
BIM and Blockchain
A Decentralized Solution for a Change

Management Workflow in Construction Projects

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Media and Human-Centered Computing

eingereicht von

David Peherstorfer, BSc
Matrikelnummer 00929021

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.-Prof. Mag. Dr. Manuel Wimmer
Mitwirkung: Univ.-Ass. Dipl.-Ing. Galina Paskaleva

Wien, 10. April 2019
David Peherstorfer Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

BIM and Blockchain
A Decentralized Solution for a Change

Management Workflow in Construction Projects

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Media and Human-Centered Computing

by

David Peherstorfer, BSc
Registration Number 00929021

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.-Prof. Mag. Dr. Manuel Wimmer
Assistance: Univ.-Ass. Dipl.-Ing. Galina Paskaleva

Vienna, 10th April, 2019
David Peherstorfer Manuel Wimmer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

David Peherstorfer, BSc
1100 Wien, Österreich

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 10. April 2019
David Peherstorfer

v

Danksagung

Ich möchte besonders meinen BetreuerInnen Galina Paskaleva und Manuel Wimmer
danken, die mich während dem Verfassen dieser Diplomarbeit unterstützt haben. Des
weiteren möchte ich Juan Franco vom Nethereum Projekt für die technische Unterstützung
bei der Arbeit mit der C# Ethereum Library danken.

Zu guter Letzt gilt mein Dank meinen Eltern Cornelia und Hans, meiner Freundin
Kristina, meinem Bruder Tobias und meinen FreundInnen, die stets an mich geglaubt
und mich unterstützt haben.

vii

Acknowledgements

I would like to thank my advisors Galina Paskaleva and Manuel Wimmer for supporting
me while writing this diploma thesis. Furthermore, I want to thank Juan Franco from
the Nethereum project for the technical support when working with the C# Ethereum
library.

Last but not least I want to thank my parents Cornelia and Hans, my girlfriend Kristina,
my brother Tobias and my friends, who always believed in me and supported me.

ix

Kurzfassung

Durch den Digitalisierungsgap in der Baubranche gibt es ein großes Potential zur Prozess-
optimierung. Neue digitale Technologien, wie das Building Information Modelling (BIM),
werden immer mehr von den Stakeholdern in diesem Bereich angenommen. Die Blockchain
auf der anderen Seite ist eine sehr neue und innovative Technologiedomäne, welche in
den letzten Jahren extrem gewachsen ist und in der momentan die passenden Use Cases
für die neue Technologie gesucht werden. Im Speziellen das noch neuere Untergebiet der
Smart Contract Entwicklung hat die Vision von vielen neuen Anwendungen beflügelt,
wobei nicht immer klar ist, ob diese so wie in der Vorstellung umgesetzt werden können,
beziehungsweise ob dabei überhaupt ein Bedarf für eine dezentrale Lösung besteht. Bei
einem Bauprojekt müssen Änderungen in einem BIM Modell immer vom passenden
Stakeholder freigegeben werden. Deshalb haben wir in dieser Arbeit BIM Modelle, welche
in einem Git Repository verwaltet werden, mit einem Freigabeverwaltungsworkflow,
welcher als ein Smart Contract auf der Ethereum Blockchain umgesetzt wurde, kombi-
niert. Dadurch soll der Workflow transparent, nachvollziehbar und dessen Ergebniss im
Nachhinein unveränderlich werden. Das Ziel dieser Arbeit ist es einen Smart Contract
Prototypen zu erstellen und diesen mit anderen (off-chain) Lösungen im Bezug auf Kosten
und Sicherheit zu vergleichen.

xi

Abstract

There is a big potential for process optimizations, due to the digitalization gap in the
construction business. New digital technologies, as the Building Information Modelling
(BIM), are increasingly being adapted by the stakeholders in this area. On the other hand,
blockchain is a very new and innovative technology domain which has grown immensely
in the last several years, and where people are now trying to find the right use-cases.
Especially, the even newer field of smart contract development has opened the door for
a large amount of possible applications, where it is neither clear if these can actually
be implemented as envisioned, nor if there is even a need for a decentralized solution
at all. In a construction project, changes on BIM models are only to be approved by
the appropriate stakeholder. Therefore, we have combined the BIM models, which are
stored using a Git repository, with a release management workflow, which is realised as a
smart contract on the Ethereum blockchain.This enables the workflow to be transparent,
traceable and its results to be immutable. The goal of this work is to create a prototype
and compare it to other (off-chain) solutions and to evaluate if an application of a
combination of BIM and blockchain yields an advantage in terms of costs and security.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Context . 1
1.2 Problem Statement . 2
1.3 Solution and Methodological Approach 4
1.4 Structure of this Work . 5

2 Preliminaries 7
2.1 Building Information Modeling . 7
2.2 Introduction to Blockchains . 8
2.3 A Combination of a smart contract and BIM 14

3 State of the Art 15
3.1 BIM . 15
3.2 Blockchain . 16

4 Realization 21
4.1 Requirements . 21
4.2 Operating Principles of the Prototype 22
4.3 Architecture . 23
4.4 SIMULTAN Software Tool . 24
4.5 Git . 25
4.6 Smart Contract . 26
4.7 The Frontend . 33

5 Evaluation 39
5.1 Goal . 40
5.2 Questions and Metrics . 40
5.3 Evaluation Plan . 41

xv

5.4 Evaluation Results . 43
5.5 Evaluation Summary . 58
5.6 Threats to Validity . 61

6 Summary and Future Work 63

List of Figures 67

List of Tables 69

Bibliography 71

CHAPTER 1
Introduction

1.1 Context
A McKinsey report from 2017 shows that the construction sector is one of the world
economies’ largest industries [BWM+17]. Nevertheless, compared to other domains,
it is lacking in terms of productivity and innovation. According to the McKinsey
report, it is also one of the least digitized industry sectors, which means there is a huge
digitalization gap that can be filled. This could offer new profitable business opportunities
for construction companies.
Moreover, another problem that this domain is facing is the prevailing over-regulation
which binds stakeholders of construction projects to very strict laws. They have to
abide by local laws and the project managers have to hold every one of the stakeholders
accountable for the fulfillment of their commitments. This accountability process is often
realised using paper intensive workflows and traditional contracts.

In a construction project there are multiple stakeholders who occupy different roles.
There is the role of the construction developer, who represents the client and the
construction manager, who oversees the construction site on behalf of the building’s
designers and communicates with the construction developer, building authorities and
other external parties. The construction manager is an important liaison for all workers
on the construction site. Additionally, depending on the type of construction project,
there are architects, statisticians, building authorities, various contractors, etc. All these
stakeholders have a different function in and perspective of the project, and as a result,
there needs to be a traceable and well-documented agreements on the current state and
the target state of a project, often on a daily basis.

There is a multitude of documents used in construction projects. These documents range
from contracts over construction diaries to models and plans. Additionally, photo and
video documentation is used to record the actual state and provide a comparison to the

1

1. Introduction

target state. The construction manager is in charge of the creation and collection of
all relevant documents. These documents then need to be signed by the construction
developer, who commisioned the project. It is very important that every contract partner
receives the needed documentation, so that everyone involved has a thorough perspective
on what has already been done and what is still missing. In case of a dispute the court
consults these as a base of their decision. Those documents can be used as evidence for
construction delays or unscheduled additional costs, which often happen in these projects
[Kva18].
Documentation is still often created on paper and only later digitized to make the storage
easier and to facilitate the information search. Additionally, there are various highly
specialised software products used to create and handle the documentation. These
are used in all areas of a construction project, from the management of 3d models to
accounting and budgetary estimations. This type of software has a very narrow view of
the project, and the transfer of information between different products can prove very
cumbersome. Due to this problem, the construction industry has developed a solution
for a unified data management approach, which can be applied throughout the whole
project by different stakeholders.

BIM (Building Information Modeling) is slowly being adopted in construction projects
and is set out to be the industry standard of the future. This progress in adoption is
vastly driven by requirements of using BIM models in public construction projects. BIM
models are a multidimensional digital building information representation, on which
multiple users are able to work collaboratively. Since everyone has to be held accountable
for adaptations on such a model, the changes made have to be traced back to their
authors. This work describes a solution for a change management system where the
committed adaptations of the model and their respective approval are not only securely
stored, but also fulfill the properties of traceability and immutability. To achieve these
features we have implemented the change management system in a smart contract on the
Ethereum blockchain. Blockchains with their combination of hash trees and distributed
ledger Technology are inherently created to be decentralized. Once the information has
been included into a block, it is completely traceable and immutable. Furthermore, we
are going to present and evaluate a prototype for our solution.

In this chapter we are first going to present our use case, then give an introduction to
our methodology and finally describe the structure of this work.

1.2 Problem Statement
In this section we will model our use case and describe the resulting requirements for
our solution. The described use case is a simplified version of a project’s building model
change management.

We have a construction project, which has the goal to construct a new building for a
private company with one construction manager who is responsible for the whole project.
The construction project has multiple stakeholders who are working in different domains.

2

1.2. Problem Statement

There are not only technical but also legal and financial specialists involved. Additionally
to the construction manager, the project has a developer, an architect, a person from the
building authorities and a contractor as stakeholders. The developer makes a request
to the project manager to make a change to the building’s roof. As a next step, the
construction manager refers the request to the architect who implements the changes
it into his plans. Then the updated plans need to be checked and approved by the
construction manager, the owner, the building authorities and the contractor:

• The project manager has to check if the changes made fit into the budget.

• The developer has to check if his request has been fulfilled.

• The building authorities need to check if the changes of the roof are compliant to
local law.

• And the contractor has to check if the changes can be implemented by her workforce.

Often in construction projects the architect sends the updated plan to the construction
manager who forwards the plans to the other stakeholders. It’s still a common practice
that these print the plans, sign them and send them back to the construction manager
via mail. Once he receives all the signatures on the plans he can instruct the contractors
to start implementing the changes. If one party does not approve the plan a new version
has to be proposed and the process repeats itself. This workflow is unnecessarily time
consuming because of the non digital way of information transportation and the multiple
iterations of the process. There is also no single source of truth because there could
be multiple versions of a plan existing at the same time, which could lead to costly
confusions. In the current process, the signatures on printed plans can be used for holding
stakeholders accountable. If something does not work as expected the construction
manager can use the signed plans in arbitration or in court, if it comes to a lawsuit.

We propose the following combination of multiple standards and technologies and a new
process for change management as a new solution to this use case. To ensure there is
only a single source of truth we propose to use the Building Information Modeling (BIM)
standard for construction communication which will be hosted on a Git repository. A
BIM model not only provides a means to save 3D information but additional information
about a construction project, such as time estimations and costs, as well. The Git
repository will ensure that all stakeholders have reliable access to the current version of
the BIM model and will enable them to commit new changes to it.
Furthermore, we propose a change management workflow that ensures that the stake-
holders can be held accountable for their approval of a change. Based on the contracts
information the construction manager will be able to name responsible stakeholders
for each change, so that they can give their approval to it. The Ethereum network,
with it’s ability to process smart contracts, will provide a means to implement this
workflow. It provides immutability and traceability properties by using a distributed
ledgers technology and digital signatures.

3

1. Introduction

This change management process can not only be used for construction projects but also
in other domains, such as, e.g., software development. However, we will only focus on
our described use case due to the limited scope of this work.

1.3 Solution and Methodological Approach
The goal of our work is to create the first working experimental prototype, the ChangeM-
anager, and to compare it to a completely on-chain and to a completely off-chain solution.
The usage of experimental prototyping aims at finding the best solution for a software
system as described by Kappel and Nierstrasz [KN89].
The prototype is going to be a solution that fulfills the basic requirements, which can
be found in section 4.1 and will not yet be the perfect solution for our use case but a
starting point. The goal is to implement a system which can be used for our evaluation
as a point of reference. Possible improvements on the prototype and further findings will
be discussed in chapter 6.
For the subsequent evaluation we will use the GQM (Goal, Question, Metric) process
[CR94] and apply it to our ChangeManager prototype and two other solutions. For this
we will define different goals, which the solutions should fulfill, e.g. "The solution needs
to be fast". Then we will find questions to test for this goal, e.g. "How fast can you store
files with this solution?". As the third and last step, we will develop metrics to answer
the questions. A metric for our example could be, "How long does it take to store a 5
GB file with this solution?". After the setup of the GQM framework, we will use it to
evaluate the different change management solutions which will consist of the following:

• The first solution is a Git only approach, where no blockchain technology will be
involved.

• The second solution is our ChangeManager prototype which we will describe in
detail in chapter 4.

• And the last solution is uses only the Ethereum Blockchain as the underlying
technology and completely disregards Git as a means to store the models.

Due to the limited scope of this work, we discuss the first and the last solution only on a
theoretical basis. Based on this evaluation, we will present a comparison of the described
approaches.

4

1.4. Structure of this Work

1.4 Structure of this Work
In chapter 3 we are going to give an overview on the current research done in the areas
of BIM, blockchain, smart contracts and the combination thereof. Then, in chapter 4
we are going to describe our ChangeManager prototype and its architecture and the
reasons why we have chosen this hybrid approach. We will also give an introduction into
the utilised technologies, such as smart contracts, Git and BIM. In chapter 5 we will
present an evaluation, where we describe the Goal, Question, Metrics approach, define
our evaluation plan and evaluate a Git only, our hybrid (blockchain combined with Git)
and a blockchain only approach using the previously defined metrics. Furthermore, we
will discuss possible threats to the validity of the evaluation and its final results. In
conclusion, in chapter 6 we will discuss our results and give an outlook into further
research, which can be done in the area of the combination of BIM and blockchain.

5

CHAPTER 2
Preliminaries

2.1 Building Information Modeling
BIM is a digital process with the potential to deeply transform the construction business
and its workflows. It provides an integrated approach for the management and the
creation of digital representations of buildings, as it can be used throughout all phases of
the lifecycle of a building, from the planning to the maintenance phase. BIM also supports
the stakeholders of the project by facilitating the exchange and the interoperability of
digital building information. A BIM model not only contains a 3D (width, height and
depth) representation of the building but also provides much information including time
and costs. Project stakeholders, such as architects, engineers, main contractors, building
operators, construction managers, etc., can use this virtual representation in each step of
the project and adapt the model for the needs of their domain. When fully implemented,
BIM is a huge improvement in knowledge management, since there is only one single
source of truth to which all stakeholders can refer to.

The idea of having a central model for construction projects originated in the 1970s
[EDG+74]. ArchiCAD, which was launched in 1987, is considered the first commercial
BIM product. Autodesk published a whitepaper in 2002 on the topic of BIM, which put
a lot of software vendors onto the track of digital building models. This was also the year
when the term BIM started to become part of the standard nomenclature [Aut02][KP12].

