
Comparison of Different Machine Learning
Algorithms for Action Recognition

DIPLOMARBEIT

Conducted in partial fulfillment of the requirements for the degree of a

Diplom-Ingenieur (Dipl.-Ing.)

supervised by

Ao. Univ.-Prof. Dipl. Ing. Dr. techn. M. Vincze
Dipl. Ing. M. Hirschmanner

submitted at the

TU Wien
Faculty of Electrical Engineering and Information Technology

Automation and Control Institute

by
Anton Kenov

Matr.-Nr. 0627229
Hungerbergstrasse 8/3

1190 Wien

Vienna, June 2019

Vision for Robotics Group
A-1040 Wien, Gusshausstr. 27, Internet: http://www.acin.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Abstract
With the increasing rate robots take part in our private and business life, the
complexity of the tasks they perform will grow. If cleaning up the table at
home or co-working in a factory, one of the easiest ways for robots to acquire
the knowledge for performing these new tasks is by learning from multiple
examples. Therefore, robots have to be able to correctly recognize and mimic
human actions derived from sensor data. To achieve this, supervised machine
learning models are trained on recorded datasets from the domain of human
action recognition. The available datasets often have small numbers of training
sequences, which often results in model overfitting and poor generalization
performance. Low classification accuracy due to lack of training data creates a
significant challenge. Diverse augmentation techniques can improve the train-
ing results by artificially enhancing small datasets. This thesis presents and
compares different machine learning approaches for human action recognition
using tracked skeletal data. The focus is on how different data augmentation
techniques can facilitate recognition accuracy. For the performance measure-
ment of each augmentation technique three machine learning models have been
selected - a baseline convolutional neural network, a simple recurrent neural
network and an improved hybrid one, a combination of the aforementioned.
The implemented augmentation techniques for human skeleton joint coordi-
nates are scale, shift, noise, subsample and interpolation. The models have
been trained on three publicly available benchmark datasets. The relative
improvement per augmentation type has been derived from the experimental
results. The evaluation of the results reveals that the shift augmentation has
the strongest impact on all models, followed by the scale augmentation. The
recurrent model displays the largest capacity for augmentation enhancements.
The hybrid model achieves the highest absolute accuracy and is less affected
by the applied augmentations.

I

Kurzzusammenfassung
Mit der zunehmenden Anzahl von Robotern, die an unserem Privat- und Ge-
schäftsleben teilnehmen, wird die Komplexität der Aufgaben, die sie ausführen,
zunehmen. Wenn sie den Tisch aufräumen oder in einer Fabrik mitarbeiten,
können Roboter das Wissen zur Durchführung neuer Aufgaben am einfachsten
anhand mehrerer Beispiele erlernen. Roboter müssen daher in der Lage sein,
aus Sensordaten abgeleitete menschliche Handlungen korrekt zu erkennen und
zu wiederholen. Zu diesem Zweck werden Modelle des maschinellen Lernens
an aufgezeichneten Datensätzen aus dem Bereich der Erkennung menschli-
cher Handlungen trainiert. Die verfügbaren Datensätze weisen häufig eine
geringe Anzahl von Trainingssequenzen auf, was zu einer Überanpassung des
Modells und deswegen einer schlechten Generalisierungsleistung führen kann.
Eine geringe Klassifizierungsgenauigkeit aufgrund fehlender Trainingsdaten
zu überwinden ist eine schwierige Herausforderung. Verschiedene Augmen-
tationstechniken können die Trainingsergebnisse verbessern, indem sie kleine
Datensätze künstlich ergänzen. In dieser Arbeit werden verschiedene Ansätze
des maschinellen Lernens zur Erkennung menschlicher Handlungen unter Ver-
wendung von Skelettdaten vorgestellt und verglichen. Der Fokus liegt darauf,
wie unterschiedliche Augmentationstechniken die Genauigkeit von menschlicher
Aktionserkennung verbessern können. Für den Vergleich der Augmentations-
techniken wurden drei maschinelle Lernmodelle ausgewählt - ein “Convolutional
Neural Network”, ein “Recurrent Neural Network” und ein Hybridnetz, das
beide kombiniert. Die untersuchten Augmentationstechniken für menschliche
Skelettgelenk-Koordinaten sind Skalierung, Verschiebung, Rauschen, Unterab-
tastung und Interpolation. Die Modelle wurden mit drei öffentlich verfügbaren
Benchmark-Datensätzen trainiert. Die relative Verbesserung pro Augmentati-
onstyp wurde aus den experimentellen Ergebnissen abgeleitet. Die Auswertung
der Ergebnisse zeigt, dass die Verschiebungs-Augmentation die stärkste Aus-
wirkung auf alle Modelle hat, gefolgt von der Skalierung-Augmentation. Das
“Recurrent Neural Network” zeigt die grössten Verbesserungen durch die Ver-
wendung der Datenaugmentierung. Das Hybridmodell erreicht die höchste
absolute Genauigkeit und ist von den angewendeten Augmentationen weniger
betroffen.

II

Acknowledgements
This diploma thesis was written as a thesis for the master degree in the study
of Energy Engineering and Automation Technology. I would like to take this
opportunity to thank everyone who contributed to the creation of this work.

My thanks go to my professor Markus Vincze, who made this work possible, and
to Michael Zillich, who originated the concept. I want to thank my supervisor
Matthias Hirschmanner for his promptly guidance and support and for his
commitment to be my supervisor.

I also want to thank all colleagues at the Vision for Robotics Group for the
productive environment they create. Thank goes to Jean-Babtiste Weibel for
the countless discussions we had and his support when debugging my code.
Thanks go to Mohammad Loghmani for his recurrent networks insights and
taking care of the hardware setup, where all the experiments were conducted. I
want to thank Yegor for timely generating the initial batch of training data at
the very beginning of my experiments and Simon for his good sense of humor.
Special thanks go to Martin Trapp at OFAI for his discussions and guidance at
the beginning of this thesis.

I want to thank all my friends and colleagues at work, who have influenced me
in a positive fashion along the way.

Special thank goes to my family for their support throughout all those years.
In particular, I want to thank my parents for always being there for me, even
in the darkest hours where my life could have turned into another direction,
and never giving up on me. I also want to thank Sasha for believing in me and
keeping an eye on me during my studies.

Anton Kenov

Vienna, June 2019

III

Contents
1 Introduction 1

1.1 Motivation . 1
1.2 Problem Statement . 3
1.3 Scope of This Thesis . 3
1.4 Chapter Organisation . 4

2 Related Work 5
2.1 Historical Milestones . 5
2.2 Current Work in Human Action Recognition 7

2.2.1 Approaches with Hand-Crafted Features 7
2.2.2 Convolutional Approaches 9
2.2.3 Recurrent Approaches 11
2.2.4 Hybrid Approaches . 15

3 Methods and Data Augmentation Techniques 20
3.1 Supervised Machine Learning 22
3.2 Sequential Model and Layers . 24
3.3 Data Preprocessing . 30
3.4 Loss Functions and Optimizers 31
3.5 Overfitting and Regularization 36

3.5.1 Data Augmentation . 39

4 Implementation 44
4.1 Training Datasets . 44
4.2 Data Augmentations . 46
4.3 Neural Network Models . 47

4.3.1 Convolutional Model . 47
4.3.2 Recurrent Model . 48
4.3.3 Hybrid Model . 49

4.4 Libraries and Frameworks . 50
4.5 Setup, Preprocessing and Hyperparameters 51
4.6 General Model Training . 52

IV

Contents V

5 Experimental Results 53
5.1 Without Augmentation . 53
5.2 Individual Augmentations . 54

5.2.1 Scale . 54
5.2.2 Shift . 55
5.2.3 Scale-Shift . 56
5.2.4 Scale-Shift-Noise . 57
5.2.5 Scale-Shift-Subsample 57
5.2.6 Scale-Shift-Interpolate 58
5.2.7 All Together . 59

5.3 Comparative Study . 60
5.4 Discussion . 63

6 Conclusion 64

A Experimental Data 66

List of Figures
1.1 RIBA robot lifting a human using tactile guidance [5]. 2
1.2 An original full-body human skeleton posture (in black) can be

scaled and translated to artificially enhance a limited training
dataset needed for high accuracy action recognition tasks. . . . 3

2.1 AlexNet [14] architecture consisting of stacked 5 convolutional
and 3 fully connected layers. The double symmetrical imple-
mentation is to show that the model had to be trained on two
separate GPUs. 6

2.2 Functional graph of SSNet. Only 3 of the 14 one-dimensional
convolutional layers are shown. Convolutional filters are shared
at each layer, but are different across layers. The solid lines
denote the network links activated at current step t and the
dashed lines indicate the links activated at other time steps. At
each time step, the network calculates the action class ĉt and
the temporal distance ŝt to current action’s start point [27]. . . 10

2.3 Song et al. [32]: Main LSTM network with spatial and temporal
attention modules. The input is marked with Xt, ht is the LSTM
hidden state output, αt is the spatial activation output and βt is
the temporal activation output. Z ′t represents the network final
output. 12

2.4 Si et al. [34]: SR-TSL model architecture, consisting of spatial
reasoning network and temporal stack learning network. The core
of the spatial reasoning network, a residual graph neural network
(RGNN), is used to capture the high-level spatial structural
information between the different body parts. The stacked
LSTM layers in the temporal stack learning network are used to
model the detailed temporal dynamics of a skeleton sequence.
A further classification optimization is achieved via clip-based
incremental losses (CILoss). 13

VI

List of Figures VII

2.5 Liu et al. [36]: GCA-LSTM model workflow. The first LSTM
layer encodes the skeleton sequence and initialize the global
context memory cell. The second LSTM layer plays the role of
attention module and iteratively refines the representations in
the memory cell. The final state of the context information is
used for classification. 14

2.6 Shi et al. [39]: Encoding-forecasting ConvLSTM network for pre-
cipitation nowcasting. Both networks are built up from stacked
ConvLSTM layers. The last state of the encoding network is used
to initialize the states and cell outputs of the forecasting network.
The final prediction is achieved by applying 1× 1 convolution
over the concatenated states in the forecasting network. 15

2.7 Nunez et al. [41]: The model in first training phase. A stack
of convolutional and pooling layers is connected to two dense
layers for classification. 16

2.8 Nunez et al. [41]: The hybrid model in second training phase.
The stack of convolutional and pooling layers with pretrained
weights is connected to a LSTM layer prior to classification. . . 17

2.9 Maghoumi and LaViola [45]: The DeepGRU recurrent model
consists of an encoder network of stacked gated recurrent units
(GRU), an attention module and fully connected layers for clas-
sification. The input x = (x0, x1, . . . , xL−1)) is a sequence of
arbitrary length vectors and the output ŷ is the predicted class
label. Next to each stack is displayed the number of the hidden
units for each GRU layer in it. 18

3.1 Artificial neural network as interconnected group of nodes. . . . 21
3.2 Visualization of single step performed by a convolutional layer.

The filter map F×F slides over the input image I×I with stride
S = 1 applying convolution operation. The result is written to
the output activation map O ×O. In this example the number
of channels C is assumed 1 for simplicity. Adapted from [61]. . . 25

3.3 The 96 learned filters of size 11×11×3 from the first convolutional
layer of AlexNet [14] on the 224× 224× 3 input images. Each
filter represents a special pattern that steers the distillation
process in the convolutional layer. The network has learned a
variety of frequency- and orientation-selective filters and different
coloured blobs. 25

3.4 Visualization of max pooling technique with stride 2 × 2. In
each region the maximum value is selected for the output result. 26

List of Figures VIII

3.5 Schematic visualization of the peephole LSTM neuron. The
input vector sequence xt is sent to the input gate, forget gate
and output gate for activation. The product of tanh(xt + ht−1)
with the input activation vector it is stored into the LSTM
memory cell, considering the state of the forget activation vector
ft. The cell state is updated and fed to all three gates for
the next iteration. The product of tanh(ct) with the output
activation vector ot updates the hidden state ht of the LSTM
neuron. Adapted from [40]. 27

3.6 Block diagram of supervised neural network. The input X is
fed to the layers for transformation and final classification. The
loss function calculates the error between the predicted Y ′ and
the true classification Y for the input X. The loss score is then
provided to the optimizer for the calculation of the next update
and adjustment of the layer weights. Adapted from [53]. 31

3.7 Comparison of different optimizers on multilayer neutral network
with MNIST dataset. Adam displays best performance [33]. . . 35

3.8 Comparison between underfitting, overfitting and the right ap-
proximation. 36

3.9 Qualitative drawing of the training process when a split between
the training and validation loss occurs and the model starts to
overfit. 37

3.10 Dropout Neural Network Model. Left: A standard neural net
with 2 hidden layers. Right: An example of a thinned net
produced by applying dropout to the network on the left. Crossed
units have been dropped [69]. 38

3.11 Visual representation of the scale augmentation on a full-body
skeleton. The black skeleton in the middle has the original size
as recorded, while the yellow to the left is scaled down with a
factor of 0.8 and the blue one to the right is scaled up 1.2 of the
original size. 39

3.12 Visual representation of the shift augmentation for a full-body
skeleton. The two compositions display the original black skele-
ton with positive and negative horizontal (left) and vertical
(right) translations. 40

3.13 Visual representations of the scale-shift chained augmentation
for a full-body skeleton. The two compositions display differ-
ent scaled skeletons that are translated in horizontal (left) and
vertical (right) directions. 41

List of Figures IX

3.14 Visual representation of the noise augmentation for a full-body
skeleton. Noise has been added to four joints - two in the right
arm and two in the feet (yellow marks are the augmented joints).
The blue marks represent the original positions and the dashed
lines emphasize the effective alternation from the original pose. . 42

3.15 Visual representation of the subsample augmentation for a full-
body skeleton. The original sequence is iterated and every
other frame is skipped (crossed with red dashed lines). Varying
skipping logic results in a multiple instances of the same action
with a different pace. 43

3.16 Visual representation of the interpolation augmentation for a full-
body skeleton. The original frames (blue skeletons) are artificially
enhanced with new linearly interpolated skeleton joints (yellow
skeletons). In this example each pair of consecutive frames is
enhanced with a single new frame at equal spatial distance.
Varying the number of inserted frames and their spatial distance
results in a multiple instances of the same action with a different
pace. 43

4.1 Mapping of the skeleton joints from the training datasets. 45
4.2 The layer architecture of the convolutional model. It consists of a

stack of convolutional and pooling layers and two fully connected
layers. The convolutional stack distils the relevant patterns
and the fully conducted layers narrow down the convolutional
feature representations. The final classification is done via fully
connected layer with a soft-max activation function. 47

4.3 The layer architecture of the recurrent model. It consists of
one layer with 100 LSTM neurons. The input data has been
normed with batch normalization layer and empty frames have
been filtered out with a masking layer prior to the LSTM layer.
The final classification in the output is done via fully connected
layer with a soft-max activation function. 48

4.4 The layer architecture of the hybrid model. It consists of a stack
of convolutional and pooling layers and a LSTM layer. The
convolutional stack extracts the relevant short-term patterns and
the LSTM layer models their long-term temporal development.
The final classification is done via fully connected layer with a
soft-max activation function. 49

4.5 Keras software and hardware stack. Adapted from [53]. 50

5.1 Overview of the augmentations for the convolutional model. . . 60

List of Figures X

5.2 Overview of the augmentations for the recurrent model. 61
5.3 Overview of the relative augmentation results for the hybrid

model. 62

List of Tables
5.1 Overview results without augmentations in %. 53
5.2 Overview of the scale augmentation relative results. 54
5.3 Overview of the shift augmentation relative results. 55
5.4 Overview of the scale-shift augmentation relative results. 56
5.5 Overview of the scale-shift-noise augmentation relative results. . 57
5.6 Overview of the scale-shift-subsample augmentation relative

results. 58
5.7 Overview of the scale-shift-interpolate augmentation relative

results. 58
5.8 Overview of the relative results for all the augmentations together. 59

A.1 Accuracy results for UTK dataset on the convolutional model. . 66
A.2 Accuracy results for UTK dataset on the recurrent model. . . . 66
A.3 Accuracy results for UTK dataset on the hybrid model. 67
A.4 Accuracy results for DHG-14 dataset on the convolutional model. 67
A.5 Accuracy results for DHG-14 dataset on the recurrent model. . . 68
A.6 Accuracy results for DHG-14 dataset on the hybrid model. . . . 68
A.7 Accuracy results for AVCExt dataset on the convolutional model. 69
A.8 Accuracy results for AVCExt dataset on the recurrent model. . . 69
A.9 Accuracy results for AVCExt dataset on the hybrid model. . . . 70
A.10 Accuracy results for AVCExt dataset on the convolutional model

with frame length 500. 70
A.11 Accuracy results for AVCExt dataset on the recurrent model

with frame length 500. 71
A.12 Comparative results for the convolutional, recurrent and hybrid

models. 71

XI

1 Introduction
Robots are entering our daily lives with increasing rates. From simple vacuum
cleaners and lawn mowers to personal assistants at home. They are here to stay
and play a major role in our future. Robots should be able not only to execute
preprogrammed tasks or make a simple search on the Internet, but also do more
complex actions - like put the dishes into the dishwasher, doing the laundry,
picking up fallen objects from the ground for the elderly or simply supporting
them when walking. Since it is not feasible to preprogram all possible tasks
based on the unique surroundings prior to deployment, robots have to be able
to learn from example. There are different areas where robots can utilize human
motions knowledge - various visual surveillance systems, entertainment or video
search applications and autonomous driving vehicles, are all types of human
action recognition (HAR) tasks. For those applications robots have to be able
to correctly recognize human actions. The research field of HAR has gained
much interest in recent years and has benefited greatly from the advances in
machine learning [1].

1.1 Motivation
Robots can have variety of different support functions they can do at our homes
or working places. They can free time from routine or hard tasks and allow us
to focus more on other important topics. From extinguishing fires, assisting
human body operations in hospitals till sorting out containers with mechanical
objects for an assembly line in a factory, robots have to learn complex tasks
and be able to execute them with satisfactory precision. Figure 1.1 shows a
nursing-care assistant robot guided by touch from the patient. The simplest way
for an end-user to program general-purpose robot for learning and recognizing a
specific action is by demonstration [2] [3]. This eases off the life of the user but
creates a challenge for the robot engineers. The problem could be divided into
two parts – proper data generation, i.e. quality processing of multiple examples,
and the optimal utilization of this data for the goal of action classification [4].

