
Algorithms and Drawings for
Mixed Linear Layouts of Graphs

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Philipp de Col, BSc
Matrikelnummer 01528238

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assoc.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg
Mitwirkung: Fabian Klute, M.Sc.

Wien, 28. April 2019
Philipp de Col Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Algorithms and Drawings for
Mixed Linear Layouts of Graphs

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Philipp de Col, BSc
Registration Number 01528238

to the Faculty of Informatics

at the TU Wien

Advisor: Assoc.Prof. Dipl.-Inform. Dr.rer.nat. Martin Nöllenburg
Assistance: Fabian Klute, M.Sc.

Vienna, 28th April, 2019
Philipp de Col Martin Nöllenburg

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Philipp de Col, BSc
Laudongasse 55/6, 1080 Wien

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 28. April 2019
Philipp de Col

v

Danksagung

Ich danke meinem Betreuer Martin Nöllenburg sowie Fabian Klute für die Unterstützung
bei meiner Diplomarbeit. Mit ihrem Wissen und ihrer Motivation halfen sie mir während
unseren regelmäßigen Treffen mit hilfreichen Rückmeldungen und Erkenntnissen weiter
und gaben mir die Freiheit, meine eigenen Ideen zu verfolgen. Die Zusammenarbeit mit
ihnen machte diese Arbeit zu einer interessanten und angenehmen Aufgabe und ich
konnte in dieser Zeit viel von ihnen lernen.

Ich möchte auch meinen Freunden und meiner Familie, vor allem meinen Eltern, danken,
die mich über all die Jahre hinweg unterstützt haben. Ohne sie wäre diese Leistung nicht
möglich gewesen.

vii

Acknowledgements

I would like to thank my thesis advisor Martin Nöllenburg as well as Fabian Klute for
the support of my diploma thesis. With their knowledge and motivation, they provided
guidance during our regular meetings with helpful feedback and insights while still
allowing me the freedom to pursue my own ideas. Working together with them made
this thesis an exciting and enjoyable task, and I was able to learn a lot from them during
this time.

I would also like to express my gratitude to my friends and family, foremost my parents,
that supported me through all the years. This accomplishment would not have been
possible without them.

ix

Kurzfassung

Ein gemischtes lineares Layout eines Graphen ist eine totale Ordnung seiner Knoten, so
dass die Kanten als Elemente betrachtet werden können, die in dieser Reihenfolge mit
den beiden Datenstrukturen eines Stapelspeichers und einer Warteschlange verarbeitet
werden können. Layouts, die nur Stapelspeicher verwenden, werden als Bucheinbettungen
bezeichnet, was ein weit erforschtes Thema ist und auch reine Warteschlangenlayouts
finden viel Beachtung. Die Kombination dieser beiden Konzepte zur gleichen Zeit wird
jedoch seltener verwendet. Die Literatur beschreibt viele Algorithmen, Eigenschaften und
Ergebnisse für Layouts, die entweder aus Stapelspeichern oder Warteschlangen bestehen,
aber oft fehlen die passenden Gegenstücke für gemischte Layouts. In dieser Diplomarbeit
stellen wir neue Ergebnisse in den Bereichen Komplexität, Heuristiken und Zeichnungen
für gemischte Layouts vor, die es vorher noch nicht gegeben hat oder die bestehende
übertreffen. Um dies zu erreichen, haben wir zum einen bereits bestehende Methoden für
reine Layouts wiederverwendet und zum anderen neue Ideen zur Lösung der Probleme
eingeführt. Wir erwarten, dass diese Ergebnisse dazu beitragen werden gemischte lineare
Layouts besser zu verstehen und es ermöglichen, diese für praktische Zwecke zu nutzen.

xi

Abstract

A mixed linear layout of a graph is a total order of its vertices in a way that the edges
can be seen as elements that are processed in this order with a stack and a queue data
structure. Layouts that only use stacks are known as book embeddings and is a widely
researched topic. Queue layouts also receive much attention. However, the study of
these two concepts in combination is less understood. The literature describes many
algorithms, properties and results for layouts that consist of either stacks or queues
but the adequate counterparts for mixed layouts are often missing. In this thesis, we
introduce new results for computational hardness, heuristics and drawings for mixed
linear layouts that have not existed before or outperform existing ones. To achieve this,
we reused existing methods of linear layouts as well as introduced new ideas to tackle
the problems. We expect that these results will help to understand mixed linear layouts
better and use them for practical purposes.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Linear layouts of graphs . 1
1.2 Motivation . 2
1.3 Goals and methodology . 3
1.4 Related work . 4
1.5 Structure of the thesis . 6

2 Preliminaries 7

3 Theory 13
3.1 Complexity . 13
3.2 Algorithms . 23
3.3 Planar bipartite graphs . 24

4 Design and evaluation of heuristics 27
4.1 Existing heuristics . 28
4.2 Data structure heuristic . 30
4.3 Experiments . 32
4.4 Optimization . 44
4.5 Summary of experiments . 47

5 Drawings 49
5.1 Circular drawings . 49
5.2 Linear drawings . 53
5.3 Linear cylindric drawings . 56

6 Conclusion 59
6.1 Summary . 59

xv

6.2 Future Work . 60

List of Figures 63

List of Tables 65

List of Algorithms 67

Bibliography 69

Appendix 75

CHAPTER 1
Introduction

In this thesis, we study the mixed linear layouts of graphs. We start with an introduction
to linear layouts and explain the concept of a mixed linear layout that consists of a
stack and a queue page. We continue with the motivation for studying such layouts and
then set the goals for this thesis and describe the methods that we use to achieve them.
After that, we introduce related work that has been done on this subject and finally, this
introduction will conclude with an outline of the following chapters.

1.1 Linear layouts of graphs

A graph is an abstract structure that models a set of objects and the relationships among
these objects. This concept makes a graph a powerful and flexible tool that can represent
many physical and abstract structures in the real world such as computer networks,
employee hierarchies or streets on a map. Formally such a graph G = (V,E) is a tuple
that consists of a set of vertices V (the objects) and a set of edges E (the relationships)
where each edge is a pair of two vertices that signifies that those two vertices have a
relation.

A linear layout of a graph is a drawing of the graph where all the vertices are drawn
on an imaginary straight line that cuts the two-dimensional-space into two half-planes.
The edges are drawn as simple curves on such a half-plane which can be seen as the
page of a book while the vertices on the line can be seen as the spine of a book. When
drawing a graph in a linear layout, it is often desired that the drawing has either none or
as few as possible crossings of the edges. This can be achieved by choosing a good order
of vertices and, if there is more than one page available, by a good assignment of the
edges to the different pages. A page without any crossings is called a stack page. The
problem of minimizing and eliminating crossings is an extensive research topic [Oll73]
[BK79] [Yan89] [DW04] [BKZ15].

1

1. Introduction

Mixed linear Layout Crossing and nesting edges

Figure 1.1: The left image is an example of a mixed linear layout. The stack page is
shown on the upper half with red edges, and the queue page is shown on the lower half
with blue edges. On the right image are the two forbidden patterns. The red stack edges
cross each other, and the blue queue edges are nested.

In contrast to the stack there is a dual concept called queue [HLR92] [HR92]. In a queue
layout, the edges are allowed to cross, but they are not allowed to nest so that one edge
lies strictly inside the area that is enclosed by another edge. A mixed linear layout is a
layout of a graph that has at least one stack page and at least one queue page. For this
thesis, we mainly focus on a 1-stack 1-queue layout. Therefore the problem of finding
such a mixed layout can be formulated as the following question. Given a graph, does
a vertex order and an assignment of the edges either to the stack or to the queue page
exist so that the graph can be drawn in a linear layout without crossing edges on the
stack page and nested edges on the queue page? An example of such a mixed layout
can be seen in Figure 1.1 on the left image. The right image shows two edges that are
crossing on the upper half and two edges that are nesting on the lower half.

1.2 Motivation
Dujmovic and Wood [DW04] list a wide range of applications for stack and queue layouts.
Those applications include sorting permutations, fault-tolerant VLSI design, complexity
theory, graph drawing, parallel process schedule, and many others. While stack and
queue layouts separately are a widely researched topic, both of these concepts combined
receive somewhat less attention.

For example in graph drawing a typical way to draw two stack pages is in a circular
layout or as an arc diagram as it can be seen in Figure 1.2. In the circular layout, the
vertices are drawn in the same order as in the linear layout. Both pages can be drawn
inside the circle with different types of edges. It is also possible that only one page
is drawn inside the circle with the edges as straight lines and the second page on the
outer side of the circle where the edges are arches which are routed around the circle.
Such a drawing is crossing-free and arguably is an easily readable drawing of a graph.
The downside of such a drawing is that it is only crossing-free if the graph has a two

2

1.3. Goals and methodology

Figure 1.2: The drawing on the left is an example of two stack pages that are drawn in a
circular layout from He et al. [HSM07]. The drawing on the right is an example of an
arc diagram of two stack pages from Chung et al. [CLR87].

stack linear layout. If this is not the case, then one might accept the crossings or choose
another drawing style. Since there exist graphs that do not have a 2-stack layout but do
have a 1-stack 1-queue layout, choosing a drawing style for such a mixed layout might be
another option.

Another application that combines both concepts is permutation sorting, where input
data is sorted by pushing them sequentially into stacks or queues and pushing them to
an output in the right order at the right point in time. For our case with one stack and
one queue, we can sort the incoming data by choosing to push them to either the stack
or the queue and after every newly received data we have the choice to push an arbitrary
amount of data from both the stack and the queue to the output stream. Note that
not every permutation is possible with such a simple system. In the general case, it is
possible to build larger more powerful networks of such data structures and others like a
dequeue that are placed in parallel or in series to allow permutations that are otherwise
not possible. One can imagine such a system as a railroad switchyard where a train with
different wagons arrives and the single detached wagons need to be driven through the
switchyard in such a way that they will be sorted in a specific permutation when they
leave the switchyard [Tar72].

1.3 Goals and methodology

With this thesis, we want to understand mixed linear layouts better. The aim of this
work is many-sided, and we try to focus on several aspects. We cover theoretical aspects
and algorithms, examine heuristics, and we also present different ways to draw graphs in
a mixed linear layout. The first step of this thesis is to collect the related work on this
topic. There is some work about mixed layouts, which serves as a base of this thesis and

3

1. Introduction

substantial work on stack and queue layouts on its own that contains relevant and useful
information.

In the theoretical part, we try to provide a better understanding of the properties of a
mixed layout. Computational complexity and NP-hardness is one crucial aspect where
some results already exist for some types of mixed layouts and where we can prove new
results for some others. We also provide methods and algorithms to compute such layouts
and check if such a layout exists for a given graph or validate the correctness of a given
layout. Pupyrev [Pup17] conjectured that every planar bipartite graph admits a 1-stack
1-queue layout and we take a look on this conjecture.

Since finding a linear layout is, in general, an NP-hard problem we address heuristics
to create layouts with preferably as few as possible crossings and nestings. To achieve
this goal, we take a look at existing heuristics for book drawings and try to reuse those
for the mixed layouts. Therefore we implement them and run experiments to identify
the best heuristics. We also develop a new heuristic that is specially designed for mixed
layouts and compare it to the existing heuristics.

In the graph drawing part, the focus is on obtaining a good drawing of a graph that has
a mixed layout. Linear layouts with two pages are often drawn in a circular style. For
such a drawing it would be especially interesting to assess how the properties of a queue
layout can be used to obtain a good looking and readable drawing. We identify which
ideas can be used for mixed layouts too and develop new drawing styles.

1.4 Related work

Stack layouts and queue layouts are extensively researched topics. These concepts were
introduced by Ollmann [Oll73], Heath et al. [HLR92] and Heath and Rosenberg [HR92].
For many common classes of graphs, their respective number of pages which are needed
in order to be drawn in such a layout is known or bounded.

Outerplanar graphs have a stack number of one [BK79]. Such a graph is shown in Figure
1.3 and this is precisely the graph class that fits on a single stack page. Graphs have a stack
number of two if they are a subgraph of a planar Hamiltonian graph [BK79]. Therefore,
this includes every graph that is planar and has a Hamiltonian path. Recognizing such
graphs is an NP-complete problem [CLR87] and therefore deciding whether or not a graph
has an embedding on two stack pages is in general already NP-hard. Since every planar
bipartite graph is subhamiltonian, they can also be embedded on two stack pages [Ove98].
2-tree graphs, which are maximal series-parallel graphs, also have a stack number of two
[RM95]. For every planar graph we know that four stack pages are sufficient [Yan89] but
it is not known if it is possible to embed this graph class on only three pages. There exist
planar graphs that need three pages, but not a single was found so far where three pages
were not sufficient, and therefore it is still unknown if the stack number of planar graphs
is three or four [BKZ15].

4

1.4. Related work

a) Outerplanar graph b) Arched level-planar graph

c) Stack layout d) Queue layout

Figure 1.3: On the left side a) shows an example of an outerplanar graph which fits
exactly on one stack page which is shown below in c). The vertex order for the stack
pages can be obtained by taking the order on which the vertices appear on the outer face.
On the right side b) is an example of an arched level-planar graph which fits exactly on
one queue page which is shown in d). The vertex order can be obtained by placing all
consecutive levels next to each other.

For many graph classes, the queue number is also known or bounded. Arched level-planar
graphs are the graph class that have a queue number of exactly one [HLR92]. Recognizing
such graphs is an NP-complete problem [HR92]. An example of an arched level-planar
graph is shown in Figure 1.3. Since trees are level-planar they have also a queue number
of one. Outerplanar graphs have a queue number of two, and series-parallel graphs have a
queue number of at most three. The queue number of planar 3-trees is bounded between
four and five [ABG+18]. The queue number of planar graphs with n vertices has been
improved over the years from O(

√
n) to O(log2 n) [DFP13] to O(log n) [Duj15]. Recently

there has been a lot of progress on this subject, and it has been proven that planar graphs
with a bounded degree have a constant queue number [BFG+18] [DMW19], and even
a constant upper bound for planar graph was found [DJM+19]. Wood [Woo05] studied
queue layouts of graph products and powers.

Besides these basic bounds for simple graph classes, many more bounds are known for
more general graphs. Dujmović and Frati [DF18] provided bounds for the stack number
and the queue number for general graphs with layered separators. The queue number
is bounded to the path-width [Woo02] and to the tree-width [Wie17] of a graph. An
Overview of more upper bounds for the stack and queue number of different graph families
can be found in [DW04]. Subdivisions of graphs are a very powerful tool for linear layouts.

5

1. Introduction

Every graph has a 3-stack, 2-queue and 1-stack 1-queue subdivision [DW05].

Mixed layouts are less studied compared to stack or queue layouts. Heath et al. [HLR92]
proved that every graph which has a stack number of one can be drawn on two queue
pages and vice versa that every graph with a queue number of one can be drawn on two
stack pages. Heath and Rosenberg conjectured that each planar graph admits a 1-stack
1-queue layout [HR92]. This conjecture was recently disproved by Pupyrev [Pup17].
Pupyrev also states that mixed layouts are more powerful than stack or queue layouts
on their own. He tested all maximal planar graphs up to 18 vertices, and all of these
graphs admit a 1-stack 1-queue layout whereas the smallest graph that could not be
drawn with a 2-stack layout has 11 vertices and the smallest graph that could not be
drawn with a 2-queue layout has 14 vertices. Therefore it seems that the mixture of
these two structures allows more graphs to be drawn than any of these structures by
themselves with the same number of pages.

While the focus of this thesis lies on 1-stack 1-queue layouts, other mixed layouts with
more than one page of the same type are also of great interest. Auer [AG11] [Aue14]
[ABB+18] studied graphs which can be drawn on a cylinder’s surface and processed by a
dequeue data structure. These dequeues have a 2-stack 1-queue layout where there are
some restrictions between the queue and the two stacks.

