
Deep generative clustering of
spatial wafer patterns

An unsupervised machine learning approach
within the framework of Industry 4.0

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

eingereicht von

Peter Tulala, BSc
Matrikelnummer 1528202

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Mitwirkung: Projektass. Hamidreza Mahyar, PhD

Wien, 25. April 2019
Peter Tulala Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Die approbierte Originalversion dieser Diplom-/
Masterarbeit ist in der Hauptbibliothek der Tech-
nischen Universität Wien aufgestellt und zugänglich.

http://www.ub.tuwien.ac.at

The approved original version of this diploma or
master thesis is available at the main library of the
Vienna University of Technology.

http://www.ub.tuwien.ac.at/eng

Deep generative clustering of
spatial wafer patterns

An unsupervised machine learning approach
within the framework of Industry 4.0

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Computational Intelligence

by

Peter Tulala, BSc
Registration Number 1528202

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu
Assistance: Projektass. Hamidreza Mahyar, PhD

Vienna, 25th April, 2019
Peter Tulala Radu Grosu

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.ac.at

Erklärung zur Verfassung der
Arbeit

Peter Tulala, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 25. April 2019
Peter Tulala

v

Danksagung

Ich möchte meinem Betreuer, Univ.Prof. Dipl.-Ing. Dr.rer.nat. Radu Grosu, meine
aufrichtige Dankbarkeit ausdrücken für die Erlaubnis, dieses Papier zu schreiben, für
seine Führung durch den gesamten Prozess sowie für viele interessante Einblicke und
immense Unterstützung. Ein besonderer Dank gilt meinem Forscherkollege Projektass.
Hamidreza Mahyar PhD., der mir wichtige Hilfestellung bei der Bewertung der Arbeit und
Ratschläge zu vielen Punkten gegeben hat. Ich möchte mich auch bei meinem Kollegen
Paul Stelzhammer für die Hilfe bei einer deutschen Übersetzung des Abstracts bedanken.

vii

Acknowledgements

I would like to express sincere gratitude to my advisor, Univ.Prof. Dipl.-Ing. Dr.rer.nat.
Radu Gros, for allowing me to write this paper and guiding me through the whole process
while providing many interesting insights and immense support. A special gratitude
belongs to a fellow researcher Projektass. Hamidreza Mahyar PhD. who has provided
me significant help with evaluating the work and advising on many technical aspects of
the thesis. I would like to thank also my colleague Paul Stelzhammer for help with a
German translation of the abstract.

ix

Kurzfassung

Automatisierung der Produktion, maschinelles Lernen, Big Data, Internet der Dinge
und computerunterstütztes Entscheidungsfinden sind Schlüsselfaktoren der vierten indus-
triellen Revolution (auch Industrie 4.0 genannt). Hoch automatisierte Industriezweige,
wie die Halbleiter herstellende Industrie, werden zur Grenze von Industrie 4.0. Obwohl
die hochautomatisierte Halbleiterproduktion in Reinraum-Umgebungen stattfindet, ist
der in der Komplexität steigende und aus hunderten von Schritten bestehende Herstel-
lungsprozess, trotzdem anfällig für gewöhnliche Produktionsfehler. Um diese Fehler zu
erkennen und ihnen vorzubeugen werden regelmäßig elektromechanische Messungen von
jedem Wafer nach den verschiedenen Schritten in der Produktion genommen. Es wird
angenommen, dass die Schritte welche Fertigungsfehler verursachen in einer frühen Phase
der Produktionskette in charakteristischen Mustern der Wafermap-Messdaten erkannt
werden. Basierend auf den erkannten Mustern kann eine automatische ausgleichende
Aktion gesetzt werden um die Herstellungskosten so gering wie möglich zu halten und
Engpässen vorzubeugen. Das Ziel dieser Arbeit ist es einen Algorithmus zu entwickeln
der automatisch Muster in den Wafermap-Messdaten erkennt und gruppiert und dabei
Methode des unüberwachten Lernen verwendet. Die unüberwachte Art solch eines Algo-
rithmus beseitigt den Bedarf eines Experten auf dem jeweiligen Gebiet, welcher ansonsten
manuell definieren müsste welche möglichen Muster in den Daten auftreten. Der erste
Teil der Arbeit beschreibt die vorverarbeitenden Schritte, um den Messdatensatz zu
bereinigen und zu normalisieren. Der bereinigte Datensatz wird dann verwendet, um
ein generisches Model zu trainieren, welches die charakteristischsten Eigenschaften lernt
und die Dimension der Daten reduziert. Spezielles Augenmerk gilt zwei Algorithmen -
Variation Autoencoder (VAE) und Generative Adversarial Network (GAN). Der letzte
Teil der Arbeit beschreibt zwei einfache Clustering Methoden welche die Features je
nach Ähnlichkeitsmetrik in eindeutige Cluster gruppieren. Das Fazit ist, dass generische
Modelle zur Feature Extrahierung in der Halbleiter Fertigung nützlich sein können und
in manchen Fällen traditionelle Modelle übertreffen.

xi

Abstract

Computerization of manufacturing, machine learning, big data, Internet of Things
(IoT) and automated decision-making are becoming the key driving forces of the fourth
industrial revolution (also referred to as Industry 4.0). Highly automated industries,
such as semiconductor manufacturing industry, are becoming the frontiers of Industry
4.0. Despite the fact that the highly automated semiconductor production takes place in
cleanroom environments, the increasingly complex manufacturing processes driven by
hundreds of production steps are still susceptible to random production errors. In order
to detect and prevent these errors, electromechanical measurements are regularly taken
from each wafer in production after some steps. It is assumed that steps that are causing
manufacturing disturbances can be identified in an early stage of production chain by
recognizing characteristic patterns in the wafermap measurements data. Based on the
recognized patterns, an automatic corrective action can be taken in order to minimize
manufacturing cost and prevent bottlenecks. The aim of this work is to develop an
algorithm to automatically recognize and cluster patterns in wafermap measurements
data in an unsupervised manner. The unsupervised nature of such algorithm eliminates
the need for a domain expert that would otherwise had to manually define all possible
patterns occurring in the data. The first part of this work describes preprocessing steps
to cleanse and normalize the measurements dataset. The cleansed dataset is then used
to train a generative model that learns the most characteristic features and reduces the
dimensionality of the data. A particular focus is given to two algorithms – Variational
Autoencoder (VAE) and Generative Adversarial Network (GAN). The last part of the
work discusses two simple clustering methods that group the extracted features into
distinct clusters according to a similarity metric. It is concluded, that generative models
could be useful for feature extraction in semiconductor manufacturing domain and in
some cases even outperform more traditional discriminative models.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Motivation . 1
1.2 Problem statement & scope of the work 2
1.3 State of the art . 3
1.4 Methodological approach . 4
1.5 Peer review . 5
1.6 Structure of the work . 5

2 Data preprocessing 7
2.1 Wafer clipping mask . 7
2.2 Removing outliers . 13
2.3 Imputing missing values . 16
2.4 Normalization . 17
2.5 Denoising . 18
2.6 Results . 18

3 Machine learning preliminaries 19
3.1 Learning paradigms . 19
3.2 Parametric models . 22
3.3 Convergence of random variables . 23
3.4 Empirical risk minimization . 24
3.5 Bias-variance trade-off . 25
3.6 Point estimation . 26
3.7 Maximum Likelihood Estimation (MLE) 29
3.8 Maximum A Posteriori (MAP) estimation 30
3.9 Information entropy . 31
3.10 Kullback–Leibler (KL) divergence . 34
3.11 Stochastic Gradient Descent (SGD) . 35

xv

3.12 Artificial Neural Network (ANN) . 39
3.13 Regularization . 42

4 Feature extraction 47
4.1 Variational Autoencoder . 48
4.2 Generative Adversarial Network (GAN) 52

5 Clustering 63
5.1 k-means clustering . 63
5.2 Hierarchical agglomerative clustering 64
5.3 Silhouette coefficient . 67
5.4 Experiments . 67

6 Conclusion 71

List of Figures 73

List of Tables 75

List of Algorithms 77

Bibliography 81

CHAPTER 1
Introduction

Many disruptive innovations in recent years are propelling existing industries to adapt
their business and manufacturing processes towards new paradigms in order to sustain
competitiveness in increasingly global markets. As a response for the incoming changes,
German government developed a strategy promoting computerization of manufacturing,
collectively called "Industry 4.0" [KHHW13]. Value proposition of this strategy includes
increased production agility, faster reactions to market requirements, automated decision-
making, smart maintenance and manufacturing processes management close to real
time. Goals of this diploma thesis are in line with the objectives of SemI40 consortium
(http://www.semi40.eu) coordinated by Infineon Technologies whose strategic focus
lies in the adoption of recent ICT innovations (such as machine learning, big data and
automated decision-making) to strengthen sustainable competitiveness of European
semiconductor production.

1.1 Motivation

Semiconductor manufacturing is a complex process consisting of several hundreds pro-
cessesing steps in a cleanroom environment facility. These steps are characterized by
certain amount of process deviations. Automated detection of these production issues
followed by an automated root cause analysis has a potential to increase effectiveness of
semiconductor production. Manufacturing defects exhibit typical patterns in measured
wafer test data, e.g. rings, spots, repetitive textures or scratches. Recognizing these
patterns is an essential step for finding the root cause of production issues and eventually
to take automatic corrective actions to eliminate the risks to acceptable levels.

1

http://www.semi40.eu

1. Introduction

1.2 Problem statement & scope of the work

The aim of this work is to develop and train a statistical model capable to cluster given
raw wafer test data into groups according to similarities in their spatial wafer patterns.
It is assumed that such model could be used for making predictions about the quality
of the wafer under construction and in case of anomalies to infer the interplay of the
various processes responsible for these abnormalities. The statistical model developed in
this work could also serve as a basis for an automatic decision-making and corrective
calibration of factory equipment such that the production abnormalities are resolved on
the fly without human intervention.

A crucial step before applying machine learning methods is to preprocess raw wafer data.
This step involves removing outliers, imputing missing measurements, noise removal and
data normalization. The result of the data preprocessing step is a clean dataset that can
be used for subsequent feature extraction and clustering tasks.

The following two generative approaches will be considered in order to extract features
from the wafers:

• Variational Autoencoder (VAE) [KHHW13] that formalizes the feature extrac-
tion problem as a probabilistic graphical model with the objective to maximize the
evidence lower bound (ELBO) on the log likelihood of the data.

• Generative Adversarial Network (GAN) [GPAM+14] that formalizes the fea-
ture extraction problem in a game-theoretic approach where two different networks
(called generator and discriminator) compete against each other in order to reach
Nash equilibrium. Many extensions to GAN have been recently proposed, namely
InfoGAN [CCD+16] is especially useful in context of this diploma thesis to learn
disentangled representations in a completely unsupervised manner. GANs are
notoriously difficult to train, hence methods for training stabilization are likely to
be needed, for example the improvements discussed in [SGZ+16], Wasserstein GAN
[ACB17a] or Improved Training of Wasserstein GAN [GAA+17a].

The extracted features can be plugged in into some traditional clustering algorithms
like k-means or agglomerative hierarchical clustering for which many well-optimized
implementations already exist. The clustering task groups wafers into clusters according
to patterns they exhibit. The main outcome of this work is a statistical model for
recognizing patterns from given raw wafer test data.

Finally, the performance of different feature extraction methods will be compared with
other dimensionality reduction algorithms like Principal Component Analysis (PCA),
Non-negative Matrix Factorization (NMF), Independent Component Analysis (ICA) or
Singular Value Decomposition (SVD) in terms of clustering performance measured by
Silhouette score. This work demonstrates that deep generative modeling is a suitable

2

1.3. State of the art

approach for extracting the most characteristic features from sensory wafer data and in
various aspects outperforms traditional unsupervised dimensionality reduction techniques.

It is assumed, that such statistical model could lead to a deeper understanding of
the relation between electromechanical parameters of a wafer measured after several
processing steps and individual unit processes. Combining information from different
data sources with advanced data analysis methods may be used for automated decision
making and change in the equipment parameters has a potential to improve the process
stability. An overview of tasks that are in scope of this diploma thesis is shown in Figure
1.1.

The model proposed in this diploma thesis has been trained using Tensorflow framework
and the program for training this model given wafer test data has been delivered as a
Docker container that can be deployed and executed on a personal computer or a server.

slice of bare
silicon

step
1

step
2

step
n

1) Frontend production steps
4) Wafer measurement data

3) Wafer testing
2) Final product -- silicon wafer

Data preprocessing:
 missing values, removing

outliers, normalization, ...

5) Cleansed wafer measurement
data represented as a bitmap

Features extraction:
 VAE, GAN, ...

Pattern clustering:
k-means, agglomerative, ...

Pattern classification:
critical / non-critical

Quantitative risk
assesment

6) Link to the processing
step (situation improvement)

Not a scope of this thesis

Scope of this thesis

Figure 1.1: High-level overview of an automated improvement of a wafer production
process. Tasks considered in this diploma thesis are depicted in orange color. The
outcome of the work is a statistical model that clusters given raw electromechanical
measurement data of produced wafers in order to be used for a subsequent automated
corrective adjustments and elimination of risks. This will lead to an optimized production
sequence of different products according to product requirements and specifications.

1.3 State of the art
[Ser83] Several methods based on traditional image processing approach for detecting
patterns in wafer test data have been proposed [BS95] [Duv99].

3

1. Introduction

More robust methods utilize some machine learning techniques to recognize more complex
patterns in wafer data. There have been proposed methods based on supervised training
of mixture models [LCC96], neural networks [CLYYDY] or support-vector machines
[CT09]. Although these methods are powerful, their supervised nature still requires a
human expert to craft a training dataset with manually labeled data.

The apparent advantage of unsupervised pattern detection approach lies in an elimination
of subjective factors from pattern recognition task, which in turn reduces costs and
number of classification errors. The hidden dependencies between different types of wafer
defects are detected automatically without intervention of human expert which enables
detection of patterns that were unknown or overlooked before. This type of approach
includes self-organizing neural networks [CLCJ09], self-organizing maps [PNM+05] as
well as techniques based on dimensionality reduction like diffusion maps [MC14] or
discriminant analysis [YL16].

In this diploma thesis, there are proposed two different unsupervised methods for genera-
tive clustering of wafermap patterns based on two approaches – Variational Autoencoder
(VAE) [KHHW13] and Generative Adversarial Network (GAN) [GPAM+14] and its
extensions such as InfoGAN [CDH+16] and Wasserstein GAN [ACB17b].

1.4 Methodological approach
The methodological approach consists of the following steps:

1. Literature review
Explore strategic objectives of SemI40 consortium and existing research papers in
semiconductor production industry. Explore research papers related to machine
learning, especially different pre-processing methods, statistics, information theory,
generative models and clustering techniques.

2. Implementation
Use available raw wafer test data to develop a statistical model for feature extraction
and clustering of wafers. The overview of all tasks in scope of this work are depicted
in Figure 1.1, the tasks implemented as a part of this diploma thesis include:

a) Data pre-processing
i. Handling missing values
ii. Removing of outliers
iii. Noise removal and smoothing
iv. Normalization

b) Feature extraction with deep generative techniques (VAE and GAN).
c) Clustering of patterns in the wafer data. It is assumed that these patterns

can be further classified and used to find hidden links between production

4

1.5. Peer review

issues and specific processing steps. Try different types of clustering methods
(k-means, hierarchical clustering, etc.).

3. Draw conclusion
Compare the results of methods used in implementation and compare them with
existing methods. Compare VAE and GAN approach with traditional feature
extractions methods like PCA, SVD or ICA. Measure the clustering performance
with Silhouette score and by a visual inspection of the feature space.

1.5 Peer review
Some parts of this work has been peer-reviewed in the following publications:

• P. Tulala, H. Mahyar, E. Ghalebi and R. Grosu. Unsupervised Wafermap Patterns
Clustering via Variational Autoencoders. International Joint Conference on Neural
Networks (IJCNN). Rio de Janeiro, Brazil, July 8-13, 2018.

• H. Mahyar, E. Ghalebi, P. Tulala and R. Grosu. Generative Adversarial Networks
for Clustering Semiconductor Wafer Maps. Workshop on ML for Systems at
NeurIPS. Montreal, Canada, December 3-8, 2018.

1.6 Structure of the work
The content of this diploma thesis is divided into six chapters:

1. Introduction – this chapter.

2. Data preprocessing (theory + experiments) – describes steps how to transform
raw wafer measurements data into a cleansed dataset that can be used as an input
for training of a machine learning model.