Modern sensors provide not only high-resolution colour, but also depth images
and a derived skeletal data of selected human joints. While RGB images are
influenced by occlusion, camera movement or complexity of the scene, depth

1

1 Introduction 2

Figure 1.1: RIBA robot lifting a human using tactile guidance [5].

information and the derived skeleton joints are stable with respect to variations
in the environment and allow real-time robust human pose estimation [6]. Good
examples of popular consumer devices working with skeletal data are Microsoft
Kinect, LeapMotion, Intel RealSense or ZED, among others [7].
To handle the task of action classification one can take advantage of the

recent success in the domain of machine learning and specifically supervised
learning, dealing with ready-to-use demonstrations. The main advantage of
the machine learning models is that they are capable of learning to perform
the classification task by looking at the data without predefined heuristics.
Previously, the best results in human action recognition were achieved with
the help of specially designed features, which required years of experience in
the field of HAR, good knowledge of the underlying training data and manual
tuning. Thus, machine learning simplifies the work of robot engineers and
allows for much broader usage of context and different non-standard motions.
This work has been motivated by the rapidly growing approaches towards

better human action recognition and their real-world applications. A more
advanced technology in this field can contribute to new and improved practical
solutions, like reliable public safety, eldercare monitoring, pedestrian motion
estimation for driverless cars, human worker activity recognition in modern au-
tomated factories, that will improve the quality of our personal and professional
lives.

1 Introduction 3

1.2 Problem Statement
Current state-of-the-art models require substantial amount of training data,
sometimes as big as tens of thousands of examples, to successfully be able to
classify a human action. It is a substantial problem that often no sufficiently
large dataset of specific group of actions is available for accurately training
those models.

In this work the author investigates how much are data augmentation tech-
niques improving the accuracy of different machine learning models, if they do
so for all type of actions and if they even act counterproductive altogether.

1.3 Scope of This Thesis
The focus of this thesis is to determine which skeletal data augmentation
techniques are most advantageous towards different types of human actions – full-
body ones or hand gestures. Examples of scale and translational augmentations
for a full-body human skeleton are shown in Figure 1.2.

Figure 1.2: An original full-body human skeleton posture (in black) can be
scaled and translated to artificially enhance a limited training
dataset needed for high accuracy action recognition tasks.

We take a state-of-the-art hybrid model and split it into two additional mod-
els, representing its convolutional and recurrent building blocks. To have a
standardized evaluation we have selected three publicly available datasets, two
of which are popular benchmarks in the field of human action recognition.
The models are trained without, with a single and with all augmentations
together on a single dataset split for training and test validation. To achieve

1 Introduction 4

optimal results a carefully tuned preprocessing pipeline had to be developed.
The neural network models have been implemented with the machine learning
framework Tensorflow and its high-level API library Keras. For conducting the
experiments two high-end Nvidia GPUs have been utilized.

The comparative study of the observed results reveals that the shift augmen-
tation is outperforming all others on all three models, followed by the scale
augmentation which scores mostly positive on the two of the models. All the
other examined augmentations display ambiguous behaviours depending on
the model and type of skeletal dataset.

This thesis is not focusing on developing a new neural network model for the
purpose of scoring the highest absolute accuracies over the selected datasets.
As stated above, the conducted experiments are based on a single dataset split
which is sufficient for deriving the relative improvement of each augmentation
technique.

1.4 Chapter Organisation
Chapter 2 introduces different solutions for human action recognition. It starts
with short description of the historical milestones in the field of machine learning.
The recent works are then grouped according to their underlying approach
into hand-crafted features, convolutional neural networks, recurrent neural
networks and hybrid neural networks. In Chapter 3, the theory of the relevant
building blocks and the basic augmentation techniques used in this thesis are
presented. Chapter 4 presents the different steps in the implementation of
performance measurement of the data augmentation techniques. It describes
the chosen training datasets, the parametrization of the augmentations, as
well as the neural network models and their architecture. It continues with
short description of the used machine learning libraries and their training
parameters and hyperparameters. Details over dataset specific preprocessing
are elaborated. Chapter 5 presents the experimental results grouped by applied
augmentations, a comparative study and a following discussion. Chapter 6
concludes the thesis and analyses the achieved performance for the different
augmentation techniques. Possible future work topics are discussed.

2 Related Work
Modern intelligent systems, from assistance robots, through self-driving cars
and media content analysis engines, till general surveillance, rely on accurate
action recognition technology. There are many different approaches in each
application segment being actively researched. The research field of spatio-
temporal human recognition based on 3D visual perception data is rapidly
growing. Motion representations can be broadly categorized into two groups -
the first is using RGB data together with available depth information and the
second uses 3D skeletal data. Skeleton-based representations are able to model
the relationship of human joints and encode the whole-body configuration.
This makes them robust to translation, rotation, scaling and motion speed
variations, but also to illumination and viewing angle changes. Skeleton joints
coordinates are derived from RGB-D data and their compact form makes them
fast and easy to use with higher frame rates. However, next to the additional
processing needed skeleton joints have limited range and unprecise body pose
estimation [8]. Given the advantages of skeleton-based data representations, in
recent years there has been significant increase of various new techniques to
further develop and improve their applications [9].

2.1 Historical Milestones
The dream of intelligent systems with distinct capabilities is as old as humanity.
The beginning of active research in the field of artificial intelligence goes back to
the second half of the twentieth century. The path towards the modern powerful
neural networks is marked with few major milestone contributions. In 1980
Fukushima [10] presented a neural network model capable of self-organization
and pattern recognition, based on geometrical similarity invariant to position
or scaling differences. The author calls this “neocognition”, similar to the
biological function of the visual nervous system of the vertebrate. For his
work Fukushima is considered the original author of the modern Convolutional
Neural Network (CNN). For a while, such networks seemed unusable. In 1986
Rumelhart et. al. [11] showed that neural networks can learn representations
of the input data using forward- and back-propagation algorithm, gradient
descent optimizer and an error function.

5

2 Related Work 6

Building upon the above, in 1998 LeCun et al. [12] showed the first major
practical usage of using multi-layer convolutional neural networks and back-
propagation. In his Graph Transformer Network, the author utilized convolu-
tional neural network units for 2D shape recognition. Their main advantage
over other techniques is that they can automatically learn the data underlying
patterns without need of manual heuristics. The task chosen was classifying
handwritten digits for automatic reading the ZIP codes on mail envelopes with
the US Postal Service.
While image pattern recognition with CNNs marked a new milestone, they

lacked the capacity to handle well temporal data such as audio or word streams.
This problem has been addressed by recurrent neural networks (RNNs). Trying
to apply them to real-world problems revealed a major disadvantage – they were
not able to learn from long sequences. In 1997 Hochreiter and Schmidhuber
[13] introduced a novel recurrent method called the Long Short-Term Memory
(LSTM). This method solves the vanishing gradient problem occurring in
recurrent back-propagation. This is achieved by using special memory cells
equipped with gates, dynamically learning what to remember and what to
forget. LSTM can learn to bridge minimal time lags over more than thousand
discrete-time steps.

Figure 2.1: AlexNet [14] architecture consisting of stacked 5 convolutional and
3 fully connected layers. The double symmetrical implementation
is to show that the model had to be trained on two separate GPUs.

The following years in the field of machine learning were marked with incre-
mental progress. In 2012 Krizhevsky, Sutskever and Hinton [14] demonstrated
the accumulated power of deep learning models, using multiple stacked CNN
and pooling layers. His approach won the public ImageNet ILSVRC-2012
competition. The model architecture is shown in Figure 2.1. The authors used
two data augmentation techniques and Dropout [15] to mitigate overfitting.
The first data augmentation applies translations and horizontal reflections to
the original image, while the second one changes the intensities of the RGB
channels. The Dropout with probability 0.5 is applied to the first two fully
connected layers and doubles the training iterations for the network to converge.

2 Related Work 7

2.2 Current Work in Human Action Recognition
In the past decade the research field of human action recognition came up
with lots of different approaches. The following works can be grouped into
four general categories. The first one deals with the different algorithms for
extracting self-made heuristics. The second, third and fourth categories cover
the convolutional, recurrent and hybrid neural network approaches.

2.2.1 Approaches with Hand-Crafted Features
The initial solutions have focused on using the classic RGB images to derive
skeletal information. Reddy, Latha and Babu [16] developed a method for
hand gesture recognition via distance transformation from static RGB images
converted to skeletons. Skeleton in this context means compact 2D representa-
tion of the human hand, preserving its topology. Their approach computes a
skeleton for every hand posture in the entire hand motion and superimposes
those on a single image called Dynamic Signature. Gesture recognition is
done by comparing the Euclidean distance of a Dynamic Signature with a
ground-truth database.
A more recent work done by Luvizon, Tabia and Picard [17] presented

a new framework for human action recognition using only skeleton joints
extracted from depth maps. Local features are aggregated into several feature
vectors by a robust method. Their work is utilizing the vector of locally
aggregated descriptors (VLAD) algorithm and a pool of clusters, providing a
good representation for long and short actions. Then the combined feature
vectors are used to extract the most discriminant information prior to being
fed to k-nearest neighbors classifier.
The emergence of low-cost depth sensors opened new ways to address the

challenges of human activity recognition. Compared to the conventional use of
RGB images, the information from depth channel is insensitive to illumination
variations, invariant to colour and texture changes, and more importantly
reliable for body silhouette and skeleton extraction. Shotton et al. [18]
proposed a new method to quickly and accurately predict 3D positions of body
joints from a single depth image, using no temporal information. The authors
took an object recognition approach, designing an intermediate body parts
representation that maps the difficult pose estimation problem into a simpler
per-pixel classification problem. They have used the depth images from a
Microsoft Kinect.
Microsoft Kinect depth camera has achieved wide adoption. Wang, Liu

and Chan [19] utilized its RGB+D capabilities to present a new hand gesture
recognition method. Their method is called Superpixel Earth Mover’s Distance
(SP-EMD) and measures the distance between two hand gestures based on
shape and texture together.

2 Related Work 8

Another approach focused on jointly learning heterogeneous features using
RGB-D data was presented by Hu et al.[20]. The authors observed that,
while RGB channel captures the scene appearance via colour information and
the depth channel describes the geometry cues in depth, both share common
features, making the combined descriptor more robust and collaborative across
different channels. They introduced a linear projection matrix called the
intermediate transform (i-transform) for each feature type, capable of controlling
the dimensionality of each heterogeneous feature subspace. In their work a
three-step iterative optimization algorithm for finding the optimal solution
with a guaranteed convergence is proposed. Their model is called the joint
heterogeneous features learning (JOULE) model. Additionally, they presented
a variant of temporal pyramid Fourier features (TPF) developed in [21] in
order to apply both the original feature signal and its gradient to implicitly
encode human motions. The descriptors used are called dynamic skeleton (DS),
dynamic colour pattern (DCP) and dynamic depth pattern (DDP) features.
Each one consists of two temporal pyramid Fourier features, from the original
feature signal and from the corresponding gradient signal. Together the six
components form the final heterogeneous feature set. Following the work of Li
et al. [22] they introduced feature augmentation by concatenating the shared
and specific confidence vectors together. To further mitigate overfitting the
authors feed to their model additional auxiliary sets. The technique assumes
that during learning features of the same type, from the auxiliary and target
sets, share the same i-transform and thus can be jointly learned.
As depth cameras improved, they provided access to the 3D coordinates of

the tracked skeleton joints. This reduced the initial processing of the raw data
and allowed researchers to focus on new solutions. De Smedt, Wannous and
Vandeborre [23] presented a new approach on skeleton-based 3D hand gesture
recognition. They used the geometric shape of the hand to extract representative
descriptors. Hand joint vectors are coded by a Fisher Vector representation
using a Gaussian Mixture Model, and then appended with translation and
rotation descriptors. The temporal evolution of the hand gestures is encoded
by what the authors call a Temporal Pyramid (TP). As part of their work,
the Dynamic Hand Gesture (DHG)1 dataset is made public and since then has
been used for scoring measurement of various spatio-temporal models. For the
recordings they have used Intel RealSense depth camera, providing 22 hand
joints coordinates in 3D space. The final classification is done using Support
Vector Machine classifier. The authors concluded that the skeleton-based
approach achieves better performance over depth-based approaches.
Similar work, mining for key-pose-motifs in 3D skeletal data for action

recognition has been presented by Wang, Wang and Yuille [24]. This approach

1http://www-rech.telecom-lille.fr/DHGdataset/

http://www-rech.telecom-lille.fr/DHGdataset/

2 Related Work 9

aims to make the classification data more robust to style variations, improve
pose estimation accuracy and reduce overfitting. The authors defined motif
as a short sequence of poses, which are nearby but not necessarily adjacent in
the original sequences. A motif is quantized using dictionary mapping. Thus,
a key-pose-motif is one that appears in a sufficient number of sequences in
particular class. An algorithm is proposed to mine for such key-pose-motifs
from the probability matrices, representing the soft-assignment of poses to
symbols.

2.2.2 Convolutional Approaches
Since the work of Krizhevsky, Sutskever and Hinton [14], the focus shifted from
hand-crafted features towards using neural networks. The advantage lies in
their ability to derive all the underlying patterns without any further human
intervention. This makes their application and deployment much easier, since
no expert knowledge of the underlying data is required.

Improving upon classical 2D Convolutional Neural Networks in the domain
of spatio-temporal action recognition for RGB videos Tran et al. [25] have
investigated the performance of 3D CNNs. They process RGB video clips
with dimensions c× l × h× w, where c is the number of channels, l is length
in number of frames, h and w are the height and width of the frame. The
authors have experimentally concluded that using small 3× 3× 3 convolutional
kernels in all layers yields the best performance for a 3D CNN. They further
investigated those findings with a new CNN model called C3D, consisting of
eight convolution layers, five pooling layers, followed by two fully connected
layers, and a softmax output layer.

The opposite approach has been tried by Wang et al. [26], converting the 3D
skeleton coordinates into multiple 2D joint trajectory maps and applying them to
CNNs for learning discriminative features prior to classification. Their algorithm
encodes the joint trajectories into texture images, called Joint Trajectory Maps
(JTM). The authors put each orthogonal projected image through separate CNN
and then combined the scores prior to feeding them to a classifier. For encoding
spatio-temporal motion information they used hue (direction), saturation and
brightness (magnitude). The authors suggested applying data augmentation
to their algorithm for improving the final results. For the training phase they
have used Caffe toolbox and pretrained ImageNet CNN.

Taking CNN approaches a step further towards real-world problem solutions,
a recent work by Liu et al. [27] focused on an online action prediction model for
streaming 3D skeleton sequences. Their solution uses a hierarchy of dilated tree
convolutions and an adapted sliding window technique, as attention module
for the current action. The authors addressed the challenge of autonomously
extracting information out of continuous unlabeled sequence files.

2 Related Work 10

The novel part of the sliding window technique is its dynamics, resulting in
action prediction at each observed frame. It actively measures the temporal
distance to the beginning of the ongoing action. This factor is used for adapting
the next sliding window size.
Their proposed model is called Scale Selection Network (SSNet) and has a

hierarchical architecture with dilated convolution filters, as in [28]. It learns the
multi-level structured semantic representations over the skeleton joints at the
frames within each perception window, such that different layers correspond
to different temporal scales. This results in the network selecting the proper
convolutional layer, which covers the most similar window scale regressed by
its previous step, and making a prediction. A representative architecture graph
of the SSNet is shown in Figure 2.2.

Figure 2.2: Functional graph of SSNet. Only 3 of the 14 one-dimensional
convolutional layers are shown. Convolutional filters are shared at
each layer, but are different across layers. The solid lines denote
the network links activated at current step t and the dashed lines
indicate the links activated at other time steps. At each time step,
the network calculates the action class ĉt and the temporal distance
ŝt to current action’s start point [27].

The inputs of SSNet are the streaming 3D skeletal data frames within a
temporal window at each time step. In order to model the motion dynamics,
one-dimensional convolutions are applied in temporal axis.

2 Related Work 11

The SSNet is a stack of 14 dilated convolutional layers, where the dilation rate
is increased exponentially with the depth of the network. Its main building
blocks are dilated casual convolutions. The causal design approach [29] makes
a prediction at time t including information from the previous step t− 1, but
not the next time step t+ 1. A dilated convolution (or convolution with holes)
[28] applies a convolutional filter over a larger field than the filter’s length,
by skipping over input values with a certain step size. It is equivalent to a
convolution with a larger filter derived from the original filter by dilating it
with zeros, but is significantly more efficient. This is also similar to pooling or
strided convolutions, but here the output and the input size stays the same.
Dilated convolution is a general type of convolution, where dilation 1 results
in the standard convolution. Stacked dilated convolutions allow networks to
have very large receptive fields with just a few layers. The dilated convolution
equation is shown in Equation 2.1.

(X ∗d w)(p) =
∑

t+ds=p

X(t)w(s) (2.1)

where ∗d is the dilated convolutional operator, X is the input, w is the filter
and d is the dilation step.
For mitigating overfitting the authors add small random noise to the layer

choosing process during training.

2.2.3 Recurrent Approaches
The recurrent neural networks (RNN) focus on techniques that are tuned to
extract the information of a data stream, taking into consideration the temporal
nature of the data, compared to the quasi-static image-like processing by the
conventional neural networks.

One approach focused on using skeleton joints trajectories for human action
recognition. Zhu et al. [30] deployed an end-to-end fully connected deep Long
Short-Term Memory (LSTM) network with novel regularization scheme to
learn the co-occurrence features between them. The model consists of 3 LSTM
layers connected in between via a fully connected layer and a classification
softmax layer at the end. To tackle overfitting they applied Dropout to the
fully connected layers and a novel dropout technique to the LSTM layers.
Their new dropout algorithm operates simultaneously on the gates, cells, and
output responses of the LSTM neurons, encouraging each unit to learn better
parameters. This approach generalizes the single output response dropout
implementation by Zaremba, Sutskever and Vinyals [31].
Considering that any given action flow may have different sub-stages, e.g.

initial phase, climax and ending, or have different degrees of importance and

2 Related Work 12

robustness to variations, Song et al. [32] proposed an end-to-end spatial and
temporal attention model for human action recognition from skeletal data based
on LSTM RNN. Their temporal attention module with joint-selection gates is
designed to adaptively allocate different attentions to different joints of the input
skeleton within each frame. In particular, the spatial attention subnetwork
consists of an LSTM layer, two fully connected layers and a normalization
unit. Bridged by the joint-selection gate, the main LSTM network and the
spatial attention subnetwork are trained together to implicitly learn the spatial
attention model. The most discriminative information is provided by key frames,
while the rest are considered contextual. The temporal attention module with
frame-selection gate is designed to allocate different attentions to different
frames. It is built of a LSTM layer, a fully connected layer and a rectified
non-linear unit. The non-linear ReLU has the function of soft frame selection.
Both attention subnetworks, together with the main LSTM RNN, are shown
in Figure 2.3.

Figure 2.3: Song et al. [32]: Main LSTM network with spatial and temporal
attention modules. The input is marked with Xt, ht is the LSTM
hidden state output, αt is the spatial activation output and βt is
the temporal activation output. Z ′t represents the network final
output.

The authors defined the final objective function with regularization capabilities.
Its first goal is to encourage the spatial attention model to dynamically focus
on more spatial joints in a sequence. Its second one is to regularize the learned
temporal attention values using L2 norm. This reduces gradient vanishing in
the back propagation. Its third one utilizes L1 norm to reduce overfitting of
the networks. The authors have deducted a nine-step training procedure to get
the model to converge in its optimum. For the implementation of the model,
LSTM layers are used with size of 100 neurons. The optimizer of their choice
is set to Adam [33] for its automatic adjustable learning rate. To mitigate
overfitting Dropout as in [31] is applied.

