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Abstract: Various methods are available for the calculation of timber–concrete composite floors. The 
gamma method, which is important in construction practice, as well as the differential equation 
method, are based on the simplified assumption of a continuous bond between wood and concrete. 
This makes it possible to analytically calculate the internally statically indeterminate partial section 
sizes and deformation sizes, analogous to the force size method. In this paper, two typical load sit-
uations of concentrated loads (central and off-centre) were analytically and numerically evaluated 
and compared using the above-mentioned methods (gamma and differential equation), with a dis-
crete method for the case of a timber beam reinforced with a concrete slab using screws as fasteners. 
The calculation results show significant deviations, which speak for the application of discrete 
methods in certain load situations and thus limit the usability of the gamma method under certain 
conditions. For the problem of deflection determination, which is not dealt with in the literature for 
the discrete method, a numerical method is described in the present work, which was first devel-
oped and presented by the first author. 

Keywords: timber–concrete composite floors; static; discrete method 
 

1. Introduction 
Wood is becoming increasingly important in multi-story residential and office con-

struction as a natural and sustainable building material. In addition to the ecological ad-
vantages, the favourable indoor climate and natural appearance of wood surfaces on 
walls and ceilings are also in the foreground. Here, the wood–concrete composite con-
struction method, which makes optimum use of the mechanical properties of both build-
ing materials, has proved to be particularly forward-looking. A large part of the applica-
tions of this method is carried out as reinforcement systems for existing wooden ceilings, 
especially in connection with the overall building stiffness under earthquake loads. For 
sustainability reasons, wood–concrete composite floors are also increasingly being used 
in new buildings, especially with the use of CLT (cross-laminated timber) panels. 

The lower wooden element, in the form of beams or slabs, mainly carries the bending 
tensile forces, while the upper continuous concrete slab mainly carries the bending com-
pressive forces. The necessary shear connection is made with various elements, such as 
bolts, screws, shear collars (cleats), etc. These form a compliant, or elastic, bond between 
the two elements, which leads to a load-bearing behaviour that lies between no- (loose) 
and rigid-bond behaviour. 

The following is a brief summary of the development of wood–concrete composite 
floors based on the literature. The first wood–concrete composite floors were developed 
about 100 years ago, as indicated by Holschemacher et al. in [1], Yeoh et al. in [2] and 
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Grosse et al. in [3]. Design formulas were developed or adopted from Kolbitsch et al. [4] 
and modified from the “doweled beam theory”. A comparison of the calculation methods 
was made by Grosse et al. in [5]. The long-term behaviour was modified by Kuhlmann et 
al. [6] using the gamma method. It was also treated by Grosse et al. [7], Avak et al. [8] and 
Gerold et al. [9]. Schmidt et al. compared the gamma method with the finite element 
method in [10] and gave design proposals with graded fastener spacing in [11]. In [12], 
Rautenstrauch et al. showed a practical design using the framework model. The behaviour 
of CLT–concrete composite floors with the extended gamma method and the finite ele-
ment method was investigated by Forsberg et al. in [13], based on the work of Wallner et 
al. [14]. 

Essential for load-bearing behaviour are the connecting elements between the wood 
and concrete. In [15], fully threaded screws were investigated by Heller, and in [16], dowel 
bars were discussed by Schröter et al. Bonded connections were treated by Schäfers et al. 
in [17]. Numerical modelling was performed for cleats by Grosse et al. [18], and appropri-
ate models and failure criteria were applied by Schönborn et al., who gave design rules 
for shear collars in [19]. In one of the newest papers [20], Woschitz et al. described bending 
tests with CLT and prefabricated concrete plates and compared the calculation methods. 
In [21], the state-of-the-art of timber–concrete composite structures from cost (European 
Cooperation in Science and Technology) is described. This documentation forms the basis 
for the new Eurocode. 

For the simplified calculation of wood–concrete composite floors, the strictly spatial 
system is reduced to an elastically coupled flexural beam system, for which several calcu-
lation methods are now available. The differences between the methods result, on the one 
hand, from the different methods used to generate the static model, and on the other hand, 
from system-specific conditions (in particular the types of action) that lead to different 
governing equations. 