BIM can be both a data exchange format and a communications standard. However, in
its most fully realised form, it is a process. There are mainly proprietary file formats
developed by various software companies, such as Autodesk. Proprietary file formats
have the disadvantage of only being open- and editable in the software for which they
were initially been developed for, because the vendor in many cases does not disclose how
the files are structured internally. However, there are also non-proprietary file formats,
which are neutral and developed by international consortiums. Most commonly used

7

2. Preliminaries

is the Industry Foundation Class (IFC) specification, which is a standard for openBIM.
It has been developed by buildingSMART1, which is a non-governmental organization.
The IFC file format is vendor-neutral and can even be imported or exported by multiple
proprietary tools. Its intended us is for transfering data from a proprietary software to
an open source software and back.

SIMULTAN is a research project involving various research partners from the TU Wien.
It "addresses questions about the city of the future with a view to planning sustainable,
liveable cities of tomorrow. The goal is to produce a workable tool, in the form of software
to support the planning and decision-making process, which will allow experts from
various disciplines to jointly design, optimise, build and operate building complexes."2 In
the context of this project, a proof of concept for a BIM data model and an interactive
tool to be used by an interdisciplinary team has been developed [BBF+18]. We use this
tool as a reference for our use case and also for the development of our prototype, because
it has been tested on real and very well documented construction projects, which are
already in the construction phase. We will give a further overview of the software in
chapter 4.

One concern that is not adequately addressed in BIM models is the accountability of all
stakeholders who can make changes to the model. The issue of handling permissions,
who is allowed to publish what, and what changes get accepted, is what we address
in this work. BIM models in combination with a change management system is an
integrated process in our prototype. The change management part is implemented on
the blockchain as a smart contract. In the next section we give an introduction into the
area of blockchains.

2.2 Introduction to Blockchains
In 2008 Satoshi Nakamoto published a paper called “Bitcoin: A Peer-to-Peer Electronic
Cash System” wherein he proposed a new way to securely handle monetary transactions
between untrusted participants through the combination of multiple already known
and before only separately used technologies [Nak08]. This proved to be the theoretical
framework for the upcoming cryptocurrencies, which started off with the first one, Bitcoin.
The open source software responsible for the creation of this first cryptocurrency, is
nowadays called Bitcoin Core and has generated the Genesis Block1 and therefore the
first 50 Bitcoins on the 3rd of January 2009.

Blockchain data structures had already been used before, for example in Git, the
widely used version control system. The real innovation was the Proof of Work (PoW)
mining/consensus algorithm, which was invented by Nakamoto and ensures that the
agreed upon state of the data is backed by at least 51% of the mining nodes. It is used for
the creation of new blocks for the blockchain and determines which blocks get accepted.

1http://www.buildingsmart-tech.org/specifications/ifc-overview
2https://simlab.tuwien.ac.at/simultan/

8

2.2. Introduction to Blockchains

These blockchains are presented with the problem that, in theory, everyone can join
a network and launch multiple nodes on the network. Therefore, a one vote per node
system would not work as a consensus finding mechanism in public blockchains with
a permission-less system. The idea behind the algorithm is that nodes need to spend
something upfront, so that it is in their interest not to corrupt the network. PoW lets
the mining nodes solve a computationally intensive puzzle, which can be easily verified
once solved. This computation is costly in terms of energy, but the miners get rewarded
if their solution gets accepted into the blockchain.

2.2.1 Decentralization

For our use case, it is important to consider the feature of decentralization not only
when it comes to the storage of data but also to voting on changes. A centralized system
is one where the control of the data lies in the hands of a single entity. If this entity
turns malicious, not only the data integrity but also the process built on top of the
data get compromised. In a decentralized system, multiple entities share the power to
control data. In public blockchain systems those are the mining nodes. Centralized
versus decentralized systems can be compared to authocratic versus democratic political
systems. In a centralized system there are only few entities who are in control of the
data, whereas decentralized systems use a consensus algorithm (comparable to voting in
a democracy) to agree on a valid state of the data.

The advantages of decentralized systems are:

• No single point of failure

• Power over the state is distributed

• Prevents collusions

Since the data storage on a decentralized system is distributed over all nodes in a network,
there does not exist one single point of failure. If a node does not work correctly anymore
the other nodes can maintain the network and the availability of the data. This is a big
advantage in comparison to a centralized database, where, in the worst case only one
node is holding the data. If this node gets corrupted the data is compromised without
any possibility for recovery.

The second advantage is the distribution of power in a perfectly centralized system. One
entity can not arbitrarily change the state of the data, since consensus always needs to be
found before a state change gets accepted. In additon, the more spread out the entities
which control the data are the more difficult it would be for them to get together and
collude against other participants in the network. In a centralized system, it is easier to
collude with the controling entity because, by definition, you have to corrupt less entities
to get control over the data.

9

2. Preliminaries

Public blockchains, such as Bitcoin, are decentralized systems where the mining nodes
are spread throughout the world, but there are also different solutions for enterprises,
which provide consortium and private blockchains. They provide a system where mining
nodes need a permission for participation and for the ability to create new blocks, which
restricts the number of participants. This configuration can be seen as a database with
multiple administrators where each change has to be accepted by a certain percentage of
the administrators. This is a more centralized version compared to public blockchains,
which means that collusions between nodes become easier to realize. For example, in
a construction project, the construction manager could allow each stakeholder to have
one permissioned node while also keeping one herself. If the number of stakeholders in
the project is low, it is relatively easy for them to work together and make changes to
the database, which the other stakeholders do not agree too. Using a public blockchain,
on the other hand, provides a tamper-proof means by which data can be stored. It also
ensures immutability. The stakeholders will not be able to tamper with data that has
already been included and confirmed on the blockchain. For this reason we focus our
research on public blockchains only. A comparison to consortium and private blockchains
is out of the scope of this work.

The disadvantage that is inherent in a decentralized system is the performance. When
multiple entities need to verify a state the system becomes slower in comparison to a
single entity which verifies data in a centralized setup. This is a trade off which prevents
blockchains from scaling to the performance of centralized systems. There are already
many different researcher groups working to solve this issue [Kar16][KKC18][CMVM18].

In chapter 5 and in the following chapters we will not only evaluate and discuss our
prototype’s performance but also its political aspects. We also describe possible scenarios
of collusion.

2.2.2 Ethereum

Bitcoin was designed not only for simple transactions from one account to another, but also
includes a simple scripting functionality, which was inspired by the programming language
Forth and is simply called “Script”3. It is stack-based, has support for cryptography,
but it does not support loops and, therefore, it cannot be considered a Turing-complete
programming language.

In 2013, Vitalik Buterin, an active member of the Bitcoin community, described his
research concerning a smart contract architecture and the Ethereum protocol [But13].
Later on, he started to work together with Gavin Wood, who developed the concept of
the Ethereum Virtual Machine (EVM) on the Ethereum platform [Woo14]. This platform
supports smart contracts and allows the creation of decentralized applications (DApps),
which can be seen as an alternative architecture to the common client-server architecture,
which is used by current web applications. Traditionally, local apps communicate with
a centralized server to handle data and, consequently, this server has to be trusted.

3https://en.bitcoin.it/wiki/Script

10

2.2. Introduction to Blockchains

In decentralized apps, the actual smart contract code runs on every single node that
is connected to the Ethereum platform. Theoretically, everyone with a computer can
participate in this network and contribute to the decentralized structure by running a
mining node. Through this smart contract platform, a multitude of applications can be
developed and run on the blockchain. Examples for this could be token systems, financial
derivatives, identity and reputation systems, decentralized file storage, decentralized
autonomous organizations and more [But13].

2.2.3 Smart Contracts

As already described, the Ethereum ecosystem provides a pseudo Turing-complete smart
contract environment. This is one of the big features which separate it from Bitcoin,
the pioneer in the blockchain domain. Another difference is the account system, in
comparison to Bitcoins UTXO (Unspent Transaction Output) system, particularly when
it comes to state and transactions.

On the Ethereum network, users can have access to accounts that can hold funds of ether,
which is the main currency used on the Ethereum blockchain. Every valid public-private
key pair can be seen as an account. The the public key is used like an address, where the
funds are stored, and the private key as the PIN code to unlock the funds in this account.
Users can create a private key without having access to the Ethereum network, or even a
connection to the internet, by means of cryptography. Having only the private key, it is
always possible to get the public key of the account, but not vice versa. In other words,
the private key a user generates and plans to use is her identity. If she looses this key, or
the key gets compromised, the whole account and her identity is lost or compromised.

Furthermore, on Ethereum there are two types of accounts 4:

1. Externally owned account, which:

• has an ether balance
• can send transactions (ether transfer or trigger contract code)
• is controlled by private keys
• has no associated code

2. Contract account, which:

• has an ether balance
• has associated code
• code execution is triggered by transactions or messages (comparable to function

calls) received from other contracts
• can perform operations of arbitrary complexity

4http://ethdocs.org/en/latest/contracts-and-transactions/account-types-gas-and-transactions.html

11

2. Preliminaries

• can manipulate its own persistent storage, i.e., can have its own permanent
state

• can call other contracts through transactions or messages

Smart contracts are, at the moment, mainly written in Solidity5, a language similar
to JavaScript, which compiles down to EVM bytecode. EVM is the Ethereum Virtual
Machine, which runs on every full Ethereum node and executes the bytecode. There are
also other high level programming languages available, e.g., Vyper6 or Bamboo7, which
also compile down to EVM bytecode, but are not as commonly used right now, which is
the reason why we have implemented our prototype using Solidity.

A mining node is an Ethereum client which downloads and verifies the blockchain and
mines (creates, verifies and appends) new blocks. Examples for Ethereum clients are
geth8 or parity9. These nodes mine new blocks because they are rewarded for doing so
with the transaction fees and a mining reward, which are both included into the mined
blocks.
When a developer wants to deploy a smart contract the compiled code has to be put
into a transaction and sent to the Ethereum network. When the block, in which the
transaction has been included, gets added to the blockchain, the smart contract is live,
which means that it is waiting at an address for users to start interacting with it by
sending transactions or messages to its address. When a function gets called, this function
will run on every mining node on the network, which means that every mining node
verifies if the function call is included into the block correctly, and if the state change
that it induces is valid. On the one hand, this creates the desirable decentralized security,
which blockchain technologies are known and used for, but, on the other hand, this also
produces a huge overhead which results in a worse performance compared to a traditional
client server architecture.

The big advantage of a smart contract on a blockchain is the property of immutability.
Once it is deployed to a certain address on the network, it stays there and cannot be
changed. A normal computer program on a server can be changed by whoever has
administrative access to the server. In contrast, smart contracts provide a secure way to
make logic available that cannot be altered once it is set up. There are some ways to
deploy bug fixes, which we will discuss in chapter 5, but every change is always public
and traceable.

2.2.4 The Concept of Gas

To prevent system abuse by a malicious actor who wants to run a Denial of Service
attack on the network through spamming the network with a multitude of transactions

5https://Github.com/ethereum/solidity
6https://Github.com/ethereum/vyper
7https://Github.com/pirapira/bamboo
8https://Github.com/ethereum/go-ethereum
9https://Github.com/paritytech/parity-ethereum

12

2.2. Introduction to Blockchains

the concept of gas has been developed and implemented 10. Standard transactions on
Ethereum are used to send ether from one account to another. A transaction costs 21000
gas and the user has to set a gas price in ether for it. Similar to this concept, every EVM
instruction, which can be used in smart contracts, has its gas cost. The exact values
can be found in the Ethereum Yellow Paper [Woo14]. Additionally, every block that
gets mined has a gas limit, which restricts the total amount of gas that can be included
into one block, and, therefore sets a limit on the amount of transactions in one block.
This limit is currently set to 8000000 11. If a block is successfully mined, all the gas
included by the transactions in it goes to the miner who has mined it. The concept of
gas prevents the halting-problem, which normally goes along with Turing-completeness
[Wan17]. Through the system of gas the EVM bytecode can actually be defined as
"pseudo Turing-complete", because it can not fully simulate a Turing machine. It will
stop a function call as soon as it runs out of gas. A transaction can not even be included
into a block, if the gas limit for a transaction is set to high. For this reason, an endlessly
running loop is not possible on the EVM.

If a user wants to run a function on a smart contract, he has to know the address where
the contract was deployed and determine a gas limit (maximum amount of gas spent
on this transaction) and a gas price (conversion rate to ether). In the next step, the
user signs his transaction and sends it to the Ethereum network, where it goes into
the mempool. The miners now collect the transactions with the biggest reward in gas
attached to them and put them into a new block, which they start to mine. This means
the higher the gas fee on a transaction the quicker it gets included into a block. If a
block has been successfully mined, the gas goes to the miner. Since it is not always
obvious how much gas a function call is going to consume, it can happen that the user
who sent the transaction has set the gas limit too low and the function is not able to
finish all included instructions. In this case, the state of the function is completely rolled
back to the beginning state, but the miner gets to keep the gas. Therefore, it is very
important to, on the one hand, develop the smart contract to consume as little gas as
possible and, on the other hand, to set the gas limits as high enough for the function call
to complete. If a user has set the gas limit too high, the leftover gas is just returned to
his account. ETH Gas Station is a service to calculate a reasonable gas price before one
sends a transaction. It allows users to select an average confirmation time and get the
approximate gas price that has to be set in order to get the transaction included into a
block in this time. Furthermore, a user needs to know how much gas a function on a
smart contract consumes. However, depending on the application, the logic of the gas
estimation is often automated, so that he does not need to concern himself with this
anymore.

Gas costs also play an important role for the evaluation in chapter 5, where we take a
closer look at the gas costs of our prototype.

10https://Github.com/ethereum/wiki/wiki/Design-Rationale#gas-and-fees
11https://medium.com/@piyopiyo/how-to-get-ethereum-block-gas-limit-eba2c8f32ce

13

2. Preliminaries

2.3 A Combination of a smart contract and BIM
Nowadays, when BIM models are used in a construction project the approval of a plan is
often handled using paper. A construction manager sends the plan to the responsible
stakeholder, who prints it in order to sign and approve it, and then sends it back. This
workflow is not only slow, but also costly. For this reason we want to combine the BIM
process with the smart contract technology of the Ethereum platform. Every stakeholder
has access to the whole BIM model to view and edit at all times, and will be able to give
her approval to any changes through the on-chain change management process with less
delay and less cost.

In this work we present a prototype, the ChangeManager, which uses a smart contract on
Ethereum and a Git repository as the basis for a change management system. The smart
contract, called ChangeManagerContract, ensures the traceability and immutability of
the stakeholders approval, and can be used to hold them accountable for their decision
to approve or reject a change. The Git repository is used for storing the BIM files and as
a system enabling their controlled change through new commits. The exact functionality
and the reasons for the choice of this hybrid approach , consisting of a smart contract
and an off-chain Git repository, is explained further in chapter 4.

14

CHAPTER 3
State of the Art

Blockchain technology and, especially smart contracts, is a relatively new area of research
and, therefore, papers regarding this topic are still quite rare, compared to other topics.
In addition, in the domain of blockchains, there is a strong bias towards Bitcoin. There
was a systematic study in 2016, which showed that out of 41 primary papers from
a scientific database 80% focused on the Bitcoin blockchain and only 20% on other
blockchain applications [YHKC+16].