2 Related Work 13

Observing that human actions are often accomplished with coordination of each
body part, Si et al. [34] argue that temporal dynamic must be extracted prior
to feeding them into a RNN for achieving better results. The authors proposed
a novel model with spatial reasoning and temporal stack learning (SR-TSL) for
skeleton-based action recognition, which consists of a spatial reasoning network
(SRN) and a temporal stack learning network (TSLN). The SRN captures the
high-level spatial structural information between different body parts within
each frame by a residual graph neural network, while the TSLN models the
detailed temporal dynamics of skeleton sequences by a composition of multiple
skip-clip LSTMs. The authors also proposed a new clip-based incremental loss
method. Their model can be seen in Figure 2.4.

Figure 2.4: Si et al. [34]: SR-TSL model architecture, consisting of spatial
reasoning network and temporal stack learning network. The core
of the spatial reasoning network, a residual graph neural network
(RGNN), is used to capture the high-level spatial structural informa-
tion between the different body parts. The stacked LSTM layers in
the temporal stack learning network are used to model the detailed
temporal dynamics of a skeleton sequence. A further classification
optimization is achieved via clip-based incremental losses (CILoss).

They concatenate and transform the joints of each body part into new spatial
features, which in turn are fed into a residual graph neural network (RGNN)
to capture the high-level structural features between the different body parts,
where each node corresponds to a body part. The temporal stack learning
network consists of three skip-clip LSTM layers. A long sequence is divided into
multiple short clips, which are fed through a share LSTM layer into a skip-clip
LSTM layer. The initial state of the shared LSTM is initialized with the sum
of the final state of all previous clips, which can inherit previous dynamics and
thus maintains the dependency between clips.

2 Related Work 14

Building upon hand-crafted features Avola et al. [35] presented a RNN model
using 3D hand skeleton joints gathered with Leap Motion Controller (LMC).
They utilized features derived from the angles between the finger bones and
the segment lengths of human hands. The authors argued, the angles formed
by a specific subset of joints that involve distal, intermediate, and proximal
phalanges for the index, middle, ring, and pinky, as well as the metacarpal for
the thumb, can be considered highly discriminative to recognize many kinds
of hand gestures. Their model is called Deep LSTM (DLSTM) and consist of
two or more stacked LSTM layers. It is tested on a self-implemented dataset of
the American Sign Language. An interesting conclusion by the authors is that
the more LSTM layers are stacked and thus network depth increased, the more
epochs are required to train the model to reach the same results, making it a
trade-off. Optimal results have been achieved with 4 LSTM layers with size of
200 cells and 800 epochs of training.

Figure 2.5: Liu et al. [36]: GCA-LSTM model workflow. The first LSTM
layer encodes the skeleton sequence and initialize the global context
memory cell. The second LSTM layer plays the role of attention
module and iteratively refines the representations in the memory cell.
The final state of the context information is used for classification.

Liu et al. [36] proposed a new LSTM network for skeleton-based action
recognition, utilizing a global context-attention module. Their model is called
Global Context-Aware Attention LSTM (GCA-LSTM). The attention model
selectively focuses on the informative joints in each frame by using a global
context memory cell. The context information is fed to all evolution steps of
the GCA-LSTM and can be used to adjust the attention weights accordingly
Their approach aims to utilize the spatial dependence of different joints in

the same frame and the temporal dependence of the same joint among different

2 Related Work 15

frames. GCA-LSTM consists of a global context memory cell and two LSTM
layers, as shown in Figure 2.5. The first LSTM layer encodes the skeleton
sequence and initializes the state of the memory cell. The representation of the
memory cell is then passed to the second LSTM layer, which selectively focuses
on the informative joints in each frame and further generates an attention
representation for the action sequence. This output is sent back to the memory
cell as a weights update. After the attention procedure, the updated memory
state is fed again to the second LSTM layer for better attention tuning. Finally,
the refined global context is passed to the softmax classifier for action prediction.
They trained the model via stepwise algorithm in order to achieve optimal
results.

Additionally, Liu et al. introduced a two-stream GCA-LSTM network, which
jointly takes advantage of a fine-grained (joint level) attention stream and a
coarse-grained (body part level) attention stream. The model has two separated
global context memory cells for each attention stream.

2.2.4 Hybrid Approaches
Hybrid approaches combine the strengths of both convolutional and recurrent
neural networks, trying to achieve superior results compared to each one
separately. A general approach towards building hybrid networks is to put the
input data through convolution first and then use the resulting representations
to model the temporal information of the sequences via memory capable
constructs like LSTM, GRU or attention modules.
One large-scale volunteer study for learning human identity from motion

patterns was conducted by Neverova et al. [37]. They compared several neural
architectures for efficiently using temporal multi-modal data representations.
The authors built upon [38] Clockwork RNN model and propose an optimized
shift-invariant Dense Convolutional Clockwork RNN.

Figure 2.6: Shi et al. [39]: Encoding-forecasting ConvLSTM network for pre-
cipitation nowcasting. Both networks are built up from stacked
ConvLSTM layers. The last state of the encoding network is used
to initialize the states and cell outputs of the forecasting network.
The final prediction is achieved by applying 1× 1 convolution over
the concatenated states in the forecasting network.

2 Related Work 16

Providing a more accurate solution to the problem of short-time precipitation
forecasting, Shi et al. [39] presented a ConvLSTM model based on FC-LSTM
[40]. Although FC-LSTM model can also be used to solve the spatio-temporal
sequence forecasting problem, its fully connected layer does not take spatial
correlation into consideration. The authors enhanced the FC-LSTM to have
convolutional structures in the input-to-state and state-to-state transitions.
For this, they stack multiple ConvLSTM layers to form an encoding-decoding
structure as shown in Figure 2.6. It is to be noted that the precipitation
nowcasting problem disposes over large amount of data and thus does not
necessarily need data augmentation techniques.
The most extensive work on improving accuracy results by applying data

augmentations while training a neural network on 3D skeletal data, to our best
knowledge, has been conducted by Nunez et al. [41]. The authors proposed
a hybrid model combining convolutional, pooling and fully connected layers
with LSTM layer in two-phase training approach. The goal of this models is
to discover higher spatial relations of the skeletal data using convolution and
reduce dimensionality using max-pooling function. The fully connected layers
are used for final classification. The first training stage is displayed in Figure
2.7. The second stage builds together the hybrid model with the substitution
of the fully connected layers through a LSTM layer. The LSTM layer provides
sequence pattern recognition with its cyclic structure and internal memory
cells. The second training stage starts with the pretrained weights initialized
for the convolutional layer stack. The final hybrid model is shown in Figure
2.8. The authors have achieved optimal results using the described two-phase
training and an AdaDelta [42] optimizer.

Figure 2.7: Nunez et al. [41]: The model in first training phase. A stack of
convolutional and pooling layers is connected to two dense layers
for classification.

They format the input skeletal data in vectors with dimensions Time-frames ×
Joints × Coordinates. For mitigating overfitting they design and apply different
types of data augmentation techniques:

• Scale: a uniformly distributed random scale factor ±0.3 is applied to the
3D joint coordinates along the sequences for full body skeleton activities,
and a factor of ±0.2 for hand skeleton gestures.

2 Related Work 17

Figure 2.8: Nunez et al. [41]: The hybrid model in second training phase. The
stack of convolutional and pooling layers with pretrained weights is
connected to a LSTM layer prior to classification.

• Shift: a global random displacement vector is applied along whole se-
quence to horizontal and vertical coordinates in the range [−0.5, 0.5] for
full-body skeleton data and [−0.1, 0.1] for hand skeleton only data.

• Time Interpolation: generating new frame between consecutive ones via
interpolation. A displacement vector between the consecutive frames is
built and scaled with a uniformly distributed random value in the range
[0, 1].

• Noise: random noise is applied to 4 randomly selected joints. The noise
amplitude is different for each coordinate of each selected joint but stays
the same along the whole sequence. For full-body skeletons the range is
[−0.3, 0.3] meters and for hand skeleton joints [−0.1, 0.1] meters. The
aim of this method is to improve robustness into the system.

• Subsample: provided enough sequence length, the original sequence is
subsampled with period of m frames, starting from the frame d. This
strategy can provide up to m different subsamples per sequence.

They have evaluated the model on six datasets - MSRDailyActivity3D, MSR
Action3D, NTU RGB+D, Montalbano V2, UTKinect-Action3D [43] and Dy-
namic Hand Gesture DHG-14/28 [23], of which the last two related to our
further research.
Using multiple data augmentation techniques and gated recurrent units

(GRU) [44], Maghoumi and LaViola [45] presented a novel DeepGRU model
utilizing an encoder network, an attention module and fully connected layers
for classification. Their encoder network consists of five stacked layers of
unidirectional GRUs. Due to smaller number of parameters the GRU units
are also faster to train in comparison to LSTM neurons. The encoder output
is of itself sufficient for classification. However, to further extract the most
discriminative features of the sequences, the authors applied an adaptation
of the global attention model by Luong, Pham and Manning [46]. Noticeable

2 Related Work 18

empirical conclusion when deriving best model architecture is reducing the
GRU layer size by a factor of two as depth increases, thus achieving higher
recognition accuracy.

Figure 2.9: Maghoumi and LaViola [45]: The DeepGRU recurrent model con-
sists of an encoder network of stacked gated recurrent units (GRU),
an attention module and fully connected layers for classification.
The input x = (x0, x1, . . . , xL−1)) is a sequence of arbitrary length
vectors and the output ŷ is the predicted class label. Next to each
stack is displayed the number of the hidden units for each GRU
layer in it.

They used batch normalization [47] on the input. For regularization the authors
used Dropout with probability 0.5 on the input of both fully connected layers.
Additionally, they applied three different data augmentation techniques to
reduce overfitting. The first one is a random scaling with factor ±0.3, the
second is a random translation with a factor ±1 and the third is a synthetic
sequence generation with gesture path stochastic resampling (GPSR) [48]. It is
to note that the translation augmentation differs from [41] shift augmentation
only by the magnitude of the factors chosen.

2 Related Work 19

For further reading state-of-the-art works in the research field of spatio-temporal
human recognition, Han et al. [9] have recently conducted extensive survey
including 171 papers. They categorize and compare the reviewed approaches
from multiple perspectives, including information modality, representation
coding, structure and transition, and feature engineering methodology, and
analyse the pros and cons of each category.

Other noticeable surveys and reviews have been published by Lo Presti and
La Cascia [49], Kong and Fu [1], Ye et al. [50], Aggarwal and Xia [51] and
Argall et al. [4].

Following into the goal of data augmentation towards improved action recog-
nition, an interesting work over the general limits and potentials of Deep
Learning for robotics has been presented by Sünderhauf et al. [52].

3 Methods and Data
Augmentation Techniques

This chapter is dedicated to the relevant theoretical concepts and methods used
in this thesis and is based on [53]–[56].
In recent years, artificial neural networks became the dominant approach

towards solving various complex problems. They are the framework of ma-
chine learning algorithms. The most common approach is supervised machine
learning, which typically solves classification problems. Supervised learning
uses known data to predict unseen data. Most machine learning models have
the architecture of stacked layers, also called sequential models. A layer is
a function performed on its input data, such that the output has a better
data representation. There are different standardized layers – fully connected,
convolutional, recurrent, pooling, etc. Prior to training a supervised model
with a specific dataset, the data must be prepared in the best way to ease the
learning process in order to achieve optimal results . Couple of preprocessing
operations are considered mandatory for all types of data – zero-centering
and scale invariance. For steering the learning process, an objective function
is needed. It is called the loss function and it has to be minimized. To do
this the model also needs an optimizer - the algorithm on how to adjust the
parameters of the model to reach the global minimum of the loss function.
Once the training process is done, the model must be objectively evaluated.
Measuring the performance of a model on a specific dataset can be done using
the leave-one-sample-out cross-validation method. To achieve good generaliza-
tion performance when training a supervised model, the size of the training
dataset has to be sufficiently large and balanced. Very often this is not the case
and after certain training stage the model starts to overfit. Overfitting occurs
when the model classifies known data with high accuracy, but performs poorly
on unseen data. To mitigate this problem, different regularization techniques
are applied to the model. This could be L1- or L2-regularization or dropout.
Another regularization approach is to artificially extend the size of the training
data by diversifying each sample with different augmentation techniques.

20

3 Methods and Data Augmentation Techniques 21

Artificial Neural Networks
Artificial neural networks (ANNs) are computational modelling tools that
are used for solving complex real-world problems. Their base unit is the
artificial neuron, often referred to as just neuron. A neural network consists of
densely interconnected neurons capable of massive parallel computations for
data processing and knowledge representation. ANNs were originally inspired
by their biological equivalents, but do not necessarily aim to follow in their
mechanics. ANNs rather try to implement their performance functionality. The
ANNs strength lies in their ability to learn and generalize complex problems,
provide nonlinearity, high parallelism, fault and noise tolerance. In technical
terms, the nonlinearity allows better data fitting and the fault tolerance provides
accurate prediction in the presence of noise and data uncertainty. The high
parallelism implies fast processing and hardware redundancy in case of failure,
while the learning capabilities allow the system to adapt itself on the changing
environment. The generalization enables the model to handle unseen data.
The main objective of ANN computing is to develop mathematical algorithms
that will mimic the information processing and knowledge acquisition of the
human brain [57]. Figure 3.1 shows an abstract model of a fully connected
feed-forward ANN, consisting of four input and three output neurons. The six
neurons in the middle are not directly accessible from the outside environment
and thus are called hidden nodes, building a hidden layer.

Figure 3.1: Artificial neural network as interconnected group of nodes.

Artificial neural networks are the framework for different machine learning
algorithms, which can be generally grouped in four categories:

• Supervised learning - most common case, where the system has to predict
unseen data, based on known data.

3 Methods and Data Augmentation Techniques 22

• Unsupervised learning - consists of finding proper transformations of the
input data without the help of any labels.

• Self-supervised learning - supervised learning without any human labelling
involved. A notable example are autoencoders.

• Reinforced learning - the network learns its environment as information is
provided, optimizing a reward function. A notable example is AlphaZero
[58] and its ability to learn to play games like chess and Go to the highest
level.

Note that the distinction between supervised, self-supervised and unsupervised
learning does not have strict separation lines and is more of a continuum. In
this thesis we focus on supervised learning, which will be discussed in detail in
the following section.

3.1 Supervised Machine Learning
Supervised machine learning is the most common case and contrary to classical
programming, where a system is explicitly programmed with an algorithm, the
neural network model is being trained to find out the correct mapping on its
own using many relevant examples containing statistical structure. Although
classification and regression are the most popular usages for supervised machine
learning, there are others worth mentioning:

• Object detection - given an image, draw a rectangle over all recognized
objects. This application is very popular for surveillance systems, au-
tonomous driving vehicles or generally scene segmentation.

• Image segmentation - given an image, draw a pixel-level mask over a
specific object. A good example is Google Street View1, where certain
data privacy levels must be met, like blurring all the human faces of all
the public images taken.

To do supervised machine learning you need input data, samples of the expected
output data and their annotations and a function that steers the learning process,
a.k.a. the loss function.
If the machine learning model is having multiple stacked layers, it is called

deep learning. The number of those layers is called the depth of the model and
1https://www.google.com/streetview/

https://www.google.com/streetview/

3 Methods and Data Augmentation Techniques 23

their goal is to increase the representation power of the data features. Each
layer’s representations are called weights and are stored in matrices. The goal
is to find all the right weights for the whole model, such that given input data
successfully map the corresponding output. This task is but trivial since the
number of those parameters could have a scale of tens of millions and above.
Some popular models from recent years utilizing large scale supervised machine
learning trained on the ImageNet dataset are AlexNet by Krizhevsky, Sutskever
and Hinton (2012), VGGNet by Simonyan and Zisserman (2014) and ResNet
by He et al. (2015).

Offline and Online Learning
In machine learning, offline learning refers to training the model on a static
dataset that does not change. This makes the preprocessing step of loading
and formatting the training data relatively simple. However, it comes with few
major limitations. Typically, large datasets are exceeding the working memory
of most well built machines and thus make it very hard to train models on the
full-scale datasets. Another drawback of offline learning is the lack of dynamic
processing of data samples prior to feeding them to the model for training. This
could be as simple as shuffling the order of the sequences with each training
epoch. In offline learning, the model weights are updated at the end of each
training epoch2.

Online learning, also called incremental learning, presents the opposite case,
where the model is fed a single sample after which the weights are adjusted.
This has better learning dynamics, but takes much longer to compute since the
weights are updated to reflect the single current training sample.

The compromise between the two general types of feeding the training data
to the model is called mini-batch pseudo-online learning. The size of the mini-
batch is a hyperparameter with which the training process can be fine-tuned.
This method has been established as the dominant approach when training a
machine learning model. It allows for efficiently applying online preprocessing
steps over the mini-batch samples, such as normalization or data augmentation,
and can incrementally feed any large training dataset to a model. A practical
step when generating small batches of data is to shuffle the whole dataset prior
to the training phase. This increases the probability that in each batch most
data classes are represented.

2In a single epoch each training sample is fed once to the model.

3 Methods and Data Augmentation Techniques 24

3.2 Sequential Model and Layers
A sequential model is a linear stack of layers. A layer in neuronal networks
is a data-processing module that has filtering properties, outputting a better
data representation. Stacking layers creates a better distillation process for
pattern recognition. The parameters of a layer are called weights. The sum
of all weights represents the neural network model. Weights are initialized
randomly and are updated during training till a goal metric is reached. They
can be saved or loaded, allowing very good flexibility.

Since training a deep neural network is still resource intensive and time con-
suming, using already trained deep neural network models can be advantageous
and is easily done. For example, pretrained models like the above mentioned
VGG-16 [59], AlexNet [14] or ResNet [60] are available freely on the Internet
as a starting point for various image classification tasks. Using a sequential
model allows to arrange existing pretrained models with minimal effort and to
start building upon it as the problem at hand requires.

The models presented and analysed in this thesis are sequential, which made
their reconstruction simpler and allowed us to reuse the pretrained weights
of the baseline convolutional model as a starting point for the training of the
hybrid model, speeding up the training process.

Convolutional Layer
A convolutional layer is a layer of nodes applying the convolution operation to
the input data, often an image. It uses K filters with size F × F and applies
them via convolution operation over the input image I × I with stride S. The
resulting output O ×O is named a feature map or an activation map [61]. An
example of a single convolutional step between the input data I × I and the
filter F × F with stride S is shown in Figure 3.2. The stride is the step with
which the filter slides along the input data. The output O×O stores the result
of each convolutional step. This simplified example portraits how certain edges
in an image are mapped to an activation map during training.

The depth of a filter is equal to the number of channels C of the input data
with dimensions I × I ×C. Convoluting with filter F ×F ×C results in output
O ×O × 1. A single convolutional layer can have many different filter K. In
this case the output activation map has the dimensions O × O ×K. Figure
3.3 shows a visualization of how the 96 trained filters of AlexNet [14] look like.
Each filter represents a special pattern that steers the distillation process in
the convolutional layer.