3. Machine learning preliminaries (only theory) – methodological part of the
work. Describes basic machine learning concepts that are used in this work.

4. Feature extraction (theory + experiments) – the main and the most challenging
part of this work. Describes two feature extraction methods based on generative
modeling, namely Variational Autoencoder (VAE) and Generative Adversatial
Network (GAN).

5. Clustering (theory + experiments) – describes two simple methods of grouping
the extracted features according to a similarity metric.

6. Conclusion.

5

CHAPTER 2
Data preprocessing

Wafer measurements data are stored in CSV files, where each line of the file represents a
single chip. Position of the chip within a wafer is stored as a tuple with coordinates and
individual test values are stored in corresponding columns as floating point numbers. We
have found that treating each wafer measurement as a bitmap is more suitable for the
purpose of finding spatial patterns in the wafer test data.

Data preprocessing is a crucial step addressing several data quality issues before applying
the machine learning algorithm – especially finding and removing outliers, imputing
missing measurements and data normalization. The result of data preprocessing step is
a clean dataset that can be used for further feature extraction and classification tasks
(shown in Figure 2.10). The overall procedure is depicted in Figure 2.1.

2.1 Wafer clipping mask

Wafers maps have irregular shape with some missing values (holes) within the wafer area
caused during the measurement of test data. This step creates a clipping mask of the
wafer without holes, so that the missing values can be addressed within the masked area
in the data imputation step discussed in Section 2.3.

The first step is to binarize the wafer by replacing all present values with 1 and all
missing values with 0. Mathematical morphology approach is then used to close small
holes withing the wafer.

2.1.1 Mathematical morphology

Mathematical morphology is a set theory approach for image processing, providing a
collection of mathematical tools for manipulating with geometrical structure of images.
In binary morphology, all images are assumed to be grayscale and are represented as

7

2. Data preprocessing

Figure 2.1: Overall wafer preprocessing procedure.

a subset of 2-dimensional Euclidean space R2. There have also been proposed further
extensions for grayscale images of higher dimensions (where images are represented as a
function mapping: Rd → R ∪ {−∞,∞}) or generalizations based on lattice theory for
manipulating with morphological structures like color images or video sequences [Ser83].
In this section, only binary morphology is considered.

Morphological operators for binary image processing

In binary morphology, images are represented as sets from R2. All operations in binary
morphology are a result of standard set theory operations and two basic morphological
operators – erosion and dilation (defined later):

A the image

AC complement (inversed image)

A ∩B intersection if two images A and B

A ∪B union if two images A and B

A−B = A ∩BC difference between images A and B

A⊕ S dilation of image A by structure S

8

2.1. Wafer clipping mask

A	 S erosion of image A by structure S

Additional morphological operations can be defined by combining the operations above.

Structuring elements

The right-hand-side operand S of basic morphological operators is also called the struc-
turing element. The origin of the structuring element is the element X = (0, 0).

In discrete case, structuring elements are defined on integer grid Zd. For example for
d = 2, the commonly used structural elements are 4-neighborhood S4 and 8-connection
S8 (Equation 2.1 and 2.2, depicted in Figure 2.2):

S4 = {(−1, 0), (0, 1), (1, 0), (0,−1))} (2.1)
S8 = {(−1, 0), (−1, 1), (0, 1), (1, 1), (1, 0), (1,−1), (0,−1), (−1,−1)} (2.2)

(a) 4-neighborhood structuring element S4. (b) 8-neighborhood structuring element S8.

Figure 2.2: Commonly used discrete structural elements with the origin X = (0, 0).

Another commonly used structuring element is an open disc of radius r, centered at the
origin.

Dilation and erosion

In binary morphology, the dilation resp. erosion are translation invariant operations
closely related to Minkowski addition resp. Minkowski difference of vectors in Euclidean
space. Informally, the dilation grows all features in a binary image, while the erosion
shrinks them.

Definition 1. Let A be a set. The reflection of the set A is given by Â = {a |
−a ∈ A}. The translation of the set A by z is given by (A)z = {a+ z | a ∈ A}.

9

2. Data preprocessing

Definition 2. Let A be a binary image and S a structuring element. The dilation
of A by S is given by:

A⊕ S =
⋃
s∈S

(A)s = {z | ((Ŝ)z ∩A) 6= ∅}

Figure 2.3: Example of dilation with a 4-neighborhood structural element.

Clearly, A⊕ {0} = A and A⊕ ∅ = ∅. Some other properties of dilation:

• translation invariance: (A)z ⊕B = (A⊕B)z

• commutativity: A⊕B = B ⊕A

• associativity: A⊕ (B ⊕ C) = (A⊕B)⊕ C

• extensivity: 0 ∈ B =⇒ A ⊆ A⊕B

• increasing: A ⊆ B =⇒ A⊕ C ⊆ B ⊕ C

• linearity: (A⊕B)⊕ C = (A⊕ C)⊕ (B ⊕ C)

Definition 3. Let A be a binary image and S a structuring element. The erosion
of A by S is given by:

A	 S =
⋂
s∈S

(A)−s = {z | (S)z ⊆ A}

Figure 2.4: Example of erosion with a 4-neighborhood structural element.

Some properties of erosion:

10

2.1. Wafer clipping mask

• translation invariance: (A)z 	B = (A	B)z

• not commutative: A	B 6= B 	A

• not associative: A	 (B 	 C) 6= (A	B)	 C (but 1)

• extensivity: 0 ∈ B =⇒ A	B ⊆ A

• increasing: A ⊆ B =⇒ A	 C ⊆ B 	 C

• linearity: (A	B)	 C = (A	 C)	 (B 	 C)

The dilation can be implemented as a processes performed by laying the origin of the
structuring element S on the image A and sliding it across all pixels of the image, which
leads to Algorithm 2.1.

Algorithm 2.1: Dilation algorithm of image A by structure S.
Input: Input image A, structuring element S

Output: A⊕ S

1 I := ∅ . Empty image

2 for ∀s ∈ S do
3 As := {a+ s | a ∈ A} . Shifted image

4 I := I ∪As

5 end

6 return I

Lemma 1. Dilation and erosion satisfy the duality: (A	B)C = AC ⊕ B̂.

Proof. First we prove A ∩BC ⇐⇒ A ⊆ B:

A ∩BC = ∅ ⇐⇒ ∀x ∈ A : x /∈ BC

⇐⇒ ∀x ∈ A : x ∈ (BC)C

⇐⇒ ∀x ∈ A : x ∈ B
⇐⇒ A ⊆ B

1Although erosion is not associative, it holds that A	 (B⊕C) = (A	B)	C. The proof follows from
the duality of erosion and dilation (Lemma 1): (A	B)	 C = ((A	B)C ⊕ Ĉ)C = (AC ⊕ B̂ ⊕ Ĉ)C =
(AC ⊕ ˆ(B ⊕ C))C = A	 (B ⊕ C).

11

2. Data preprocessing

Then we have:

(A	B)C = {z | (B)z ⊆ A}C

= {z | (B)z ∩AC = ∅}C

= {z | (B)z ∩AC 6= ∅}
= AC ⊕ B̂

Corollary 1. Erosion can be implemented using Algorithm 2.1 as A	 S = (AC ⊕ S)C .

(a) Original image A. (b) Dilated image A⊕ S8. (c) Eroded image A	 S8.

Figure 2.5: Example of dilation and erosion on a binary image.

Hole filling

Small holes can be closed using the closing operator:

A •B = (A⊕B)	B (2.3)

The closing operator in Equation 2.3 works well for closing very small holes with an area
of just a few pixles. However, bigger holes may sometimes also occur in the wafer dataset,
hence a more robust method must be used. As shown in Algorithm 2.2, repeated dilation
of the outer area of the wafer can be used to close all holes in the wafer. The comparison
of these two approaches is depicted in Figure 2.6.

Algorithm 2.2: Region filling algorithm for binary bitmap of sizem×n represented
by the set of vectors A.
Input: Input image A

Output: Image with closed holes

1 T := {(a, b) | a /∈ [0,m], b /∈ [0, n]} . Boundary of image

2 S4 := 4-neighborhood structuring element

3 repeat
4 T := (T ⊕ S4) ∩AC

5 until convergence;

6 return TC

12

2.2. Removing outliers

(a) Wafer mask with holes. (b) Closing operation. (c) Region filling algorithm.

Figure 2.6: Wafer mask with holes of different size. Closing operation closes only very
small holes, bigger holes must be iteratively closed with the hole filling algorithm.

2.2 Removing outliers

Real-world data are contaminated with measurement errors. Although random and
systematic measurement errors caused by physical limitations of manufacturing devices
lower the quality of recorded data, they are usually within certain range and do not cause
major problems when building a predictive model. However, occasional huge inaccuracies
or malfunctions in measurement process can introduce erroneous values outside of a
resonable range called outliers.

Outliers may be informally defined as observations that are too distant from our expecta-
tions. Many predictive models are based on estimating probability distribution of the
data samples. Yet even a single outlier can significantly change characteristics of an
estimated probability distribution. Hence, removing these outliers is often an essential
step for many statistical predictive models.

The mean and standard deviation characterizing normal distribution, are especially
susceptible to perturbations caused by outliers. If any data value xi → ±∞, then also
x→ ±∞. On the other hand, median is resistant to gross errors in up to 50% of total
samples. Statistics resistant to outliers is also called robust statistics. Two robust outlier
removal methods are presented in this section.

2.2.1 Interquartile range (IQR) method

This is a very simple method based on interquartile range, proposed in [Tuk77]. Quartiles
are three points that split the dataset into four groups, each of them comprising of quarter
of the data. First quartile (Q1) corresponds to the 25th percentile, second quartile (Q2)
corresponds to the 50th percentile (median) and third quartile (Q3) corresponds to the
75th percentile of the dataset. The interquartile range is then defined as IQR = Q3 −Q1.
Values outside of the following range are considered outliers:

[Q1 − k · IQR, Q3 − k · IQR] (2.4)

13

2. Data preprocessing

where k is a chosen constant (typically k = 1.5).

2.2.2 Median absolute deviation (MAD) method

The main idea of this method is to use a modified Z-score to detect outliers. The Z-score
is expressed in terms of mean and standard deviation, which removes the effects of scale
and location from the original dataset. Given a dataset X = {x1, . . . , xn}, the Z-score for
i-th element in the dataset is defined as follows:

zi = xi − µ(X)
σ(X) (2.5)

The distribution of Z-score has mean 0 and standard deviation 1, since the effects of scale
and location are removed. All values “too far” from the mean are considered outliers, i.e.
elements with |zi| > λ for some cutoff threshold λ are outliers.

Modified Z-score

However, identifying outliers with the Z-score is problematic, because as discussed before,
the mean and the standard deviation themselves are highly affected by outliers. To
make this method robust, Iglewicz and Hoaglin [IH93] developed a median-based outlier
detection by modifying the Z-score method. The location parameter is replaced by a
median and the scale parameter is estimated using a median absolute deviation (MAD)
as follows:

σ̂(X) = k ·MAD (2.6)

where k is a constant scale factor and MAD is defined as the median of the absolute
deviations:

MAD = med({|xi −med(X)| | xi ∈ X}) (2.7)

For normal distribution, the scale factor is defined as follows:

k = 1/φ−1(3/4) ≈ 1/0.6745 ≈ 1.4826 (2.8)

where φ−1 is the inverse of the cumulative distribution function of the normal distribution
(also called percent point function). In Equation 2.8, the φ−1(3/4) is the 75th percentile
of the normal distribution.

The modified Z-score is then defined as follows:

|z′i| =
|xi −med(X)|

σ̂(X) = φ−1(3/4) · |xi −med(X)|
MAD (2.9)

14

2.2. Removing outliers

Values with |z′i| > λ are considered outliers, with the threshold λ typically set to a
constant cutoff value λ = 3.5.

Skewed distributions

Detecting outliers using the Equation 2.9 works well for symmetric distributions, however
as shown in Figure 2.7, calculating MAD independently for data points greater than
(resp. less than) or equal to median using Equations 2.10 and 2.11 performs better for
skewed distributions:

MADL = med({|xi −med(X)| | xi ∈ X ≤ med(X)}) (2.10)

MADR = med({|xi −med(X)| | xi ∈ X ≥ med(X)}) (2.11)

0 50 100

0
25
50
75

100
125
150
175

0.2 0.3 0.4 0.5 0.6
0

20

40

60

80

100

(a) The original wafer and the distribution of values in the bitmap.

0 50 100

0
25
50
75

100
125
150
175

0.152 0.154 0.156 0.158 0.160 0.162 0.164
0

50

100

150

200

(b) Outliers removed using a simple MAD – many false positives (values greater than 0.163) have
also been removed due to distribution skewness.

0 50 100

0
25
50
75

100
125
150
175

0.1525 0.1550 0.1575 0.1600 0.1625 0.1650 0.1675
0

25
50
75

100
125
150
175

(c) Outliers removed using a double-sided MAD – outliers greater than (resp. less than) or equal
to median have been removed independently.

Figure 2.7: Outliers removal using a simple and double-sided MAD-based method.

15

2. Data preprocessing

This approach leads to an Algorithm 2.3.

Algorithm 2.3: MAD-based outlier detection algorithm.
Input: Input dataset X (pixel color values)

Output: Set of outliers

1 k := 1.4826 . scale factor

2 λ := 3.5 . cutoff threshold

3 m := medX

4 σ̂L = k ·med({|xi −m| | xi ∈ X ≤ m})

5 σ̂R = k ·med({|xi −m| | xi ∈ X ≥ m})

6 outliers := ∅

7 for ∀x ∈ X do
8 if |x−m|/σ̂L ≥ λ ∨ |x−m|/σ̂R ≥ λ then
9 outliers := outliers ∪ x

10 end

11 end

12 return outliers

Further improvements of this method are possible. For example as proposed in [RC93],
by estimating the standard deviation with the median deviation of medians:

σ̂′(X) = c ·med({med{|xi − xj | | xj ∈ X} | xi ∈ X}) (2.12)

where c is a scale factor, for normal distribution c ≈ 1.1926.

2.2.3 Comparison of IQR-based and MAD-based methods

The interquartile range is simple to calculate and the number of identified outliers depends
on number of samples in the dataset, as demonstrated in Figure 2.8. MAD-based method
is not affected by the number of samples. From this reason, MAD-based method has
been chosen for the outlier removal task in this work.

2.3 Imputing missing values
Missing values within the area of the clipping mask created in Section 2.1 are replaced with
substitute values reconstructed from information present in neighborhood of each missing
region. Chui-Mhaskar inpainting algorithm [CM10] was utilized for the inpainting task.
This algorithm is based on solving biharmonic equations, however a detailed description

16

2.4. Normalization

20 10 0 10 20
0.000

0.025

0.050

0.075 IQR-based

20 10 0 10 20
0.000

0.025

0.050

0.075 MAD-based

(a) N = 10

10 5 0 5 10 15
0.0

0.1

0.2

0.3 IQR-based

10 5 0 5 10 15
0.0

0.1

0.2

0.3 MAD-based

(b) N = 50

10 5 0 5 10 15
0.0

0.2

0.4 IQR-based

10 5 0 5 10 15
0.0

0.2

0.4 MAD-based

(c) N = 100

10 5 0 5 10
0.0

0.2

0.4

0.6 IQR-based

10 5 0 5 10
0.0

0.2

0.4

0.6 MAD-based

(d) N = 1000

Figure 2.8: Comparison of IQR-based and MAD-based outlier removal methods. N
points are randomly sampled from the normal distribution, with three additional outliers
−10,−3, 12. The detected outliers are depicted with red color. The MAD-based method
correctly identified all outliers without any false positives, while the outliers identified by
the IQR-based method depends on the number of samples N .

is out of scope of this thesis. An existing implementation from a machine learning library
scikit-learn [PVG+11] has been used in this preprocessing step.

2.4 Normalization

The pixel color values of wafer image have been scaled to interval [0.05, 1] as follows:

f(x) = 0.95 · (x−min)
max−min + 0.05 (2.13)

All values outside of the clipping mask (i.e. the background around the wafer) have been
replaced with constant value 0.

17

2. Data preprocessing

2.5 Denoising
The last step of the wafer preprocessing is a smoothing of the wafer by reducing stochastic
noise using median filtering procedure. Each pixel of the input image f is iteratively
processed by a sliding window W of size (k, l), producing smoothened image g. This
overall procedure can be defined as follows [KBP07]:

g(x, y) = med{f(x− k, y − l) | (k, l) ∈W} (2.14)

where g(x, y) represent a point at position (x, y) in output image g and f(x− k, y − l) is
a point in the input image f . In this work, a sliding window of size 3× 3 has been used,
that is k = l = 3.