For problems that are related to scheduling, parallel processing or other workflows, where
some actions need to be done before others, a directed acyclic graph is often better suited,
and they have been studied by Heath et al. [HPT99] and Heath and Pemmaraju [HP99].

1.5 Structure of the thesis
We will start with the preliminaries in Chapter 2 where we explain basic terminologies
and methods that will be used throughout this thesis. In Chapter 3 we will establish the
theoretical part where we will present results for computational complexity and hardness
of finding mixed linear layouts as well as some algorithms. Since finding mixed layouts is
often NP-hard we will over heuristic approaches to find such layouts in Chapter 4. In
Chapter 5 we will focus on the practical aspect and introduce some drawing styles and
conventions that can be used to draw such layouts. Finally, we will conclude this thesis
with a conclusion and an outlook of future work in Chapter 6.

6

CHAPTER 2
Preliminaries

In this chapter, we define some terms, statements and algorithms that are used in the
following chapters. A graph G = (V,E) consists of a set of vertices V = {v1, ..., vn}
and a set of pairs of these vertices E = {e1, ..., em} with ej = {u, v} called the edges.
Throughout this thesis, a graph will always be a simple undirected graph. Therefore a
graph will not have multiple edges between the same two vertices and no edge that is a
loop between the same vertex.

A vertex order ≺ is a strict total order of the vertices V . We denote that a vertex u is in
the order before another vertex v by u ≺ v. A strict total order has the properties that it
is transitive and trichotomous. The transitivity ensures that if u ≺ v and v ≺ w it holds
that u ≺ w. Trichotomous means that for all u, v ∈ V it holds that either u ≺ v, v ≺ u
or u = v is true. A vertex u is called the predecessor of a vertex v if u ≺ v and there
exists no vertex w such that u ≺ w ≺ v. Similarly a vertex u is called the successor of
a vertex v if v ≺ u and there exists no vertex w such that v ≺ w ≺ u. Therefore every
vertex has a single successor (except the last one) and a single predecessor (except the
first one) and the position of every vertex is comparable to every other vertex.

We denote the start vertex or left vertex of an edge e by L(e) and the end vertex or right
vertex by R(e) with respect to a vertex order ≺. Therefore L(e) ≺ R(e) holds for every
edge. The use of the words left and right make sense if we imagine that the vertices are
placed on a horizontal line with the first vertex in ≺ on the left side on the line and the
last vertex in ≺ on the right side on the line. We define the edge length of an edge as
the number of the successors that are needed to traverse starting at L(e) until we reach
R(e). Therefore for an edge between a vertex v and its successor u the edge length is
one and for an edge between the first and the last vertex in the vertex order for a graph
with n vertices, the edge length is n− 1.

Let e, f be two edges of G. Up to renaming the vertices we say that two edges e and
f cross each other with respect to a vertex order ≺ if L(e) ≺ L(f) ≺ R(e) ≺ R(f). We

7

2. Preliminaries

call such a relation between two edges a crossing. If L(e) ≺ L(f) ≺ R(f) ≺ R(e) we say
that e nests f and f is nested by e. We call such a relation between two edges a nesting.
Finally e and f are disjoint if L(e) ≺ R(e) ≺ L(f) ≺ R(f). Therefore for every two pairs
of edges it holds that these two edges are either crossing, nesting, disjoint or they are
sharing a common vertex in which case it is not possible that they cross or nest each
other.

A stack page or queue page is a set of edges E′ ⊆ E such that no two edges in this set
are crossing or nesting respectively. A conflict is either a crossing on a stack page or a
nesting on a queue page. The total number of conflicts is the sum of all crossings and
nestings. A linear layout of a graph G = (V,E) with the vertex order ≺ and with s stack
pages and q queue pages is an assignment of the edges E to the pages so that each edge
is assigned to a single page. We call a layout with only stack pages (s > 0, q = 0) stack
(linear) layout, a layout with only queue page (s = 0, q > 0) queue (linear) layout. If
there are both types of pages available (s > 0, q > 0) we call it a mixed (linear) layout.
Especially for mixed layouts it is often needed to specify the exact number of pages and
for this, we use the notation of s-stack q-queue (linear) layout. The maximum number of
edges that can be assigned to a page for a graph with n vertices is exactly 2n− 3. This is
because outerplanar and arched level-planar graphs are exactly the graphs that fit on a
stack or a queue page respectively. For both graph classes this is the maximum number
of edges that they can have.

A k-rainbow is a set of edges E′ such that L(e1) ≺ L(e2) ≺ ... ≺ L(ek) ≺ R(ek) ≺ ... ≺
R(e2) ≺ R(e1). Therefore, a k-rainbow is a set of k pairwise nesting edges. On a queue
layout, such a rainbow needs k different pages but it can be placed on a single stack page.
A k-twist is a set of edges E′ such that L(e1) ≺ L(e2) ≺ ... ≺ L(ek) ≺ R(e1) ≺ R(e2) ≺
... ≺ R(ek). In contrary to a rainbow a k-twist is a set of k pairwise crossing edges. On a
stack layout, such a twist needs k different pages but it can be placed on a single queue
page. Therefore twists and rainbows highlight the dual relationship between stacks and
queues. On a stack page we need to have nested edges that form rainbows whereas we
are not allowed to have twists. On the contrary on a queue page we need to have crossing
edges that form twists whereas we are not allowed to have rainbows.

A drawing Γ of a graph is a mapping of the vertices to two-dimensional points Γ : V → R2

and a mapping of the edges to curves between two points Γ : E → curve in R2 such that
the curve starts at one vertex of the edge and ends at the other vertex.

Until this point, we have used the name stack and queue pages without explaining why we
use the terms stack and queue and what the connection is between these data structures
and the edges on a page. In computer science, a stack is a collection of elements that
allows two operations: Adding an element to the collection (push) and removing an
element from the collection (pop). A stack executes these operations in a “Last In First
Out” (LIFO) manner, meaning that the most recently added element has to be removed
first. A queue is also a collection of elements that allows to add (enqueue) and remove
(dequeue) elements but in a “First In First Out” (FIFO) manner, meaning that the oldest
element has to be removed first.

8

1 2 3 4
push (1,4)
push (1,3)
push (1,2)

pop (1,2) pop (1,3)
push (3,4)

pop (3,4)
pop (1,4)

(1,2)

(1,3)

(1,4)

(1,3)

(1,4)

(3,4)

(1,4)

Figure 2.1: Validating a stack page with the help of a stack. The actions at each vertex
and the state of the stack are shown below the respective vertex. The current state of
the stack is displayed on the bottom of the figure where the uppermost box is the top of
the stack. It is possible to execute the actions in the given sequence and therefore it is a
valid stack page without crossings.

Algorithm 2.1: validateStackPage
Data: List of vertices V , edges E
Result: True if E is a valid stack page without a crossing with respect to the

order of the vertices in V and otherwise False
1 stack ← Stack()
2 foreach v in V do
3 startEdges ← edges that start at v ordered by longest first
4 endEdges ← edges that end at v ordered by shortest first
5 foreach e in endEdges do
6 if e 6= stack.pop() then
7 return False
8 foreach e in startEdges do
9 stack.push(e)

10 return True

A linear layout with the vertex order ≺ can be seen as an abstract way how elements
should be processed. If we iterate over all vertices in ≺, each vertex can be seen as a
point in time where some actions need to be started, and some other actions need to be
completed. The edges represent these actions. If an edge starts at a vertex, then this
corresponding action should be started, and the edge is added to a data structure. If
an edge ends at a vertex, then the corresponding action needs to be finished, and the
edge has to be removed from a data structure. If and only if no edges cross on a page,
we can use a stack as a data structure to process the edges and if and only if no edges
nest on a page, we can use a queue as data structure without violating the respective

9

2. Preliminaries

1 2 3 4
enqueue (1,2)
enqueue (1,3)

dequeue (1,2)
enqueue (2,4)

dequeue (1,3) dequeue (2,4)

(1,3) (1,2) (2,4) (1,3) (2,4)

Figure 2.2: Validating a queue page with the help of a queue. The action at each vertex
and the state of the queue are shown below the respective vertex. The current state of
the queue is displayed on the bottom of the figure where the rightmost box is the head
of the queue. It is possible to execute the actions in the given sequence and therefore it
is a valid queue page with no nested edge.

LIFO and FIFO constraints. If there is a single crossing or a single nesting, then it is
not possible to process the edges respectively with a stack or a queue. Therefore given a
graph G = (V,E) with the vertex order ≺ and an assignment of all of the edges E into
two disjoint subsets S ∩Q = ∅, S ∪Q = E, then we can validate that no edges cross on
the stack page S and that no edges nest on the queue page Q with the help of a stack
and queue as data structures.

Figure 2.1 shows an example of how this process can look like and what actions need
to be executed at every vertex. We start at the first vertex in the vertex order which
is labelled as 1. On a stack page, the longest edge incident to 1 is added to the data
structure first. This is in contrast to a queue, where we would need to add the shortest
edge first. Therefore we add the edges (1, 4), (1, 3) and (1, 2) to the stack and all actions
for the first vertex are done. At vertex 2 we need to remove (1, 2) which is on the top of
the stack. At vertex 3 where edges need to be removed and added we start with removing
edges. At the last vertex, we can remove all remaining edges. The LIFO principle was
not violated in this process. Therefore it is a valid stack page with no crossing edges. A
pseudo-code of this procedure is given in Algorithm 2.1.

In a similar way that we can validate a stack page, we can also validate a queue page.
An example is shown in Figure 2.2. Again we start at the first vertex in the order which
is labelled with 1, but this time we add the edges the other way around starting with the
shortest edge so that they can be removed later in the correct order when they need to
leave the queue. For a queue it does not make a difference if we first enqueue or dequeue
the edges of a vertex and therefore the order of operations at the second vertex does
not matter. However we maintain the convention used before concerning stacks to first
remove all edges before adding new ones. The remaining edges at vertex 3 and 4 can be
dequeued without violating the FIFO principle of a queue. Therefore we have a valid
queue page without a nested edge. The pseudo code for this process is given in Algorithm
2.2.

10

Algorithm 2.2: validateQueuePage
Data: List of vertices V , edges E
Result: True if E is a valid queue page without a nesting with respect to the

order of the vertices in V and otherwise False
1 queue ← Queue()
2 foreach v in V do
3 startEdges ← edges that start at v ordered by shortest first
4 endEdges ← edges that end at v ordered by longest first
5 foreach e in endEdges do
6 if e 6= queue.dequeue() then
7 return False
8 foreach e in startEdges do
9 queue.enqueue(e)

10 return True

11

CHAPTER 3
Theory

In this chapter, we have a look at the theoretical part of mixed layouts. First, we show
complexity and NP-hardness results for layouts with various amount of pages and with
and without a fixed vertex order. After that, we introduce algorithms for 1-stack 1-queue
layouts. Finally, discuss a conjecture of Pupyrev [Pup17] in which he suggests that every
planar bipartite graph has a 1-stack 1-queue layout.

3.1 Complexity

The difficulty of determining if a graph permits a mixed linear layout depends strongly
on the number of stack and queue pages of the layout. In the following, we study the
complexity of this problem in the case that the vertex order is fixed or without a given
vertex order.

3.1.1 Fixed vertex order

The problem of finding a mixed layout with a fixed vertex order can be formulated as
follows. Given a simple graph G, an order of the vertices ≺, and two integers s, q ∈ N0
does a s-stack q-queue layout exist for G? An overview of the results for different s, q
can be seen in Table 3.1.

For an s = 1, q = 0 the problem is trivial and can be solved in linear time. Since all
edges are on a single stack page, it only needs to be checked if any two edges are crossing
and there are various methods to do so. For example, this can be done by pushing and
popping edges to a stack as described in Chapter 2 or with any state of the art algorithm
that is used to count crossings in book embeddings. One such algorithm is described by
Six and Tollis [ST06] which they call CountAllCrossings. This algorithm takes O(m+χ)
time where m is the number of edges and χ is the total number of crossings. Since we

13

3. Theory

Table 3.1: Complexity classes and NP-hardness for linear layouts with a fixed vertex
order. The three dots denote that the previous class or hardness continues forever into
this direction. The star symbol denotes new results in this thesis.

0-stack 1-stack 2-stack 3-stack 4-stack 5-stack
0-queue P P ? NP-hard ...
1-queue P P NP-hard* ...*
2-queue P NP-hard* ...*
3-queue* ...*

only need to check if there is at least one crossing, the algorithm can be adapted to stop
after the first crossings is found which results in a worst-case running time of O(m).

For s = 0, q ≥ 1 the problem can be solved in polynomial time no matter the number
of queue pages. Assume all edges would be on a single page and there is no rainbow
with more than q edges, then G permits a q-queue layout on the given vertex order
[HR92]. The opposite is also true. If there is a rainbow with more than q edges then
it is impossible to have a q-queue layout because every edge of a rainbow needs to be
assigned to a different page otherwise two edges would be nested.

For the embedding with two stack pages s = 2, q = 0 this can be solved in linear time
by planarity testing [Pat13]. For the planarity testing, the edges are added step by step
from the first vertex in the vertex order to the last vertex and checked if this can be done
in a planar way.

For s = 1, q = 1 the problem can be solved in polynomial time by formulating the problem
as an instance of 2-SAT as described in Section 3.2. Creating the 2-SAT formula needs
quadratic time to find all conflicts between all pairs of edges and 2-SAT itself can be
solved in linear time.

For book embeddings with s = 3, q = 0 it is unclear whether the problem is NP-hard
or solvable in polynomial time. To the best of our knowledge no NP-hardness proof
exists. Finding a book embedding can be done by finding a colouring of the edges in
the circle graph. If no two edges of the same colour cross then all edges of one colour
can be put on a page without crossings. Unger [Ung92] claimed that it could be done in
polynomial time for three colours without describing the algorithm in detail. This circle
colour problem is proven to be NP-hard for four or more colours [Ung88]. Therefore for
s ≥ 4, q = 0 finding a linear layout with a fixed vertex order is also NP-hard.

To the best of our knowledge, this is a complete description of all results in the literature.
We show two theorems that prove that by either increasing s or q for an already NP-hard
problem the new problem is also NP-hard.

Theorem 1. Let Π be an NP-hard decision problem that takes as input a graph G = (V,E)
and a linear order of the vertices ≺ and asks if an assignment of the edges to s stack

14

3.1. Complexity

....
a1 a2 as+1 b1 b2 bs+1

....

G

Figure 3.1: The construction of Π′ which illustrates that by increasing the number of
queue pages by one for an NP-hard linear layout problem with a fixed vertex order the
new problem is also NP-hard.

pages and q queue pages exists, where s, q ∈ N such that it is a valid s-stack q-queue
linear layout. Then the problem Π′ with s stack pages and q + 1 queue pages is also an
NP-hard problem.

Proof. We prove this theorem with a reduction from Π to Π′. The idea of this reduction
is to add vertices and edges to the graph in such a way that the additional queue page of
Π′ contains an edge that prevents all other edges of E from being assigned there, and
therefore all edges of E must be assigned to s stack and q queue pages.

Let G = (V,E),≺ be an arbitrary instance of Π. We construct a new set of vertices
V ′ = V ∪Va∪Vb where Va = {a1, a2, ..., as+1} and Vb = {b1, b2, ...bs+1}. We also construct
a new set of edges E′ = E ∪ Eab where Eab = {(a1, b1), (a2, b2), ..., (as+1, bs+1)}. Finally,
we construct a vertex order ≺′ as follows. For every two vertices u, v ∈ V ′ we set u ≺′ v
if one of the following statements is true:

1) ui, vj ∈ Va and i < j

2) u ∈ Va, v ∈ V

3) u, v ∈ V and u ≺ v

4) u ∈ V, v ∈ Vb

5) ui, vj ∈ Vb and i < j

An illustration of this construction can be seen in Figure 3.1. We show that Π′ with the
input (G′ = (V ′, E′),≺′) is a yes instance if and only if G = (V,E),≺ is a yes instance of
Π.

