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Kurzfassung

Der Bereich unbemannter Luftfahrzeuge (uLFZ), welche umgangssprachlich auch als
Drohnen bezeichnet werden, entwickelte sich in jüngster Vergangenheit rasch weiter.
Quadrokopter und andere Arten von uLFZ wurden bedeutend kleiner, leistungsstärker
und kostengünstiger. Aufgrund der Verfügbarkeit in verschiedensten Qualitätsklassen
von Unterhaltungselektronik bis hin zu professionellen, industriellen und der Forschung
dienenden Anwendungen, werden diese uLFZ nicht nur im Außenbereich, sondern auch
für eine steigende Anzahl an Anwendungen in Innenräumen eingesetzt.

uLFZ können entweder ausschließlich manuell gesteuert werden, oder technische Unter-
stützungssysteme, wie etwa die Aufzeichnung des Flugpfades oder Autopilot-Funktionen,
bereitstellen. Für diese Arten der Navigation in Innenräumen sind präzise, rasch verfügbare
und verlässliche Positionsdaten wesentlich. Diese können durch ein lokales Positionssystem
ermittelt werden. In der vorliegenden Arbeit wird daher die folgende Problemstellung
behandelt: Gegeben sei ein begrenzter dreidimensionaler Raum, in welchem die Position
eines uLFZ mit einer definierten Genauigkeit festgestellt werden soll.

In dieser Arbeit wird ein solches Lokalisierungssystem auf Basis von Ultraschallsignalen
implementiert. Auf dem uLFZ wird ein Sender platziert, welcher Ultraschallsignale
aussendet. Im Raum, in welchem das uLFZ betrieben werden soll, werden mehrere ortfeste
Empfänger platziert, welche die ausgesendeten Ultraschallsignale empfangen. Abhängig
von der Ausbreitungsgeschwindigkeit des Signals und der Position des uLFZ wird das
Signal von jedem Empfänger zu unterschiedlichen Zeitpunkten empfangen. Basierend auf
den Unterschieden dieser Zeitpunkte und der bekannten Ausbreitungsgeschwindigkeit
des Signals, welche im Fall von Ultraschallsignalen die Schallgeschwindigkeit ist, wird die
Position des uLFZ berechnet.

Die durchgeführten Tests zeigen, dass mit dem implementierten System die Position eines
uLFZ in Innenräumen erfolgreich festgestellt werden kann. Die Positionsbestimmung
erfolgt mit einer Frequenz von 14Hz und liefert für statische Postitionen eine Standard-
abweichung von 1.9 bis 4.9cm in horizontaler und 5.8 bis 13.4cm in vertikaler Richtung.
Für bewegte Objekte erhöht sich diese auf 6.0 bis 7.3cm in horizontaler Richtung. In den
Tests konnte die Tauglichkeit des implementierten Systems für die Verwendung in einem
Autopilot-System gezeigt werden. Der Quadrokopter kann damit selbständig einem Pfad,
bestehend aus vordefinierten Wegpunkten, folgen.

xi





Abstract

In recent times there has been a huge development in the field of Unmanned Aerial
Vehicles(UAVs). Quadcopters and other types of UAVs have become smaller, more
powerful and cheaper. Given the availability of UAVs in a wide range of quality classes
from consumer market to professional, industrial, and research applications they are not
only operated outdoors but also used for an increasing number of indoor applications.

UAVs can either be operated completely manually or employ assistive technologies like
flight path recording or autopilot systems. For these types of indoor navigation it is
essential to have accurate, timely and reliable location data which can be determined by
a Local Positioning System (LPS). It is necessary to achieve a sufficient accuracy and
reliability for such a LPS to safely move UAVs without crashing and hitting any obstacles.
In this thesis we are dealing with the following problem: Given a bounded 3-dimensional
space (indoor location), the position of an UAV should be determined within a certain
precision in this space.

In this work we implement a LPS based on ultrasonic signals. On the UAV a sender
is placed which transmits ultrasonic signals. At the indoor location, where the UAV is
operated, there are fixed receivers placed which receive the ultrasonic signals. Depending
on the propagation speed of the signal and the position of the UAV the signal is received
at different time instants by each receiver. Based on the differences of these time instants
and the known propagation speed for the signal, which is the speed of sound in the case
of ultrasonic signals, the position of the UAV is calculated.

The tests which we carried out, show that the implemented LPS is capable of determining
the position of an UAV at an indoor location. The position is determined with a rate of
14Hz. For static positions the standard deviation is 1.9 to 4.9cm in horizontal direction
and 5.8 to 13.4cm in vertical direction. For a moving object the standard deviation is 6.0
to 7.3cm in horizontal direction. Our tests demonstrate the fitness of the implemented
LPS to be used in an autopilot setup for a quadcopter. The quadcopter is able to follow
a path consisting of pre-defined waypoints.
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CHAPTER 1
Introduction

In recent times there has been a huge development in the field of Unmanned Aerial
Vehicles(UAVs). Quadcopters (helicopters that are propulsed by four rotors) and other
types of UAVs have become smaller, more powerful and cheaper. They are available in
a wide range of quality classes from consumer market to professional, industrial, and
research applications.