3.1 BIM
On the topic of the combination with BIM, we found some informal blog articles1,2,
which give a broad outlook on the possibility of using smart contracts for construction
projects. They describe a visions of securely storing contract documents in a construction
project on the blockchain to ensure transparency, accountability and traceability, and to
avoid traditional contractual conflicts.

The french startup Bimchain.io announced on their website3 that they are currently
in proof of concept trials for a process, which also combines 3D digital modelling
and the formal and legally binding paper-based process [Cou18]. They are currently
running a beta program and are planning on releasing a software product based on
the blockchain and BIM models in 2019. This should include features such as a digital
history of commitments, an electronic signature system and an automatic payment
process. According to their homepage, they have also partnered with Autodesk and will
be providing plugins for various software products, which makes those useable with the

1https://constructible.trimble.com/construction-industry/from-bim-to-blockchain-in-construction-
what-you-need-to-know

2https://www.bim-world.de/de/bim-blockchain-part-2-blockchain-bim/
3https://bimchain.io/

15

3. State of the Art

Bimchain.io system. In their software architecture the actual BIM model data is stored
in their BIM cloud and only proofs or hashes of the models are stored in the blockchain.
This is a similar architecture to the one we use, but we also outsource the storage of the
data to a decentralized system, namely Git. However, in general, there is no concrete
public research at the crossroad between these two technologies and for this type of use
case. Therefore, we are present the first prototype as proof of concept, and a comparison
between this prototype and two alternative approaches in our evaluation in chapter 5.

Bowe et al. present an outlook on the organizational limitations in the Architecture,
Engineering, Building Owner and Operations (AECOO) industry [BRM17]. In addition,
they propose various technologies, such as AI, Machine Learning and blockchain, to
eliminate these. They give an overview of a possible BIM and blockchain system, which
can incentivize various stakeholders through electronic tokens to work on the BIM
database, without the need for a 3rd party intermediary. This system should eventually
replace the traditional hierarchy with a network structure, because it is more efficient,
enjoys a higher market valuation and is more fault tolerant and self regulating. This
paper gives a theoretical outlook on a future application of blockchain technology in
combination with BIM, but lacks a technical study and evaluation which we present in
this work.

Kvasina presents the documentation process of a tunnel construction project [Kva18].
She conducts a case study of the current state through a qualitative observation analysis.
Building on the results of the observation she creates a model of the analog documentation
process for the project and, finally, showcases an alternative, digital process. Kvasina
concludes that the current paper-based workflow that uses non-machine-readable docu-
ments, proves to be more error-prone and that the conventional documentation process
has the largest digitalization potential.
We, on the other hand, do not cover the various different types of construction documents,
which vary from project to project, but focus on BIM models that become more and
more common in all types construction projects. However, the non-BIM documentation,
mentioned in the referenced work, could also be documented and stored by means of our
prototype.

3.2 Blockchain
Papi et al. present a way to ensure accountability for Multi Agent Systems (MAS)
[PHdB17]. They introduce various approaches and combine blockchains and MAS
by providing different abstractions, followed by a discussion of their advantages and
disadvantages. They show a solution were only the state is stored on the Bitcoin
blockchain, and another, for which they implement a smart contract on the Ethereum
network. They come to the conclusion that it is cheaper to only use a blockchain without
smart contract capabilities for communication between MAS, but argue that this would
not suffice for the accountability property in their system. In contrast, blockchains, such
as the Ethereum, provide a safe logic of authorization and incentivization, which can be

16

3.2. Blockchain

used for MAS. The authors also provide a smart contract as a prototype for an auction
of house building tasks. They also name the trade off in speed and the challenges with
the scalability of blockchain systems as the biggest issues.
For our prototype we also create a smart contract prototype, but specifically for the use
case of a construction project. In addition, in chapter 5 we will evaluate the prototype
using the "Goal, Question, Metric" framework [CR94].

Further, Neisse et al. describe the use of blockchain technology for the storage of
consent to data access, as accountability mechanisms and for data provenance tracking.
They embed their research into the context of the European General Data Protection
Regulation4, which has the aim to protect EU citizens from data breaches and has been
applicable in the European Union since May 25th, 2018. They discuss several solution
design choices, describe three different models and have implemented two of them. Their
analysis of the prototype focuses on data accountability and provenance tracking and,
therefore, on granularity, privacy, anonymity, performance and scalability.
We, on the other hand, evaluate our prototype in the context of a construction project,
where we focus on performance, scalability, security, costs and, especially, on viability for
our use case.

Wenisch presents research in the area of law regarding smart contracts [Wen17]. He
examines the validity of smart contracts in contemporary contract law in Austria and
in the United States, and concludes that there are some major differences between the
contract law systems of these two countries. According to Wenisch, smart contracts
in Austria might not be valid before a court with the applicable jurisdiction, because
contracts have to be written in understandable language. Therefore, smart contracts
cannot be seen as traditional contracts.
Future work could be done in examining the legal aspects of our solution, since our
smart contract works as a change management system rather than a traditional contract.
It provides accountability features using digital signatures. The question if this would
suffice in front of a court could be further researched.

Falazi et al. present a prototype for collaborative development of application deployment
models [FBF+18]. In addition, their focus is on the accountability property, for which
they use the Ethereum network. Their prototype allows them to ensure integrity and
provenance for a collaborative development workflow on cloud based systems. They
have a similar architecture to the one we are using, which is also divided into two parts.
One part, which is used for accountability measures, exists in a smart contract on the
blockchain. The other part is a decentralized file storage system. They refrain from
storing data on Git because they argue that the Git protocol is not enough to support
the desired accountability property since the history in a Git repository can be changed.
Instead, they use swarm5, a distributed storage network.
We, on the other hand, postulate that Git with its decentralized properties, combined
with the hash tree architecture, is sufficient to provide the accountability for our use

4https://gdpr-info.eu/
5https://swarm-guide.readthedocs.io/en/latest/introduction.html

17

3. State of the Art

case. A further explanation of the Git protocol and our implementation presented in
section 4.5. There we also show how the Git tree commit structure produces properties
that make malicious changes on a centralized repository visible to all other users.

Furthermore, there are two projects in development, which should bring a more decen-
tralized approach to the hosting of Git repositories. Gitchain6 is a project started by
Yurii Rashkovskii which uses Bitcoin, Namecoin and distributed hash tables. It provides
properties, such as decentralized redundant storage, encrypted storage for private storage,
tamper-proof history and Proof of Work, contribution and storage rewards.
The second project is GitTorrent7, which was initiated by Chris Ball. It handles a similar
use case, but uses a peer-to-peer network, based on a BitTorrent protocol extension and
distributed hash tables.
Both projects currently are not actively maintained anymore (Latest commit from both
Github projects: 3 years ago).
Projects like these, or the beforementioned swarm, could be used for a more decentralized
hosting instead of the centralized providers like the Github platform.

Bhargavan et al. present a short paper on the topic of formal verification of smart
contracts [BDLF+16]. They use F* based on shallow embeddings and typechecking
within an existing verification framework to verify example smart contracts. They plan
to complete a verified reference implementation of the Solidity compiler to verify that its
output is functionally equivalent to the source contracts.
A formal verification of our prototype could be an interesting topic for further research
in terms of security. Since we only implement an explorative prototype we will not
specifically focus on security during the implementation. However, as part of chapter 5,
we evaluate the security of the Ethereum platform in general.

Concerning the security of smart contract development, Whorer and Zdun present six
design patterns for Solidity which can be used to mitigate typical attack vectors [WZ18].
In future work, they plan to extend their collection of design patterns to a structured and
informative design pattern language for Solidity, which will provide guidance to smart
contract developers. Related to this, Mense and Flatscher present common vulnerabilities
found in smart contracts and sort the vulnerabilities into three different categories:
Solidity, EVM bytecode and general blockchain characteristics [MF18]. This taxonomy
describes the vulnerabilities on different levels of the application. They stress that there
is room for improvement through further taxonomization, automated test environments
and closing the research gap in order to mitigate vulnerabilities. The considerations
mentioned in these two papers are also discussed in our evaluation chapter.

Martinez et al. describe a hashing mechanism, which can be used to protect valuable
assets in complex industrial environments in the context of model-driven engineering
[MGC18]. They have explored robust hashing techniques, which have already proven to
be valuable for the protection of intellectual property, authenticity assessment and fast

6https://github.com/gitchain/gitchain
7https://github.com/cjb/GitTorrent

18

3.2. Blockchain

comparison and retrieval solutions in various domains. The authors provide a prototype
implementation, which uses their hashing technique, and an experimental evaluation.
They too describe a blockchain infrastructure as a possible way of storing the hashes of
the models to ensure additional accountability.
Although robust hashing techniques do not apply to our use case, because we do not
need to compare similar models, the approach of storing hashes on the blockchain is also
used by our prototype.

In the next chapter we first describe the use case that is the basis of our prototype, present
the extracted requirements and then show how the prototype was implemented using
different technologies. We also give insights into the inner workings of the underlying Git
technology and the Ethereum smart contract platform .

19

CHAPTER 4
Realization

In this chapter we describe the requirements for and the architecture behind our Change-
Manager prototype and we discuss the implementation. In the following we first specify
the requirements, which resulted from the analysis of our previously described use case,
then we outline the functionality of the change management process and, subsequently
present a detailed description of the single components.

4.1 Requirements
The prototype should provide a change management workflow for data which represent
a construction project. In such a project, there should only be one shared digital
representation of this data as a single point of truth, to which everyone can refer. This
helps to prevent confusion and subsequent errors, which occur when stakeholders are
working on different versions of the model at the same time. The data will be stored as a
BIM model to provide the properties which are needed for a construction project. As we
have already seen, a project in this domain can have many different stakeholders, such as
a construction manager, an architect, contractors, regulators, etc. In the following we
are going to describe the change management workflow from a high-level point of view
with a focus on the requirements of this process.

We have one party, the construction manager, who is responsible for the communication
within the project. In our workflow, any stakeholder who has access to the BIM model
can commit a change to the model parts they are liable for. The construction manager
has to make sure that changes on the BIM model are approved by the authorised
people. Therefore, she is the first person who needs to accept a change requested by any
stakeholder. Furthermore, for every change there are multiple additional parties who
have to consent to a change so that it can be approved. This could, for example, be
the building developer, who has to check if the change affects the budget or interferes
with other requirements. The construction manager is also responsible for contacting the

21

4. Realization

responsible parties to set up a vote on a proposed change. This whole process has to be
transparent, traceable and it has to be possible to hold the stakeholders accountable for
their approval. The goal of the ChangeManager project is to create a solution in which
stakeholders can commit change requests to a BIM model and vote on these change
requests, if they have the permission to do so. The process is managed by the construction
manager.

In regards to the data resulting data from this process, there are two kinds which have a
different set of requirements.

The first issue is the storage of the comprising from the BIM model. This data can
become really big, and incremental changes on the model have to be possible for multiple
stakeholders at the same time. Therefore, we are use the approach of storing the data
in a Git repository for our prototype. The data also has to be stored in a forgery-proof
way. A Git repository, is by definition, decentralized since every user has a copy of the
whole repository on his computer. Git also provides an integrity system using SHA-1
hashes for every commit. In our architecture, the Git hashes are the indexes which point
to exactly one commit of a change request on a BIM model. We describe this feature in
more detail in section 4.5.

The second issue is the storage of the votes on commited change requests. The votes will
only be conducted once a change commit, which has to be approved by other stakeholders,
has been made to the BIM model. The data does not contain a lot of information, so it is
generally small in size. However, once a vote is cast, it has to be immutable and its history
has to be traceable. Therefore, this part of the process is implemented as a smart contract
on the Ethereum network. The smart contract handles the permission management and
the change approval process. We describe this in more detail in section 4.6

4.2 Operating Principles of the Prototype
After a change request has been commited to the Git repository, anyone can create
a new ChangeReqest. A ChangeRequest is the representation of a Git commit in the
ChangeManagerContract smart contract. As a first step, the construction manager can
accept or reject a ChangeRequest. If she accepts it, she can assign multiple responsible
parties to vote on the ChangeRequest. If all of them accept it, the ChangeRequest goes
into the state accepted and is regarded as approved. If one responsible party rejects it,
the ChangeRequest has been rejected and cannot be approved without creating a new
Git commit. In this state, the ChangeRequest cannot be voted on again.

To include each vote into the Ethereum network the user puts the vote into a transaction
to write onto the immutable ledger. The transaction has to be signed with a private
key and, when it gets included into a block, the address and its vote are logged in the
network. Therefore, if a stakeholder has accepted or rejected a change on the BIM model
this vote on the blockchain can be used to hold the voter accountable. It is important
that every stakeholder who participates in this process hands his public key to all other

22

4.3. Architecture

stakeholders, so that everyone can map their digital identity to a real identity. This could
be handled using a traditional legal contract.

Figure 4.1: Parallel processes of commiting a change on Git in red and handling a
ChangeRequest on the Ethereum network in purple.

In the following we present the architecture and functionality of the ChangeManager
prototype. Afterwards, we provide a detailed breakdown of its single components.

4.3 Architecture
The ChangeManager prototype is composed of components which use the following
technologies:

• Github Repository

• Ethereum smart contract (ChangeManagerContract)

• Windows Presentation Foundation C# Frontend (ChangeManagerWPF)

The Github repository is used to store the BIM model, the ChangeManagerContract
(ChangeManagerContract) represents the voting workflow on the blockchain and the
ChangeManagerWPF (ChangeManagerWPF) provides the user with a graphical user
interface which is used to communicate with the ChangeManagerContract.

23

4. Realization

These technologies were chosen by us because they are common and, therefore, enough
documentation is provided by the community developing them. Github is the biggest
Git repository hosting service with more than 38 million projects[flo16]. The Ethereum
environment not only provides the third biggest cryptocurrency (ether) by market cap1,
but also the biggest developer space for smart contracts.

We chose C# and WPF for our frontend because of the SIMULTAN project’s software
tool, which was created in cooperation with multiple research partners by TU Wien
[BBF+18]. This project is also developed with C# and WPF and could potentially be
extended by our prototype to provide a more integrated BIM model creation and change
management process.

Each of the used technologies can be replaced by another, depending on the needs of
the BIM process. For example, the Git repository does not have to be hosted on Github.
A solution like GitTorrent or Gitchain would actually be more suited for improving the
decentralization and, therefore, ensure the independence from central entitities.

In the following we provide further insights into the underlying technologies.

4.4 SIMULTAN Software Tool
The SIMULTAN software tool has a focus on the simultaneous technical presentation and
design of BIM models. It provides a digital platform for a construction project, which is
being developed by multiple stakeholders with diverging requirements and interests. It
provides not only a means for management and integration of their different viewpoints
of the BIM model, but also a tool to interact with it. It fulfills the following requirements
[BBF+18]:

• Data created by different stakeholders must not produce an inconsistent state or
redundancies.

