
Quality of Service for cloud
services using control theory

Quality of service for VoIP cloud services using PI
Controller based on Horizontal Scalability

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering and Internet Computing

eingereicht von

Ing. Oliver Schaumüller, BSc
Matrikelnummer 0726262

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof Ivona Brandić

Wien, 12. Oktober 2018
Oliver Schaumüller Ivona Brandić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Quality of Service for cloud
services using control theory

Quality of service for VoIP cloud services using PI
Controller based on Horizontal Scalability

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Ing. Oliver Schaumüller, BSc
Registration Number 0726262

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof Ivona Brandić

Vienna, 12th October, 2018
Oliver Schaumüller Ivona Brandić

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Ing. Oliver Schaumüller, BSc
Pfingswiese 19, 2011 Sierndorf

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 12. Oktober 2018
Oliver Schaumüller

v

Danksagung

Vielen Dank an meine Familie für ihre Unterstützung in jeder Situation, meine Freunde
für deren Geduld und meiner Betreuerin für ihre Unterstützung.

vii

Acknowledgements

Many thanks to my family for assistance in all manner of situations, to my friends for
their patience and support and my advisor for her helpful mentoring.

ix

Kurzfassung

Horizontales Elasizitätsmanagement ist eines der zentralen Kernkonzepte, welches Clouds
im Gegensatz zu herkömmlichen Rechenzentren unterscheidet. Dies erlaubt es autonom
auf Änderungen der Anforderungen zu reagieren, wodurch Nachfrage basierend scheinbar
endlos Ressourcen zur Verfügung gestellt werden können.

Das Datenvolumen von VoIP Netzwerken steigt jährlich, da höhere Bandbreiten verfüg-
bar sind. Dieser Effekt wird vor allem durch mobile Geräte wie Smartphones getrieben,
welche Applikationen wie Skype, Whatsapp, Viber oder Facetime ermöglichen und die
der Anwender griffbereit ständig bei sich hat. Service Provider müssen sich der ständig
ändernden Auslastung stellen und ihre Services dementsprechend designen. Besondere
Ereignisse wie Silvester, Katastrophen oder weltweite Sportevents lassen die Auslastung
kurzfristig hochschnellen.

Um mit den Anforderungen fertig zu werden, setzen die Service Provider auf horizontale
Skalierbarkeit. Daher beschäftigt sich diese Arbeit mit Methoden der Regelungstechnik,
um diese Prozesse zu steuern. Als Steuerungsgrößen werden qualitative Größen aus der
VoIP Welt verwendet. Die Arbeit versucht zu beantworten, ob klassische Methoden der
Regelungstechnik für die Steuerung von Clouds geeignet subd.

In der Arbeit wird Anhand eines in R simulierten Modells die Steuerung eines solchen
Prozesses simuliert und gezeigt wie auf Störgrößen reagiert werden kann.

xi

Abstract

Horizontal elasticity management is one of the core concepts which distinguishes clouds
from common data centers. This concept allows to react on changes of the requirements
easily on demand. Therefore, the impression of infinite resources arises.

The data volume of VoIP networks increases year by year driven by mobile devices
such as smartphones. These devices enable applications like Skype, Whatsapp, Viber,
Facetime and others to be carried in the user’s pocket. Service providers face fluctuation
in demand of their services and design their applications for those purposes. Especially
events like New Year’s Eve, catastrophes or worldwide sport events let the demand
skyrocket in a short time window.

To handle the gap in demand, cloud providers need to scale their applications au-
tonomously. As a result, this work is dedicated to control theory methods to control
such processes. As a control variable, qualitative metrics of VoIP technology will be used.
This work’s purpose is to answer the question if classical control theory can be used to
accomplish the task of horizontal elasticity in clouds.

A model simulated in R will show how such control loops react to disturbances.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 2
1.2 Problem Statement . 4
1.3 Aim of the work . 5
1.4 Methodological approach . 7
1.5 Structure of the work . 8

2 State of the art / analysis of existing approaches 11
2.1 Control Theory . 11
2.2 Metrics . 17
2.3 Cost-Efficient Utilization in cloud services 23
2.4 Voice over IP (VoIP) . 26

3 Methodology 37
3.1 Programming languages and used software 37
3.2 Methodologies for Configuring Controllers 38

4 Suggested Solution 45
4.1 Architecture for a VoIP cloud service 45
4.2 Definition of SLOs and Selection of Metrics 47
4.3 Requirements for a VoIP cloud service 48
4.4 Design of the controller . 48
4.5 Definition of a utility and a cost function 51

5 Evaluation 53
5.1 Test Environment . 53
5.2 Analysis of the working solution . 55
5.3 Evaluation of Costs . 58

xv

5.4 Comparison with other Controller Types 59
5.5 Complexity Analysis . 60

6 Summary and future work 63

List of Figures 65

List of Tables 67

List of Algorithms 69

Bibliography 71

CHAPTER 1
Introduction

Cloud Computing has changed the industry tremendously and allows service providers to
elastically scale their services. One of the key services in every user’s life is communication.
Whether it is a skype call, a conference call at work, remote support, a teaching lesson
on Chinese or even computer games where people play in teams, all these conversations
are operated by modern VoIP technology.
All those services have in common that they are cloud services provided for users. Users
expect these services to function with proper performance and speech quality.

Since the term cloud computing has been heavily used in marketing campaigns, this work
extends the definition from Martin Sölkner’s diploma thesis [Sö] as follows:

A cloud represents n ≥ 2 physical machines (PM) which are connected over a
network with each other. Virtual Machines (VM) are hosted on these PMs and
simulate hardware for users. Many VMs can run on one PM. It is possible to
execute software applications on a VM.

A cloud service is a software application that is distributed on several
VMs but acts transparent to users.

As shown in figure 1.1, if fixed resources are available, costs are always the same whether
used or not. In the second picture in figure 1.1, a virtualized environment with horizontal
scalability shows that the costs are rising and falling with the workload.

Even though virtualization needs additional resources, it still pays off due to gained
flexibility in terms of scalability.

1

1. Introduction

Figure 1.1: Dynamic resource allocation in cloud infrastructure

In case of higher customer demand, the service provider can dynamically adjust to
new demand on computing resources. As an example for this work shall serve a VoIP
service provider such as Skype. VoIP service providers provide their users communication
solutions according to their demand. It is in the service provider’s interest to maintain
as little resources as possible due to the higher costs involved. If the service provider
had to maintain the resources for peak times, a lot of computing resources would remain
unused. This would lead to higher costs for Skype as well for their customers.

1.1 Motivation
In fact, modern Voice over IP (VoIP) service providers face fluctuation in phone calls every
day and on popular events the number of phone calls peaks rapidly and decreases at the
same pace. Furthermore, Mobile traffic forecasts 2010-2020 report [20111] indicate that
mobile traffic will double until 2020 as can be seen in figure 2.1. As a direct implication,
the report [20111] also indicates that the traffic of VoIP service will grow proportionally
to those numbers.

Mobile traffic is predicted to double until 2020. The number of calls changes
dramatically over a day. As a result, service providers are highly interested to
dynamically adjust to the workload.

The report’s forecast states: It is inevitable that mobile VoIP will be adopted on mass
scale in the next ten years and will trigger increases in the mobile voice traffic. This is
mainly due to attractive pricing of international calls. A second figure from the report
(figure 1.3) shows that the number of mobile VoIP users is also constantly growing. This
trend is a consequence of sinking hardware costs and the fact that mobile phones have
more capabilities than ever before. Today’s smartphones have enough power to perform
tasks like playing games, browsing the internet, perform video conferences and many
more for which a computer was needed before. In their work Modeling Call Arrivals on
VoIP Networks as Linear Gaussian Process under Heavy Traffic Condition Ajarmeh et
al. [AAY11] studied the number of calls received during a typical week on one tandem

2

1.1. Motivation

Figure 1.2: Monthly traffic per device until 2020

Figure 1.3: mobile VoIP market

central office in the network. In Figure 1.4 the line graph shows that the number of calls
is alternating periodically with every day. The vertical axis illustrates the number of
calls and the horizontal axis represents the days of a week. Ajarmeh et al. observed that
during evenings the number of calls is generally higher while in the early morning it is
usually lower. Furthermore, on Saturdays and Sundays there are less calls in general.

As a consequence, in times when the number of calls decreases less computational
power is needed.

Another interesting case are special events that drive the workload to rise extremely.

3

1. Introduction

Figure 1.4: Workload for VoIP calls during a week

For example, it is a natural effect that on special occasions like New Year’s Eve or huge
sport events the number of calls sharply increases. People all over the world want to
communicate with each other during this event. Of course such events have an impact
on the infrastructure of a service provider.

Summing up, each New Year’s Eve the number of calls is peaking.

Since daily fluctuation as well as predicted or unpredicted changes on the workload
occur, service providers like Skype or Whatsapp have a natural interest in automatic
algorithms providing users capacity on demand.

1.2 Problem Statement

On the one hand, a service provider wants to deliver its customers the best quality
possible, but on the other hand, a minimum number of virtual machines should be used.

4

1.3. Aim of the work

Therefore, they have to define service level agreements (SLA) that define the quality
or resources they are willing to deliver. As a consequence, a service provider has to
implement a controller which starts and stops virtual machines on demand.

Taking the demand for such an algorithm into account, this work shows how to use
control theory in the context of informatics as a tool for horizontal scalability.

This work applies horizontal elasticity using closed control loops to cloud computing
on the example of a VoIP service. A special focus is on long time delays in such
control loops, since they cause instability insuch systems. Methods to prevent such
instability are compared.

The application that runs a VoIP service is called a Private Branch Exchange (PBX). A
PBX is a telephone switching system for handling multiple telephone lines and connecting
them with a Public Switching Telephony Network (PSTN). In the chosen example, one
can assume that the PBX is installed on virtual machines. This work uses FusionPBX
as a PBX since it is based on Freeswitch and offers a web interface for managing the
service. Additionally, it records calls and delivers a data basis for further analysis of the
quality of each single call. FusionPBX runs perfectly on Linux and can also run in a
docker container which would be an ideal prerequisite for usage of a cloud provider.
In order to implement such a controller, the service provider also needs to monitor the
quality of calls for each virtual machine. This work shows how to obtain the needed data
from FusionPBX.
Since the aim of this work is to show horizontal scaling, a load balancing service for
all incoming calls is needed. Load balancing is implemented using a session boarder
controller (SBC) with a round-robin distribution algorithm. The SBC separates the
public and private network, like a firewall for the VoIP service, and standardizes the SIP
and RTP streams, which are received from various clients.
For the sake of simplicity, one can assume that the network bandwidth is infinite and
that the session boarder controller has enough resources at all levels of workload. In a
real-world example this is not the case, but these assumptions makes the design of the
controller much easier and allow for a focus on the scientific problem.

However, the number of PBX servers should be dynamically adjusted to required workload.
Therefore, a method or algorithm is needed to accomplish this task.

1.3 Aim of the work

This section describes the aim of this work consisting of some important criteria finally
resulting in the research question.

Application of control theory in cloud computing

5

1. Introduction

The objective of the work is to show that control theory is applicable in computer sciences.
Since control theory is used in electrical engineering for applications such as controlling
the room temperature, there is already a large variety of scientific studies. As a result,
control theory is well studied and accepted among the scientific community.
Cloud computing on the other hand is a comparably young research field, which has
developed a high demand in controlling system parameters to increase the performance
of services. The demand on controlling algorithms is due to the increasing flexibility and
scalability in this field. Therefore, this work verifies if approaches known from electrical
engineering can be adapted to cloud computing, using a large variety of already existing
approaches.

