negligible effect on the final fitting parameters. Furthermore the choice of the

broadening δ is quite arbitrary. Consequently, further insights with respect to the broadening

cannot be obtained than already provided by the Padé interpolations. The quality is solely

restricted to the peak positions. Even if these positions are not reproduced in absolute terms,

the tendency is reproduced; namely the relative positions of the peak in total conductivity

to the bubble part are also comparable among the different models. Hence, determining the

broadening of the imaginary-frequency results, already hints to the optical excitation energies.

Thus, this study provides a tool to understand the response function, and in detail its

various contributions, already at the level of the Matsubara frequencies. Furthermore, this

fitting routine is utilized to verify certain Padé spectra in retrospect.

5.3.3. Vertex corrections

In Figs. 5.6 and 5.7 the vertex correction is separated according to the particle-hole, transversal

particle-hole and particle-particle contributions in the density-spin channel (cf. Eq. (4.44)).

This leads to the various contributions of the response function,

χΛ
f,q “

2

pNβq2

ÿ

kk1

γkqf γ
k1q
f GkGq`kGq`k1Gk1Λ

kk1q
d (5.26)

χph
f,q “

2

pNβq2

ÿ

kk1

γkqf γ
k1q
f GkGq`kGq`k1Gk1Φ

kk1q
d (5.27)

χph
f,q “´

1

pNβq2

ÿ

kk1

γkqf γ
k1q
f GkGq`kGq`k1Gk1 rΦd ` 3Φms

kpk`qqpk1´kq (5.28)

χpp
f,q “

1

pNβq2

ÿ

kk1

γkqf γ
k1q
f GkGq`kGq`k1Gk1 rΦs ` 3Φts

kk1pk`k1`qq . (5.29)

for the respective external fields f P tC,P u. In the PA, the fully irreducible vertex function is

restricted to the first order contribution Ukk1q, defined in Eqs. (D.6) and (D.7). This bare fully

irreducible vertex contribution to the response function, χΛ, is found to be insignificant for

these 1D models; note in case of the U -only model within Peierls approximation (γP „ sin k),

Eq. (5.26) exactly cancels. Hence, χΛ is explicitly added to the remaining contributions,

Eqs. (5.27)–(5.29), when studying the relevance of the different channels in Figs. 5.6 and 5.7.

For an electric field perpendicular to the ring with infinitesimally small hopping in this

direction (γC „ const.), the various benzene models lead to similar conclusions (see Fig. 5.6).

The ph contribution χph
f,q“0 is almost zero in both cases, irrespective of the field f P tC,P u

(see Fig. 5.7). Merely χph
f,q“0 and χpp

f,q“0 contribute to the vertex correction χver
f,q“0. In this

regard, the contribution from the ph channel is about twice as large as the contribution from

the pp channel and opposite in sign; if not insignificant anyway as for the U -only model with

a perpendicular applied magnetic field (f “ P ).
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With the converged one-particle Green’s function of the parquet code, the vertex corrections

to the current-current correlation function stemming solely from pp-ladder diagrams are addi-

tionally determined. These are obtained by recomputing the full vertex function merely from

its singlet and triplet contribution, Φs and Φt, in Eqs. (4.44) and (4.45). The reducible vertex

functions, in turn, are obtained iteratively from the BSEqs., Eqs. (4.27) and (4.29), using the

converged parquet Green’s function unchanged. By this scheme, all pp-ladder diagrams are

progressively generated.

In Fig. 5.6, this contribution is displayed and exhibits no significant contribution. Conse-

quently, pure pp-ladder contributions are negligible. The contribution which is observed in

χpp
C,q“0 can hence be concluded to stem from ph-like diagrams inserted as a building block into

the pp contribution (parquet insertions). The ph and ph channel are directly related to each

other, but it is the ph channel that is important for the optical conductivity (cf. Figs. 5.6

and 5.7).

As previously mentioned, the vertex corrections to the current-current correlation functions

lead to a more dominant impact for finite non-local interactions, namely a shift to smaller
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Fig. 5.8.: Schematics of a band-gapped system with polaritons: excitons in the ph channel (left
column) and π-tons in the ph channel (right). The particle-hole pair (left) and two particle-
hole pairs (right) are bound by the interaction (wiggled light-green line). The corresponding
Feynman diagram for the respective pure ladder with zero photon momentum q (orange wiggled
arrow) is in the lower panel (same color code). [39]

excitation energies, than for only local interactions. The underlying quasiparticles that are

commonly made responsible for such a shift are excitons. These excitons result from the ph

channel and consist of coupled electron-hole pairs with zero relative momentum as the momen-

tum transfer of the photon is zero (q “ 0). Thus and especially for semiconductors, excitons

can be identified as the underlying quasiparticles associated to the electron belonging to the

minimum of the conduction band and the hole of the maximum of the valence band. In stark

contrast to the systems studied here, the main building block of polaritons are transversal

particle-hole diagrams. Therewith, the relative momentum of the particle and hole pair is

not restricted to be zero, but some finite value q̃ ” k1 ´ k. Fig. 5.8 displays both aforemen-

tioned principles schematically. The left diagram illustrates the exciton and the corresponding

Feynman diagram in the ph ladder; whereas the right schematics illustrates the new ph-ladder

polariton and its Feynman diagram.

Merely the respective pure-ladder diagrams are illustrated in Fig. 5.8. Due to the parquet

method, more complicated diagrams are included in each corresponding reducible vertex func-

tion. Hence and for further verification, the transversal particle-hole reducible vertex function

is directly compared to the particle-hole reducible vertex function. The particularity of the

coupling γkq is thus eliminated. These functions in the density-spin channel (cf. Eq. (4.44)),

Φkk1q
ph “ Φkk1q

d and Φkk1q

ph
“ ´1

2
rΦd ` 3Φms

kpk`qqpk1´kq, are displayed in Fig. 5.9 for the PPP

and the U -only model. Note, the largest response in Eqs. (5.18) and (5.19) is obtained for

q “ p0, ω0q “ 0; hence, the reducible vertex is displayed for this value in Fig. 5.9.

Comparing the ph channel to the ph channel, the reducible two-particle vertex function
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Fig. 5.9.: Reducible vertex function in the density-spin channel for the ph channel Φkk1q
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column) and ph channel ´1
2
rΦd ` 3Φms

kpk`qqpk1´kq (second column) at q “ 0 in PA for the
PPP (top row) and U -only model (bottom row). Each panel displays a 2D plot of the full
pk, k1q-plane and pk1 ´ k, kq-plane for ph and ph, respectively. Each subbox pk,k1q in the first
column (likewise pk1 ´ k,kq for the second column) visualizes the full frequency-dependence
pνn, ν

1
nq (similar pν 1n ´ νn, νnq for ph). A 3D plot is provided for specific momenta, namely for

ph (first column): all k1 momenta with k “ π and all k’s with k1 “ 0; and for ph (second
column): all k’s with k1 ´ k “ π and all pk1 ´ kq’s with k “ 0 (parameters are the same as in
Fig. 5.3).

Fig. 5.10.: ph and ph reducible vertex function Φ along k1 and k1 ´ k at ν0, ν 10 in PA for the
PPP model (violet circles) and U -only model (green triangles). The different color shading
resolves the k dependence (parameters are the same as in Fig. 5.3).
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contains contributions ten times larger in magnitude. This holds for both models, the PPP and

U -only model. Furthermore, only the low-frequency regime of ω̃n ” ν 1n´νn exhibits these large

contributions. These contributions will affect nearly directly the current-current correlation

function and thus Eq. (5.28). In the high-frequency regime, in contrast, the convolution with

four Green’s functions will suppress such contributions more profoundly. Especially for q̃ “

k1 ´ k “ π in Fig. 5.9, Φph prevails in the low frequency regime of ν̃n “ ν 1n ´ νn. The specific

momentum can be traced back to the strong CDW and/or AFM fluctuations corresponding to

q “ π (cf. leading eigenvalues displayed in Fig. 4.9). These can couple only by a transversal

particle-hole contribution to the optical conductivity as displayed in Fig. 5.8.

The low-frequency regime is shown more clearly in Fig. 5.10, which displays the contribution

to Φ along k1 and q̃ “ k1 ´ k for the ph and ph channel, respectively, and at ν 10, ν̃0 “ ν 10 ´ ν0.

Hence, the prevailing contributions to the associated polaritons can be directly deduced: These

are transversal particle-hole contributions at q̃ “ k1 ´ k “ π. This imposes the name π-ton

for this, to the best of knowledge, new bosonic quasiparticle. Beside the large contributions of

the ph channel compared to the ph channel, the effects for the PPP model are more significant

than for the U -only model.

5.4. Results – 2D square lattice

In the following the system is extended to 2D with parameters in analogy to Sec. 4.7. The

local interaction is fixed to U “ 4t and the non-local interaction in the extended Hubbard

model is considered only among nearest neighbors, via V “ V1. The non-local interaction is

given in units of U{4 as 4V {U “ 1 corresponds to the phase transition in the atomic limit (cf.

Sec. 4.7.1).

An electric field is applied along one of the lattice vectors, specifically E “ E ax (α “ x in

Sec. 5.1.1). The response according to Eq. (5.19) for a coupling γP in Peierls approximation

with α “ x (cf. Eq. (5.20)) is determined. Similar to Sec. 5.3, the response function χP is

computed on the imaginary-frequency axis by the parquet method within PA. Subsequently

a Padé interpolation is utilized in order to determine the optical conductivity of Eq. (5.9);

namely the regular part thereof.