5 7 2
3 21
4 8

4
6

5 7 2
3 5
4 8

4
6

Figure 2.9: One iteration of median filtering algorithm. Current data point with value 21
is replaced with value 5, which is the median value within the 3× 3 sliding window.

2.6 Results
The result of the wafer data preprocessing is demonstrated in Figure 2.10.

0 50 100

0
25
50
75

100
125
150
175

40 45 50 55 60 65 70 75
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

(a) The original wafer.

0 50 100

0
25
50
75

100
125
150
175

0.0 0.2 0.4 0.6 0.8 1.0
0
1
2
3
4
5
6
7

(b) The preprocessed wafer with clearly visible crescent moon pattern.

Figure 2.10: The result of wafer preprocessing.

18

CHAPTER 3
Machine learning preliminaries

Machine learning is an area of computer science and statistics concerned with developing
knowledge discovery algorithms and techniques. Machine learning algorithms try to
find patterns in observed data samples generated by some random process in order to
make assumptions about previously unseen data. The process of finding these patterns
in available data is called generalization. Generalization algorithms typically assume
that the observed data has been sampled from some underlying probability distribution
characterized by unknown parameters that are being estimated. According to [GBC16],
machine learning is a form of applied statistical learning theory with increased emphasis
on computational estimation of complicated functions and decreased emphasis on proving
confidence intervals around these functions.

It is important to note, that all practical machine learning algorithms rely on an inductive
reasoning which assumes some underlying structure of the problem under consideration.
In general, no machine learning algorithm is inherently superior than other machine
learning algorithms, when the performance is averaged over all possible problems. This
phenomenon is referred to as the No Free Lunch (NFL) theorem and it has been proven
in [WM97]. The goal of machine learning is not to find a universal learning algorithm,
but rather to develop algorithms that perform well with data samples encountered in
real-world applications.

3.1 Learning paradigms
Different machine learning algorithms can be categorized according to their distinctive
characteristics. An overview of common categories of machine learning algorithms is
depicted in Figure 3.1.

Depending on whether the samples in the dataset are labeled or not, we can categorize
ML algorithms into the following classes:

19

3. Machine learning preliminaries

Goal of learning

Adaptation
learning

Single-task
learning

Training data

Unsupervised
learning

Supervised
learning

Semi-supervised
learning

Reinforcement
learning

Learned distribution

Discriminative
learning

Generative
learning

Multi-task
learning

Inference

Bayesian
learning

Frequentist
learning

Learning capacity

Deep
learning

Shallow
learning

Figure 3.1: Overview of different machine learning paradigms. The main focus of this
diploma thesis is depicted in red color.

• Supervised learning – it is assumed that all samples in training dataset are
labeled. For example: classification (discrete labels) or regression (continuous
labels).

• Unsupervised learning – it is assumed that no labels are available in the training
dataset. For example: clustering or anomaly detection.

• Semi-supervised learning – it is assumed that only a subset of training dataset is
labeled. Providing even a small amount of labels can bring a significant improvement
in accuracy compared to unsupervised learning.

• Reinforcement learning – the dataset does not consist of individual datapoints,
but rather of sequences of actions with associated rewards. The learner attempts to
find the sequence of actions that maximizes the total reward. For example: learning
the sequence of moves in a chess game.

Depending on the source and target distribution, we can categorize ML algorithms into
the following classes:

• Single-task learning – the learning algorithm learns only one independent goal
at the same time,

• Multi-task learning – the learning algorithm learns all tasks simultaneously.
Shared knowledge between the tasks can result in improved learning efficiency,
compared to a sequential single-task learning.

20

3.1. Learning paradigms

• Domain adaptation learning – the learning algorithm learns a target task by
transferring knowledge from an already learned source task that is in some ways
similar to the target task. Also called transfer learning.

Depending on the approach to statistical inference, we can categorize ML algorithms into
the following classes:

• Frequentist learning – the learning algorithm is based on a frequentist statistics.
This approach assumes that all data samples are drawn from a true probability
distribution described by an unknown parameter θ. The learning algorithm esti-
mates θ by a point estimator θ̂. The value of the true parameter θ is assumed to be
fixed (not a random variable) but unknwon, while the value of the estimate θ̂ is a
random variable. An example of frequentist estimation is discussed in Section 3.7.

• Bayesian learning – the learning algorithm is based on Bayesian statistics. In this
approach, the parameter θ is not assumed to be fixed. The algorithm makes some
initial a priori assumptions about the parameter value θ and the posterior belief
about the parameter θ is then updated by applying the Bayes’ theorem. When we
have only limited training data available, this approach usually generalizes much
better than the frequentist learning but with a higher computational cost when
trained on bigger datasets. An example of Bayesian estimation is discussed in
Section 3.8.

Depending on the learning capacity, we can distinguish two vaguely defined classes:

• Shallow (surface) learning – characterized by low learning capacity, typically
useful for simple or task-specific problems.

• Deep learning – characterized by high learning capacity, typically use a cascade
of multiple nonlinear processing units that can learn a hierarchy of concepts directly
from the data.

Given the input data x and associated labels y, we can distinguish two types of learning
algorithms:

• Discriminative learning – learns a conditional probability distribution p(y|x).

• Generative learning – learns a joint probability distribution p(x, y).

Example 1 (Generative vs. discriminative models). Generative models are more expres-
sive but also more difficult to train than discriminative models. As an example, we can
train a discriminative model p(y|x) for recognizing hand-written digits: given a bitmap
x ∈ Rn, the discriminative model returns probabilities for labels y ∈ [0, 9]. However, if

21

3. Machine learning preliminaries

we train a generative model, it can be easily transformed into two discriminative models:
p(x, y) = p(y|x)p(x) = p(x|y)p(y). This means that while the discriminative model can
be used only for recognizing hand-written digits, the generative model can be also used for
sampling of new hand-written digits that match a given label.

3.2 Parametric models
One of the central central concepts in machine learning is called a statistical model, which
we define as a pair (S,P), where S is a the sample space and P is a set of probability
distributions on S. The intuition behind the statistical model is, that there is a "true"
(but unknown) probability distribution that generates observed data from the sample
space S and a set of distributions P which is the embodiment of assumptions about the
true distribution.

If the set of distributions P can be described by a finite number of parameters θ =
(θ1, θ2, . . . , θn), we call such model a parametric model.

Definition 4 (Parametric model). A parametric model is a pair (S,P), where S is
a sample space and P collection of probability distributions:

P = {Pθ | θ ∈ Θ}

where Pθ is a probability distribution described by a finite-dimensional vector of
parameters θ = (θ1, θ2, . . . , θn).

From now on, it will be assumed that the sample space S from Definition 4 is given
implicitely and the probability distribution is defined by a probability density function
p : S → S. Such parametric model will be denoted by p(·; θ).

Example 2. The family of normal distributions N (µ, σ2) is a very simple parametric
model described by only two paramers – the mean µ and the variance σ2, or written in a
vector form as θ = (µ, σ2).

Example 3. A notable subset of parametric models are so called “mixture models”. For
example the Gaussian Mixture Model (GMM) consists of K weighted normally-distributed
components described by parameters θ = (µ1, µ2, . . . , µK , σ

2
1, σ

2
2, . . . , σ

2
K , φ1, φ2, . . . , φK)

and is defined by:

p(x; θ) =
K∑
i=1

φiN (x;µi, σ2
i)

Complex parametric models trained by deep learning algorithms can have several thou-
sands of parameters. The measure of “complexity” of a parametric model is described by
the term capacity of a model (or Vapnik–Chervonenkis dimension [VC15]). The exact

22

3.3. Convergence of random variables

mathematical formulation of the capacity is out of scope of this diploma thesis. Very
roughly speaking, we usually expect that the more parameters the model has, the more
information about the sample space it can store. Models with too low capacity can only
learn the most significant features from the training data (underfitting), while models
with too high capacity can fit to the observations too tightly and “memorize” the training
dataset (overfitting). Building models that are not underfitting nor overfitting is one of
the main challenges of machine learning. The term capacity is also closely related to
terms bias and variance which are discussed in Section 3.5.

3.3 Convergence of random variables
Parametric models are described by a sequence of parameters θ̂ = (θ̂1, θ̂2, . . . , θ̂n), that
are iteratively updated during the training of the model by a machine learning algorithm.
After a certain number of iterations, these parameters tends to converge towards the true
but unknown parameters θ = (θ1, θ2, . . . , θn) that characterize some sort of “idealized
model”. The estimated parameters θ̂ are modeled by a sequence of random variables.

When we talk about a sequence of real numbers (xn), the notion of convergence towards
x (denoted by xn → x) is an unambiguous concept, meaning that as n increasing, we are
getting “closer and closer” towards x (or formally written as limn→∞ xn = x). However,
when we talk about a sequence of random variables, we can recognize different ways of
interpreting what getting “closer and closer” actually means.

3.3.1 Modes of convergence

Various iterative machine learning algorithms are constrained by different modes of
convergence.

Definition 5. Let {Xn} be a sequence of random variables and X a random variable.
Then we say that Xn converges towards X:

• almost surely (denoted by Xn
a.s.−−→ X) if:

P[lim
n→∞

Xn = X] = 1,

• in the Lp-norm for p > 0 (denoted by Xn
Lp−→ X) if:

lim
n→∞

E[|Xn −X|p] = 0,

• in probability (denoted by Xn
P−→ X) if for all ε > 0:

lim
n→∞

P[|Xn −X| > ε] = 0,

23

3. Machine learning preliminaries

• in distribution (denoted by Xn
D−→ X) if for all bounded continuous functions

f :
lim
n→∞

E[f(Xn)] = E[f(X)].

Lemma 2. The following implications hold:

• Xn
Ls−→ X =⇒ Xn

Lp−→ X for s > p ≥ 1

• Xn
Lp−→ X =⇒ Xn

P−→ X

• Xn
a.s.−−→ X =⇒ Xn

P−→ X

• Xn
P−→ X =⇒ Xn

D−→ X

Proof. Provided in [Vaa98].

Figure 3.2: Implication graph of convergence modes.

3.4 Empirical risk minimization

Some machine learning problems can be formalized in terms of minimizing a generalization
error called the expected risk. Assume a training dataset of m samples X = {x1, . . . ,xm}
and desired outputs Y = {y1, . . . ,ym} where xi ∈ X ,yi ∈ Y are drawn from some
underlying data-generating probability distribution pdata(x,y). We define a decision
function f : X → Y parametrized by θ that takes a sample x and predicts the desired
output y.

Definition 6 (Expected risk). The expected risk R(θ) is given by:

R(θ) = E(x,y)∼pdata [L(f(x; θ),y)]

where f(x; θ) is a decision function parametrized by θ and L is a loss function that
measures the cost of making a decision f(x; θ) while the true output is y.

24

3.5. Bias-variance trade-off

Calculating R(θ) is intractable because the underlying true data-generating distribution
pdata(x,y) is unknown. In practice, we only have available a finite number of samples X,
so we replace the true distribution pdata(x,y) with an empirical distribution p̂data(x,y)
defined only by the training dataset X. By strong law of large numbers it holds that
p̂data(x; θ) a.s.−−→ pdata(x; θ) and provided enough training samples we get a meaningful
approximation of the true distribution pdata. Hence, we can optimize the empirical risk
Remp(θ) instead of the intractable expected risk R(θ).

Definition 7 (Empirical risk). The empirical risk Remp(θ) is given by:

Remp(θ) = E(x,y)∼p̂data [L(f(x; θ),y)] = 1
m

n∑
i=1
L(f(xi; θ),yi)

where n ∈ N is the number of samples in the training dataset X = {x1,x2, . . . ,xn}.

The goal of empirical risk minimization is then to find parameters θ̂ that minimizes the
difference between the prediction f(x; θ) and the desired output y the most among all
considered parameters θ.

Definition 8 (Empirical risk minimization). The empirical risk minimization is the
process of finding the best parameters θ̂ that minimizes the empirical risk Remp(θ)
among all considered θ ∈ Θ:

θ̂ = arg min
θ∈Θ

Remp(θ) (3.1)

Empirical risk minimization is not an algorithm, but rather a very general optimization
approach. The concrete algorithm can be designed by constructing the procedure of
“guessing” different values of θ and by defining the decision function f and the loss
function L.

3.5 Bias-variance trade-off

A common issue in machine learning is that the model fails to generalize because it fits
too tightly or too loosely to the training dataset. The quality of the estimation can
be measured with mean squared error (MSE), which is an average of the square of the
deviations between the estimated parameter θ̂ and the true parameter θ.

Definition 9. The mean squared error of the estimate θ̂ with respect to the true
parameter θ is given by:

MSEθ(θ̂) = E[(θ̂ − θ)2]

25

3. Machine learning preliminaries

The MSE is always non-negative and decreases with increasing quality of the estimator.
Lemma 3 shows that the MSE can be decomposed into two components – variance and
bias. Bias is the difference between the average value of the estimator and the true
parameter. Variance is the variability of estimates of the true parameter.

Definition 10. The bias of the estimate θ̂ with respect to the true parameter θ is
given by:

Biasθ[θ̂] = E[θ̂]− θ

The variance of the estimate θ̂ with respect to the true parameter θ is given by:

Var[θ̂] = E[(θ̂ − E[θ̂])2]

Lemma 3 (Bias-variance trade-off). Let θ be the true parameter and θ̂ the estimate of
this parameter. The MSE of θ̂ w.r.t. θ can be decomposed as follows [GBD92]:

MSEθ(θ̂) = Biasθ[θ̂]2 + Var[θ̂]

Proof.

MSEθ(θ̂) = E[(θ̂ − θ)2]
= E[(θ̂ − E[θ̂] + E[θ̂]− θ)2]
= E[(θ̂ − E[θ̂])2]︸ ︷︷ ︸

Var[θ̂]

+ (E[θ̂]− θ)2︸ ︷︷ ︸
Biasθ[θ̂]2

+2E[(E[θ̂]− θ)(θ̂ − E[θ̂)]

And the cross-product term can be eliminated as follows:

E[(E[θ̂]− θ)(θ̂ − E[θ̂)] = E[θ̂E[θ̂]− θθ̂ − E[θ̂]2 + θE[θ̂]]
= E[θ̂]2 − θE[θ̂]− E[θ̂]2 + θE[θ̂]
= 0

A model with the variance too high is referred to as an overfitting model. On the
other hand, a model with bias too high is referred to as an underfitting model. This
phenomenon is illustrated in Figure 3.3 and demonstrated on a concrete instance of a
regression problem in Figure 3.4.

3.6 Point estimation
Although the term estimator has already been intuitively used in Section 3.5, a formal
definition is useful in order to explore some interesting properties. Assume that there exists

26

3.6. Point estimation

Model complexity

Er
ro

r

Underfitting Overfitting

Optimal model

Bias2

Variance
MSE

Figure 3.3: Bias-variance trade-off.

0.00 0.25 0.50 0.75 1.00
house size

0

2

4

6

8

10

12

pr
ice

d = 1 (underfitting)

(a) Underfitting – the model
misses too many data points
(high bias).

0.00 0.25 0.50 0.75 1.00
house size

0

2

4

6

8

10

12

pr
ice

d = 2

(b) The model generalizes the
training dataset well.

0.00 0.25 0.50 0.75 1.00
house size

0

2

4

6

8

10

12

pr
ice

d = 4 (overfitting)

(c) Overfitting – the model is
too sensitive to small fluctua-
tions in the training set (high
variance).

Figure 3.4: Generalization issues demonstrated on an instance of a regression problem.

a true (but unknown) data-generating distribution function pdata(x, y; θ) parametrized
by some unknown parameters θ. Also assume that we are given a training dataset
X = {x1, x1, . . . , xm}. Depending on the goal of a given machine learning task, we are
typically interested in finding the conditional probability distribution pmodel(y|x; θ̂m)
(discriminative model) or the joint probability distribution function pmodel(x, y; θ̂m)
(generative model) parametrized by θ̂m, where m is a number of samples in the dataset
(or just θ̂ if the number of samples is not important in a given context), that estimate the
true probability distribution function pdata(x, y; θ). If θ̂ is only a single best estimation
of the true parameter θ, we will call such estimation a point estimation. In contrast, if θ̂
is an interval of plausible estimations of θ, it is referred to as interval estimation.