Application of classical control theory in cloud computing
The previous paragraph has already described that control theory historically provides a
huge vareiety of approaches. This paragraph elaborates this even more by exclusively
narrowing down to classical control theory. Classical control theory was used for decades
in electrical engineering, and since there is no need of using a microprocessor, the con-
trollers only consist of discrete electrical elements built from resistors, capacitors or
electrical coils (inductivities). Those elements were available long before the invention of
semiconductors and were used to build PID controllers. Nowadays there are computers
available which do not suffer restrictions that have been present in the past.
PID is a combination of proportional, integrative and derivate controller components.
Due to their simple design, this work tries to use this controller type to control the
quality of VoIP calls.

Selection of appropriate metrics
Another aspect of this work is to analyze which metric is suitable as a controlled variable
for the proposed problem statement. Therefore, this work covers the different types of
metrics and goes into depth on analyzing Voice over IP (VoIP) protocols and codecs.
It is expected that this analysis leads to a variety of possible metrics. Eventually, this
should lead to a representative choice of metrics from which a suitable one is selected.
The well-chosen metric is then verified if it is easy to measure, which is exemplified on
an open-source PBX. In summary, the requirements for the controlled variable are, that
it is easy to measure and represents directly or indirectly the current quality of the service.

Configuration of the selected controller
Additionally, this work defines a methodology of how to configure such a controller
considering influences like delays, which easily cause instability in controllers. This is
mandatory since this is a well-known phenomenon in closed loops using classical con-
trollers. Therefore, multiple methods of achieving a stable configuration are introduced
describing their aspects and for which applications they are usually used. In a second
step, the methods are compared with each other and a suitable method is selected. The
reasons for the selections are explained to further justify the decision.

6

1.4. Methodological approach

Critical Evaluation
Finally, the selected controller is evaluated on several properties. Also, the work compares
different approaches and analyzes their applicability for the topic.
The primary focus is on the following properties:

Applicability: The work shall show that classical control theory can be applied
in computer sciences.

Flexibility and Adaptability: The provided solution shall be flexible and easily
adapted to other applications in cloud computing

Horizontal Scalability: The solution shall enable the controlled system to
perform horizontal scalability.

Identification of metrics: Concrete metrics shall be suggested for the applica-
tion of cloud telecommunication.

Cost-effectiveness: The provided solution shall be cost-effective.

Consistency and Stability: Stability is an important property of closed looped
control loops. The work shows that the suggested solution is stable.

Research Question
Considering all subsidiary topics, the aim of the present work is to answer the following
fundamental research question:
Is classical control theory using PID controllers applicable to control the quality of calls
in Voice over IP services?

1.4 Methodological approach

As a methodological approach, this work is based on case based evidence. The problem
is analyzed through the following steps:

• First, an introduction on control theory is given, which covers closed control loops,
PID controllers and more advanced approaches such as the Smith Predictor. Also,
methods to configure and tune controllers are presented to the reader. Furthermore,
the design problems when using classical controllers are discussed. Also, state-of-
the-art approaches like the MAPE (Monitor, Analyze, Plan, Execute) control loops,
a mechanism providing self-adaption for controller, in chapter 2.1.3 are compared.

• After a brief introduction on metrics, a selection of usable metrics for the provided
problem is given. The metrics are selected in order to provide the best possible
speech quality for the user. This may be achieved by using direct or indirect
metrics.

7

1. Introduction

• To provide an example on how such a service can be built, a VoIP service is
proposed. Requirements from users and service providers are formulated as service
level objectives.

• In the next step, a controller is selected based on its properties, so it is suitable
for the task. An analysis of delays and their impact on the controlled systems
is examined. After showing if delays due to starting a virtual machine lead to
instability of the controlled system, the controller is tuned using a methodology
for designing controller with long time delays. Eventually, the working solution is
presented.

• Finally, an evaluation of the solution is performed. The architecture of the test
environment is explained. Next, a complexity analysis on the algorithm of the
controller is performed, to examine the runtime of the same. Last but not least, a
comparison to other controller types as a basis for further comparison with future
controller implementations is presented.

1.5 Structure of the work

This work is structured into the following parts:

1.5.1 Introduction

The first part is an introduction to the work and gives the reader an insight into the field
of science that is discussed in this work. The Introduction is structured the following:
The first chapter provides the motivation, explainging why this work is important for the
field of science. Then a problem statement is given which provides a scientific problem
definition based on a concrete example for better understanding.

1.5.2 State of the art / analysis of existing approaches

The second part introduces the reader to the key concepts of control theory. It briefly
introduces closed control loops to the reader. The section also overviews the most common
controller types used in classical control theory such as P, I, D, PID controller. Since those
controllers are vulnerable to instabilities, this chapter presents those issues. However, a
way how to configure such controllers is introduced in the methodology chapter 3.

The next part of the chapter covers the Cloud Service Metric Model which, is a way to
capture information and describe and understand metrics. Then categories of metrics
are covered which have been standardized already and are followed by domain specific
metrics of VoIP Services, e.g.: the Perceptual Evaluation of Speech Quality (PESQ),
E-Model and the Mean Opinion Score. Additionally, topics like cost efficiency of cloud
services are covered.
Furthermore, a brief introduction on SIP, SDP and RTP is given in order to provide

8

1.5. Structure of the work

the basic concepts of modern Voice over IP (VoIP) technology. This is then used to
discuss several metrics. In the chapter about metrics basic terms around metrics in cloud
services are explained. At this point the work introduces domain specific performance
metrics for Voice over IP and covers the Perceptual Evaluation of Speech Quality (PESQ),
Mean Opinion Score (MOS) as well as the E-model. Finally, the E-Model is introduced,
showing how to compute the MOS factor with an algorithm.

1.5.3 Methodology

The chapter on methodology 3 presents the reader on the one hand commonly used tools
and concepts and languages. This covers R as a programming language up to the open
source software like the PBX software. On the other hand, this chapter also covers the
methods and concepts for designing and configuring controllers. This includes methods
like the Ziegler-Nichols closed loop method, the Chien, Hrones, Reswick tuning method.
Finally, the Smith Predictor as a compensator for delays is introduced.

1.5.4 Suggested Solution

In this chapter 4 the suggested solution to the scientific problem is presented based on
real world requirements. Firstly, the architecture of the proposed VoIP cloud service is
presented describing all components used. In the next step all Service Level Objectives
are defined and an utility and a cost function are proposed. Afterwards the requirements
on the VoIP cloud services are formalized. Last but not least, the design of the controller
is shown using the Nichols-Ziegler method.

1.5.5 Evaluation

Finally, the proposed solution is evaluated in chapter 5. In a first step, the built test
environment is described and suggests how to fetch the MOS values from the database
of the PBXs. This is followed up by showing the difference between the initially used
PID controller and the newly designed PI controller. Additionally, the source code is
presented and discussed. Next the efficiency of the controller is shown by suggesting a
formula to calculate the same. The result ensures comparability with other controllers
and tuning methods and eventually the controller is compared with other controller types.
Last but not least, a full complexity analysis is performed on the source code.

9

CHAPTER 2
State of the art / analysis of

existing approaches

This chapter gives an overview of the field control theory and classical controllers, shows
modern architectural patterns like the MAPE pattern, shows possible metrics for our
problem definition and compares all these approaches with respect to the goals of this
work.

2.1 Control Theory

The following section gives the reader a brief introduction to control theory that is used
for this work. First, how to classify controllers is described and then closed control loops
are covered in particular. Then the basic classical controllers are briefly explained, and
for which use cases they are useful in general. As a key point, this section also covers the
impact of large delays in closed loops and their impact on stability criteria.

Controllers are divided into two groups (please refer to figure 2.1): PIDT (PID and time
delay) controllers and modern controllers. PIDT controllers are well-researched and have
been applied to various analog and digital applications like controlling temperatures,
controlling the production of iron and many more. Modern controllers on the other hand
are used for more advanced problems when PIDT controller reach a certain complexity
or limit. Furthermore, they can deal with probabilistic variables and are not bound to
absolute values.

2.1.1 Closed Control Loop

A traditional way to use a controller is in a closed control loop as shown in figure 2.2.
The user defines a set point variable to tell the controller what the desired level should

11

2. State of the art / analysis of existing approaches

Figure 2.1: controller types

be. In their book [PAC06] the authors define a set point as follows:

Set Point
The set point is a value for a process variable that is desired to be maintained.

For example, if a process temperature needs to be within 5 degree Celsius of 100 degrees
Celsius, then the set point is 100 degrees Celsius. In this work, the set point variable is
represented by the desired quality of the call.

Error
The error is obtained by subtracting the current value (process value) which is
measured from the controlled system.

In their book[PAC06] the authors define process value as follows: A process variable is a
condition of the process fluid (a liquid or gas) that can change the manufacturing process
in some way. In the example of a person sitting by the fire, the process variable was
temperature.

The error is used put into the controller which reacts on this input and informs the
actuator on which action to perform on the controlled system. This is represented by the
utilization. The controlled system certainly changes its behavior on performed action.
This can happen in a linear or non-linear manner.

Additionally, disturbances can change the behavior of the controlled system. Disturbances
in this example are the number of calls the service must handle. Also, it is worth to
mention that it is possible that the controlled system is changing its process value with a

12

2.1. Control Theory

delay. The controller shall be designed to consider occurring disturbances and delays
equally.

Figure 2.2: closed control loop

2.1.2 Classical Controllers

This chapter presents different classical controllers, as they are used later in this work to
design a controller, which is able to handle delays occurring due to the startup time of
the VMs.

All classical controllers are composed of 3 parameters: P, I and D. P stands for pro-
portional, I for integrative and D for derivative. These basic controller components are
explained in this section with the help of bode plots expressing the frequency response of
a system.

A bode plot is a combination of a bode magnitude plot, expressing the gain on a
signal, and a bode phase plot, expressing the phase shift on a signal. The y-scale of
a bode magnitude plot is in decibel (dB) and the bode phase diagram is in degrees
while the x-scale represents the frequency using a logarithmic scale.

Furthermore, this work introduces the PID controller which is a combination of those
3 parameters. The impact on controllers of large delays is covered, as well how PI
controllers are used to minimize delays like VM start up time.
A proportional or P controller gives a linear feedback to a measured variable. Haager[Haa03]
defines a P Controller as follows: The output value xa(t) of a P controller is proportional
to the input value xe(t).

13

2. State of the art / analysis of existing approaches

Figure 2.3: I and D controller bode diagram

Frequency Response:
xa(t) = k ∗ xe(t)
Xa(s) = k ∗Xe(s)
Gain: G(s) = k

An integrative controllers’ feedback is not only according to the error but also regarding
to time. Haager[Haa03] defines an I controller as follows: The output value xa(t) of a P
controller is proportional by the time integral to the input value xe(t).

Frequency Response:
xa(t) = kI ∗

∫ t
0 xe(τ)

Xa(s) = kI
s ∗Xe(s)

Gain: G(s) = kI
s

A derivate or D controller’s feedback reduces the short time disturbances. Therefore, it
reduces overshoots, but in reality, a pure D controller is not able to flatten the process
value to the set point. Nevertheless, if applied on small errors and a high D value leads
to overshooting. As a result, it should be carefully used since it can lead to instabilities
in the system. If applied on oscillations and the oscillations decrease, the system is
considered as stable, if increased as unstable. If the oscillations sustain the system is
referred to as marginally stable.
In his book, Haager[Haa03] also points out that in practice the D proportion is not a
clean differentiator.
Frequency Response:
xa(t) = kD ∗ xe

dt
Xa(s) = kD ∗Xe(s)
Gain:G(s) = kD ∗ s

14

2.1. Control Theory

A PID Controller combines all the above parameters of P, I and D controllers and
are typically used for industrial applications. As a result, there it has been the standard
industrial controller since many years and is used in many different industries like Phar-
maceutical, Satellite, Oil and Gas, Cement, and Power (like heat control of ovens).
The disadvantage of this controller type is clearly that it cannot adapt to changing
parameters. This is due to the fact that it has neither knowledge of the process nor any
implementation of self-adapting algorithms.