The integrals of the f -sum rule are evaluated in Sec. 5.4.1 and verify in retrospect the

Padé interpolations and therefore the optical conductivities, which are shown thereafter in

Sec. 5.4.2. In Sec. 5.4.3, the vertex separation of the current-current correlation function is

provided. These results indicate once again to the π-ton, a, to the best knowledge, new bosonic

quasiparticle. This is discussed finally in Sec. 5.4.4 including the findings of Sec. 5.3.3. The

results for the π-ton are together with similar results for the Falicov-Kimball model and for

DΓA published in Kauch, Pudleiner et al. [39]4

4 First authors with equal contributions.
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Fig. 5.11.: f -sum rule: Integrated Padé optical conductivities (light green circles), various Padé
results at 4V {U “ 1.06 (light blue circles), the correlation function at the zeroth Matsubara

frequency (dark blue hexagons) compared to the kinetic energies
ř

k
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The results correspond to a PA of the 2D extended Hubbard model of a 6 ˆ 6 square lattice
at U “ 4t versus different non-local interactions V at half-filling and βt “ 6. The non-local
interaction is given in units of the phase transition in the atomic limit (cf. Sec. 4.7.1).

5.4.1. f -sum rule

With the use of Eq. (C.9) the f -sum rule for the (optical) conductivity can be directly linked

to the current-current correlation function at the zeroth Matsubara frequency, namely

ˆ
dω

π
σq “

ˆ
dω

π

Imχq
ω

“

ˆ
dω

π

Imχq
ω ´ iω0

“ χ
pq,ω0q . (5.30)

In Fig. 5.11, this f -sum rule is exploited to verify the Padé analytical continuation. At 4V {U “

1.06 various Padé interpolations are displayed in order to demonstrate the variance of the

method. These interpolations differ slightly in the frequency grid of the input data and result

in comparable optical conductivities.

Furthermore, with the continuity equation, the second derivative of the dispersion relation

in direction of the electric field can be likewise linked to the f -sum rule (for q “ 0) and to

the kinetic energy Ekin for nearest-neighbor hopping (nnh) only. This is explicitly shown in

App. E.4 [9] and reads in 2D

ˆ
dω

π
σp0,ωq “

1

Nβ

ÿ

k

B2εk
Bk2

x

Gk
nnh
“

1

2Nβ

ÿ

k

εkGk “
Ekin

2
. (5.31)

Firstly, the frequency sum in Eq. (5.31) is calculated directly; and secondly, a correction
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is done by a high-frequency regulation of the one-particle Green’s function; in analogy to

App. D.2. The different evaluations of the frequency sum in Eq. (5.31) result moreover in

a variance spanned by the area restricted by the solid lines in Fig. 5.11. As such a high-

frequency correction is considered for the bubble part but not for the vertex contribution of

the optical conductivity, the various evaluations of Eq. (5.31) provide for an error bar. The

results for χp0,ω0q are located within this range in Fig. 5.11. The integrals of the Padé optical

conductivities are more scattered as shown in Fig. 5.11 for 4V {U “ 1.06; however in the order

of variance given by the various evaluations of Eq. (5.31). In this regard, the Padé analytical

continuation reproduces the overall weight of the response to an electric field of the system.

5.4.2. Optical conductivity

The results for the response to an electric field (in direction of the lattice vector ax) are

displayed on the real-frequency axis in Fig. 5.12 and additionally on the imaginary-frequency

axis in Fig. 5.13. The response functions, i.e. the current-current correlation function χP,q“0

and the optical conductivity σP , are displayed for various V ’s: for 4V {U À 1 (weak V -limit)

to 4V {U ą 1 (strong V -limit) in which AFM and CDW fluctuations prevail, respectively

(cf. Sec. 4.7.2). Additionally, the bubble and vertex contribution, defined in Eq. (5.19), are

displayed in Figs. 5.12 and 5.13. Amongst others, the vertex correction is split further into its

individual contributions in the bottom row of Fig. 5.13.

The current-current correlation function in Fig. 5.12 exhibits a more complex two peak

structure located at ω „ 0 and ω „ 6t. The latter high-frequency peak becomes more pro-

nounced when increasing V up to 4V {U “ 1. In the optical conductivity, this peak is present

but hardly detectable because of the dominating peak at zero frequency. From an analytical

point of view the optical conductivity still exhibits this high-frequency feature rising along

with charge fluctuations. For strong charge fluctuations, 4V {U “ 1.06 in Fig. 5.12, it is shifted

slightly to smaller frequencies and simultaneously, the low-frequency peak shifts in the opposite

direction. This results finally in a drastic reduction of optical weight at zero frequency and in

a more broadened shape.

The zero-frequency peak in the bottom row of Fig. 5.12 increases when increasing V from

V “ 0 up to 4V {U “ 1; both the bubble and vertex contributions increase. However, this is

much more apparent for the vertex corrections; the bubble contribution remains more or less

invariant in the weak V -limit.

In the regime of strong charge fluctuations, 4V {U “ 1.06, the optical conductivity drastically

drops. This occurs along with a diminishing bubble contribution. The vertex contribution

becomes more important by two aspects: It suppresses the conductivity at ω “ 0 and at the

same time enhances the optical weight at ω ‰ 0.

The behavior of the bubble contribution is verified by the spectral function at the Fermi

edge, k “ p0, πq and k “
`

π
3
, 2π

3

˘

, in Fig. 5.14. The continuation to real frequencies is done by

MEM (see App. C.2 for an introduction). When increasing the non-local interaction a drastic
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Fig. 5.12.: Response of the 2D extended Hubbard model to an electric field E “ E ax in the
PA (for parameters see Fig. 5.11). Shown is the current-current correlation function (top row)
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effect in the spectral functions is seen only at 4V {U “ 1.06 compared to the smaller values of

V . The enhanced broadening of the quasiparticle peak at 4V {U “ 1.06 in Fig. 5.14 explains

the reduction in the bubble part of the DC optical conductivity in Fig. 5.12.

For a more detailed analysis of the bubble optical conductivity in the weak V -limit, the

Fermi-liquid parameters are explicitly extracted analogously to Sec. 4.7.4. The results are

partly shown in the inset Fig. 4.15; namely for k “
`

π
3
, 2π

3

˘

. In this regard the insets of

Fig. 5.14 contain beside the renormalization factor Zk and scattering rate Γk at k “
`

π
3
, 2π

3

˘

also the outcome for k “ p0, πq. The quasiparticle renormalization Zk increases slightly with

V towards the non-interacting value Zk “ 1. Even more dramatic are the effects for the

scattering rate; i.e. Γk drops slightly until 4V {U “ 1, but above, in the strong V -limit, there is

a sudden leap. This feature explains again the broadening and thus the decrease of the optical

conductivity at 4V {U “ 1.06. The increase of the optical conductivity for 4V {U À 1 when

increasing V correlates with a decrease of the scattering rate and is thus in correspondence
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with a Fermi-liquid-like picture. Thus it can be concluded that only in the immediate vicinity

of the charge ordered phase transition, charge fluctuations cause a strong suppression of the

optical conductivity by increasing the scattering rate Γk.

5.4.3. Vertex corrections

The various contributions to the vertex response function are shown in the second row of

Fig. 5.13. The response functions are defined according to Eqs. (5.26)–(5.29); namely the con-

tribution proportional to the fully irreducible vertex function χΛ, proportional to the particle-

hole reducible vertex function χph, proportional to the transversal particle-hole reducible vertex

function χph and proportional to the particle-particle reducible vertex function χpp.

Except for χph, the contributions have a δ-like dependence, meaning apart from ωn „ ω0,

the response is negligible for χΛ, χph and χpp. This is independent of the non-local interaction

strength. A δ-like shaped current-current correlation function on the imaginary frequency axis

contributes to the optical conductivity merely at ω „ 0. This becomes clear by representing the

δ-function as a Lorentzian function of infinitesimal width (e.g. for Γ1 “ Γ2 Ñ 0 in Eq. (5.24)

and likewise in Eq. (5.25)). The transversal particle-hole contribution consequently defines the

vertex correction apart from ω “ 0.

Especially for finite non-local interactions the particle-hole contribution almost equals the

particle-particle contribution except for a sign. Hence, the part stemming from χph ` χpp is

insignificant. For V “ 0, the latter statement is likewise valid; however the functions do not

display this striking antisymmetric tendency. Probably, as already seen for the six-site case (cf.

Sec. 5.3.3), pure pp-ladder diagrams (without parquet insertions) have no relevant effect to the

particle-particle contribution of the response function χpp. [39] A contribution to χpp might be

obtained by actual ph-like diagrams. Furthermore, the second-order diagrams of the pp channel

are canceled out by the respective particle-hole diagrams. [3;9;16] This might furthermore explain

the almost cancellation of χpp by χph as the parquet method accounts for many more diagrams.

The previous discussion verified the importance of vertex corrections when non-local inter-

actions are taken into account (see Fig. 5.12). Comparing the various columns of Fig. 5.13

in this respect, hints to the conclusion that the striking difference, when including V , stems

from the part proportional to the fully irreducible vertex function χΛ. The first increase and

subsequent decrease of χΛ
p0,ω0q

is also represented in the optical conductivity at ω „ 0 when

increasing the non-locality of the interaction. This is consistent with the δ-like contribution on

the imaginary frequency axis of χΛ and a corresponding optical conductivity which is mainly

defined at ω „ 0.

Furthermore, as the fully irreducible vertex function is approximated by the bare interaction

Ukk1q in the PA, the effect stems only from a first order expansion. Consequently a main

influence of non-local interactions is simply given by a convolution of Ukk1q
d with the remaining

four one-particle Green’s functions.