27

3. Machine learning preliminaries

Definition 11 (Point estimator). A point estimator (or statistic) of a parameter θ
is any function g : Xm → Θ of the data X = {xi ∈ X}mi=1. The output of the point
estimator g is called the point estimate θ̂m, i.e.:

θ̂m = g(X) = g(x1,x2, . . . ,xm)

From now on, if not explicitly specified, an estimator will be considered a point estimator
(and not interval estimator). Because the function g from Definition 11 can be any
function of the data, we define some desired properties that make the estimate θ̂ of true
parameter θ useful.

Definition 12 (Properties of an estimator). A point estimator g : Xm → Θ is:

• (simply) consistent if:
θ̂m

P−→ θ,

• MSE consistent if:
θ̂m

L2−→ θ,

• asymptotically normal if it converges to a normal distribution:
√
m(θ̂m − θ)

D−→ N (0, σ2
θ)

where σ2
θ is called an asymptotic variance of the estimate,

• unbiased if:
Biasθ[θ̂m] = 0,

• asymptotically unbiased if:

Biasθ[θ̂m] D−→ 0.

3.6.1 Bias vs. consistency

It is worth to outline the difference between these two related concepts. Assume that we
are estimating an unknown parameter θ with a point estimate θ̂m on a training dataset
of m samples, then vaguely speaking:

• consistency (θ̂m
P−→ θ) says that with an increasing number of samples in the

dataset, the probability that the estimate θ̂m will be different from the true
parameter θ is very low,

28

3.7. Maximum Likelihood Estimation (MLE)

• asymptotic unbiasedness (E[θ̂m] D−→ θ) says that with an increasing number
of samples in the dataset, the estimates θ̂m will be “centered” around the true
parameter θ.

As shown in Lemma 4, asymptotic unbiasedness implies consistency under the assumption
that the variance also converges towards 0. However, the converse does not hold, as
demonstrated on a pathological example of a distribution in Example ??.

Lemma 4. If the variance of an asymptotically unbiased estimator of θ converges in
distribution towards 0, then it is a consistent estimator of θ, i.e.:

Biasθ[θ̂m] D−→ 0 ∧Var[θ̂m] D−→ 0 =⇒ θ̂m
P−→ θ.

Proof. From Lemma 3:

θ̂m
L2−→ θ ⇐⇒ lim

m→∞
E[|θ̂m − θ|2] = 0

⇐⇒ lim
m→∞

(Biasθ[θ̂m]2 + Var[θ̂m]) = 0

⇐⇒ Biasθ[θ̂m]2 D−→ 0 ∧Var[θ̂m]2 D−→ 0.

From Lemma 2 then follows that MSE consistency implies simple consistency:

θ̂m
L2−→ θ =⇒ θ̂m

P−→ θ.

3.7 Maximum Likelihood Estimation (MLE)
A very simple method for estimating the parameters θ of a statistical model given a set
of observed data X = {x1, x2, . . . , xn} is based on maximizing the likelihood that the
data was generated by our statistical model.

Definition 13 (Maximum Likelihood Estimation). Let X = {x1, . . . , xm} be a set
of samples drawn from a true (but unknown) probability distribution pdata(x). Let
pmodel(x; θ) be a distribution parametrized by a set of parameters θ and estimating
the true distribution pdata(x). The maximum likelihood estimate θ̂MLE is then defined
by:

29

3. Machine learning preliminaries

θ̂MLE = arg max
θ

pmodel(X; θ)

= arg max
θ

m∏
i=1

pmodel(xi; θ)

The product in Definition 13 is undesirable, because finding the maximum often involves
calculating a derivative of the function being maximized. However, we can observe that
∀f : arg max f(x) = arg max g(f(x)) if g is a monotonically increasing function. Hence,
it is more convenient to obtain an equivalent estimator by putting g(x) = log(x)/m and
optimizing what is called an expected log-likelihood:

θ̂MLE = arg max
θ

1
m

log
m∏
i=1

pmodel(xi; θ)

= arg max
θ

1
m

m∑
i=1

log pmodel(xi; θ)

= arg max
θ

Ex∼pdata [log pmodel(x; θ)]

(3.2)

As shown in [NM86], the estimate given by θ̂MLE has favourable properties – it is a
consistent, asymptotically unbiased and asymptotically normal estimator of the true
parameter θ.

3.8 Maximum A Posteriori (MAP) estimation
Maximum a posteriori (MAP) estimation is closely related to Maximum Likelihood
Estimation (MLE) described in Section 3.7. While MLE is based on frequentist inference
and estimations depend entirely on the training data, MAP employs Bayesian inference
and requires to make some additional assumptions about the prior distribution. [GBC16]

Assume there exist a prior distribution p(θ) over the true parameter θ and the probability
of the evidence is fixed. Using Bayes’ theorem we have:

p(θ | x)︸ ︷︷ ︸
posterior

=

likelihood︷ ︸︸ ︷
p(x | θ)

prior︷︸︸︷
p(θ)∫

p(x)︸ ︷︷ ︸
evidence

∝ p(x | θ)p(θ) (3.3)

In Equation (3.3), we omit the normalizing constant p(x), since it’s always positive and
we are only interested in optimization of parameter θ. We can define the optimization
problem in a similar way as in case of MLE.

30

3.9. Information entropy

Definition 14. Let X = {x1, . . . , xm} be a set of observations. The maximum a
posteriori estimation θ̂MAP is then defined by:

θ̂MAP = arg max
θ

p(θ | x) = arg max
θ

log p(x | θ) + log p(θ)

MAP can be seen as a regularized version of MLE – more about regularization is discussed
in Section 3.13. In fact, if the prior is a uniform distribution (i.e. if p(θ) is a constant)
then the penalty has no effect and in such cases MAP is equal to MLE.

3.9 Information entropy
Many machine learning algorithms have their roots in information theory. The central
concept of the information theory is called an “information entropy”, which is illustrated
on Example 4 for each coin.

Example 4. Suppose we make an experiment and flip three different coins, 20 times
each. We observe the following values (H = head, T = tail):

1. HTTTHHTHTHHHHTTTTTHH

2. HHHHHHHHHHHHHHHHTHHH

3. HHHHHHHHHHHHHHHHHHHH

The first case is an unbiased coin which gave us an equal number of heads and tails, i.e.
p(H) = p(T) = 1/2. Hence, we are very uncertain about the next flip – we say that each
observed flip has the same amount of self-information. The second coin has p(H) = 19/20
and p(T) = 1/20 – flips where we hit a head provided only a small amount of information
(i.e. we wouldn’t be very surprised if the next flip in a row is also head), while the single
tail that we hit was very informative. The last coin hits only heads, so each of the flips
provide no self-information at all.

This simple example illustrates the concept of entropy, which measures the average
amount of self-information over all observations of some random event. The entropy of
an unbiased coin is maximal, while the coin that hits only heads (or only tails) has zero
entropy.

Definition 15 (Self-information). The self-information of a discrete random variable
X with a set possible outcomes X = {x1, x2, . . . , xn} and probability distribution p(x)

31

3. Machine learning preliminaries

is defined by:
I(x) = − log p(x).

Definition 16 (Entropy). The entropy H(X) of a discrete random variable X is
defined by:

H(p) = E[I(x)] = −
∑
x

p(x) log p(x).

The entropy can be also defined for outcomes of two random variables X and Y , informally
speaking:

• joint entropy H(X,Y) – the average self-information of observing the outcomes
of two random variables X and Y ,

• conditional entropy H(X|Y) – the average self-information needed to describe
the outcome of a random variable X given the outcome of Y ,

• mutual information I(X,Y) – the mutual dependence between random variables
X and Y .

Definition 17 (Entropy of two variables). The joint entropy H(X,Y) of two
discrete random variables X and Y with respective sets of possible outcomes X and
Y is defined as:

H(X,Y) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y).

The conditional entropy H(X|Y) of a discrete random variable X given Y with
respective sets of possible outcomes X and Y is defined as:

H(X|Y) = H(X,Y)−H(Y) = −
∑

x∈X ,y∈Y
p(x, y) log p(x, y)

p(y) .

The mutual information I(X,Y) of two discrete random variables X and Y with

32

3.9. Information entropy

respective sets of possible outcomes X and Y is defined as:

I(X,Y) = = H(X)−H(X|Y)
= H(Y)−H(Y |X)
= H(X) +H(Y)−H(X,Y)
= H(X,Y)−H(X|Y)−H(Y |X)

= −
∑

x∈X ,y∈Y
p(x, y) log p(x, y)

p(x)p(y) .

The entropy of two random variables is illustrated on Figure 3.5.

H(X|Y) H(Y|X)I(X,Y)

H(X,Y) = H(X|Y) + I(X,Y) + H(Y|X)

H(X) = H(X|Y) - I(X, Y)

Figure 3.5: The entropy of two random variables X (red) and Y (blue).

Some interesting properties of the entropy:

• Information is non-negative, i.e. ∀X : I(X) ≥ 0 and ∀X,Y : I(X,Y) ≥ 0. As a
corollary, also H(X) ≥ H(X|Y).

• Entropy (an average information) is non-negative, i.e. H(·) ≥ 0.

• Joint entropy is symmetric, i.e. H(X,Y) = H(Y,X).

• Conditional entropy is not symmetric, i.e. H(X|Y) 6= H(Y |X).

• The random variable has the maximum entropy if its outcomes are normally
distributed [CT91].

33

3. Machine learning preliminaries

3.10 Kullback–Leibler (KL) divergence
Let p(x) and q(x) be two probability distribution functions. Informally, KL-divergence
DKL(p‖q) is a non-negative number that tells us, how different these two distributions
are. DKL(p‖q) = 0 indicates that distributions p and q have similar behaviour. Formally,
if {p1, p2, . . . } is a sequence of probability distributions, then:

lim
n→∞

DKL(pn‖q) = 0 =⇒ pn(x) D−→ q(x).

Definition 18 (KL-divergence). Let p(x) and q(x) be two probabilisty distributions.
KL-divergence between p and q is given by:

DKL(p‖q) = Ex∼p
[

log p(x)
q(x)

]
= Ex∼p(θ)[log p(x)− log q(x)].

Some important properties can be immediately seen from the definition:

• DKL(p‖q) ≥ 0 and DKL(p‖q) = 0 ⇐⇒ p = q (Gibb’s inequality)

• DKL(p‖q) 6= DKL(q‖p)

• DKL(p‖q) = DKL(p1‖q1) + DKL(p2‖q2) for joint distributions p(x) = p1(x)p2(x)
and q(x) = q1(x)q2(x).

Lemma 5. If p is fixed, minimizing KL-divergence is equivalent to maximizing empirical
likelihood.

Proof. Let p be a fixed but unknown sampling distribution indexed by parameter θ and
q the model distribution indexed by estimator θ̂.

The KL-divergence can be decomposed into entropy H(p) = Ex∼p(θ)[− log p(x)] and
cross-entropy H(p, q) = Ex∼p[− log q(x)] as follows:

DKL(p‖q) = Ex∼p(θ)[log p(x)− log q(x)]
= Ex∼p(θ)[log p(x)]− Ex∼p[log q(x)]
= − H(p)︸ ︷︷ ︸

entropy

+ Hp(q)︸ ︷︷ ︸
cross−entropy

Now, suppose that distributions p and q are parametrized by θ. Since the sampling
distribution p is fixed, the entropy H(p) is constant and can be omitted in a parameter
optimization problem:

34

3.11. Stochastic Gradient Descent (SGD)

arg min
θ

DKL(p‖q) = arg min
θ

Hp(q)

= arg min
θ

Ex∼p[− log q(x)]

= arg max
θ

Ex∼p[log q(x)]

= θ̂MLE

Definition 19 (Cross-entropy). The cross-entropy Hp(q) for probability two distri-
butions p and q is defined as:

Hp(q) = −Ex∼p[log q(x)] = −
∑
x

p(x) log q(x)

The cross-entropy is an important function that is widely used in practice as a loss
function for training deep learning models. Efficient GPU implementations are available
in most popular deep learning frameworks like TensorFlow, PyTorch or Theano.

3.11 Stochastic Gradient Descent (SGD)
Methods based on gradient descent are one of the most frequently used iterative methods
for estimation of parameters of deep learning models. The simplest version of the gradient
descent algorithm starts by random initialization of parameters θ0. Then in each i-th
iteration it calculates the average gradient 1 νi over all n samples in the training dataset
as follows:

νi := ∇J(θi) = 1
n
∇θi

n∑
j=1
L(f(xj ; θi),yj) (3.4)

where J(·) is an empirical risk as defined in Section 7. The gradient ∇J(θi) is a
generalization of the derivative for functions with multiple variables and it represents the
direction and steepness of the tangent of the function J(·). The average gradient ν is a
vector that determines towards which direction and how much we update parameters in
each iteration. The new parameters θ[i+1] of the model are updated in each i-th iteration
towards the direction of the average gradient as follows:

θi+1 := θi − ενi (3.5)
1The gradient of a given function f(x1, x2, . . . , xn) (denoted by ∇f) is a vector of all partial derivatives

of f , i.e. ∇f =
(
∂f
∂x1

, ∂f
∂x2

, . . . , ∂f
∂xn

)
35

3. Machine learning preliminaries

where ε is a learning rate. The disadvantage of this approach is that for very large
datasets, it may take a long time to calculate even a single parameter update. Taking
only a subset of the training samples in each iteration allows to efficiently work with
even very large datasets [BB08].

A randomized version of a full gradient descent algorithm is known Stochastic Gradient
Descent (SGD). The gradient in SGD is evaluated only over a single sample xi in every
i-th iteration, which means that new parameters are updated as follows:

θi+1 := θi − ν∇θiL(f(xi; θi),yi). (3.6)

In practice, subsets of the training dataset of size around 10 to 10.000 samples (so
called “mini-batches”) are commonly used. The pseudocode of a SGD algorithm with
mini-batches is shown in Algorithm 3.1 and its runtime progress over 5 iterations is
illustrated on two examples in Figure 3.6. The algorithm stops when we reach the
stopping criterion – for example if the average gradient ν ≈ 0, which means we have
reached a local minimum and the parameters are not updated anymore.

Algorithm 3.1: Stochastic Gradient Descent (SGD) with mini-batches.
Input: Learning rate ε, training dataset X and desired outputs Y

Output: Parameters θ of the given parametric model f , s.t.
∀xi ∈ X,yi ∈ Y : yi ≈ f(xi; θ)

1 Choose initial parameters θ

2 while stopping criterion not met do
3 Choose a mini-batch of m samples {x1, x2, . . . , xm} ⊆ X with corresponding

outputs {y1, y2, . . . , ym} ⊆ Y

4 ν := 1
m∇θ

∑m
i=1 L(f(xi; θ),yi) . Calculate gradient

5 θ := θ − εν . Update parameters

6 end

7 return θ

The SGD is a general optimization algorithm and its performance significantly depends
on the choice of hyperparameters – learning rate ν, cost function L(·) and the decision
function f(·). Sections 3.11.1 and 3.11.2 provide more details on choosing the learning
rate and the cost function. An obvious limitation of the SGD algorithm is that the
decision function f must be differentiable. The only decision function considered in this
diploma thesis is a multilayered perceptron and is described in Section 3.12.

36

3.11. Stochastic Gradient Descent (SGD)

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

0.4

0.2

0.0

0.2

0.4

y

Data and fit
1 = 0.100
1 = 0.165
1 = 0.313
1 = 0.396
1 = 0.442

0.2 0.0 0.2 0.4 0.6 0.8 1.0
1

0.00

0.02

0.04

0.06

0.08

J(
1)

Cost function

(a) Stochastic Gradient Descent (SGD) optimizing a single parameter.

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
x

4

2

0

2

4

y

Data and fit

0 = 0.500, 1 = 4.000
0 = 2.650, 1 = 2.011
0 = 2.965, 1 = 0.681
0 = 2.996, 1 = 0.208
0 = 3.000, 1 = 0.802

1 0 1 2 3 4
0

4

2

0

2

4

1

0.600

1.200

1.800
1.800

2.4003.000

3.600

4.200

4.8005.400

6.000

6.600

7.200

7.8008.400

8.4
00

9.000
9.600

10.200

10.800

11.400

12.000
12.600

13.200
13.800

14.400
15.000

Cost function

(b) Stochastic Gradient Descent (SGD) optimizing two parameters.