If G with ≺ has a valid mixed linear layout on s stack and q queue pages, then we can
place all the new edges Eab that we added between the two sets of vertices Va and Vb

on the new queue page. Since the edges in Eab form an s+ 1-twist, all of the edges are
crossing each other and no edge is nested. Therefore it is possible to place all of them on
a single queue page. If G′ with ≺′ has a valid mixed linear layout on s stack and q + 1
queue pages, then we can find mixed layout for G with ≺ on s stack and q queue pages

15

3. Theory

...
w a1 a|V |−1

G

s+2-twists-twist

q-rainbow of s+2-twists

s+2-twist

......

Figure 3.2: The construction of Π′ which illustrates that by increasing the number of
stack pages by one for an NP-hard mixed linear layout problem with a fixed vertex order
the new problem is also NP-hard.

by removing Va and Vb with the adjacent edges Eab. This leaves the remaining edges
assigned to no more than q queue pages.

Since all of the edges in Eab are crossing each other and we have in total s+ 1 edges and
only s stack pages we need to put at least one of these edges on a queue page. Also,
because every edge in Eab is nesting all edges in E, not a single edge in E can be assigned
to the same queue page. Therefore if no valid linear layout exists for Π with G,≺ it is
also not possible to find a valid linear layout for Π′ with G′,≺′.

Theorem 2. Let Π be an NP-hard decision problem that takes as input a graph G = (V,E)
and a linear order of the vertices ≺ and asks if an assignment of the edges to s stack
pages and q queue pages exists, where s, q ∈ N such that it is a valid s-stack q-queue
linear layout. Then the problem Π′ with s+ 1 stack pages and q queue pages is also an
NP-hard problem.

Proof. Similar to the proof for Theorem 1 we show a reduction from Π to Π′ where we
add additional vertices and edges in a way that some edges are forced to be assigned to
the new stack page that prevent any other edge from E to be assigned there too. This
time we need a slightly more complex construction, but proving that this reduction is
correct is as simple as before. The final construction is illustrated in Figure 3.2.

In our new vertex order ≺′ we keep the original order of the vertices in V . Therefore for
all vertices u, v ∈ V it holds that u ≺′ v if u ≺ v. Then we create a new set of vertices
Va = {a1, a2, ...a|V |−1} and we place one of these vertices between every vertex in ≺′.
Therefore the order ≺′ contains alternating vertices of the sets V and Va. We then add a
vertex w and a set of edges Ea = {(w, a1), (w, a2), ..., (w, a|V |−1)} and place w before any
other vertex that is currently in the order such that w ≺′ u for all u ∈ V ∪Va. The goal of
the rest of this reduction is to force all edges in Ea to be assigned to the same stack page.
This prevents any edge in E from being assigned to this stack page because between

16

3.1. Complexity

every two vertices in V there is one vertex of Va and a crossing would be guaranteed.
Therefore, only s stack pages are left for the edges in E.

To prevent any of the edges in Ea to be assigned to a queue page we need to ensure
that there is q-rainbow between the vertices w and a1. However, since the edges of a
rainbow can be assigned without a problem to a single stack page, we need to ensure
that each edge of the rainbow is assigned to a queue page. Therefore we construct a
q-rainbow with 2q new vertices and then replace every pair of vertices of this rainbow
that is connected with an edge with an s+ 2-twist where each twist introduces 2(s+ 2)
new vertices. We call this construction a q-rainbow of s+ 2-twists. Let Vb be the set of
vertices and Eb the set of edges of this construction. It holds that w ≺′ u ≺′ v for all
u ∈ Vb and for all v ∈ V . Since we have only s+ 1 stack pages available there is at least
one edge per twists that need to be assigned to a queue page. Moreover, since we have q
such twists that are all nested this construction forces at least one edge to be assigned to
every available queue page. Therefore no edge in Ea can be assigned to any queue page.

In the last step of this reduction we want to ensure that all edges in Ea are assigned to
the same stack page. To achieve this we add a new set of 2s vertices Vc with s edges Ec

that form a s-twist. Let Vc1 ⊂ Vc bet the set of left vertices and Vc2 ⊂ Vc the set of right
vertices of this s-twist such that L(e) ∈ Vc1 and R(e) ∈ Vc2 for all e ∈ Ec. We want to
place Vc1 in the vertex order before w and Vc2 between the q-rainbow of s+ 2-twists and
the vertices of V . This can be formally expressed as the following. For every two vertices
u and v we set u ≺′ v if:

1) u ∈ Vc1 and v = w

2) u ∈ Vb, v ∈ Vc2

3) u ∈ Vc2, v ∈ V

If G with ≺ has a valid mixed linear layout on s stack and q queue pages then we can
place all new vertices and edges in a way that we have a valid mixed linear layout for
G′ with ≺′ on s+ 1 stack and q queue pages. We place all edges Eb of the q-rainbow of
s+ 2-twists on the q available queue pages. All edges of a twist are assigned to the same
queue page, and each twist is assigned to another queue page. Since all vertices of this
rainbow are placed in the vertex order ≺′ before the vertices of V and therefore they are
all disjoint this assignment that does not affect the edges E at all. Then we place each
edge in Ec of the s-twist on an own stack page. Again all vertices in Vc are placed in
≺′ before the vertices of V . Finally, we can place all edges of Ea to the stack page with
number s+ 1. Therefore if G with ≺ has a valid mixed linear layout, we can have same
order ≺ for the vertices of V and the same assignment of the edges E on s stack and q
queue pages, and we have a valid linear layout.

If G′ with ≺′ has a valid mixed linear layout on s+ 1 stack and q queue pages, then we
can find mixed layout for G with ≺ on s stack and q queue pages by removing all the
vertices and edges that were added in this reduction. This leaves the remaining edges

17

3. Theory

Table 3.2: Complexity classes and NP-hardness for linear layouts without a given vertex
order. The three dots denote that the previous hardness continues forever into this
direction. The star symbol denotes new results in this thesis.

0-stack 1-stack 2-stack 3-stack
0-queue P NP-hard ...
1-queue NP-hard NP-hard*
2-queue NP-hard*

assigned to no more than s stack pages because all the edges in Ea were assigned to the
same stack page which is then an empty page.

If G with ≺ does not have a valid mixed linear layout for s stack and q queue pages,
then it is also not possible for G′ with ≺′ to have one on s+ 1 stack and q queue pages.
All the edges in Ea need to be on a stack page because they would nest the edges Eb

of the q-rainbow of s+ 2-twists and there are only q queue pages available. Also, all of
them need to be on the same stack page because otherwise, they would cross edges Ec in
the k-twist. Moreover, because between every vertex in V there is a vertex a ∈ Va with
an edge (w, a), it is not possible for an edge in E to be assigned to the same stack page
as the edges of Ea because they would cross. Therefore all edges of E must be assigned
to s stack and q queue pages. If this is not possible for Π with G and ≺ it is also not
possible for Π′ with G′ and ≺′ to have a valid linear layout.

3.1.2 Free vertex order

Now that we have seen the complexity of finding linear layouts with a fixed vertex order
we move on to finding such layouts where the vertex is free to choose. The problem can
be formulated as follows. Given a simple graph G and two integers s, q ∈ N0 does a valid
s-stack q-queue layout exist for G with some vertex order ≺? An overview of the results
for different s, q can be seen in Table 3.2.

For s = 1, q = 0 this can be done in linear time. Outerplanar graphs are precisely the
graph class that fit on a single stack page. Therefore a 1-stack book embedding is possible
if and only if the graph is outerplanar [BK79]. Recognising such a graph can be done in
linear time [Wie86]. Construction the vertex order is done by taking the exact order of
the vertices in which they lie on the outer face.

For s = 2, q = 0 we already face an NP-hard problem. A 2-stack book embedding is
possible if and only if the graph is planar and subhamiltonian [BK79]. The process
of deciding if a graph is Hamiltonian is an NP-complete problem [GJT76]. Therefore
deciding if a graph has a 2-stack linear layout is also NP-complete [CLR87].

Finally for s = 0, q = 1 this is also an NP-complete problem. Arched level-planar graphs
are precisely the graph class that fit on a queue page. Therefore a graph permits a

18

3.1. Complexity

...
a bG

Figure 3.3: The construction of Π′ that illustrates that deciding if a linear layout with
two queue pages exists is NP-hard.

1-queue layout if and only if it is in this graph class. Recognizing arched level-planar
graphs is an NP-complete problem [HR92].

The comparison between the difficulty to find layouts with and without a given vertex
order highlights another interesting relationship between stack and queues that was
already noticed by Heath and Rosenberg [HR92]. Queues appear to be simpler than
stacks when the order is fixed. Queue layouts can be found in polynomial time regardless
of the number of queue pages while the problem is for stack layouts NP-hard for at least
four or more pages. In contrast with a free vertex order, stacks appear to be simpler
than queues since it is possible to find a 1-stack layout in polynomial time whereas the
same problem for a 1-queue layout is already NP-hard.

To the best of our knowledge there are no results in the literature for s = 0, q = 2
and s = 2, q = 1 and we show NP-hardness for these problems with the following two
theorems.

Theorem 3. Deciding whether or not a graph G = (V,E) has a 2-queue linear layout is
NP-hard.

Proof. For q = 1 this has been proven by Heath and Rosenberg [HR92]. For q = 2 we
take a problem Π with one queue page and reduce this to a problem Π′ with two queue
pages. Let G = (V,E) be an arbitrary instance of Π. We add two new vertices a, b
and add an edge from every vertex in V to both of the new vertices and between the
two vertices itself such that Ea = {(u, v) | ∀ u ∈ {a, b} ∀ v ∈ E} ∪ {(a, b)}. Then we can
construct a graph G′ = (V ′, E′) where V ′ = V ∪ {a, b} and E′ = E ∪ Ea which is the
input for Π′. This construction can be seen in Figure 3.3. Note that the vertex order is
free and it is not forced that a and b are placed on both ends of the order.

If G has a valid linear layout on one queue page we can place a on the first position
and b on the last position in the vertex order, as it is shown in Figure 3.3 and assign
all edges of Ea to a single queue page. None of the edges in Ea are nested and G′ has a
valid linear layout on two queue pages.

If G has no valid linear layout on one queue page, that means that for every possible
vertex order there must exist a set of edges Er = {e1, e2} ⊆ E such that these edges form
a 2-rainbow. Let e1 be the edges that nests e2. If there would exist at least one vertex
order without such a set of edges, then G would have a valid linear layout. A complete

19

3. Theory

graph with n vertices has a queue number of bn/2c [HR92]. The complete graph with
four vertices K4 is the smallest graph that needs two queue pages. If G is a K4 then G′
is a K6 which has a queue number of three. Therefore we can assume that G has at least
five vertices because otherwise, it is trivial.

If a and b are placed in the vertex order such that L(e1) ≺ a ≺ R(e1) and L(e1) ≺ b ≺
R(e1) it is easy to see, that we get a 3-rainbow. Either the edge (a, b) nests e2 or (up to
renaming a and b) (a, L(e2)) and (b, R(e2)) are nested. Therefore a 3-rainbow of either
e1, (a, b), e2 or e1, (a, L(e2)), (b, R(e2)) is unavoidable.

Since by placing both a and b outside of the rainbow Er, the edge (a, b) would nest e1.
Because of this, the only remaining case that we need to verify is if one of the two vertices
is placed outside of the rainbow Er and the other one is placed somewhere inside Er. Let
a be the vertex outside and b the vertex inside. Since a has an edge that stretches over
the whole vertex order to some vertex v ∈ V such that v has no successor, the remaining
minimum four vertices of V and b are not allowed to have single nesting because this
would result in a 3-rainbow. Since b has edges to every vertex in V this restricts the
possible remaining edges drastically. Therefore, every remaining edge must either cover b
or be adjacent to v. There can be at most two different vertices that can have edges that
cover b because otherwise, those edges would nest among themselves. However, such a
graph with the remaining edges where each edge is adjacent to one of two vertices always
has a 1-queue layout, and therefore G must have a 1-queue layout.

If G′ has a valid linear layout on two queue pages, then we can find mixed layout for G
on one queue page. Either a and b are placed on both ends of the vertex order and then
removing all of the edges Ea immediately yields a one queue layout for G which has the
same vertex order for the vertices V . Otherwise, if one of the vertices a, b is not placed
on an end of the vertex order we have already seen that the edges of G are restricted in
a way that makes it trivial to find a one queue layout.

Theorem 4. Deciding whether or not a graph G = (V,E) has a 2-stack 1-queue linear
layout is NP-hard.

Proof. Let Π be the decision problem that asks if a graph has a 2-stack linear layout. We
prove this theorem by a reduction from Π to the problem Π′ that asks if a graph has a
2-stack 1-queue linear layout. Let G = (V,E) be an arbitrary but connected instance of
Π. If G is not a connected graph, then it would be possible to calculate a linear layout for
each independent part and chain the results together. Similar to the proof of Theorem 3
we add edges and vertices to this graph to create a new graph G′ = (V ′, E′) that is an
instance of Π′. The idea of this reduction is again that one of the new edges is forced to
nest all edges in E such that G′ is a yes instance if and only if G is also a yes instance.

The K8 is the largest complete graph that admits a 2-stack 1-queue layout. An example
of such a layout can be seen in Figure 3.4. There are many slightly different ways how

20

3.1. Complexity

Figure 3.4: The K8 is the largest complete graph that fits on a 2-stack 1-queue layout.
The edges on the stack pages are shown in red and green while the edges on the queue
page are shown in blue.

the edges can be assigned to the three pages, but with an exhaustive search where we
computed every possible way, we found the Lemma 1 to be always true.

Lemma 1. For every 2-stack 1-queue layout of a K8 some edges are forced to be assigned
to specific pages. Since the order does not matter for complete graphs, we can without a
loss of generality assume that the vertices are in an ascending order from 1 to 8. The
edge (1, 8) is assigned to a stack page and we call this page the first stack page. Either
(1, 7) or (2, 8) is assigned to the second stack page. Therefore either the vertex 2 or 7 is
not covered by an edge on the second stack page. The edges (1, 3) and (6, 8) are always
assigned to the queue page.

Observation 1. For any graph that has a stack layout, we can freely choose the first
vertex in the order. This is true because for any stack layout it is possible to move the
first vertex to the last position and it is still a valid stack layout. The same is true for
the converse operation of moving the last vertex to the first position and it is still a valid
stack layout. These operations can be repeated indefinitely, and therefore any vertex can
be in the first position.

A graphical representation of Observation 1 would be to assume that the vertices are
drawn on the boundary of a circle and the edges of a page are either drawn inside or
outside of the circle. This circle can be cut at any place between two vertices and the
resulting line after the cut will be a valid vertex order.

We construct G′ from G as following. Due to Observation 1, we pick an arbitrary vertex
a ∈ V , add seven new vertices and add edges so that these eight vertices form a K8. We

21

3. Theory

κ1 κ3κ2 G

adb ec f gh

Figure 3.5: The construction of the reduction that illustrates that finding a 2-stack
1-queue layout is NP-hard.

call this complete graph κ1. Then we pick a vertex b ∈ κ1, b 6= a and add seven new
vertices and edges such that this construction forms also a K8 and we call it κ2. Then
we construct the last K8 by introduction eight new vertices and the respective edges
which we call κ3. We choose two vertices c, d ∈ κ1, c 6= a, c 6= b, d 6= a, d 6= b and three
vertices e, f, g ∈ κ3 and add the edges E1 = {(c, e), (d, f)}. Finally we choose a vertex
h ∈ κ2, h 6= b and add the edges E2 = {(b, e), (b, g)}, E3 = {(h, e), (h, g)}.