For frequencies larger than zero, the transversal particle-hole contribution plays a decisive
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role. It defines the response in the overall real-frequency domain. Therewith it defines shifts

of weights; and thus, it seems in line, firstly, with the formation of the (relatively small)

high-frequency peak (only visible in the correlation function top row of Fig. 5.12) in the weak

V -limit; and secondly, with the drastic drop of σP at ω „ 0 in the strong V -limit. The latter

can be seen in the current-current correlation function and the optical conductivity in Fig. 5.12,

as more weight is accumulated at slightly higher frequencies than at ω “ 0. In this regime,

the influence of χph is more critical; note that for 4V {U “ 0.8 and 4V {U “ 1 the function is

of the same magnitude on the imaginary frequency axis (weak V -limit).

In Fig. 5.15, the reducible vertex function Φkk1q

ph
“ ´1

2
rΦd ` 3Φms

kpk`qqpk1´kq is compared to

Φkk1q
ph “ Φkk1q

d for q “ 0 and k “ p0, 0q along the path k1 : p0, 0q Ñ pπ, 0q Ñ pπ, πq Ñ p0, 0q

for ph and q̃ ” k1 ´ k : p0, 0q Ñ pπ, 0q Ñ pπ, πq Ñ p0, 0q for ph, respectively. Here the

dominating contributions to the ph response function can be identified; it is the contribution

around q̃ ” pk1 ´ k, ν 1n ´ νnq “ pπ, π, ω̃0q that is by far the largest. These contributions

are quite similar in the weak V -limit with prevailing AFM fluctuations (4V {U À 1). At

4V {U “ 1.06, i.e. in the immediate vicinity to a CDW order, there is a sudden change by

an even larger contribution at q̃ “ pπ, π, ω̃0q. As solely the low-frequency regime contributes

(due to the convolution with the four one-particle Green’s functions in Eq. (5.28)), Φph and

Φph are shown at ω̃0 (specifically at ν0 and ν 10) along the previous specified path for k1 (q̃)

for ph (ph) in Fig. 5.16. Comparing the various non-local interactions in Fig. 5.16, shows the

minor dependence of Φph on V . This is also the case for Φph in the weak V -limit. Increasing

V slightly above 4V {U ą 1 and thus entering the regime of strong charge fluctuations finally

displays the strong influence of the ph channel to the optical response function.5

5.4.4. π-ton

Vertex corrections make up a major part of the optical conductivity and are of special im-

portance in the vicinity of phase transitions. This is seen not only for the extended 2D

Hubbard model in the previous section, Sec. 5.4.3, but also for the PPP and U -only model

in Sec. 5.3.3. Independent of the system, the prevailing vertex corrections constitute of the

transversal particle-hole vertex contributions. Furthermore, these contributions are connected

to a relative momentum q̃ “ pπ, ..q.

The corresponding predominate fluctuations are also associated with a momentum q “

pπ, ..q. In case of the extended 2D Hubbard model, the increase of the non-local interaction V

results in strong CDW fluctuations (see Sec. 4.7.2). For the U -only benzene model, the system

is influenced strongly by AFM fluctuations, and for the PPP model it is a combination of both

5 This is quite different to the benzene ring (cf. Fig. 5.10). The value at q̃ “ π is much less pronounced
compared to the other momenta in the PPP model. However, not only V1 is considered but also interactions
amongst next-nearest and next-next-nearest neighbors via V2 and V3, resulting probably in a more complex
interplay of magnetic and charge fluctuations. In case of the U -only model, AFM fluctuations prevail and
similar to the 2D extended Hubbard model, with prevailing CDW fluctuations in the strong V -limit, a
major contribution at q̃ “ π can be identified.
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Fig. 5.15.: Reducible vertex function in the ph channel Φkk1q
d (first column) and in the ph

channel ´1
2
rΦd ` 3Φms

kpk`qqpk1´kq (second column) for q “ 0, k “ p0, 0q, along the path k1

pq̃ ” k1´kq : p0, 0q Ñ pπ, 0q Ñ pπ, πq Ñ p0, 0q for ph (ph) in PA (for parameters see Fig. 5.11).
The various rows correspond to the same V -term; otherwise same structure as Fig. 5.9.
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Fig. 5.16.: Reducible vertex function Φph (left panel) and Φph (right) for q “ 0, k “ 0 and at
ν 10 along the path specified in Fig. 5.15 in PA (parameters are the same as in Fig. 5.11).

(see Sec. 4.6.2).

Such strong fluctuations can couple to light only in a transversal channel and this is seen

indeed in the vertex corrections to the optical conductivity. These vertex corrections are mainly

defined by the transversal particle-hole reducible vertex function at a momentum q̃ “ pπ, ..q.

For an optical interaction with the solid, the momentum transfer of the photon needs to be

zero. Consequently, an ’normal’ electron-hole pair created by the photon (in the ph channel)

cannot include these fluctuations. Thus, excitons, typical for semiconductors, cannot couple

to the AFM and CDW fluctuations prevailing in strongly correlated electron systems. The

prevailing polaritons are instead ph-like and associated to the momentum of the dominant

fluctuation. As this momentum is pπ, ..q in the present work, these (to the best of knowledge)

new bosonic quasiparticles are suggested to be labeled π-tons.



92



93

6. Conclusion

The present thesis includes three major studies: the analysis of the momentum dependence

of the self-energy in the 2D Hubbard model, the examination of non-local interactions in

benzene and the 2D square lattice, and finally, the determination of optical conductivities.

Two major insights are new and have been completely unexpected: (i) a reduced functional

dependence of the self-energy depending approximately on εk instead of k could be deduced for

the 2D Hubbard Hamiltonian and (ii) transversal particle-hole polaritons are the predominate

vertex corrections for strongly correlated electron systems. These polaritons are coined π-tons

since they are typically associated with a momentum close to pπ, ..q for strong CDW or AFM

fluctuations.

The 2D Hubbard model is first simulated by the DQMC method to obtain the one-particle

vertex function, i.e. the self-energy. In this first study the explicit focus is set on the momen-

tum dependence of the self-energy which is found to be severe for the considered interactions.

However, a less-dimensional representation turns out to be adequate; namely the mapping of

the 2D momentum k to the 1D dispersion relation εk by Σpk,νq Ñ Σpεk,νq. This allows for a full

global visualization of the one-particle functions with respect to momentum and frequency.

Depending on the temperature, i.e. if sufficiently high or low, a Z- or Z-shaped structure

is observed when displaying ImΣ in a heat map resolved in εk and its real frequency ν for

the x and y axis, respectively. This particular structure, namely temperature-independent

non-dispersive broad stripes and a highly temperature-dependent diagonal, initiated the afore-

mentioned parametrization and subsequently an explanation of the various parts. At high

temperatures, the shape is completely contained in second-order perturbation theory. Due

to the temperature independence of the broad stripes, these can be further traced back to

particle-hole excitations. Reducing the temperature increases magnetic fluctuations and by

the corresponding mean-field Hamiltonian the diagonal including the sign can be restored

(Z Ñ Z). Specifically, by this mapping the physical origin of the various structures is under-

stood. Furthermore, a more complicated mapping is expected for anisotropic hopping (with

respect to direction) and for doped systems. Away from half-filling and thus approaching

the interesting phase of high-temperature superconductivity, a constant offset with respect

to positive and negative frequencies arises. In general, a parametrization might be helpful

for other methods; for instance, for methods, which suffer a low-momentum resolution, this

scheme might approximately restore the full-momentum distribution. When combining differ-
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ent methods with various momentum resolution such a modeling might be likewise useful.

In the further course of the thesis, the drastic screening effect assumed in the Hubbard

model is partially lifted by allowing for non-local interactions. In addition, one-particle and

two-particle functions are treated on the same footing via the parquet formalism in the PA. For

the benzene molecule within the PPP model the two-particle vertex function is identified to

be of major importance compared to the U -only model. Despite large influences of the vertex

function, the PPP benzene exhibits less correlations when referring to the self-energy and

the Fermi-liquid-like renormalization factor. However, intriguingly, the spectral gap enlarges.

The origin is a finite Fock term which affects the gap function more strongly than what is

compensated for by a smaller quasiparticle renormalization factor. In case of the 2D square

lattice and a reduction of the non-local interaction to nearest neighbors, the findings are

qualitatively the same. Correlations are more and more suppressed when increasing the non-

local interaction. For sufficiently large V , the verge of a charge ordered phase transition can

be displayed, but calculations have not been performed in the symmetry broken phase.

The advantage of the parquet formalism especially appears when deducing correlation func-

tions and thus the response of the system to external fields. Due to the formalism, the two-

particle functions are directly accessible and correlation functions can be evaluated straight-

forwardly. In the final part of the thesis, the current-current correlation function as well as

the optical conductivity is inspected. For the PPP model, the importance of the two-particle

vertex function compared to the U -only model is observed again. This manifests in the various

components to the optical conductivity. Within a detailed analysis of the vertex function, the

particle-hole excitations, namely labeled in general polaritons within a quasiparticle context,

can be identified to result predominantly from transversal particle-hole diagrams. When in-

creasing the non-local interactions, a reduction of the optical gap compared to the one-particle

spectral gap is attributed to vertex corrections. In semiconductors, for instance, these are be-

lieved to result from excitons (particle-hole polaritons) and thus from particle-hole diagrams.

Separating the various vertex functions according to its particle-particle, particle-hole and

transversal particle-hole channel, the latter is unraveled to build the dominating share. For

the 2D square lattice the optical conductivity is essentially determined by its zero-frequency

contribution. When increasing V this DC part increases firstly; and additionally along with

the decrease of AFM fluctuations. In the vicinity of the charge ordered phase transition the

abrupt increase of CDW fluctuations goes along with a drop of the DC optical conductivity.

Vertex corrections are also of special importance and likewise the transversal particle-hole con-

tribution is dominating. In the vicinity of the CDW, the contribution even enlarges. However,

the changes proportional to the fully irreducible vertex function are likewise important in this

case.