A PID controller consists of proportional, integral and differential components.
FR(s) = kR(1 + 1

sTN
+ sTV) = kR + kI

s + kDs

PID controller are well researched and often used in industrial applications. One common
problem with such controllers is stability when confronted with delays in the observed
system. Those constellations can lead to oscillations in closed loops. The larger the
delay gets the more unstable the loop becomes. Furthermore, this effect is increased by
higher values for Kp. Figure 2.4 demonstrates this fact by showing a PID controller with
different values for Kp. On the y-axis the amplitude is depicted, and the x-axis depicts
the time in seconds. The higher the value for Kp the higher the overshooting is.

Figure 2.4: Loss of stability

In their work, Zhong et.al. [ZXJ00] describe time delay filter based on a PI filter with
guaranteed stability since time delays quickly lead to instability of control loops when
they get too large.
To achieve this criteria of stability for linear, time-invariant (LTI) systems, they have

15

2. State of the art / analysis of existing approaches

used and described the Nyquist stability criterion. The Nyquist criterion suggests that
for a system to be stable, the number of closed-loop poles in the right half plane must be
zero. One advantage of the Nyquist Criterion is that it can be determined by using a
Nyquist plot and does not require to calculate all points of the diagram. Figure 2.5 shows
an example of a Nyquist diagram. The x-axis of the diagram represents the real part
and the y-axis the imaginary part. The diagram is drawn by calculating the frequency
response from ω = 0toω =∞.

Figure 2.5: Nyquist Curve

After drawing the diagram, it can be examined as follows:

The number of closed-loop poles in the right half plane, Z
= The number of rotations about -1 of the mapping through G(s)H(s), N
+ The number of open-loop poles in the right half plane, P

For a system to be stable, Z must be zero.

To cover these issues with instabilities, a PI controller can be used. The PI controller
is a PID controller with the D property set to zero and combines the speed of the P
controller and the accuracy of an I controller. It is usually used to deal with delays (dead
times) in control loops.

Frequency Response:

FR(s) = kR(1 + 1
sTN

)

16

2.2. Metrics

2.1.3 Monitor, Analyze, Plan, Execute (MAPE)

The MAPE control loop was first introduced by IBM and provides self-adaption mech-
anism for control loops. Abuseta et al. describe in their work [YA15] the MAPE loop.
The MAPE loop basically consists of the activities monitor, analyze, plan and execute.
A knowledge management component controls these activities using a policy engine and
the stored system state. Sensors are used to collect data that represents the current state
of the system and its surrounding environment. This data is necessary for the adaptive
process and is therefore aggregated and saved for future reference. The data is later used
to create models of past and current states and can be used to deduct trends. Effectors
apply corrective changes to the managed resource.

Figure 2.6: MAPE loop

2.2 Metrics

Metrics play an important role in monitoring cloud services and in making decisions (e.g.:
in a MAPE loop) to improve them. In order to decide which metrics are used in this
work, an overview is given on the classified metrics and how metrics and service level
objectives are managed. Furthermore, this section introduces the cloud service metric
model which helps to define proper metrics.

The National Institute of Standards in the US[Pri15] defines in their document based on
ISO/IEC 15939:2007 the following terms:

17

2. State of the art / analysis of existing approaches

Cloud Service Level Objective (SLO)[CSI14]: Target for a given attribute
of a cloud service that can be expressed quantitatively or qualitatively.

Measurement:A set of operations having the object of assigning a Mea-
surement Result.

Metric: A standard of measurement that defines the conditions and the
rules for performing the measurement and for understanding the results of a
measurement.

CSIG[CSI14] expresses this definition in a similar way: A metric is a de-
fined measurement method and measurement scale, which is used in relation to a
quantitative service level objective.

Measurement Result: Value that expresses a qualitative or quantitative
assessment of a property of an entity.

Furthermore, the National Institute of Standards describes the importance of metrics by
showing the relationship between a metric and a property. A property of a cloud service
represents a characteristic of the cloud service. When metrics are observed, they result
in measurement results. Those results can then provide knowledge about the service that
is observed and represents an abstract representation of the property.
Additionally, the document points out that metrics on the service interface are used to

Figure 2.7: Metric and Property[Pri15]

establish service agreements (SA). Service agreements are a binding commitment between

18

2.2. Metrics

the provider and the customer to ensure agreed upon properties. It contains a description
about the service, the rights and duties of the provider and the customer and essential
information related to the measurement of different cloud service aspects.

The definition of metrics is an essential part of Service Level Agreements (SLA) and
Service Level Objectives (SLO). The metrics are useful tools to measure the performance
of the services of the provider for monitoring purposes, as well as for remediation (e.g.
financial)

As a result, the usage of standardized metric sets allows easier comparison between
services.
The Cloud Select Industry Group (CSIG)[CSI14] describes in their work principles for the
development of such service level agreements. Furthermore, the author[Pri15] points out
that stakeholders need to have a way to understand, assess, compare, combine and make
decisions about cloud service properties. A scenario describes a particular use case which
helps to handle those cloud service properties. A scenario represents a particular use case

Figure 2.8: Scenario and Metric[Pri15]

that uses metrics resulting in measurement results as a basis for decisions. Stakeholders
like cloud customer or cloud provider define the scenarios for which the metric is needed.
The scenario represents:

• Expectations of an underlying business process

• How the metrics are used to support the process

19

2. State of the art / analysis of existing approaches

• What acceptable levels of the measured properties are

For this purpose the National Institute of Standards[Pri15] introduced Cloud Service
Metric Model (CSM). The purpose of the CSM model is capturing information needed
to describe and understand a metric. The model is used to gain knowledge about the
metrics and measuring cloud service properties.

Cloud Service Metric Model (CSM) The CSM is used to gain knowledge
about metrics and measuring cloud service properties. Below find the basic terms
used in CSMs.

• Cloud Service Metric Model (CSM): The description and definition of
a standard of measurement (e.g. metric for customer response time)

• CSM Context: The addition of the context of the standard of measurement
(e.g. objectives and applicability conditions of the customer response time
metric)

• CSM Observation: The use of the standard of measurement to define
observations (e.g. the observation of response time property based on the
customer response time metric)

• CSM Scenario: The use of the standard of measurement in a scenario
(e.g. the selection and use of the customer response time metric in an SLA
scenario) – CSM Scenario

Figure 2.9 shows that the CSM distinguishes between concrete metric definitions and
abstract metric definitions. Abstract metric definitions represent the model for a category
of metrics (e.g. Service Availability). Concrete metric definitions are specific instances
of the abstract metrics. The figure shows furthermore, that abstract metrics consist
of parameter definitions and rule definitions. These definitions have as counterparts in
the concrete metric definition metric parameter and metric rules. While the parameter
definitions and the rule definition describe what the rules and parameters are about, the
metric parameter and the metric rule constrain the metric (e.g. Availability).

Figure 2.10 visualizes the process used to define metrics using the CSM model. The
CSM defines the core components of the model. Next the abstract metrics are defined.
In the last step, concrete implementation metrics are created using the metric parameter
instances and metric rules of Block 2 in figure 2.9. Eventually, the National Institute of
Standards[Pri15] concludes that metrics are a critical aspect of the selection, operation
and use of cloud services. Metrics allow stakeholders to gain better understanding of the
behavior of cloud service properties through consistent, reproduce-able and repeatable
observations.
The Cloud Select Industry Group (CSIG)[CSI14], which is a working group set up by

20

2.2. Metrics

Figure 2.9: CSM Definition Blocks[Pri15]

Figure 2.10: CSM Definition Process[Pri15]

the European Union, is composed of representatives from European and multinational
industry, public administrations and other. In their work, [CSI14] CSIG summarized
principles of service level agreement standards for cloud computing, Cloud SLA vocab-
ulary, Performance service level objectives such as availability and response time and
many more. Their aim is to standardize aspects of SLAs to improve clarity in the cloud
computing market.

The above mentioned metrics have been later further summarized by Bardsiri et. al
[BH14] into the categories of Performance Metrics, Economic Metrics, Security Metrics
and General Metrics. While economic metrics purpose is to compare the costs of services,
security metrics deal with information security and privacy. The group general metrics

21

2. State of the art / analysis of existing approaches

consists of CSIG [CSI14] defined properties. Performance Metrics indicate the efficiency
of a service. There are many different metrics cloud providers can choose from to monitor
performance. Nevertheless, many aspects of the performance characteristics can be linked
to the features communication, computation, memory and time.

Communication represents all metrics that are related to data transfer between in-
ternal service instances and external consumers. Typical metrics would be Packet Loss
Frequency, Mean Opinion Score, PESQ, etc. Computation denotes all computational
tasks processed in the cloud. Memory describes metrics for the use of temporarily stored
information. Time denotes the completion of a task within time.

Performance Metrics describe the efficiency of a service and can be grouped into
the features communication, computation, memory and time.

In conclusion, it is a very crucial decision which metrics are used in a service. The decision
has to be made in the best interest of cloud service providers and cloud consumers.

2.2.1 Domain specific performance metrics in VoIP

This section focusses on the group of performance metrics and more specifically on the
feature of communication with a focus on VoIP related metrics.

As the ITU describes in its ITU-T Recommendation P.862 [ITU01], Perceptual Evalu-
ation of Speech Quality (PESQ) is a successor of PSQM. PESQ compares an original
signal X(t) with a degraded signal Y(t) that is the result of passing X(t) through a
communication system. ITU points out that the PSQM method as described in ITU-T
P.861 (February 1998), was only recommended for use in assessing speech codecs, and was
not able to take proper account of filtering, variable delay, and short localized distortions.
PESQ addresses those issues with using transfer function equalization, time alignment,
and a new algorithm for averaging distortions over time.

Another metric that can be measured is the R-Value or E-Model. The E-model is
a network planning tool used in the design of networks for carrying voice applications
and can be calculated in software. Perlicki [Per02] describes in his work how the R-Value
is computed using the following formulae:

E-Model:

R = Ro − Is − Id − Ie +A

The term Ro is the signal-to-noise ratio (received speech level relative to circuit and
acoustic noise). Is represents all impairments which occur more or less simultaneously

22

2.3. Cost-Efficient Utilization in cloud services

with the voice signal, such as: too loud speech level, non-optimum side tone, quantization
noise, etc. All delays and echo effects are summed up in the delay impairment factor
Id. The term Ie represents impairments which are caused by low bit-rate codecs used in
special equipment. Furthermore, this factor is used to consider the effects of packet loss.
The last term A, short for advantage of access, describes all effects that compensate bad
quality such as convenience or connections in hard to reach areas.

One of the most important metrics regarding the measurement of VoIP networks is
the Mean Opinion Score (MOS). It is usually obtained by asking users directly after
an ended phone call to vote the call in a scale from 1 to 5. VOIP calls often are in the
3.5 to 4.2 range[voi]. The ITU P.861 (PSQM)[p86a] and P.862[p86b] standards explain
how to calculate MOS scores from an E-Model.

Mean Opinion Score (MOS)
The MOS value is a subjective quality rating for calls and is only perceptible by
humans. The values usually go from 1 to 5 where 1 is bad and 5 is excellent speech
quality.∑N

n=1 Rn

N

Rn .. rating number n
N .. number of ratings

Often this measurement is used by VoIP providers e.g. Skype to survey users’ opinion
on the quality of calls. The Predicted MOS Value (PMOS Value) values can be
determined from R-value by using a mapping from the R-value to the MOS value. This
mapped MOS value is called the Predicted MOS value (PMOS value).

2.3 Cost-Efficient Utilization in cloud services
This section shall review the current algorithms and strategies for cost-efficient utilization
in cloud services.

According to Maurer et al. [MM11] the computation of resource allocation in clouds are
based not only on functional requirements, but also on non-functional requirements. The
authors state that those non-functional requirements are quality of service requirements
and are expressed and negotiated by means of Service Level Agreements (SLAs). Such
SLAs are usually managed using SLA templates. Risch et al. [MR09] defines SLA
templates as SLA popular formats, comprising elements such as names of trading parties,
names of SLA attributes, measurement metrics, and attribute values. In their work,
Maurer et al. define a method for adaptive SLA mapping shown on a use case of medical
image service.