An illustration of this construction where G′ is a yes instance if G is also a yes instance
can be seen in Figure 3.5. All the edges of E can be assigned to two stack pages. The
edges E1 is assigned to the queue page while E2 can be assigned to one stack page and
E3 to the other stack page. The remaining edges of the three complete graphs κ1, κ2, κ3
can be assigned to the three pages as it is shown in Figure 3.4.

If G′ has a valid linear layout on two stack and one queue pages, then we can find mixed
layout for G on two stack pages. Since none of the edges E can be assigned to the queue
page because they would be nested, all of these edges are already assigned to two stack
pages anyway. Therefore the same page assignment with the same vertex order results in
a two stack layout of G.

Finally, we show that if G has no linear layout on 2-stack pages, then G′ cannot have a
linear layout on 2-stack and 1-queue pages. Without loss of generality we assume the
vertices to be ordered in the direction that we argue. Of course, it is possible to have
the whole vertex order reversed but the arguments can be made in the same way for the
other direction.

It is important to notice that for a K8 there are only three vertices that can have an edge
on a stack page to a vertex that is not part of the K8. The first and the last vertex in the
order are two of them. Due to Lemma 1 either the second or next to last vertex is the
only vertex that can have such an edge on the second stack page. Since we added for κ1
edges to four different vertices, there must be one which is covered by edges of both stack
pages and therefore forced to be on the queue page. Because of Lemma 1 there is always
one vertex that can have such an edge to a vertex that is not part of the K8 without
nesting another queue edges in this K8. For κ1 this must be one of the two edges of E1.

22

3.2. Algorithms

Every algorithm that computes a vertex order for our construction needs to place all
vertices of a K8 next to each other in the vertex order without any other vertex in between.
A K8 can not partially overlap with another K8 because there would be crossings and
also a K8 cannot be placed between two vertices of another K8 because there would
be nestings. Therefore in the vertex order ≺′ it holds without loss of generality that
c2 ≺′ c1 ≺′ a where c2 ∈ κ2, c1 ∈ κ1.

The next step to show is that κ1 and κ2 cannot be placed between a and another vertex
v ∈ V . If this would be the case, then we would also need to place κ3 between these
vertices because there are edges on all three pages that connect κ3 with κ1 and κ2. Then
one of the queue edges in E1 would nest edges in κ2.

Since we now have established the placement of the vertices in κ1, κ2 and V it is left to
show that there is only one place where we can put κ3. The only suitable placement is
after the vertices of V such that c2 ≺′ c1 ≺′ v ≺′ c3 where c2 ∈ κ1, c1 ∈ κ1, v ∈ V, c3 ∈ κ3
as it is shown in Figure 3.5. We cannot place c3 ≺′ c2 because one of the queue edges in
E1 would nest edges in κ2. We also cannot place κ3 somewhere between two vertices of
V because κ3 has edges on both stack pages to the vertices h and b. In order that these
edges on the stack page do not cross edges in E, it would be necessary that at least one
edge in E is assigned to the queue page, but this is not possible since this edge would
nest edges of κ3. Therefore the only way to place the vertices (except for the reversed
version) is shown in Figure 3.5 and all of the edges in E must be assigned to the two
stack pages since an edge on the queue page would be nested. Therefore if G is a no
instance of Π, then G′ must be a no instance of Π′.

3.2 Algorithms
In this section, we present algorithms to find mixed layouts for graphs with a fixed vertex
order if such a layout exists.

Finding a mixed layout for a graph can be difficult because there is no graph class known
that coincides with a 1-stack 1-queue layout in the sense that every graph in this class
admits such a mixed layout and every 1-stack 1-queue layout contained this class. For
1-stack it is outer-planar graphs, and for 1-queue layouts, it is arched level-planar graphs.
For a 1-stack 1-queue layout such a characterisation is missing.

Determining if a graph G = (V,E) with the vertex order ≺ permits a 1-stack 1-queue
layout and creating such a layout if it exists can be done efficiently by transferring this
problem into an instance of 2-SAT. Testing for satisfiability as well as finding a truth
assignment if it exists for an instance of 2-SAT can be done in linear time as Aspvall et
al. [APT79] showed. To do so, we create for every edge e ∈ E a boolean variable e′. If e′
is set to false, then this means that the edge is assigned to the queue page and if it is set
to true, then it is assigned to the stack page. Then for every pair of edges (e, f) ∈ E ×E
if e and f would cross each other if both were assigned to the stack page, we create the

23

3. Theory

clause (¬e′ ∨ ¬f ′). Therefore, to satisfy the formula either e′ or f ′ must be false and
therefore at least one of the edges must be assigned to the queue page. Similarly, if e
and f would nest we create the clause (e′ ∨ f ′) to ensure that at least one of the edges is
assigned to the stack page.

Since we can formulate our mixed linear layout problem as an instance of 2-SAT, other
algorithms that are used for 2-SAT can help us with these layouts. For example, Lewin
et al. [LLZ02] described a method to approximate the MAX-2-SAT problem with an
approximation ration of at least 0.94. Therefore, for graphs that do not permit a 1-stack
1-queue layout and therefore do not have a satisfying assignment for the 2-SAT formula,
we can at least approximate a good solution that is close to the minimum number of
conflicts. Since every unsatisfied clause in the 2-SAT formula is causing exactly one
conflict, the number of unsatisfied clauses equals the number of conflicts. Due to this,
the solution provided by Lewin et al. is indeed quite close to an optimal solution.

3.3 Planar bipartite graphs

In a recent paper, Pupyrev [Pup17] proved that there are planar graphs that do not admit
a 1-stack 1-queue layout and that every planar graph has a 1-stack 1-queue subdivision
with one division vertex per edge. Since he noticed in his counterexamples that faces of
degree three were an important factor for non-embeddability and a subdivision with one
vertex per edges is bipartite, he made the following conjecture:

Conjecture 1 ([Pup17]). Every bipartite planar graph admits a mixed 1-stack 1-queue
layout.

This conjecture is a current and valuable problem to base this thesis on. In the following
section, we give a lower bound on the size of planar bipartite graphs that admit such a
mixed layout and also list forbidden bipartite subgraphs.

In order to find either a counterexample for this conjecture or a lower bound for the
minimum number of vertices that always admit a 1-stack 1-queue layout, we tested all
edge maximal planar bipartite graphs from 4 to 19 vertices. We generated the planar
bipartite graphs for our test with the program Plantri 5.0 described in [BM99]. Plantri
allows a user to quickly create a large set of isomorphism free graphs of various planar
graph classes. Therefore we were able to generate all planar bipartite graphs for a given
number of vertices. In his paper, Pupyrev also referred to a tool that he created which
allows testing if a graph admits a specific linear layout by creating a respective SAT
formula that has a solution if the graph admits such a layout. We used this tool and a
modern SAT solver to test the graphs that we generated with Plantri. We did not used
the 2-SAT formula approach because it was much slower to test the permutations of the
vertex order than having one bigger SAT formula that tests for all vertex orders at once.
We run the tests on multiple Linux (Ubuntu 16.04.6 LTS) machines where each has two
Intel Xeon E5540 (2.53 GHz Quad Core) processors and 24GB RAM.

24

3.3. Planar bipartite graphs

Table 3.3: All maximal planar bipartite graphs up to 19 vertices admit a 1-stack 1-queue
linear layout

Vertices Graphs 1-stack 1-queue layouts
4 1 1
5 1 1
6 2 2
7 3 3
8 9 9
9 18 18
10 62 62
11 198 198
12 803 803
13 3.378 3.378
14 15.882 15.882
15 77.185 77.185
16 393.075 393.075
17 2.049.974 2.049.974
18 10.938.182 10.938.182
19 59.312.272 59.312.272

Table 3.3 shows that all planar bipartite graphs up to 19 vertices admit a 1-stack 1-queue
layout. This result is not very surprising since Pupyrev showed in the same paper in
a similar way that all planar graphs up to 18 vertices permit a 1-stack 1-queue layout.
The exponential increase of the possible number of graphs and the rising time that was
needed to solve the SAT formulas made it difficult to test for graphs with 20 or more
vertices exhaustively.

For a complete bipartite graph Ka,b it is also interesting to see which of them allow a
1-stack 1-queue mixed layout. For a = 3 it is always possible to have such a layout. Two
of the three vertices need to be placed on the ends of the vertex order, and the adjacent
edges are assigned to the queue page. The third vertex can be placed anywhere, and
those edges are assigned to the stack page. The K4,4 is the largest complete bipartite
graph for that we could compute a mixed layout for.

25

CHAPTER 4
Design and evaluation of

heuristics

The goal of this chapter is to develop and test heuristics that can be used to calculate
mixed layouts that have a low number of conflicts. The number of conflicts is the sum
of all crossings on the stack pages plus the sum of all nestings on the queue pages. We
focus mainly on 1-stack 1-queue layouts, but in our experiments, we also include tests
where the number of stack and queue pages reaches up to five.

To the best of our knowledge, no specific heuristics for mixed layouts exist yet, but for
stack layouts, there has been much work done for the so-called book embeddings or book
drawings. Naturally, it is an interesting question if we can reuse the same principles
and apply them for the mixed layouts. Usually, construction heuristics consist of two
steps. First, creating a vertex order and then creating an order of the edges in which they
are assigned greedily to the currently best page. Some heuristics do both steps at once
so that when a vertex is placed on the spine, then the adjacent edges are immediately
assigned to pages. After that, optimisation heuristics can be applied that try to improve
a given layout step by step by minimising conflicts. A good overview of such heuristics
and extensive experiments about the best heuristics for various graph classes for book
drawings was published by Klawitter [Kla16] and Klawitter et al. [KMN17]. We believe
that the work of Klawitter contains state-of-the-art heuristics and we use those for the
mixed layouts too. We test how some of the best heuristics for book embeddings perform
for mixed layouts, and we introduce a new page assignment heuristic which is compared
to the existing heuristics.

Until now we did not allow any crossings on stack pages and no nesting on queue pages as
it was defined in Chapter 2. In this chapter, we allow such conflicts because the heuristics
try to minimise the total number of conflicts and they do not try to find the minimum
number of pages such that there is no conflict at all.

27

4. Design and evaluation of heuristics

4.1 Existing heuristics
Vertex order heuristics compute an order of the vertices based on different criteria without
yet assigning the edges to pages. The following heuristics deliver good results for stack
layouts, and we include them for the experiments on the mixed layouts.

Random depth-first search (randDFS): The first vertex is picked randomly, and at
every step of the depth-first search the next vertex to go into depth is chosen randomly.
The order in which the vertices are visited is the vertex order [BSC+08].

Smallest degree depth-first search (smlDgrDFS): Similar to randDFS but the first
vertex is randomly chosen by one of the vertices with the smallest degree of the graph,
and at every step, the next vertex to go into depth is the one with the smallest degree.
He and Sýkora [HS04] introduced this idea.

Random breadth-first search (randBFS): The first vertex for the breadth-first search
is picked randomly, and the order of the vertices on each layer is also chosen randomly.
The vertex order is the order in which the vertices are visited [SSS13].

Tree-based breadth-first search (treeBFS): With the help of a breadth-first search,
a spanning tree of the graph can be created. Trees have a stack number of one, and such
a vertex order seems a good starting point because it allows all edges of the spanning
tree to be assigned to one stack page without crossings. This heuristic was introduced by
Klawitter [Kla16].

Greedy connectivity-based (conGreedy): Baur and Brandes [BB04] introduced the
idea of this heuristic. At every step, it picks the vertex with the most placed neighbours.
In case of a tie, one of the vertices with the least unplaced neighbours is chosen. This
vertex is placed at the beginning or the end of the spine where it adds the fewest crossings
with closed edges. A closed edge is an edge where both vertices are already placed on
the spine. Klawitter adapted this heuristic so that every position in the spine is tested
and we use this adapted version for our tests. For the mixed layouts, we further adapted
this heuristic so that we count not only crossings but also nestings and the sum of these
conflicts is crucial.

All the depth-first search and breadth-first search based heuristics that we have presented
here have an asymptotic running time of O(m + n). The original connectivity-based
heuristic from Baur and Brandes can be implemented in O((m + n) logn) while the
adaptations of Klawitter raise this to O(m2n).

Page assignment heuristics are taking a previously calculated vertex order that can be
created by a vertex order heuristic, and assign all of the edges to the pages. Naturally,
such an assignment should produce as few conflicts as possible. Since the vertex order is
fixed by now, the task of finding a good page assignment for stack layouts is similar to the
fixed linear crossings number problem (FLCPN). It is precisely the same as the FLCPN
if we have two stack pages. Therefore, techniques and algorithms that are developed for
the FLCPN can be used here such as described by Cimikowski [Cim02] [Cim06]. Note
that the FLCPN is an NP-hard optimisation problem for two stack pages [MNKF90].

28

4.1. Existing heuristics

Edge length (eLen): The edges are ordered by decreasing length with respect to the
linear vertex order. Since long edges are more likely to cause more conflicts, this heuristics
aims to assign these edges before the shorter ones [Cim02]. Therefore, given an order
1 ≺ 2 ≺ ... ≺ n the edge (1, n) would be considered the first edge to be assigned to a
page. An edge (a, a+ 1) would be the shortest possible edge and would be assigned as
one of the last edges.

Ceil-floor (ceilFloor): Similar to eLen the edges are ordered by decreasing length but
this heuristic takes a circular layout into account instead of a linear layout [KRSZ02].
Therefore, the edge (1, n) would be one of the shortest possible edges since the vertex
order loops from the end to the start. The circular length for an edge (a, b) is defined
as min(|a− b|, n− |a− b|). The idea of this heuristic is that for stack pages the longest
edges that span over most of the vertex order are usually causing only a few crossings.
The longest possible edge (1, n) can never cross any other edge.

For both eLen and ceilFloor , finding the edge order takes O(m logm) time to sort the
edges and O(m2) to distribute the edges. The number of pages does not influence the
running time because every edge that gets assigned needs to be compared with all already
assigned edges and the number of different pages is therefore not significant.

We have presented heuristics that either compute a vertex order or assign edges to pages
for a given order. Now we take a look at complete heuristics that compute both together.
Such a complete heuristic can either be a combination of a vertex order and a page
assignment heuristic, or an entirely independent heuristic on its own.

Combing a vertex order and a page assignment heuristic is a straight forward and also
a flexible process. They are just executed after another, and this allows a versatile
combination of the different concepts. As we will see in the experiments in Section 4.3
some combinations deliver good results for some graph classes while they perform worse
for others. Therefore, choosing the right combination for a given graph is crucial.

Greedy connectivity-based plus (conGreedy+): Creating a full heuristic often uses
very similar concepts. Usually, a vertex order is computed step by step, and once both
vertices of an edge are placed, then the edge is greedily assigned to a page where it has
the least amount of conflicts. Due to the immediate edge assignment, such a full heuristic
can produce a different vertex order if the assigned edges are considered. This is the case
for a heuristic that Klawitter [Kla16] introduced which he called conGreedy+. It is based
on conGreedy that we have seen before, but instead of just computing a vertex order it
also greedily assigns the edges. The worst case running time of this algorithm is O(m2n).
In the experiments that Klawitter did this heuristic was generally successful for stack
layouts and therefore we also include this heuristic for our experiments for the mixed
layouts. Since conGreedy+ produces a different vertex order than conGreedy, we also
use conGreedy+ as only a vertex order heuristic. This is done by just dropping the page
assignment and using another heuristic to compute a new page assignment.