Despite harsh restrictions regarding the k resolution, the parquet formalism in the PA pro-

vides special insights into two-particle vertex functions. It remains to be seen how a fully

self-consistent DΓA modifies the two-particle quantities due to a self-consistent calculation of

the fully irreducible vertex function Λ. The limitations because of the reduced system size
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are also considerable in DQMC. DQMC simulations allow for larger system sizes and lower

temperatures than the parquet method at half-filling; but are more limited than the latter

away from half-filling because of the sign problem. However, the method does not inherit any

a priori knowledge and might be seen as an unbiased approach to a subsystem which finally

needs to be extrapolated to the thermodynamic regime. The PA and DΓA, are still unbiased

with respect to the channels but make an approximation regarding the fully irreducible vertex

function which is either the bare interaction (PA) or obtained from all local diagrams (DΓA).

Both methods, DQMC and PA/DΓA, are general tools to understand subspaces of condensed

matter whose output might feed more specialized approaches which employ much more severe

approximations.
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A. Notations

The following specifies the convention for the Fourier transform, App. A.1. Additionally, the

self-energy is derived in App. A.2 and therewith the DEq., Eq. (3.14).

A.1. Fourier transforms

For a general function f the Fourier transform is defined as

fi “

ˆ
dk

VBZ

eikrifk Ñ
1

N

ÿ

k

eikrifk fk “
ÿ

i

e´ikrifi (A.1)

fpτq “
1

β

ÿ

n

e´iνnτfpνnq fpνnq “

ˆ β

0

dτeiνnτfpτq (A.2)

for the volume VBZ of the BZ. As only finite lattice systems are considered, the continuous mo-

mentum becomes discrete; and thus the integral is written as a sum. The operators transform

according to

ci “
1

N

ÿ

k

eikrick ck “
ÿ

i

e´ikrici (A.3)

c:i “
1

N

ÿ

k

e´ikric:k c:k “
ÿ

i

eikric:i (A.4)

cpτq “
1

β

ÿ

n

e´iνnτcpνnq cpνnq “

ˆ β

0

dτeiνnτcpτq (A.5)

c:pτq “
1

β

ÿ

n

eiνnτc:pνnq c:pνnq “

ˆ β

0

dτe´iνnτc:pτq . (A.6)

A.2. Derivation of Σ

The self-energy is derived for the Hamiltonian of Eq. (2.8). In this respect, the evaluation

of the commutator of Eq. (3.11) is performed. Here, the relations tAB,Cu´ “ AtB,Cu` ´

tA,Cu`B and tABCD,Eu´ “ ABCtD,Eu`´ABtC,Eu`D`AtB,Eu`CD´tA,Eu`BCD
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are exploited. Going furthermore to momentum space, denoting 2 Ñ pp, sq, one obtains

 

T , cps
(

´
“

1

N

ÿ

k,σ

εk

!

c:kσckσ, cps

)

´
“ ´εpcps (A.7)

 

V , cps
(

´
“

1

2N3

ÿ

kk1q,
σσ1

vq

!

c:kσc
:

pk1`qqσ1ck1σ1cpk`qqσ, cps

)

´
(A.8)

“
1

2N3

ÿ

kk1q,
σσ1

vq

”

c:kσ

!

c:
pk1`qqσ1 , cps

)

`

Nδppk1`qqδsσ1

´

!

c:kσ, cps

)

`

Nδpkδsσ

c:
pk1`qqσ1

ı

ck1σ1cpk`qqσ (A.9)

“
1

2N2

ÿ

kq,σ

”

v´qc
:

kσcpp`qqscpk`qqσ ´ vqc
:

pk`qqσckσcpp`qqs

ı

(A.10)

“´
1

N2

ÿ

kq,σ

vqc
:

pk`qqσckσcpp`qqs . (A.11)

In Eq. (A.11), the fact is used that the potential, Eq. (2.10), only depends on relative distances,

thus, vq “ v´q. Explicitly utilizing Eq. (3.11) in momentum space, the EoM for the cp:q-

operator reads

Bτcpspτq “ ´εpcpspτq ´
1

N2

ÿ

kq,σ

vqc
:

pk`qqσpτqckσpτqcpp`qqspτq . (A.12)

This result can be used to derive the one-particle Green’s function. With the definition of

Eqs. (3.6) and (3.10), the EoM for the one-particle Green’s function for τ P p0, βq leads to

BτGpspτq “ ´ Bτ
@

T
“

cpspτqc
:
ps

‰D

(A.13)

“´ δpτq ` εp
@

cpspτqc
:
ps

D

`
1

N2

ÿ

kq,σ

vq
@

c:
pk`qqσpτqckσpτqcpp`qqspτqc

:
ps

D

(A.14)

“´ δpτq ´ εpGpspτq ´
1

N2

ÿ

kq,σ

vq

¨ lim
τ1Ñ0

τ2,3,4Ñτ

@

T
“

ckσpτ4qc
:

pk`qqσpτ3qcpp`qqspτ2qc
:
pspτ1q

‰D

”Gpkq
sσ pτ1,τ2,τ3,τ4q

(A.15)

“´ δpτq ´ εpGpspτq ´
1

N2

ÿ

kq,σ

vq lim
τ1Ñ0

τ2,3,4Ñτ

Gpkq
sσ pτ1, τ2, τ3, τ4q . (A.16)

The definition of the two-particle Green’s function is utilized according to Eqs. (3.7) and (4.3).

Performing the limits preserves the time ordering of operators. This contribution is reformu-

lated in the following such that it contains a convolution with a one-particle Green’s function

in order to obtain a closed form. Therewith, the a-priori unknown self-energy Σ is introduced

as

“

ΣG
‰

ps
pτq “

1

N2

ÿ

kq,σ

vq lim
τ2,3,4Ñτ

@

ckσpτ4qc
:

pk`qqσpτ3qcpp`qqspτ2qc
:
ps

D

(A.17)
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“
1

N2

ÿ

kq,σ

vq lim
τ2,3,4Ñτ

”

@

ckσpτ4qc
:

pk`qqσpτ3qcpp`qqspτ2qc
:
ps

Dc
´
@

ckσpτ4qc
:
ps

D

¨
@

c
pp`qqspτ2qc

:

pk`qqσpτ3q
D

`
@

c
pp`qqspτ2qc

:
ps

D@

ckσpτ4qc
:

pk`qqσpτ3q
D

ı

(A.18)

“
1

N2

ÿ

kq,σ

vq

”

lim
τ2,3,4Ñτ

Gc,pkq
sσ

`

τ2, τ3, τ4

˘

´Gpp`qqsp0
´
qGpσ

`

τqNδkpδσs

`Gps

`

τ
˘

Gkσp0
´
qNδq0

ı

(A.19)

“
1

N2

ÿ

kq,σ

vq lim
τ1,2,3Ñτ

Gc,pkq
sσ

`

τ2, τ3, τ4

˘

´
1

N

ÿ

k

vk´pGksp0
´
qGps

`

τ
˘

`
1

N

ÿ

kσ

vq“0Gkσp0
´
qGps

`

τ
˘

. (A.20)

The superscript c denotes for the connected part. The part containing the two-particle Green’s

function can be further evaluated by applying the limits. This can be done as the connected

part of an expectation value is continuous with respect to the ordering of its operators,

lim
τ1,2,3Ñτ

Gc,pkq
sσ

`

τ2, τ3, τ4

˘

“ lim
τ1,2,3Ñτ

1

β4

ÿ

ν1..4

e´iν2τ2eiν3τ3e´iν4τ4

¨
@

ckσpν4qc
:

pk`qqσpν3qcpp`qqspν2qc
:
pspν1q

Dc
(A.21)

“
1

β4

ÿ

ν1..4

e´iτpν2´ν3`ν4q
@

ckσpν4qc
:

pk`qqσpν3qcpp`qqspν2qc
:
pspν1q

Dc
(A.22)

“
1

β3

ÿ

νρω

e´iτρ
@

ckσpνqc
:

pk`qqσpν ` ωqcpp`qqspρ` ωqc
:
pspρq

Dc
. (A.23)

Hereinafter, the frequencies refer to Matsubara frequencies; the usual discrete subscript n for

νn is omitted. The Fourier transform of Eq. (A.23) results in

ˆ
dτ eiγτ

1

β3

ÿ

νρω

e´iτρ
@

ckσpνqc
:

pk`qqσpν ` ωqcpp`qqspρ` ωqc
:
pspρq

Dc

“
1

β2

ÿ

νω

@

ckσc
:

pk`qqσcpp`qqsc
:
ps

Dc
. (A.24)

The notation p “ pp, γq is used. The Fourier transform of the Fock and Hartree term, the

second and third contribution of Eq. (A.20), leads to

ˆ
dτ eiγτ Gpspτq

1

N

ÿ

k,σ

“

´vk´pGksp0
´
qδsσ ` vq“0Gkσp0

´
q
‰

(A.25)

“

ˆ
dτ eiγτ

1

β2

ÿ

ν1,2

e´iν1τGpspν1q
1

N

ÿ

k

Gk pν2q r´vk´p ` 2vq“0s (A.26)

“Gps
1

Nβ

ÿ

k

Gk r´vk´p ` 2vq“0s . (A.27)
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Summarizing, the Fourier transformation of rΣGspspτq is obtained Eqs. (A.24) and (A.27),

namely according to

ΣpsGps “
1

pNβq2

ÿ

kq,σ

vq
@

ckσc
:

pk`qqσcpp`qqsc
:
ps

Dc
`Gps

1

Nβ

ÿ

k

Gk

“

2vq“0 ´ vk´p
‰

(A.28)