In this paper, the gamma method according to Möhler [22] and Heimeshoff [23], 
which is established in practice and relatively easy to calculate, and which is prescribed 
by Eurocode 5 [24], is compared to and evaluated with the more stringent differential 
equation method according to Natter and Hoeft [25], as well as the discrete method ac-
cording to Stüssi [26,27] and Huber [28], on the basis of a representative design situation 
for selected load cases. This is especially relevant, since the gamma method is known to 
provide exact, or satisfactorily accurate, results only for symmetrical sinusoidal load situ-
ations with an approximately parabolic moment curve. 

In reality, when composite screws are used, there is rather a punctual-shear coupling 
between concrete and wood. The discrete method takes into account the beam sections 
resulting from the splitting during modelling. It determines the sectional force quantities 
on a numerical basis, following the finite element method, which is very close to reality. 

With a relatively dense distribution of the fasteners, all three of the above methods 
provide satisfactorily accurate results under uniform load on the single-span beam. How-
ever, in the case of single loads on the system or eccentric load location, significant devia-
tions from the valid gamma method can occur. In the case of point load application, which 
is frequently encountered in construction practice, such as for columns and walls, no evi-
dent data are available regarding the accuracy of the gamma method. 

2. Static System 
Since the corresponding values diverge with increasing deviations between the real 

system and the calculation model, a relatively high single-force application with densely 
distributed screw spacing was taken as a basis for the calculations, and the uniform load 
occurring due to self-weight effects was not taken into account. 

A typical case (Figure 1), in practice, was calculated with the reinforcement of 
wooden beams by means of a concrete slab. Figures 2–4 show the cross-section dimen-
sions, the load situation and the characteristic values; Table 1 contains the characteristic 
values. 
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Figure 1. Wood–concrete composite floors—scheme. 

 
Figure 2. Cross-section dimensions. 

 
Figure 3. Load situations. 

 
Figure 4. Idealised cross-section with static parameters. 
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Table 1. Characteristic values. 

Plate  Beam  
Concrete C20/25 Wood C22 

Elastic modulus E1 3000 kN/cm2 Elastic modulus E2 1000 kN/cm2 
Thickness h1 6 cm Beam high h2 22 cm 

Contributing plate width b1  91 cm Beam width b2 16 cm 
Area A1 546 cm2 Area A2 352 cm2 

Moment of Inertia I1 1638 cm4 Moment of Inertia I2 14,197 cm4 
Centre of mass distance e 16.4 cm Thickness of the formwork s  2.4 cm 

For the "SFS composite screw crossed" fastener, the following displacement moduli 
were applied according to approval [29]: 

Kser = 166 KN/cm for the calculation of the serviceability limit state. 
Ku = 2/3 · Kser = 111 KN/cm for the calculation of the ultimate limit state. 
The screws, arranged crosswise, were anchored with a length of 100 mm in the wood 

and 45 mm in the concrete. The bolt heads were located in the concrete in the area of the 
steel reinforcement. The displacement modulus was a compliance coefficient analogous 
to the modulus of elasticity, where it corresponded to the proportionality factor in the 
point and to the linear load-displacement law of the fastener in the contact joint direction. 
In the differential equation method, the joint stiffness (K) is also important. This was cal-
culated as the quotient of the displacement modulus K (Kser for the deformations and Ku 
for the forces) divided by the fastener spacing e' (displacement modulus notionally 
smeared over the bolt spacing). The fastener spacing in the longitudinal direction of the 
beam was e’ = 11.1 cm, which resulted from 45 sections for the span of 500 cm. 

3. Theory and Calculation 
3.1. Calculation of Force Quantities with the Discrete Method 

In the method first presented by Stüssi [26,27], the fasteners were represented on the 
idealised structural model as point-acting single dowels with linear elastic deformation 
laws (transverse to the joint). Likewise, linear material laws and the validity of the Ber-
noulli hypothesis were assigned to the concrete belt bar and the timber beam for the indi-
vidual cross-sections (but not for the total cross-section). Thus, there was an internal 
highly statically indeterminate structure, with the excess dowel forces acting horizontally 
in the connection joint (Figure 5). For further consideration, the system was split up and, 
according to the superposition principle, superimposed on the composite-free girder—
each loaded with the dowel forces (acting in the gravity line of the contact joint) and the 
external load. 
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Figure 5. Exposed composite beam with cutting forces. 