When applying convolution, the direction of the convolution matters and thus
the shape of the input data is to be properly selected. The input shape of images
for a convolutional layer has typically the form Width×Height× Channels.

3 Methods and Data Augmentation Techniques 25

Figure 3.2: Visualization of single step performed by a convolutional layer. The
filter map F ×F slides over the input image I× I with stride S = 1
applying convolution operation. The result is written to the output
activation map O ×O. In this example the number of channels C
is assumed 1 for simplicity. Adapted from [61].

Figure 3.3: The 96 learned filters of size 11× 11× 3 from the first convolutional
layer of AlexNet [14] on the 224 × 224 × 3 input images. Each
filter represents a special pattern that steers the distillation process
in the convolutional layer. The network has learned a variety of
frequency- and orientation-selective filters and different coloured
blobs.

3 Methods and Data Augmentation Techniques 26

Max Pooling Layer
The max pooling layer takes each feature map of the prior convolutional layer
and selects the maximal value over a region, with stride larger than one and
smaller or equal the pooling region. This operation produces a feature map
with reduced resolution, which is robust to locational variations of features in
the previous layer [62].
An example of max pooling is shown in Figure 3.4. The max pooling

technique selects the most active neuron of each quadratic region. The result
represents a down-sampled region with lower resolution [63]. Stride in this
context means the step with which the filter slides over the image in each
direction without overlapping different regions, e.g. dx × dy is set to 2 × 2.
Each pooled value takes part in the new image.

Figure 3.4: Visualization of max pooling technique with stride 2× 2. In each
region the maximum value is selected for the output result.

Alex Krizhevsky in [14] used max pooling layers to reduce the dimensionality
of the input images and thus reducing altogether the number of parameters
to be processed. This operation also reduces the translation invariance of the
objects in an image.

Next to the max pooling, there is also an average pooling layer that calculates
the average over the filter map in the same principal.

Fully Connected Layer
The fully connected or dense layer operates on a flattened input. In a stack of
fully connected layers each node of the current layer is connected to all of the
other nodes of the previous and the next layer. Exception are the input and
the output layer, where the topology is limiting them respectively. Equation
3.1 shows the function of the fully connected layer:

O = σ(W · I + b) (3.1)

3 Methods and Data Augmentation Techniques 27

where W is the layer’s own weights matrix, I and O are the input and output
vectors respectively, σ represents the activation function and b is a bias vector.
Since the weights matrix can become very large depending on the size of the
input data, stacking fully connected layers does not scale well and makes the
model difficult to train. Therefore, this layer is usually positioned towards the
end of neural network architectures and is often used with a combination of
a specific activation function for optimizing class scores. An example of fully
connected layers can be seen in Figure 3.1.

Long Short-Term Memory Layer
A Long Short-Term Memory (LSTM) layer consists of variable number of
LSTM cells or neurons. Originally proposed by Hochreiter and Schmidhuber
[13] in 1997, the LSTM neuron mitigates the vanishing gradients problem of
the standard recurrent neural networks [64]–[66]. The main building blocks of
an LSTM neuron are the internal memory cell and the three gating functions
- input, forget and output gates. Compared to standard RNNs, it is capable
of storing relative information for prolonged periods of time and thus better
model the different dependencies of the data. Another advantage of the LSTM
neuron is that it does not need fine-tuning of the learning rate, input or output
gate biases.

Figure 3.5: Schematic visualization of the peephole LSTM neuron. The input
vector sequence xt is sent to the input gate, forget gate and output
gate for activation. The product of tanh(xt + ht−1) with the input
activation vector it is stored into the LSTMmemory cell, considering
the state of the forget activation vector ft. The cell state is updated
and fed to all three gates for the next iteration. The product of
tanh(ct) with the output activation vector ot updates the hidden
state ht of the LSTM neuron. Adapted from [40].

3 Methods and Data Augmentation Techniques 28

Currently there are numerous variations of the LSTM neuron. The model
presented here is the widely adopted peephole LSTM (Gers and Schmidhuber
[67]) by Graves (2013) [40], who improved upon the more recent work by Gers,
Schraudolph and Schmidhuber [68]. This variation of the original LSTM neuron
is also implemented by the machine learning library used later in this thesis.
The peephole LSTM neuron allows the gating functions to consider the last
cell state prior to feeding their weights for the generation of the current cell
state. A schematic workflow of the peephole LSTM is shown in Figure 3.5 and
its mathematical relations are listed in Equations (3.2) to (3.6):

it = σ(Wxixt +Whiht−1 +Wcict−1 + bi) (3.2)
ft = σ(Wxfxt +Whfht−1 +Wcfct−1 + bf) (3.3)
ct = ftct−1 + it tanh (Wxcxt +Whcht−1 + bc) (3.4)
ot = σ(Wxoxt +Whoht−1 +Wcoct + bo) (3.5)
ht = ot tanh (ct) (3.6)

where σ is the logistic sigmoid function, i, f , o and c are respectively the
activation vectors for the input gate, forget gate, output gate and cell or cell
input. All of the above vectors have the same size as the hidden vector h. The
weights matrix subscripts have intuitive notation, e.g. Wxi is the input-input
gate matrix, Who is the hidden-output gate matrix and so on. It is to be
noted that the weights matrices from the cell to the gate vectors, like Wcf , are
diagonal and thus only the n-th vector elements are connected. The bias terms
presented in the equations are omitted from Figure 3.5 for clarity.

Other Useful Layers
The following list presents different useful functional layers of supplementary
significance.

• Activation - applies activation function at its input. Usually embedded
into another layer as parameter.

• Batch Normalization [47] - normalizes the values of each mini-batch, i.e.
applies a transformation that maintains the mean of the values close to 0
and their standard deviation close to 1.

• Concatenate - a layer that concatenates a list of inputs tensors, all of
which must have the same shape except over the concatenation axis.

• Dropout - applies dropout technique as in [69]. This layer has no weights.

3 Methods and Data Augmentation Techniques 29

• Flatten - flattens the input. Typically used prior the final classification
layer.

• Masking - trims a sequence by using a mask value to skip timesteps. If all
features for a given sample timestep are equal to the chosen mask value,
then the sample timestep will be masked (skipped) in all downstream
layers. Currently applicable on recurrent layers (LSTM, GRU, etc.).

• Permute - permutes the dimensions of the input according to a given
pattern. Useful for bridging RNNs and CNNs together.

• Reshape - reshapes the input into specified shape at the output.

Activation Functions
The purpose of the activation function is to introduce nonlinearity into a model
by applying it to the output of a layer, allowing the model to approximate
more complex functions. The popular activation functions [70] [71] applied in
our experiments are sigmoid, hyperbolic tangent, softmax and rectified linear
unit (ReLU):

• Sigmoid: f(x) = σ(x) = 1
1−ex . With range (0, 1), this activation function

is not zero-centered. The sigmoid can be problematic when training due
to vanishing gradients and slow convergence.

• Hyperbolic tangent: f(x) = tanh(x) = ex−e−x

ex+e−x . This activation function
is zero-centered with range (−1, 1), but still vulnerable to vanishing
gradients.

• Softmax: fi(x) = exi∑J

j=1 exj
for i = 1, . . . , J. Range (0,1). Given N-

dimensional layer, it outputs N probability scores that sum up to 1.
Usually applied at the output layer of the model.

• Rectified linear unit (ReLU): f(x) =
0 for x < 0
x for x ≥ 0

. This activation

function is also known as a ramp function. With range [0,∞), it is
currently the most popular activation function for deep neural networks
[72].

3 Methods and Data Augmentation Techniques 30

3.3 Data Preprocessing
The following section is providing short description of two popular techniques
in data preprocessing for machine learning models. The way training data
is presented to the model can be crucial to the weights calculation and the
model’s ability to generate reliable predictions.

Batch Normalization
A common technique for any training dataset is to make its values zero-centered
and scale invariant. This speeds up training and improves the probability of
better convergence point. Ioffe et al. [47] have come up with a method called
Batch Normalization. Its goal is to integrate the normalization steps into each
model architecture and to apply them to each training mini-batch. The Batch
Normalization algorithm steps for a batch of B = x1...m are as follows:

µB = 1
m

m∑
i=1

xi (3.7)

σB = 1
m

m∑
i=1

(xi − µB)2 (3.8)

Batch mean µB and variance σB are calculated. Then the training mini-batch
values are normed:

x̂i = xi − µB√
σ2

B + ε
(3.9)

yi = γx̂i + β (3.10)
where the parameters γ and β are to be learnt from the data and ε is a constant
added for numerical stability. Each mini-batch produces estimates of the mean
and variance of each activation. The normalized activations x̂i are used for
internal transformation. The distributions of values of any x̂i has the expected
value of 0 and the variance of 1, as long as the elements of each mini-batch are
from the same distribution and ε is neglected. The scaled and shifted values y
are passed to other network layers for further processing.
The authors also observed a regularization effect produced by the Batch

Normalization. The training network no longer produces deterministic values for
a given example. Batch Normalization makes the online training normalization
easier and efficient and thus is being used as part of the experimental models
in this work.

3 Methods and Data Augmentation Techniques 31

One-Hot Encoding
One-Hot is a simple encoding technique, where each valid entry is uniquely
identified with a high (1) position, while all the rest are set to low (0). This
encoding is very useful for single label classification, where each training data
record bears a ground-truth label. The labels are then used by the loss function
to calculate the cross-entropy and steer the training process.

3.4 Loss Functions and Optimizers
Once the network architecture is defined, a loss function and optimizer need
to be selected. A loss function represents the objective criteria by which the
model will learn. An optimizer is defined as the method by which the network
updates itself based on the data it sees and its loss function score. Common
optimizers or optimization methods in the field of supervised machine learning
are the group of gradient descent algorithms.

Figure 3.6: Block diagram of supervised neural network. The input X is fed
to the layers for transformation and final classification. The loss
function calculates the error between the predicted Y ′ and the true
classification Y for the input X. The loss score is then provided to
the optimizer for the calculation of the next update and adjustment
of the layer weights. Adapted from [53].

3 Methods and Data Augmentation Techniques 32

The block diagram in Figure 3.6 shows an abstract supervised learning process
and the relations between layers, weights, loss function, optimizer and the input
and output data. The input X is fed to the layers for transformation and final
classification. The loss function calculates the error between the predicted Y ′
and the true classification Y for the input X. The loss score is then provided
to the optimizer for the calculation of the next update and adjustment of the
layer weights. This update process continues till the network converges, i.e.
the global minimum of the loss function is achieved.

Loss Function
In order to control something, one must be able to observe it. For a neural
network this means being able to measure the deviation between the model’s
prediction and the true target. This task is accomplished by the loss function of
the network. The loss function provides a distance metric showing the accuracy
of the network for a given sample. The loss score is then used to adjust the
next learning phase.
Different types of loss functions fit better different classification problems.

For the multiclass, single label classification problem discussed in this thesis,
the right loss function is categorical cross entropy. Cross entropy measures the
distance between probability distributions. In the case of supervised learning
those are the ground-truth distribution and the distribution of predictions
made by the model. The cross entropy H(P,Q) is defined in Equation 3.11:

H(P,Q) = −Ex˜P logQ(x) (3.11)

where P and Q are the probability distributions of the true labels and the
predicted ones, E is the expectation when x is drawn from P . The log function
in the field of machine learning is usually the natural logarithm [56].

Stochastic Gradient Desent Optimizers
Stochastic gradient descent (SGD) and its particular implementation of the
back-propagation method is the most common way for training a neural network
[73]. The goal of the SGD optimizer is to find the global minimum of a function,
typically the loss function. Given this function is differentiable, a function’s
minimum is a point where its derivative equals zero. If all local minimum
points are found, the one with the lowest value is also the global minimum. In
the context of neural networks, this means finding analytically the combination
of weight values that result in the smallest possible loss function. Since the

3 Methods and Data Augmentation Techniques 33

weights of a neural network models can scale up to several tens of millions, this
can be a challenge. The solution is a five-step algorithm:

1. Draw a batch of training samples X and corresponding targets Y .

2. Train the network using X to obtain predictions Y ′.

3. Compute the loss by measuring the difference between Y ′ and Y .

4. Compute the gradient of the loss with regard to the network’s parameters
(a backward pass).

5. Update the weights in the opposite direction to the gradient, which
minimizes the loss a little bit every time.

The algorithm steps are repeated till convergence. This describes the specific
case of mini-batch stochastic gradient descent. Drawing a single sample per
iteration is called true SGD, while using the whole training data in a single
step is called batch SDG. It is recommended that the training examples are
randomly shuffled and their values normalized prior to training in order to
achieve fast and correct convergence.
The general SGD method is parametrized by learning rate and momentum.

The momentum parameter addresses two issues with SGD – convergence speed
and local minima. If SGD is set with a small learning rate, then the optimization
process could get stuck at a local minimum instead of making its way to the
global minimum. Momentum, inspired from physics, allows the learning process
to jump out of a local minimum valley and move onwards till the global
minimum is reached.

RMSprop
RMSprop is an extension of SGD. It has no official work to be acclaimed with,
but was introduced by Tieleman and Hinton as part of Coursera Lecture [74].
The update rules of RMSprop are defined in Equations (3.12) to (3.13).

Rt = γRt−1 + (1− γ)∇Lt(Wt−1)2 (3.12)

Wt = Wt−1 − α
∇Lt(Wt−1)2
√
Rt

(3.13)

where α is the learning rate and γ ∈ [0, 1) is the forgetting factor. The lower γ,
the more recent gradients are considered. L stands for the loss function, W for
the weights of the model and R for the momentum.

3 Methods and Data Augmentation Techniques 34

Adagrad
Adagrad [75] is an optimizer with parameter-specific learning rate, which is
adjusted depending on how often a parameter is updated during training. The
more frequent a parameter is being updated, the smaller the learning rate.
Therefore, it is a good choice when dealing with small datasets [76].

Adadelta
Adadelta by Zeiler [42] is a more robust extension of Adagrad that improves
the continual decay of the learning rate throughout training. The Adadelta
optimizer limits the window of accumulated previous gradients to a fixed
size w [76], instead of accumulating all previous ones. This approach allows
Adadelta to continue learning after many weights update iterations. Compared
to Adagrad, Adadelta does not require initial learning rate settings.

Adam
The Adam [33] optimizer derives its name from adaptive moment estimation.
It is an extension to SGD and builds upon RMSProp [74], which works well
in non-stationary settings, and AdaGrad [75], which works well with sparse
gradients.

Adam is a method for efficient stochastic optimization working with first-order
gradients and thus requires small amount of memory. The method computes
individual adaptive learning rates for different parameters from estimates of
first and second moments of the gradients. One major advantage of Adam is
the scaling invariance of the gradient updates.
The Adam optimizer algorithmic steps are described in Equations (3.14)

to (3.20). Let L(W) be a stochastic objective function with parameters W .
The initialization phase sets the first and second moment vectors to zero,
Equations (3.14) to (3.15). Then Equations (3.16) to (3.20) are repeated in
a loop till convergence of L(W) is reached. The algorithm returns the weight
matrix Wt.

3 Methods and Data Augmentation Techniques 35

M0 = 0 (3.14)
R0 = 0 (3.15)
Mt = β1Mt−1 + (1− β1)∇Lt(Wt−1) (3.16)
Rt = β2Rt−1 + (1− β2)∇2Lt(Wt−1) (3.17)

M̂t = Mt

1− βt
1

(3.18)

R̂t = Rt

1− βt
2

(3.19)

Wt = Wt−1 − α
M̂t√
R̂t + ε

(3.20)

(3.21)

A comparison between different optimizers can be seen in Figure 3.7, where
the Adam optimizer shows the best results.

Figure 3.7: Comparison of different optimizers on multilayer neutral network
with MNIST dataset. Adam displays best performance [33].

3 Methods and Data Augmentation Techniques 36

Common Validation Metrics
To determine if the predictions of a model on new and unseen data are reliable,
it has to be properly evaluated. The most popular metric to monitor while
training and testing is the accuracy. It is defined as:

Accuracy = Correct Predictions

Total Predictions
(3.22)

There are different types of accuracy to measure a network’s performance with.
Two widely used are Top-1 and Top-5 accuracy. Top-1 shows how many times
the correct label has the highest probability predicted by the network, while
Top-5 shows how many times the correct label is within the top 5 classes
predicted by the network.

This metric works well when the underlying training data is well balanced, i.e.
samples of each class have close to equal distributions over the training dataset.
This must be controlled in preprocessing phase and corrected if necessary.

3.5 Overfitting and Regularization
When training deep neural networks with a large number of parameters on small
and unbalanced datasets, the network tends to overfit and it does so relatively
fast. Overfitting occurs when the model performs good on known data and
poorly on unknown data. To mitigate overfitting and improve generalizability
different regularization methods can be applied to the learning process of a
model or the training data itself. A graphical comparison between underfitting,
just the right generalization and overfitting is shown in Figure 3.8.

Figure 3.8: Comparison between underfitting, overfitting and the right approxi-
mation.

During training, the training accuracy is minimized with each iterative update
of the weights. When the validation accuracy follows closely the training loss,
the model is able to generalize well. Once a split occurs and the validation

3 Methods and Data Augmentation Techniques 37

Figure 3.9: Qualitative drawing of the training process when a split between
the training and validation loss occurs and the model starts to
overfit.

loss starts to continuously rise, while the training loss still gets smaller, then
overfitting occurs. When the right amount of regularization is applied, after the
split the validation loss function tends to stay flat with eventual fluctuations.
Those functions are monitored during training to make sure the training process
does not overfit. A drawing of typical development of training and validation
loss functions is shown in Figure 3.9.

L1- & L2-Regularization
In the field of machine learning and classification in particular, a regularization
term R(W) is added to the loss function. Its aims to mitigate overfitting
in complex models. Typical optimization problem can have the following
structure:

min
f

n∑
i=1

L(W (xi),yi) + λR(W) (3.23)

where L is the loss function of the weights W (x) to be calculated for the label
y and λ ∈ [0,∞) is the scaling hyperparameter for the regularization term.
The regularization term R(W) is chosen in such way that it penalizes the
complexity of the weights W . This forces the distribution of weights to take
only small values, which makes it more regular. It is to be noted that due
to regularization penalty during training, the loss function will have higher
values when training than during validation. There are two common types of
regularization penalties:

• L1 regularization – the penalty added is proportional to the absolute
value of the weight coefficients.

• L2 regularization – the penalty added is proportional to the square of
the value of the weight coefficients. L2 regularization is used to mitigate
overfitting.

3 Methods and Data Augmentation Techniques 38

Dropout
Training deep neural networks with a large number of parameters is computa-
tionally expensive and makes the network susceptible to overfitting. Dropout
[69] addresses overfitting by randomly dropping units from the neural network
during training. This prevents units from co-adapting too much.

Dropping a unit out means temporarily removing it from the network, along
with all its incoming and outgoing connections. The choice of which units
to drop is random. In the simplest case, each unit is retained with a fixed
probability p independent of other units. A good starting value for p is 0.5 and
can be fine-tuned using a validation set.