Σps “´
1

pNβq2

ÿ

kq,σ

vqGp`qF
pkq
sσ Gk`qGk `

1

Nβ

ÿ

k

Gk

“

2vq“0 ´ vk´p
‰

. (A.29)

Here Eq. (4.18) is utilized. By exploiting the spin invariance of the Hamiltonian, the full vertex

F can be written in respective spin channels, using Eqs. (4.12)–(4.15). Furthermore inserting

Eq. (2.10), modifies the self-energy in the following way,

Σp ”ΣpÒ “ ´
1

pNβq2

ÿ

kq

Gp`qGkGk`q

”

VqF
pkq
ÒÒ `

`

U ` Vq
˘

F pkq
ÒÓ

ı

`
1

Nβ

ÿ

k

Gk rU ` 2Vq“0 ´ Vk´ps (A.30)

“´
1

pNβq2

ÿ

kq

Gp`qGkGk`q

„

U

2
rFd ´ Fms

pkq
` VqF

pkq
d



` pU ` 2Vq“0qGi“0p0
´
q

´
1

N

ÿ

k

ÿ

ij

eikrieipk´pqrjVjGip0
´
q (A.31)

“´
1

pNβq2

ÿ

kq

Gp`qGkGk`q

„

U

2
rFd ´ Fms

pkq
` VqF

pkq
d



` pU ` 2Vq“0qGi“0p0
´
q

´
ÿ

i

eipriV´iGip0
´
q . (A.32)

Actually, the one-particle Green’s function is only evaluated within τ P p0, βq. Hence, the

antiperiodicity of the function is exploited with Gpτ “ 0´q “ ´Gpτ “ β´q. The problem to

handle is now pushed to the in principle unknown vertex contribution appearing now in the

one-particle self-energy.

However, there is finally a closed relation for the one-particle Green’s function by making

use of the self-energy, Eq. (A.32). By a Fourier transformation of the remaining parts of

Eq. (A.16), with
´
dτ eiγτBτGppτq “ ´iγGp and

´
dτ eiγτδpτq “ 1, one obtains

Gp “
1

iγ ´ εp ´ Σp

. (A.33)

This relates the one-particle Green’s function explicitly to the self-energy. For a grand canonical

system, the dispersion relation εp needs to be replaced by ξp.
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B. Additionals for DQMC

The formulas for the partition function depending on the HS field are derived in App. B.1. [82]

The subsequent part, App. B.2, motivates the particular formulas for a one-rank update of the

HS field. [6;13]

B.1. Integrating out the fermionic degrees

The trace in Eq. (3.30) is written in the following in terms of the eigenbasis of the fermionic

annihilation operators. The corresponding eigenvalues are defined by ξ which belong to the

Grassmann algebra. In this respect the trace and completeness relation for the Grassmann

variables reads

tr O “

ˆ
dξ˚dξe´ξ

˚ξ
x´ξ |O| ξy (B.1)

1 “
ˆ
dξ˚dξe´ξ

˚ξ
|ξyxξ| . (B.2)

The operators are assumed to be normal ordered which is valid within an order Op∆τ 2q. Fur-

thermore for each l-th discretization slice unity is inserted. This leads to

tr Uσ “
ˆ
dξ˚dξe´ξ

˚ξ
x´ξ |Uσ| ξy “

ˆ
Dξ˚Dξ

L
ź

l“1

e´ξ
˚
l ξl xξl´1 |Ulσ| ξly . (B.3)

Comparing to Eq. (3.30) Uσ is defined as

Uσ “
L
ź

l“1

Ulσ ”
L
ź

l“1

”

e´∆τc:σKcσec
:
σVlσcσ

”e´c
:
σM

lσcσ

ı

. (B.4)

The initial and final eigenstates correspond to ξ0 “ ´ξL “ ξ. The integral measure is defined

as Dξ˚Dξ “śL
l“1 dξ

˚
l dξl . Evaluating the expectation value results in

tr Uσ “
ˆ

Dξ˚Dξ
L
ź

l“1

e´ξ
˚
l ξl eξ

˚
l ξl´1e´ξ

˚
l Mlσξl´1 “

ˆ
Dξ˚Dξe´

ř

ll1 ξ
˚
l Gll1ξl1 “ det G . (B.5)
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The matrix G, introduced in Eq. (B.5), is of the form

G “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

1 0 . . . 0

´B1 1
. . . 0

0
. . . . . .

...
...

. . . 0

0 . . . 0 ´BL´1 1

BL

0
...
...

0

0 . . . 0 ´BL 1

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

”

˜

A B

C 1

¸

. (B.6)

The matrix Bl is defined as Bl “ 1´Mlσ for l P t1 .. Lu. It has furthermore the dimension NˆN .

The block matrices, labeled in Eq. (B.6) with A, B and C, are of the form NpL´1qˆNpL´1q,

NpL ´ 1q ˆ N and N ˆ NpL ´ 1q, respectively. Due to this structure and for an invertible

matrix A Schur’s determinant identity results in

det G “ det

˜

A B

C 1

¸

“ det A det
“

1´ CA´1B
‰

(B.7)

“ detr1`BL´1BL´2 . . . B1BLs “ det

«

1`
L
ź

l“1

`

1´ Mlσ
˘

ff

. (B.8)

This formula can be further simplified by inserting M unity operators now for each slice l. In

the limit of M Ñ 8, the relation is exact and reads

tr Uσ “ lim
MÑ8

ˆ
Dξ˚Dξ

L
ź

l“1

M
ź

m“1

e´ξ
˚
lmξlm

A

ξl,m´1

ˇ

ˇ

ˇ

rUlσ
ˇ

ˇ

ˇ
ξl,m

E

. (B.9)

Here, the following relations are used, namely that ξl,0 “ ξl´1,M for l ą 1 and ξ1,0 “ ´ξL,M .

Furthermore, rUlσ is defined as rUlσ “ e´Mlσ{M . In analogy to Eq. (B.5), a new NLM ˆ NLM

matrix O is introduced via

tr Uσ “ lim
MÑ8

ˆ
Dξ˚Dξ

ź

l

ź

m

e´
ř

ll1
ř

mm1 ξ
˚
lmOlm,l1m1ξl1m1 (B.10)

with Olm,l1m1 “ δll1δmm1 ´
`

1´ 1
M

Mlσ
˘

δll1δm,m1`1. Similar to Eq. (B.8) the integration can be

performed and finally the limit M Ñ 8 can be deduced according to

tr Uσ “ lim
MÑ8

det

«

1`
L
ź

l“1

„

1´
1

M
Mlσ

M
ff

“ det

«

1`
L
ź

l“1

e´Mlσ

ff

. (B.11)

B.2. Rank-one updating process

As the change of the configuration is done such that on site i the ∆τ slice is updated from l to

l1, only a change in the matrix Bl to Bl1 has to be considered. In this respect the matrix ∆l is
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defined such that Bl Ñ Bl1 “ Bl∆
l. ∆l is diagonal and moreover only the i-th diagonal entry

deviates from 1. It reads explicitly ∆l
ij “ δij ` eδV

σ
ii etiei with ei being the i-th unity vector,

δV σ
ij “

`

Vl
1σ
ij ´ Vlσij

˘

δij and the definition given in Eq. (3.28).

Utilizing the general relation for determinants, namely detpA´1q “ 1{ detpAq and detp1 `

ABq “ detp1`BAq for invertible matrices A and B, one obtains for the ratio,

R “
ph1

ph
“

detp1`Bl´1 . . . B1BL . . . Bl∆lq

detp1`Bl´1 . . . B1BL . . . Blq
“

detp1` Al∆lq

detp1` Alq
(B.12)

“
detp1` Al∆l ´∆l `∆lq

detp1` Alq
“ detp∆l ´ p1` Alq

´1
p∆l ´ 1qq (B.13)

“ detp∆l ´G
l
p∆l ´ 1qq “ detp1` p1´Gl

qp∆l ´ 1qq . (B.14)

The definitions Eqs. (3.32), (3.38) and (3.39) are used here. The matrix p∆l´1q can be written

as p∆l,ii´1qeie
t
i with the i-th unity vector. With the use of the relation, detp1´xytq “ 1`ytx,

for vectors x and y, the final expression of Eq. (3.40) is obtained.

If the configuration hil1 is accepted, the contributions, Gl1 , can be obtained from the previous

Gl; namely via

”

Gl1
ı´1

“ 1` Al∆
l
“
“

Gl
‰´1

`

´

“

Gl
‰´1

´ 1
¯

p∆l
´ 1q . (B.15)

By utilizing the Sherman-Morrison-Woodbury formula with rA ` uvts´1 “ A´1 ´ A´1ur1 `

vtA´1us´1vtA´1 and identifying amongst others A as
“

Gl
‰´1

, the new Green’s function Gl1 can

be computed quickly according to

Gl1
“ Gl

´

Gl
´

“

Gl
‰´1

´ 1
¯

p∆l
ii ´ 1qeie

t
iG

l

1` etiG
l
´

rGls
´1
´ 1

¯

p∆l
ii ´ 1qei

“ Gl
´

∆l
ii ´ 1

R

`

1´Gl
˘

eie
t
iG

l . (B.16)

However, referring solely to this relation is due to a heavy accumulation of rounding errors not

advisable.
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C. Additionals on analytic continuation

methods

In order to implement the analytic continuation and thus the link of complex Matsubara fre-

quencies with real frequencies, results from complex analysis are applied. As physical functions

fulfill the principle of causality with fRptq “ ΘptqfRptq, the Fourier transform can be defined

to be analytic in the upper-half complex plane. Hence, the Kramers-Kronig relations can be

utilized, which read

RefR
pωq “ P

ˆ
dω1

π

ImfRpω1q

ω1 ´ ω
(C.1)

ImfR
pωq “ ´P

ˆ
dω1

π

RefRpω1q

ω1 ´ ω
. (C.2)

Because of the analyticity of fpzq for complex z in the upper-half plane B, the residue theorem

results in

0 “

ˆ
BB

dz1fpz1q (C.3)

fpzq “
1

2πi

ˆ
BB

dz1
fpz1q

z1 ´ z
“

1

2πi

ˆ 8

´8

dω1
fRpω1q

ω1 ´ z
(C.4)

“

ˆ
dω1

π

ImfRpω1q

ω1 ´ z
. (C.5)

Eq. (C.5) is obtained by separating the real and imaginary part of fR in Eq. (C.4), by using

Kramers-Kronig relation, Eq. (C.1), the Sokhotski-Plemelj formula and the residue theorem.