• The progress of the project must be visible and traceable at any point in time.

• The data model must be accessible for any other application with reasonable effort.

• The resulting data model should be adequately detailed and be adjustable at any
time, and act as a digital twin to the project.

The SIMULTAN tool delivers collaboration in real-time, filter functionality according to
access, category and custom criteria, and works with a Git repository. Its data model
consists only of very few generic elements and can manage varying levels of detail. It
provides an access and permission control for each role occupied by a stakeholder.

1https://coinmarketcap.com/

24

4.5. Git

The SIMULTAN tool can be used to create, edit and manage a single BIM model for
multiple users at the same time. It also includes a change management process, where
stakeholders can vote on changes made by other stakeholders. However, it handles this
process on a centralized infrastructure, which makes it vulnerable to a malicious actors
who might attempt to forge voting results. The ChangeManager prototype extends the
tool by transferring the change management workflow to a decentralized and immutable
datastructure, the blockchain.

The tool is written in C# and uses the Windows Presentation Foundation (WPF) libraries
to provide a graphical user interface. Our prototype uses the same underlying technology
to facilitate the integration into to the SIMULTAN tool. A proof of concept integration of
the ChangeManager into the SIMULTAN tool has already been implemented. However,
the evaluation of our prototype as an extension to the SIMULTAN tool is out of our
scope and we evaluate only the ChangeManager in this work. The evaluation of the
integration of both tools could be subject to further research in this area, which we
describe in chapter 6.

4.5 Git
Git [CS14] is a decentralized VCS (Version Control System). The technology was first
initiated by Linus Torvalds in 2005 to serve as a source code management software for
the Linux kernel. The system is organized in repositories, which do not need a central
server. Every user has a local copy of the whole repository on her computer. All local
repositories can talk to each other and they do not differ from a repository stored on a
central server. Furthermore, the user can work on his local repository without having an
active connection to other repositories. However, usually, a project has one repository,
which resides on a central server, onto which the users push their changes to have a
central point of storage. For our prototype we have chosen Github2 as a hosting platform
for our central repository, because Github provides an API, which lets us read and collect
the changes easily.

In Git, changes on data are packaged into commits. These represent a change in files on
the repository and can always be identified by a unique SHA-1 hash. This hash includes
not only the current changes, but also a hash of the parent commit. The reference to the
parent commit produces a tree structure, known as a Merkle tree, and represents the Git
history. This is, in essence, the same system used in a blockchain and makes the files
in a Git repository tamper-proof as long as one has a local copy of the repository. If a
malicious actor tries to change one commit in the Git history, every commit and hashes
which were created after the tampered-with commit would change as well. This means
that if one has a commit hash and you have the same hash on a central server one can
be sure that it contains the exact same files in the exact same version. This mechanism
ensures that changes on the BIM model can be securely stored on Git, and we can just
store the Git commit hash as a reference into the blockchain. This is enough information

2https://Github.com/

25

4. Realization

to prove that a commit hash of a change describes a certain state of a repository. Since
every stakeholder can and should have a local copy of the repository on their computer,
they can prove that a ChangeRequest in the smart contract represents a certain state of
the BIM model.

Our prototype does not include the functionality of creating new commits. It only reads
the commits from a Git repository on Github. The feature of adding new commits is
already provided by the SIMULTAN tool, which can be used as a BIM model collaboration
tool, and uses Github in the background. We will still take this functionality into
consideration in our evaluation in the context of the different solutions.

The ChangeManagerWPF in our prototype only fetches all commits from a Github
repository and presents them to the user, who is able to select one and create a new
ChangeRequest on the ChangeManagerContract. In the next section we describe the
functionality of the ChangeManagerContract.

4.6 Smart Contract

4.6.1 Environment

We started the development of our prototype with the implementation of the Change-
ManagerContract. We used a test-driven software development approach for its im-
plementation. The idea behind this strategy is that the test cases are written before
the prototype so that the use cases are already defined programmatically in code. The
tests are implemented so that they fail at first; they pass once the actual prototype
implementation is complete [MW03]. This ensures that the final prototype fulfills the
requirements of the use case. Therefore, as a first step, we defined our use case and, only
then, began to implement tests according to this use case. We used the tests as a basis
for the specification of the following implementation for the ChangeManagerContract.
To develop it we used Truffle3, which comes with a Solidity compiler and a testsuite. To
test our smartcontract without the need of spending gas we used Ganache4 to run a local
simulation of the Ethereum network. It provides not only a simulation of the Ethereum
network and an API to communicate to it, but also creates 10 accounts with public and
private keys, which can be used for testing purposes.

3https://truffleframework.com/
4https://truffleframework.com/ganache

26

4.6. Smart Contract

We use two models in the ChangeManagerContract: ChangeRequest and Vote.

A ChangeRequest represents a Git commit and is uniquely identified by its Git hash. The
ChangeRequest additionally contains costs, time estimation and additional information,
and it is always in one of these states:

• ChangeProposed

• ChangeManaged

• ChangeRejected

• ChangeAccepted

Figure 4.2: Possible states of a ChangeRequest and the transitions between them including
the conditions

A Vote represents either the acceptance or the rejection for a ChangeRequest by a
stakeholder. It contains the address of the voter, the Git hash of the ChangeRequest, the
acceptance or rejection Vote and vote information. Every newly created ChangeRequest
and every casted Vote get propagated as events on the blockchain, which can be read by
everyone who runs a blockchain node. This feature works as an immutable persistent
logging system on the Ethereum network.

The ChangeManagerContract implementation is developed using Solidity 0.4.23. It is
neither optimized for performance, nor cost-efficiency, nor security. On the one hand, it
is used as a proof of concept, and on the other hand, it serves as a first reference point
for our evaluation.

The code logic is organized into two files (ChangeManager.sol and ChangeTracker.sol)
that contain a data structure similar to classes in other languages, which are named
contracts in Solidity. We call them classes in this work in order to avoid confusion. We
have reserved the name contract for the logic on the blockchain as a whole.

27

4. Realization

ChangeTracker is the parent class of the ChangeManager. It contains the state entities
State, Change, NewChangeRequest and NewVote. State and Change are of type enum and
struct, respectively. These are data structures used to store information. ChangeRequest
contains the Git hash, has an owner (=̂ creator), a state (=̂ one of the before-mentioned
states), a mapping (=̂ key-value data structure in Solidity) to store the addresses, which
are allowed to vote on the ChangeRequest, and the vote count. Some additional fields
are used to specify a ChangeRequest further(costs, estimation, additional information).

NewChangeRequest and NewVote are events, which are called in code, and their signature
is written to the blockchain. APIs, which are able to communicate with the Ethereum
network, can filter for certain event types on a contract address. We use this feature to
track newly created ChangeRequests and the votes in our frontend application.

In the ChangeManager class we provide the logic for our smart contract. It has a
constructor, which gets called when the smart contract is deployed to the blockchain.
This function sets the deployer of the smart contract to be the construction manager. He
is identified through his address and has special permissions in the applied logic. There
are three functions in the ChangeManager, callable via the user interface:

1. createNewChangeRequest

2. managementVote

3. responsibleVote

In the following we describe the process of creating and voting on a ChangeRequest in
chronological order.

28

4.6. Smart Contract

First, the createNewChangeRequest function, as we show in Listing 4.1, needs to be
called. A user passes a Git hash, which references a certain state of a BIM model in a
Git repository, and some additonal information to the function. The ChangeManager-
Contract saves this ChangeRequest into a mapping, if it does not already exist, and
sets its state to ChangeProposed. This check is done using the require() function,
which, if a condition is not met, halts the execution of a function call, reverts its state
and hands back the yet unspent gas to the caller. At the end of the function call, the
event NewChangeRequest is triggered, which can be logged from outside the blockchain.

1 // Creates a new ChangeRequest contract and saves it in the _changes array.
2 function createNewChangeRequest(
3 bytes20 gitHash,
4 string additionalInformation,
5 uint256 costs,
6 uint256 estimation
7)
8 public
9 {

10 require(_changes[gitHash]._gitHash == bytes20(0), "ChangeRequest already
exists");

11
12 ChangeRequest memory change;
13
14 change._gitHash = gitHash;
15 change._additionalInformation = additionalInformation;
16 change._costs = costs;
17 change._estimation = estimation;
18 change._changeOwner = msg.sender;
19 change._state = State.changeProposed;
20
21 _changes[gitHash] = change;
22
23 // Emit a NewChangeRequest event
24 emit NewChangeRequest(gitHash, additionalInformation, costs, estimation);
25 }

Listing 4.1: The solidity code of the function createNewChangeRequest()

29

4. Realization

As the next step in the change management process, the managementVote function, as
we show in Listing 4.2, is called. First, the construction manager can give his approval of
the ChangeRequest and contact other responsible parties, who he also needs the approval
from. The function uses a Git Hash as identifier for the ChangeRequest, a boolean
value indicating whether to accept it, an array with addresses, which are allowed to
vote in the next step, and additional information. The function can only be run by the
the construction manager and the ChangeRequest has to already exist on the smart
contract and to have the state ChangeProposed. The require() function is used to
ensure these conditions. If the boolean value indicating to accept the change is true, the
ChangeRequest transitions into the state ChangeManaged, otherwise to ChangeRejected.
Once a ChangeRequest is in state ChangeRejected it remains in this state and cannot be
changed anymore.

1 // Function can only be run by the owner of the ChangeManager contract (
construction manager). The construction manager does the first review of
the ChangeRequest, can reject it or employ the responsible parties who
are allowed to vote on the change.

2 function managementVote(
3 bytes20 gitHash,
4 bool acceptChange,
5 address[] responsibleParties,
6 string voteInfo
7)
8 public
9 {

10 ChangeRequest storage change = _changes[gitHash];
11 require(msg.sender == _constructionManager, "Sender not construction

manager");
12 require(change._state == State.changeProposed, "State not ChangeProposed"

);
13
14 if (acceptChange) {
15 change._voteCount = responsibleParties.length;
16 for (uint i = 0; i < responsibleParties.length; i++) {
17 change._allowedToVote[responsibleParties[i]] = true;
18 }
19 change._state = State.changeManaged;
20 emit NewVote(gitHash, msg.sender, acceptChange, change._state,

voteInfo, change._voteCount);
21 }
22 else {
23 change._state = State.changeRejected;
24 emit NewVote(gitHash, msg.sender, acceptChange, change._state,

voteInfo, 0);
25 }
26 }

Listing 4.2: The solidity code of the function managementVote()

There is only ever one voting process possible on a specific Git commit. In case a

30

4.6. Smart Contract

stakeholder wants to restart the voting process a new Git commit with a different
commit hash has to be created, so that a new ChangeRequest can be added in the
ChangeManagerContract.
After the vote is managed, an event NewVote is triggered and logs the Vote to the
blockchain.

31

4. Realization

As the final step, responsibleVote, as we show in Listing 4.3, is called on a ChangeRequest.
This function accepts the same input arguments as managementVote, except for the
array containing addresses. It requires the caller to use one of the addresses assigned
to the responsible parties and the ChangeRequest to be in the state ChangeManaged.
If a negative vote is cast the ChangeRequest goes into the state ChangeRejected and
the voting ends. If the vote is positive and there are some responsible parties who have
not yet voted, it stays in the state ChangeManaged. If the last responsible party casts a
positive vote the ChangeRequest goes into the state ChangeAccepted. This means that
the change has been accepted by all parties, who the construction manager has contacted
to vote. The change has been approved and can be implemented.

1 // The allowed parties can vote. As soon as everyone has voted the
ChangeRequest is either accepted or rejected

2 function responsibleVote(
3 bytes20 gitHash,
4 bool acceptChange,
5 string voteInfo
6)
7 public
8 {
9 ChangeRequest storage change = _changes[gitHash];

10 require(change._state == State.changeManaged, "State not ChangeManaged");
11 require(change._allowedToVote[msg.sender], "Sender not allowed to vote");
12 change._allowedToVote[msg.sender] = false;
13 if (!acceptChange) {
14 change._state = State.changeRejected;
15 change._voteCount = 0;
16 emit NewVote(gitHash, msg.sender, acceptChange, change._state,

voteInfo, 0);
17 }
18 else {
19 change._voteCount = change._voteCount - 1;
20 if (change._voteCount == 0) {
21 change._state = State.changeApproved;
22 emit NewVote(gitHash, msg.sender, acceptChange, change._state,

voteInfo, change._voteCount);
23 }
24 else {
25 emit NewVote(gitHash, msg.sender, acceptChange, change._state,

voteInfo, change._voteCount);
26 }
27 }
28 }

Listing 4.3: The solidity code of the function responsibleVote()

32

4.7. The Frontend

Figure 4.3: Change management process and the different possible states for a Chang-
eRequest.

4.7 The Frontend
The frontend is implemented in C# and uses the WPF (Windows Presentation Founda-
tion) as a framework. In the ChangeManagerWPF we use the following libraries and
APIs:

• Nethereum5

• Github API6

• Newtonsoft.Json7

We use Nethereum to talk to an Ethereum node. It is the .Net integration library for
Ethereum. In our application it takes care of deploying the ChangeManagerContract,
calling the functions in the ChangeManagerContract and watching for new events.
The Github API lets us query commits on a repository. The repository needs to be
public for our prototype, because we have not implemented any way of authenticating to
the API. We only use the Git hash of the commits, but more information, such as the
commit message, could also be used to display in the ChangeManagerWPF.
Newtonsoft.Json helps us process the responses from the Github API through deserializa-
tion of the returned JSON. As a next step we will give an overview on how the frontend
is used.

5https://Github.com/Nethereum/Nethereum
6https://developer.Github.com/v3/
7https://Github.com/JamesNK/Newtonsoft.Json

33

4. Realization

In the first window, when the user starts the frontend he must provide the reference
to a public Git repository (Figure 4.4). Either a new ChangeManagerContract can be
deployed, or an already deployed ChangeManagerContract at a certain address can be
used.

Figure 4.4: Creation or Reuse of a ChangeManagerContract

In the next step, a commit hash representing a change request on Github can be selected
and additional information can be filled in (Figure 4.5). Then a new ChangeRequest can
be created, which sets its state to "changeProposed".

Figure 4.5: Proposing a new ChangeRequest

34

4.7. The Frontend

When the user clicks on a proposed ChangeRequest the Management Vote tab opens
(Figure 4.6). The project manager (owner/deployer of the ChangeManagerContract)
can fill in vote information and the addresses of the responsible stakeholders who are
allowed to vote on the ChangeRequest. If accepted, the ChangeRequest transitions into
the "changeManaged" state.

Figure 4.6: Managing a ChangeRequest

35

4. Realization

When the user clicks on a managed ChangeRequest, the Responsible Vote tab opens.
The responsible stakeholders can now vote on the ChangeRequest and fill in their vote
information (Figure 4.7).