Li corresponds to the dowel-force resultant, calculated field by field from the support. 
The relationship between the dowel-force resultant and the section-normal force is shown 
in Figure 4. In the belt, for equilibrium reasons, Ni = −Li, while in the web Ni = Li, applies. 
Using the main bending equation and the material law, length changes in the contact joint 
due to the affected dowel-force resultants and partial moments (respectively due to the 
external load and due to the dowel forces) can be calculated. 

3.1.1. Partial Moments Due to the External Load 
Due to the relatively simple conditions at the unbonded beam, the partial moments 

due to the external load can be expressed by the total moment M. Following Figure 4, the 
absence of partial-normal forces means that (N1 = N2 = 0) is valid for the unbonded beam 
for this load case: 

M =  Mଵ +  Mଶ
 (1)

Due to the equal deflections of belt and web (effects due to the twisting of the cross-
section were not taken into account), whereby for any beam location w1 = w2, after differ-
entiating twice and neglecting the shear deformation, the geometric compatibility condi-
tion follows this equation: 

Mଵ

Eଵ  ∙  Iଵ
=

Mଶ

Eଶ  ∙  Iଶ
  (2)

Thus, two equations are available for the two unknowns (M1 and M2), and the task 
can be solved mathematically and unambiguously if the total moment M is known, 
whereby the partial moments can be expressed by the total moment. The total moment 
M0m, averaged over the section, was used to determine the elongation changes. 

3.1.2. Partial Moments According to Dowel Forces 
The partial moment curve due to the dowel forces is constant in sections. 
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3.1.3. Compatibility Condition 
The fulfilment of the constraint condition, according to Figure 6 and Equation (3), 

leads directly to Equation (4), which can be set up for each field. 

 
Figure 6. Continuity condition in the contact joint. 

In this case: 

ei’ + ei’1u + vi = ei’ + ei’2o + vi−1     ei’1u + vi = ei’2o + vi−1 (3)

ei’: Centre distance of dowels in section i in the undeformed or unloaded state. 
ei’1u: Length change of the distance ei’ of the dowels at the height of the lower edge 

fibre of the upper beam 1 due to the forces and moments acting in this section (moments 
are to be averaged). 

vi: Deformation of dowel i in the direction of the contact joint due to dowel force Fi. 
ei’2o: Change in the length of the distance ei’ of the dowels at the level of the upper 

edge fibre of the lower beam 2 due to forces and moments acting in this section. 
vi−1: Deformation of the dowel i-1 in the direction of the contact joint due to the dowel 

force Fi−1. 

−L୧ିଵ + L୧ ∙  ቈ2 + K ∙  e୧
ᇱ  ∙ ቆ

hଵ
  ଶ

4 ∙ Eଵ ∙ Iଵ
+

hଶ
  ଶ

4 ∙ Eଶ ∙ Iଶ
+

1
Eଵ ∙  Aଵ

+
1

Eଶ ∙  Aଶ
ቇ቉ − L୧ାଵ =  

M଴୧୫ ∙ K ∙ eᇱ ∙ (hଵ + hଶ + 2 ∙ s)
2 ∙ (Eଵ ∙ Iଵ + Eଶ ∙ Iଶ )

 (4)

where M0im is the mean total moment in section i. With 45 sections, this results in a system 
of equations with 45 equations and 45 unknown dowel-force resultants (Li) or partial-nor-
mal forces (Ni). 

In matrix notation, it follows: 

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

ܿ −1 0 0 . . 0 0 0 0
−1 ܿ −1 0 . . 0 0 0 0
0 −1 ܿ −1 . . 0 0 0 0
0 0 −1 ܿ . . 0 0 0 0
. . . . . . . . . .
. . . . . . . . . .
0 0 0 0 . . ܿ −1 0 0
0 0 0 0 . . −1 ܿ −1 0
0 0 0 0 . . 0 −1 ܿ −1
0 0 0 0 . . 0 0 −1 ܿ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

ଵܮ
ଶܮ
ଷܮ
ସܮ
.
.