29

4. Design and evaluation of heuristics

4.2 Data structure heuristic

Data structure (dataStructure): In an attempt to create a new page assignment heuristic
for linear layouts we came up with our own idea of using the data structures stack and
queue to help to keep track of conflicts and possible future conflicts as well. The other
page assignment heuristics that are described above order the edges in some way and
then they are put to the page where they add the least conflicts. This approach neglects
edges that have not been assigned yet. The dataStructure heuristic was designed to also
consider the open and unassigned edges while efficiently processing the edges to still run
in O(n2) time.

In the following, we describe how this algorithm works for a 1-stack 1-queue layout and
a pseudo code of this is shown in Algorithm 4.1. In Chapter 2 we have seen how we can
use a stack and a queue to validate that a given page has no crossings or no nestings. We
can use a similar idea for a heuristic that aims to minimise conflicts in a mixed layout.
In this case, it is allowed to remove edges if they are not on top of the stack or in front
of the queue, but doing so will result in conflicts. The vertices are processed one after
another in the order of a precomputed vertex order. Each edge that starts at a vertex is
put on the stack and in the queue. We put the edges on both data structures because
we do not want to decide yet on which page we will finally place them. We want to see
where in the data structure the edge will end up when we need to remove it. This allows
us to postpone the page assignment decision to a later point in time when we have more
information available.

Once an edge ends at a vertex, we need to decide on which page we place it. At this
point, we have more information about the edge at hand. We know how many edges are
above the edge on the stack and in front of it in the queue. Each such edge will be a
definite conflict if we put both them on the same page. Therefore, we can increase a
crossing counter (or a nesting counter) for each edge on top of the edge (or in front of
the edge) in case we decide to place the edge on the stack (or queue). Every edge on
every data structure has an individual counter to keep track of the possible conflicts.

By processing the closing edges before the opening edges of a vertex and considering
that edges which are adjacent to the same vertex can never cross or nest each other, we
reach to the following state. Every time we need to decide if we want to assign an edge
to the stack or the queue, we already know how many crossings or nestings this adds to
the layout by checking the crossing counter and the nesting counter of the edge. We can
also estimate all potential crossings and nestings of the edge that will be added in the
future by counting the edges that are on top of it on the stack or in front of it in the
queue. Then we can use all of this information to decide if it is better to place the edge
on the stack or the queue page. The advantage of dataStructure compared to the other
page assignment heuristics is that we can potentially assign the edge to a page that adds
more conflicts now but likely avoids even more conflicts in the future. The other page
assignment heuristics are just greedily assigning an edge to the page where it adds the
least conflicts right now.

30

4.2. Data structure heuristic

Algorithm 4.1: dataStructure
Data: Ordered list of vertices V , edges E
Result: Partitioning of E into two disjoint sets S and Q

1 stack ← Stack()
2 queue ← Queue()
3 foreach v in V do
4 startEdges ← opening edges at v
5 endEdges ← closing edges at v
6 foreach e in endEdges do
7 potentialCrossings ← count edges in stack without endEdges above e
8 potentialNestings ← count edges in queue without endEdges before e
9 crossings ← crossing counter of e

10 nestings ← nesting counter of e
11 Decide if e should be added to S or Q

// e.g. if crossings + potentialCrossings * 0.5 <=
nestings * potentialNestings 0.5 then S else Q

12 if e was added to S then
13 Increase crossing counter by one for each edge in stack without

endEdges above e
14 else
15 Increase nesting counter by one for each edge in queue without

endEdges before e
16 Remove e from stack and queue
17 Add startEdges to stack and queue

In all our experiments we based this decision on the following formula. We estimated the
final number of crossing by multiplying the potential crossings with 0.5 because there is
naively a 50% chance that the edge lands on either page and added the definite number
of crossings to it. Then we estimated the final number of nestings similarly, and if the
estimated final number of crossings was less or equal to the estimated final number of
nestings, we added the edge to the stack page and otherwise the to queue page. In
the experiments with more than two pages, we use instead of 0.5 the value of one over
the total number of pages because this also seems like a very naive way to estimate
the probability that the edge ends up on this page. While this approach for the page
assignment decision is quite simple, it is also easily possible to replace it with a more
complex one that might deliver better results for specific graph classes. One approach
would be to change the weights or even introduce new weights in the decision procedure.

Until now we described how dataStructure works on 1-stack 1-queue layouts. Adapting
this heuristic to calculate linear layouts for a variable amount of pages is quite straight
forward, and even stack or queue layouts are possible. Each page needs a separate data
structure, each edge needs a conflict counter for each page, and the page assignment

31

4. Design and evaluation of heuristics

decision part needs to find the best page for a variable number of pages. This makes it
also possible to compare dataStructure to other heuristics that were either designed or
often used for stack layouts. These comparisons are made in the following Section 4.3
where the results of the experiments are shown.

4.3 Experiments

In this section, we test the heuristics that we introduced before on various frequently seen
graph classes and determine which heuristic or combination of heuristics yield the best
results. For each test, we use a total of 19 different heuristics. This are the six vertex
order heuristics (randDFS , smlDgrDFS , randBFS , treeBFS , conGreedy and conGreedy+)
each combined with the three page assignment heuristics (eLen, ceilFloor , dataStructure)
which results in a list of 18 heuristics that is completed by conGreedy+. Remember that
we use conGreedy+ as complete heuristic as well as only as a vertex order heuristic. It
is also noteworthy that Klawitter tested some heuristics successfully for book drawings
that we did not include in our tests. Those heuristics are specially designed for stack
pages and usually try to partition the edges in preferably planar sets. These approaches
naturally did not work well for the queue pages.

The experiments in the next subsections are mostly structured in the same way. For each
graph class, we recall the fundamental properties of this class such as the edge density,
stack number, queue number or the currently best-known bounds on those numbers.
Since we are mainly interested in 1-stack 1-queue linear layouts, there is a line chart with
the eight best heuristics on this layout over various sizes of the graphs and a box plot
diagram of the three best heuristics on the largest graph size. After that, we have a look
at the best heuristics for a variable amount of pages ranging from zero to five stack pages
and also from zero to five queue pages. For the stack layouts, we compare the results
with the work of Klawitter [Kla16] and Klawitter et al. [KMN17].

4.3.1 Planar graphs

The first set of our experiments is based on connected planar graphs. Such graphs with
n vertices have up to 3n − 6 edges, and the stack number is at most four [Yan89]. It
is currently unknown if this bound is tight or if three pages are enough for all planar
graphs because no planar graph is known that cannot be embedded within three pages
[BKZ15]. If the graph is subhamiltonian, the stack number is two [BK79]. For the queue
number, it was for a long time unknown if it is bounded by a constant number and very
recently it has been shown that such a bound exists [DJM+19].

We generated our graphs by randomly creating n points in the two-dimensional space
and then calculating the Delaunay triangulation of these points. Such a process generates
nearly maximal planar graphs because the outer face is the only face that can be bounded
by more than three edges. All other faces are bounded by precisely three edges. For
every test, we generated 200 such graphs of the required size of n vertices.

32

4.3. Experiments

Figure 4.1: The eight best heuristics for a 1-stack 1-queue layout on planar graphs.

Figure 4.2: The three best heuristics for planar and planar bipartite graphs in detail.

In Figure 4.1 we can see that the vertex order heuristic has a far more significant impact
than the edge assignment heuristic for the planar graphs. The randBFS vertex order
heuristic delivered way better results than the others regardless of the page assignment
heuristic that it was combined. The combinations with conGreedy+ resulted in about
50% more conflicts, and other heuristics had at least twice as many. Figure 4.2 shows that
eLen and ceilFloor were nearly identically good and dataStructure was closely behind
those two when they are combined with randBFS . We can also see that there is a high
variance in the results. The best results had around 150 conflicts for graphs with 100

33

4. Design and evaluation of heuristics

Table 4.1: The best heuristics for planar graphs for different amounts of stack and queue
pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

conGreedy+ randBFS dataStructure ceilFloor

eLen conGreedy+ conGreedy

vertices while for the same heuristics this can go up to about 500 conflicts.

Table 4.1 shows the results for linear layouts with different amounts of stack and queue
pages. Empty spaces in this table indicate that more than one heuristic had on average
less than one conflict per graph, and we left this tile out since it seems to be too easy
to find a valid layout for so many pages. We can see that conGreedy+ as only a vertex
order heuristic was most successful for layouts with many stack pages. This is consistent
with the results of Klawitter, although even better results were made when he combined
conGreedy+ with another page assignment heuristic called ear decomposition. We did
not include this heuristic in our tests because it is specially designed for stack layouts
and was not usable for queue or mixed layouts. In general, the best combination was
randBFS together with eLen. The dataStructure page assignment was the best or close
to the best for equally balanced mixed layouts where there is roughly the same number of
stack and queue pages. This is a trend that we are also observing in the next experiments.
Often the best vertex order heuristic for layouts with mainly stack pages is conGreedy+,
and dataStructure is often the best page assignment heuristic for layouts that are either
roughly equal or have only a few pages.

4.3.2 Planar bipartite graphs

The next graph class for which we have a great interest are planar bipartite graphs. They
are a commonly seen graph class, and Pupyrev [Pup17] conjectured that they always
admit a 1-stack 1-queue linear layout. Therefore, we tested maximal planar bipartite
graphs to get a feeling of how well the heuristics can create linear layouts, and how close
they come to the conjectured zero conflicts. These graphs have exactly 2n − 4 edges

34

4.3. Experiments

Figure 4.3: The eight best heuristics for a 1-stack 1-queue layout on maximal planar
bipartite graphs.

and are sparser than the planar graphs that we have seen before. Every planar bipartite
graph is subhamiltonian, and therefore the edges can be embedded on two stack pages
[BK79].

The bipartite graphs that we have generated were all balanced so that both sets of vertices
A,B had the same size. Since every planar bipartite graph has a 2-stack embedding,
we randomly generated a vertex order of alternating vertices from the sets to ensure
that a Hamiltonian path exists. We then randomly selected two vertices of the two sets
a ∈ A, b ∈ B and added the edge to the graph if it was possible to add the edge to one of
the two pages without a crossing. We repeated the process of randomly selecting the
vertices until the maximum number of 2n − 4 edges had been reached. As before we
created 200 graphs this way for every test.

In Figure 4.3 it is shown that due to the lesser amount of edges the number of conflicts
is lower than before for the planar graphs. The smlDgrDFS heuristic combined with
dataStructure was the best heuristic for this test. In general, the smlDgrDFS vertex
order heuristics performed much better an on these bipartite graphs than before. It also
seems that for the page assignment heuristic dataStructure and ceilFloor are the best
to use. The box plot diagram in Figure 4.2 shows that all page assignment heuristics
were able to find equally good results around 150-200 conflicts, but in all cases, there are
some negative outliers which are far worse than the median results.

Table 4.2 confirms that also for other mixed layouts smlDgrDFS seems more successful
than before. This is true, especially for stack pages. For layouts with more queue pages
than stack pages randBFS was still better. In general, all page assignment heuristics

35

4. Design and evaluation of heuristics

Table 4.2: The best heuristics for maximal planar bipartite graphs for different amounts
of stack and queue pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

ceilFloor smlDgrDFS dataStructure eLen

randBFS

were about as good as the others, and while dataStructure and ceilFloor were the winners
for some layouts, eLen slightly better most of the time.

4.3.3 2-trees

2-tree graphs are another interesting graph class that is worth considering. They have
the same number of edges as the maximal planar bipartite graphs that we have tested
before, namely 2n − 4 edges for n vertices, and therefore it is a good way to compare
the heuristics on different classes with the same density. We have here again very sparse
graphs that are in contrast to the bipartite graphs very structured. They admit the same
stack number as the planar bipartite graph which is two, and the queue number is at
most three.

We generated the graphs by first creating a 3-clique. Then from all possible 2-cliques
(which are all two vertices that are connected with an edge) we have randomly chosen one
and added a new vertex with new edges to all members of this cliques. We repeated the
process of randomly choosing such 2-cliques from the current graph and adding vertices
until the graph had n vertices in total. For every test, we generated 200 new graphs this
way.

The structuredness has a moderate impact on the ranking of the heuristics, and this can
be seen in Figure 4.4. The smlDgrDFS is still the best to use and conGreedy+ has gained
some ranks. However, the impact on the number of conflicts is enormous. All heuristics
delivered far better results and for some as smlDgrDFS the number of conflicts nearly
halves. Figure 4.5 shows that in the best cases for graphs with 100 vertices the results

36

4.3. Experiments

Figure 4.4: The eight best heuristics for a 1-stack 1-queue layout on 2-tree graphs.

were less than 50 conflicts. On the contrary, for the bipartite graphs with the same size,
the best instances still had over 100 conflicts.

The improvements in the conflicts are also visible in Table 4.3. Missing boxes in this
table indicate that more than one heuristic was able to compute linear layouts with
less than one conflict on average. Four pages were sufficient for 4-stack and 3-stack
1-queue layouts while five pages were sufficient for 2-stack and 3-queue layouts to achieve
conflict-free embeddings regularly. Since the stack number of 2-trees is lower than the
queue number, it is not surprising that it is easier for the heuristics if they have more
stack pages available. Due to the structuredness, it is visible in this table that conGreedy+
as vertex order heuristic was more successful than on the bipartite graphs before where
we have not seen it as one of the best for any layout.

4.3.4 3-trees

The next graph class that we test are 3-trees. They have the same connection to planar
graphs as the 2-tree graphs have with the bipartite planar graphs that we have seen
before. 3-trees with n vertices have exactly 3n − 6 edges which are the same as for
maximal planar graphs. The exact queue number is not known yet, but it is bound
between four and five [ABG+18].

We generated the graphs the same ways as we did with the 2-trees but with larger cliques.
Therefore, we started with a 4-clique and then from all possible 3-cliques, we added a
new vertex with new edges to all members of this cliques and repeated this process until
the graph had the desired size.

37

4. Design and evaluation of heuristics

Figure 4.5: The three best heuristics for k-tree graphs in detail.

Table 4.3: The best heuristics for 2-tree graphs for different amounts of stack and queue
pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

dataStructure conGreedy+ eLen smlDgrDFS

conGreedy ceilFloor

Compared to planar graphs, the heuristics that are shown in Figure 4.6 are again able to
compute layouts with fewer conflicts, and the difference between each heuristic has been
significantly reduced.

Again, it seems that the structuredness of the graph favours conGreedy which is the
best vertex order heuristic for this graph class. Also, dataStructure is the best page
assignment heuristic no matter which vertex order has been computed before. Compared
to the planar graphs we see here a lot more conflicts. While the results for the 2-tree

38

4.3. Experiments

Figure 4.6: The eight best heuristics for a 1-stack 1-queue layout on 3-tree graphs.

graphs were better than for the bipartite graphs, the results got worse for the 3-tree
graphs compared to the planar graphs. Structuredness and planarity are two significant
factors for the quality of the solution.

The boxplot diagram in Figure 4.5 shows again that there is considerable variance in
the results even for the same heuristic. The best results for the best combination of
conGreedy and dataStructure was able to find solutions with close to 200 conflicts which
is less than one conflict per edge. In the worst cases, the solutions had four to five times
as many conflicts.

Table 4.4 shows the results for other combinations of mixed layouts that indicate that
a connectivity approach for the vertex order is the best one to use. For stack or queue
layouts conGreedy+ gave the best order, and for mixed layouts, conGreedy stood out. As
for most test that we had seen before, dataStructure was again the best page assignment
heuristic for 1-stack 1-queue layouts while in most other cases it was eLen.

4.3.5 Random graphs with 3n edges

The next graph class that we test are random graphs with three times as many edges
as vertices. These graphs have nearly the same number of edges as the planar and
3-tree graphs that we have seen before. This makes it possible to compare graphs with a
particular structure to completely random graphs.