23

2. State of the art / analysis of existing approaches

Figure 2.11: MOS and R value

Therefore, an initial template is created. Service providers can assign their services to a

Figure 2.12: SLA Lifecycle[MM11]

particular public SLA template. Based on those mappings a service consumer is able
to select a public SLA template, and if the public template differs from the private one,
the consumer can make adaptions by mapping for the differences identified. Later, an
adaption process is identifying similar templates. Similar templates might be adapted, or
subgroups may be created. After the new templates are generated, old ones are deleted.
Based on the assumption that the market demands are not changing eventually a final
template is created.
This life cycle is depicted in figure 2.12 but is described in more detail in Cost-Efficient
Utilization of Public SLA Templates in Autonomic Cloud Markets[IB11].
Furthermore, Maurer et al. define several adaption methods to select attribute names for
the SLAs.
The maximum method automatically selects the SLA attribute name which has the
highest number of mappings. The authors explain that the threshold method intro-
duces a threshold value. If a particular attribute name is used more than this threshold
and has the highest count, then the attribute is selected. The Maximum-Percentage-
Change method is structured in two steps. In the first step, the attribute name is chosen

24

2.3. Cost-Efficient Utilization in cloud services

by the maximum method, and in the second step, the attribute name is changed if and
only if the percentage difference is between the highest count attribute and the currently
selected attribute name exceeds a predefined threshold.

2.3.1 Utility and Cost Models

In order to make the costs and benefits of applications measurable, a utility and a cost
model are needed. Maurer et al. state that both, the cost and the utility function take
attributes of the customer’s SLA template and the public SLA templates as input.
As an example, the authors introduce a utility model that assumes an increase in benefit
if an attribute of both templates is identical. On the other side, the cost model captures
the effort of changing an SLA mapping.

Utility Model
Mosa et al. [MP16] define in their work a utility function used for utility based
resource allocation:

Utility(a, t) = Income(a, t) − (EstimatedEnergyCost(a, t) +
EstimatedV iolationCost(a, t) + PDMCost(a, t))

The variable a in this equation is a map representing VMs-to-PMs assignment and t
is the assignment of time period. Income(a, t) is the total income from hosting a cus-
tomer’s VMs, EstimatedEnergyCost(a, t) are the estimated energy costs as a result of
the assignment. EstimatedV iolationCost(a, t) represents the cost of SLA violation due
to the over-utilization of the hosting PMs, a cost that is calculated based on the number
of VMs in violation. PDMCost(a,t) represents the violation cost of the performance
degradation due to the migration (PDM) of VMs among PMs.
The authors provide algorithms calculating the mentioned costs. Furthermore, a genetic
algorithm is proposed for finding the VM-to-PM assignment that maximizes the utility.
Zhang et al. [ZLZ15] describe that Cloud Service Provider offer reduced resources for
illegal economic benefit. As a conclusion in their work they propose a framework2.13
for measuring the performance of cloud applications. Firstly, the runtime of the cloud
application is measured by labeling parts of the application. The historical data is then
used to determine the most frequent parts of the application.

As shown in figure 2.13, the inserted labels along with a small data set deliver to-
gether with the historical observations from the cloud a local prediction model of the
performance. A cost function is then used for each hot spot block to obtain the worst
case performance model. The performance model is constructed from a performance
skeleton tree which is used to model relationships between the most frequent blocks. As
can be seen in figure 2.14 each node in the tree represents a block. For an input x, the
performance costs to each node are calculated. The performance skeleton tree can be
obtained by using static source code analysis. Emeakaroha et al. [VCER10] describe a

25

2. State of the art / analysis of existing approaches

Figure 2.13: Architecture performance prediction framework[ZLZ15]

Figure 2.14: typical performance skeleton tree[ZLZ15]

similar approach in their work. DeSVi is an architecture for detecting SLA violations
through resource monitoring in Cloud computing infrastructures. The framework is mea-
suring low level resources and is mapping them to high level SLAs using knowledge-based
SLA with a cased based reasoning approach.

The achieved results show, based on an image rendering service, that the architec-
ture can monitor and prevent SLA violations considering different costs, measurement
intervals, and heterogeneous workloads. [SC15]

2.4 Voice over IP (VoIP)

Telecommunication plays an important role in our every days life and connects people all
over the world. Voice over IP clearly has revolutionized the way people communicate
nowadays. Whether by phone or computer, one is able to talk to people living in far
distant locations. Therefore, this section aims to give a brief introduction to the most
common VoIP protocols. This is required to prepare the reader on which metrics may be

26

2.4. Voice over IP (VoIP)

used in such a system. First an introduction on the SIP protocol is given since it is the
most common VoIP protocol used. Secondly, the Real Time Protocol (RTP) is covered
since it is used for transmitting the media data over the network. That includes audio as
well as video.

2.4.1 SIP Protocol

SIP is an application-layer control protocol that can establish, modify, and terminate
multimedia sessions (conferences) such as internet telephone calls, and was defined by
Rosenberg et al. in RFC 3261[JR02]. SIP can also invite participants to already existing
sessions, such as multicast conferences. Media such as audio or video can be added to
(and removed from) an existing session. SIP transparently supports name mapping and
redirection services, which supports personal mobility. As a result, users can maintain a
single externally visible identifier regardless of their network location. Since SIP is easier
than e.g.: H.323 it is nowadays more commonly used in VoIP applications.

The SIP standard [JR02] covers the following aspects of communications:

• User location: Definition of the end point (e.g. extension) to be used for
communication.

• User availability: Availability of the called party to engage in communica-
tions.

• User capabilities: Definition of the media protocol and media parameters
to be used.

• Session setup: Ringing, establishment of session parameters at both called
and calling party.

• Session management: This includes transfer and termination of sessions,
as well as modifying session parameters, and invoking services.

Figure 2.15 shows a simple SIP communication between two parties Alice and Bob over
two proxies (atlanta.com and biloxi.com). When Alice tries to call Bob an INVITE is
sent to the atlanta proxy. The proxy in atlanta sends an INVITE to the proxy biloxi.com
and also responds with a trying to Alice’ soft phone. The biloxi.com proxy send an
INVITE to Bob’s SIP Phone and a trying to the proxy in atlanta.

Bobs SIP Phone returns a RINGING message to biloxy.com. Biloxy.com itself sends a
RINGING message to atlanta.com and atlanta.com sends a Ringing message to Alice
soft phone.

27

2. State of the art / analysis of existing approaches

When Bob answers the call his SIP phone returns an OK message to biloxy.com which
sends itself an OK message to atlanta.com. Atlanta.com sends itself an OK message
to Alice’s soft phone. In the OK message Bob’s SIP phone sends connection data like
supported codecs that are used later for the media session.
Alice’s soft phone then returns an ACK message to Bob’s SIP phone. The result of this
messages is that both parties can establish a media session which is mostly done by using
Real time transport protocol (RTP).

Eventually Bob finishes the call and his SIP phone sends a BYE message to Alice.
Alice’s soft phone returns with an OK message then.

2.4.2 Session Description Protocol (SDP)

SDP is defined by Handley et al. [JR06] in RFC 4566. The SDP protocol defines the
following parameter groups:

• Media and Transport Information

• Timing Information

• Private Sessions

• Obtaining Further Information about a Session

• Categorization

• Internationalization

Media and transport information refers to information like codec, transport address which
is used to establish e.g. an RTP connection transferring the G.711 codec. The term timing
information describes two parameters, the time since when a session is active and the
repeat times. Parameters used in private sessions are used to give important information
regarding the encryption of the connection. This at least contains the encryption key for
the session. The encryption key is later used to encrypt the media transferred.

The following excerpt of parameters shows the introduced variable groups like they would
occur in the SDP protocol:

S e s s i on d e s c r i p t i o n
v= (pro to co l v e r s i on)
o= (o r i g i n a t o r and s e s s i o n i d e n t i f i e r)
s= (s e s s i o n name)
i=∗ (s e s s i o n in fo rmat ion)
u=∗ (URI o f d e s c r i p t i o n)
e=∗ (emai l address)

28

2.4. Voice over IP (VoIP)

Figure 2.15: simple example of the SIP protocol as presented in RFC3261[JR02]

29

2. State of the art / analysis of existing approaches

p=∗ (phone number)
c=∗ (connect ion in fo rmat ion)
b=∗ (ze ro or more bandwidth in fo rmat ion l i n e s)
One or more time d e s c r i p t i o n s (" t=" and " r=" l i n e s ; s e e below)
z=∗ (time zone adjustments)
k=∗ (encrypt ion key)
a=∗ (ze ro or more s e s s i o n a t t r i b u t e l i n e s)
Zero or more media d e s c r i p t i o n s

Time d e s c r i p t i o n
t= (time the s e s s i o n i s a c t i v e)
r=∗ (ze ro or more repeat t imes)

Media de s c r i p t i on , i f p re sent
m= (media name and t ranspor t address)
i=∗ (media t i t l e)
c=∗ (connect ion in fo rmat ion)
b=∗ (ze ro or more bandwidth in fo rmat ion l i n e s)
k=∗ (encrypt ion key)
a=∗ (ze ro or more media a t t r i bu t e l i n e s)

2.4.3 Real-time Transport Protocol (RTP)

As defined in RFC 3550[HS03] by Schulzrinne, et al., RTP provides end-to-end network
transport functions suitable for applications transmitting real-time data, such as audio,
video or simulation data, over multicast or unicast network services. RTP does not address
resource reservation and does not guarantee quality-of-service for real-time services. The
data transport is augmented by a control protocol (RTCP) to allow monitoring of the data
delivery in a manner scalable to large multicast networks and to provide minimal control
and identification functionality. RTP and RTCP are designed to be independent of the
underlying transport and network layers. The protocol supports the use of RTP-level
translators and mixers.

RTP Fixed Header Fields

The RTP protocol’s header looks like the following:

0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+−+
|V=2|P|X| CC |M| PT | sequence number
|
+−+

30

2.4. Voice over IP (VoIP)

| timestamp
|
+−+
| synchron i za t i on source (SSRC) i d e n t i f i e r
|
+=+
| con t r i bu t i ng source (CSRC) i d e n t i f i e r s
|
|
|
+−+

The RTP proptocol’s header consists of the following fields:

2.4.4 OPUS Codec

The OPUS codec is a modern codec especially designed for Voice over IP application and
delivers audio with very high quality which is not only suitable for speech but also music
applications. One advantage of the OPUS codec is, that it can be used within different
sample rates to adapt automatically to network bandwidths.

In RFC 6716 [JV12] Valin et al. define the OPUS codec as a real-time interactive
audio codec especially designed for interactive audio applications(VoIP), videoconferenc-
ing, etc. It is composed of a layer based on Linear Prediction (LP) and a layer which
uses the Modified Discrete Cosine Transform (MDCT) which are used to achieve good
compression for both speech and music. The main idea behind using two layers, is that
Linear Prediction(such as Code-Excited Linear Prediction, or CELP) is more suitable at
handling low frequency applications like speech than transform (e.g., MDCT) domain
techniques, while it is vice versa for music and higher speech frequencies. As a conclusion,
if both techniques are used in separate layers not only the codec is able to operate in a
much wider frequency range but also can achieve better quality combining both.
Since OPUS scales from a very low bitrate with 6 kbit/s up to a very high with 510
kbit/s, it offers different audio bandwidths like narrowband, mediumband, wideband,
super-wideband and fullband which are summarized in table 2.2. As a result, the codec
can be used for various applications such as speech, music or video applications.
Moreover, the codec can seamlessly switch between different operating modes at any
given time e.g. from 6 kbit/s narrowband mono speech to 510 kbit/s fullband stereo
music, with algorithmic delays ranging from 5 ms to 65.2 ms. Furthermore, the LP layer,
the MDCT layer, or both, may be activated or deactivated. This feature of dynamically
adjusting is helpful as in Voice over IP applications one can never know if there is a
variation of network bandwidth due to fluctuation in users that are using the service. It
also provides great flexibility when adapting to varying content during a session. This
may also be important when handling critical communication.