ସଶܮ
ସଷܮ
ସସܮ
⎠ସହܮ

⎟
⎟
⎟
⎟
⎟
⎟
⎞

=  

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎛

݉ଵ
݉ଶ
݉ଷ
݉ସ

.

.
݉ସଶ
݉ସଷ
݉ସସ
݉ସହ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎞
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In the matrix, the diagonal value c corresponds to the constant bracket expression on 
the left side in Equation (4). The factor c is independent of the load, and depends on, 
among other things, the displacement modulus. The right column vector of the equation 
system (m1 to m45) also includes the load-case-dependent total moment curve (mi) of the 
bondless basic system. Due to the special problem definition, with two load cases and one 
displacement modulus each for the load-bearing capacity and the deformations, a total of 
four equation systems must be solved. 

The numerical evaluations of the four possible combination cases lead to partial-nor-
mal forces in the joint. Figure 7 shows this for load-bearing capacity (the shape for the 
calculation of the deformations is similar). These correspond to the dowel-force resultants, 
accordingly sign-weighted as already described (belt: −, web: +). In the case of load situa-
tion A, the numerically calculated dowel-force resultants/partial-normal forces of the in-
dividual beam sections were distributed symmetrically over the beam length, whereas in 
load situation B, they were distributed asymmetrically due to the different partial moment 
distribution. 

 
Figure 7. Web partial-normal forces for the load-bearing capacity. 

Furthermore, the partial moments for the real system were obtained directly from 
this in accordance with Figure 5, with compound use of the following equations (Super-
position principle): 

Mଵ =
M ⋅ Eଵ ⋅ Iଵ

Eଵ ⋅ Iଵ + Eଶ ⋅ Iଶ
− N୧ ⋅ ൬

hଵ + s
2

൰ (5)

Mଶ =
M ⋅ Eଶ ⋅ Iଶ

Eଵ ⋅ Iଵ + Eଶ ⋅ Iଶ
− N୧ ⋅ ൬

hଶ + s
2

൰ (6)

where s is the thickness of the formwork according to Figure 2. The results are summa-
rised for the force application point (in the centre of the field for load situation A and 0.94 
m distance from the right bearing point for load situation B) in Table 2. 
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Table 2. Results according to the discrete method. 

Load Situation M1 M2 N σ1o σ2u 
A 565 kNcm 1622 kNcm 171.5 kN −1.35 kN/cm2 1.74 kN/cm2 
B 436 kNcm 1255 kNcm 83.7 kN −0.95 kN/cm2 1.21 kN/cm2 

3.2. Derivation of Deformations for the Discrete Method 
In ref. [28], a proposal for the determination of deflections based on the “principle of 

virtual forces” was developed for the discrete method. Here again, the “superposition 
principle” was used as previously described. 

According to the working principle, the auxiliary system (one-system) was again the 
unbonded beam with a load of 1 at the point and in the direction where the deflection was 
sought. 

The respective moment curves in the belt and web were then to be superimposed 
according to Equation (7), whereby the deflection components due to shear forces were 
neglected. 

w = ඲
M ⋅ M
E ⋅ I

⋅ dx (7)

The following Figure 8 illustrates the procedure using the example of a single-span 
beam with a point load in the centre of the span. For the total deflection, the individual 
deflection components must be added. 
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Figure 8. Procedure for determining deflections with principle of virtual forces. 

The deflection at the point of force application (centre of the field for load situation 
A) resulted in 1.66 cm for load situation A and 0.69 cm for eccentric-load situation B, using 
the method described and including the numerically determined partial-normal force re-
sults according to Figure 8. 

3.3. Calculation of Force Quantities and Deformations with the Differential Equation Method 
The derivation and solution of the differential equations were carried out by Natterer 

and Hoeft [25]. The basis for the derivation of the required additional governing equations 
for the internally statically indeterminate problem (again assuming linear material laws 
for the composite partners, including the connecting means and the validity of the flatness 
of the partial cross-sections after bending) was again the fulfilment of the constraint con-
dition in the contact joint of an infinitesimal beam element (dx) with a continuous connec-
tion between concrete and wood. This leads to a differential equation system for the con-
tact joint displacement (u) and the beam deflection (w). In a publication [25] of March 
1987, the differential equation system was solved for the most common loading situations, 
leading to continuous governing equations for the mechanical parameters. 