We generated our graphs by first creating all vertices. Then we uniformly at random
selected two vertices and added an edge between those two vertices to the graph if this
edge did not already exist until we reached the desired number of edges. When the

39

4. Design and evaluation of heuristics

Table 4.4: The best heuristics for 3-tree graphs for different amounts of stack and queue
pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

dataStructure eLen conGreedy+ conGreedy

ceilFloor

generated graph had exactly 3n edges, we did a check to see if the graph was connected.
Finding a linear layout for disconnected components is easier because a layout can be
computed for each component separately and composed together without creating any
conflicts between edges of two different components. That is the reason why we did not
want to have disconnected graphs for this test. Therefore, we removed such graphs and
started the whole generation process again until we had 200 connected graphs.

It is not surprising that the heuristics performed worse on random graphs than on planar
graphs or 3-trees, but there is quite a considerable increase in the number of conflicts.
Figure 4.7 and Figure 4.8 are indicating that the best results have about three times more
conflicts than on the 3-trees and about six times more than on planar graphs. While the
best heuristics are about the same as for the 3-trees, it is very clear that planarity and
structuredness helps a lot when trying to find a good layout. In case of such random
graphs, it almost certainly ends up with many edges that span over a large part of the
vertex order and such edges naturally cause a lot of crossings or nestings. It seems that
the vertex order heuristics cannot prevent such longer edges as well as before.

For the mixed layouts that are presented in Table 4.5 we make an interesting observation.
The page assignment ceilFloor was better than eLen in most cases. This is something
that we have not seen for the previous graph classes yet. The reason for this is likely
that longer edges that span over a bigger part of the vertex order are assigned to pages
at a later point in time due to the circular definition of the edge length in ceilFloor .
When assigning all long edges first, a greedy heuristic places some of those on the queue
page because they immediately cause more crossings than nestings with the longer edges.
However, later when the short edges are assigned these long edges on a queue page are

40

4.3. Experiments

Figure 4.7: The eight best heuristics for a 1-stack 1-queue layout on random graphs with
3n edges.

Figure 4.8: The three best heuristics for random graphs with 3n and 6n edges in detail.

easily causing nestings. Other than that we can see that dataStructure was again the
best page assignment heuristic for 1-stack 1-queue layouts. The vertex order heuristics
randBFS was the best for layouts which more queue pages, conGreedy+ excelled the
others for layouts with more stack pages and there is a thin line of mixed layouts where
conGreedy was better than the others.

41

4. Design and evaluation of heuristics

Table 4.5: The best heuristics for random graphs with 3n edges for different amounts of
stack and queue pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

conGreedy+ randBFS dataStructure ceilFloor

conGreedy eLen

4.3.6 Random graphs with 6n edges

Since we have seen many rather sparse graphs, we start to test the heuristics on more
dense graphs now. Therefore, the next graph class that we test are again random graphs
but this time with six times as many edges as vertices. Here we have twice as many
edges as for the 3n random graphs and the planar graphs that we have seen before.

We generated the graphs in the same ways as we generated the 3n random graphs. Again
we made sure that all graphs were connected and we restarted the creation process if,
after adding all 6n edges, the graph was not connected. As for all other tests before we
created again 200 graphs for every graph size that we tested.

In Figure 4.9 shows that the number of conflicts raised drastically due to the higher
density compared with the 3n random graphs. In the previous experiment, the best
heuristics delivered on average results with about 1600 conflicts. Now we already reached
the 10000 conflict mark. Figure 4.8 shows that conGreedy combined with dataStructure
was able to find the best results. The results are also fairly stable now ranging from 8500
to 11000 conflicts. Also, the eight best heuristics are now really close together since they
all are in the range of 9000 to 11000 conflicts on average over the 200 different graphs
that we tested.

In Table 4.6 we can see that conGreedy+ or conGreedy combined with ceilFloor performs
well on dense graphs for nearly all mixed layouts that we tested. Only in the area of
5-queue layouts, randBFS outperformed conGreedy+.

42

4.3. Experiments

Figure 4.9: The eight best heuristics for a 1-stack 1-queue layout on random graphs with
6n edges.

4.3.7 Complete graphs

Finally, we test the heuristics on the densest possible graphs. Complete graphs with
n vertices have exactly n(n− 1)

2 edges. A complete graph with n vertices has a stack
number of dn/2e if n ≥ 4 [BK79] and a queue number of bn/2c [HR92]. Since the order of
the vertices does not matter we just took any order and tested only the page assignment
heuristics. Because none of our page assignment heuristics are randomised, the heuristics
always compute the same results. Therefore, we needed to run our tests only once for
each size of the graph.

Figure 4.10 shows the ranking of the page assignment heuristics for 1-stack 1-queue
graphs. The dataStructure heuristic was slightly better than conGreedy+. Both eLen
and ceilFloor performed far worse.

The slight lead for dataStructure for graphs with 50 vertices on the 1-stack 1-queue
layouts can be seen too for 3-queue layouts in Table 4.7 which is quite surprising since
this is not the case for 2-queue or 2-queue 1-stack layouts. Especially for a larger number
of pages conGreedy+ performs by far the best. It seems that for layouts with a large
number of stack pages eLen is the best to use. This is also quite surprising because in
the test before eLen was better for sparse graphs while ceilFloor was better for dense
graphs. It seems that either there is a density where eLen is once again the preferred
heuristic or this is due to the unique properties of complete graphs.

43

4. Design and evaluation of heuristics

Table 4.6: The best heuristics for random graphs with 6n edges for different amounts of
stack and queue pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

randBFS conGreedy dataStructure ceilFloor

eLen conGreedy+

Table 4.7: The best page assignment heuristics for complete graphs for different amounts
of stack and queue pages.

0-S 1-S 2-S 3-S 4-S 5-S

0-Q

1-Q

2-Q

3-Q

4-Q

5-Q

conGreedy+ eLen dataStructure

4.4 Optimization

In the previous two sections, we have introduced heuristics to compute solutions that
should have a a reasonable number of conflicts. Those solutions can sometimes be quite
good. At other times they can still contain many conflicts that could be resolved to
further optimise the quality of the given solution further. Construction heuristics usually

44

4.4. Optimization

Figure 4.10: The number of conflicts for the four page assignment heuristics on complete
graphs.

start with an empty solution and add the elements of the problem step by step until the
solution is complete, but they never remove or change already positioned elements. This
is the case for all the heuristics that we have presented so far. Once a vertex is added
to the spine it is never moved again, and once an edge is assigned to a page, it has to
stay on this page. While this approach finds reasonable solutions in a reasonable time, it
leaves some space open for further optimisation that can be applied afterwards.

As before, we take methods that have been applied successfully for book drawings and
try to reuse these for the mixed layouts. Two very straightforward methods are general
enough to be applied directly for queue and stack pages. One method tries to optimise
the page assignment by placing an edge to a better page, and the other method optimises
the vertex order by placing a vertex to a better place on the spine.

Greedy edge assignment optimisation (edgeOpt): This greedy optimisation checks
for every edge if it would result in a fewer number of total conflicts of the layout if the
edge would be assigned to any other page. If such reassignment is possible, then the edge
is assigned to the better page.

Greedy vertex order optimisation (vertexOpt): For every vertex, it is checked if the
total number of conflicts of the layout can be reduced by placing the vertex to any other
place on the spine.

Klawitter [Kla16] proposed and tested several ways how these two basic optimisation
steps can be combined such that none of them can find further improvements and a local
optimum is reached. One way is to run edgeOpt and vertexOpt alternatingly so that if
one algorithm finds an improvement, then the optimisation is continued with the other

45

4. Design and evaluation of heuristics

Figure 4.11: Improvements over the initial solution with the four optimization heuristics.

algorithm. Another way is to run one of those algorithms exhaustively until no further
optimisation is possible and only then switch over to the other algorithm. This leads to
four different ways of how these algorithms can be combined.

Greedy Alternating vertex and edge optimization (greedyAltRR): One round of
vertexOpt alternating with one round of edgeOpt.

Greedy Alternating exhaustive edge optimization (greedyAltRE): One round of
vertexOpt alternating with an exhaustive search of edgeOpt.

Greedy Alternating exhaustive vertex optimization (greedyAltER): An exhaustive
search of vertexOpt alternating with one round of edgeOpt.

Greedy Alternating exhaustive vertex and edge optimization (greedyAltEE):
An exhaustive search of vertexOpt alternating with an exhaustive search of edgeOpt.

In our experiments, we saw that both edgeOpt and vertexOpt could improve the initial
calculated solution. Interestingly all of the four alternating combinations seemed to be
equally good as it can be seen in Figure 4.11. No combination was able to improve
solutions significantly better than the others. The vertexOpt algorithm is computationally
costlier than edgeOpt because, depending on the density of the graph, usually there
are more ways to move the vertices to different positions than to assign the edges to
a different page. Recalculating the total number of conflicts is also easier for edgeOpt
because there is only one edge that needs to be considered. For vertexOpt all conflicts of

46

4.5. Summary of experiments

the edges of the moved vertex need to be considered. Therefore, we might recommend
using greedyAltRE because in our tests it was the fastest combination and the results
were equally good as the others.

Beyond the simple versions of edgeOpt and vertexOpt, it is also possible to use the same
ideas for similar optimisation algorithms that have a larger neighbourhood and therefore
might be able to escape from a local optimum and deliver better results. For edgeOpt
instead of reassigning a single edge, it could try to reassign two edges at the same time.
Such a pairwise reassignment could for example swap two edges from different pages,
which would not be possible in the simple version of edgeOpt that we have presented
so far. In the same way, instead of moving a single vertex it is possible to move two
vertices at the same time for vertexOpt. Again this offers a greater space of possibilities
to improve the solution. Such an expansion is computationally much more expensive
than the basic versions. For larger graphs, the alternating combination of the basic
versions can take already a long time. Such larger neighbourhoods might make sense
to be applied after the basics versions are not able to improve the solution any more.
We have not done any experiments to compare to improvements that can be achieved
compared to the simple versions of edgeOpt and vertexOpt.

4.5 Summary of experiments
We have seen that for the 1-stack 1-queue layouts the vertex order heuristic is far more
important than the edge assignment heuristic. For a specific graph class, often there
was a single vertex order heuristic that performed the best, regardless of which edge
assignment heuristic it was combined with. In general, one could say that smlDgrDFS
was the best vertex order heuristic for graphs that were either sparse like the bipartite
graphs or were regularly structured as the 2-trees. The denser the graph was, the better
was the performance of conGreedy and conGreedy+. The randDFS and especially treeBFS
heuristics were often far worse than the others. The dataStructure heuristic that we
introduced for the page assignment competed very well against ceilFloor and eLen.

For mixed layouts from zero to five stack pages and zero to five queue pages, the results
were quite interesting. Often we could see that there is a difference if there is a mixed
layout which has mainly queue or mainly stack pages. The randBFS heuristic was often
better for the queue layouts or mixed layouts where there are more queue pages than
stack pages better. For the opposite case where there are more stack pages, smlDgrDFS
was often one of the best. For denser graphs, conGreedy and conGreedy+ outperformed
the others while for mixed layout with about an equal number of stack and queue pages
we could see dataStructure as one of the best page assignment heuristics.

In general, we think that reusing heuristics that are used for book drawings for mixed
layouts works well. For a book drawing, it is desired to have short edges since shorter
edges result likely in fewer crossings. For queue pages, it is also desired to have rather
short but not extremely short edges. Therefore the vertex order heuristics that are based
on depth-first search and breadth-first search work well for queue layouts and mixed

47

4. Design and evaluation of heuristics

layouts too. The greedy page assignment with the longest edges first is also a reasonable
strategy for queue layouts and mixed layouts.

The dataStructure page assignment heuristic that we introduce with this thesis was the
best heuristic for six out of the seven graph classes that we tested for 1-stack 1-queue
layouts. Only for the planar graphs ceilFloor was better. Also for other mixed layouts, it
was sometimes the best and often came close to the best one. Assigning the edges in the
linear order in which they appear instead of assigning them by the longest edges first
is a disadvantage of this heuristic, but this order is necessary to process them with the
data structures. However, it seems that this is sometimes surpassed by the advantage of
considering open and not yet assigned edges.

48

CHAPTER 5
Drawings

In the previous chapters, we have seen the theoretical background of linear layouts, and
we had a look at algorithms and heuristics to compute linear layouts. In this chapter, we
visualise such layouts. To do so, we present different ways of how we can draw queue
pages and how we can draw them together with stack pages. The main focus of this
chapter is on 1-stack 1-queue layouts, but it is also possible to use the same ideas for
mixed layouts with more than two pages. The reason why the layout is restricted to
a maximum of two pages often makes sense because linear layouts are most commonly
drawn either in a linear or circular style. In the linear style, the vertices are drawn on
a line that separates the drawing into an upper and a lower half, and on each of these
halves, the edges of one page can be drawn. In the circular style, the line of the vertices
is drawn on the boundary of a circle by connecting both ends of the vertex order, and
one page is drawn inside this circle, and the other page is drawn on the outside area of
the circle. For layouts with more than two pages, other methods have to be used.

5.1 Circular drawings

Circular drawings of graphs are quite commonly seen and not only used for linear layouts.
Every graph can be drawn with its vertices placed on the boundary of a circle. Therefore,
improving such circular layouts is a general problem where many techniques exist to get
a good and readable drawing. The easiest way to draw the edges is in a straight line
fashion within the circle but also many other styles exist. For example edge bundling
and drawing a crossing-free set of edges on the exterior side of the circle is a way to
improve such drawings [GK06]. A paper that focuses more on design and aesthetics
than the algorithmic part calls this drawing a connected ring pattern, and it lists some
real-world examples [DLR09]. Crossing reduction is an especially essential point for
circular drawings and much work has been done on this [BB04] [HS04] [ST13].

49

5. Drawings

For the drawings of the mixed linear layouts, we can reuse the ideas that are already
developed for circular layouts as well as taking advantage of the unique properties of
the stack and the queue pages. The stack edges are by definition all crossing-free, and
this property still holds if they are drawn either on the inside or the outside of a circle.
Reducing crossings is the most important aesthetic when it comes to readability and
human understandability [Pur97]. Therefore, it seems very natural to draw the stack
edges either as straight lines or arches. Finding good drawing styles for the queue page
is a more interesting and challenging problem because queue edges usually need to cross
other edges in order to avoid being nested. Therefore, optimising the number of crossings
is only possible when edges are bundled and bundled crossings are counted instead of the
crossings of individual edges, and we need to try to optimise other aesthetics such as
symmetry, bends and the angle of crossings. In the following, we present five drawing
styles that we have developed that take advantage of the unique properties of a queue
and show how they can be used in a mixed layout together with a stack page.

For all of the circular drawings that we present in this chapter, we are using the
Goldner–Harary graph as an example. This graph has a book thickness of three because
it is non-hamiltonian and maximal planar. It serves as an example for a graph where two
stack pages are not sufficient, but it admits a 1-stack 1-queue layout. With 11 vertices
and 27 edges, the graph is not too big but still has a good edge density such that we can
see the consequence of the different drawing styles.

The first drawing style that we present is generally straight forward. The stack edges are
drawn as straight lines within the circle. The inner side of the circle is the better side
to draw the edges. On the inside, the distance between any two vertices is smaller, and
the edges can be drawn without bends. This puts the stack page in the best possible
place with its crossing-free edges as arguably best drawing style. For the queue page,
we take advantage of its non-nesting property to gain structured and repeating patterns
that allow the reader to follow its edges easier than for randomly placed edges. For each
edge e1 it holds that it must cross all other edges e2 if L(e2) ≺ L(e1) ≺ R(e2) ≺ L(e1).
Therefore, one idea is to have all such crossings close together and in a 90-degree angle
close at the vertex L(e1). The pattern that we generate for the edges is quite simple. We
traverse the vertex order, and every new outgoing edge crosses all edges that cover the
starting vertex, and the edge is routed on its own concentric ring until it reaches its end
vertex. This simplicity comes with the cost of quite a lot of wasted space because each
edge requires a separate level. Therefore, the space that is required for the drawing is
bounded by a linear factor of the number of edges on the queue page.