Figure 4.7: Conducting a responsible vote on a ChangeRequest

36

4.7. The Frontend

If one stakeholder rejects a ChangeRequest it goes into the state "changeRejected"
(Figure 4.8). In this case a new Git commit needs to be created in order to create a new
ChangeRequest in the ChangeManagerWPF.

Figure 4.8: Rejected ChangeRequest

In the following chapter we describe our evaluation methodology, which uses the "Goal,
Question, Metrics" approach and present the results of applying this method to our
ChangeManager prototype.

37

CHAPTER 5
Evaluation

For our evaluation we have chosen the Goal, Question, Metrics approach which was first
described by Caldiera et. al and has become a standard for creating adequate software
metrics [CR94]. The result of the approach is the specification of a measurement model
on multiple levels:

1. Conceptual level (Goal)

2. Operational level (Question)

3. Quantitative level (Metric)

The whole process provides a hierarchical structure, which can be represented as a tree,
with a goal as the root, the questions as nodes and the metrics as leaves. Traversal from
the bottom to the top serves to define software metrics. Traversal from the top to the
bottom is used to interpret the measurements.

The GQM process consists of the following steps:

1. It starts with the creation of a goal for products, processes or resources by defining
the purpose of the measurement, the object and the issue to be measured and the
viewpoint, which is taken to measure. ("Which goal should the evaluated object
reach?")

2. The next step of the process is the definition of questions to partition the issue into
its parts. These questions should always have the goal as a starting point. ("What
should be measured and which questions should the measurements answer?")

3. As the last step in the hierarchy, the questions are broken down into objective and
subjective metrics. ("Which metrics are able to describe the necessary properties?")

39

5. Evaluation

It should be noted that one metric can be used to answer multiple questions and one
question can be used to answer multiple goals. After the definition of the model, the
researchers apply the measurements. They subsequently interpret the results by using
the measurements to answer the questions and evaluate if and how the goal is reached.

In the following section we present the GQM model for our use case and in the summary
therafter discuss three different solutions, for comparative purposes, by presenting their
advantages and disadvantages.

5.1 Goal
From our previously defined use case we can derive the context and the subsequent goal:

• Context: The goal is defined for the process of storing BIM models and managing
change requests. It is viewed from the point of a manager of a construction project.

• Goal: The goal is to create an economical, fast and secure solution for storing data
and managing changes.

Based on this goal we define the questions in the following section.

5.2 Questions and Metrics
To provide a better structure to our evaluation we categorize the questions into four
areas of comparison:

1. Economic Questions

2. Technical Questions

3. Political Questions

4. Security Questions

The categories are not mutually exclusive and overlap often. Security in particular is
considered a meta topic which spans many others and can be considered part of all other
areas.

40

5.3. Evaluation Plan

5.3 Evaluation Plan
In this section we present each category with its questions, followed by the derived metrics.
The first question presented is always a broad question which we use to do research in
order to raise more questions. These don’t provide concrete metrics but are a means to
discuss the area in a broader way.

1. Economic Questions

a) What are possible economic issues?
i. General economic conerns

b) What are the costs for storing big files?
i. Costs of data storage on the Ethereum blockchain of 10 gigabytes
ii. Costs of data storage in Git repository of 10 gigabytes

c) What are the costs for the change management process?
i. General costs of processes on the Ethereum blockchain
ii. Costs of the voting process for the ChangeManager prototype
iii. General costs of processes in a Git repository

2. Technical Questions

a) What are possible technical issues?
i. General technical concerns

b) Does the solution allow the storage of big files?
i. Storage limitations on the Ethereum blockchain
ii. Storage limitations in a Git repository

c) How much time does it take to push data onto the storage?
i. Time to get data into a block
ii. Time to get a data into a Git repository

d) How much time does it take to cast a vote?
i. Time to get a function call into a block
ii. Time to create a new Git commit and push it

e) How does the underlying technology work?
i. Scalability issues for Ethereum
ii. Scalability issues for Git

3. Political Questions

a) What are possible political issues?

41

5. Evaluation

i. General political concerns
b) How centralized is the solution?

i. Data storage location of the Ethereum blockchain
ii. Data storage location of a Git repository
iii. Conditions to create a collusion to falsify the stored data on the Ethereum

blockchain
iv. Conditions to create a collusion to falsify the stored data on a Git reposi-

tory
c) Who is in control of the data?

i. Conditions to make unauthorized data changes on the Ethereum blockchain
ii. Conditions to make unauthorized data changes on a Git repository

d) How does the ecosystem around the solution work?
i. Development process of Ethereum node software
ii. Development process of Git
iii. Who is developing the open source software?
iv. Number of maintainers of the Ethereum node software and the Git software

in comparison

4. Security Questions

a) What are possible security issues?
i. General security concerns

b) What are possible attack vectors on the data storage?
i. Conditions to bring the system to a standstill

c) How private is the data?
i. Authorization permissions to read data on the Ethereum blockchain
ii. Authorization permissions to read data on a Git repository

This plan was created in an iterative approach and we present the results of the evaluation
in the next section.

42

5.4. Evaluation Results

5.4 Evaluation Results
In this section we will apply the previously desribed evaluation plan to our prototype
and ,afterwards, discuss three different solutions:

1. Code storage and voting using Git (off-chain)

2. Code storage using Git and voting using the Ethereum blockchain (hybrid) - our
ChangeManager prototype

3. Code storage and voting using the Ethereum blockchain (on-chain)

Using the evaluation plan we not only evaluate the ChangeManager prototype we
presented in chapter 4 but also compare it to two other possible solutions.

The first solution completely disregards blockchain technology and only uses Git both to
store the BIM data and also to save the votes. The voting process in this solution is not
implemented in a smart contract but in a conventional application.

The last solution uses only blockchain technology. Both the storage of the BIM data
and also the votes are implemented as a smart contract on the Ethereum network. The
voting process is on-chain as well, the same way as in our ChangeManager prototype.

In the next section we present our evaluation question by question, provide the mea-
surements along our defined metrics, discuss them and formulate answers based on the
results. Finally, we present the comparison of the three solutions, based on the evaluation
results, in the evaluation summary.

5.4.1 What are possible economic issues?

General economic concerns

Generally, economic issues are expressed in the costs of a project. These costs differ
between the used technologies and solutions. To provide a solution, which is accepted
by the stakeholders in the construction domain, it needs to be more cost efficient than
current workflows. In this part we break down our solution into the part responsible for
storing files and the costs of the change management process itself.

When we look at the costs for a system involving the Ethereum blockchain there is
an unavoidable dependency on the price of ether. This is the cryptocurrency which is
used on the Ethereum network, and it is, indirectly through the gas system, used to
buy computing power. This can be a big disadvantage because the price of ether has a
high volatility of up to about 10% for the "30 Day ETH/USD Volatility"1. Construction
businesses need to plan and calculate with the current and future costs of the used
systems and, therefore, for the construction businesses it is better to have a low volatility.

1https://www.buybitcoinworldwide.com/ethereum-volatility/

43

5. Evaluation

We use the price of $110.34 for 1 ether for our calculations. It is the price observed on
the 05.12.2018. We round all monetary values to two decimal places. Every instruction
on the Ethereum network has a fixed gas cost, which has to be converted into ether by
setting a gas price. For our evaluation we choose 7 gwei which translates to 0.000000007
ether, and is our conversion standard between gas and ether for this evaluation. ETH
Gas Station describes this value as being the most inexpensive value while still being
able to get a transaction into a block within a maximum of 30 minutes2. Everyone who
wants to get a transaction into the Ethereum network is in competition with all other
transactions, which are also queued to go into the blockchain. Therefore, if there is a
high usage of the network, the gas prices are also rising which can lead to higher prices,
which can in turn become an economic issue for construction businesses.

5.4.2 What are the costs for storing big files?

To be cost-efficient, the cost of storing the BIM models has to be as small as possible. We
evaluate the Ethereum blockchain and the Git repository based cost to store 10 gigabytes
of data.

Costs of data storage on the Ethereum blockchain of 10 gigabytes

According to the Yellow Paper, which is the technical specification of the EVM, and
was written by Wood, the current cost to store a 256 bit word is 20,000 gas [Woo14].
This means that the costs of storing a 256 bit word translate into $0.02 at the previously
set gas and ether price. This means that for 10 gigabytes, which translates to storing
3,906,250 256 bit words, the price would be at $607,031.25.

Costs of data storage in Git repository of 10 gigabytes

Storing files using Git is generally free, only the hosting of the repository produces costs.
Probably the most popular hosting services are Github, Bitbucket and Gitlab3. For
example, storing files on GitHub is completely free for public projects; however, it has
a repository size restriction of a maximum of 1 gigabyte4. For Bitbucket, a repository
owner has to pay 25$/month to be able to store up to 10 gigabytes of files5. However,
they also have a hard limit on the repository size of 2 gigabytes6. Another provider,
GitLab.com, has a file size limit of 10 gigabytes7. Git itself does not have a limit on
file or repository sizes. Therefore, if a user wants to use a self-hosted system, she would
need to buy or rent a server and run Git on it. Since all these services differ in price, we

2https://ethgasstation.info/gasrecs.php
3https://medium.com/flow-ci/github-vs-bitbucket-vs-gitlab-vs-coding-7cf2b43888a1
4https://help.github.com/articles/working-with-large-files
5https://bitbucket.org/product/pricing
6https://confluence.atlassian.com/bitbucket/what-kind-of-limits-do-you-have-on-repository-file-size-

273877699.html
7https://docs.gitlab.com/ee/user/admin_area/settings/account_and_limit_settings.html

44

5.4. Evaluation Results

cannot give a definitive number here but we can safely assume that a hosted Git version
would always be cheaper for storing 10 gigabyte compared to the on-chain solution.

We can conclude that the storage of big files on the Ethereum blockchain is not viable,
because of the high cost. The hosting of a Git solution is more cost-efficient.

5.4.3 What are the costs for the change request management
process?

General costs of processes on the Ethereum blockchain

The cost of processes on the Ethereum blockchain depend on the EVM instructions used
for smart contracts. Information about instructional costs can be found in the Ethereum
Yellow Paper [Woo14].

Costs of the voting process of the ChangeManager prototype

We use our ChangeManager prototype to evaluate how much gas is spent for the function
calls, which are, in fact, transactions in the Ethereum system. Since every piece of
information saved on the blockchain needs additional gas, we will only store the most
important information (Git Hash) and leave the rest empty (Costs, Estimation, Additional
Information) to keep the storage cost as low as possible.

We use the following parameter for our evaluation:

• GitHash: "‘0x802f99e42756b405081a36ee8e9a4b19393dad64"’

• additionalInformation: "‘"’

• costs: 0

• estimation: 0

• responsibleParties: ["‘0x4b0897b0513fdc7c541b6d9d7e929c4e5364d2db"’]

The gas expenses for the ChangeManagerContract and its functions are the following:

• Deploying the ChangeManagerContract on the Ethereum network: 1,480,358 gas
($1.14)

• Creating a new ChangeRequest on the ChangeManagerContract: 108,634 gas
($0.08)

• Manage a ChangeRequest with one responsible party: 90,745 gas ($0.07)

• Vote on a ChangeRequest: 22,052 gas ($0.02)

45

5. Evaluation

As we can see, the voting process is quite cheap in comparison to the price of storing data
on the blockchain. Deploying the ChangeManagerContract on the Ethereum network
is by far the highest expense, but it is a one time fee, which has to be spent once per
project. Once the contract is in place it can be used for many ChangeRequests. Creating
new ChangeRequests and voting on them costs less than $0.10 per transaction but we
have to be aware that this price is also dependent on the parameter we are choose for
these calls. In our example, we have chosen the smallest sized parameters possible to
isolate the storage from the processing costs.
It is also important to note that retrieval of the data saved by these functions does not
involve any gas costs. A user only has to download the blockchain as a whole and scan
the address where the ChangeManagerContract was deployed for the predefined event
types. There are no transactions needed to read events.

General costs of processess in a Git repository

The votes can also be directly recorded using Git. In this scenario, a stakeholder adds a
digital signature to a commit made by another stakeholder to show his acceptance. On
Github, such a system is free for a public project or it costs 7$ per month for private
repositories. Bitbucket and GitLab allow free repositories to be private as well, so there
aren’t any costs. Whether or not a private repository is needed for a construction project
depends on whether the stored BIM models should be available for the public or not. A
self hosted Git repository is another solution. Its cost depend on server prices.

5.4.4 What are possible technical issues?

General technical concerns

Possible technical issues for a solution built on the Ethereum ecosystem could include
the very early development state in which most used technologies are at. Although they
are used by a lot of people and adoption is growing they still have to prove themselves.

Another technical issue with the Ethereum network is that the blocktime is only one
block produced in about 15 seconds8,9. These blocks are also limited in size by the block
gas limit of 8.000.000 gas10, which means that, as a result, the number of transactions
included per minute is also limited. We have already discussed the issue of growing gas
prices in times of high network usage. This phenomenon can also lead to a congested
network, when more transactions are coming in than the mining nodes can put into the
blocks. This can become a technical issue where stakeholders have to wait a long time
for their votes to be registered.

Furthermore, the blockchain size, which, for Ethereum, has already reached 116.92
gigabytes on the 30.11.2018, could grow to become an issue. It grows linearly, which

8https://etherscan.io/chart/blocktime
9https://medium.com/coinmonks/blockchain-scaling-30c9e1b7db1b

10https://medium.com/@piyopiyo/how-to-get-ethereum-block-gas-limit-eba2c8f32ce

46

5.4. Evaluation Results

means that this growth could lead to substantial hardware costs in the future11, when
each stakeholder needs to run her own node.

5.4.5 Does the solution allow the storage of big files?

Storage limitations on the Ethereum blockchain

On the Ethereum network the block gas limit is currently set to 8,000,000 gas and it costs
20,000 gas to store a 256 bit word. This means, that there is a theoretical maximum
of 102,400 bit (about 1 megabyte) in one block. This maximum is too low in reality
because the process of storing this data, such as the transaction, is not included in this
calculation. This means that, to store a file of 10 gigabytes, it would need to be split up
into about 10,000 smaller pieces, which creates an additional overhead.

Storage limitations in a Git repository

There is no limitation of file sizes in the Git protocol. However, as we already described
hosting providers not only have limitations on repository sizes but also file size restrictions.
Github, e.g., allows a maximum of 100 megabytes per file, Bitbucket and GitLab only
list repository size limits on their websites. To enable the storage of big files on Github,
there is the project Git Large File Storage (LFS), which allows the storage of large files
12. It is an open source project, that replaces big files in a Git repository with a text
pointer and transfers the file itself onto a remote server, such as, e.g., Github.com. It
provides the usual Git workflow for handling repositories and commits. Large files are
filtered out of a repository before pushing them to another server and are replaced by
the text pointer. The text pointer contains a hash of the content so that the integrity of
the repository is still safeguarded. The files which have been filtered out are stored on a
remote server.