Figure 3.6: First 5 iterations of a SGD algorithm trying to find the optimum of a normal
distribution function in 2 and 3 dimensions. The blue line depicts a randomly initialized
parameters θ0, that are then iteratively improved. The gradient is decreasing as we are
reaching the local optimum.

3.11.1 Learning rate

The learning rate ε is a hyperparameter that controls the speed of updating parameters
of the model the SGD algorithm. In general, the higher the value ε is, the faster the
SGD algorithm learns. However, too high value of ε may result in oscillating changes
of parameters θ and divergent behaviour. On the other hand, too low values of ε may
cause the algorithm to get stuck in a critical point (i.e. local optimum or a saddle point).
The effect of too high and too low learning rate is illustrated in Figure 3.7. A common
practice to avoid these issues is to adaptively change the learning rate in each iteration
of the algorithm. Parameters of the model are then updated as follows:

θi+1 := θi − εiνi

where εi is the adaptive learning rate at i-th iteration of SGD algorithm. Sufficient
condition that guarantee the convergence of SGD algorithm are the following [GBC16]:

37

3. Machine learning preliminaries

∞∑
k=1

εk =∞

∞∑
k=1

ε2k <∞

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

J(
)

(a) LR too low.

0.0 0.2 0.4 0.6 0.8 1.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06

J(
)

(b) LR appropriate.

0.0 0.2 0.4 0.6 0.8 1.0
0.00

0.01

0.02

0.03

0.04

0.05

0.06

J(
)

(c) LR too high.

Figure 3.7: The effect of a learning rate (LR) on the performance of a SGD algorithm.
If the LR is too low, the gradient is changed only very slowly and the algorithm may
get stuck in a local optimum. On the other hand, if the LR is too high, the gradient
oscillates too aggressively which may lead to a divergent behaviour.

There are many different adaptive learning rates used in practice. One of the simplest
approaches with a guaranteed convergence is a linearly decaying learning rate, defined as
follows for i-th iteration:

εi = ε0
1 + i · α

(3.7)

where α > 0 is a chosen decay rate.

3.11.2 Cost function

The cost function L(ŷ, y) measures how well our parametric model pmodel(·; θ) estimates
the true probability distribution pdata(·) by comparing the distance between samples
from these two distribution, i.e. y ∼ pdata and ŷ ∼ pmodel.

Quadratic cost

One of the simplest loss functions is Mean Squared Error (MSE), already discussed in
Section 3.5 in context of point estimators. It is the average squared prediction error
between two sets of n samples, defined as follows:

LMSE = 1
n
‖yi − ŷi‖22 = 1

n

n∑
i=0

(yi − ŷi)2 (3.8)

38

3.12. Artificial Neural Network (ANN)

In practical implementation where the Equation 3.8 is used only as a loss function for an
optimization problem, the constant 1/n can be ommited – such loss function is known as
quadratic cost. As explained in [KK17], quadratic cost function is useful for normally
distributed data. However, many real-world problems are not normally distributed which
leads to erroneous estimates and hence we need to use other cost function.

Cross-entropy cost

Kullback-Leibler divergence (also called information gain), which was discussed in Section
3.10, is a commonly used as a loss function for many machine learning problems. This
measure has its root in information theory and reflects the amount of information in bits
lost when we approximate distribution q with another distribution p:

LKL = Ex∼p
[

log p(x)
q(x)

]
= H(P,Q)︸ ︷︷ ︸

cross−entropy

− H(p)︸ ︷︷ ︸
entropy

(3.9)

The entropy H(p) of the true distribution p is a constant, so it can be omitted for
optimization problems.

3.12 Artificial Neural Network (ANN)
Artificial Neural Network (ANN) is a parametrized model inspired by a biological neural
network in animal brain. This network can be defined as a directed computational graph
consisting of a set of vertices (called neurons or units) connected by edges. Each neuron
holds two parameters that are being optimized – weight and bias.

Formally, a single artificial neuron (also called a perceptron) with n input edges and a
single output edge is modeled by the following function:

y = f(wTx + b) = f(
n∑
i=1

wixi + b) (3.10)

where x = (x1, x2, . . . , xn) is a column vector of inputs, y is a single output, b is a
parameter called bias, w = (w1, w2, . . . , wn) is a column vector of weights and f is an
activation function. A comparison of biological and artificial neurons is depicted in Figure
3.8.

3.12.1 Feed-forward multilayer perceptron

It is a common practice to group multiple neurons into layers that form a multilayer
feed-forward network, as depicted in Figure 3.9. Formally, each layer is a function:

y = f(Wx + b) (3.11)

39

3. Machine learning preliminaries

(a) Biological neuron with a signal flow from
input from dendrites to output axon termi-
nals. [Wik18]

w1

w2

wn

x1

x2

xn

Σ f

b

y

(b) Artificial neuron (perceptron) with in-
puts x1, x2, . . . , xn and single output y
modeled as a mathematical function y =
f(
∑n
i=1 wixi + b).

Figure 3.8: Comparison of a biological and artificial neuron.

where x ∈ Rn is the input vector of the layer, y ∈ Rm is the output vector of the layer,
f : Rm → Rm is an activation function, W ∈ Rm×n is the weight matrix and b ∈ Rm is
a bias vector.

x1

x2

...

...

y2

...

xn

ym

y1

Input vector Hidden layers Output vector

Figure 3.9: An example of a feed-forward neural network with two hidden layers, n inputs
and m outputs.

For simplicity, the weight matrix W and the bias vector b can be “packed” into a single
matrix with model parameters θ by appending the bias b as a column to the weight
matrix W and extending the vector x by a constant 1, as follows:

40

3.12. Artificial Neural Network (ANN)

y = f(Wx + b) = f
(

w11 w12 . . . w1n
w21 w22 . . . w2n
...

...
wm1 wm2 . . . wmn

x1
x2
...
xn

+

b1
b2
...
bm

)

= f
(

w11 w12 . . . w1n b1
w21 w22 . . . w2n b2
...

...
...

wm1 wm2 . . . wmn bm

x1
x2
...
xn
1

)

= f(θx̃)

(3.12)

where x̃ is a vector that was created from vector x by appending constant 1 to it.

Example 5. A 4-layered feed-forward neural network can be defined as follows:

y = f4(θ4f3(θ3f2(θ2f1(θ1x)))) (3.13)

where θ1, θ2, θ3, θ4 are the parameters of the model being optimized and f1, f2, f3, f4 are
the activation functions of each layer.

3.12.2 Back-propagation algorithm

The basic idea of back-propagation is to iteratively “guess” values of the parameters
θ1, θ2, . . . , θl in a feed-forward neural network based on given inputs X = {x1,x2, . . . ,xn}
and an expected outputs Y = {y1,y2, . . . ,ym}.

The parameters of the neural network in each layer are updated using the Stochastic
Gradient Descent algorithm described in Section 3.11. The back-propagation algorithm
takes advantage of a chain rule for computing the gradients of a composed function (such
as the neural network function). Given a composed function z = f(y), y = g(x), the
chain rule applies as follows:

∂z

∂x
= ∂z

∂y

∂y

∂x
. (3.14)

The number of gradients that need to be computed grows linearly with the depth of a
composed function (i.e. the number of layers of a neural network), which allows to use
the back-propagation algorithm for training even very deep feed-forward neural networks.

The algorithm consists of two alternating steps, that are repeated till the stopping
criterion is not met:

1. Forward propagation. Given an input x and the expected output y, the algo-
rithm calculates layer-by-layer the actual output of the network ŷ = ANN(x). The
loss of the network is given by the loss function L(y, ŷ).

41

3. Machine learning preliminaries

2. Backward propagation. Using the chain rule for derivatives, the algorithm calcu-
lates gradients for each layer and updates the parameters θ1, θ2, . . . , θl accordingly.

3.12.3 Activation function

A good choice of an activation function for each layer is crucial for designing the neural
network. The activation function provides a source of non-linearity to the network and
bounds the output values to a desired range. In order to calculate gradients using the
back-propagation algorithm, the activation function should be differentiable.

The simplest activation function is a linear function f(x) = x. However, this function is
only rarely useful in practice. A neural network that uses only linear activation functions
in not capable to express non-linear dependencies between its inputs and outpus, i.e. the
output of such network is just a linear combinations of the input. Only a network with
non-linear activation functions is able to learn non-trivial problems with a reasonably
small number of neurons [Knu].

Sigmoid f(x) = 1
1+e−x or hyperbolic tangent f(x) = tanh(x) = 2

1+e−2x−1 are non-linear
activation functions that are bounded to a constant range (sigmoid lies on an interval
(0, 1), tanh on (−1, 1)). This activation function is typically used for the output layer
in a neural network with inputs normalized to the same interval (for example grayscale
images with color vales of pixels between -1 to 1).

Rectified Linear Unit (ReLU) or Leaky ReLU is usually used for hidden layers, because
calculating their derivatives requires only very little computational cost in both forward
and backward propagation steps.

An overview of commonly used activation functions is provided in Table 3.1.

3.13 Regularization

Regularization is a strategy to prevent overfitting by providing additional information to
the ML algorithm [BvdG11]. An effective regularizer works by reducing variance while
not increasing bias too much. A machine learning algorithm may use a combination of
several different regularization techniques in order to stabilize the training of the network.

An important regularization technique to prevent overfitting is to impose a penalty Ω(θ)
on the loss function L(·; θ) in certain regions of the problem space:

θ̂ = arg min
θ

L(·; θ) + λΩ(θ) (3.15)

where λ is a scaling constant controlling the importance of the regularizer term Ω(θ).

42

3.13. Regularization

Name Plot Activation function Derivative

Linear f(x) = x f ′(x) = 1

Sigmoid f(x) = 1
1+e−x f ′(x) = f(x)(1− f(x))

Binary step f(x) =
{

0 x ≤ 0
1 x ≥ 0

f ′(x) =
{

0 x 6= 0
? x = 0

Hyperbolic
Tangent f(x) = tanh(x) f ′(x) = 1− f(x)2

Arc Tangent f(x) = tan−1(x) f ′(x) = 1

Rectified
Linear Unit
(ReLU)

f(x) =
{

0 x < 0
x x ≥ 0

f ′(x) =
{

0 x < 0
1 x ≥ 0

Leaky ReLU f(x) =
{
αx x < 0
x x ≥ 0

f ′(x) =
{
α x < 0
1 x ≥ 0

SoftPlus f(x) = log(1 + ex) f ′(x) = 1
1+e−x

Table 3.1: An overview of commonly used activation functions.

43

3. Machine learning preliminaries

3.13.1 Lp-norm penalty

Let consider a parametric model described with parameters θ. The Lp-norm is defined
as follows:

‖θ‖p = p

√√√√ n∑
i=1
|θ|p (3.16)

A regularization strategy based on Lp-norm moves the parameters of the model θ towards
the origin by setting the regularizer penalty term Ω from Equation 3.15 as a p-squared
Lp-norm as follows:

θ̂ = arg min
θ

L(·; θ) + λ‖θ‖pp. (3.17)

L0-norm 2 regularizer is the number of non-zero elements in parameters of the model.
Such regularizer tends to lower the capacity of the model by penalizing non-zero elements
and hence making the vector of parameters θ sparse. However, it has been shown that
optimizing a Lp-regularized problem with 0 ≤ p < 1 is NP-hard [GJY11].

In practical applications, L1-norm regularizer (also called LASSO = least absolute
shrinkage and selection operator) can be used instead of L0 regularizer. This regularizer
also induces sparsity of θ by shrinking parameters towards the origin and possibly making
some of them zero [Tib96].

L2-norm regularizer (also called Ridge regression or Tikhonov regularization) also encour-
ages shrinking of the coefficients by making the sum of the squares of the coefficients to
be small, but without inducing sparsity [HK70]. The sparsity-inducing effect is illustrated
in Figure 3.10.

A compromise between L1-norm and L2-norm is called elastic net regularizer. In fact,
both L1-norm and L2-norm regularizers can be seen as a special case of the elastic net
regularizer, defined as follows:

Ω(θ) = α‖θ‖1 + (1− α)‖θ‖22 = α
n∑
i=1

θi + (1− α)θT θ (3.18)

where α ∈ [0, 1] is a chosen constant. The elastic net regularizer encourages a group-
ing effect, which means that strongly correlated features tend to be assigned similar
parameters [ZH03]. A comparison of Lp-norm regularizer is depicted in Figure 3.11.

2L0 is not a norm in usual sense, in literature the following definition is used instead: ‖θ‖0 = #(i |
θi 6= 0).

44

3.13. Regularization

(a) ‖θ‖1 (b) ∇‖θ‖1 ∝ sgn(θ) (c) ‖θ‖2
2 (d) ∇‖θ‖2

2 ∝ θ

Figure 3.10: L1-norm and L2-norm regularizers demonstrated on a gradient descent
algorithm with an update rule θ ← θ − ε∇‖θ‖pp. The gradient ∇L1 is moving the
coefficients towards 0 at a constant rate −1 or 1 in each iteration. On the other hand,
the magnitude of ∇L2 is decreasing as the coefficient move towards 0, discouraging the
coefficients to become sparse.

(a) Lp with 0 < p < 1 (b) L1 (LASSO) (c) L2 (Ridge) (d) Elastic net

Figure 3.11: Geometric interpretation of Lp-norm regularizers.

3.13.2 Early stopping

This regularization strategy works by splitting the original training dataset D into a
new training dataset Dt and a validation dataset Dv. The machine learning algorithm
is trained on the dataset Dt and in each iteration, an error measured on the dataset
Dv is compared with an error measured in the previous iteration. If the error was
improved, parameters of the model are stored. The algorithm is stopped after p iterations
without improvement (when it’s expected that the model starts to overfit) and the stored
parameters from the best model are returned. [GJP95].

This regularization is very easy to implement and can be wrapped around an existing
machine algorithm without making any changes to the objective function. More compli-
cated versions of this algorithm use cross-validation approach by splitting the dataset D
into multiple partitions.

45

3. Machine learning preliminaries

3.13.3 Dropout

Dropout is a regularization technique developed specifically for artificial neural networks.
In each training iteration, each individual neuron are omitted is omitted with probability
p as shown in Figure 3.12. The dropout is applied only during the training phase, during
the validation phase the dropout parameter is set to p = 1. It has been shown that this
technique significantly reduces overfitting by learning a redundant representation of the
estimated distribution that does not rely only on a small subset of neurons when making
predictions. [SHK+14].

(a) Original neural network. (b) Neural network with dropout.

Figure 3.12: Example of dropout regularizer applied on a neural network.

3.13.4 Ensemble averaging

The idea behind a model averaging is to train k different models separately and make
predictions by averaging individual predictions across all k models. Combining multiple
models and averaging their predictions often performs better than training only one
model with the same total capacity [PR91].

3.13.5 Dataset augmentation

A model trained on more data generalizes better, but in practice only a limited amount
of data is available. However, in some problems it is possible to generate new samples
in the dataset. New samples can be generated for example by adding artificial noise to
existing samples or by applying transformations of the data – for example if we have a
dataset consisting of bitmap images, we can generate new samples by rotating or resizing
existing images.

46

CHAPTER 4
Feature extraction

As the dimensionality of a training dataset increases, the volume of the space in which a
machine learning algorithm operates grows exponentially in volume which prevents to
effectively identify patterns in the dataset. This issue is also referred to as24nota.ru a curse
of dimensionality [Bel61]. It has been shown, that predictive power of machine learning
model decreases as the dimensionality increases [Hug68]. The goal of dimensionality
reduction is to overcome the cusrse of dimensionality by reducing the sample space while
trying to preserve as much structure in the data as possible.

Assume that each sample x from the training dataset consist of n features, i.e. x =
(f1, f2, . . . , fn). There are two types of dimensionality reduction approaches:

• feature selection – the dimensionality of each sample is reduced by selecting only
a subset of m ≤ n features. Each high-dimensional input sample x is transformed
into a feature vector: y = (fi1 , fi2 , . . . , fim).

• feature extraction – the dimensionality is reduced by projecting high-dimensional
samples into a feature space with less dimensions. Each high-dimensional input
sample x is transformed into a feature vector: y = (g1(x), g2(x), . . . , gm(x)).

Many dimensionality reduction approaches have been developed, however there is no
clear evidence that any of them is superior to the other on all types of tasks. In fact, all
dimensionality reduction techniques are equivalent if their performance is averaged over
all possible problems. This phenomenon is called No Free Lunch theorem [WM97]). The
performance of a machine learning algorithm always depends on the underlying structure
that is assumed to be present in the training dataset – the same algorithm may perform
well on one dataset, but poorly on another.