31

2. State of the art / analysis of existing approaches

Field Description
version (V): 2 bits This field identifies the version of RTP. Nowadays

this value is usually 2.
padding (P): 1 bit If the padding bit is set, the packet contains one

or more additional padding octets at the end
which are not part of the payload.

extension (X): 1 bit If the extension bit is set, the fixed header MUST
be followed by exactly one header extension.

CSRC count (CC): 4 bits The interpretation of the marker is defined by a
profile. It is intended to allow significant events
such as frame boundaries to be marked in the
packet stream.

marker (M): 1 bit The interpretation of the marker is defined by a
profile. It is intended to allow significant events
such as frame boundaries to be marked in the
packet stream.

payload type (PT): 7 bits This field identifies the format of the RTP pay-
load and how the application interprets the con-
tent e.g. a specific codec like OPUS.

sequence number: 16 bits The sequence number increments by one for each
packet sent and may be used by the receiver to
detect pcaket loss and to restore or predict lost
packets.

timestamp: 32 bits The timestamp is used to allow jitter calculations.
The jitter buffer is used to order a few packets
if they have not been received in their original
order.

SSRC: 32 bits The SSRC are identifies the synchronization
source. It is possible that there exist multiple
sources within an RTP session.

CSRC list: 0 to 15 items, 32 bits each This represents all contributing sources. This
field is used when multiple sources are mixed
into one stream together and allow identification
of the speaker.

Table 2.1: RTP header fields [HS03]

32

2.4. Voice over IP (VoIP)

Abbreviation Audio Bandwidth Sample Rate (Effective)
NB (narrow-band) 4 kHz 8 kHz
MB (medium-band) 6 kHz 12 kHz
WB (wide-band) 8 kHz 16 kHz
SWB (super-wideband) 12 kHz 24 kHz
FB (fullband) 20 kHz 48 kHz

Table 2.2: Opus codecs bandwidths

This abilities are due to the fact that Opus codec is a combination of two industry
proven codecs. The one codec is the SILK codec and the other one is the CELT codec.
Firstly, the SILK codec, which was developed by the Skype team, is based on Linear
Prediction and is Efficient for voice application and provides 8 kHz of audio bandwidth.
Secondly, the CELT codec which was developed by Xiph.Org which is based on Perceptual
transform (MDCT) codec. Due to its high bandwidth CELT is a good choice for universal
audio/music.

However, combining the SILK codec and the CELT codec enables to dynamically adjust
to different bandwidths even better. This procedure is referred to as the hybrid mode. It
enables the use OPUS in a variety of applications and makes the connection even more
robust to disturbances in connections.

As can be seen in figure 2.16 any given audio input In with 48kHz is encoded in
both SILK and CELT encoder. The input for the silk encoder is cut down to 16kHz
before encoded, while on the second path the CELT encoder receives a dynamic range of
the input signal. Both signals are then mixed together and transmitted to the receiver.
The signal is decoded by the SILK decoder and transformed from 16kHz to 48kHz and
is then mixed with the output of the CELT decoder. This algorithm enables the codec
to provide a better quality since it is always able to fill up gaps where packets got lost
with the lower band version of the signal. While in situations when the connection is
reliable and with a good bandwidth, the codec delivers up to full band quality which is
comparable to CDs. In order to improve the internet robustness, Opus codec provides
various features.

• Forward Error Correction (FEC)[JS15] is a mechanism against packet loss. Packets
that are suspected to contain important speech information, like onsets or transients,
are encoded at a lower bitrate. Later this re-encoded information is added to a
subsequent packet.

• Discontinuous Transmission (DTX) reduces packet rate during silence. This de-
creases the traffic that needs to be transmitted in order to reproduce the audio
signal.

33

2. State of the art / analysis of existing approaches

Figure 2.16: OPUS hybrid mode[JV12]

• Opus codec operates more efficient when using variable bitrates. On relatively slow
connections bitrate is lowered which decreases the quality but avoids packet loss.

Summing up, all these features make OPUS codec the state-of-the-art VoIP codec since
it is more reliable as classical codecs which have not been specifically designed for VoIP
purposes. This has also been proven in various comparisons to other codecs.

Figure 2.17: Comparison of quality and bitrate of various codecs.

One example is shown in figure 2.17, a comparison of quality and bitrate with other
codecs, the Opus codec has at most bitrates the best quality results. While On the y-axis
the quality of the codec, on the x-axis the bitrate is shown. The different codecs itself
are depicted in different colors: green for royalty-free open source codecs, blue for free

34

2.4. Voice over IP (VoIP)

license non-open source codecs and red for non-open source codecs which require to pay
a licensing fee.
As depicted in the figure, it is the codec that covers the most possible bitrates, while other
codecs (e.g. G.722 or G.711) that are still used in professional applications only cover a
very small range. Another important argument for the codec is, that it is a royalty-free
open source codec which allows usage without any additional costs when used in a project.

As a conclusion, Opus is the most advanced VoIP codec and is used in most of fu-
ture applications. This results in applications that are more resilient to disturbances and
have better voice quality.

35

CHAPTER 3
Methodology

This chapter on methodology (chapter 3) presents the reader, on the one hand, used tools
and concepts and languages. This covers R as a programming language up to the open
source software like the PBX software. On the over hand, this chapter additionally covers
the methods and concepts for designing and configuring controllers. This includes methods
like the Ziegler-Nichols closed loop method, and the Chien, Hrones, Reswick tuning
method. Last but not least, it also introduces the Smith Predictor as a compensator for
delays.

3.1 Programming languages and used software

The following section describes the tools that have been used to successfully accomplish
this work.

R[rpr] is a statistical programming language and includes an integrated suite of software
facilities for data manipulation, calculation and graphical display.
It includes an effective data handling and storage facility, a suite of operators for cal-
culations on arrays, in particular matrices, a large, coherent, integrated collection of
intermediate tools for data analysis, graphical facilities for data analysis and display
either on-screen or on hardcopy, and a well-developed, simple and effective programming
language which includes conditionals, loops, user-defined recursive functions and input
and output facilities. R was used to simulate the control loops in this work. All source
code was written in *.R files. R Studio[rst] is a development environment for R. R Studio
comes in two alternatives, the web-based variant and the Win32 executable version. In
this case, the web-based version has been used.
As can be observed in figure 3.1, R Studio offers a console for executing *.r files and a
plots view to show the plots created during the execution. Furthermore, R Studio offers
the ability to debug code and also delivers integration with GIT. For this work, R Studio

37

3. Methodology

has been used to save the progress on a Gitlab based GIT repository. FusionPbx[fus]

Figure 3.1: rstudio Webinterface

is an open source PBX which was used as part of the test environment simulating the
cloud service PBX. It was selected because it stores all data which is useful to obtain the
PMOS value of calls. The product uses freeswitch[fre], an open source IP-based telephony
switch, and PostgreSql as a database. Freeswitch is designed to route and interconnect
popular communication protocols using audio, video or text. PostgreSQL[pos] is an open
source database management system (DBMS) with a strong reputation for reliability,
data integrity, and correctness. The DBMS is platform independent and therefore runs
on major operating system such as Windows, Linux and Unix and uses Sequel Query
Language (SQL)[sql] as a query language. To generate test calls, Linphone, an open
source SIP phone[lin], was used.

Figure 3.2: FusionPbx Webinterface

3.2 Methodologies for Configuring Controllers
As covered in chapter 2.1, PID controllers may tend to instability when used with systems
providing large delays. To show how to configure such controllers, this section introduces

38

3.2. Methodologies for Configuring Controllers

a variety of methods.

In his work, Yoney[YOU07] evaluates the following methods: Ziegler-Nichols Open Loop
method, the CHR method for 0% overshoot, and the Ziegler-Nichols Closed Loop method.

In 1942 Ziegler and Nichols proposed in their work[ZN42] optimum settings for au-
tomatic control loops two different methods for tuning P-, PI- and PID controllers. One
method is the open loop method which would require removing the feedback of the
control loop to configure the controller appropriately. The method that is covered by
this work is the closed loop method which can be used in closed loops.
In his article, Haugen[Hau10] summarized the closed loop method of Ziegler and Nichols.
He points out that Ziegler-Nichols’ closed loop method can be applied only to processes
having a time delay or having dynamics of order higher than 3.

According to Ziegler and Nichols[ZN42][Hau10], the stability of the controlled system is
OK if the ratio of the amplitudes of subsequent peaks in the same direction is approxi-
mately 1

4 as can be seen in figure 3.3. In his work, [Hau10] Haugen describes the process

Figure 3.3: If A2/A1 ≈ 1
4 the stability of the system is OK, according to Ziegler and

Nichols[Hau10]

of tuning a PID controller in a closed loop.

39

3. Methodology

The tuning procedure is described as follows:

1. The controller should be configured to bring the controlled system to the
specified operating point. E.g.: the process variable is approximately equal
to the set point.

2. Turn the PID controller into a P controller by setting Ti = ∞ and Td = 0.
Initially set gain Kp = 0. Close the control loop by setting the controller in
automatic mode.

3. Kp shall be increased until there are sustained oscillations. (refer to figure:4.4)

4. Measure the ultimate (or critical) period Pu of the sustained oscillations.

5. Calculate the controller parameter values according to table 3.5

Figure 3.4: sustained oscillations

After configuring the controller parameters, the control loop is ready for use.

40

3.2. Methodologies for Configuring Controllers

Figure 3.5: Formulas for the controller parameters in the Ziegler-Nichols’ closed loop
method.[Hau10]

3.2.1 Chien, Hrones, Reswick Tuning Method

In his work, Youney[YOU07] describes the Chien Hrones Reswick (CHR) Tuning Method.
The Chien Hrones Reswick tuning method was derived from the classical Ziegler Nichols
method. The intention is to obtain the quickest response without overshoot and the
quickest response with 20 percent overshoot.

To tune the controller according to the CHR method, the parameters a, L and T
have to be determined. The determination of the parameters is similar to those in the
Ziegler-Nichols method. The controller parameters can be calculated using the table 3.6
for 0 percent overshoot and table 3.7 for 20 percent overshoot. Furthermore, Youney
states that due to some edge cases, Astrom and Hagglund developed a method to solve
for T with an open loop step response test. Youney states that there are also many

Figure 3.6: CHR for 0 % overshoot parameters

other methods that are based on the Ziegler Nichols method. In conclusion, the above
methods can be easily used to tune PID controllers with delays. Certainly, one of the
downsides is that the methods are not adapting to changes in delays.

3.2.2 Smith Predictor

The Smith predictor is described by Vodencarevic[BMD11] as a dead time (delay) com-
pensator. Vodencarevic states that in practice many control loops are tuned by trial
and error procedures and therefore are far from optimal and delivering a bad perfor-

41

3. Methodology

Figure 3.7: CHR for 20 % overshoot parameters

mance. According to Daxini et. al [TD15] the first time-delay compensation algorithm
was suggested by Otto Smith in 1957. This algorithm is now known as the Smith predictor.

The Smith predictor is composed of two parts: the controller part and the predic-
tor part. The controller part consists of all the components a standard control is built
from, while the predictor part consists of a model of the process without time delay and
a model of the time delay.
Daxini et. al explain that the comparison between the output of the process y(t) and the
model including time delay is the predicted error êp. If there are no errors in the modeling
and furthermore no disturbances, then the error is zero. Tala et. al 3.9 provided a block

Figure 3.8: block diagram of a smith predictor[TD15]

diagram 3.9 of a Smith predictor that allows for an overview of the controllers’ variables.
The diagram shows that Gm can be translated logically to gains and time constraints as
a model of the controlled system without delays and esTd to a model of the delay(dead
time). Therefore, if the delay time changes, only the dead time component needs to be
adjusted. Also, one can observe that the estimated disturbances and predicted process
variable are added to the signal. As a result, if the process is changing over time also the
process model has to change. Unfortunately, the complexity of this method and the need

42

3.2. Methodologies for Configuring Controllers

to create a model of the controller lead to increased efforts.