5.4.6 How much time does it take to push data onto the storage?

Time to get data into a block

The time it takes a transaction to be included into a block on the Ethereum network
depends on the gas price, which is set by the transaction creator. In the previous examples
we chose a gas price of 7 gwei (0.000000007 ether) so that a transaction would get included
into a block within a maximum of 30 minutes. The ETH gas station lists 7.5 gwei as
the gas price needed to include the transaction within 5 minutes and 18 gwei to have
it included within 2 minutes. This is always dependent on the usage of the Ethereum
network and is, therefore, constantly changing.
If one wants to split up a file of 10 gigabytes to include it into multiple blocks, as in the
previously mentioned example, one would have to wait at least 10,000 times 30 minutes

11https://etherscan.io/chart2/chaindatasizefast
12https://Git-lfs.Github.com/

47

5. Evaluation

if you wanted to get the cheapest price within a reasonable time. This would amount to
about 208 days, which is not acceptable for our use case.

Time to get data into a Git repository

On Github it is possible to push a 100 megabytes file in under a minute, depending on
the user’s connection speed capacity. However, files bigger than that get rejected.

On Github, the user has to pay 5$/month for 50 gigabyte of bandwith and 50 gigabyte
of Git LFS storage. However, there is also a file size limit of 2 gigabytes13.
On Bitbucket, it costs 10$/month for 100 gigabytes without bandwith restrictions and
the service can be used by free accounts14.

The time it takes to upload files which are bigger than 1 megabyte to a Git repository or
a remote server used by Git LFS is dependent on the user’s internet connection speed
and on the server connection. However, assuming a common broadband connection and
a server, such as the ones provided by Github or Bitbucket, the transfer of files is faster
than saving data to the Ethereum network. On Ethereum it takes 30 minutes for a file
with a size of only 1 megabyte, whereas in our test we were able to push a file with a size
of 100 megabytes in under 1 minute onto a Github repository.

5.4.7 How much time does it take to cast a vote?

Time to get a function call into a block

Votes, which have to be recorded on the Ethereum network and fit into one transaction,
would get included within a maximum of 30 minutes when using a gas price of 7 gwei.
Assuming best case conditions in terms of transaction congestion and worst cost efficiency,
the data could theoretically be included into a block in about 15 seconds. This is the
blocktime which we already described in the section about the general technical concerns.
However, this calculation does not account for the time delay which occurs when a
transaction gets propagated through the network. To make sure that a transaction has
received sufficient finality, a user would also have to wait for 11 additional blocks to be
added on top of the block where original transaction was included. That takes about
3 minutes (165 seconds). After this point, the user can be certain that her transaction
cannot be removed anymore. In the case of using 7 gwei as gas price he would have to
wait for 30 minutes plus the 3 minutes until 11 other blocks are added.

Time to create a new Git commit and push it

Since a vote can be assumed to be of a small size, it can be pushed to a Git repository
very quickly and will in general not take more than 15 seconds, let alone 3 minutes.

13https://help.Github.com/articles/about-Git-large-file-storage/#pointer-file-format
14https://confluence.atlassian.com/bitbucket/Git-large-file-storage-in-bitbucket-829078514.html

48

5.4. Evaluation Results

5.4.8 How does the underlying technology scale?

Scalability issues for Ethereum

We already described that the time it takes to include a transaction into a block is
dependent on the cost a user is willing to spend and on the workload of the network.
Another problem on the protocol level is the continual growth of the blockchain file, which
every full node needs to process. Those are two of the biggest problems blockchain systems
are facing nowadays and many companies and researchers are working on solutions to
improve this situation [Kre18][RV17]. The issue is that, if you want to provide better
scalability, which translates into more performance, there has to be a trade-off, which is
often at the expense of decentralization. Decentralization translates into security.
For a construction business, there exists the possibility to use a node hosting provider,
such as infura.io15. This service provides scalable blockchain infrastructure, so that
stakeholders would not need to host their own Ethereum node. The tradeoff is that they
need to trust infura.io, which defeats the purpose of decentralization. Another way to
circumvent this issue is to use a light client16. These light clients only verify the block
headers and rely on full nodes to relay transactions and verify the blockchain as a whole.

Scalability issue for Git

Hosting providers, such as Github and Bitbucket, handle huge software development
projects, such as, e.g., the linux kernel17. These projects have many people working
on one repository at the same time. A construction project would normally have far
less users contributing to the BIM model. The infrastructure has already proven to be
reliable, over many years.
Nevertheless, there are two known scalability issues on the protocol level of Git, which
could have a negative impact for a construction project. One issue that is related to
scalability is the storage of big files in a Git repository which we already discussed. The
project Git Large File Storage could provide a good solution for this18. The second
scalability issue is that Git becomes quite slow performance-wise when it has to handle a
lot of files in one repository. This could be prevented by splitting up a big repository
into smaller ones.

5.4.9 What are possible political issues?

General political concerns

For blockchain systems, there is the threat of collusion of nodes. The power of a mining
node is measured in its hash rate, which means that, due to its hardware setup, it can
produce x amount of hashes per second. The more hashing power a node possesses the

15https://infura.io/
16https://www.parity.io/what-is-a-light-client/
17https://Github.com/torvalds/linux
18https://www.infoworld.com/article/2955650/development-tools/git-isnt-good-enough-version-

control-enterprises.html

49

5. Evaluation

higher the statistical probability that this node will produce the next block and get the
block reward.
Since the probability that a single mining node will win this race is extremely small
multiple nodes combine their hash rates in a mining pool. The two biggest mining pools,
Ethermine and Sparkpool together currently cover about 50% of the hash rate19. In
theory, these mining pools could collude and launch a 51% attack. Such an attack could
be used to double spend transactions. This means that the attacker secretly forks off
his private chain and spends a transaction on the main chain and, simultaneously, on
his private chain. He waits for the transaction on the main chain to be accepted by his
victim and then publishes his own forked chain. Since he has 51% of the total hash rate
to mine his forked chain, this chain is longer. Defined by the Proof of Work consensus,
the longest verifiable blockchain available represents the commonly accepted truthful
state20. The more confirmations a block has already received after being accepted into
the blockchain the less probable it is that this block can be removed again from the chain.
It also gets more expensive for the malicious actor the more confirmations he has to wait
for until his double spend transaction is accepted, since he has to secretly mine all the
confirmation blocks too.
The creation of an arbitrary transaction from an address, which does not belong to the
attacker, is not possible, since he does not know the private key of the address.
The 51% attack is a big risk for small blockchains. However, for Bitcoin or Ethereum, it
is extremely expensive to gain such a big percentage21 of the total hash rate. Therefore,
they can be seen as statistically safe against a 51% attack.
For our prototype, the double spend attack would mean that a malicious actor could
accept a change request on the main chain but reject it on his secretly forked chain. This
means, one stakeholder could vote for a change request on one chain and vote against it
on another chain. The possible harm that such an action would have on a construction
project is beyond the scope of this work.

5.4.10 How centralized is the solution?

Data storage location of the Ethereum blockchain

In the Ethereum system, all full nodes have a copy of the whole blockchain state on their
physical machine. This means that there are thousands of copies of the data available
around the world. If one node has an outage it does not hurt the network overall, since
every node tries to constantly be in sync with the canonical state.
In this network, there is also a consensus algorithm, which decides who is allowed to
publish the next block. All mining nodes have a certain statistical probability that their
mined block is accepted to the top of the blockchain. This probability is directly linked to
the previously described hash rate of the node. Since multiple miners can work together
in a mining pool, there have been some concerns about the centralization or potential

19https://www.etherchain.org/charts/topMiners
20https://www.crypto51.app/about.html
21https://www.crypto51.app/

50

5.4. Evaluation Results

collusion of nodes in a mining pool [ale18]. According to the cited article, the miners
would want to protect their mining venture and the acquired hardware because every
negative influence on the ecosystem would drive the price of the mined currency down.
Therefore, it is in their best interest to keep the mining safe and decentralized. This is
the premise on which blockchain systems are based. The cost of an attack against such a
system has to be higher and the rewards smaller, in comparison to benevolent behavior.

Data storage location of a Git repository

If one uses Git to store the data, it is stored in every repository where the state has
been pushed to or pulled. If the hosting provider Github is used, the data would be
stored on the central Github server and everyone with read access to the repository can
clone the state from the server to a local machine. The state on the remote server is
seen as the canonical state. In a system, where a central Git repository is used as a
hosting platform, the admin has every permission to create, edit and delete data from
this repository. However, if an admin changes or deletes data, and another stakeholder
had the data already cloned to her computer, then the commit hash from her history
will be different to the one on the central server, which proves that some data has been
changed. Either way her local data is independent of the change or deletion of the data
on the central repository, which also represents a form of decentralization.

Following this, we can assume that Github, or similar hosted services, are much more
centralized, which means that there is one single point of failure that could bring a project
to a hault and lead to possible data loss.

5.4.11 Conditions to create a collusion to falsify the stored data on
the Ethereum blockchain

On the Ethereum blockchain, to change, i.e., remove data, which has already been
included into a block, an attacker needs to remine every block starting from the one that
contains the transaction she wants to tamper with. This is the only way to create new
hashes that will be positively validated and accepted by other nodes. It is important to
note, however, that due to its cryptographic system, counterfeited and therefore invalid
transactions cannot be included into the blockchain. An attacker can only remove valid
transactions and their data from a block. To create a valid transaction for another user
she would need to know his private key.
Once she has changed the block, she then has to build blocks on top of it until her
blockchain is longer than the blockchain with the correct block in it. As we have
already seen, the more blocks are built on top of another block the higher the finality
or immutability property of this block gets. This means that the hash power needed to
revert the blockchain gets higher the more blocks need to be remined to tamper with
data in an already included block.
One issue, which can also be seen as a feature of blockchain solutions, is that it is not
possible to tell which person is in control of how much hashing power. It is also not

51

5. Evaluation

possible to count the number of mining nodes because they can just be part of a mining
pool, which appears as one node to the network22. The anonymity of the nodes can be
a problem, since we are neither able to prove nor disprove that more than 51% of the
hashing power belongs to, or can be used by, one entity.

Conditions to create a collusion to falsify the stored data on a Git
repository

Git does not include a sophisticated access control mechanism and ,therefore, relies on the
permission system of the underlying host system. A repository can either be read-only
or certain users can have read and write access. A common strategy is to have two
central repositories where one can be accessed publicly and the other one is tightly access
controlled. There are various hosting solutions that allow a more fine grained access
control to the repository. One example is Gitolite23. Github and Gitlab support features,
such as branch or tag based push permissions.
Generally, the administrator or owner of a Git repository has the full control over the
data. The same permissions are given to every other user who is able to push to a
repository. Users with push permission can add, edit and remove commits without any
restrictions. However, if another user had the state of the Git repository before the
changes locally, the Git commits will not be the same on the administrators repository.
Therefore, although the administrator has the ability to change the data, the users who
possess a clone of the previous state will know that something has changed. However, if
there are two versions of the repository (the local and the remote) there is no way in the
Git protocol to prove that one has existed before the other and is, therefore, the truth.

Although it is possible to prove that data has been changed on Git, it is not possible
to prove which data is correct. And since it is quite easy for administrators to change
data on their repository, the administrators have to be rated as a trusted third party.
On the Ethereum network, on the other hand, it is very hard to change data that has
already been inserted into a block, followed by a certain amount of confirmations. The
data itself can not be added or edited without the according authorization either, but a
transaction and its data can be removed. It is also possible to prove that the data was
inserted into the blockchain at a certain time24. This is not possible on Git because the
timestamps can be faked by the users.

22https://bitcoin.stackexchange.com/questions/24365/does-getaddr-bitnodes-io-find-all-bitcoin-
nodes-or-only-one-node-per-mining-pool

23https://Git-sChangeManager.com/book/en/v1/Git-on-the-Server-Gitolite
24https://medium.com/@kiknaio/what-is-proof-of-existence-and-how-will-it-help-to-protect-

intellectual-or-private-property-77aa97a3fbb1

52

5.4. Evaluation Results

5.4.12 Who is in control of the data?

Conditions to make unauthorized data changes on the Ethereum blockchain

• An Attacker needs to have more than 51% of the hashing power to be able to
remove data.

• Users can recognize the reorganization of the blockchain in their client 25.

• It is possible to prove that data has existed at a certain point.

Conditions to make unauthorized data changes on a Git repository

• An Attacker needs to have push access to the repository to be able to add, edit or
remove data.

• Users can recognize the changes on the remote repository if they want to pull and
get merge conflicts.

• It is not possible to prove that data has existed at a certain point.

5.4.13 How does the ecosystem around the solution work?

Both Ethereum and Git use many different open source technologies.

Development process of the Ethereum node software

For Ethereum, one needs a client to run a node. The Ethereum protocol is a specification26

created by the Ethereum Foundation27. The most widely used ones are geth28, a reference
implementation written in Golang by the Ethereum Foundation, and Parity29, a third
party implementation written in Rust by Parity Technologies30. At the time of writing,
the geth client is used by 76.6% of all nodes followed by Parity-Ethereum (version 2)
with 18.3% and Parity (version 1) with 4.5%. Since these percentages amount to a
total of 99.4%, all other clients do not have a significant impact. Since the creators
of the specification and the client implementations have the potential ability to adapt
the blockchain to their wishes, this also adds a layer of concern for everyone using the
Ethereum blockchain as a means for securely storing data. We go into more detail
concerning the development of these clients in the next section.

25https://bitcoin.stackexchange.com/questions/1061/can-a-51-attack-be-detected-and-dealt-with
26https://Github.com/ethereum/go-ethereum/wiki/Ethereum-Specification
27https://www.ethereum.org/foundation
28https://Github.com/paritytech/parity-ethereum
29https://Github.com/ethereum/go-ethereum
30https://www.parity.io/

53

5. Evaluation

Development process of the Git software

Git, on the other hand, is developed by an open source community and, since 2005, its
maintainer is Junio Hamano [Neu15]. The maintainance of the project works through
the Git@vger.kernel.org mailing list.

5.4.14 Who is developing the open source software?

Number of maintainers of the Ethereum node software and the Git
software in comparison

In this part we list statistical data about the different open source repositories. The data
originates from the respective repositories on Github, where the projects are hosted (Git
uses Github as a publish-only and manages the repository through the mailing list).

Project Number Contributors Number Watchers Managed
geth 383 2044 Github
Parity-Ethereum 179 374 Github
Git 1,244 2088 Mailing list

Table 5.1: Number of Contributors and Watchers

Since the maintainer role on Github is not publicly available for a project, we cannot
determine who the actual maintainer of geth and Parity-Ethereum are. As we can see,
the Git repository has significantly more contributors compared to the other projects,
which can be interpreted as an indicator that its development is more decentralized than
the geth or the Parity-Ethereum project. The advantage of open source software is that
everyone can look at the whole source code. If the maintainers attempt to hide some
malicious code into the clients, the probability of getting caught is higher the more people
are watching the source code. Github has the "watch" feature, which notifies people who
are watching a project if something is happening to the code. The number of watchers
of the geth and the Git project are fairly similar - about 2000 users. In stark contrast
to this, the Parity-Ethereum Project has only 374 watchers who are subscribed to the
project. This means that it would be a lot easier to inject malicious hidden code in to
the latter project without being noticed.