In the following, the main equations and preliminary values for the calculation of a 
single-span beam with concentrated load are presented, where Φ indicates the location of 
the concentrated load with respect to the span (Figure 9). 
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Figure 9. Load situation. 

For the load position (single load at the centre of the field), Φ = 0.5, and the location 
of the sought mechanical quantities can be expressed by the related bar length variable ζ 
= 0.5. 

In order to simplify the application of the equations of determination, the following 
preliminary values must be determined (Figure 4 and Table 1 are valid) according to [25]: 

λଶ = ቆk ⋅
(Eଵ ⋅ Aଵ + Eଶ ⋅ Aଶ)

Eଵ ⋅ Aଵ ⋅ Eଶ ⋅ Aଶ
+

k ⋅ eଶ

Eଵ ⋅ Iଵ + Eଶ ⋅ Iଶ
ቇ ⋅ lଶ (8)

aଶ

1 − aଶ =
Eଵ ⋅ Aଵ ⋅ Eଶ ⋅ Aଶ ⋅ eଶ

(Eଵ ⋅ Aଵ + Eଶ ⋅ Aଶ) ⋅ (Eଵ ⋅ Iଵ + Eଶ ⋅ Iଶ) (9)

aଶ =
1

(Eଵ ⋅ Aଵ + Eଶ ⋅ Aଶ) ⋅ (Eଵ ⋅ Iଵ + Eଶ ⋅ Iଶ)
Eଵ ⋅ Aଵ ⋅ Eଶ ⋅ Aଶ ⋅ eଶ + 1

 (10)

B = Eଵ ⋅ Iଵ + Eଶ ⋅ Iଶ +
Eଵ ⋅ Aଵ ⋅ Eଶ ⋅ Aଶ ⋅ eଶ

(Eଵ ⋅ Aଵ + Eଶ ⋅ Aଶ)  (11)

c =  
Eଵ  ∙ Iଵ

Eଵ ∙  Iଵ +  Eଶ ∙  Iଶ
 (12)

d =  ୉మ ∙୍మ
୉భ∙ ୍భା ୉మ ∙ ୍మ

  (13)

The normal force and the bending moments result in: 

N = P ∙ l ∙
aଶ

e
∙ ቈ(1 − Φ) ∙ ζ −

1
λ

∙
sinh[λ ∙ (1 − Φ)]

sinh(λ) ∙ sinh(λ ∙ ζ)቉ (14)

Mଵ = P ∙ l ∙ d ∙ ቈ(1 − aଶ) ∙ (1 − Φ) ∙ ζ + aଶ ∙
1
λ

∙
sinh[λ ∙ (1 − Φ)]

sinh(λ) ∙ sinh(λ ∙ ζ)቉ (15)

Mଶ = P ∙ l ∙ c ∙ ቈ(1 − aଶ) ∙ (1 − Φ) ∙ ζ + aଶ ∙
1
λ

∙
sinh[λ ∙ (1 − Φ)]

sinh(λ) ∙ sinh(λ ∙ ζ)቉ (16)

Table 3 summarises the results of the calculations. 

Table 3. Results according to the differential equation method. 

Load Situation M1 M2 N σ1o σ2u 
A 565 kNcm 1632 kNcm 171.0 kN −1.35 kN/cm2 1.75 kN/cm2 
B 442 kNcm 1277 kNcm 82.0 kN −0.96 kN/cm2 1.22 kN/cm2 

To illustrate and better classify the results, the fictitious case of a rigid bond between 
wood and concrete was also calculated using this method, and the results are presented 
in Table 4. 
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Table 4. Results for the rigid bond. 