Figure 3.10: Dropout Neural Network Model. Left: A standard neural net with
2 hidden layers. Right: An example of a thinned net produced by
applying dropout to the network on the left. Crossed units have
been dropped [69].

Applying dropout to a neural network amounts to sampling a “thinned” network
from it. The thinned network consists of all the units that survived dropout,
Figure 3.10. At test time, it is easy to approximate the effect of averaging the
predictions of all these thinned networks by simply using a single unthinned
network that has smaller weights. Dropout has shown to be an effective and
popular regularization technique to reduce overfitting with many state-of-the-art
models in the field of machine learning [14] [30] [32] [47].
It is common practise to apply dropout after a fully connected layer and

is usually implemented as separate layer or module in the popular machine
learning frameworks.

3 Methods and Data Augmentation Techniques 39

3.5.1 Data Augmentation
The best way for a model to generalize better is to train on more data. How-
ever, in reality every training dataset has limited amount of samples. Data
augmentation aims to artificially enhance the size of the training dataset by
applying different transformational techniques depending on the data type. For
classification problems, as examined in this thesis, extra care should be taken
that the selected augmentations are not changing the class of the original data.
For images those usually are rotation, flip, colour variation and noise. For
human skeleton joint coordinates the popular augmentations are scale, shift and
noise. Due to the temporal nature of the skeleton recordings, subsampling and
interpolation are also very effective manipulations. This section describes the
basic augmentation techniques for human skeleton joints and their combinations
as they were used in this thesis.

Scale
The scale augmentation is closing the gap between the body size of the person
conducting the action motions used for training the neural network model and
the body sizes of the different people whose actions the model needs to classify.
Naturally, as each human is born his body and limbs’ size change with time.
A human skeleton depicts only selected points from the human body and can
be used for abstract representation. The same action recorded by a grown up
can be then used to identify the same or very similar action performed by a
child. The applied scaling stays the same over the length of the whole action.
To visualize this approach Figure 3.11 displays a sample human skeleton in
three differently scaled shapes.

Figure 3.11: Visual representation of the scale augmentation on a full-body
skeleton. The black skeleton in the middle has the original size as
recorded, while the yellow to the left is scaled down with a factor
of 0.8 and the blue one to the right is scaled up 1.2 of the original
size.

3 Methods and Data Augmentation Techniques 40

Shift
The shift augmentation is meant to diversify the different motion trajectories a
person can execute when performing the same action. It also covers the general
case when different people perform the same action slightly different. A shift
augmentation is a spatial translation of the selected skeleton joints. In this
thesis two variations have proven to be useful. The first one is a 2D shift in
directions of the width and height of an Euclidean coordinate system. This
is strictly varying the skeleton joints position in a timeframe, as the position
and angle of the recording cameras might differ. The second one is a 3D shift
in all three dimensions. Having depth as additional degree of freedom allows
for variations in the temporal context - the same action will look as starting a
bit earlier or lagging behind in time from the original sequence. The applied
translation stays the same over the length of the whole action. Figure 3.12
displays the 2D shift of human skeleton in both dimensions.

Figure 3.12: Visual representation of the shift augmentation for a full-body
skeleton. The two compositions display the original black skeleton
with positive and negative horizontal (left) and vertical (right)
translations.

3 Methods and Data Augmentation Techniques 41

Chained Scale-Shift
This chained augmentation is inspired by the work of Nunez et al. [41] and
the sample code provided to us by the authors. The goal of this chained
augmentation is to make the training data more versatile, while first scaling
and then shifting the human skeleton joints. The applied augmentations
stay the same over the length of the whole action. A visual example of such
combinations is shown in Figure 3.13.

Figure 3.13: Visual representations of the scale-shift chained augmentation for
a full-body skeleton. The two compositions display different scaled
skeletons that are translated in horizontal (left) and vertical (right)
directions.

3 Methods and Data Augmentation Techniques 42

Noise
The noise augmentation is designed to make the trained model robust to the
noise in the skeletal data. The approach adds noise to just a few skeleton joints,
as to alter slightly the skeleton pose and not to take a valid posture and distort
it into one that is untypical for the motion action. The applied noise is additive
and different for each joint. Figure 3.14 shows a visualisation example.

Figure 3.14: Visual representation of the noise augmentation for a full-body
skeleton. Noise has been added to four joints - two in the right
arm and two in the feet (yellow marks are the augmented joints).
The blue marks represent the original positions and the dashed
lines emphasize the effective alternation from the original pose.

Subsample
The subsampling augmentation skips frames from the original motion sequence
resulting in a faster performed action. It can also be effectively applied to
oversampled sequences, where the abundance of very close positioned skeleton
joints acts counter-productive and can be detrimental for the learning process.
Applying different logic to the frame-skipping selector results in a multiple
of augmented sequences when compared to the previous augmentation tech-
niques. Each subsampled variation of the original sequence is used for training,
simulating changing pace of the same action. A visualisation example of the
subsampling augmentation is shown in Figure 3.15.

3 Methods and Data Augmentation Techniques 43

Figure 3.15: Visual representation of the subsample augmentation for a full-
body skeleton. The original sequence is iterated and every other
frame is skipped (crossed with red dashed lines). Varying skipping
logic results in a multiple instances of the same action with a
different pace.

Time Interpolation
The time interpolation augmentation artificially extends the original motion
sequence by inserting linearly interpolated frames between two original con-
secutive frames. There can be more than a single frame of interpolated joints
coordinates, depending on the configuration. It also makes the performed
action slower. Its main goal is to extend the very short sequences and ease the
model with finding the unique underlying motion patterns. For our experiments
it played a major role in the preprocessing stage by balancing the length of the
short sequences. Figure 3.16 visualises the result of interpolation augmentation.

Figure 3.16: Visual representation of the interpolation augmentation for a full-
body skeleton. The original frames (blue skeletons) are artificially
enhanced with new linearly interpolated skeleton joints (yellow
skeletons). In this example each pair of consecutive frames is en-
hanced with a single new frame at equal spatial distance. Varying
the number of inserted frames and their spatial distance results in
a multiple instances of the same action with a different pace.

4 Implementation
Following [41], we investigate how much each data augmentation technique
is contributing to the final accuracy metric of a model. To do this, we have
chosen a baseline convolutional model and a simple recurrent classification
model. Together they resemble closely the two parts of the state-of-the-art
hybrid model of [41], which is the third and main model of our choice.

4.1 Training Datasets
The models are trained on three publicly available datasets - UTKinect-
Action3D, Dynamic Hand Gesture DHG-14/28 and the extension to the Action
Verb Corpus.

• The UTKinect-Action3D1 (UTK) [43] dataset is very small dataset consist-
ing of only 199 valid samples. It is a collection of 10 subjects performing
10 different indoor activities. The sequences have been captured using a
Kinect device which provides RGB and depth images. We use the 20 full
body skeleton joint coordinates provided by the authors. The 10 actions
are walk, sit down, stand up, pick up, carry, throw, push, pull, wave and
clap hands. The length of the actions ranges from 5 to 120 frames. The
single dataset split used in this thesis takes all samples by subjects 1 and
2 for validation and the rest for training.

• The Dynamic Hand Gesture2 (DHG-14/28) [23] dataset contains se-
quences of 14 hand gestures performed 5 times by 20 participants in 2
ways, using one finger and the whole hand, yielding 2800 sequences. All
participants are right handed. Each sequences contains a depth map, the
coordinates of 22 joints, both in the 2D depth image space and in the
3D world space, forming a full hand skeleton. The dataset is recorded
using an Intel RealSense near-view depth camera. The length of the
gestures ranges from 20 to 50 frames. For the purposes of this work, we
have chosen to train on the whole hand only and have used only the

1http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
2http://www-rech.telecom-lille.fr/DHGdataset/

44

http://cvrc.ece.utexas.edu/KinectDatasets/HOJ3D.html
http://www-rech.telecom-lille.fr/DHGdataset/

4 Implementation 45

skeletal data provided. The single dataset split used in this thesis takes all
samples by subjects 1, 2, 3 and 4 for validation and the rest for training.

• The extension to the Action Verb Corpus3 (AVCExt) [77] consists of 41
recordings, resulting in 507 sequences, conducted by 2 users performing
the same three actions take, put and push, as in the original Action
Verb Corpus (AVC) [78]. The actions are annotated in two degrees of
granularity. Coarse labels are: take, put and push. Fine labels split the
motion into more granular primitives: reach, grab, moveObject and place.
In this thesis we conduct our experiments using the fine annotation. It is
to be noted that all coarse put recordings have no place fine annotation.
The dataset has been recorded using the Leap Motion sensor device and
provides 23 hand skeleton joint coordinates, of which the elbow position
is not considered. The single dataset split used in this thesis takes sample
files 48, 49, 50 and 51 for validation and the rest for training. Given the
total number of samples, this represents lower validation-to-training data
ratio. The reasoning for it is to use as much of the data for training as
possible, since the number of participants is very small.

a) Microsoft Kinect v1 mapping of 20 full
body skeleton joints.

b) General representation of 22 hand
skeleton joints [23].

Figure 4.1: Mapping of the skeleton joints from the training datasets.

3http://www.ofai.at/research/interact/avc_ext.html

http://www.ofai.at/research/interact/avc_ext.html

4 Implementation 46

To easily visualize the positioning of the full body and hand skeleton coordinates,
two sketches are provided. Figure 4.1a) shows the 20 tracked joints by the
Microsoft Kinect v1 camera. Later in Kinect v2 those were increased to 25
for improved action tracking. Figure 4.1b) represents the general 22 skeleton
coordinates tracked by different cameras, like Intel RealSense and Leap Motion.
Their naming might differ, but the anatomical positions are the same. In reality,
the human thumb has only three joints and zero-length metacarpal.

4.2 Data Augmentations
The different augmentation methods used are inspired by [41] and have been de-
scribed in Chapter 3. They have been recreated as close as possible, considering
minor parameter deviations. The basic augmentation techniques are scale, shift,
noise, subsample and time interpolation. A chained scale-shift augmentation has
also been implemented. The noise, subsample and interpolation augmentations
have shown to be either too weak to cause noticeable results or have been
already applied in the preprocessing phase. Therefore, all three augmentations
are preceded by a scale-shift augmentation step.

• Scale – implemented with uniformly distributed scaling factor s ∈ [−0.3, 0.3]
for all skeleton joints.

• Shift – implemented with normal distributed factor s ∈ [−0.1, 0.1] in
height and width dimensions for all skeleton joints.

• Chained Scale-Shift – a chained augmentation in which the scaled output
is directly shifted prior to being passed to the model for training. This
was inspired by [41], stating that those two augmentations have the
largest observed impact and was backed up by the provided sample code.
It is to be noted that this augmentation reached optimal results while
introducing shift translations in all three dimensions.

• Chained Scale-Shift-Noise – chained with a prior scale-shift step, the
noise augmentation is applied on up to 4 randomly selected joints with
normal distributed factor s ∈ [−0.1, 0.1].

• Chained Scale-Shift-Subsample – chained with a prior scale-shift step,
the subsample augmentation is applied with displacement random factor
d ∈ {2, 3, 4} and random subsampling step s ∈ {2, 3}.

• Chained Scale-Shift-Interpolate – chained with a prior scale-shift step,
this augmentation inserts linearly interpolated single frame between two
consecutive frames at spatial distance set by random factor r ∈ [0.2, 0.8].

4 Implementation 47

Our approach is to compare the relative improvement of the presented aug-
mentation techniques and their combinations using the neural network models
described in the next section.

4.3 Neural Network Models
The models of our choice are a baseline convolutional neural network, a simple
recurrent neural network and an improved hybrid one, a combination of the
aforementioned. The models were derived from the work of Nunez et al. [41].
They are built from basic functional layers in a sequential fashion. All three
models share the same input shape Frames × Joints × Coordinates. An
action sequence may have 1 . . .T timeframes, each of which has J skeleton
joints represented by three Euclidean space coordinates (X, Y, Z). Each action
sequence is preprocessed to fit the same structure. Further preprocessing details
are discussed in Section 4.5.

4.3.1 Convolutional Model

Figure 4.2: The layer architecture of the convolutional model. It consists of a
stack of convolutional and pooling layers and two fully connected
layers. The convolutional stack distils the relevant patterns and
the fully conducted layers narrow down the convolutional feature
representations. The final classification is done via fully connected
layer with a soft-max activation function.

4 Implementation 48

The baseline convolutional model of our choice is replicating the stage one
CNN model in [41]. It consists of 3 stacked pairs of convolutional and pooling
layers, followed by two fully connected layers. The goal of the first stack is
to efficiently distil all relevant patterns and produce a range of representative
feature vectors, which are then passed down the fully connected layers for the
final classification layer. The convolutional model layer architecture is shown
in Figure 4.2.

The input data of the convolutional model follows the three-dimensional block
structure Frames × Joints × 3. The convolutional model also makes use of
batch normalization layer prior to feeding the data into the convolutional stack
and dropout layers before each fully connected layer. Each convolutional layer
is configured with L2-regularization. The final classification is implemented
with a fully connected layer with a soft-max activation function.

4.3.2 Recurrent Model
The recurrent model is consisting of a single LSTM layer with 100 neurons. Its
input data structured is reshaped into Frames×Features, where Features is
the product of Joints·Coordinates. The goal is to represent a classical recurrent
approach, capable of modelling temporal sequential data. The functioning of a
LSTM neuron has been discussed in Chapter 3. It is to be noted that the model
also makes use of batch normalization and masking layers for suppressing empty
frames prior to feeding the data to the LSTM layer. The final classification
in the output is done with a fully connected layer with a soft-max activation
function. Different configurations with one or more stacked LSTM layers with
larger number of neurons per layer have been tested prior to settling with this
model. No significant difference could be found. For regularization dropout
and L2-regularization has been applied. The recurrent model layer architecture
is shown in Figure 4.3.

Figure 4.3: The layer architecture of the recurrent model. It consists of one
layer with 100 LSTM neurons. The input data has been normed
with batch normalization layer and empty frames have been filtered
out with a masking layer prior to the LSTM layer. The final
classification in the output is done via fully connected layer with a
soft-max activation function.

4 Implementation 49

4.3.3 Hybrid Model
The hybrid model is a recreation of the work by Nunez et al. [41], also referred
to as CNN+LSTM model. It combines the advantages of both types of networks.
The convolutional layers are designed to extract the short term spatial patterns
between the different skeleton joints. The recurrent LSTM layer is used for
modelling the long term spatio-temporal patterns of the skeleton joints in an
action sequence. The output is used for final classification via fully connected
layer with a soft-max activation function. The hybrid model layer architecture
is shown in Figure 4.4.

Figure 4.4: The layer architecture of the hybrid model. It consists of a stack
of convolutional and pooling layers and a LSTM layer. The con-
volutional stack extracts the relevant short-term patterns and the
LSTM layer models their long-term temporal development. The
final classification is done via fully connected layer with a soft-max
activation function.

It is to be noted that prior to the convolutional stack and the LSTM layer a
batch normalization layer has been used to normalize the data. A masking
layer has been used before the LSTM layer to trim the zero padding, which
otherwise can lead to reduced prediction accuracy. For regularization dropout
and L2-regularization has been applied.

4 Implementation 50

4.4 Libraries and Frameworks
The Keras4 library has been used for the implementation and training of
the models. Keras is open-source and provides simple to use high-end API
to most used machine learning computational libraries. It is modular and
supports Python, which is compact, easier to debug, and allows easy creation
of extensions.

The training back-end framework of our choice is TensorFlow5. TensorFlow is
an open source software library for high performance numerical computation. It
supports different hardware platforms (CPUs, GPUs, TPUs) and programming
languages (Python, Java, C++). TensorFlow plays currently a major role in
wide scientific and commercial activities.

The Keras models implemented in this thesis can also be run with other
machine learning libraries such as CNTK6 or Theano7. Figure 4.5 visualizes
the Keras software and hardware stack, where different underlying components
can be used.

Figure 4.5: Keras software and hardware stack. Adapted from [53].

The implemented Keras models are sequential ones, meaning they are a simple
linear stack of layers. This allows for easy changes in the model’s architecture
by adding or removing layers. In Keras, specifying the input shape of the first
layer of the stack is sufficient for the library to automatically calculate the
input dimensions of the following layers.
Before training a model, the learning process needs to be configured. The

compile method receives three arguments:

• An optimizer. We use the build-in implementation of Adam [33] optimizer.

• A loss function. This is the objective function that the optimizer will try
to minimize during training, e.g. categorical_crossentropy.

4https://www.keras.io
5https://www.tensorflow.org
6https://www.microsoft.com/en-us/cognitive-toolkit/
7http://www.deeplearning.net/software/theano/

https://www.keras.io
https://www.tensorflow.org
https://www.microsoft.com/en-us/cognitive-toolkit/
http://www.deeplearning.net/software/theano/

4 Implementation 51

• A list of metrics. A metric is a function that is used to judge the
performance of the model after being trained. For our classification
problem this is set to accuracy.

Keras models are trained on input data and its labels using Numpy arrays.
This is achieved with the fit or fit_generator functions. For augmenting the
input sequences in a dynamic fashion, we use an online generator. An online
generator is an object, which delivers the next batch of data to the training
function in a user-specific manner. While the model is being trained with the
current batch of data on the GPU, the CPU is generating the next batch of
training data, providing additional processing efficiency and scalability. This is
very useful when the training data, especially when augmented multiple times,
is so large that it cannot be loaded into the available RAM from a static copy.

4.5 Setup, Preprocessing and Hyperparameters
For the experimental implementation we have coded Python scripts using
the Keras framework on top of the Tensorflow backend. To speed up the
calculation process, two machines have been used for training the models. The
main machine was equipped with Nvidia GTX Titan X GPU, 12GB GDDR5
memory and 3072 CUDA cores, and was dedicated to training on DHG and
AVCExt datasets. The complementary machine had a Nvidia GeForce GTX
1070 Ti, 8GB GDDR5 memory and 2432 CUDA cores, and was used for training
on the UTK dataset.

For the chosen datasets each action sequence had to be trimmed to its effective
length. Since there was imbalance in the sequence length, the extremely short
sequences had to be extended via linear interpolation. The best results were
achieved when extending all sequences with 13 frames or less. As all the
datasets have relatively small amount of action samples, a sliding window has
been applied over each sequence to generate larger number of similar samples.
Optimal performance has been achieved by setting the length of the sliding
window to be dynamically the closest integer to 80% of the processed sequence
length.
The following dataset specific preprocessing has been conducted.

• UTK : It is to be noted that the data labelling specification provided at
the official website contains random errata, such as missing or incorrectly
numbered sequences or frames. In order to make use of the dataset, those
were amended to our best judgement. Three (pull, push, and throw)
of the ten actions recorded have extremely short sequences and have
been mostly affected by the initial sequence extension. The preprocessing
interpolation generates 3 extra frames at 25%, 50% and 75% of the spatial
distance between the skeleton joints of two sequential frames.