Additionally, one obtains on the real-frequency axis via the Sokhotski-Plemelj formula,

fR
pωq “ RefR

pωq ` iImfR
pωq (C.6)

“ P
ˆ
dω1

π

ImfRpω1q

ω1 ´ ω
`
i

π

„

π

ˆ
dω1δpω1 ´ ωqImfR

pω1q



(C.7)

“

ˆ
dω1

π

ImfRpω1q

ω1 ´ pω ` iδq
. (C.8)



106 C. Additionals on analytic continuation methods

Comparing Eq. (C.8) with Eq. (C.5) for z “ iωn the continuation procedure becomes clear;

namely via iωn Ñ ω ` iδ,

fpiωnq “

ˆ
dω1

π

ImfRpω1q

ω1 ´ iωn
Ñ fR

pωq “

ˆ
dω1

π

ImfRpω1q

ω1 ´ pω ` iδq
. (C.9)

If the function, defined on the imaginary frequency-axis, is analytically known, a replacement

of iωn Ñ ω` iδ in Eq. (C.9) solves the problem. If not, an inversion of Eq. (C.9) likewise leads

to real-frequency results.

Due to incomplete information of the data, to be analytically continued, the straightforward

substitution is not possible. The inversion is also not straightforward, as it constitutes an

ill-posed inversion problem. Hence, different strategies have to be considered, which depend

primarily on the kind of input, i.e. if the data is just numerically incomplete or has some

statistical error. The methods, applied here, are an interpolation method, namely the Padé

method (introduced in App. C.1), [85] and an advanced fitting routine, MEM (motivated in

App. C.2). [34;14] In case of the, in principle, numerically exact parquet data, the Padé method

is a convenient choice. For stochastic data sets, such as obtained by DQMC simulations in

Sec. 3.3, MEM is favorable.

C.1. Padé interpolation

The Padé method [85] allows for an analytic transformation by continuing a function via iνn Ñ

ν` iδ in a post-processing step. Firstly, the respective function is obtained by an interpolation

of k data points. It is called k-point Padé approximant Ck. The approximant is defined for

complex variables z by k coefficients which are labeled a as

Ckpzq “
a1

1` a2pzq

1`
a3pzq
¨¨¨ akpzq

. (C.10)

The input data is denoted with tzn, un ” Ckpznqu for n P t1 .. ku. Here zn represents the n-th

fermionic (bosonic) Matsubara frequency iνn (iωn). In order to compute the coefficients a the

inverse function of the continued fraction Ck is defined with gnpznq “ an for each n. For an

unambiguous definition of g, g1 at zn is set to g1pznq “ un for n P t1 .. ku. Hence it can be

shown recursively, that

gppzq “
gp´1pzp´1q ´ gp´1pzq

pz ´ zp´1qgp´1pzq
(C.11)

for p ě 2. The coefficients are computed successively by starting with p “ 1 up to p “ k. The

Padé approximant is finally determined by the equivalent recursive form

Ckpzq “
Akpzq

Bkpzq
(C.12)
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Akpzq “ Ak´1pzq ` akpzqAk´2pzq (C.13)

Bkpzq “ Bk´1pzq ` akpzqBk´2pzq . (C.14)

In case of an analytic continuation of a fermionic function, such as the one-particle Green’s

function, qualitative good results are obtained with A0 “ 0, A1 “ a1, B0 “ B1 “ 1 and

anpzq “ anpz ´ zn´1q for n P t2 .. ku. [85]

Technical details

Due to this choice, A0 “ 0 etc., the Padé approximant receives a long-range behavior pro-

portional to 1{z for an even number of input data k. An odd number of input data, which

provides for a different dependence for large z, has not influenced the analytic continuation

of one-particle Green’s functions noticeably. A 1{z2 fall-off, for instance, supplies likewise for

stable output.

Furthermore, for the finally presented Padé results, a spares frequency grid of input data

is used. As the temperature is low enough the spacing of the Matsubara frequency becomes

sufficiently low, so that for a stable interpolation only every second or third frequency point

is utilized for βt “ 6 and βt “ 10, respectively. Moreover some random frequency points are

omitted which even stabilizes partly the Padé analytical continuation.

Using more fixed points for the interpolation results in an overfitting. In this case less

poles appear effectively in the representation of Eq. (C.13) compared to the order of the Padé

interpolation. The ’missing’ poles are reduced in the fraction. However, as this cancellation of

poles happens numerically, non-physical structures might appear in the final function.

Despite this randomness in the choice of the input data with partly drastic effects on the

outcome, the Padé method provides an appropriate and commonly used tool for analytic

continuations of numerical data, which especially do not suffer a statistical error.

C.2. Maximum entropy method

The maximum entropy method (MEM) [34;14] is a least-square fitting routine by utilizing not

only the data sets but also prior information. For example, in case of the one-particle Green’s

function G, the positivity and normalizability of its underlying spectral function A is exploited.

These are quite general features inherited in MEM. Further knowledge can be incorporated by

a model function.

The idea of MEM is to find the most probable spectrum A with respect to the underlying

data set G. This probability is maximized and results thereby in the spectrum to be found.

With Bayes theorem, the probability of a state G (given A), P pG|Aq, is linked to the actually

required quantity, P pA|Gq, namely the probability of a state A when G is given, by

P pA|GqP pGq “ P pG|AqP pAq . (C.15)
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Here, G is denoted for each Matsubara frequency νn as G ” tGnu.

The probability P pGq is constant and hence irrelevant when maximizing the respective

probabilities. Furthermore the probability P pG|Aq is assumed to be Gaussian for a sufficiently

large number Λ of uncorrelated data (central limit theorem). Hence it can be written as

P pG|Aq9e´
χ2

2 (C.16)

with

χ2
“

Λ
ÿ

n“1

pGi ´Giq
2

σ2
i

, (C.17)

the mean value Gi and its variance σi. The prior knowledge is encoded in the probability,

P pAq9eαSrA,ms , (C.18)

via the model function m. The functional S is defined as a Shannon-Jaynes entropy by

SrA,ms “

ˆ
dν

„

Apνq ´mpνq ´ Apνq ln

„

Apνq

mpνq



. (C.19)

The Lagrange parameter α interpolates in this respect between the fitting to the original data

and the prior information. The final function,

P pA|G,m, αq “ eαSrA,ms´
χ2

2 , (C.20)

is maximized and results thus in the searched spectral function A. The choice of the final

parameter α, is done by determining the spectral function for a certain range of α. χ2 is then

analyzed as function of α and determines the optimum therewith.
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D. Additionals on parquet method

The derivation from the PA for a general non-local interaction is given in App. D.1. [11] In

App. D.2 the detailed formulas for the high-frequency regulation are provided. [44] These are

utilized in victory excessively.

D.1. Parquet approximation

The first order approximation of the fully irreducible vertex function, the bare interaction

vertex, is also known as parquet approximation (PA). [12;11] In this respect, the interaction

strength defined in Eq. (2.10) is for the ph notation, namely Uσσ1p12, 34q “ Uδσ,´σ1 `V2´1. Via

the relation, defined in Eq. (4.9), the pp contribution reads Up,σσ1p12, 34q “ ´Uδσ,´σ1´V3´1. In

order to utilize this vertex function within Feynman diagrams a symmetrization has to be done.

This is necessary, as swapping of two in- or out-going Green’s function legs (e.g. interchange

2 and 4 in Fig. 4.1 in the ph notation) does not result in a topological invariant contribution

itself. However, when diagrams are built of such vertex functions, all possibilities of joining

legs have to be considered. This can be done in advance by symmetrizing these functions;

using this, the first order vertex function reads

Uσσ1p12, 34q Ñ Uσσ1p12, 34q ´ Uσσ1p14, 32qδσσ1 (D.1)

Up,σσ1p12, 34q Ñ Up,σσ1p12, 34q ´ Up,σσ1p12, 43qδσσ1 . (D.2)

Explicitly denoting all the spin contributions one obtains

UÒÒp12, 34q “ V2´1 ´ V4´1 Up,ÒÒp12, 34q “ V4´1 ´ V3´1 (D.3)

UÒÓp12, 34q “ U ` V2´1 Up,ÒÓp12, 34q “ ´U ´ V3´1 (D.4)

UÒÓp12, 34q “ ´U ´ V4´1 Up,ÒÓp12, 34q “ U ` V2´1 (D.5)

and in the final spin-channels with the common k-notation, Eq. (4.11), the PA reads

Ukk1q
d “ U ` 2Vq ´ Vk1´k Ukk1q

m “ ´U ´ Vk1´k (D.6)

Ukk1q
s “ ´2U ´ Vk1´k ´ Vq´k´k1 Ukk1q

t “ Vk1´k ´ Vq´k´k1 . (D.7)
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D.2. High-frequency regulations