Load Situation M1 M2 N σ1o σ2u 
A 256 kNcm 741 kNcm 244.1 kN −0.92 kN/cm2 1.27 kN/cm2 
B 158 kNcm 458 kNcm 149.2 kN −0.56 kN/cm2 0.78 kN/cm2 

According to [25], the deflections were given by Equation (17) for load situation A as 
1.68 cm and for load situation B as 0.71 cm. In comparison, the deflections under the as-
sumption of a rigid composite would be calculated as 1.07 cm for load situation A and 
0.40 cm for load situation B. 

w =
P ∙ lଷ

B
∙ ቊ

aଶ

1 − aଶ ቈ
1
λଶ ∙ (1 − Φ) ∙ ζ −

1
λଷ ∙

sinh[λ ∙ (1 − Φ)]
sinh(λ) ∙ sinh(λ ∙ ζ)቉ +

1
6

∙ (1 − Φ) ∙ (2 ∙ Φ − Φଶ − ζଶ) ∙ ζቋ (17)

3.4. Gamma Method 
Usually, the gamma method is used for composite structures. This is a simple calcu-

lation method, which is also the standard method in Eurocode 5 [24]. The advantage lies 
in compact and easy-to-use formulas, whereby the effective bending stiffness of the entire 
beam can be used for deformation calculations. With the introduction of an effective mo-
ment of inertia, the requirement that the curvature of the individual parts must corre-
spond to the curvature of the entire beam is again met for the composite-free case in an 
extended sense. 

Mଵ

Eଵ  ∙  Iଵ
=

Mଶ

Eଶ  ∙  Iଶ
=  

ܯ
E୴  ∙  Iୣ୤୤

  (18)

The comparative elastic modulus Ev can be free selected; mostly, Ev = E2 is selected. 

M =  Mଵ +  Mଶ (19)

Thus, for the effective moment of inertia after some transformation 

Iୣ୤୤ =
Eଵ

E୚
⋅ Iଵ +

Eଶ

E୚
⋅ Iଶ (20)

In the case of a rigid compound, the Steiner component also appears. In the com-
pound-less case (no Steiner part is effective), this corresponds to a weight of the Steiner 
part of 0. All cases of the real compound can therefore be classified between these two 
cases (with gamma as a weighting factor = 0 to 1). 

The γ-value was obtained by comparing the terms of the gamma method with those 
of the differential equation method. Compact terms were obtained only for sinusoidal 
loads, but large and complicated terms were obtained for uniform loads and symmetri-
cally concentrated loads. According to [3], the following formulas result for the sinusoidal 
load: 

f =
πଶ ⋅ Eଵ ⋅ Aଵ ⋅ eᇱ

lଶ ⋅ K
 (21)

γ =
1

1 + f
 (22)
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aଶ =
1
2

⋅
γ ⋅ Eଵ ⋅ Aଵ ⋅ (hଵ + hଶ + 2 ⋅ s)

(γ ⋅ Eଵ ⋅ Aଵ + Eଶ ⋅ Aଶ)  (23)

aଵ =
1
2

⋅ (hଵ + hଶ + 2 ⋅ s) − aଶ (24)

where f is an auxiliary value. With the arbitrary comparative elasticity modulus Ev, the 
effective moment of inertia can be calculated: 

Iୣ୤୤ =
Eଵ

E୚
⋅ Iଵ +

Eଶ

E୚
⋅ Iଶ + γ ⋅

Eଵ

E୚
⋅ Aଵ ⋅ aଵ

ଶ +
Eଶ

E୚
⋅ Aଶ ⋅ aଶ

ଶ (25)

For the total moment for load situation A: 

ܯ =
40 ⋅  5

4
= 50.0 kNm 

and for load situation B: 

ܯ =
40 ⋅ 4.056 ⋅ 0.944

5
= 30.631 kNm 

The partial moments M1 and M2, as well as the normal force, result in 

Mଵ =
M

E୚ ⋅ Iୣ୤୤
⋅ Eଵ ⋅ Iଵ (26)

Mଶ =
M

E୚ ⋅ Iୣ୤୤
⋅ Eଶ ⋅ Iଶ (27)

N =
M

E୚ ⋅ Iୣ୤୤
⋅ Eଶ ⋅ Aଶ ⋅ aଶ (28)

This results in the values compiled in Table 5: 

Table 5. Results according to the gamma method. 