5.4.15 What are possible security issues?

General security concerns

As we have already seen, there are multiple attack vectors on the various protocols and
their clients.

For the Ethereum network:

• On Ethereum, an attacker who gets 51% of the hash power over a time period can
stop transactions from being included, or remove them from blocks.

54

5.4. Evaluation Results

• A miner centralization could lead to a 51% attack.

• If a user does not wait for enough confirmations after a transaction, the transaction
could be removed because it had not been on the longest chain.

For Git:

• On Git, the owner of the central repository can tamper with the data in the
repository and the users have no proof if their local or the central repository is the
truth.

For open source projects:

• An attacker could inject hidden malicious code into an open source project.

Another security threat are the private keys used in a software system. This affects not
only accounts on Ethereum, but also, e.g., SSH keys for a Git repository. If an attacker
gets access to the private keys of a user, he henceforth has all the authorizations which
the users themselves would have. On Ethereum, he can create transactions in the name
of the user and has gotten himself the permission to tamper with the data. The same
issue arises if a Git hosting provider like Github or Bitbucket is used and the SSH keys
get compromised by an attacker.

Git faced a security issue because of the SHA-1 hash function it uses for various features.
In 2017 Stevens et al. demonstrated that collision attacks on the hashing algorithm have
become possible in practice [SBK+17]. The authors were able to create two different PDF
files which resulted in the same hash value. Normally, two different files should always
yield two different hashes. This is one of the defining properties of a hash function. The
effort needed for this computation was equivalent to 263.1 SHA-1 compressions and would
take about 6500 years for a single CPU and 100 years for a single GPU to calculate. This
means that an attacker could create two different repositories with different contents
which could have the same hash as their head commit [Baa17].
Torvalds, who is the initiator behind the Git project, claims that the SHA-1 attack is not
critical to Git since it is easy to detect. There is already a transition plan in the working
to move from SHA-1 to SHA-256. In addition, since Git version 2.13 there has already
been a move to hardened SHA-1, which is not vulnerable to this kind of attacks31.

Ethereum is a fairly new platform and, therefore, the research on this system is also
quite sparse. Writing secure and well-performing smart contracts is difficult and there
are many examples where bugs have already cost a lot of money. It is a new field in
computer science and, although Ethereum’s main programming language looks similar to
JavaScript, there are many things a developer needs to think of when developing smart

31https://mirrors.edge.kernel.org/pub/software/scm/git/docs/technical/hash-function-
transition.html

55

5. Evaluation

contracts on a blockchain. This can also be seen as a security vulnerability of the system.
Reusable patterns and best practices, which new developers can use, are only just
emerging. Wohrer and Zdun present a collection of such patterns that can be used to
mitigate typical attack vectors [WZ18]. The authors also describe how the Ethereum
ecosystem is evolving at a fast pace while instructions are added to the bytecode and
bugs and security risks are discovered.
Furthermore, Mense and Flatscher show common vulnerabilities in smart contracts
[MF18] and present a taxonomy, which classifies vulnerabilites on different architectural
levels: Solidity, EVM bytecode and general blockchain characteristics. The complexity of
the system itself can be considered a security risk.
Furthermore, the immutability of the code deployed on the blockchain can also be a
burden, if the code contains a bug. Fortunately, there are already migration patterns in
most solidity frameworks so that vulnerable code can be replaced by a new safe version
of the code. This works through a migration contract which stores the address of the
currently used smart contract. If this contract becomes vulnerable, the owner of the
contracts can deploy a new smart contract and point the migration contract to the new
and safe one. Since all of this happens on the blockchain the old smart contract will still
exist and the switch to the new one will be fully transparent.

5.4.16 What are possible attack vectors on the data storage?

Conditions to bring the system to a standstill

There is also the threat of attacks, like a distributed denial of service (DDoS) attack, on
the Ethereum network or on the Git hosting provider. Such an attack on a blockchain
network can have different targets. Saad et. al. discuss a DDoS attack on the Mempool,
where transactions are collected before they are included into a block, by creating a
massive transaction backlog [STTM18].
The Ethereum network suffered a similar kind of attack, which can actually be classified
as a denial of service (DoS) attack, in 2016 over the duration of a whole month. A
malicious attacker used a bug in the code to create a huge amount of dead accounts,
which he used to flood the network [Mee16]. These kinds of attacks, however, could not
only be targeted at the blockchain network itself, but also at other parts of the crucial
infrastructure of the blockchain project, e.g. its Github repository.

In fact, Github also has already been the victim of multiple DDoS attack. The last
one in January of 2018 was the biggest DDoS attack in terms of traffic so far [New18].
Github had an outage of its service for about 20 minutes, during which they were able to
successfully reroute the malicious traffic to their DDoS mitigation server. Afterwards,
the service continued working as before. Although a DDoS attack cannot change the
data, it can prevent users from accessing it, which can lead to a massive damage for the
stakeholders who are not able to work with it.

In general, we consider the Ethereum and the Git protocol as similar in terms of
vulnerability to a DDoS attack. Both enable the storage of all data both on a local

56

5.4. Evaluation Results

machine and on a remote server in a decentralized manner so that, if there is an attack
on one point of the network, the other stakeholders can still access the data. However,
if the Git repository is hosted on a central server or on a hosting provider, the risk of
getting attacked is much higher because there exists a single point of failure that can be
targeted by an attacker.

5.4.17 How private is the data?

Authorization permissions to read data on the Ethereum blockchain

If BIM models are directly written into the Ethereum blockchain everyone who is running
a fully synced node has the data of the BIM models on his computer. The data that is
being saved to the Ethereum blockchain is fully available to the public, which is one of
the key reasons that the technology provides the traceability property. If data should be
written privately to the system, without the possibility of unauthorized user access, it
needs to be encrypted with a strong enough algorithm and the key to the encryption has
to be shared through a different means.

Authorization permissions to read data on a Git repository

Git does not have any access control systems integrated. However, it can be configured
so that only authorized users have access to a repository. Hosted solutions, like Github,
do provide a sophisticated permission system enabling the creation of private repositories,
where the administrator can add collaborators who are allowed to read or read and write,
and everyone else does not have access to the data.

57

5. Evaluation

5.5 Evaluation Summary
In this section we summarize the findings of our evaluation.

On the topic of the economic questions, we determined that the volatility of ether could
lead to a problem for construction projects. The volatility of the cryptocurrencies’ value
is especially problematic because the rest of the project is handled in dollar or another
traditional currency. This makes the business calculations and, therefore, the budgetary
planning difficult. There are some stable coin cryptocurrencies on the market which try
to keep a 1:1 ratio to, e.g., dollar. The usage of such a stable coin could be explored as
further research.

In addition, we have come to the conclusion that data storage on Ethereum is very
expensive compared to our Git solution. The storage of the BIM models on the Ethereum
blockchain does not make sense from an economic standpoint. BIM models can quickly
grow to a huge size, which would also drive the storage costs up. The evaluation shows
that there is also improvement potential for our ChangeManagerContract. Putting the
additional information, the cost and the time estimation into the Git repository, instead
of the smart contract, would minimize costs for our prototype even further.

On the other hand, smart contract processes are quite cheap on the Ethereum blockchain.
The most expensive action is the deployment of the smart contract, because this can also
be seen as a data storage operation costing about 1 dollar at the time of the evaluation.
Then the subsequent change request creation and voting process is less than 10 cents per
call. This could be cheaper than traditional paper workflows. However, this assumption
would need further evaluation to confirm or reject it.

Considering the economic evaluation results, we can confirm the decision to use the
Ethereum blockchain for the change management processes and Git for the storage as
the best choice in comparison to an Ethereum or Git only solution.

Concerning the technical questions, we concluded that the storage of big files on Ethereum
is not viable, because the data needs to be split up to fit into blocks, which have a limit
of about 1 megabyte. All the parts of the file would need to be included into different
blocks, which could take a long time since a new block is only created about every 15
seconds. The time needed to push a large file onto the blockchain is has proven excessive
for our use case. The change management processes, which comprise of the creation of a
a new ChangeRequest on the Ethereum blockchain, managing and voting on it, on the
other hand, can be considered viable, because, using this technology, the function calls
should be finished in under one hour. This timeframe includes the needed confirmations
to ensure certainty in the finality of the transaction. For this solution it is sufficient to
store a hashed version, like a Git commit hash, of the BIM model on the blockchain to
make the processes as cost-efficient as possible.

For the Git protocol, there is no technical limitation on the file size and the file transfer
speed is only limited by the transfer speed of the hosting server. If a commercial Git
hosting solution, such as Github or Bitbucket is used there are limitations on the file size

58

5.5. Evaluation Summary

but there is a solution for this. Git Large File Storage is an open source project used
by these providers to outsource the storage of big files to a cloud while still keeping a
textfile with a hash of the big file in the repository. This ensures that the traceability,
which the standard Git protocol provides, is still maintained.

As we have seen, a voting process on Git would also be very quick. A technical issue we
would be facing, when trying to implement a voting algorithm into Git, is that it is not
possible to prove that the vote has existed at a certain point in time. A timestamp in
Git can be forged when committing a new change. This is not possible on the blockchain,
because the timestamp gets inserted into a block when it gets mined, and if the block is
not within a certain time range relative to the last block’s timestamp the block is not
accepted into the chain. This mechanism provides means to prove the existence of a
transaction and its content within a fixed time period.

There are some concerns regarding the scalability of the Ethereum platform. The network
can become clogged by transactions at times of high usage, which can lead to temporary
increase of transaction prices. Furthermore, the increasing size of the blockchain itself is
considered an issue when a stakeholder wants to host his own Ethereum node. There are
many researchers working on finding a way to solve these problems. We see this as one
of the biggest issues the Ethereum and other comparable smart contract platforms need
to overcome in order to become a sustainable and usable solution.

On the topic of political questions, we discussed the (de-)centralization property of the
solutions. In general, we found the Ethereum network to be better suited for the voting
process because of the proof of existence mechanism and its better decentralization. On
the Ethereum blockchain, an attacker would have to obtain more than 51% of the hashing
power over a time period to be able to control the blockchain state. Although she would
not be able to create arbitrary transactions, she could remove valid transactions or stop
new transactions from being accepted into the blockchain state.

We have come to the conclusion, that even though it is possible to detect tampering with
the data on a remote Git repository, the data can be changed by administrators at any
time. The Git hash of the changed commit and its children in the tree would change,
but there is no inherent way to determine which commit history is the truth.

One issue that we encountered in our evaluation is the rather small community which
is developing the Parity-Ethereum client software. There are only 179 contributors
registered and only 374 users watching the repository. This amount is rather small
considering the distribution of the software on the Ethereum network, which amounts to
about 22.8% of all full nodes. However, there is the alternative of the most used client
software, geth, whose repository has 383 contributors and is watched by 2044 users.
Regarding the Git protocol, we do not have concerns due to a lack of contributors (>1000)
or watchers (>2000). Considering these numbers, we suggest using the geth client in
combination with Git for the change management process.

On the topic of security, we discussed various concerns and attack vectors. For the
Ethereum network, one concern is the 51% attack, which, due to the size of the whole

59

5. Evaluation

network, is very expensive in terms of needed hashing power. We discussed the general
problem of the compromise of private keys and Git’s weakness in the hashing algorithm
SHA-1. However, in newer versions of the Git software, the issue of the SHA-1 algorithm
has been largely resolved, so that its use can be considered secure.
Finally, we also touched on Ethereum and its novelty, which leads to many security
issues because of inexperienced developers and missing best practices. Developers need
to be very careful when they design and implement a smart contract. Although there are
update possibilities for smart contracts, through switching out whole contracts, bugs can
become costly before they are found.

We conclude that there are many attack vectors in the various technologies. As already
stated, Ethereum can be considered as uninvestigated due to its novelty. We would advise
to do more research before using this technology in a production environment. Formal
verifications of smart contracts, which have been the topic of several research groups,
already offer a way to ensure that a smart contract is working as intended [BDLF+16]
[Mue18] [HSZ+17].

Git has been used by many developers for years and is considered very secure. If any
vulnerabilities appear the open source community around the technology is quick to
discuss the implications and provide a fix. This is due to the huge amount of people who
contribute to the open source project. In our estimation, Git can be considered secure
and safe to use in production.

In conclusion, our evaluation shows that it is not feasible to store BIM models directly
on the Ethereum blockchain due to high costs and low performance of the protocol in
terms of storage. Git can be used for the storage, but is also not ideal, because of its
actual designation to be used for smaller textfiles. The Git Large File Storage could
provide a solution for this issue and still offer the same mechanism of fraud detection, as
the standard Git protocol does.

We also demonstrated that processes and function calls on Ethereum are cheap and
complete in a reasonable time, when the network is not clogged. Smart contracts need to
be optimized to store as little data as possible. In the case of our prototype, one could
save some cost by only storing the Git hash on the blockchain and putting the additional
information, cost and estimation directly into the referenced Git commit.
These insights confirm that a hybrid solution, where Git is used for storage and the
Ethereum network is used for the change management processes is the most practical
and viable solution of the three proposed.

However, we also discussed a lot of the weaknesses of the Ethereum environment. The
issue of scalability is one of the deciding factors in the adoption of the technologie in
production applications in the construction sector. E.g., a congestion of the network
could be highly problematic for a construction project if time critical decisions have to
be made on changes.
Another problem is the volatility of the used cryptocurrency, ether. Construction projects
often need to plan their budget over several years. This makes the usage of a highly

60

5.6. Threats to Validity

volatile currency impractical.
The novelty of the technology is an issue as well. The development of smart contracts
requires experienced developers due to the critical workflows they have to handle and
the costly consequences that can result from bugs. There is a dearth of established best
practices.

We recommend more research before using an application, such as a change management
smart contract, in production. However, with further refinement of the prototype and its
integration in BIM tools, such as SIMULTAN, a pilot project could be started to further
evaluate its practical uses.

5.6 Threats to Validity
We evaluated the three solutions based on external research. Due to the novelty of
Ethereum, there is only a small amount of peer reviewed literature in existence, which
often times does not focus on our area of research. Therefore, we were not able to find
enough relevant information in scientific literature. In addition, we also used information
which we found in stackoverflow.com and quora.com posts and a variety of blog posts.
The research on blockchain technology in general, but also on smart contract technology
in particular, is growing quickly, which gives us hope that a more scientifically sound
approach will be possible in future work.

The prototype we have developed is just an explorational prototype and is not yet
optimized. The goal was to prove the viability of a change management application on
the Ethereum blockchain in combination with a Git repository. Therefore, more design
and development iterations are required to present a production-ready prototype, which
could be used to further and more accurately evaluate the underlying technologies for
the use case of a real construction project. Due to the limited scope of this work, we
delegate this task to future research efforts.