In this work, two unsupervised feature extraction techniques based on generative modeling
will described in detail – namely Variational Autoencoder and Generative Adversarial

47

4. Feature extraction

Network (GAN). These methods will be then compared with more traditional unsupervised
dimensionality reduction techniques that are commonly used in various domains. Finally,
it will be concluded that these approaches in some aspects outperform other compared
methods when evaluated on the wafermap measurement data and might be suitable for a
consideration in a practical application.

4.1 Variational Autoencoder

Suppose we are given a set of n samples X = {x1, x2, . . . , xn} and suppose these samples
are generated by some random process that involves a unobserved (latent) continuous
variable z. In this scenario, given the value of the latent variable z, each sample x is
generated by the true (but unknown) data-generating conditional probability distribution,
i.e. x ∼ p(x|z). This model is illustrated in Figure 4.1.

p(z) p(x)

p(x|z)

p(z|x)

Figure 4.1: Schematic view of the generative model p(x, z) that defines the relationship
between available samples modeled by a random variable x and the latent variable z.

Furthermore, we also assume that the true data-generating probability distribution p(x|z)
can be approximated by a parametric model pθ(x|z) characterized by a parameter θ. The
generative model parametrized by θ is then given by:

pθ(x, z) = pθ(x|z)pθ(z) = pθ(z|x)pθ(x). (4.1)

We make a strong assumption about the latent variable distribution pθ(z) – for instance
we assume that each latent variable z is normally distributed. So in such model, we know
two things:

1. we have available data samples generated by the true (but unknown) distribution
p(x|z),

2. we fix the latent variable distribution p(z) according to our strong assumption.

In order to extract features from the dataset, we would like to build an algorithm for an
effective way of sampling from pθ(z|x). A naive idea would be to apply a Bayes’ rule as
follows:

48

4.1. Variational Autoencoder

pθ(z|x) = pθ(x|z)pθ(z)
pθ(x) . (4.2)

The p(x) in Equation 4.2 cannot be omitted – such simplyfing step is possible only
for parameter optimization problems, in this case we are interested in an exact value
of z sampled from pθ(z|x). The probability distribution p(x) could be calculated by
marginalizing-out the variable z as follows:

pθ(x) =
∫
pθ(x, z)dz =

∫
pθ(x|z)pθ(z)dz, (4.3)

but this is intractable for real-world problems when we are given only a finite number of
samples.

An approach suggested in [KW13] introduces a new conditional probability distribution
qφ(z|x) which is an approximation of pθ(z|x). Parameters φ of the probability distribution
qφ(z|x) are then optimized by the Kullback-Leibler divergence between pθ(z|x) and qφ(z|x)
as follows:

L(x, z) = DKL(qφ(z|x)‖pθ(z|x)). (4.4)

The probability distribution function qφ(z|x) will be referred to as an encoder, since
it takes a data sample x and encodes it to a latent code z. Similarly, the probability
distribution function pθ(x|z) will be referred to as a decoder, since it takes a latent code
z and generates the respective data sample x.

4.1.1 Evidence Lower Bound (ELBO)

Because our dataset X has been assumed to be sampled from the probability distribution
p(x|z) (i.e. not from p(z|x)), we are not able to optimize L directly using the Equation
4.4. Instead, we continue the derivation of the loss function L:

L(x, z) = Ez∼qφ(z|x)
[

log qφ(z|x)
pθ(z|x)

]
= Ez∼qφ(z|x)

[
log qφ(z|x)pθ(x)

pθ(x, z)
]

= Ez∼qφ(z|x)[− log pθ(x, z) + log qφ(z|x) + log pθ(x)]

(4.5)

where the term log pθ(x) is a constant and hence it can be ommited from parameter
optimization problems. This way, we get rid of the intractabile part of Equation 4.3. The
new formula is known in literature as Evidence Lower Bound (ELBO) [HBWP13] and it
will be denoted by LELBO. ELBO can be further decomposed as follows:

49

4. Feature extraction

LELBO(x, z) = Ez∼qφ(z|x)[− log pθ(x, z) + log qφ(z|x)]

= Ez∼qφ(z|x)
[
− log pθ(x|z) + log qφ(z|x)

pθ(z)
]

= H(qφ(z|x), pθ(x|z))︸ ︷︷ ︸
reconstruction error

+DKL(qφ(z|x)‖pθ(z))︸ ︷︷ ︸
regularizer

.

(4.6)

Intuitively, the first term from the Equation 4.6 is a reconstruction error, i.e. the cross-
entropy between the input to the encoder and the output of the decoder. The second
term serves as a regularizer that measures the amount of information lost when pθ(z) is
used to approximate qφ(z|x).

4.1.2 Reparametrization trick

Both the encoder qφ(z|x) and the decoder pθ(x|z) can be implemented as a neural network
and trained with a backpropagation algorithm described in Section 3.12.2. The forward
step of the backpropagation algorithm goes as follows:

1. we sample a latent code z from the encoder qφ(z|x) by providing a sample x from
the training dataset,

2. the latent code z is then passed to the decoder pθ(x|z) in order to decode it to an
approximation of x.

However, the backward step in such a network is problematic, because the random
sampling of the latent code z from the encoder qφ(z|x) is a non-differentiable operation
and hence we are not able to calculate a gradient for the backpropagation algorithm. A
solution known as reparametrization trick has been suggested in [KW13].

The idea of this trick is to shift the randomness of the sampling operation z ∼ qφ(z|x) to
a separate random variable ε ∼ N (0, I). Given a strong assumption that z is normally
distributed, the latent code ẑ ≈ z can be then sampled deterministically as follows:

ẑ = µ+ σ � ε (4.7)

where ε is a random noise vector, � is an element-wise product and vectors µ and σ are
two parameters to be trained in the last layer of the encoder neural network. This trick
is illustrated in Figure 4.2.

50

4.1. Variational Autoencoder

(a) Random sampling z ∼ qθ(z|x) is not differentiable.

(b) Deterministic sampling ẑ = µ+σ� ε is differentiable if we shift the randomness into a separate
random variable ε.

Figure 4.2: Reparametrization trick for an auto-encoding generative model. Blue lines
represent differentiable operations for which we are able to calculate gradients in back-
propagation algorithm. Red lines depict non-differentiable operations.

4.1.3 Implementation & experiments

As already discussed, distribution pθ(z) and qφ(z|x) from Equation 4.6 are both normally
distributed. The regularization term of the ELBO then yields 1:

DKL(qφ(z|x)‖pθ(z)) =
∫
qφ(z|x)(log pθ(z)− log qφ(z|x))dz

= 1
2

n∑
i=1

(1 + log(σ2
i)− µ2

i − σ2
i).

The reconstruction error is given by:

H(qφ(z|x), pθ(x|z)) = Ez∼qφ(z|x)[− log pθ(x|z)]

= 1
n

n∑
i=1

(
log yi + (1− xi) log(1− yi)

)
where xi are the training samples provided to the encoder pφ(z|x) and yi are the respective
outputs returned by the decoder pθ(x|z).

An architecture of the neural network used for experiments in this work for training the
variational autoencoder is depicted in Figure 4.3. The activation function used for hidden
layers is Rectified Linear Unit (ReLU):

1The full derivation the KL-divergence between two multivariate Gaussian distribution functions is
out of scope of this diploma thesis and is available in the original VAE paper [KW13]

51

4. Feature extraction

sReLU (x) = max(0, x). (4.8)

The input of the encoder has been normalized to interval (0, 1) as described in Chapter
2, hence also the output of the decoder should be on the same interval. For this reason,
the last layer of the decoder uses sigmoid activation function:

ssigmoid(x) = 1
1 + e−x

. (4.9)

The activation function for the last layer of the encoder is a simple linear function. More
discussion about the choice of activation functions is in Section 3.12.3.

Figure 4.3: An architecture of the neural network used for experiments in this work to
train the variational autoencoder.

The result of the Variational Autoencoder algorithm trained on the cleansed wafermap
datataset is depicted in Figure 4.4.

4.2 Generative Adversarial Network (GAN)

Generative Adversarial Network (GAN) is a game-theoretic approach to generative mod-
eling. Since the GAN was introduced a few years ago, this approach immediately gained
a lot of attention from the machine learning research community. Several improvements
or derived method based on GAN has been proposed some of them will be discussed in
this section.

The basic idea of GANs is to model the optimization problem as a min-max game with
two players competing against each other:

• generator – a function G(z; θG) that takes an input vector z ∼ pnoise and produces
a fake sample x ∼ pgen,

• discriminator – a function D(x; θD) that takes an input vector x and returns a
probability indicating whether the sample x is real (i.e. from the real dataset) or
fake (i.e. produced by the generator).

52

4.2. Generative Adversarial Network (GAN)

Figure 4.4: A visualization of the latent space learned by the Variational Autoencoder
used in this work.

This situation of competing generator and discriminator is illustrated in Figure 4.5.

The objective of GAN can be formalized as a non-cooperative minimax game with two
players optimizing the following problem [GPAM+14]:

53

4. Feature extraction

D(x)

G(z)
z~pnoise x~pgen

x~pdata

Generator

Discriminator

x1, x2, ...

Real dataset

real
or

fake?

Figure 4.5: The simplest GAN architecture, where G is trained to generate new samples
similar to the samples from the real dataset, while D is trained to recognize whether the
provided sample is real or fake.

min
G

max
D

V (D,G) = Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))] (4.10)

where G and D are differentiable functions modeled as neural networks. The Equation
4.10 is useful for theoretical analysis of the GAN problem, however it does not perform
well in practice because the gradient for effectively learning G with an iterative numerical
computation might be too low [GPAM+14]. As suggested in the GAN paper [GPAM+14],
instead of training G by minimizing Ex∼pnoise [log(1 − D(G(z)))], we can train G by
maximizing Ex∼pnoise [log(D(G(z)))]. The two loss functions for training the generator
and the discriminator neural networks then become:

LGAND = Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))]
LGANG = Ez∼pnoise [logD(G(z))]

4.2.1 Feature extraction with GAN

The aim of this chapter is to extract the most characteristic features from the wafer
dataset samples, but the GAN in its simplest form is not capable to do this task. The
generator can generate new photo-realistic samples, but since the only input to the
generator is a random noise, we are not able to interpret what was actually generated.
Similarly, the discriminator in a simple GAN is only trained to recognize real samples
from fake samples without providing any additional information about the sample in
question.

54

4.2. Generative Adversarial Network (GAN)

Fortunately, an information-theoretic extension to the GAN, known as as InfoGAN, has
been proposed in [CDH+16]. InfoGAN is capable to encode descriptive properties of
samples and to learn so called “disentangled representation” of the sample space in an
unsupervised manner. While simple GAN can only generate new samples randomly,
InfoGAN provides also a meaningful latent code that characterizes the sample.

The generator G(z) in a simple GAN takes only one trivial code, i.e. a random noise
vector z ∼ pnoise. In case of InfoGAN, the input of the generator G(z, c) is extended by
a latent code c ∼ platent. To ensure that the latent code c is meaningful, the loss function
is extended by a regularizer term that maximizes the mutual information I(c,G(z, c))
between the latent code c and the generated sample G(z, c) as follows:

I(c,G(z, c)) = H(c)−H(c|G(z, c))
= H(c) + Ez∼pnoise,c∼platent [log p(c|G(z, c))].

(4.11)

The p(c|G(z, c)) in Equation 4.11 is intractable the reasoning behind this intractability is
similar to the case of Variational Autoencoder described in Section 4.1. As suggested in
[CDH+16], we can create a new probability distribution q(c|x) that is an approximation
of p(c|x) and derive the lower bound on the mutual information as follows:

I(c,G(z, c)) = H(c) + Ez∼pnoise,c∼platent
[

log p(c|G(z, c))q(c|x)
q(c|G(z, c))

]
= H(c) + Ez∼pnoise

[
Ec∼platent [q(c|G(z, c))] + Ec∼platent

[
log p(c|x)

q(c|G(z, c))
]]

= H(c) + Ez∼pnoise
[
Ec∼platent [q(c|G(z, c))] +DKL(p(c|G(z, c))‖q(c|G(z, c)))︸ ︷︷ ︸

≥0

]

≥ H(c) + Ez∼pnoise,c∼platent [q(c|G(z, c))]
(4.12)

where H(c) is a constant and hence it can be omitted in a optimization problems. The
distribution q(c|x) is modeled as a neural network Q(x) that shares most of its layers
with the discriminator network D(x) and hence the training of InfoGAN adds only a
negligible computational cost compared to simple GAN.

Finally, the objective of the InfoGAN min-max game becomes:

min
G

max
D

VInfoGAN (D,G) = V (D,G)− λI(c,G(z, c)) (4.13)

where λ is a regularization coefficient that controls the speed of latent code training.

55

4. Feature extraction

4.2.2 Training GAN using Wasserstein distance

GANs are a novel machine learning approach with very active ongoing research, but this
approach is also notoriously difficult to train [JLLWC18]. Although GAN appears to be a
powerful machine learning method, stabilizing the training on the wafermap dataset was
a challenging task. The InfoGAN as described in Section 4.2.1 works well with MNIST
dataset [LC10] (a dataset of hand-written digits from 0 to 9), but the gradients of the
network “explode” to unreasonable values within a few iterations when trained on the
available wafer measurement dataset. We believe, that the reason behind such behaviour
is the fact that the wafer samples are very similar to each other. While the samples
from the MNIST dataset are digits of different shapes, in the wafer dataset almost all
samples have the same circular shape and only slightly different patterns. Hence, the
wafer samples are located only on a very small part of the high-dimensional sample space
which makes the training unstable.

One of the problems of GAN training lies in the KL-divergence loss function used for
the training. To recall, KL-divergence is defined as DKL(p, q) = E[log p(x)

q(x)] which means
that its value is zero when p(x) = q(x) everywhere. On the other hand, in cases where
p(x) is close to zero and q(x) is a large number, the value of KL-divergence can be be
extremely large. This phenomenon is called “disjoint supports of distributions” and there
is an evidence that this may often happend during the GAN training.

Another problem is the competitive nature of the min-max game – since the generator
and discriminator are non-cooperative players, after the generator updates weights of the
network, the discriminator can just “revert” them in a next iteration. This may lead to
an oscillating behaviour and non-convergence.

These issues are contributing to the instability of the GAN training and are discussed in
detail in [BALO17]. There have been proposed methods of adding an instance noise to
training samples in order to stabilize the training [SCT+17] or adding a regularization
penalty to the GAN loss function [RLNH17]. However, experiments with these methods
for training the InfoGAN on wafermap dataset were rather unsuccessful.

An interesting way of stabilizing the training of the GAN was proposed in [ACB17b]
by replacing the problematic KL-divergence loss function by a distance measure called
Earth-Mover distance (or Wasserstein Metric). Using this method, we were able to
stabilize the training on the wafer dataset.

Earth-Mover distance

Assume we have two discrete distributions p and q. For simplicity, assume that these
two distributions consit of “boxes” of unit size that we want to transport from p to q
and obtain a transport plan γ. This situation is depicted on Figure 4.6.

However, there might be more possible travel plans for same two distributions p and
q. We can assign a cost |x− y| to each move of a box from position x to y. Figure 4.7
depicts two travel plans over the same two distributions, but each plan with a different

56

4.2. Generative Adversarial Network (GAN)

1 2 3 4 5 6 7 8 9

5

7

8

7

Figure 4.6: Transport plan γ = {(1, 9), (1, 8), (2, 9), (3, 8)} with total cost 8+7+7+5 = 27.

total cost. We are interested in finding such a transport plan, that has the minimal total
transport cost – the cost of such transport plan is called Earth-Mover distance.

1 2 3 4 5

1 1

(a) Transport plan γ = {(1, 2), (5, 4)}
with total cost = 1 + 1 = 2.

1 2 3 4 5

3 3

(b) Transport plan γ = {(1, 4), (5, 2)}
with total cost = 3 + 3 = 6.

Figure 4.7: The same two distributions can have travel plans with different total cost.
The Earth-Mover distance is the optimal total cost among all possible travel plans.

Definition 20 (Earth-Mover distance). Earth-Mover distance (or Wasserstein met-
ric) is a distance measure W (p, q) between two distributions p and q defined as
follows:

W (p, q) = inf
γ∈Π(p,q)

E(x,y)∼γ [‖x− y‖]

where inf is the infimum (greatest lower bound) and Π(p, q) is a set of all possible
transport plans between p and q.