Load Situation M1 M2 N σ1o σ2u 
A 444 kNcm 1282 kNcm 199.7 kN −1.18 kN/cm2 1.56 kN/cm2 
B 272 kNcm 785 kNcm 122.3 kN −0.72 kN/cm2 0.96 kN/cm2 

The deflections can be determined with the conventional formulas of structural anal-
ysis, namely with the effective bending stiffness according to the gamma method in the 
denominator. Load situation A for x = l/2 follows: 

w =  
F ∙  lଷ

48 ∙ E୴ ∙ Iୣ୤୤
 (29)

and for the load situation B for x = 0.94 
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w =  
F ∙  aଶ ∙ bଶ

3 ∙ E୴ ∙ Iୣ୤୤ ∙ l
 (30)

This results in 1.65 cm for load situation A and 0.62 cm for load situation B. 

4. Comparison of the Results 
Figures 10–12 show a comparison of the bending moments M1 and M2 and the normal 

forces N, and Figure 13 shows the stresses. 

 

Figure 10. Moment M1, calculated with different methods. 

 
Figure 11. Moment M2, calculated with different methods. 
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Figure 12. Normal force N, calculated with different methods. 

  
(a) (b) 

Figure 13. Longitudinal stresses for load situation A (a) and load situation B (b). 

It should first be noted that, under the given conditions, the differential equation 
method and the discrete method provide almost identical values for the selected load-
bearing behaviour variables. This circumstance can be explained by the relatively dense 
arrangement of the bolt pairs, which creates an almost continuous bond between the wood 
and the concrete. The sectionally constant moments and normal forces of the discrete 
method deviate only slightly from the continuous lines of the differential equation method 
at small distances (here, 45 fields). In contrast to screws, which are always arranged rela-
tively closely, larger distances are present in the case of cleats. In [20], comparative calcu-
lations with cleats, which formed only 10 sections (and single loads), were carried out, 
and also showed deviations between the methods. 

As shown in the comparative calculation, the gamma method underestimates more 
accurate methods with respect to stress determination for both load situations. For load 
situation A, the gamma method calculates a difference of about minus 13 per cent for σ1o 
(based on the values calculated with the more stringent method) and minus 11 per cent 
for σ2u. For load situation B, the differences were even greater (minus 25 per cent for the 
upper stress versus minus 21 per cent for the lower stress).  

This can be explained primarily by a redistribution of the internal forces in the direc-
tion of the rigid composite, which was more pronounced in load situation B, according to 
the data available here. Use of the gamma method leads to a reduction of around 22 per 
cent for load situation A (minus 39 per cent in load situation B) in the case of the two 
partial moments, compared with the more stringent methods, with a simultaneous in-
crease in the partial-normal-force stress of 18 per cent (plus 49 per cent in load situation 
B). This allows the conclusion that, in the case of the central concentrated load and with 
increasing deviation from this, the gamma method underestimates the bending stress and 
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overestimates the partial-normal-force stress. The values, therefore, erroneously approach 
the exact results assuming a rigid composite. This was also ultimately reflected in the de-
flections (in particular load situation B, with minus 11 per cent).  

The deflections, shown in Figure 14, are approximately the same for all 3 calculation 
models and larger than with the rigid system. 

 
Figure 14. Deflection w, calculated with different methods. 

5. Conclusions 
In summary, the gamma method is to be considered as a model-rate inaccurate 

method for the computational determination of two-part wood–concrete hybrid beams 
with common design features, especially for predominantly eccentrically located load sit-
uations compared to the more stringent method. 

The gamma method underestimates the stress and deformation quantities to be de-
termined for both the ultimate limit state design and the serviceability check, and is there-
fore on the unsafe side. 

From a design point of view, the differences can, in any case, become decisive with 
regard to an exact verification, and thus represent a design-relevant criterion under cer-
tain conditions. Deviations can also occur with a larger spacing of the cleats—even with 
uniform loads—as described in [20]. In view of these results, it is therefore recommended 
to use the more stringent differential equation method for mathematical prediction in such 
exceptional situations. 

In summary, it is to be stated that the discrete method, which involves a high com-
putational effort, is a valuable methodology for the accurate simulation of conventional 
wood–concrete composite beams, especially in the case of single loads. 
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