Figure 3.9: block diagram of a Smith predictor[TD15]

43

CHAPTER 4
Suggested Solution

This chapter shows how to design a controller based on the earlier defined problem. In
a first step, the architecture of such a proposed cloud service will be presented. The
design is based on the below defined requirements. Then the design of the controller,
including the stability and the transfer function, will be discussed Also, the solution will
be analyzed and evaluated using a cost function.

4.1 Architecture for a VoIP cloud service

As stated previously, the aim of this work is to apply control theory to informatics. Con-
trol theory is a proven scientific method which has been applied to a variety of different use
cases in the past, e.g.: heatings, power plants, control of water cleaning facilities and so on.

This work takes this approach and applies it to a VoIP PABX cloud service. A substantial
question for a service provider would be How to scale if there is a sudden increase or
decrease of the workload? Not only does a service provider want to handle peaks or lows
in the workload, but also to maintain a certain quality for such a service to increase
customer satisfaction on the one side and to be able to monitor the performance of the
service. Consequently, the architecture of the VoIP cloud service shall be scalable on
demand. Therefore, the solution is modularized into several parts. As can be seen in
figure 4.1, such a cloud service consists of several components:

A client or agent can be any SIP device like a desk phone, a desktop application
a mobile app, etc. The client connects to the cloud service over the internet using either
an IP address or a domain name and registers on a so-called Session Border Controller
(SBC), which is the entry point for all incoming and outgoing communication. Firstly,
the SBC acts as a VoIP firewall since all external agents need to register on it. Secondly,
the session border controller is the endpoint for each SIP session to the agent. On the

45

4. Suggested Solution

Figure 4.1: Architecture of the proposed cloud service

other side it opens a new connection to the internal network. That way it acts as a
transparent layer.
If needed, the session border controller is able to convert non-standard protocol imple-
mentations to standardized protocols (protocol normalization). That way the internal
network is more resilient to interruptions from the external network.
Furthermore, the session border controller also acts as a load balancer. As a load balancer,
the SBC distributes incoming calls to the internal communication network components
e.g.: PBX.

A Session Border Controller (SBC) is the entry point for all incoming and
outgoing communication and:

• acts as a VoIP Firewall and entry point for external SIP agents

• enforces Protocol Normalization

• acts as a Load Balancer

As a result, the SBC should be taken into account for scalability reasons. In the proposed
scenario it is therefore assumed that the SIP protocol from the clients is standardized.
Consequently, there is no need to perform any protocol conversion. Furthermore, it is
assumed that the SBC has enough resources to distribute the calls to the internal network.

46

4.2. Definition of SLOs and Selection of Metrics

In conclusion, there is no need for scalability of the SBC.

The purpose of a Private Branch Exchange (PBX) is to establish phone calls between
different clients. Those calls can be either audio or video conversations consisting of two
or more clients. The performance of such a PBX is depending on RAM, CPU, network
bandwidth. These parameters have an impact on the quality of calls and result in better
or worse quality of calls (MOS value). To simplify the models, it is expected that all calls
are established with the same preconfigured codecs to achieve better comparability. The
PBX is establishing calls via SIP and RTP protocol.

Naturally, a cloud service provided needs some sort of customer data for billing and
statistics. Those statistics are used to measure the quality of VoIP calls, but also to keep
track of which users are the most active ones and when the most calls are established. A
Network Monitoring System (NMS) is capable of monitoring certain metrics and
SLO objectives such as network parameters. This enables the service provider to better
monitor the communication infrastructure. The obtained data is then used predict the
state of the PBXs, especially if more computing power is needed or not. The key task of
the controller is to decide if a new PBX must be started by processing the measured
metrics. This must be initiated whenever the PMOS value is falling under a configured
level. As a result, whenever the PMOS gives an indication, further VM should be started
or shut down. In the edge case of only one PBX running, it is of course not possible to
shut down the remaining PBX even if the controller would decide to do so based on the
PMOS value input. The controller’s configuration parameters are stored in the controller
configuration. The configuration can be adjusted to the measured delays.

4.2 Definition of SLOs and Selection of Metrics

To make such a service scaleable, a service provider needs to define a certain SLO and
other specific metrics. Several SLOs like availability, response time, CPU utilization or
RAM usage would be applicable, but would not be representative of the quality of the
phone calls. One of the key aspects of such a service is good quality of the conversations.
This means that the users can perform audio or video calls at a certain level of quality
that allows them to communicate with each other without any notable interruption. The
assumption on the SLO is that if the customer is happy with the service e.g. the quality
of the calls is considered as good, then the service provider is satisfied as well. Therefore,
the PMOS factor should be considered as a metric. As shown in an earlier chapter, the
PMOS factor can be observed without manual interaction and is also independent of the
underlying hardware.

47

4. Suggested Solution

Since service providers would like to have good quality a PMOS value of 4 is
reasonable.

Additionally, the PMOS factor will also be influenced by parameters like CPU or RAM
usage. The assumption is that as long as CPU and RAM are in a normal range, the
PMOS factor will not change too much from value 4. If CPU and RAM are decreasing
and crossing a certain limit, the PMOS factor will consequently decrease.

4.3 Requirements for a VoIP cloud service

Based on the above agreed SLOs and architecture of the service, now more detailed
requirements will be summarized and shall serve as an example for further implementa-
tions. Since our service needs is scalable, from time to time it will need to start virtual
machines to increase the amount of resources used by the service. Unfortunately, this
process of setting up such a machine takes some time. As we use an service for providing
the virtual machines we can assume that there will be no time delay for starting physical
machines. Nevertheless, we still must take into account the time that is needed to start
and initialize the virtual machine hosting the PBX. For this reason, we can assume that
it will take a maximum of 5 minutes. Since we do a simulation to verify the results, the
below table 4.1 shall summarize the most important simulation parameters:

Parameter Description Value Unit
VM start time Time a virtual machine needs from triggering a start 5 Minutes
desired PMOS desired PMOS 4 Integer
maximum cycle number cycles after which the desired value is reached 3 Integer
simulation duration Time range that is simulated 100 Minutes
simulation step size granularity of simulation 10 Integer

Table 4.1: Parameters relevant for the controller design

4.4 Design of the controller

This section describes design decisions regarding the controller and justifies these decisions
briefly.

One of the key aspects is the control of the scalability which shall be achieved by designing
the controller. As one can observe in figure 4.2, the model consists of a controller and
one or more PBX that allow calls between different participants to take place. The
controller will decide based on information gained from the database of the PBX if the

48

4.4. Design of the controller

Figure 4.2: Architecture

resources are sufficient or if another PBX needs to be started. Before starting a PBX
server, for instance, the server must be created from an image first. That means that
system resources need to be allocated, the system image must be copied and booted to
finally inject the configuration. As a result, this process will need a certain amount of
time to finish. This duration is the delay time of our process. The delay time is crucial
as it might cause instability, or even worse, oscillation of the control loop if it gets too long.

Applying this knowledge to classical control theory, as it is used in many other en-
gineering areas, leads us to select a PI controller. PI controller have an advantage over
normal PID controller as they are more smoothly adjusting to changes and therefore are
more reliable in case of large delays. It is also a classical controller for delays (dead times)

Figure 4.3: Closed loop

or controlled systems with long delays and is actually a special configuration of the PID
controller where the D factor is set to zero. As a high D factor makes the controller
faster reacting on incoming changes in the error. This property leads to a controller
configuration which concludes in a less resilient behavior to delays. Since the stability
increases with the value of TI , it correlates with the delay. The properties of the PI
controller enable proper handling of delays and increase the stability of the controller for

49

4. Suggested Solution

that purpose.

One of the main goals is to design the controller so it operates in an area where it
resilient to the assumed delays. The below section introduces a calculation using Ziegler-
Nichols method to calculate the parameters satisfying the stability criteria.

The first step is to configure the controller according to the Ziegler-Nichols tuning
table for a PID controller. To achieve a stable configuration of the controller, we first
bring the controller into sustained oscillation as described in 3.2. Sustained oscillations
are achieved if the oscillation has no attenuation. Applying the Ziegler-Nichols method,
we obtain the following controller values:

Kp = 11
Ti =∞ (100000.0001)
Td = 0
Figure 4.4 depicts a step function (represented by the red graph) and the actual process

Figure 4.4: sustained oscillations

value (represented by the blue graph) over the time (x-axis). One can clearly see that
the process value is oscillating between 5 and around 4 1

2 in sustained oscillations. The
next step is to derive the values needed for the final configuration of the PI controller.

50

4.5. Definition of a utility and a cost function

The ultimate Period Pu = 600ms. According to table 3.5 the values for the PI
controller are chosen as follows:

Kp = 0.45 ∗Kpu = 0.45 ∗ 11 = 4.95

Ti = Pu
1.2 = 600ms

1.2 = 500ms

The resulting configuration enables the controller to handle the specified delays occurring
when starting a virtual machine. Finally, the controller is ready for use and can be tested.
Further details will be covered later in chapter 5.4.

4.5 Definition of a utility and a cost function
To make the results of the controller measurable, a definition of a utility and a cost
function is mandatory. One approach is to measure the difference in the quality of calls.
The smaller the area under the desired PMOS factor, the better. Unfortunately, this does
not consider energy consumption. The usage of the service depends on how reliable it
performs. Therefore, the income of the service provider relies on this variable. Referring
to chapter 2.3.1, one can see that the income is basically depending on the usage of the
provided service:

Utility(a, t) = Income(a, t)− EnergyCost(a, t)

As shown in chapter 2.3.1 the costs can also be splitted into the following parts:

Utility(a, t) = Income(a, t) − (EstimatedEnergyCost(a, t) +
EstimatedV iolationCost(a, t) + PDMCost(a, t))

The above formula uses the variable a as a mapping of VMs to PMs. Since the proposed
scenario runs fully on amazon virtual machines, we can assume that all VMs are mapped
to one single PM. The price for the energy costs can be estimated by taking an example
from the Amazon e2 service[ama].
According to the Freeswitch website there is a FreeSwitch installation in production
running on an Amazon EC2 - m1.medium [ec2] virtual machine. This virtual machine
can run 250 concurrent calls at 15% of CPU usage with a maximum of 15-20 calls per
second. This information shall serve as a reference for this use case.

The estimated violation costs can be deducted by measuring the difference of the actual
MOS value to the expected MOS value, if and only if the actual value is smaller than
the expected value. The higher the difference, the higher the costs. For real life imple-

51

4. Suggested Solution

mentations one must consider how hard such a violation should be punished and how
violations should be weighted since there are situations where the energy cost would rise
too high. For now this is out of scope and should be covered in succeeding work.

52

CHAPTER 5
Evaluation

The aim of this chapter is to evaluate the proposed solution. I will give an overview on
the two variants of test environments that have been used to capture data and were later
used to test the controller simulation. Furthermore, the obtained data is used to compare
the proposed solution with the related work. In the end of the chapter, open issues will
be discussed.

5.1 Test Environment
The test environment was used to ensure that the assumptions made previously were
justified. In the first step shown in figure 5.1, a simple SIP Phone was used to create
some calls and enable us to analyze how to extract the MOS values from the PBX’s
database.

Figure 5.1: creating calls using a SIP Phone

The listing below gives a sense of how easily the PMOS value from fusionpbx is obtained
in R. As mentioned in a previous chapter, fusionpbx is based on freeswitch. Fusionpbx
uses PostgreSQL as a database and allows to obtain MIN, MAX and AVG PMOS of the
calls in a certain time interval by a simple SQL SELECT statement. Tests showed that
the interval should be not too small and a small minute interval fits perfectly. In real
application, this parameter should be dynamically configured.