An example of this is shown in Figure 5.1. Since many edges are drawn in parallel and it
is hard to follow them individually, we have drawn them with two different colours so
that all the outgoing edges of once vertex have the same colour, and this colour alternates
for each succeeding vertex. Therefore, following the outgoing edges of a vertex is easier
because the reader can follow a bundle of edges of the same colour and does not need to
follow an individual edge.

The two colours that we have used for the queue pages makes it easier to follow the edges,

50

5.1. Circular drawings

Figure 5.1: A circular drawing in which the stack is drawn on the inside as crossing-free
straight line chords, and the queue is drawn on the outside with two different colours in
a level oriented way. The simple pattern that we used for the queue page can introduce
unnecessary crossings for edges that share a common vertex.

but for larger graphs with more and longer edges, it can still be hard to read the drawing.
The next drawing style that we present uses more colours such that no two edges with the
same colour are crossing, and it is shown in Figure 5.2. A total number of seven different
colours was needed for this graph. One one hand, the use of more colours, can make it
easier to follow the edges but on the other hand, it makes the drawing more colourful,
and one must choose a good set of colours that fit together. While graph colouring for
general graphs is shown to be an NP-complete problem by Karp [Kar72] already in 1972,
the colouring of the edges of a queue page can be done in polynomial time. To achieve
this, we can iterate over the vertex order and assign all outgoing edges of a vertex the
same colour. Since no edges are allowed to nest the colours are not allowed to be used
again until the iteration reaches a vertex where the last edge of the respective colour
ends. Then, the colour is free to use again. To minimize the number of total colours
that are needed for new edges such a freed colour must be used instead of using a colour
that has never been used before. A straight forward algorithm to get such a colouring is
shown in Algorithm 5.1.

In the previous examples, the edges of the queue page had constantly increasing height
and were drawn further and further away from the vertices on the circle which increases
the drawing area and edge length that is needed. We now present a technique to optimise
the area and the edge length that is needed for a queue page. The edges are routed on
concentric rings around the circle as we have seen before. However, this time they are
allowed to move to lower levels once there is free space underneath. This occurs if other

51

5. Drawings

Algorithm 5.1: queueColouring
Data: Ordered list of vertices V , edges E
Result: Colouring of the edges in E such that no two edges with the same

colour cross on a linear layout with the vertex order V , and with the
minimum number of different colours that are needed.

1 colours ← empty list of positive integers
2 foreach v in V do
3 if there is an available number in colours then
4 colour ← lowest available number in colours
5 else
6 colour ← lowest number that is not in colours
7 Add colour to colours
8 edges ← all uncoloured edges of v
9 Colour each edge in edges with colour

10 v2 ← end vertex of the longest edge in edges with respect to V
11 Mark colour as unavailable until the loop reaches v2

edges are closed because they reach their end vertex. The space on this level can then be
reused for open edges. Figure 5.3 shows such a reuse of levels. The drawing needs less
space than before, but the edges have more bends because they often need to be rerouted
to lower levels. The space that is required for the drawing is now reduced to a linear
factor of the cutwidth of the queue page where the cutwidth is defined as the maximum
number of edges that can be intersected by a vertical line between any two vertices.

Another approach to optimising the space and edge length for queue pages is shown in
Figure 5.4. This time we do not allow more than two bends as we have in Figure 5.3 but
levels can be reused once a concentric ring is free again. This breaks the pattern that we
had before that new edges must cross all edges that cover the start vertex, but by doing
so also crossings are reduced. The cutwidth of the queue page again bounds the space
that is needed for this drawing.

In the previous examples, we have seen that the queue page is much harder to read
than the stack page. A compromise between the stack and the queue can be made by
putting the queue on the inside of the circle and the stack on the outside. The stack
is crossing-free but with longer edges. On the contrary, the edges of the queue are
shorter, and since they are harder to read, this reduced length should increase the overall
readability of the drawing. An example of such a layout can be seen in Figure 5.5. One
aesthetic result of this layout is that now the whole drawing is arranged around circles
with the same centre. Not only the vertices but also both sets of edges are drawn as
arches around circles with the same centre. This makes the drawing on the first sight
more uniform and smooth.

Circular layouts have another advantage for the stack page. There is no necessity that
these edges are drawn along the vertex order and it is possible for them to take a shortcut

52

5.2. Linear drawings

Figure 5.2: A circular drawing in which the stack is drawn on the inside as crossing-free
straight line chords, and the queue is drawn on the outside in a level oriented way with
as many colours as needed such that no two edges with the same colour cross.

over the gap between the first and the last vertex in the order. For edges where the
length is at least |V |2 , this can be the shorter way. An extreme case of such a shortcut
would be an edge from the first to the last vertex. Instead of being drawn around nearly
360 degrees of the circle it can just connect the two neighbours on a straight line. In
Figure 5.5 the vertex order is indicated by the small dotted path which has a gap on top
of the circle.

5.2 Linear drawings

Another drawing style that can be used is the arc diagram. This style fits the definition
of linear layout because here all vertices are drawn on a straight line and all edges of a
page are drawn as arcs on one side of this line. As with the circular layouts, this is used
best for a total number of one or two pages. More than two pages can hardly be drawn
on a two-dimensional plane without visual cluttering.

Most of the concepts we have seen for the circular layout can be applied as well for the
linear layouts. Stack pages can be drawn again without crossings. For queue pages, we
can again use the same methods of edge colouring and bundling of crossing that we have
seen before. Also, the concept of layers and reusing free layers is applicable. The edges
themselves can be drawn as arcs but for the queue page using straight lines with nearly
90-degree bends is also very useful for the readability. Arcs can produce more visual
clutter if the crossing are drawn in different and small angles. In Figure 5.6 an example is

53

5. Drawings

Figure 5.3: A circular drawing in which the stack is drawn on the inside as crossing-free
straight line chords, and the queue is drawn on the outside with two different colours in
a level oriented way where edges are routed to lower levels if there is free space.

Figure 5.4: A circular drawing in which the stack is drawn on the inside as crossing-free
straight line chords, and the queue is drawn on the outside with two different colours in
a level oriented way where edges reuse lower levels if there is free space.

54

5.2. Linear drawings

Figure 5.5: A circular drawing in which the stack is drawn on the outside as crossing-free
arches, and the queue is drawn on the inside with two different colours in a level oriented
way with reusing space.

Figure 5.6: A linear layout with with the stack page on the upper half and the queue
page on the lower half.

shown with the stack page on the upper half with the edges drawn as arcs and the queue
page on the bottom half. It is notable that the linear drawings need more space than
the circular drawings, and they are also rectangular shaped instead of a square or circle.
Such linear drawings can be drawn in O(n)×O(m) space where n = |V | and m = |E|.

55

5. Drawings

1

1

2 3 4 5 6

2 3 4 5 6

Figure 5.7: An unrolled cylinder drawing of a 1-stack 1-queue layout with the stack edges
drawn in red and the queue edges drawn in blue.

5.3 Linear cylindric drawings
In the circular and linear drawings that we had seen before, the edges on the queue page
naturally caused many crossings which made it harder to read than the stack pages. We
have developed and seen methods on how we can try to improve the readability of the
crossings to some extent, for example, by using different colours or edge bundling, but
when the graph gets larger or denser, it gets harder to read the graph.

To overcome this problem with the crossing on the queue page Auer et al. [ABB+10]
[ABB+18] developed a drawing style which they named linear cylindric drawings. For
such a drawing the vertices of a graph are be placed on a horizontal line along the axis
of a cylinder in the three-dimensional space, and the edges are drawn on the surface of
the cylinder without crossing the line of the vertices. Therefore, the edges can be drawn
either as arcs on one of the sides of the line of the vertices or they can wrap around the
surface of the cylinder. Since a two-dimensional object is easier to draw and read than a
three-dimensional object, the authors then proceed by cutting the cylinder on the line of
vertices and level the surface into the two-dimensional space. By doing so, the vertices
are doubled and visible on the top and on the button of the resulting space, which they
call an unrolled cylinder drawing. An example of such a drawing can be seen in Figure
5.7. The blue edges wrap around the cylinder, and the red edges are drawn on one side
of the line of vertices.

The advantage of such an unrolled cylinder drawing is that it is possible to draw all queue
edges without having any crossing between any two queue edges. A queue page can be
drawn on such a cylinder in a planar way if all edges wrap around the cylinder once.
Similarly, a stack page can be still drawn in a planar way if the edges are arcs on one side
of the vertices. For the stack page, this is not surprising because as we have seen before,
it is the same as for book embeddings and the linear drawings. This planar property
still applies if we transform a cylindric drawing into an unrolled cylindric drawing. This
means that we have indeed a way to draw stack and queue pages in a planar way if we
do not mind to have all the vertices twice. Note that in this case the planarity is only
given for edges within the same pages. Edges of different pages can cross each other in
the resulting drawing.

The unrolled cylinder drawings allow drawing crossing-free queue pages when duplicating

56

5.3. Linear cylindric drawings

1 2 3 4 5 6

1 2 3 4 5 6

7

7

8

8

Figure 5.8: A linear cylindric drawing of a complete graph with eight vertices on two
stack and one queue pages.

the line of vertices but the crossings between different pages are disturbing. Since our
focus is on drawing mixed linear layouts in the best possible way, and we do not really
care about the properties of a cylinder, it is already easy to see that we can draw the
graph in Figure 5.7 in a planar way by drawing the stack edges on the other side of the
first line of vertices. More importantly, this trick of duplicating the vertices allows us to
draw mixed layouts with an arbitrary amount of pages without any crossings at all. This
idea was also introduced by Auer et al. [ABB+10]. If we have an s-stack q-queue layout
we can draw the line of vertices s+ q + 1 times in parallel and draw each page between
two of these lines.

This approach can be improved in a straightforward and obvious way to reduce the copies
of vertices that we need. A stack page can be drawn above the very first line and below
the very last line so that we do not need an extra copy for those two stack pages. Also,
the area between two lines can be used by two stack pages at the same time. Therefore,
if we add two stack pages to a drawing, we only need one extra copy of vertices. Figure
5.8 shows a planar drawing of a K8 on a 2-stack 1-queue layout that needs only one
additional copy of the vertices. This is the largest complete graph that fits on three
pages. This drawing of the K8 can be compared to the linear drawing in Figure 3.4
where the edges are partitioned on the same pages but drawn in a linear layout. Note
that it becomes much easier to verify that there are no nested edges on the queue page
since such edges would cross in this layout. For other drawings, this not immediately
recognisable.

57

CHAPTER 6
Conclusion

In this last chapter, we summarise the work that has been done as well as the results of
the previous chapters. Finally, we give an outlook on future work.

6.1 Summary

In Chapter 3 we were dealing with NP-hardness, algorithms and planar bipartite graphs.
We collected known results for complexity classes and NP-hardness for stack, queue and
mixed layouts with either a fixed or free vertex order. We have seen that the linear layout
problems with a fixed vertex order are computationally easier to decide than problems
where the order is free. We have proven that if the vertex order is fixed and by adding
more pages to an NP-hard linear layout problem that the problem will stay NP-hard. For
the linear layout problems where the vertex order is free, we have seen that the 1-stack
layout is the only problem that is known to be not NP-hard. Additionally to the known
results from the literature that we have listed, we have proven that the 2-stack 1-queue
layout and the 2-queue layout is NP-hard.

We have also seen that the problem of finding a 1-stack 1-queue layout with a fixed
vertex order can be transformed into an instance of the 2-SAT problem which allows
us to find such layouts efficiently if they exist. Finally, we worked on a conjecture of
Pupyrev [Pup17] in which he suggests that every planar bipartite graph admits a 1-stack
1-queue layout. Due to an exhaustive computational assisted search, we have seen that
every planar bipartite graph with up to 19 vertices admits a 1-stack 1-queue layout.

Chapter 4 contained our heuristic approaches to find mixed layouts with as few as possible
conflicts. To achieve this goal we took existing heuristics that were developed for stack
layouts and adapted and tested them for mixed layouts. We also introduced a new page
assignment heuristic that we called dataStructure that can be used for linear layouts. In
our tests, we have seen that the heuristics and ideas that are used for stack layouts work

59

6. Conclusion

generally well for mixed layouts, too. Often they try to generate a vertex order where
the edges are preferably short, and they assign the longest edges first. This approach
also makes sense for mixed or queue layouts. The dataStructure heuristic that we have
developed was on the same level as the other page assignment heuristics and especially
for mixed layouts with roughly the same number of stack and queue pages it was often
the best page assignment heuristic. For six out of the seven graph classes that we have
tested, dataStructure was the best heuristic for 1-stack 1-queue layouts.

Besides that, we have seen that connectivity-based vertex order heuristics like conGreedy
and conGreedy+ were good for dense graphs while the breadth-first search-based heuristics
randBFS was good for sparser graphs and for layouts with more queue than stack pages.
We have also seen that optimisation heuristics that are applied after these construction
heuristics can reduce the number of conflicts significantly. In general, we think that
reusing heuristics that are used for book drawings for mixed layouts works very well and
the conflicts that we got for the mixed layouts are comparable to stack layouts.

In Chapter 5 we have shown different approaches to draw queue pages and mixed layouts.
For layouts with one or two pages, a circular or linear layout might be a natural way
to draw them. For stack pages, the edges are straightforward to draw because they can
be drawn crossing-free in such layouts. For a queue page, we have developed different
approaches on how we can use the properties of a queue to get a reasonable drawing
because the edges are usually often crossing each other. We have seen that edge bundling,
a colouring of the edges and crossings with nearly 90-degree angles are some strategies
to improve the drawing. For layouts with more than two pages we have also shown the
so-called linear cylindric drawing style that duplicates the line of vertices but in return
allows a crossing-free drawing even for the queue pages.

6.2 Future Work

We have collected and proven some results for the complexity and NP-hardness of some
specific linear layouts, but we were not able to find in the literature or prove it ourselves
if the 1-stack 1-queue layout with free vertex order problem is NP-hard or not. We know
that it is decidable in polynomial time for 1-stack layouts and we also know that for
1-queue, 2-stack and 2-stack 1-queue it is NP-hard. Especially since the 1-queue layout
is NP-hard, we would assume that the 1-stack 1-queue layout is NP-hard, too.

The open conjecture of Pupyrev [Pup17] that suggests that every planar bipartite graph
admits a 1-stack 1-queue layout remains open, and an answer to this question would be
an exciting result for mixed layouts.

The dataStructure page heuristic that we introduced in Chapter 4 delivered promising
results. An interesting aspect about this heuristic is that it can calculate the conflicts
that are introduced at the point of the edge assignment and possible future conflicts for
each edge quite efficiently. Also, the strategy to decide on which page the edge should be
assigned can vary. For our experiments, we always used the same strategy for all the tests

60

6.2. Future Work

that we have presented in this thesis, but we have also tried other strategies where we
introduced different weightings for the decision procedure. By carefully fine-tuning the
weightings, it was nearly always possible to improve the results of dataStructure further
for specific graph classes. Therefore, we think it would be interesting to develop and
test other decision strategies for dataStructure that could be more successful for specific
layouts or graph classes.

The drawings that we have presented were chosen purely by our liking. Especially for
the circular layouts, we have introduced some new ideas, and we presented arguments on
our opinion of the advantages and disadvantages. We have not performed any formal
readability testing and user studies, and naturally, it would be interesting if such studies
could deliver further insights about the readability of the drawings.