In principle for an exact description all (infinitely many) Matsubara frequencies have to be

considered. For a numerical treatment this cannot be done as storage is limited. As the

contributions of the summands are generally suppressed by higher orders than 1{ν, a cut-off

can be made (note, the discrete subscript of the Matsubara frequency is omitted). This cut-

off is then corrected by the so-called high-frequency regulation. The idea of this regulation

is to subtract and add the first order contribution to the equation to be regulated. Hence,

the actual summand excludes the first order contribution due to the subtraction. To correct

this deviation, the first order part is added again, however, treated differently. Namely, its

frequency sum is explicitly treated and evaluated in imaginary time. Consequently the high-

frequency tail is truly provided in a first order. The correction to the BSEqs., Eqs. (4.27)

and (4.29), consequently reads

Φ̃kk1q
d{m ”

1

Nβ

ÿ

k1

Ukk1q
d{m Gk1

Gk1`q
Uk1k1q
d{m (D.8)

Φ̃kk1q
s{t ” ¯

1

2Nβ

ÿ

k1

Ukk1q
s{t Gk1

Gq´k1
Uk1k1q
s{t . (D.9)

The bare interaction vertex in each spin channel is defined in Eqs. (D.6) and (D.7). Only the

one-particle Green’s function explicitly depends on frequency. Hence, this contribution can be

further evaluated to lead to

Φ̂kk1q
r ”

Cr
N

ÿ

k1

Ukk1q
r

χk1q
r Ukk1q

r (D.10)

χk1q
r “

1

β

ÿ

ν1

ˆ
dτ1dτ2 e

iν1τ1eipω˘ν1qτ2Gk1
pτ1qGq˘k1

pτ2q

“

ˆ
dτ eiωτGk1

p¯τqGq˘k1
pτq (D.11)

with Cr “ t1, 1,´1{2, 1{2u for r P td,m, s, tu. Similar, the computation of the self-energy,

Eq. (3.13), can be corrected. The Fock term is, in this regard, computed via

Σ̂F
k ”

ÿ

i

eikriV´iGi pτ “ β ´ 0`q , (D.12)

and the vertex contribution is regulated via

Σ̃k ”´
1

2pNβq2

ÿ

k1q

”

pU ` 2VqqU
kk1q
d ´ UUkk1q

d

ı

Gk1Gk`qGk1`q (D.13)

Σ̂k ”´
1

2N2

ÿ

k1,q

”

pU ` 2VqqU
kk1q
d ´ UUkk1q

d

ı

χkk1q (D.14)

χkk1q “

ˆ
dτ eiντGk1p´τqGk`qp´τqGk1`qpτq . (D.15)
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In App. E.1 details for a bosonic correlation function are provided. Moreover, the system is cou-

pled to external leads explicitly. In this regard the necessary terms are defined in App. E.2. [22]

Finally, a detailed derivation of the current-current correlation function is given in App. E.3

including [52] and excluding a coupling to external leads. In the context of the current-current

correlation function, the convenient formulas (linked to the f -sum rule) are denoted. [9]

E.1. Symmetry relations

The current-current correlation function, Eq. (5.7), for imaginary frequencies is a real function.

This results from the fact that the current operator j is a physical observable and, thus, it is

hermitian with j:q “ j´q. The complex conjugation of the expectation value appearing in

Eq. (5.7) can be transformed into the following expression for τ P p0, βq, via

xjqpτqj´qy
˚

J“0 “
1

Z
tr
 

e´βHeτHjqe
´τHj´q

(˚
“

1

Z
tr
 

jqe
´τHj´qe

τHe´βH
(

“
1

Z
tr
 

e´βHepβ´τqHjqe
´pβ´τqHj´q

(

“ xjqpβ ´ τqj´qyJ“0 . (E.1)

Shifting the integral by τ Ñ β´ τ and exploiting eiωnβ “ 1 for bosonic Matsubara frequencies,

leads to

χ˚
jj,q “

βˆ

0

dτ e´iωnτ xjqpβ ´ τqj´qyJ“0 “
χjj,q . (E.2)

Thus, correlation function, e.g. such as for a current-current response, defined for bosonic

Matsubara frequencies is real. Furthermore, χjj,q must be symmetric in its frequency argument

ωn, meaning χjj,pq,ωnq “ χjj,pq,´ωnq. Further properties on the real-frequency axis can be now

derived straightforwardly. With Eq. (C.9) one obtains

χjj,pq,ωnq “ ´

ˆ
dω

π

Imχjj,pq,ωq
iωn ´ ω

“

ˆ
dω

π

ωImχjj,pq,ωq
ω2
n ` ω

2
` i

ˆ
dω

π

ωnImχjj,pq,ωq
ω2
n ` ω

2

!
“0

. (E.3)
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Consequently the imaginary part of the correlation function χjj,pq,ωq has to be antisymmetric

in ω; hence, Imχjj,pq,ωq “ ´Imχjj,pq,´ωq. For the real part, it can be likewise concluded to

be symmetric in ω, with Reχjj,pq,ωq “ Reχjj,pq,´ωq. A further observation results from the

structure in Eq. (E.3). Restricting the integral only to the positive regime leads for ωn to

χjj,pq,ωnq “

8̂

0

dω

π

2ωImχjj,pq,ωq
ω2
n ` ω

2
, (E.4)

and specifically for ω0 to

χjj,pq,ω0q “

8̂

0

dω

π

2Imχjj,pq,ωq
ω

. (E.5)

The integrand of Eq. (E.4) declines at least with 1{ω2
n and peaks at the zeroth Matsubara

frequency, ω0. Consequently, Eq. (E.4) is a monotonic declining function with a maximum

at ω0. Excluding the trivial case, Imχjj,pq,ωq “ 0 for all ω, χjj,pq,ω0q ‰ 0 must be fulfilled.

This is in particular important to hold when couplings to the environments are included. As

derivations and computations are getting more complex by an inclusion of the environment,

the external system is treated often exemplarily and not in its full complexity. Hence, in the

final equations the analyticity, such as the monotonic declining behavior of χjj,pq,ωnq should be

explicitly verified.

E.2. Coupling to environment

The additional terms, describing the non-interacting environment, have to be included to the

Hamiltonian. In this respect the Hamiltonian is denoted in a matrix representation such that

the so-called projection method can be used. [22]

Each matrix element spans a subspace which is obtained by a specific projection to this

space. The projection operator to the system is denoted by PS and for the environment by

PE. As the subspaces are disjoint, the operators fulfill PS`PE “ 1 and the Hamiltonian reads

Htot “

«

HSS HSE

HES HEE

ff

(E.6)

HSS ” H “
ÿ

ijPS,σ

tijc
:

iσcjσ `
1

2

ÿ

ijPS,
σσ1

Vi´jniσnjσ1 (E.7)

HSE “ ´tL
ÿ

σ

c:SLσcLSσ ´ tR
ÿ

σ

c:SRσcRSσ (E.8)

HES “ ´tL
ÿ

σ

c:LSσcSLσ ´ tR
ÿ

σ

c:RSσcSRσ (E.9)
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HEE “
ÿ

ijPE,σ

tE,ijc
:

iσcjσ (E.10)

for E P tL,Ru. The whole system is considered in the grand canonical ensemble. Thus for

each lead, a chemical potential is introduced. In a first order approximation the potentials

of the leads are assumed to be the same and moreover equal to the chemical potential of the

system S. The reason is that the system of actual interest is relatively small compared to

the infinitely large leads. In order to see effects of the system at all, energy differences must

be really small among the three constituents. Besides, the leads are assumed to be identical.

Hence there is no differentiation among the hopping constants, tE “ tL “ tR.

The non-interacting one-particle Green’s function of the lead, can be obtained by an inversion

(cf. Eq. (3.12)); namely gEpνnq ” riνn ´HEEs
´1. A coupling of the two leads is only possible

via the system and requires the Green’s function at the interface S and E,

GSEpνnq “ GSSpνnqHSEgEpνnq . (E.11)

As a single connection among system and lead is assumed, the matrix multiplication with HSE

(or HES) gives a contribution of ´tE. Eq. (E.11) reads for both interfaces [52]

GSEpνnq “ ´tEGSSEpνnqgEpνnq (E.12)

GESpνnq “ ´tEgEpνnqGSESpνnq (E.13)

with the site SE which belongs to the system S that is connected to the lead E.

E.3. Derivation of current-current correlation function

For better readability the discrete subscript of the Matsubara frequencies is dropped in the

following. With the definition of the current-current correlation function, Eqs. (5.6) and (5.7),

and the respective use of the current operator, Eqs. (5.14) and (5.15), one obtains

χjj,pRS´SL,ωq “

ˆ β

0

dτ eiωτxjRSpτqjSLp0qy (E.14)

“´ t2E
ÿ

σσ1

ˆ β

0

dτ eiωτ
A”

c:RSσ1pτqcSRσ1pτq ´ c
:

SRσ1
pτqcRSσ1pτq

ı

¨

”

c:SLσcLSσ ´ c
:

LSσ
cSLσ

ıE

(E.15)

“´ t2E
ÿ

σσ1

ˆ β

0

dτ eiωτ lim
τ1,2Ñ0
τ3,4Ñτ

A”

cSRσ1pτ4qc
:

RSσ1
pτ3q ´ cRSσ1pτ4qc

:

SRσ1
pτ3q

ı

¨

”

cLSσpτ2qc
:

SLσ
pτ1q ´ cSLσpτ2qc

:

LSσ
pτ1q

ıE

(E.16)

“´ t2E
ÿ

σσ1

ˆ β

0

dτ eiωτ lim
τ1,2Ñ0
τ3,4Ñτ

A

c4σ1pτ4qc
:

3σ1pτ3qc2σpτ2qc
:

1σpτ1q

E

N1234 (E.17)