4 Implementation 52

• DHG-14 : The preprocessing interpolation generates 3 extra frames at
25%, 50% and 75% of the spatial distance between the skeleton joints of
two sequential frames.

• AVCExt: Due to the high sampling rate of the Leap Motion controller
resulting in many too similar frames with minor time difference, the
hybrid model was unable to learn anything. To achieve optimal results,
the dataset had to be downsampled into sequence length of maximal 100
frames prior to the general preprocessing steps.

4.6 General Model Training
Unless otherwise stated, the following parametrization has been used for training
on the selected datasets.
We have achieved the best results using Adam optimizer. The Adam hy-

perparameters are as follows: learning rate = 0.001, β1 = 0.9, β2 = 0.999 and
decay = 0. Initial training using AdaDelta as in [41] has been conducted,
but ended in unsatisfactory results. AdaDelta has been tuned to the param-
eters from the provided sample code by Nunez et al.: learning rate = 0.1,
decay factorρ = 0.993 and initial learning rate decay of 0.
All models are trained over 100 epochs, except phase two of the hybrid

model. The convolutional model is trained with batch size of 100, while the
recurrent model has batch size of 16. The hybrid model is trained in two phases
reproducing [41]. The first phase is identical with the convolutional model. The
second phase trains the hybrid model over 500 epochs with batch size of 16, as
with the recurrent model. Effectively the baseline convolutional and recurrent
models mimic the two training phases of the hybrid model.

To further reduce the overall level of overfitting in the models, we have used
dropout with rate 0.6 prior to each fully connected layer and L2-regularization
with penalty term 0.015 with all convolutional and recurrent layers.

The convolutional stack in the recreated convolutional model has 49540
trainable weights versus 49710 reported in [41]. The LSTM layer in the
recurrent model has 64000 trainable weights. The implemented hybrid model
has the same number of trainable weights for the convolutional stack and 120000
for the LSTM layer alone, differing from the reported 82420 in [41]. Thus it is
to be noted, that due to different underlying libraries the implemented models
are not exact replicas.

As we are measuring the effect of the data augmentations on the final accuracy,
the results presented in the next chapter are relative and not absolute. The
results have been derived from a single split of the dataset.

5 Experimental Results
This chapter describes the computational experiments that have been conducted
to measure the relative improvement of the different augmentation techniques
applied on the selected datasets by training the models for human action and
hand gesture recognition. The chapter is organized in four sections, starting with
the absolute accuracy achieved on a single data split without any augmentations.
The second part presents a results overview for each augmentation type and
their interpretations. The third section compares the performance of the
augmentations on each model and offers insights on what works well. The last
section presents a short discussion over the achieved results. The complete
reference of the experimental data can be found in Appendix A.

5.1 Without Augmentation
The no augmentation results represent the best absolute accuracy values in
percent achieved with each dataset without using additional augmentation
techniques while training. The results are based on single data split, meaning
they are not subject to cross-validation evaluation and are not meant to measure
the absolute performance of a model on that specific dataset. The reasoning is
that a full cross-validation is not crucial to our main measurement goal and it
stretches beyond the foreseen computational time. Table 5.1 shows a summary
of the no augmentation results. It should be noted that each dataset has been

Table 5.1: Overview results without augmentations in %.
Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK 92.31 89.74 97.72
DHG-14 87.32 86.41 90.51
AVCExt 94.17 94.17 96.67

fine-tuned in the preprocessing phase, e.g. selective interpolation or downsam-
pling have been applied. Also, sliding window has been used to artificially
expand the training samples with extra similar sequences.

53

5 Experimental Results 54

By the observed values one can conclude that the DHG and AVCExt hand
gesture datasets achieve similar accuracy on the convolutional and recurrent
models and both get their best results with the hybrid model. The UTK
full-body skeleton dataset scores better accuracy on the convolutional model
than on the recurrent one. This performance can be explained with more
efficient pattern extraction through convolution, when the tracked skeleton
joints are further apart from one another, as in the case of full-body skeleton.
When trained on the hybrid model it also achieves significantly better accuracy
than the separate baseline models. The noticeable observation here is that the
hybrid model improves the overall performance on all skeletal data.

5.2 Individual Augmentations
This section is dedicated to the single augmentation techniques and the relative
results they have achieved with the selected datasets. Each augmentation
approach is described separately. The overview results are then presented
und interpreted. Since the unprocessed AVCExt experiments, referred to as
AVC.500, display much stronger augmentation response, they are also included
in the results summary presentations. It is to be reminded that those have not
converged on the hybrid model and no results are reported for it.

5.2.1 Scale
The scale augmentation applies a random scaling factor to the Euclidian skeleton
coordinates. In the case of a full-body skeleton this represents the difference in
body size, e.g. a child, an adolescent or a grown-up. Same is valid for the hand
skeleton, where proportional to the body size the arm follows different sizes.

Table 5.2: Overview of the scale augmentation relative results.

Scale Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK −1.55 2.86 0.30
DHG-14 −2.18 2.81 1.93
AVCExt −0.89 0.00 0.00
AVC.500 0.00 2.78 —

This augmentation aims to make the trained model less variant to scaling
differences in the input data. It also reflects the real-world scenario where two
persons rarely have the exact same size of body and limbs. Table 5.2 presents
the summary results for the scale augmentation. It is to be noted that the
validation sets of UTK full-body and DHG hand action datasets are featuring
human subjects who are not part of the training data. The AVCExt hand
action dataset has no such strict separation, since it was made by two users.

5 Experimental Results 55

The results in Table 5.2 indicate negative trend in the relative enhancement
of the scale augmentation on the convolutional model. This can be explained
with the fact that the bodies and limbs for the limited number of participants
in the datasets are not changing for the time of recording. The recurrent model
undergoes straight positive enhancement. The LSTM layer is able to better
extract the underlying motion of contracting coordinate point clouds. The
hybrid model also shows improved accuracies. It achieves best results on a hand
skeleton dataset, pointing the general scaling effect of dense placed coordinates
is stronger when both convolutional and temporal modelling take place.

5.2.2 Shift
The shift augmentation applies random translation to the skeleton coordinates.
This implementation is bound to spatial translation in the width and height
dimensions, but not in depth. It aims to introduce tolerance to slightly different
trajectories when performing an action. For a full-body skeleton this might
be a slight shift in the arm or leg movement. For a hand skeleton it might be
a finger slightly displaced in the hand grip when executing some arm motion.
Table 5.3 summarizes the results of the shift augmentation.

Table 5.3: Overview of the shift augmentation relative results.

Shift Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK 4.94 2.54 0.58
DHG-14 4.43 1.67 2.60
AVCExt −1.77 0.88 0.86
AVC.500 0.93 3.70 —

The shift augmentation scores mostly positive on the convolutional model.
This can be explained with the convolutional layer being able to better extract
patterns when there is small displacement in the coordinates. It is to be noted
that the AVCExt results are strongly influenced by the downsampling done in
preprocessing. Similar positive results are shown by the recurrent model. Both
full-body and hand skeleton actions are improved by the 2D shift augmentation.
The hybrid model registers enhanced final accuracy, where the hand skeleton
dataset shows better results. This observation can be explained again by the
densely located hand joints versus broadly positioned body coordinates.

5 Experimental Results 56

5.2.3 Scale-Shift
The scale-shift augmentation is a chained scale and then 3D shift augmentation.
Using 3D instead of 2D for the chained augmentation has experimentally proven
to deliver better final accuracies. Shifting and scaling in all three dimensions at
the same time yields better results. Adding depth to the augmentation varies
the temporal component of the same action, either starting earlier or later. Also,
3D shift is an advantageous combination when position and timing variation
are applied together. The relative results of the scale-shift augmentation are
shown in Table 5.4.

Table 5.4: Overview of the scale-shift augmentation relative results.
Scale-
Shift

Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK 0.62 5.08 −1.17
DHG-14 −2.35 −3.60 −4.70
AVCExt −1.77 −7.08 0.00
AVC.500 0.00 2.78 —

The scale-shift augmentation scores poorly with the convolutional model. Given
that the single scale augmentation also performs negatively, but the single shift
positively, one can conclude that the chained form of both is strongly affected
by the leading scaling operation. The full-body action dataset registers slight
improvement, while both hand gesture datasets score negative drawbacks. This
can be explained once more with the spatial distance between the skeleton joints
in each dataset. The recurrent model displays similar trends, but with larger
margins. This can confirm that the underlying skeleton joints deformation stays
the same, only the LSTM layer recognizes the new patterns better than the
convolutional stack. The significant improvement of the unprocessed AVC.500
for the recurrent model is harder to explain. A possible explanation is that the
LSTM layer is able to model better the oversampled actions with the added
augmentations. The hybrid model shows negative trend for both types of
actions. As the full-body skeleton dataset performs worse on the hybrid model
than on the baseline models separately, the first hand gesture dataset keeps
the negative trend and the second displays compensational improvement to the
past negative results.

5 Experimental Results 57

5.2.4 Scale-Shift-Noise
The noise augmentation is meant to simulate natural noise present in the
recording process and develop tolerance in the trained model. Since this
augmentation could not produce noticeable results on its own, an extra scale-
shift augmentation step has been done before passing it for noise addition.
Table 5.5 summarizes the results for the scale-shift-noise augmentation.

Table 5.5: Overview of the scale-shift-noise augmentation relative results.

Sc-Sh-No Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK −4.02 5.72 0.00
DHG-14 −4.79 −2.73 −2.85
AVCExt −2.65 0.00 0.00
AVC.500 −1.87 1.86 —

Sc = Scale, Sh = Shift, No = Noise

The scale-shift-noise augmentations shows mostly negative results. Noise is
meant to make the model more robust to real world situations. Even when
all trained datasets have been recorded in laboratory environments, it is to be
expected that there is some amount of noise already present in all sequences, as
is the nature with all electronics. However, the additional noise simply does not
ease the model classification of unseen data. The recurrent model shows positive
trend when noise is added to the scale-shift augmentation. More interesting is
the positive improvement in the AVCExt dataset. The supplementary noise
augmentation is sufficient for the recurrent model to compensate the distortion
introduced by the scale-shift augmentation when compared to Table 5.4.

5.2.5 Scale-Shift-Subsample
The subsample augmentation reduces the number of frames per action sequel.
The goal behind it is to feed the model only key frames, which also makes the
performed action faster. Since this augmentation could not produce noticeable
results on its own, an extra scale-shift augmentation step has been applied
prior to passing it for subsampling. Table 5.6 summarizes the results of the
scale-shift-subsample augmentation.

The convolutional model reveals the potential of shortening the actions
sequences length. The UTK dataset is already too short and scores significant
setback to the plain scale-shift augmentation, while the rest improve relative to

5 Experimental Results 58

Table 5.6: Overview of the scale-shift-subsample augmentation relative results.

Sc-Sh-Sub Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK −8.33 4.45 −0.87
DHG-14 1.31 −1.32 −3.61
AVCExt −1.77 0.88 −0.87
AVC.500 2.80 0.00 —

Sc = Scale, Sh = Shift, Sub = Subsample

their own underlying capacity. The recurrent model tends to be less affected by
the subsampling on the first two datasets. The AVCExt improves significantly,
which proves that subsampling is the most effective processing step to this
dataset. However, the unprocessed AVCExt.500 goes back to baseline level
when subsampled after scale-shift. This can underline the importance of the
order in which augmentations are applied to each specific dataset. The hybrid
model shows slight overall improvement by additional subsampling.

5.2.6 Scale-Shift-Interpolate
The interpolation augmentation inserts an intermediate frame in linear fashion
between two original adjacent frames. The aim is to extend short sequences in a
way that makes it easier for the model to generate discriminative patterns. Since
this augmentation has already been fine-tuned and applied in the preprocessing,
an extra scale-shift augmentation step has been applied before passing the data
for interpolation. Table 5.7 summarizes the results of the scale-shift-interpolate
augmentation.

Table 5.7: Overview of the scale-shift-interpolate augmentation relative results.

Sc-Sh-Itp Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK −6.79 0.64 −2.33
DHG-14 −6.87 −3.16 −10.99
AVCExt −1.77 −6.20 0.86
AVC.500 0.00 3.70 —

Sc = Scale, Sh = Shift, Itp = Interpolate

5 Experimental Results 59

The UTK full-body dataset scores significant setbacks on all three models. The
DHG dataset also displays setbacks on the convolutional and hybrid models,
while on the recurrent one it shows almost no change. The AVCExt dataset
altogether shows mostly no change to the interpolation after the initial scale-shift
augmentation. As with subsampling, the order of the applied augmentations
plays an important role to the final accuracy results and in this case it only
makes it worse.

5.2.7 All Together
This section presents the results when all of the above augmentations are
applied together on the training batch. This approach aims to diversify all
possible data enhancements in order achieve maximum accuracy. As the model
trains on the original batch plus scale, shift, scale-shift and its derivative noise,
subsample and interpolation augmented instances, this combination takes the
longest to train. Depending on the training dataset, amplifying or cancellation
effects are to be expected. Table 5.8 presents the summary results.

Table 5.8: Overview of the relative results for all the augmentations together.

All Convolutional
Model

Recurrent
Model

Hybrid
Model

UTK 6.17 4.77 1.46
DHG-14 −0.26 1.84 −1.17
AVCExt −0.89 1.76 −1.73
AVC.500 2.80 4.63 —

The superposed augmentations have positive improvement on all three models
for the full-body skeleton dataset. In comparison, the preprocessed hand
skeleton datasets register only small improvements on the recurrent model.
This can be explained by the space between the single coordinate points – the
larger the distance, the better the generalization effect with all augmentations.
The unprocessed AVC.500 scores significant improvements on both convolutional
and recurrent models – the augmentations contribute to the model’s ability to
learn a better representation for the training data, provided it has not already
been efficiently optimized.

5 Experimental Results 60

5.3 Comparative Study
This section is dedicated to comparing the relative improvements of the different
augmentations over all datasets and discusses what works best for which skeleton
data type. The results are presented per model in the following summary plots.
The reference data can be found in Appendix A, Table A.12.

Figure 5.1: Overview of the augmentations for the convolutional model.

A comparative chart of the different augmentations for the convolutional
model are shown in Figure 5.1. The scale augmentation scores negative on all
datasets showing that convolution is susceptible to scale variations and this
makes it harder for the model to distil useful recognition patterns. The shift
augmentation improves by significant margins all results, proving the ability
of convolutional layers to recognize patterns regardless of their position in an
image. Here is to be considered that the AVCExt results, as the downsampled
AVC.500, can only drift away from the optimum achieved with preprocessing.
The chained scale-shift augmentation displays general negative performance
on the hand skeleton data and small improvement with the full-body skeleton
dataset. This can be caused by the spatial distance between the skeleton
joints in each dataset and the inability of the convolutional stack to handle
the initial scaling variation. The chained scale-shift-subsample augmentation
worsens results when the dataset sequences are too short, as in the case of the
full-body skeleton data. However, when this technique is applied to longer or

5 Experimental Results 61

oversampled sequences, the improvements are noticeable. The chained scale-
shift-noise and scale-shift-interpolate augmentations do not work well with the
convolutional model. Noise per definition has no pattern structure and it makes
the training more versatile for real world environments. Its chained effect on
the convolutional stack is negative. Interpolation after the initial scale-shift
augmentation in the context of convolution reverses what the pooling layers
have done – it weakens the patterns in the data. When all augmentations are
applied together, a strong improvement on the full-body skeleton data and
significant enhancement to the unprocessed AVC.500 hand skeleton dataset is
observed. As the other two experiments are negative, the conclusion would
be that the effect of superposing of different augmentations together can be
dataset specific and must be experimentally tuned.

Figure 5.2: Overview of the augmentations for the recurrent model.

The summary results of the recurrent model are shown in Figure 5.2. The
chart reveals the improved accuracies in almost all categories, considering the
AVCExt dataset to be already at its optimum through the preprocessing and
taking into account its negative results. The strongest enhancement for both
skeleton types is a bundle of all augmentations together. The same trend is
observed in smaller magnitude for the scale and shift augmentations. What
works positive for hand skeleton joints are the chained scale-shift and the scale-
shift-noise augmentations - this can be explained by the dense skeleton joints in
the hand-motion coordinates and noise variations in the dataset sequences. The
trend of scale-shift results stays when interpolation augmentation is applied,

5 Experimental Results 62

while adding subsampling improves significantly the AVCExt results. The latter
confirms the subsampling as the most effective technique for improvement to
the AVCExt dataset.

Figure 5.3: Overview of the relative augmentation results for the hybrid model.

The results for the hybrid model are summarized in Figure 5.3. What always
works for all the datasets on the hybrid model is once more the scale and
shift augmentations, like in the recurrent model. This confirms them to be the
best augmentation techniques amongst the reviewed models, as reported by
Nunez et al. in [41]. The chained scale-shift augmentation and its derivatives
have almost all negative results. This can be traced back to the convolutional
stack inability to cope well with the scaling variation. Even with the uplift
by the LSTM layer, the resulting sequences are too distorted for the model
to benefit from additional training data variation. All augmentations together
have positive effect only on one of the selected skeleton datasets, which suggests
that the improvement by superposed data augmentations are mostly dataset
specific. Here it is to be noted that the hybrid model outperforms the baseline
models in absolute accuracy on a single split without augmentations. These
high accuracies leave less margin for improvement.

5 Experimental Results 63

5.4 Discussion
In the presented experiments two augmentations for enhancing skeletal data
while training have shown the largest relative improvements over all studied
models. The leading augmentation is the shift, followed by the scale aug-
mentation. The rest of the results showed ambiguous behaviours and can
be traced back to the specific dataset. Comparing the models, the recurrent
model displayed the largest capacity for improvement by augmentation of the
training data. The hybrid model registered unimpressive relative improvements,
provided it has scored the highest absolute accuracies on a single dataset split.

Following in the work by Nunez et al. [41], their hybrid model was recreated
in this thesis as close as possible with a different machine learning framework.
The above conclusions confirm that the scale and shift augmentations are the
strongest among the examined augmentations. The hybrid model has also
scored the highest accuracy rates compared to their separate baseline models.
It is to be considered that Nunez et al. have reported training their model with
AdaGrad optimizer and using the Theano library. While trying to recreate
their hybrid model using AdaDelta optimizer with the Tensorflow and Keras
libraries, the results always came significantly below the reported accuracies.
Thus the advanced dynamic optimizer Adam has been selected, with which
the reported absolute accuracies have been reached for a single split within
acceptable tolerance.

This thesis also confirms that the noise, subsample and interpolation augmen-
tations do not yield significant improvements on their own and for that reason
have been chained in our experiments with an initial scale-shift augmentation
step. However, the subsampling and interpolation techniques are crucial for
the preprocessing of the original dataset sequences and should not be neglected
as such.

The concluded practical usage of two beneficial augmentation techniques for
human skeleton joints in the field of human action recognition should not be
a limiting factor. With state-of-the-art neural network models being able to
segment human actions, it should be possible as part of a future work to design
and apply new “focused” augmentation techniques for better recognition of
different stages in typical human motions.