61

List of Figures

1.1 Mixed layout . 2
1.2 Circular layout and arc diagram examples 3
1.3 Outerplanar and arched level-planar graph 5

2.1 Validating a stack page . 9
2.2 Validating a queue page . 10

3.1 Reduction for fixed vertex order and extra queue page 15
3.2 Reduction for fixed vertex order and extra stack page 16
3.3 Reduction for free vertex order and queue layouts 19
3.4 2-stack 1-queue layout of a K8 . 21
3.5 Reduction for free vertex order and 2-stack 1-queue layout 22

4.1 Eight best heuristics for planar graphs . 33
4.2 Best three heuristics for planar graphs in detail 33
4.3 Eight best heuristics for planar bipartite graphs 35
4.4 Eight best heuristics for 2-tree graphs . 37
4.5 Best three heuristics for k-tree graphs in detail 38
4.6 Eight best heuristics for 3-tree graphs . 39
4.7 Eight best heuristics for random graphs with 3n edges 41
4.8 Best three heuristics for random graphs detail 41
4.9 Eight best heuristics for random graphs with 6n edges 43
4.10 Best page assignment heuristics for complete graphs 45
4.11 Optimization heuristics . 46

5.1 Circular drawing with the stack inside and the queue in a level oriented way 51
5.2 Circular drawing with the queue in crossing-free colours 53
5.3 Circular drawing in which the queue reuses lower levels with bends 54
5.4 Circular drawing in which the queue reuses lower levels 54
5.5 Circular drawing with the stack on the outside 55
5.6 Linear layout . 55
5.7 Unrolled cylinder drawing . 56
5.8 Linear cylindric drawing of a K8 . 57

63

List of Tables

3.1 Complexity classes and hardness for layouts with fixed vertex order 14
3.2 Complexity classes and hardness for layouts with free vertex order 18
3.3 Planar bipartite graphs that admit a 1-stack 1-queue layout 25

4.1 The best heuristics for mixed layouts for planar graphs 34
4.2 The best heuristics for mixed layouts for planar bipartite graphs 36
4.3 The best heuristics for mixed layouts for 2-tree graphs 38
4.4 The best heuristics for mixed layouts for 3-tree graphs 40
4.5 The best heuristics for mixed layouts for random graphs with 3n edges . . 42
4.6 The best heuristics for mixed layouts for random graphs with 6n edges . . 44
4.7 The best heuristics for mixed layouts for complete graphs 44

65

List of Algorithms

2.1 Validate a stack page . 9

2.2 Validate a queue page . 11

4.1 dataStructure page assignment heuristic 31

5.1 Chromatic colouring of a queue page . 52

67

Bibliography

[ABB+10] Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Wolfgang
Brunner, and Andreas Gleißner. Plane drawings of queue and deque graphs.
In Ulrik Brandes and Sabine Cornelsen, editors, Graph Drawing (GD 2010),
volume 6502 of Lecture Notes in Computer Science, pages 68–79. Springer,
2010.

[ABB+18] Christopher Auer, Christian Bachmaier, Franz J. Brandenburg, Wolfgang
Brunner, and Andreas Gleißner. Data structures and their planar graph
layouts. J. Graph Algorithms Appl., 22(2):207–237, 2018.

[ABG+18] Jawaherul Md. Alam, Michael A. Bekos, Martin Gronemann, Michael Kauf-
mann, and Sergey Pupyrev. Queue layouts of planar 3-trees. In Therese C.
Biedl and Andreas Kerren, editors, Graph Drawing and Network Visualiza-
tion (GD 2018), volume 11282 of Lecture Notes in Computer Science, pages
213–226. Springer, 2018.

[AG11] Christopher Auer and Andreas Gleißner. Characterizations of deque and
queue graphs. In Petr Kolman and Jan Kratochvíl, editors, Graph-Theoretic
Concepts in Computer Science (WG 2011), volume 6986 of Lecture Notes in
Computer Science, pages 35–46. Springer, 2011.

[APT79] Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time
algorithm for testing the truth of certain quantified boolean formulas. Inf.
Process. Lett., 8(3):121–123, 1979.

[Aue14] Christopher Auer. Planar graphs and their duals on cylinder surfaces. PhD
thesis, Universität Passau, 2014.

[BB04] Michael Baur and Ulrik Brandes. Crossing reduction in circular layouts. In
Juraj Hromkovic, Manfred Nagl, and Bernhard Westfechtel, editors, Graph-
Theoretic Concepts in Computer Science (WG 2004), volume 3353 of Lecture
Notes in Computer Science, pages 332–343. Springer, 2004.

[BFG+18] Michael A. Bekos, Henry Förster, Martin Gronemann, Tamara Mchedlidze,
Fabrizio Montecchiani, Chrysanthi N. Raftopoulou, and Torsten Ueckerdt.

69

Planar graphs of bounded degree have constant queue number. CoRR,
abs/1811.00816, 2018.

[BK79] Frank Bernhart and Paul C. Kainen. The book thickness of a graph. J.
Comb. Theory, Ser. B, 27(3):320–331, 1979.

[BKZ15] Michael A. Bekos, Michael Kaufmann, and Christian Zielke. The book
embedding problem from a SAT-solving perspective. In Emilio Di Giacomo
and Anna Lubiw, editors, Graph Drawing and Network Visualization (GD
2015), volume 9411 of Lecture Notes in Computer Science, pages 125–138.
Springer, 2015.

[BM99] Gunnar Brinkmann and Brendan D. McKay. Fast generation of some classes
of planar graphs. Electronic Notes in Discrete Mathematics, 3:28–31, 1999.

[BSC+08] Richa Bansal, Kamal Srivastava, Shweta Chaurasia, Kirti Varshney, and
Nidhi Sharma. An evolutionary algorithm for the 2-page crossing number
problem. In IEEE Congress on Evolutionary Computation (CEC 2008), pages
1095–1102. IEEE, 2008.

[Cim02] Robert J. Cimikowski. Algorithms for the fixed linear crossing number
problem. Discrete Applied Mathematics, 122(1-3):93–115, 2002.

[Cim06] Robert J. Cimikowski. An analysis of some linear graph layout heuristics. J.
Heuristics, 12(3):143–153, 2006.

[CLR87] Fan Chung, Frank Leighton, and Arnold L. Rosenberg. Embedding graphs in
books: A layout problem with applications to VLSI design. SIAM Journal
on Algebraic Discrete Methods, 8(1):33–58, 1987.

[DF18] Vida Dujmovic and Fabrizio Frati. Stack and queue layouts via layered
separators. J. Graph Algorithms Appl., 22(1):89–99, 2018.

[DFP13] Giuseppe Di Battista, Fabrizio Frati, and János Pach. On the queue number
of planar graphs. SIAM J. Comput., 42(6):2243–2285, 2013.

[DJM+19] Vida Dujmovic, Gwenael Joret, Piotr Micek, Pat Morin, Torsten Ueckerdt,
and David R. Wood. Planar graphs have bounded queue-number. CoRR,
abs/1904.04791, 2019.

[DLR09] Geoffrey M. Draper, Yarden Livnat, and Richard F. Riesenfeld. A survey
of radial methods for information visualization. IEEE Trans. Vis. Comput.
Graph., 15(5):759–776, 2009.

[DMW19] Vida Dujmovic, Pat Morin, and David R. Wood. Queue layouts of graphs
with bounded degree and bounded genus. CoRR, abs/1901.05594, 2019.

70

[Duj15] Vida Dujmovic. Graph layouts via layered separators. J. Comb. Theory, Ser.
B, 110:79–89, 2015.

[DW04] Vida Dujmovic and David R. Wood. On linear layouts of graphs. Discrete
Mathematics & Theoretical Computer Science, 6(2):339–358, 2004.

[DW05] Vida Dujmovic and David R. Wood. Stacks, queues and tracks: Layouts of
graph subdivisions. Discrete Mathematics & Theoretical Computer Science,
7(1):155–202, 2005.

[GJT76] M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar
Hamiltonian circuit problem is NP-complete. SIAM J. Comput., 5(4):704–
714, 1976.

[GK06] Emden R. Gansner and Yehuda Koren. Improved circular layouts. In Michael
Kaufmann and Dorothea Wagner, editors, Graph Drawing (GD 2006), volume
4372 of Lecture Notes in Computer Science, pages 386–398. Springer, 2006.

[HLR92] Lenwood S. Heath, Frank Thomson Leighton, and Arnold L. Rosenberg.
Comparing queues and stacks as mechanisms for laying out graphs. SIAM J.
Discrete Math., 5(3):398–412, 1992.

[HP99] Lenwood S. Heath and Sriram V. Pemmaraju. Stack and queue layouts of
directed acyclic graphs: Part II. SIAM J. Comput., 28(5):1588–1626, 1999.

[HPT99] Lenwood S. Heath, Sriram V. Pemmaraju, and Ann N. Trenk. Stack and queue
layouts of directed acyclic graphs: Part I. SIAM J. Comput., 28(4):1510–1539,
1999.

[HR92] Lenwood S. Heath and Arnold L. Rosenberg. Laying out graphs using queues.
SIAM J. Comput., 21(5):927–958, 1992.

[HS04] Hongmei He and Ondrej Sýkora. New circular drawing algorithms. In
Workshop on Information Technologies - Applications and Theory (ITAT),
2004.

[HSM07] Hongmei He, Ondrej Sýkora, and Erkki Mäkinen. Genetic algorithms for the
2-page book drawing problem of graphs. J. Heuristics, 13(1):77–93, 2007.

[Kar72] Richard M. Karp. Reducibility among combinatorial problems. In Ray-
mond E. Miller and James W. Thatcher, editors, Complexity of Computer
Computations, The IBM Research Symposia Series, pages 85–103. Plenum
Press, New York, 1972.

[Kla16] Jonathan Klawitter. Algorithms for crossing minimisation in book drawings.
Master’s thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany, 2016.

71

[KMN17] Jonathan Klawitter, Tamara Mchedlidze, and Martin Nöllenburg. Experimen-
tal evaluation of book drawing algorithms. In Fabrizio Frati and Kwan-Liu
Ma, editors, Graph Drawing and Network Visualization (GD 2017), volume
10692 of Lecture Notes in Computer Science, pages 224–238. Springer, 2017.

[KRSZ02] Nidhi Kapoor, Mark Russell, Ivan Stojmenovic, and Albert Y. Zomaya. A
genetic algorithm for finding the pagenumber of interconnection networks. J.
Parallel Distrib. Comput., 62(2):267–283, 2002.

[LLZ02] Michael Lewin, Dror Livnat, and Uri Zwick. Improved rounding techniques
for the MAX 2-SAT and MAX DI-CUT problems. In William J. Cook
and Andreas S. Schulz, editors, Integer Programming and Combinatorial
Optimization (IPCO 2002), volume 2337 of Lecture Notes in Computer
Science, pages 67–82. Springer, 2002.

[MNKF90] Sumio Masuda, Kazuo Nakajima, Toshinobu Kashiwabara, and Toshio Fuji-
sawa. Crossing minimization in linear embeddings of graphs. IEEE Trans.
Computers, 39(1):124–127, 1990.

[Oll73] Tayler Ollmann. On the book thicknesses of various graphs. In Combinatorics,
Graph Theory, and Computing, number Bd. 4 in Congressus numerantium,
page 459. Utilitas Mathematica Pub., 1973.

[Ove98] Shannon Overbay. Generalized book embeddings. PhD thesis, Colorado State
University, Fort Collins, CO, USA, 1998.

[Pat13] Maurizio Patrignani. Planarity testing and embedding. In Roberto Tamassia,
editor, Handbook on Graph Drawing and Visualization, chapter 1, pages 1–42.
Chapman and Hall/CRC, 2013.

[Pup17] Sergey Pupyrev. Mixed linear layouts of planar graphs. In Fabrizio Frati
and Kwan-Liu Ma, editors, Graph Drawing and Network Visualization (GD
2017), volume 10692 of Lecture Notes in Computer Science, pages 197–209.
Springer, 2017.

[Pur97] Helen C. Purchase. Which aesthetic has the greatest effect on human un-
derstanding? In Giuseppe Di Battista, editor, Graph Drawing(GD 1997),
volume 1353 of Lecture Notes in Computer Science, pages 248–261. Springer,
1997.

[RM95] S. Rengarajan and C. E. Veni Madhavan. Stack and queue number of
2-trees. In Ding-Zhu Du and Ming Li, editors, Computing and Combina-
torics(COCOON 1995), volume 959 of Lecture Notes in Computer Science,
pages 203–212. Springer, 1995.

[SSS13] Dharna Satsangi, Kamal Srivastava, and Gursaran Srivastava. K-page crossing
number minimization problem: An evaluation of heuristics and its solution
using GESAKP. Memetic Computing, 5(4):255–274, 2013.

72

[ST06] Janet M. Six and Ioannis G. Tollis. A framework and algorithms for circular
drawings of graphs. J. Discrete Algorithms, 4(1):25–50, 2006.

[ST13] Janet M. Six and Ioannis G. Tollis. Circular drawing algorithms. In Roberto
Tamassia, editor, Handbook on Graph Drawing and Visualization, chapter 9,
pages 285–315. Chapman and Hall/CRC, 2013.

[Tar72] Robert Endre Tarjan. Sorting using networks of queues and stacks. J. ACM,
19(2):341–346, 1972.

[Ung88] Walter Unger. On the k-colouring of circle-graphs. In Robert Cori and Martin
Wirsing, editors, Theoretical Aspects of Computer Science (STACS 1988),
volume 294 of Lecture Notes in Computer Science, pages 61–72. Springer,
1988.

[Ung92] Walter Unger. The complexity of colouring circle graphs (extended abstract).
In Alain Finkel and Matthias Jantzen, editors, Theoretical Aspects of Com-
puter Science (STACS 1992), volume 577 of Lecture Notes in Computer
Science, pages 389–400. Springer, 1992.

[Wie86] Manfred Wiegers. Recognizing outerplanar graphs in linear time. In Gottfried
Tinhofer and Gunther Schmidt, editors, Graphtheoretic Concepts in Computer
Science (WG 1986), volume 246 of Lecture Notes in Computer Science, pages
165–176. Springer, 1986.

[Wie17] Veit Wiechert. On the queue-number of graphs with bounded tree-width.
Electr. J. Comb., 24(1):P1.65, 2017.

[Woo02] David R. Wood. Queue layouts, tree-width, and three-dimensional graph
drawing. In Manindra Agrawal and Anil Seth, editors, Foundations of
Software Technology and Theoretical Computer Science (FST TCS 2002),
volume 2556 of Lecture Notes in Computer Science, pages 348–359. Springer,
2002.

[Woo05] David R. Wood. Queue layouts of graph products and powers. Discrete
Mathematics & Theoretical Computer Science, 7(1):255–268, 2005.

[Yan89] Mihalis Yannakakis. Embedding planar graphs in four pages. J. Comput.
Syst. Sci., 38(1):36–67, 1989.

73

Appendix

We implemented a collection of useful functions that we used throughout this thesis,
and we made them publicly available on a GitHub repository 1. The code is written in
Python 3 and contains among other information all the algorithms and experiments that
we have presented in this thesis. We used it to generate the graphs and run the heuristics
in Chapter 4. It can also be used to create drawings in the styles that we presented in
Chapter 5.

1https://github.com/pdecol/mixed-linear-layouts

75

https://github.com/pdecol/mixed-linear-layouts

	Kurzfassung
	Abstract
	Contents
	Introduction
	Linear layouts of graphs
	Motivation
	Goals and methodology
	Related work
	Structure of the thesis

	Preliminaries
	Theory
	Complexity
	Algorithms
	Planar bipartite graphs

	Design and evaluation of heuristics
	Existing heuristics
	Data structure heuristic
	Experiments
	Optimization
	Summary of experiments

	Drawings
	Circular drawings
	Linear drawings
	Linear cylindric drawings

	Conclusion
	Summary
	Future Work

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography
	Appendix