Optimizing Earth-Mover distance with a neural network directly from the Definition 20
is intractable. In [ACB17b] it is proposed to apply the Kantorovich-Rubenstien duality
to obtain an equivalent definition as follows:

W (p, q) = sup
‖f‖L≤1

Ex∼p[f(x)]− Ex∼q[f(x)] (4.14)

where sup is the supremum (the opposite of inf, i.e. the least upper bound) and f is a
1-Lipschitz function.

Definition 21 (1-Lipschitz function). Function f is called 1-Lipschitz function if it

57

4. Feature extraction

follows the constraint:
|f(x1)− f(x2)| ≤ |x1 − x2|.

Wasserstein GAN (WGAN & WGAN-GP)

To recall, the loss functions of the generator and the discriminator in a simple GAN is as
follows:

LGAND = Ex∼pdata [logD(x)] + Ez∼pnoise [log(1−D(G(z)))]
LGANG = Ez∼pnoise [logD(G(z))]

(4.15)

The loss functions of Wasserstein GAN (WGAN) becomes:

LWGAN
D = Ex∼pdata [D(x)]− Ez∼pnoise [D(G(z))]
LWGAN
G = Ez∼pnoise [D(G(z))]

(4.16)

where D is called a critic, i.e. a 1-Lipschitz function implemented as a neural network. To
enforce the 1-Lipschitz constraint on D, autors of the original WGAN paper [ACB17b]
suggested to restrict all weight values in the neural network to an interval (−c, c) (so
called weight clipping) as follows:

w ← clip(w,−c, c) =

−c w ≤ −c
c w ≥ c
w otherwise

(4.17)

where c is a chosen constant. As authors mention, the weight clipping is a terrible way
of enforcing the 1-Lipschitz constraint, because it reduces the capacity of the network.

An alternative approach to ensure 1-Lipschitz constrain was suggested in [GAA+17b]. A
function is 1-Lipschitz if and only if it has gradient with the norm at most 1 everywhere.
Instead of clipping weights to a fixed interval, authors propose to impose a penalty on
gradients as follows:

LWGAN−GP
D = Ex̃∼pdata [D(x̃)]− Ez∼pnoise [D(G(z))]︸ ︷︷ ︸

WGAN critic loss

+λEx̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2]︸ ︷︷ ︸
gradient penalty

(4.18)
where px̂ is a distribution laying between pdata and pnoise. Hence, the x̂ ∼ px̂ is a randomly
weighted average of real and fake samples and can be sampled as x̂ = tx̃+ (1− t)x for
some t s.t. 0 ≤ t ≤ 1 (in implementation in this work t = 0.5).

Implementation & experiments

Combining the WGAN and InfoGAN objectives, the following loss functions for training
the discriminator and generator has been used in this work to extract low-dimensional
latent codes from high-dimensional wafermap dataset:

58

4.2. Generative Adversarial Network (GAN)

LD = Ex̃∼pdata [D(x̃)]− Ez∼pnoise [D(G(z, c))] + Ex̂∼px̂ [(‖∇x̂D(x̂)‖2 − 1)2]− I(c,G(z, c))
LG = Ez∼pnoise [D(G(z, c))]

(4.19)

The architecture of the neural network is depicted in Figure 4.8

NOISE_DIM + Q_DIM

64

128

256

DATA_DIM

64

128

256

DATA_DIM

or

wafer
dataset

real samples
x~pdata

fake samples
x~G(z,c)

random noise vector
z~pnoise

G
en

er
at

or

D
is

cr
im

in
at

or

Q_DIM

LATENT_DIM

1 Probability that given
sample is real or

generated by G(z,c)

Estimation of
code c

random latent code
c~platent

Figure 4.8: Architecture of the Information Maximizing Generative Adversarial Network
(InfoGAN) used in this work.

The implementation in this work uses a normally distributed latent code z which yields
the mutual information as follows:

59

4. Feature extraction

log I(c,G(z, c)) ≥ log
(1√

2πσ2
e−

(x−µ)2

2σ2
)

= log 1√
2π︸ ︷︷ ︸

const.

− log σ − (x− µ)2

2σ2

≥ − log σ − 1
2
(x− µ

σ

)2
.

(4.20)

Figure 4.9: Visualization of the InfoGAN latent space trained on the wafermap dataset.

60

4.2. Generative Adversarial Network (GAN)

Figure 4.10: An few samples from the real wafermaps dataset (top row) and respective
fake samples (bottom row) generated by the GAN model trained on the same dataset. It
can be observed, that the quality of the genrated wafermaps is plausible.

61

CHAPTER 5
Clustering

Clustering or cluster analysis of a data is a process of grouping similar data points
together according to some similarity metric. There are several different approaches to
clustering and two of them will be discussed in this chapter – namely, k-means as a
representative of a centroid-based methods and hierarchical agglomerative clustering as
a representative of a connectivity-based methods. These two methods will be used to
cluster the features obtained in Chapter 4.

5.1 k-means clustering
This clustering algorithm starts by randomly initializing a set of k centroids {m1,m2, . . . ,mk}.
The centroids form a Voronoi diagram and the data points closest to a centroid mi are
then considered to belong to cluster i. The algorithm continues by iteratively moving the
centroids towards the mean of the cluster by repeating of two alternating steps [Mac03]:

1. Data assignment step. For each data point x ∈ X, the centroid mi with the
smallest Euclidean distance ‖x−mi‖2 among all other centroids is assigned to the
Voronoi cell Si. Mathematically, the elements of each set Si are assigned as follows:

Si := {x : ‖x−mi‖2 ≤ ‖x−mj‖2,∀x ∈ X,∀j : 1 ≤ j ≤ k}. (5.1)

2. Centroid update step. The new position of each centroid mi is calculated as
the mean of all data points in cluster Si:

mi := Ex∼Si [x] = 1
|Si|

∑
x∈Si

x. (5.2)

The algorithm usually terminates when the positions of centroids are no longer changing,
but since the convergence is not guaranteed [HW79], some other stopping criteria can be

63

5. Clustering

also in place (for example stopping after a certain number of iterations). An example of
the k-means algorithm runtime is depicted in Figure 5.1.

0 2 4 6 8
0

1

2

3

4

5

6

(a) Iteration 1

0 2 4 6 8
0

1

2

3

4

5

6

(b) Iteration 2

0 2 4 6 8
0

1

2

3

4

5

6

(c) Iteration 3

0 2 4 6 8
0

1

2

3

4

5

6

(d) Iteration 4

0 2 4 6 8
0

1

2

3

4

5

6

(e) Iteration 5

0 2 4 6 8
0

1

2

3

4

5

6

(f) Iteration 6

Figure 5.1: Example of k-means algorithm runtime on 2-dimensional data.

5.2 Hierarchical agglomerative clustering

This algorithm starts by creating a new single-element cluster for each data point, i.e.
the initial clusters are {x1}, {x2}, . . . , {xn}. Clusters are then iteratively merged into
bigger clusters by pair-wise comparisons with each other based on some distance metric

64

5.2. Hierarchical agglomerative clustering

d(A,B). The distance metric for single-element clusters {x} and {y} is a simple Euclidean
distance:

d({x}, {y}) = ‖x− y‖2. (5.3)

As two clusters P and Q are merged into a bigger cluster P ∪Q, the algorithm defines
the distance (known as Lance-Williams formula) between the new cluster P ∪ Q and
some other cluster R as follows:

d(P ∪Q,R) = αd(P,R) + βd(Q,R) + γd(P,Q) + δd(R,Q) (5.4)

where α, β, γ, δ are parameters of the clustering algorithm that may be either constants
or depend on the size of the clusters. Some commonly used values of these parameters
are for example:

• Single linkage. Measures the minimum distance between elements of each cluster:

α = 1/2
β = 1/2
γ = 0
δ = −1/2

(5.5)

• Complete linkage. Measures the maximum distance between elements of each
cluster:

α = 1/2
β = 1/2
γ = 0
δ = 1/2

(5.6)

• Average linkage. Measures the mean distance between elements of each cluster:

α = |P |
|P |+ |Q|

β = |Q|
|P |+ |Q|

γ = 0
δ = 0

(5.7)

65

5. Clustering

• Ward’s minimum variance method. Minimizes the total within-cluster vari-
ance:

α = |P |+ |R|
|P |+ |Q|+ |R|

β = |Q|+ |R|
|P |+ |Q|+ |R|

γ = − |R|
|P |+ |Q|+ |R|

δ = 0

(5.8)

Ward’s minimum variance has been used for experiments in this work, implemented in
SciPy Toolkits [JOP+]. An example runtime of a hierarchical clustering is depicted in
Figure 5.2. The outcome of a hierarchical clustering can be also visualized in form of a
dendrogram – a diagram representing the merging of clusters.

A
B

C

D

E
F

(a) Iteration 1

A
B

C

D

E
F

(b) Iteration 2

A
B

C

D

E
F

(c) Iteration 3

A
B

C

D

E
F

(d) Iteration 4

A
B

C

D

E
F

(e) Iteration 5

A
B

C

D

E
F

(f) Iteration 6

A B C D E F

(g) The resulting dendrogram.

Figure 5.2: An example runtime of a hierarchical agglomerative clustering algorithm on
2-dimensional data.

66

5.3. Silhouette coefficient

5.3 Silhouette coefficient
In order to compare performances of different clustering methods on different datasets,
it’s important to define a performance measure. One of such measures is an average
intra-cluster distance called Silhouette coefficient. [Rou87]

We denote C(x) the cluster containing data point x. For each data point x ∈ C(x), we
define the average distance a(x) to all other data points within the same cluster C(x) as
follows:

a(x) = 1
|C(x)| − 1

∑
y∈C(x),x 6=y

d(x, y) (5.9)

where d(x, y) is a distance between two data points x and y within the same cluster C(x).
We also define also the smallest average distance b(x) between x and all other points
from different clusters C(y) as follows:

b(x) = min
x 6=y

1
|C(y)|

∑
y∈C(y)

d(x, y) (5.10)

Finally, the Silhouette measure sil(x) for each data point x is then defined as follows:

sil(x) =

1− a(x)/b(x) if a(x) < b(x)
0 if a(x) = b(x)
b(x)/a(x)− 1 if a(x) > b(x)

(5.11)

The average Silhouette measure over all data points is known as Silhouette coefficient (or
Silhouette score). The value of this coefficient lies between −1 and 1, where values close
to 1 indicate a good clustering performance with well separated clusters, while values
close to −1 indicate poorly separated clusters.

5.4 Experiments
The experiments consist of comparing VAE and InfoGAN feature extraction methods
discussed in detail in this diploma thesis with the following feature extraction methods:

• Principal Component Analysis (PCA)

• Non-negative Matrix Factorization (NMF)

• Independent Component Analysis (ICA)

• Singular Value Decomposition (SVD)

67

5. Clustering

The above-mentioned methods are already implemented in SciPy library [JOP+] and a
detailed description is out of scope of this diploma thesis.

The comparison of k-means clustering and hierarchical agglomerative clustering on feature
latent space obtained by these methods has been measured by Silhouette coefficients
(Figure 5.5) as well as by a visual inspection of two dimensional feature space (Figure
5.4) or assignment of a few samples to their respective clusters (Figure 5.3).

Figure 5.3: A few samples that belong to the same k-means clusters for k = 20. The
feature latent space used for the clustering has been obtain using the VAE method
described in this thesis.

68

5.4. Experiments

0.02 0.00 0.02 0.04

0.04

0.02

0.00

0.02

0.04

(a) ICA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

0.0

0.2

0.4

0.6

0.8

(b) NMF

20 0 20 40 60

20

10

0

10

20

30

(c) PCA

20 40 60 80 100 120

20

10

0

10

20

30

(d) SVD

6 4 2 0 2 4 6 8

6

4

2

0

2

4

6

8

10

(e) VAE

3 2 1 0 1

4.0

3.5

3.0

2.5

2.0

1.5

(f) InfoGAN

Figure 5.4: Visualization of k-means clustering (for k = 8) of a two dimensional latent
feature space obtained by different machine learning algorithms.

69

5. Clustering

4 6 8 10 12 14 16 18 20
Number of clusters

0.35

0.40

0.45

0.50

0.55

Si
lh

ou
et

te
 s

co
re

VAE
PCA
t-SNE
ICA
SVD
NMF
GAN

(a) k-means, LATENT_DIM = 2

4 6 8 10 12 14 16 18 20
Number of clusters

0.275

0.300

0.325

0.350

0.375

0.400

0.425

0.450

0.475

Si
lh

ou
et

te
 s

co
re

VAE
PCA
t-SNE
ICA
SVD
NMF
GAN

(b) k-means, LATENT_DIM = 3

4 6 8 10 12 14 16 18 20
Number of clusters

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Si
lh

ou
et

te
 s

co
re

VAE
PCA
ICA
SVD
NMF
GAN

(c) k-means, LATENT_DIM = 4

4 6 8 10 12 14 16 18 20
Number of clusters

0.250

0.275

0.300

0.325

0.350

0.375

0.400

0.425

Si
lh

ou
et

te
 s

co
re

VAE
PCA
ICA
SVD
NMF
GAN

(d) k-means, LATENT_DIM = 5

4 6 8 10 12 14 16 18 20
Number of clusters

0.30

0.35

0.40

0.45

0.50

0.55

Si
lh

ou
et

te
 s

co
re

VAE
PCA
t-SNE
ICA
SVD
NMF
GAN

(e) Hierarchical, LATENT_DIM = 2

4 6 8 10 12 14 16 18 20
Number of clusters

0.25

0.30

0.35

0.40

0.45

Si
lh

ou
et

te
 s

co
re

VAE
PCA
t-SNE
ICA
SVD
NMF
GAN

(f) Hierarchical, LATENT_DIM = 3

4 6 8 10 12 14 16 18 20
Number of clusters

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Si
lh

ou
et

te
 s

co
re

VAE
PCA
ICA
SVD
NMF
GAN

(g) Hierarchical, LATENT_DIM = 4

4 6 8 10 12 14 16 18 20
Number of clusters

0.20

0.25

0.30

0.35

0.40

Si
lh

ou
et

te
 s

co
re

VAE
PCA
ICA
SVD
NMF
GAN

(h) Hierarchical, LATENT_DIM = 5

Figure 5.5: Evaluation of k-means clustering and agglomerative hierarchical clustering
performance in terms of intra-cluster distance measured by Silhouette coefficients. The
features obtained by VAE and GAN methods described in this work performs better
than other compared feature extraction methods in majority of cases.

70

CHAPTER 6
Conclusion

Semiconductor manufacturing processes are prone to production errors. It is assumed that
that manufacturing equipment that causes production deviations leaves characteristic
patterns on final wafer lots. An effective detection of patterns in wafermap measure-
ment data evaluated after a certain number of production steps could be utilized for
discovering which processing step is causing production deviations and possibly even to
take an automatic corrective action. This diploma thesis has described machine learning
approaches for automated detection of different patterns in a wafermap dataset in an
unsupervised way.

The first part of this diploma thesis has discussed preprocessing steps that has been
performed in order to cleanse the available raw wafer measurement dataset. Each sample
from the dataset has been treated as a grayscale image. Outliers from these images
have been removed using a median-based Z-score filtering method and small holes after
this process have been closed with a hole-closing algorithm based on binary morphology
followed by an inpainging algorithm. Each image has been smoothened by a median
filtering algorithm and normalized to an interval [0, 1].

The cleaned wafer dataset has been then used as an input for a feature extraction task.
This part of the diploma thesis has been the main focus of the work. Some important
machine learning preliminaries has been described. Based on these preliminaries, two
generative modeling deep learning algorithms have been described in detail, namely
Variational Autoencoder (VAE) and Information Maximizing Generative Adversarial
Network (InfoGAN). Especially challenging task has been the stabilization of GAN
training using a Wasserstein metric. It has been shown that generative models can be
used not only for feature extraction, but also for generating new samples given a feature
vector – this has been demonstrated on a visualization of a two-dimensional feature space.

Finally, the last part of this diploma thesis has described two simple clustering algorithms,
namely k-means clustering and hierarchical agglomerative clustering. The performance

71

6. Conclusion

of the feature extraction has been measured by assigning features to concrete clusters
and calculating the intra-cluster distance known as Silhouette score as well as by a visual
inspection of the feature space. Feature extraction using VAE and InfoGAN has been
compared to other commonly used feature extraction methods.

This diploma thesis has demonstrated that deep generative models could be useful for
extracting the most characteristic features from wafer measurement dataset and such
methods may in some cases even outperform more traditional discriminative methods.