1 require ("RPostgreSQL ")
2

53

5. Evaluation

3 getPMOSFromFusionPbx <− function (){
4 pw <− {
5 "pwd"
6 }
7
8 drv <− dbDriver (" PostgreSQL ")
9 con <− dbConnect (drv , dbname = " fus ionpbx " ,

10 host = " 172 . 1 6 . 0 . 2 0 " , port = 5432 ,
11 user = " fus ionpbx " , password = pw)
12
13 rm(pw) # removes the password
14
15 dbExistsTable (con , " v_xml_cdr ")
16
17 # query the data from PostgreSQL
18 df_pos tg r e s <− dbGetQuery (con ,
19 "SELECT␣MIN(rtp_audio_in_mos) ␣ as ␣min ,
20 MAX(rtp_audio_in_mos) ␣ as ␣max , ␣AVG(rtp_audio_in_mos) ␣ as ␣avg
21 FROM␣v_xml_cdr ␣WHERE␣ rtp_audio_in_mos␣ IS␣NOT␣NULL")
22
23 # AND answer_stamp > (NOW() − INTERVAL ’5 ’ MINUTE) ")
24
25 # compares the two data . frames
26 i d e n t i c a l (df , df_pos tg r e s)
27
28 on . exit (dbDisconnect (con))
29 dbUnloadDriver (drv)
30
31 return (df_pos tg r e s) ;
32 }

Listing 5.1: postgres_access.R

In line 18 the minimum, the maximum and the average MOS values are extracted.

To create more realistic values of the MOS factor the Voxtronic Call Generator was used.
The call generator played a minute-long audio file and was forwarded in a dial plan to a
number which created echo. As a result, it could be observed that the resulting MOS
factor was usually around 4.

Figure 5.2: Call generator used to create work load on the PBX.

54

5.2. Analysis of the working solution

5.2 Analysis of the working solution

The solution has been implemented using an PI controller since it is more resilient to
delays than a PID controller. In fact, using a normal PID controller would lead to
unpredictive behavior as can be seen in figure 5.3. The controlled variable PV (blue in
the figure) and the utility variable U (green in the figure) are not able to follow the set
point variable SP (red in the figure). It even appears that there are several points with
infinity values, indicated by the ellipses in green and blue.
This behavior can be explained by having a look at the equation of the PID controller.
While the P property is time-independent, the I property will just slowly adapt over time
to changes. The D component on the other side immediately tries to fix deviations in
the processed value based on the deviation of time. Due to the delay the controller is
not able to apply any change on the controlled system. In conclusion the PID controller
is not usable for our purpose. When compared to a PID controller, the PI controller

Figure 5.3: PID controller with delay

is much more resilient to long delays. In figure 5.4, one can see the step response of
the PI controller for the chosen simulation values. It is obvious that the desired MOS
value is achieved within 2 cycles. Afterwards the curve even overshoots for a few cycles.
The overshooting depends on the starting value of the set point variable. As a result,
the adjustment from zero to 4 the overshooting to be much higher and last longer than
the adjustment from 2 to 4. To simulate an PI controller with a PID controller, R was
used. The basis for the source was originally from r-bloggers[hbcr16], which showed a
basic PID controller implementation. From line 6 to line 8 the controller parameters are
configured, these have been changed according to the controller design. Note, that Td is
set to zero as the controller is configured as an PI controller. Line 11 to line 13 define
the simulation parameters which are derived from the requirements. dt is the time step.
tt is the time vector containing all the time values. Finally, the delay is defined by the

55

5. Evaluation

Figure 5.4: PI Controller working

VM start up time.
Eventually, the processed variables are plotted into a diagram 34.

1 source (" po s tg r e s_ac c e s s .R")
2 source (" u t i l . r ")
3 source (" p l o t . r ")
4
5 # con t r o l l e r parameters
6 Kp = 8 # propo r t i ona l gain
7 Ti = 50 # in t e g r a l time
8 Td = 0 # de r i v a t i v e time
9

10 # simu la t i on parameters
11 dt = 0.1 # time s t ep
12 t t = seq (0 , 1000 , by=dt) # time vec t o r
13 deadtime=300 # s ta r t up time in seconds o f the VM
14
15 # i n i t i a l i z e the f o l l ow i n g to a vec t o r o f z e ro s
16 dy = y1 = OUT = Gp = F = PV = U = E = EI = ED = rep (0 , length (t t))
17 PV[1] = 0 # i n i t i a l s t a t e o f the proces s v a r i a b l e
18

56

5.2. Analysis of the working solution

19 SP <− c r ea teRectang l eSe tPo int ()
20
21 for (k in 2 : (length (t t)−deadtime)) {
22 PV[k+deadtime] = pv (PV[k−1] , U[k−1] , t t [k])
23
24 E[k] = PV[k] − SP [k] # propo r t i ona l
25 EI [k] = EI [k−1] + E[k] ∗dt # in t e g r a l
26 ED[k] = (E[k] − E[k−1])/dt # de r i v a t i v e
27
28 U[k] = Kp∗ (E[k] + (1/Ti)∗sum(E∗dt) + Td∗ED[k])
29
30 i f (U[k] < 0) U[k] = 0
31 }
32
33 X <− c (1 : (length (PV)−1) , by=dt)
34 p l o tCon t r o l l e r (X)

Listing 5.2: main.r

Util.r provides some very helpful functions. One of the most important functions is
the createRectangleSetPoint function on line 4 which sets the SetPoint variable. The
createRectangleWithSinusSetPoint function on line 11 creates a step function that jumps
from zero to 4. This function was mainly used to analyze the behaviour of the controller.

1 de l ayBuf f e r = rep (0 , length (t t))
2
3 #Setpo in t Rectang le
4 c rea teRectang l eSe tPo int <− function (){
5 SP = rep (0 , length (t t))
6 SP [which(t t >= 1)] = 4
7
8 return (SP)
9 }

10
11 createRectang leWithSinusSetPoint <− function (){
12 SP = sin (0 . 5∗ t t) + cos (. 8∗ t t) + 0
13 SP [which(t t >= 20)] = 0 .3∗ (sin (0 . 5∗ t t) + cos (. 8∗ t t)) + 4
14 SP [which(t t >= 360)] = sin (0 . 5∗ t t) + cos (. 8∗ t t) + 1
15
16 return (SP)
17 }
18
19 pv = function (pv .prev , u , t t) {
20 out = (pv . prev∗ . 1 + 4) # exponen t i a l growth + l i n e a r growth
21 out = out − 0 .1∗u # the con t r o l response

57

5. Evaluation

22
23 out = out + .2∗runif (length (t t)) # noise func t i on
24
25 i f (out < 0) out = 0
26
27 return (out)
28 }
29
30 Tt = function (pv .prev , u , t t) {
31 out = (pv . prev∗ . 1 + 4) # exponen t i a l growth + l i n e a r growth
32 out = out − 0 .1∗u # the con t r o l response
33
34 out = out + .2∗runif (length (t t)) # noise func t i on
35
36 i f (out < 0) out = 0 # keep va l u e s p o s i t i v e
37 #i f (out >= 5) out = 5 ###e l im ina t e va l u e s over 5
38 return (out)
39 }

Listing 5.3: Util.r

5.3 Evaluation of Costs

To make the proposed solution comparable to others and also to show the effectiveness, a
cost evaluation has to be completed. Therefore, service level agreements must be defined,
including which penalties should be imposed if the desired quality is not achieved and
which reward should be granted if the desired MOS value is achieved. Furthermore,
it should be taken into consideration that each virtual machine consumes energy and
therefore costs money. It is obvious that if there are more virtual machines than necessary,
costs are effected.
But, since the purpose of this work was solely on the quality of the speech, the costs of
energy have not been taken into consideration. Instead of the energy costs the efficiency
of the solution should be measured by using the following formula:

Effeciency of the controller:∑N

n=1 SP (n)−P V (n)
N

Similar to an integrator the above formular sums up the differences between the set point
and the processed value at any given time. As a result, the area describes the deviation of
the expected curve, comparable with any other controller. Therefore, a smaller deviation
means the used algorithm is better than one with a higher deviation.

58

5.4. Comparison with other Controller Types

5.4 Comparison with other Controller Types
In order to make this solution better comparable with future work, this chapter will
provide some suitable properties. The suggested solution was compared with a Standard
PID controller with the variables used, if no delay occurs in the system and with a Smith
Predictor.
All selected controllers will be compared based on the properties presented in table 5.1.
The column Parameter is a short description of the property that is evaluated. Secondly,
the column labeled as description is a longer description of the property which should
also give a sense of how it can be measured. The column named Unit describes the
measurement unit of the property.
To summarize the findings, this table is filled out for the applicable controllers and should
serve as a comparison to the interested reader for his/her own selections of a controller.

Parameter Description Unit
Complexity of the
Controller

describes how difficult
the controller is to implement easy, medium, hard

Self-adaptive describes if the controller adapts
to changes in the delay Yes, No

Deviation from ideal value Area under which the
controlling output is not ideal Integer

Table 5.1: Framework for comparing controllers

Parameter Evaluation Result
Complexity of the Controller medium
Self-adaptive No
Deviation from ideal value on long delays unpredictable

Table 5.2: PID Controller

Parameter Evaluation Result
Complexity of the Controller hard
Self-adaptive No
Deviation from ideal value depends on the accuracy of the model

Table 5.3: Smith Predictor

As can be seen in tables 5.4 and 5.2 above, the PI and PID controller are much easier
to configure and to tune compared to a smith predictor. One advantage of the Smith
Predictor on the other side is that if the model of the system is clear, the controller is
much more accurate. Having said that, the Smith Predictor has two problems that need
to be tackled. One problem is, that it requires a significant amount of effort to design

59

5. Evaluation

Parameter Evaluation Result
Complexity of the Controller medium
Self Adaptive No
Deviation from ideal value depends on the tuning method used for configuration of the parameters

Table 5.4: PI Controller configured for no delay

such a smith predictor. When configuring the Smith Predictor during this work, I have
struggled with the Smith Predictor quite a while and still it was hard to configure it. The
second problem is that if the smith predictors’ model is slightly deviating, the controller
will generate an output that drives the actual process variable off into oblivion.
Unfortunately, all selected controllers are not self-adaptive. However, this should not
result in issues in this case, since the delay times does not vary too much for replicas of
the same VM. Due to the lack of the D component in the PI controller, it outperforms
the PID controller when it comes to delays.

5.5 Complexity Analysis

This section shall discuss the runtime in terms of a complexity analysis of the proposed
solution. Therefore, each function used will be analyzed and provide the complexity in θ
notation.

The main program consists of one big for loop containing all calculations done. Further-
more, three other functions can be identified.

The first one is the createRectangleSetPoint() function which is used to set the Set
Point variable. Its complexity is θ(1) since only assignments are processed. The second
function is the plotController function which is used to plot the inputs and outputs of
the controller. As the runtime strongly depends on the number of input arrays and there
size, the complexity can therefore be considered as θ(n2) Also notable is the pv() function
which calculates the actual value that is available on the controlled system. As there are
only assignments in this function, its complexity can be considered as θ(1).

The main loop consists of different statements and also the pv function which we
have shown to have θ(1) complexity. As a result, the main loop’s complexity is θ(n).

To summarize for all parts of the main program, the complexity is as follows:

θ(mainloop) + θ(createRectangleSetPoint) + θ(line 33) + θ(plotController) =

θ(n) + θ(1) + θ(n) + θ(n2) =

60

5.5. Complexity Analysis

θ(2n+ 1 + n2) =

θ(2n+ n2) = θ(n2)

However, since the plotController function would not be used in a real life version.
As a result the complexity of the algorithm would decrease to θ(2n).

61

CHAPTER 6
Summary and future work

This work presented how classical control theory can be used in computer science. Based
on the example of VoIP services, it showed how a PI controller can be used to achieve
this task. The purpose of the controller is to provide service users a constant quality
of speech. As a controlled value, the MOS value was selected since it is a standard for
monitoring the quality of VoIP networks. It has been shown how this value is extracted
from a modern open source PBX by a simple SQL command.