6 Conclusion
The increasing rates with which robots are entering our daily lives create new
challenges for their multipurpose applications, plus efficient and safe deployment.
Currently robots have to be preprogramed to do very specific tasks in usually
controlled environments. For robots or other intelligent systems to able to do
variety of complex tasks, an efficient way to train them must be developed.
One such approach is learning from multiple ready-to-use examples, which
does not require manually designed heuristics. Understanding the observed
complex actions plays an important role to various applications in the field of
human action recognition. With the help of machine learning neural networks
robots will be able to learn to perform a task or predict the ongoing motion by
observing a human performing it or by utilizing existing collections of recorded
actions. The few human action datasets currently available are used mainly for
scientific benchmarking and are limited in the number of performed actions.
The relatively small amount of contained sequences, typically from couple of
hundreds till few thousands, is a crucial problem. In order for a neural network
to accurately learn to recognize a specific human action, it usually needs tens
or hundreds of thousands of sample actions. To bridge this gap engineers have
developed different techniques, one of which is data augmentation.
In this thesis we wanted to better understand which data augmentation

technique works best for which type of neural network model. We have con-
ducted a series of experiments on a convolutional, a recurrent and a hybrid
models. Three publicly available datasets for human action recognition, pro-
viding 3-dimensional full-body and hand skeleton joints, were selected. Six
basic data augmentation techniques have been implemented - scale, 2D- and
3D-shift, noise, subsample and interpolation, and applied separately or in differ-
ent chained combinations. For each dataset a carefully designed preprocessing
pipeline was developed. The experimental results have been generated with the
open-source machine learning framework Tensorflow and its API Keras using
Python scripts.

For measuring the performance of each augmentation its relative improvement
has been calculated relative to the accuracy results without augmentations for
every dataset and model. Short interpretations of the observed results without
and with each implemented augmentation have been presented. A comparative
study per model has been conducted. It showed that the single scale and

64

6 Conclusion 65

shift augmentations have the most profound improvement over all models. It
also revealed that the recurrent model among the examined models has the
largest potential to be enhanced through augmentation. The rest of the results
displayed ambiguous behaviours and can be considered dataset specific.
This study has focused on measuring the improvement effect of selected

augmentation techniques using a single state-of-the-art hybrid model and its
baseline building parts, limited by the dedicated processing time and the scope
of a master thesis. For the experimental evaluation of this setup only three
datasets were involved, making it not always easy to see a clear trend when the
relative improvements differ in direction. Considering the above, the current
findings have limited informative value to researchers when designing their
augmentation strategies. To have more representational value, a future study
can extend the number of selected datasets, introduce more and improved
state-of-the-art models for comparison. Extending the augmentation techniques
through different chaining is another major direction for future work. The
leading chained scale-shift augmentation has shown strong influence by the
initial scaling. Chaining the noise, subsample and interpolate with only the
scale or only the shift augmentation has not been conducted in this study.
Inspired by the tree-like convolutional graph models, we envision a new

“focused” or segmented types of augmentations that would be tuned to each
motion phase of the various human actions. This way a certain type of actions
can be augmented differently depending on their temporal phase with the most
suitable types of augmentations.
Another experimental approach to further measure the presented augmen-

tations would be to deploy the hybrid model on a real robot with limited
computational capacity. Deploy the models, organize a training group of volun-
teers to perform few basic actions several times and let the model train with
and without augmentations. Invite a validation group of volunteers to perform
each trained action and observe how accurate the robot will be able to perform
in real-world conditions. It would be interesting to find out how the hybrid
model performs without augmentation, how much the applied augmentations
have improved the recognition accuracy and what was the trade-off between
the applied augmentations and the training time necessary.

A Experimental Data

Table A.1: Accuracy results for UTK dataset on the convolutional model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 84.90 89.17 89.17 85.47 77.21 81.77 84.90 94.59

Average
of Last 5 84.90 87.97 88.43 86.50 78.75 84.45 82.62 93.39

Best 92.31 90.88 96.87 92.88 84.62 88.60 86.04 98.01

Relative
Improvement — −1.55 4.94 0.62 −8.33 −4.02 −6.79 6.17

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Table A.2: Accuracy results for UTK dataset on the recurrent model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 82.62 81.77 86.04 87.75 89.74 86.04 86.04 94.02

Average
of Last 5 84.67 84.27 87.35 85.07 89.17 88.09 83.48 87.69

Best 89.74 92.31 92.02 94.30 93.73 94.87 90.31 94.02

Relative
Improvement — 2.86 2.54 5.08 4.45 5.72 0.64 4.77

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

66

A Experimental Data 67

Table A.3: Accuracy results for UTK dataset on the hybrid model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 95.16 95.44 91.17 92.59 89.17 92.88 91.74 97.15

Average
of Last 5 92.25 94.93 95.67 89.34 87.75 92.54 91.40 92.71

Best 97.72 98.01 98.29 96.58 96.87 97.72 95.44 99.15

Relative
Improvement — 0.30 0.58 −1.17 −0.87 0.00 −2.33 1.46

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Table A.4: Accuracy results for DHG-14 dataset on the convolutional model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 86.48 84.66 85.42 82.46 83.30 82.16 78.51 86.41

Average
of Last 5 85.27 82.16 86.97 83.07 83.28 81.29 78.13 85.24

Best 87.32 85.42 91.19 85.27 88.46 83.14 81.32 87.09

Relative
Improvement — −2.18 4.43 −2.35 1.31 −4.79 −6.87 −0.26

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

A Experimental Data 68

Table A.5: Accuracy results for DHG-14 dataset on the recurrent model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 84.89 84.51 84.66 79.12 77.30 82.46 78.59 85.95

Average
of Last 5 83.69 84.15 83.60 77.91 79.99 80.80 79.86 81.70

Best 86.41 88.84 87.85 83.30 85.27 84.05 83.68 88.00

Relative
Improvement — 2.81 1.67 −3.60 −1.32 −2.73 −3.16 1.84

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Table A.6: Accuracy results for DHG-14 dataset on the hybrid model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 85.42 83.37 83.22 79.73 76.77 81.25 70.92 81.09

Average
of Last 5 81.97 85.22 85.78 75.29 82.13 81.21 72.92 80.80

Best 90.51 92.26 92.86 86.26 87.24 87.93 80.56 89.45

Relative
Improvement — 1.93 2.60 −4.70 −3.61 −2.85 −10.99 −1.17

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

A Experimental Data 69

Table A.7: Accuracy results for AVCExt dataset on the convolutional model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 89.17 93.33 90.00 90.83 89.17 89.17 86.67 90.00

Average
of Last 5 91.00 91.00 89.16 89.33 90.00 90.34 89.33 90.33

Best 94.17 93.33 92.50 92.50 92.50 91.67 92.50 93.33

Relative
Improvement — −0.89 −1.77 −1.77 −1.77 −2.65 −1.77 −0.89

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Table A.8: Accuracy results for AVCExt dataset on the recurrent model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 90.00 90.00 87.50 73.33 90.83 89.17 84.17 91.67

Average
of Last 5 89.17 91.33 88.83 75.50 91.67 90.17 84.00 91.83

Best 94.17 94.17 95.00 87.50 95.00 94.17 88.33 95.83

Relative
Improvement — 0.00 0.88 −7.08 0.88 0.00 −6.20 1.76

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

A Experimental Data 70

Table A.9: Accuracy results for AVCExt dataset on the hybrid model.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 96.67 92.50 95.00 93.33 90.00 92.50 91.67 92.50

Average
of Last 5 92.33 91.83 93.34 93.50 90.83 93.50 92.67 81.17

Best 96.67 96.67 97.50 96.67 95.83 96.67 97.50 95.00

Relative
Improvement — 0.00 0.86 0.00 −0.87 0.00 0.86 −1.73

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Table A.10: Accuracy results for AVCExt dataset on the convolutional model
with frame length 500.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 80.00 86.67 85.00 85.83 86.67 78.33 84.17 86.67

Average
of Last 5 83.50 86.84 85.17 86.83 87.50 80.50 85.67 87.50

Best 89.17 89.17 90.00 89.17 91.67 87.50 89.17 91.67

Relative
Improvement — 0.00 0.93 0.00 2.80 −1.87 0.00 2.80

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

A Experimental Data 71

Table A.11: Accuracy results for AVCExt dataset on the recurrent model with
frame length 500.

None Scale Shift ScSh ScShSb ScShNo ScShItp All

Last Epoch 84.17 90.00 90.83 84.17 90.00 85.00 88.33 94.17

Average
of Last 5 85.34 86.83 89.33 84.50 84.67 86.33 87.83 91.50

Best 90.00 92.50 93.33 92.50 90.00 91.67 93.33 94.17

Relative
Improvement — 2.78 3.70 2.78 0.00 1.86 3.70 4.63

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Table A.12: Comparative results for the convolutional, recurrent and hybrid
models.

Dataset Scale Shift ScSh ScShSb ScShNo ScShItp All

Convolutional Model
UTK −1.55 4.94 0.62 −8.33 −4.02 −6.79 6.17
DHG-14 −2.18 4.43 −2.35 1.31 −4.79 −6.87 −0.26
AVCExt −0.89 −1.77 −1.77 −1.77 −2.65 −1.77 −0.89
AVC.500 0.00 0.93 0.00 2.80 −1.87 0.00 2.80

Recurrent Model
UTK 2.86 2.54 5.08 4.45 5.72 0.64 4.77
DHG-14 2.81 1.67 −3.60 −1.32 −2.73 −3.16 1.84
AVCExt 0.00 0.88 −7.08 0.88 0.00 −6.20 1.76
AVC.500 2.78 3.70 2.78 0.00 1.86 3.70 4.63

Hybrid Model
UTK 0.30 0.58 −1.17 −0.87 0.00 −2.33 1.46
DHG-14 1.93 2.60 −4.70 −3.61 −2.85 −10.99 −1.17
AVCExt 0.00 0.86 0.00 −0.87 0.00 0.86 −1.73

Sc = Scale, Sh = Shift, Sb = Subsample, No = Noise, Itp = Interpolate

Bibliography
[1] Y. Kong and Y. Fu, „Human Action Recognition and Prediction: A

Survey,“ CoRR, vol. abs/1806.11230, 2018. arXiv: 1806.11230. [Online].
Available: http://arxiv.org/abs/1806.11230.

[2] B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2nd. Springer
Publishing Company, Incorporated, 2016, ch. 74, pp. 1995–2014, isbn:
3319325507, 9783319325507.

[3] Z. Zhu and H. Hu, „Robot Learning from Demonstration in Robotic
Assembly: A Survey,“ Robotics, vol. 7, no. 2, 2018, issn: 2218-6581.
[Online]. Available: http://www.mdpi.com/2218-6581/7/2/17.

[4] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, „A Survey
of Robot Learning from Demonstration,“ Robot. Auton. Syst., vol. 57,
no. 5, pp. 469–483, May 2009, issn: 0921-8890. [Online]. Available: http:
//dx.doi.org/10.1016/j.robot.2008.10.024.

[5] T. Mukai, S Hirano, H. Nakashima, Y Kato, Y Sakaida, S Guo, and
H. Shigeyuki, „Development of a nursing-care assistant robot RIBA that
can lift a human in its arms,“ Nov. 2010, pp. 5996 –6001.

[6] H.-B. Zhang, Y.-X. Zhang, B. Zhong, Q. Lei, L. Yang, J.-X. Du, and
D.-S. Chen, „A Comprehensive Survey of Vision-Based Human Action
Recognition Methods,“ Sensors, vol. 19, no. 5, 2019, issn: 1424-8220.
[Online]. Available: http://www.mdpi.com/1424-8220/19/5/1005.

[7] R. A. Clark, B. F. Mentiplay, E. Hough, and Y. H. Pua, „Three-dimensional
cameras and skeleton pose tracking for physical function assessment: A
review of uses, validity, current developments and Kinect alternatives,“
Gait & Posture, vol. 68, pp. 193 –200, 2019, issn: 0966-6362. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0966636218311913.

[8] I. Akhter and M. J. Black, „Pose-Conditioned Joint Angle Limits for 3D
Human Pose Reconstruction,“ in IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR 2015), Jun. 2015, pp. 1446–1455.

72

https://arxiv.org/abs/1806.11230
http://arxiv.org/abs/1806.11230
http://www.mdpi.com/2218-6581/7/2/17
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://dx.doi.org/10.1016/j.robot.2008.10.024
http://www.mdpi.com/1424-8220/19/5/1005
http://www.sciencedirect.com/science/article/pii/S0966636218311913
http://www.sciencedirect.com/science/article/pii/S0966636218311913

Bibliography 73

[9] F. Han, B. Reily, W. Hoff, and H. Zhang, „Space-Time Representation of
People Based on 3D Skeletal Data: A Review,“ CoRR, vol. abs/1601.01006,
2016. arXiv: 1601.01006. [Online]. Available: http://arxiv.org/abs/
1601.01006.

[10] K. Fukushima, „Neocognitron: A self-organizing neural network model
for a mechanism of pattern recognition unaffected by shift in position,“
Biological Cybernetics, vol. 36, no. 4, pp. 193–202, 1980, issn: 1432-0770.
[Online]. Available: https://doi.org/10.1007/BF00344251.

[11] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, „Learning represen-
tations by back-propagating errors,“ Nat, vol. 323, pp. 533–536, 1986.

[12] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, „Gradient-based learning
applied to document recognition,“ in Proceedings of the IEEE, 1998,
pp. 2278–2324.

[13] S. Hochreiter and J. Schmidhuber, „Long Short-Term Memory,“ Neural
Comput., vol. 9, no. 8, pp. 1735–1780, Nov. 1997, issn: 0899-7667. [Online].
Available: http://dx.doi.org/10.1162/neco.1997.9.8.1735.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, „ImageNet Classification
with Deep Convolutional Neural Networks,“ in Proceedings of the 25th
International Conference on Neural Information Processing Systems -
Volume 1, ser. NIPS’12, Lake Tahoe, Nevada: Curran Associates Inc.,
2012, pp. 1097–1105. [Online]. Available: http://dl.acm.org/citation.
cfm?id=2999134.2999257.

[15] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and R. Salakhut-
dinov, „Improving neural networks by preventing co-adaptation of feature
detectors,“ CoRR, vol. abs/1207.0580, 2012. arXiv: 1207.0580. [Online].
Available: http://arxiv.org/abs/1207.0580.

[16] K. S. Reddy, P. S. Latha, and M. R. Babu, „Hand Gesture Recognition
Using Skeleton of Hand and Distance Based Metric,“ in Advances in
Computing and Information Technology, D. C. Wyld, M. Wozniak, N.
Chaki, N. Meghanathan, and D. Nagamalai, Eds., Berlin, Heidelberg:
Springer Berlin Heidelberg, 2011, pp. 346–354.

[17] D. C. Luvizon, H. Tabia, and D. Picard, „Learning features combina-
tion for human action recognition from skeleton sequences,“ Pattern
Recognition Letters, vol. 99, pp. 13–20, 2017. [Online]. Available: https:
//doi.org/10.1016/j.patrec.2017.02.001.

https://arxiv.org/abs/1601.01006
http://arxiv.org/abs/1601.01006
http://arxiv.org/abs/1601.01006
https://doi.org/10.1007/BF00344251
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dl.acm.org/citation.cfm?id=2999134.2999257
http://dl.acm.org/citation.cfm?id=2999134.2999257
https://arxiv.org/abs/1207.0580
http://arxiv.org/abs/1207.0580
https://doi.org/10.1016/j.patrec.2017.02.001
https://doi.org/10.1016/j.patrec.2017.02.001

Bibliography 74

[18] J. Shotton, A. Fitzgibbon, M. Cook, T. Sharp, M. Finocchio, R. Moore,
A. Kipman, and A. Blake, „Real-Time Human Pose Recognition in Parts
from Single Depth Images,“ in Machine Learning for Computer Vision,
R. Cipolla, S. Battiato, and G. M. Farinella, Eds. Berlin, Heidelberg:
Springer Berlin Heidelberg, 2013, pp. 119–135. [Online]. Available: https:
//doi.org/10.1007/978-3-642-28661-2_5.

[19] C. Wang, Z. Liu, and S.-C. Chan, „Superpixel-Based Hand Gesture Recog-
nition With Kinect Depth Camera,“ Multimedia, IEEE Transactions on,
vol. 17, pp. 29–39, Jan. 2015.

[20] J. Hu, W. Zheng, J. Lai, and J. Zhang, „Jointly Learning Heterogeneous
Features for RGB-D Activity Recognition,“ IEEE Transactions on Pattern
Analysis and Machine Intelligence (TPAMI), vol. 39, no. 11, pp. 2186–
2200, 2017.

[21] J. Wang, Z. Liu, Y. Wu, and J. Yuan, „Learning Actionlet Ensemble
for 3D Human Action Recognition,“ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 36, no. 5, pp. 914–927, 2014. [Online]. Available: https:
//doi.org/10.1109/TPAMI.2013.198.

[22] W. Li, L. Duan, D. Xu, and I. W. Tsang, „Learning With Augmented
Features for Supervised and Semi-Supervised Heterogeneous Domain
Adaptation,“ IEEE Trans. Pattern Anal. Mach. Intell., vol. 36, no. 6,
pp. 1134–1148, 2014. [Online]. Available: https://doi.org/10.1109/
TPAMI.2013.167.

[23] Q. De Smedt, H. Wannous, and J.-P. Vandeborre, „Skeleton-Based Dy-
namic Hand Gesture Recognition,“ in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2016 IEEE Conference on, Las Vegas,
United States, Jun. 2016, pp. 1206 –1214. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-01535152.

[24] C. Wang, Y. Wang, and A. L. Yuille, „Mining 3D Key-Pose-Motifs for
Action Recognition,“ in CVPR, IEEE Computer Society, 2016, pp. 2639–
2647.

[25] D. Tran, L. D. Bourdev, R. Fergus, L. Torresani, and M. Paluri, „C3D:
Generic Features for Video Analysis,“ CoRR, vol. abs/1412.0767, 2014.
arXiv: 1412.0767. [Online]. Available: http://arxiv.org/abs/1412.
0767.

[26] P. Wang, W. Li, C. Li, and Y. Hou, „Action Recognition Based on
Joint Trajectory Maps with Convolutional Neural Networks,“ CoRR,
vol. abs/1612.09401, 2016.

https://doi.org/10.1007/978-3-642-28661-2_5
https://doi.org/10.1007/978-3-642-28661-2_5
https://doi.org/10.1109/TPAMI.2013.198
https://doi.org/10.1109/TPAMI.2013.198
https://doi.org/10.1109/TPAMI.2013.167
https://doi.org/10.1109/TPAMI.2013.167
https://hal.archives-ouvertes.fr/hal-01535152
https://hal.archives-ouvertes.fr/hal-01535152
https://arxiv.org/abs/1412.0767
http://arxiv.org/abs/1412.0767
http://arxiv.org/abs/1412.0767

Bibliography 75

[27] J. Liu, A. Shahroudy, G. Wang, L. Duan, and A. C. Kot, „Skeleton-
Based Online Action Prediction Using Scale Selection Network,“ CoRR,
vol. abs/1902.03084, 2019. arXiv: 1902.03084. [Online]. Available: http:
//arxiv.org/abs/1902.03084.