72

List of Figures

1.1 High-level overview of an automated improvement of a wafer production
process. 3

2.1 Overall wafer preprocessing procedure. 8
2.2 Commonly used discrete structural elements with the origin X = (0, 0). . 9
2.3 Example of dilation with a 4-neighborhood structural element. 10
2.4 Example of erosion with a 4-neighborhood structural element. 10
2.5 Example of dilation and erosion on a binary image. 12
2.6 Close operation vs. hole filling algorithm. 13
2.7 Outliers removal using a simple and double-sided MAD-based method. . . 15
2.8 Comparison of IQR-based and MAD-based outlier removal methods. . . . 17
2.9 Median filtering algorithm. 18
2.10 The result of wafer preprocessing. 18

3.1 Machine learning paradigms. 20
3.2 Implication graph of convergence modes. 24
3.3 Bias-variance trade-off. 27
3.4 Generalization issues demonstrated on an instance of a regression problem. 27
3.5 The entropy of two random variables X (red) and Y (blue). 33
3.6 Stochastic Gradient Descent (SGD) algorithm. 37
3.7 The effect of a learning rate (LR) on the performance of a SGD algorithm. 38
3.8 Comparison of a biological and artificial neuron. 40
3.9 An example of a feed-forward neural network. 40
3.10 Lp-norm regularizers. 45
3.11 Geometric interpretation of Lp-norm regularizers. 45
3.12 Example of dropout regularizer applied on a neural network. 46

4.1 Schematic view of the generative model. 48
4.2 Reparametrization trick. 51
4.3 Variational Autoencoder architecture. 52
4.4 Latent space of a variational autoencoder. 53
4.5 Generative Adversarial Network architecture. 54
4.6 Transport plan γ = {(1, 9), (1, 8), (2, 9), (3, 8)} with total cost 8+7+7+5 = 27. 57
4.7 Different transport plans for the same two distributions. 57

73

4.8 Architecture of the Information Maximizing Generative Adversarial Network
(InfoGAN) used in this work. 59

4.9 Visualization of the InfoGAN latent space trained on the wafermap dataset. 60
4.10 GAN-generated samples. 61

5.1 Example of k-means algorithm runtime on 2-dimensional data. 64
5.2 An example runtime of a hierarchical agglomerative clustering algorithm on

2-dimensional data. 66
5.3 Clustered VAE features. 68
5.4 Visualization of k-means clustering on features obtained by different ML

algorithms. 69
5.5 Silhouette score of k-means clustering and agglomerative hierarchical cluster-

ing. 70

74

List of Tables

3.1 An overview of commonly used activation functions. 43

75

List of Algorithms

2.1 Dilation algorithm of image A by structure S. 11

2.2 Region filling algorithm for binary bitmap. 12

2.3 MAD-based outlier detection algorithm. 16

3.1 Stochastic Gradient Descent (SGD) with mini-batches. 36

77

List of Symbols

This section contains an overview of symbols commonly used in this diploma thesis. The
notation is adapted mostly from the book “Deep Learning” [GBC16].

Mathematical objects

a A scalar or a vector

a A vector

A A matrix or a set

A A matrix

A A set

f : X→ Y A function from domain X to domain Y

f(x; θ) A value of function f in x, parametrized by θ

Binary morphology

A⊕ S Dilation of image A by structure S

A	 S Erosion of image A by structure S

Â Reflexion of image A

(A)z Translation of image A by z

Calculus
∂y
∂x Partial derivative of y with respect to x∫
f(x)dx Definite integral over the whole domain of x

∇xy Gradient of y with respect to x

Probability & information theory

79

P (x) Probability distribution over a discrete variable

p(x) Probability distribution over a continuous variable

x ∼ p(x) Random variable x sampled from p(x)

Ex∼p[f(x)] Exprected value of f(x) with repect to p

DKL(P | Q) Kullback-Leibler divergence of P and Q

P (X | Y) Conditional probability

P (X,Y) Joint probability

H(X) Entropy of the random variable X

H(X | Y) Conditional entropy

H(X,Y) Joint entropy

HX(Y) Cross-entropy

I(X) Self-information

I(X,Y) Mutual information

N (x;µ,Σ) Normal distribution over x with mean µ and covariance Σ

80

Bibliography

[ACB17a] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN,
March 2017.

[ACB17b] Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein gener-
ative adversarial networks. In Doina Precup and Yee Whye Teh, editors,
Proceedings of the 34th International Conference on Machine Learning,
volume 70 of Proceedings of Machine Learning Research, pages 214–223, In-
ternational Convention Centre, Sydney, Australia, 06–11 Aug 2017. PMLR.

[BALO17] Léon Bottou, Martín Arjovsky, David Lopez-Paz, and Maxime Oquab. Ge-
ometrical insights for implicit generative modeling. In Braverman Readings
in Machine Learning. Key Ideas from Inception to Current State - Inter-
national Conference Commemorating the 40th Anniversary of Emmanuil
Braverman’s Decease, Boston, MA, USA, April 28-30, 2017, Invited Talks,
pages 229–268, 2017.

[BB08] Léon Bottou and Olivier Bousquet. The tradeoffs of large scale learning.
In J.C. Platt, D. Koller, Y. Singer, and S. Roweis, editors, Advances in
Neural Information Processing Systems 20 (NIPS 2007), pages 161–168.
NIPS Foundation (http://books.nips.cc), 2008.

[Bel61] Richard E. Bellman. Adaptive Control Processes: A Guided Tour. MIT
Press, 1961.

[BS95] L. Breaux and B. Singh. Automatic defect classification system for pat-
terned semiconductor wafers. In Proceedings of International Symposium
on Semiconductor Manufacturing, pages 68–73, Sep 1995.

[BvdG11] Peter Bhlmann and Sara van de Geer. Statistics for High-Dimensional
Data: Methods, Theory and Applications. Springer Publishing Company,
Incorporated, 1st edition, 2011.

[CCD+16] Xi Chen, Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya
Sutskever, and Pieter Abbeel. InfoGAN: Interpretable representation learn-
ing by information maximizing generative adversarial nets. In D. D. Lee,

81

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances In Neural
Information Processing Systems 29, pages 2172–2180. Curran Associates,
Inc., 2016.

[CDH+16] Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and
Pieter Abbeel. Infogan: Interpretable representation learning by information
maximizing generative adversarial nets. In D. D. Lee, M. Sugiyama, U. V.
Luxburg, I. Guyon, and R. Garnett, editors, Advances in Neural Information
Processing Systems 29, pages 2172–2180. Curran Associates, Inc., 2016.

[CLCJ09] Chuan-Yu Chang, ChunHsi Li, Jia-Wei Chang, and MuDer Jeng. An
unsupervised neural network approach for automatic semiconductor wafer
defect inspection. Expert Systems with Applications, 36(1):950 – 958, 2009.

[CLYYDY] F.L. Chen, Sheng-Che Lin, K. Yih-Yuh Doong, and K.L. Young. Logic
product yield analysis by wafer bin map pattern recognition supervised
neural network. 2003 5th International Conference on ASIC. Proceedings
(IEEE Cat. No.03TH8690).

[CM10] Charles K. Chui and H.N. Mhaskar. Mra contextual-recovery extension
of smooth functions on manifolds. Applied and Computational Harmonic
Analysis, 28(1):104–113, Jan 2010.

[CT91] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory.
Wiley-Interscience, New York, NY, USA, 1991.

[CT09] Li-Chang Chao and Lee-Ing Tong. Wafer defect pattern recognition by
multi-class support vector machines by using a novel defect cluster index.
Expert Systems with Applications, 36(6):10158 – 10167, 2009.

[Duv99] Frederic Duvivier. Automatic detection of spatial signature on wafermaps
in a high volume production. In Proceedings of the 14th International
Symposium on Defect and Fault-Tolerance in VLSI Systems, DFT ’99, pages
61–, Washington, DC, USA, 1999. IEEE Computer Society.

[GAA+17a] Ishaan Gulrajani, Faruk Ahmed, Martín Arjovsky, Vincent Dumoulin,
and Aaron C. Courville. Improved training of wasserstein gans. CoRR,
abs/1704.00028, 2017.

[GAA+17b] Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and
Aaron C Courville. Improved training of wasserstein gans. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
R. Garnett, editors, Advances in Neural Information Processing Systems
30, pages 5767–5777. Curran Associates, Inc., 2017.

[GBC16] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT
Press, 2016. http://www.deeplearningbook.org.

82

http://www.deeplearningbook.org

[GBD92] Stuart Geman, Elie Bienenstock, and René Doursat. Neural networks and
the bias/variance dilemma. Neural Comput., 4(1):1–58, January 1992.

[GJP95] Federico Girosi, Michael Jones, and Tomaso Poggio. Regularization theory
and neural networks architectures. Neural Computation, 7:219–269, 1995.

[GJY11] Dongdong Ge, Xiaoye Jiang, and Yinyu Ye. A note on the complexity of lp
minimization. Mathematical Programming, 129(2):285–299, Oct 2011.

[GPAM+14] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
adversarial nets. In Z. Ghahramani, M. Welling, C. Cortes, N. D. Lawrence,
and K. Q. Weinberger, editors, Advances in Neural Information Processing
Systems 27, pages 2672–2680. Curran Associates, Inc., 2014.

[HBWP13] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley.
Stochastic variational inference. J. Mach. Learn. Res., 14(1):1303–1347,
May 2013.

[HK70] A. E. Hoerl and R. W. Kennard. Ridge regression: Biased estimation for
nonorthogonal problems. Technometrics, 12:55–67, 1970.

[Hug68] G. Hughes. On the mean accuracy of statistical pattern recognizers. IEEE
Transactions on Information Theory, 14(1):55–63, January 1968.

[HW79] JA Hartigan and MA Wong. Algorithm AS 136: A K-means clustering
algorithm. Applied Statistics, pages 100–108, 1979.

[IH93] B. Iglewicz and D.C. Hoaglin. How to Detect and Handle Outliers. ASQC
basic references in quality control. ASQC Quality Press, 1993.

[JLLWC18] Kevin J Liang, Chunyuan Li, Guoyin Wang, and Lawrence Carin. Generative
adversarial network training is a continual learning problem. 11 2018.

[JOP+] Eric Jones, Travis Oliphant, Pearu Peterson, et al. SciPy: Open source
scientific tools for Python, 2001–. [Online; accessed <today>].

[KBP07] A. Khireddine, K. Benmahammed, and W. Puech. Digital image restoration
by wiener filter in 2d case. Advances in Engineering Software, 38(7):513–516,
Jul 2007.

[KHHW13] H. Kagermann, J. Helbig, A. Hellinger, and W. Wahlster. Recommendations
for Implementing the Strategic Initiative INDUSTRIE 4.0: Securing the
Future of German Manufacturing Industry ; Final Report of the Industrie
4.0 Working Group. Forschungsunion, 2013.

[KK17] Olga Kosheleva and Vladik Kreinovich. Why deep learning methods use
kl divergence instead of least squares: A possible pedagogical explanation.
2017.

83

[Knu] Knut Hinkelmann. Neural networks.

[KW13] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes.
CoRR, abs/1312.6114, 2013.

[LC10] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010.

[LCC96] Fourmun Lee, A. Chatterjee, and D. Croley. Advanced yield enhancement:
computer-based spatial pattern analysis. part 1. In IEEE/SEMI 1996
Advanced Semiconductor Manufacturing Conference and Workshop. Theme-
Innovative Approaches to Growth in the Semiconductor Industry. ASMC 96
Proceedings, pages 409–415, Nov 1996.

[Mac03] David J. C. MacKay. Information theory, inference, and learning algorithms.
Cambridge University Press, 2003.

[MC14] G. Mishne and I. Cohen. Multi-channel wafer defect detection using diffusion
maps. In 2014 IEEE 28th Convention of Electrical Electronics Engineers in
Israel (IEEEI), pages 1–5, Dec 2014.

[NM86] Whitney Newey and Daniel McFadden. Large sample estimation and
hypothesis testing. In R. F. Engle and D. McFadden, editors, Handbook of
Econometrics, volume 4, chapter 36, pages 2111–2245. Elsevier, 1 edition,
1986.

[PNM+05] F. Di Palma, G. De Nicolao, G. Miraglia, E. Pasquinetti, and F. Piccinini.
Unsupervised spatial pattern classification of electrical-wafer-sorting maps
in semiconductor manufacturing. Pattern Recognition Letters, 26(12):1857 –
1865, 2005. Artificial Neural Networks in Pattern Recognition.

[PR91] Barak A. Pearlmutter and Ronald Rosenfeld. Chaitin-kolmogorov complexity
and generalization in neural networks. In R. P. Lippmann, J. E. Moody,
and D. S. Touretzky, editors, Advances in Neural Information Processing
Systems 3, pages 925–931. Morgan-Kaufmann, 1991.

[PVG+11] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[RC93] Peter J. Rousseeuw and Christophe Croux. Alternatives to the median
absolute deviation. Journal of the American Statistical Association, 88(424),
1993.

[RLNH17] Kevin Roth, Aurelien Lucchi, Sebastian Nowozin, and Thomas Hofmann.
Stabilizing training of generative adversarial networks through regular-
ization. In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus,

84

S. Vishwanathan, and R. Garnett, editors, Advances in Neural Information
Processing Systems 30, pages 2018–2028. Curran Associates, Inc., 2017.

[Rou87] Peter Rousseeuw. Silhouettes: A graphical aid to the interpretation and val-
idation of cluster analysis. J. Comput. Appl. Math., 20(1):53–65, November
1987.

[SCT+17] Casper Kaae Sønderby, Jose Caballero, Lucas Theis, Wenzhe Shi, and
Ferenc Huszár. Amortised MAP inference for image super-resolution. In
ICLR. OpenReview.net, 2017.

[Ser83] Jean Serra. Image Analysis and Mathematical Morphology. Academic Press,
Inc., Orlando, FL, USA, 1983.

[SGZ+16] Tim Salimans, Ian J. Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec
Radford, and Xi Chen. Improved techniques for training gans. CoRR,
abs/1606.03498, 2016.

[SHK+14] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and
Ruslan Salakhutdinov. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res., 15(1):1929–1958, January 2014.

[Tib96] R. Tibshirani. Regression shrinkage and selection via the lasso. Journal of
the Royal Statistical Society (Series B), 58:267–288, 1996.

[Tuk77] John W. Tukey. Exploratory Data Analysis. Addison-Wesley, 1977.

[Vaa98] A. W. van der Vaart. Asymptotic Statistics. Cambridge Series in Statistical
and Probabilistic Mathematics. Cambridge University Press, 1998.

[VC15] V. N. Vapnik and A. Ya. Chervonenkis. On the Uniform Convergence of
Relative Frequencies of Events to Their Probabilities, pages 11–30. Springer
International Publishing, Cham, 2015.

[Wik18] Wikipedia, the free encyclopedia. Neuron and myelinated axon, with signal
flow from inputs at dendrites to outputs at axon terminals, 2018.

[WM97] D. H. Wolpert and W. G. Macready. No free lunch theorems for optimization.
IEEE Transactions on Evolutionary Computation, 1(1):67–82, Apr 1997.

[YL16] J. Yu and X. Lu. Wafer map defect detection and recognition using joint
local and nonlocal linear discriminant analysis. IEEE Transactions on
Semiconductor Manufacturing, 29(1):33–43, Feb 2016.

[ZH03] H. Zou and T. Hastie. Regularization and variable selection via the elastic net.
Journal of the Royal Statistical Society: Series B (Statistical Methodology),
67(2):301–320, 2003.

85

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation
	Problem statement & scope of the work
	State of the art
	Methodological approach
	Peer review
	Structure of the work

	Data preprocessing
	Wafer clipping mask
	Removing outliers
	Imputing missing values
	Normalization
	Denoising
	Results

	Machine learning preliminaries
	Learning paradigms
	Parametric models
	Convergence of random variables
	Empirical risk minimization
	Bias-variance trade-off
	Point estimation
	Maximum Likelihood Estimation (MLE)
	Maximum A Posteriori (MAP) estimation
	Information entropy
	Kullback–Leibler (KL) divergence
	Stochastic Gradient Descent (SGD)
	Artificial Neural Network (ANN)
	Regularization

	Feature extraction
	Variational Autoencoder
	Generative Adversarial Network (GAN)

	Clustering
	k-means clustering
	Hierarchical agglomerative clustering
	Silhouette coefficient
	Experiments

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