114 E. Additionals on correlation functions

with the mapping for the numbers 1–4 according to

N1234 ” pSL, LS, RS, SRq´pLS, SL, RS, SRq´pSL, LS, SR, RSq`pLS, SL, SR, RSq . (E.18)

For a general study of a current-current correlation function between sites a and b, the current

operator of Eq. (5.13) is used. The respective correlation function reads

χjj,pb´a,ωq “

ˆ β

0

dτ eiωτxjbpτqjap0qy (E.19)

“´ t2
ÿ

σσ1

ˆ β

0

dτ eiωτ
A”

c:bσ1pτqcpb`aαqσ1pτq ´ c
:

pb`αqσ1pτqcbσ1pτq
ı

¨

”

c:aσcpa`αqσ ´ c
:

pa`αqσcaσ

ıE

(E.20)

“´ t2
ÿ

σσ1

ˆ β

0

dτ eiωτ lim
τ1,2Ñ0
τ3,4Ñτ

A

c4σ1pτ4qc
:

3σ1pτ3qc2σpτ2qc
:

1σpτ1q

E

N1234 (E.21)

with

N1234 ”pa, a` α, b, b` αq ´ pa` α, a, b, b` αq ´ pa, a` α, b` α, bq

` pa` α, a, b` α, bq . (E.22)

Apart from the different hopping constants and the respective definition of N1234, Eq. (E.17)

and Eq. (E.21) are equivalent. The expectation value appearing in both equations will be

separated in the following in its one-particle contribution, the bubble, and its two-particle

contribution, the vertex. Moreover, the Fourier transform is evaluated. This results in

χjj,pf,ωq “´ t
2
fN1234

ÿ

σσ1

ˆ β

0

dτ eiωτ lim
τ1,2Ñ0
τ3,4Ñτ

”A

c4σ1pτ4qc
:

3σ1pτ3qc2σpτ2qc
:

1σpτ1q

Ec

´

A

c4σ1pτ4qc
:

1σpτ1q

EA

c2σpτ2qc
:

3σ1pτ3q

E

`

A

c2σpτ2qc
:

1σpτ1q

EA

c4σ1pτ4qc
:

3σ1pτ3q

Eı

(E.23)

“´ t2fN1234

ÿ

σσ1

ˆ β

0

dτ eiωτ lim
τ1,2Ñ0
τ3,4Ñτ

1

β4

ÿ

ν1..4

e´iν2τ2eiν1τ1e´iν4τ4eiν3τ3

¨

”A

c4σ1c
:

3σ1c2σc
:

1σ

Ec

´

A

c4σ1c
:

1σ

EA

c2σc
:

3σ1

E

`

A

c2σc
:

1σ

EA

c4σ1c
:

3σ1

Eı

(E.24)

“t2fN1234

«

1

β2

ÿ

νν1σσ1

ÿ

11213141

F νν1ω
σσ1 p1

121, 3141q G111pνqG212pν ` ωqG331pν
1
` ωqG414pν

1
q

`
2

β

ÿ

ν

G32pν ` ωqG14pνq ´ δω0
4

β

ÿ

νν1

G34pν
1
qG12pνq

ff

(E.25)

with either pRS ´ SLq or pb ´ aq for the respective external fields f P tC,Eu. The relation,

Eqs. (E.12) and (E.13), for the Green’s function at the interface is used and all the combinations

of N1234 are evaluated. This cancels the Hartree contribution. The remaining contributions to
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the current-current correlation function read

χjj,pRS´SL,ωq “
2

β2

ÿ

νν1

γν
1ω
E γνωE

ÿ

1234

GSL1pνqGSR3pν
1
` ωqF νν1ω

d p12, 34qG4SRpν
1
qG2SLpν ` ωq

`
2

β

ÿ

ν

rγνωE s
2GSRSLpν ` ωqGSLSRpνq (E.26)

with the couplings of the system to the lead defined as

γνωE “ tE

”

gEpν ` ωq ´ gEpνq
ı

. (E.27)

In k space, the final function, Eq. (E.26), is of the form

χE,q ” χjj,q “
2

pNβq2

ÿ

kk1

γν
1ω
E γνωE GkGq`kF

kk1q
d Gq`k1Gk1 `

2

Nβ

ÿ

k

rγνωE s
2Gq`kGk . (E.28)

For the current-current correlation function within the system, a similar expression is obtained.

The definition of the Fourier transform, Eqs. (A.3) and (A.4), is utilized. This results in

χjj,pb´a,ωq “´ t
2
ÿ

σσ1

ˆ β

0

dτ eiωτ lim
τ1,2Ñ0
τ3,4Ñτ

1

β4

ÿ

ν1..4

e´iν2τ2eiν1τ1e´iν4τ4eiν3τ3
1

N4

ÿ

k1..4

e´ixbpk1´k2q

¨ e´ixapk3´k4q
”

eiaαk2eiaαk4 ´ e´iaαk1eiaαk4 ´ eiaαk2e´iaαk3 ` e´iaαk1e´iaαk3

ı

¨

”A

c4σ1c
:

3σ1c2σc
:

1σ

Ec

´

A

c4σ1c
:

1σ

EA

c2σc
:

3σ1

E

`

A

c2σc
:

1σ

EA

c4σ1c
:

3σ1

Eı

(E.29)

“
2t2

β2N3

ÿ

kk1q

eiqpxb´xaq
”

eiaαpk`k
1`qq

´ e´iaαpk´k
1q
´ eiaαpk´k

1q
` e´iaαpk`k

1`qq
ı

¨

”

GkGq`kF
kk1q
d Gq`k1Gk1 `Nβδkk1G kGq`k ´ 2Nβδq0GkGk1

ı

(E.30)

“
2t2

β2N3

ÿ

kk1q

eiqpxb´xaq
”

eiaαpk`
q
2 q ´ e´iaαpk`

q
2 q
ı”

eiaαpk
1`

q
2 q ´ e´iaαpk

1`
q
2 q
ı

¨

”

GkGq`kF
kk1q
d Gq`k1Gk1 `Nβδkk1 GkGq`k ´ 2Nβδq0GkGk1

ı

(E.31)

“´
8t2

β2N3

ÿ

kk1q

eiqpxb´xaq sin
”

aα

´

k`
q

2

¯ı

sin
”

aα

´

k1 `
q

2

¯ı

¨

”

GkGq`kF
kk1q
d Gq`k1Gk1 `Nβδkk1GkGq`k

ı

. (E.32)

In k space, the current-current correlation function reads

χP,q ” χjj,q “´
2

pNβq2

ÿ

kk1

γ
kq

2
P γ

k1 q
2

P GkGq`k

”

F kk1q
d Gq`k1Gk1 `Nβδkk1

ı

(E.33)

with the coupling defined as

γkqP “ 2t sin raαpk` qqs ” Bαεk`q . (E.34)
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The label P refers to the Peierls approximation which is assumed.

E.4. f -sum rule relations

The relation of Eq. (5.31) is derived. [9] Starting point is the continuity equation for charge,

in k space by use of the Fourier transform, Eqs. (A.1) and (A.2). Furthermore the current

is assumed as j “ jax in direction of the electric field E. Therewith, the continuity equation

reads

´ωnq ` qxjq “ 0 . (E.35)

For a translational invariant correlation function, Eq. (5.3) in k space equals

χBA,q “ xBqA´qy , (E.36)

and thus, the continuity equation, Eq. (E.35), for the respective correlation functions is

χjj,q
ω

“
ω

q2
x

χnn,q (E.37)

ˆ
dω

π

χjj,q
ω

“
1

q2
x

ˆ
dω

π
ωχnn,q “

i2

q2
x

Bt

„ˆ
dω

2π
e´iωtχnn,q



t“0

“
i2

q2
x

Btχnn,pq,t“0q (E.38)

“
i2

q2
x

A

 

Btnpq,tq, np´q,0q
(

´

E

t“0
. (E.39)

Evaluating the commutators with the use of the EoM, Eq. (3.3), for real times results in

ˆ
dω

π

χjj,q
ω

“
2i

q2
xN

ÿ

k,σ

rεk`q ` εk´q ´ 2εks
A

c:kσckσ

E

(E.40)

ˆ
dω

π

χjj,pqÑ0,ωq

ω
“

4

Nβ

ÿ

k

B2εk
Bk2

x

Gk . (E.41)
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[64] D. Rost, F. Assaad, and N. Blümer. Quasi-continuous-time impurity solver for the dy-

namical mean-field theory with linear scaling in the inverse temperature. Phys. Rev. E,

87:053305, May 2013. doi: 10.1103/PhysRevE.87.053305.

[65] A. N. Rubtsov, V. V. Savkin, and A. I. Lichtenstein. Continuous-time quantum Monte

Carlo method for fermions. Phys. Rev. B, 72:035122, Jul 2005. doi: 10.1103/PhysRevB.

72.035122.

[66] S. Sakai, Y. Motome, and M. Imada. Evolution of electronic structure of doped Mott

insulators: Reconstruction of poles and zeros of Green’s function. Phys. Rev. Lett., 102:

056404, Feb 2009. doi: 10.1103/PhysRevLett.102.056404.

[67] S. Sakai, G. Sangiovanni, M. Civelli, Y. Motome, K. Held, and M. Imada. Cluster-size

dependence in cellular dynamical mean-field theory. Phys. Rev. B, 85:035102, Jan 2012.

doi: 10.1103/PhysRevB.85.035102.

[68] S. Sakai, S. Blanc, M. Civelli, Y. Gallais, M. Cazayous, M.-A. Méasson, J. S. Wen, Z. J. Xu,
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Padé approximants. J. Low Temp. Phys., 29(3):179–192, 1977. doi: 10.1007/BF00655090.



124 Bibliography
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