The work describes that starting a new machine leads to a delay in the control loop which
is a huge problem for a PID controller. Therefore, the PID controller has been replaced
by an PI controller which is more resistant to large delays since it has no derivative
component. It was shown that the PI controller could provide stability. The controller
values have been selected using the Ziegler-Nichols method which was described in the
work.

As a result of the work, it has been shown that the PMOS value is an eligible pa-
rameter that can be observed to not only monitor VoIP networks but also to achieve
horizontal scalability. As a downside, classical controllers do not adapt automatically to
changes in the system e.g. longer starting time of virtual machines. One way to address
this would be using modern controllers that are self-adaptive to changes of such values.
However, the PI controller would be very simple to implement and functionally a good
choice, unless the starting of virtual machine would result in unpredictable startup times.

Future work should focus on the one side on the implementation of a modern con-
troller which is self-adaptive to changes as discussed above. Also, the controller could
combine different parameters such as RAM, CPU, etc. to evaluate the controlled system
even more accurately. It also might be a bit more preactive rather than waiting for the
quality to actually decrease. Furthermore, the solution should be implemented using a

63

6. Summary and future work

modern programming language such as Java or Python with, e.g., a Freeswitch cluster
along with the designed controller at a cloud service. This would provide further proof of
the simulated data. Another interesting topic is how different types of media could have
implications on the choice and complexity of the controller.

Summing all up, this work showed successfully, that the scalability of a VoIP service can
be controlled using the quality of calls as a metric for a PI controller.

64

List of Figures

1.1 Dynamic resource allocation in cloud infrastructure 2
1.2 Monthly traffic per device until 2020 . 3
1.3 mobile VoIP market . 3
1.4 Workload for VoIP calls during a week . 4

2.1 controller types . 12
2.2 closed control loop . 13
2.3 I and D controller bode diagram . 14
2.4 Loss of stability . 15
2.5 Nyquist Curve . 16
2.6 MAPE loop . 17
2.7 Metric and Property[Pri15] . 18
2.8 Scenario and Metric[Pri15] . 19
2.9 CSM Definition Blocks[Pri15] . 21
2.10 CSM Definition Process[Pri15] . 21
2.11 MOS and R value . 24
2.12 SLA Lifecycle[MM11] . 24
2.13 Architecture performance prediction framework[ZLZ15] 26
2.14 typical performance skeleton tree[ZLZ15] 26
2.15 simple example of the SIP protocol as presented in RFC3261[JR02] 29
2.16 OPUS hybrid mode[JV12] . 34
2.17 Comparison of quality and bitrate of various codecs. 34

3.1 rstudio Webinterface . 38
3.2 FusionPbx Webinterface . 38
3.3 If A2/A1 ≈ 1

4 the stability of the system is OK, according to Ziegler and
Nichols[Hau10] . 39

3.4 sustained oscillations . 40
3.5 Formulas for the controller parameters in the Ziegler-Nichols’ closed loop

method.[Hau10] . 41
3.6 CHR for 0 % overshoot parameters . 41
3.7 CHR for 20 % overshoot parameters . 42
3.8 block diagram of a smith predictor[TD15] 42

65

3.9 block diagram of a Smith predictor[TD15] 43

4.1 Architecture of the proposed cloud service 46
4.2 Architecture . 49
4.3 Closed loop . 49
4.4 sustained oscillations . 50

5.1 creating calls using a SIP Phone . 53
5.2 Call generator used to create work load on the PBX. 54
5.3 PID controller with delay . 55
5.4 PI Controller working . 56

66

List of Tables

2.1 RTP header fields [HS03] . 32
2.2 Opus codecs bandwidths . 33

4.1 Parameters relevant for the controller design 48

5.1 Framework for comparing controllers . 59
5.2 PID Controller . 59
5.3 Smith Predictor . 59
5.4 PI Controller configured for no delay . 60

67

List of Algorithms

5.1 postgres_access.R . 53

5.2 main.r . 56

5.3 Util.r . 57

69

Bibliography

[20111] IDATE & UMTS Forum 2011. Mobile traffic forecasts 2010-2020 report -
UMTS Forum Report 44 page 74. Master’s thesis, UMTS Forum, 2011.

[AAY11] Imad AL Ajarmeh, Mohamed Amezziane, and James Yu. Modeling call arrivals
on voip networks as linear gaussian process under heavy traffic condition.
Master’s thesis, Los Alamitos, CA, USA, 2011.

[ama] Amazon ec2 pricing. https://aws.amazon.com/ec2/pricing/
on-demand/. Accessed: 2017-11-04.

[BH14] Amid Khatibi Bardsiri and Seyyed Mohsen Hashemi. Qos metrics for cloud
computing services evaluation. I.J. Intelligent Systems and Applications,
12:27–33, 2014.

[BMD11] Vladimír Bobál, Radek Matunu, and Petr Dostál. Digital smith predictors-
design and simulation study. In ECMS, pages 480–486, 2011.

[CSI14] CSIG. Cloud Service Level Agreement Standardisation Guidelines. CSIG-SLA,
2014.

[ec2] Real-world results. https://freeswitch.org/confluence/display/
FREESWITCH/Real-world+results. Accessed: 2017-11-04.

[fre] Freeswitch. https://freeswitch.org/. Accessed: 2017-09-30.

[fus] Fusionpbx. https://www.fusionpbx.com/. Accessed: 2017-09-30.

[Haa03] Dipl.-Ing. Dr. Wilhelm Haager. Regelungstechnik. 2003.

[Hau10] Finn Haugen. Ziegler-nichols’ closed-loop method. TechTeach, 2010.

[hbcr16] http://www.r-bloggers.com/pid-control r/. PID Control in r, 2016.

[HS03] R. Frederick V. Jacobson H. Schulzrinne, S. Casner. Rfc 3550 - rtp: Real
time protocol, 2003.

71

https://aws.amazon.com/ec2/pricing/on-demand/
https://aws.amazon.com/ec2/pricing/on-demand/
https://freeswitch.org/confluence/display/FREESWITCH/Real-world+results
https://freeswitch.org/confluence/display/FREESWITCH/Real-world+results
https://freeswitch.org/
https://www.fusionpbx.com/

[IB11] Vincent C. Emeakaroha Ivona Brandic Schahram Dustdar Ivan Breskovic,
Michael Maurer. Cost-efficient utilization of public sla templates in autonomic
cloud markets. 2011.

[ITU01] ITU. Perceptual evaluation of speech quality (PESQ): An objective method
for end-to-end speech quality assessment of narrow-band telephone networks
and speech codecs. Master’s thesis, INTERNATIONAL TELECOMMUNI-
CATION UNION, 2001.

[JR02] G. Camarillo A. Johnston J. Peterson R. Sparks M. Handley E. Schooler
J. Rosenberg, H. Schulzrinne. Rfc 3261 - sip: Session initiation protocol, 2002.

[JR06] G. Camarillo A. Johnston J. Peterson R. Sparks M. Handley E. Schooler
J. Rosenberg, H. Schulzrinne. Rfc 4566 - sdp: Session description protocol,
2006.

[JS15] JM. Valin J. Spittka, K. Vos. Rfc 7587 - payload format for the opus speech
and audio codec, 2015.

[JV12] T. Terriberry JM. Valin, K. Vos. Rfc 6716 - opus audio codec, 2012.

[lin] Linphone. http://www.linphone.org/. Accessed: 2017-09-30.

[MM11] Ivona Brandic Jörn Altmann Michael Maurer, Vincent C. Emeakaroha. Cost
and benefit of the sla mapping approach for defining standardized goods in
cloud computing markets. 2011.

[MP16] Abdelkhalik Mosa and Norman W. Paton. Optimizing virtual machine
placement for energy and sla in clouds using utility functions. Journal of
Cloud Computing, 5(1):17, Oct 2016.

[MR09] J. Altmann. M. Risch, I. Brandic. Using sla mapping to increase market
liquidity. 2009.

[p86a] Objective quality measurement of telephone-band (300-3400 hz) speech codecs.
https://www.itu.int/rec/T-REC-P.861/en. Accessed: 2017-12-20.

[p86b] Perceptual evaluation of speech quality (pesq): An objective method for end-to-
end speech quality assessment of narrow-band telephone networks and speech
codecs. https://www.itu.int/rec/T-REC-P.862/en. Accessed: 2017-
12-20.

[PAC06] PAControl.com. Instrumentation & Control - Process Control Fundamentals.
PAControl, 2006.

[Per02] Krzysztof Perlicki. Simple analysis of the impact of packet loss and delay on
voice transmission quality. Master’s thesis, NIT, 2002.

72

http://www.linphone.org/
https://www.itu.int/rec/T-REC-P.861/en
https://www.itu.int/rec/T-REC-P.862/en

[pos] postgresql. https://www.postgresql.org/. Accessed: 2017-09-30.

[Pri15] Penny Pritzker. Cloud computing service metrics description, 2015.

[rpr] r-project. https://www.r-project.org/. Accessed: 2017-09-30.

[rst] rstudio. https://www.rstudio.com/. Accessed: 2017-09-30.

[Sö] Martin Sölkner. Energieeffizienter Elastizitätsmanager für Clouds.

[SC15] Sukhpal Singh and Inderveer Chana. Qos-aware autonomic resource man-
agement in cloud computing: A systematic review. ACM Comput. Surv.,
48(3):42:1–42:46, December 2015.

[sql] Iso/iec 9075-1:2016. https://www.iso.org/standard/63555.html.
Accessed: 2017-09-30.

[TD15] Ajay Tala and Bhautik Daxini. Smith predictive control of time-delay processes.
ETCEE–2015, page 7, 2015.

[VCER10] Marco A. S. Netto Ivona Brandic Vincent C. Emeakaroha, Rodrigo N. Cal-
heiros and Cesar A. F. De Rose2. Desvi: An architecture for detecting sla
violations in cloud computing infrastructures. 2010.

[voi] Call quality metrics. https://www.voip-info.org/wiki/view/
Call+Quality+Metrics. Accessed: 2017-12-20.

[YA15] Khaled Swesi Yousef Abuseta. Design patterns for self adaptive systems
engineering. International Journal of Software Engineering & Applications
(IJSEA), 6(4), 2015.

[YOU07] JUSTIN YOUNEY. A COMPARISON AND EVALUATION OF COMMON
PID TUNING METHODS . Master’s thesis, B.S. Rochester Institute of
Technology, 2007.

[ZLZ15] H. Zhang, P. Li, and Z. Zhou. Performance difference prediction in cloud
services for sla-based auditing. In 2015 IEEE Symposium on Service-Oriented
System Engineering, pages 253–258, March 2015.

[ZN42] J. G. Ziegler and N. B. Nichols. Optimum Settings for Automatic Controllers.
Transactions of ASME, 64:759–768, 1942.

[ZXJ00] Qing C Zhong, Jian Y Xie, and Qing Jia. Time delay filter-based deadbeat
control of process with dead time. Industrial & Engineering Chemistry
Research, 39(6):2024–2028, 2000.

73

https://www.postgresql.org/
https://www.r-project.org/
https://www.rstudio.com/
https://www.iso.org/standard/63555.html
https://www.voip-info.org/wiki/view/Call+Quality+Metrics
https://www.voip-info.org/wiki/view/Call+Quality+Metrics

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem Statement
	Aim of the work
	Methodological approach
	Structure of the work

	State of the art / analysis of existing approaches
	Control Theory
	Metrics
	Cost-Efficient Utilization in cloud services
	Voice over IP (VoIP)

	Methodology
	Programming languages and used software
	Methodologies for Configuring Controllers

	Suggested Solution
	Architecture for a VoIP cloud service
	Definition of SLOs and Selection of Metrics
	Requirements for a VoIP cloud service
	Design of the controller
	Definition of a utility and a cost function

	Evaluation
	Test Environment
	Analysis of the working solution
	Evaluation of Costs
	Comparison with other Controller Types
	Complexity Analysis

	Summary and future work
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