[28] F. Yu and V. Koltun, „Multi-Scale Context Aggregation by Dilated
Convolutions,“ CoRR, vol. abs/1511.07122, 2016.

[29] A. van den Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A.
Graves, N. Kalchbrenner, A. W. Senior, and K. Kavukcuoglu, „WaveNet:
A Generative Model for Raw Audio,“ CoRR, vol. abs/1609.03499, 2016.
arXiv: 1609.03499. [Online]. Available: http://arxiv.org/abs/1609.
03499.

[30] W. Zhu, C. Lan, J. Xing, W. Zeng, Y. Li, L. Shen, and X. Xie, „Co-
occurrence Feature Learning for Skeleton based Action Recognition using
Regularized Deep LSTM Networks,“ CoRR, vol. abs/1603.07772, 2016.

[31] W. Zaremba, I. Sutskever, and O. Vinyals, „Recurrent Neural Network
Regularization,“ CoRR, vol. abs/1409.2329, 2014. arXiv: 1409.2329.
[Online]. Available: http://arxiv.org/abs/1409.2329.

[32] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, „An End-to-End Spatio-
Temporal Attention Model for Human Action Recognition from Skeleton
Data,“ CoRR, vol. abs/1611.06067, 2016. arXiv: 1611.06067. [Online].
Available: http://arxiv.org/abs/1611.06067.

[33] D. P. Kingma and J. Ba, „Adam: A Method for Stochastic Optimization,“
CoRR, vol. abs/1412.6980, 2014. arXiv: 1412.6980. [Online]. Available:
http://arxiv.org/abs/1412.6980.

[34] C. Si, Y. Jing, W. Wang, L. Wang, and T. Tan, „Skeleton-Based Action
Recognition with Spatial Reasoning and Temporal Stack Learning,“ in
The European Conference on Computer Vision (ECCV), 2018.

[35] D. Avola, M. Bernardi, L. Cinque, G. L. Foresti, and C. Massaroni,
„Exploiting Recurrent Neural Networks and Leap Motion Controller for
the Recognition of Sign Language and Semaphoric Hand Gestures,“ IEEE
Trans. Multimedia, vol. 21, no. 1, pp. 234–245, 2019. [Online]. Available:
https://doi.org/10.1109/TMM.2018.2856094.

[36] J. Liu, G. Wang, L. Duan, K. Abdiyeva, and A. C. Kot, „Skeleton-
Based Human Action Recognition With Global Context-Aware Attention
LSTM Networks,“ IEEE Transactions on Image Processing, vol. 27, no. 4,
pp. 1586–1599, 2018, issn: 1057-7149.

https://arxiv.org/abs/1902.03084
http://arxiv.org/abs/1902.03084
http://arxiv.org/abs/1902.03084
https://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://arxiv.org/abs/1409.2329
http://arxiv.org/abs/1409.2329
https://arxiv.org/abs/1611.06067
http://arxiv.org/abs/1611.06067
https://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1109/TMM.2018.2856094

Bibliography 76

[37] N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello,
and G. W. Taylor, „Learning Human Identity from Motion Patterns,“
CoRR, vol. abs/1511.03908, 2015. arXiv: 1511.03908. [Online]. Available:
http://arxiv.org/abs/1511.03908.

[38] J. Koutník, K. Greff, F. J. Gomez, and J. Schmidhuber, „A Clockwork
RNN,“ CoRR, vol. abs/1402.3511, 2014. arXiv: 1402.3511. [Online].
Available: http://arxiv.org/abs/1402.3511.

[39] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, and W.-c. Woo,
„Convolutional LSTM Network: A Machine Learning Approach for Precip-
itation Nowcasting,“ in Proceedings of the 28th International Conference
on Neural Information Processing Systems - Volume 1, ser. NIPS’15,
Montreal, Canada: MIT Press, 2015, pp. 802–810. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2969239.2969329.

[40] A. Graves, „Generating Sequences With Recurrent Neural Networks,“
CoRR, vol. abs/1308.0850, 2013. arXiv: 1308.0850. [Online]. Available:
http://arxiv.org/abs/1308.0850.

[41] J. C. Núnez, R. Cabido, J. J. Pantrigo, A. S. Montemayor, and J. F.
Vélez, „Convolutional Neural Networks and Long Short-Term Memory
for skeleton-based human activity and hand gesture recognition,“ Pat-
tern Recognition, vol. 76, pp. 80–94, 2018, issn: 0031-3203. [Online].
Available: http://www.sciencedirect.com/science/article/pii/
S0031320317304405.

[42] M. D. Zeiler, „ADADELTA: An Adaptive Learning Rate Method,“ CoRR,
vol. abs/1212.5701, 2012. arXiv: 1212.5701. [Online]. Available: http:
//arxiv.org/abs/1212.5701.

[43] L. Xia, C. Chen, and J. Aggarwal, „View invariant human action recog-
nition using histograms of 3D joints,“ in Computer Vision and Pattern
Recognition Workshops (CVPRW), 2012 IEEE Computer Society Confer-
ence on, IEEE, 2012, pp. 20–27.

[44] K. Cho, B. van Merrienboer, Ç. Gülçehre, F. Bougares, H. Schwenk,
and Y. Bengio, „Learning Phrase Representations using RNN Encoder-
Decoder for Statistical Machine Translation,“ CoRR, vol. abs/1406.1078,
2014. arXiv: 1406.1078. [Online]. Available: http://arxiv.org/abs/
1406.1078.

[45] M. Maghoumi and J. J. L. Jr., „DeepGRU: Deep Gesture Recognition
Utility,“ CoRR, vol. abs/1810.12514, 2018.

https://arxiv.org/abs/1511.03908
http://arxiv.org/abs/1511.03908
https://arxiv.org/abs/1402.3511
http://arxiv.org/abs/1402.3511
http://dl.acm.org/citation.cfm?id=2969239.2969329
https://arxiv.org/abs/1308.0850
http://arxiv.org/abs/1308.0850
http://www.sciencedirect.com/science/article/pii/S0031320317304405
http://www.sciencedirect.com/science/article/pii/S0031320317304405
https://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
http://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078
http://arxiv.org/abs/1406.1078

Bibliography 77

[46] M. Luong, H. Pham, and C. D. Manning, „Effective Approaches to
Attention-based Neural Machine Translation,“ CoRR, vol. abs/1508.04025,
2015. arXiv: 1508.04025. [Online]. Available: http://arxiv.org/abs/
1508.04025.

[47] S. Ioffe and C. Szegedy, „Batch Normalization: Accelerating Deep Network
Training by Reducing Internal Covariate Shift,“ CoRR, vol. abs/1502.03167,
2015. arXiv: 1502.03167. [Online]. Available: http://arxiv.org/abs/
1502.03167.

[48] E. M. Taranta II, M. Maghoumi, C. R. Pittman, and J. J. LaViola Jr., „A
Rapid Prototyping Approach to Synthetic Data Generation for Improved
2D Gesture Recognition,“ in Proceedings of the 29th Annual Symposium
on User Interface Software and Technology, ser. UIST ’16, Tokyo, Japan:
ACM, 2016, pp. 873–885, isbn: 978-1-4503-4189-9. [Online]. Available:
http://doi.acm.org/10.1145/2984511.2984525.

[49] L. Lo Presti and M. La Cascia, „3D Skeleton-based Human Action
Classification,“ Pattern Recogn., vol. 53, no. C, pp. 130–147, May 2016,
issn: 0031-3203. [Online]. Available: https://doi.org/10.1016/j.
patcog.2015.11.019.

[50] M. Ye, Q. Zhang, L. Wang, J. Zhu, R. Yang, and J. Gall, „A Survey on
Human Motion Analysis from Depth Data,“ in Time-of-Flight and Depth
Imaging. Sensors, Algorithms, and Applications - Dagstuhl 2012 Seminar
on Time-of-Flight Imaging and GCPR 2013 Workshop on Imaging New
Modalities, 2013, pp. 149–187. [Online]. Available: https://doi.org/10.
1007/978-3-642-44964-2_8.

[51] J. K. Aggarwal and L. Xia, „Human activity recognition from 3D data:
A review,“ Pattern Recognition Letters, vol. 48, pp. 70–80, 2014. [Online].
Available: https://doi.org/10.1016/j.patrec.2014.04.011.

[52] N. Sünderhauf, O. Brock, W. J. Scheirer, R. Hadsell, D. Fox, J. Leit-
ner, B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke,
„The Limits and Potentials of Deep Learning for Robotics,“ CoRR,
vol. abs/1804.06557, 2018. arXiv: 1804.06557. [Online]. Available: http:
//arxiv.org/abs/1804.06557.

[53] F. Chollet, Deep Learning with Python, 1st. Greenwich, CT, USA: Man-
ning Publications Co., 2017, pp. 50–51, isbn: 1617294438, 9781617294433.

[54] C. M. Bishop, Pattern Recognition and Machine Learning (Information
Science and Statistics). Berlin, Heidelberg: Springer-Verlag, 2006, isbn:
0387310738.

https://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
http://arxiv.org/abs/1508.04025
https://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://doi.acm.org/10.1145/2984511.2984525
https://doi.org/10.1016/j.patcog.2015.11.019
https://doi.org/10.1016/j.patcog.2015.11.019
https://doi.org/10.1007/978-3-642-44964-2_8
https://doi.org/10.1007/978-3-642-44964-2_8
https://doi.org/10.1016/j.patrec.2014.04.011
https://arxiv.org/abs/1804.06557
http://arxiv.org/abs/1804.06557
http://arxiv.org/abs/1804.06557

Bibliography 78

[55] Y. LeCun, Y. Bengio, and G. E. Hinton, „Deep learning,“ Nature, vol. 521,
no. 7553, pp. 436–444, 2015. [Online]. Available: https://doi.org/10.
1038/nature14539.

[56] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[57] I. Basheer and M. Hajmeer, „Artificial Neural Networks: Fundamentals,
Computing, Design, and Application,“ Journal of microbiological methods,
vol. 43, pp. 3–31, Jan. 2001.

[58] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M.
Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. P. Lillicrap, K. Simonyan,
and D. Hassabis, „Mastering Chess and Shogi by Self-Play with a General
Reinforcement Learning Algorithm,“ CoRR, vol. abs/1712.01815, 2017.
arXiv: 1712.01815. [Online]. Available: http://arxiv.org/abs/1712.
01815.

[59] K. Simonyan and A. Zisserman, „Very Deep Convolutional Networks for
Large-Scale Image Recognition,“ CoRR, vol. abs/1409.1556, 2014. arXiv:
1409.1556. [Online]. Available: http://arxiv.org/abs/1409.1556.

[60] K. He, X. Zhang, S. Ren, and J. Sun, „Deep Residual Learning for Image
Recognition,“ CoRR, vol. abs/1512.03385, 2015. arXiv: 1512.03385.
[Online]. Available: http://arxiv.org/abs/1512.03385.

[61] S. Amidi and A. Amidi. (2018). Stanford CS Class CS230 - Deep Learning,
[Online]. Available: https://stanford.edu/~shervine/teaching/cs-
230/ (visited on 05/20/2019).

[62] Y. LeCun, K. Kavukcuoglu, and C. Farabet, „Convolutional networks
and applications in vision,“ in Proceedings of 2010 IEEE International
Symposium on Circuits and Systems, 2010, pp. 253–256.

[63] D. C. Ciresan, U. Meier, and J. Schmidhuber, „Multi-column Deep
Neural Networks for Image Classification,“ CoRR, vol. abs/1202.2745,
2012. arXiv: 1202.2745. [Online]. Available: http://arxiv.org/abs/
1202.2745.

[64] S. Hochreiter, Untersuchungen zu dynamischen neuronalen Netzen. Diploma
thesis, Institut für Informatik, Lehrstuhl Prof. Brauer, Technische Uni-
versität München, 1991.

[65] Y. Bengio, P. Simard, and P. Frasconi, „Learning Long-term Dependencies
with Gradient Descent is Difficult,“ Trans. Neur. Netw., vol. 5, no. 2,
pp. 157–166, Mar. 1994, issn: 1045-9227. [Online]. Available: http://dx.
doi.org/10.1109/72.279181.

https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
http://www.deeplearningbook.org
https://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
http://arxiv.org/abs/1712.01815
https://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1512.03385
http://arxiv.org/abs/1512.03385
https://stanford.edu/~shervine/teaching/cs-230/
https://stanford.edu/~shervine/teaching/cs-230/
https://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745
http://arxiv.org/abs/1202.2745
http://dx.doi.org/10.1109/72.279181
http://dx.doi.org/10.1109/72.279181

Bibliography 79

[66] S. Hochreiter, Y. Bengio, P. Frasconi, and J. Schmidhuber, „Gradient
flow in recurrent nets: the difficulty of learning long-term dependencies,“
in A Field Guide to Dynamical Recurrent Neural Networks, S. C. Kremer
and J. F. Kolen, Eds., IEEE Press, 2001.

[67] F. Gers and J. Schmidhuber, „Recurrent nets that time and count,“ vol. 3,
Feb. 2000, 189 –194 vol.3, isbn: 0-7695-0619-4.

[68] F. A. Gers, N. N. Schraudolph, and J. Schmidhuber, „Learning Precise
Timing with Lstm Recurrent Networks,“ J. Mach. Learn. Res., vol. 3,
pp. 115–143, Mar. 2003, issn: 1532-4435. [Online]. Available: https:
//doi.org/10.1162/153244303768966139.

[69] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, „Dropout: A Simple Way to Prevent Neural Networks from Overfit-
ting,“ Journal of Machine Learning Research, vol. 15, pp. 1929–1958, 2014.
[Online]. Available: http://jmlr.org/papers/v15/srivastava14a.
html.

[70] A. Karpathy. (2019). Stanford CS class CS231n - Convolutional Neural
Networks for Visual Recognition, [Online]. Available: http://cs231n.
github.io/ (visited on 05/20/2019).

[71] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks,
ser. Studies in Computational Intelligence. Springer, 2012, vol. 385, isbn:
978-3-642-24796-5. [Online]. Available: https://doi.org/10.1007/978-
3-642-24797-2.

[72] P. Ramachandran, B. Zoph, and Q. V. Le, „Searching for Activation Func-
tions,“ CoRR, vol. abs/1710.05941, 2017. arXiv: 1710.05941. [Online].
Available: http://arxiv.org/abs/1710.05941.

[73] L. Bottou, „Stochastic Gradient Descent Tricks.,“ in Neural Networks:
Tricks of the Trade (2nd ed.) Ser. Lecture Notes in Computer Science,
G. Montavon, G. B. Orr, and K.-R. MÃ¼ller, Eds., vol. 7700, Springer,
2012, pp. 421–436, isbn: 978-3-642-35288-1. [Online]. Available: http:
//dblp.uni-trier.de/db/series/lncs/lncs7700.html#Bottou12.

[74] T. Tieleman and G. Hinton, Lecture 6.5—RmsProp: Divide the gradient
by a running average of its recent magnitude, COURSERA: Neural Net-
works for Machine Learning, 2012. [Online]. Available: https://www.cs.
toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf.

[75] J. Duchi, E Hazan, and Y Singer, „Adaptive subgradient methods for
online learning and stochastic optimization,“ The Journal of Machine
Learning, vol. 12, pp. 2121–2159, 2011.

https://doi.org/10.1162/153244303768966139
https://doi.org/10.1162/153244303768966139
http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
http://cs231n.github.io/
http://cs231n.github.io/
https://doi.org/10.1007/978-3-642-24797-2
https://doi.org/10.1007/978-3-642-24797-2
https://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1710.05941
http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#Bottou12
http://dblp.uni-trier.de/db/series/lncs/lncs7700.html#Bottou12
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf
https://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf

Bibliography 80

[76] S. Ruder, „An overview of gradient descent optimization algorithms,“
CoRR, vol. abs/1609.04747, 2016. arXiv: 1609.04747. [Online]. Available:
http://arxiv.org/abs/1609.04747.

[77] M. Hirschmanner, S. Gross, B. Krenn, F. Neubarth, M. Trappl, M. Zillich,
and M. Vincze, „Extension of the Action Verb Corpus for Supervised
Learning,“ in Proceedings of the Austrian Robotics Workshop 2018, poster
presentation: Austrian Robotics Workshop 2018, Klagenfurt; 2018-05-00,
2018.

[78] S. Gross, M. Hirschmanner, B. Krenn, F. Neubarth, and M. Zillich,
„Action Verb Corpus,“ in Proceedings of the Eleventh International Con-
ference on Language Resources and Evaluation, LREC 2018, Miyazaki,
Japan, May 7-12, 2018., 2018.

https://arxiv.org/abs/1609.04747
http://arxiv.org/abs/1609.04747

Erklärung
Hiermit erkläre ich, dass die vorliegende Arbeit gemäß dem Code of Conduct -
Regeln zur Sicherung guter wissenschaftlicher Praxis (in der aktuellen Fassung
des jeweiligen Mitteilungsblattes der TU Wien), insbesondere ohne unzulässige
Hilfe Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel,
angefertigt wurde. Die aus anderen Quellen direkt oder indirekt übernommenen
Daten und Konzepte sind unter Angabe der Quelle gekennzeichnet.

Die Arbeit wurde bisher weder im In– noch im Ausland in gleicher oder in
ähnlicher Form in anderen Prüfungsverfahren vorgelegt.

Wien, Juni 2019

Anton Kenov

	1 Introduction
	1.1 Motivation
	1.2 Problem Statement
	1.3 Scope of This Thesis
	1.4 Chapter Organisation

	2 Related Work
	2.1 Historical Milestones
	2.2 Current Work in Human Action Recognition
	2.2.1 Approaches with Hand-Crafted Features
	2.2.2 Convolutional Approaches
	2.2.3 Recurrent Approaches
	2.2.4 Hybrid Approaches

	3 Methods and Data Augmentation Techniques
	3.1 Supervised Machine Learning
	3.2 Sequential Model and Layers
	3.3 Data Preprocessing
	3.4 Loss Functions and Optimizers
	3.5 Overfitting and Regularization
	3.5.1 Data Augmentation

	4 Implementation
	4.1 Training Datasets
	4.2 Data Augmentations
	4.3 Neural Network Models
	4.3.1 Convolutional Model
	4.3.2 Recurrent Model
	4.3.3 Hybrid Model

	4.4 Libraries and Frameworks
	4.5 Setup, Preprocessing and Hyperparameters
	4.6 General Model Training

	5 Experimental Results
	5.1 Without Augmentation
	5.2 Individual Augmentations
	5.2.1 Scale
	5.2.2 Shift
	5.2.3 Scale-Shift
	5.2.4 Scale-Shift-Noise
	5.2.5 Scale-Shift-Subsample
	5.2.6 Scale-Shift-Interpolate
	5.2.7 All Together

	5.3 Comparative Study
	5.4 Discussion

	6 Conclusion
	A Experimental Data