61

CHAPTER 6
Summary and Future Work

In this work we presented a new approach to a change management workflow. Based on
the requirements of a construction project with multiple stakeholders with different roles,
we used the combination of BIM and blockchain to propose a software solution to model
this workflow. Furthermore, we designed and implemented an explorative prototype as a
proof of concept using Git and the Ethereum ecosystem.
Finally, in the evaluation chapter we presented three different solutions, two of them
only theoretical, and analysed their viability in the context of a construction project. We
concluded that the hybrid approach that we used for our ChangeManager prototype is
the most practical and viable approach. This solution uses Git as a data storage and an
Ethereum smart contract for the actual change management process.
In the course of this work some challenges and aspects of our use case could not be
addressed. We will suggest possible future work in this section.

In the course of the evaluation we also found multiple improvement possibilities for the
ChangeManager in order to make it more efficient in terms of costs and security. In this
part we present the improvement opportunities for future iterations of the ChangeManager
prototype.
To decrease the cost, as much data as possible should be stored in the Git repository. It
is enough to store the commit hash of a change request and the votes of each stakeholder
on the blockchain. Additional information for change requests should be stored in the
repository. The additional information for the votes could either still be saved in the
smart contract or also put into Git commits, which are then referenced from the smart
contract. This depends on the size of the additional information since, as we demonstrated
in chapter 5, data storage on the blockchain can become very costly.

In terms of security, we consider more research on formal verification of the ChangeM-
anagerContract necessary, before using it in a construction project. The current smart
contract should only serve as a proof of concept and has not been reviewed in terms of
security. A formal verification could prove that the ChangeManagerContract behaves

63

6. Summary and Future Work

correctly no matter what the users provide as an input.
An evaluation if there is the possibility for the contract to become deadlocked because
the stored data in the contract drives up the size of a transaction over the block limit, is
an example case for future research in terms of reliability.

In general, to improve costs, performance and security, research on common best practices
to be used in smart contracts could also bring further enhancements to the current
prototype1 [WZ18].

Another area of research for future work would be an evaluation in a real-world construc-
tion project. New requirements for the workflow would certainly arise and the prototype
could be further refined. The evaluation of the integration of the ChangeManager into
the SIMULTAN software could be used to generate new results. Since the SIMULTAN
software is already used in actual construction projects it has proven to be an effective
experimental interface for the interaction with BIM models by stakeholders. The integra-
tion with the ChangeManager software can be used to conduct user tests and further
evaluate the combination of, on the one hand, Git and the Ethereum ecosystem and, on
the other hand, BIM and blockchain. For the evaluation in a construction project, we
suggest attempting a parallel use between the traditional workflow and our BIM and
blockchain change management process.

Future research, on the blockchain layer future research could include the automatic
payments to stakeholders once a change request with a certain cost and time estimation
has been accepted. This could automate the monetary transaction process and exclude
banks from the process. The advantage would be the decreased time it takes the money
to get to and from the stakeholders. However, as we already demonstrated in chapter 5,
the volatility of the underlying cryptocurrencies can be an issue when handling monetary
value on the blockchain.
In recent years, there has also been some research on stable coins, which are cryptocur-
rencies whose value is connected to the value of a traditional currency [Orl17]. This
is done by backing the stable coin which is, e.g., trading for $1 per coin, by the same
amount of actual dollars. There has to be a trusted third party which guarantees that 1
coin can always be exchanged for $1. This could be especially interesting for construction
businesses, which are calculating in US dollars.

A further area of research on smart contracts in the construction business would be on
the question if data committed to the blockchain would be admissible in court. A legal
study could evaluate if a vote on the blockchain is enough evidence to hold a stakeholder
accountable for his acceptance or rejection of a change request.

1https://consensys.github.io/smart-contract-best-practices/

64

In conclusion, although our evaluation answers a lot of questions, new questions emerged
during the research, implemenatation and evaluation processes. In particular, questions
of long term viability and how the BIM and blockchain usage will develop in general
can only be answered in the future and through further research. This work and the
explorative prototype it presents should be seen as a first step and can be used as the
foundation for further research at the crossroads of these two research areas.

65

List of Figures

4.1 Parallel processes of commiting a change on Git in red and handling a
ChangeRequest on the Ethereum network in purple. 23

4.2 Possible states of a ChangeRequest and the transitions between them including
the conditions . 27

4.3 Change management process and the different possible states for a Chang-
eRequest. 33

4.4 Creation or Reuse of a ChangeManagerContract 34
4.5 Proposing a new ChangeRequest . 34
4.6 Managing a ChangeRequest . 35
4.7 Conducting a responsible vote on a ChangeRequest 36
4.8 Rejected ChangeRequest . 37

67

List of Tables

5.1 Number of Contributors and Watchers . 54

69

Bibliography

[ale18] alethio. Are Miners Centralized? A Look into Mining Pools.
https://media.consensys.net/are-miners-centralized-a-look-into-mining-
pools-b594425411dc, May 2018.

[Aut02] Autodesk. Building Information Modeling. Technical report, Autodesk,
2002.

[Baa17] Hans-Joachim Baader. Torvalds zur Zukunft von SHA-1 in
Git. https://www.pro-linux.de/news/1/24497/torvalds-zur-zukunft-von-
sha-1-in-git.html, February 2017.

[BBF+18] T. Bednar, D. Bothe, J. Forster, S. Fritz, M. Gladt, C. Handler, N. Haufe,
M. Hollaus, S. Jambrich, T. Kaufmann, L. Kranzl, G. Paskaleva, N. Rab,
J. Schleicher, K. Schlögl, C. Steininger, and M. Ziegler S. Wolny. Simultane
Planungsumgebung für Gebäudecluster in resilienten, ressourcen- und höchst
energieeffizienten Stadtteilen. Technical report, TU Vienna, 2018.

[BDLF+16] Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric Fournet, Anitha
Gollamudi, Georges Gonthier, Nadim Kobeissi, Natalia Kulatova, Aseem
Rastogi, Thomas Sibut-Pinote, Nikhil Swamy, and Santiago Zanella-Béguelin.
Formal Verification of Smart Contracts: Short Paper. In Proceedings of the
2016 ACM Workshop on Programming Languages and Analysis for Security,
PLAS ’16, pages 91–96, New York, NY, USA, 2016. ACM.

[BRM17] Brian Bowe, Dan Robles, and Mathews Malachy. BIM+Blockchain: A
Solution to the Trust Problem in Collaboration? CITA BIM Gathering
2017, 2017.

[But13] Vitalik Buterin. A Next Generation Smart Contract & Decentralized Ap-
plication Platform (Ethereum White Paper). Technical report, Ethereum
Foundation, 2013.

[BWM+17] Filipe Barbosa, Jonathan Woetzel, Jan Mischke, Jan Mischke,
Mukund Sridhar, Mukund Sridhar, Mukund Sridhar, and Mukund

71

Sridhar. Reinventing Construction: A Route To Higher Pro-
ductivity. https://www.mckinsey.com/industries/capital-projects-
and-infrastructure/our-insights/reinventing-construction-through-a-
productivity-revolution, February 2017.

[CMVM18] Anamika Chauhan, Om Prakash Malviya, Madhav Verma, and Tejin-
der Singh Mor. Blockchain and Scalability. In 2018 IEEE International
Conference on Software Quality, Reliability and Security Companion, QRS
Companion 2018, Lisbon, Portugal, July 16-20, 2018, pages 122–128, 2018.

[Cou18] Stephen Cousins. French start-up develops Blockchain solution for
BIM. http://www.bimplus.co.uk/news/french-start-develops-blockchain-
solution-bim/, June 2018.

[CR94] Victor R Basili-Gianluigi Caldiera and H Dieter Rombach. Goal question
metric paradigm. Encyclopedia of software engineering, 1:528–532, 1994.

[CS14] Scott Chacon and Ben Straub. Pro Git - Second Edition. Apress, 2014.

[EDG+74] Charles Eastman, Fisher David, Lafue Gilles, Lividini Joseph, Stoker Dou-
glas, and Yessios Christos. An Outline of the Building Description System.
Technical report, Carnegie-Mellon University, Pittsburgh, PA. Institute of
Physical Planning, 1974.

[FBF+18] Ghareeb Falazi, Uwe Breitenbücher, Michael Falkenthal, Lukas Harzenetter,
Frank Leymann, and Vladimir Yussupov. Blockchain-based Collaborative
Development of Application Deployment Models. In On the Move to Mean-
ingful Internet Systems. OTM 2018 Conferences (CoopIS 2018), volume
11229 of Lecture Notes in Computer Science, pages 40–60. Springer, 2018.

[flo16] flow.ci. GitHub vs. Bitbucket vs. GitLab vs. Coding.
https://medium.com/flow-ci/github-vs-bitbucket-vs-gitlab-vs-coding-
7cf2b43888a1, September 2016.

[HSZ+17] Hildenbrandt, Saxena, Zhu, Rodrigues, Daian, Guth, and Ro¸su. KEVM:
A Complete Semantics of the Ethereum Virtual Machine. 2018 IEEE 31st
Computer Security Foundations Symposium (CSF), 2017.

[Kar16] Ghassan Karame. On the Security and Scalability of Bitcoin’s Blockchain.
In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages
1861–1862, 2016.

[KKC18] Soohyeong Kim, Yongseok Kwon, and Sunghyun Cho. A Survey of Scalability
Solutions on Blockchain. In International Conference on Information and
Communication Technology Convergence, ICTC 2018, Jeju Island, Korea
(South), October 17-19, 2018, pages 1204–1207, 2018.

72

[KN89] Kappel and Nierstrasz. Prototyping in einer objektorientierten Entwicklung-
sumgebung. HMD, Heft 145, S. 116-125, 1989.

[KP12] Karen Kensek and Jinhua Peng, editors. Practical BIM 2012. School of
Architecture, University of Southern California, The USC BIM Symposium,
July 2012.

[Kre18] Karl J. Kreder. BlockReduce: Scaling Blockchain to Human Commerce.
CoRR, abs/1811.00125, 2018.

[Kva18] Gabrijela Kvasina. Dokumentation bei zyklischen Tunnelvortrieb - Erhebung
von wesentlichen Parametern von Bauzeit und Kosten als Grundlage für ein
digitales Modell. TU Wien, 2018.

[Mee16] Danielle Meegan. Ethereum Continues to Suffer From DDoS At-
tacks. https://www.ethnews.com/ethereum-continues-to-suffer-from-ddos-
attacks, October 2016.

[MF18] Alexander Mense and Markus Flatscher. Security Vulnerabilities in
Ethereum Smart Contracts. In Proceedings of the 20th International Con-
ference on Information Integration and Web-based Applications & Services,
pages 375–380. ACM, 2018.

[MGC18] Salvador Martínez, Sébastien Gérard, and Jordi Cabot. Robust Hashing for
Models. In Proceedings of the 21th ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems, MODELS ’18, pages
312–322, New York, NY, USA, 2018. ACM.

[Mue18] Bernhard Mueller. How Formal Verification Can Ensure Flawless Smart
Contracts. https://media.consensys.net/how-formal-verification-can-ensure-
flawless-smart-contracts-cbda8ad99bd1, January 2018.

[MW03] E. M. Maximilien and L. Williams. Assessing test-driven development at
IBM. In 25th International Conference on Software Engineering, 2003.
Proceedings., pages 564–569, May 2003.

[Nak08] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System.
https://bitcoin.org/bitcoin.pdf, November 2008.

[Neu15] Alexander Neumann. Vor 10 Jahren: Linus Torvalds baut
Git. https://www.heise.de/developer/meldung/Vor-10-Jahren-Linus-
Torvalds-baut-Git-2596654.html, April 2015.

[New18] Lily Hay Newman. Github survived the biggest DDoS attack ever recorded.
https://www.wired.com/story/github-ddos-memcached/, January 2018.

[Orl17] José Ignacio Orlicki. A Stable Coin with Pro-rated Rebasement and Price
Manipulation Protection. CoRR, abs/1708.00157, 2017.

73

[PHdB17] Fernando G. Papi, Jomi Fred Hübner, and Maiquel de Brito. Instrumenting
Accountability in MAS with Blockchain. In Proceedings of the First Workshop
on Computational Accountability and Responsibility in Multiagent Systems
co-located with 20th International Conference on Principles and Practice
of Multi-Agent Systems, CARe-MAS@PRIMA 2017, Nice, France, October
31st, 2017., pages 20–34, 2017.

[RV17] Ravi Kiran Raman and Lav R. Varshney. Dynamic Distributed Storage for
Scaling Blockchains. CoRR, abs/1711.07617, 2017.

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and Yarik
Markov. The First Collision for Full SHA-1. In Jonathan Katz and Hovav
Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages 570–596,
Cham, 2017. Springer International Publishing.

[STTM18] Muhammad Saad, My T. Thai, and Aziz Mohaisen. POSTER: Deterring
DDoS Attacks on Blockchain-based Cryptocurrencies through Mempool
Optimization. In 13th ACM ASIA Conference on Information, Computer
and Communications Security, pages 809–811, 05 2018.

[Wan17] Kyle Wang. Ethereum: Turing-Completeness and Rich Statefulness Ex-
plained. https://hackernoon.com/ethereum-turing-completeness-and-rich-
statefulness-explained-e650db7fc1fb, July 2017.

[Wen17] Jürgen Wenisch. Smart Contracts. TU Wien, Wien, 2017.

[Woo14] Gavin Wood. Ethereum: A Secure Decentralised
Generalised Transaction Ledger Byzantium Version.
https://ethereum.github.io/yellowpaper/paper.pdf, March 2014.

[WZ18] Maximilian Wohrer and Uwe Zdun. Smart Contracts: Security Patterns
in the Ethereum Ecosystem and Solidity. In Blockchain Oriented Software
Engineering (IWBOSE), 2018 International Workshop on, pages 2–8. IEEE,
2018.

[YHKC+16] Jesse Yli-Huumo, Deokyoon Ko, Sujin Choi, Sooyong Park, and Kari Smolan-
der. Where Is Current Research on Blockchain Technology? - A Systematic
Review. PLOS ONE, 11(10):e0163477, oct 2016.

74

	Kurzfassung
	Abstract
	Contents
	Introduction
	Context
	Problem Statement
	Solution and Methodological Approach
	Structure of this Work

	Preliminaries
	Building Information Modeling
	Introduction to Blockchains
	A Combination of a smart contract and BIM

	State of the Art
	BIM
	Blockchain

	Realization
	Requirements
	Operating Principles of the Prototype
	Architecture
	SIMULTAN Software Tool
	Git
	Smart Contract
	The Frontend

	Evaluation
	Goal
	Questions and Metrics
	Evaluation Plan
	Evaluation Results
	Evaluation Summary
	Threats to Validity

	Summary and Future Work
	List of Figures
	List of Tables
	Bibliography