1.1 Motivation

Given the availability of UAVs they are not only operated outdoors but also used for an
increasing number of indoor applications. In this thesis we are looking at the problem of
indoor localisation for UAVs.

1.1.1 Motivation and Problem Statement

For indoor navigation of UAVs it is essential to have accurate, timely and reliable location
data. In contrast to Unmanned Ground Vehicles(UGVs) where it might be sufficient to
have 2-dimensional data we need 3-dimensional location data for UAVs. It is necessary
to achieve a sufficient accuracy and reliability for a Local Positioning System (LPS) to
safely move UAVs or UGVs without crashing and hitting any obstacles. To catch this
goal it is necessary to merge several sources of information and combine the position data
in a reasonable way. One example for a navigational application is guided learning to
teach human operators to pilot an UAV. Such an assistant defines a virtual 3-dimensional
area where the UAV shall stay inside for all the time. In case of incorrect commands
from a human operator the autopilot can take over and hold the current position to avoid
crashes.
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1. Introduction

This motivation points out the demand for LPSs in the area of robotics. We therefore
describe the problem of a LPS as follows: Given a bounded 3-dimensional space V, the
position M of an UAV should be determined with a certain precision in this space V
(see Figure 1.1). We can assume to have an indoor location (lecture hall, seminar room,
gym, etc.) where fixed components of the LPS can be placed. Furthermore, we have an
UAV that can be equipped with active or passive components of the LPS on board.

Let V denote the 3-dimensional space

V =

















x
y
z






: x, y, z ∈ R











bounded by limits

xmin ≤ x ≤ xmax, ymin ≤ y ≤ ymax, zmin ≤ z ≤ zmax

then the position M of an UAV

M =







xUAV

yUAV

zUAV






, M ∈ V

should be determined by the LPS.
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1.1. Motivation

x

xmin

xmax

y

ymin

ymax

z

zmin

zmax

M

Figure 1.1: Given the 3-dimensional space V bounded by limits xmin ≤ x ≤ xmax, ymin ≤
y ≤ ymax, zmin ≤ z ≤ zmax, the position M of an UAV should be determined by the LPS.

1.1.2 Aim of the Work

The aim of this thesis is to compare existing indoor positioning systems. Based on this
research, we design and implement a LPS which is able to detect the absolute position of
an UAV in indoor environments. The determined position of an UAV should also take the
relative position information, derived from on-board Inertial Measurement Units(IMUs),
into account. This requires means of sensor fusion and appropriate transformation of
position data with respect to their coordinate system.

In a first stage the system should record the trace of an UAV’s flight. This will show
a proof of concept of the developed system and can be used to check the accuracy and
precision of the system. The second stage of this work should make it possible to set
waypoints for the UAV to fly autonomously. More general the UAV should be able to
follow a specified path or hold its position without any human interaction.

3



1. Introduction

1.2 Methodology and Outline

First we are going to carry out a literature study of existing positioning systems. We will
focus on LPSs but not limit our research in order to also incorporate methods currently
not used in LPSs. Then we will specify the requirements for the design of our LPS. This
includes accuracy and operating distance. Given these requirements we will analyse the
types of systems which were identified in the literature study. These systems will be
judged by their fitness to fulfil the specified requirements. Based on this analysis we will
decide which system (or which combination of systems) we will use in this work.

Given the selected system we will formalize the mathematical model in order to carry
out simulations in the next step. These simulations will help to check if the requirements
can be satisfied by our specific design decisions for the implementation of the LPS. If
there are any problems identified in this stage the design decisions should be revised and
the simulations will be carried out again. Then, parts of the system are implemented in
hard- and software and tests with these components are conducted to check against the
simulated properties. In case of differences between simulation results and real world
tests adjustments to the simulation and/or implementation are applied. Furthermore,
simulations will be parametrized and refined by the real world test results.

Based on the updated simulation and the component-wise verified parts the whole LPS
will be assembled. Simulations of the whole system will be carried out as well. The
whole system will then be used to track a manually operated quadcopter. As soon as the
system is verified to be reliable it will be used to implement an autopilot system for a
quadcopter.

4



CHAPTER 2
State of the Art

First, we will give an overview of basic concepts how to determine the position of a
mobile object. Then, we carry out a literature survey of LPSs. We characterize these
LPSs by the type of the system and the used calculation method. We are also looking at
the accuracy that these systems provide.

2.1 Basic Concepts

In this section we will describe the basic concepts how to determine the position of
a mobile object. First, information about the mobile object is measured (e.g., time,
angle, signal strength). This information is propagated by different types of transmission
medium. With the measurements, the position can be inferred by different calculation
methods.

2.1.1 Transmission Medium

Since every LPS needs to transmit information from fixed reference points to a mobile
object or vice-versa a system can be categorized its transmission medium.

Radio Signals

For radio signal based systems there are either senders on the mobile object and receivers
on fixed positions or the other way around. It may also be the case that both types are
placed on the mobile object in case of bidirectional communication. Since mobile robots
in the most cases require wireless communication it can be beneficial to use the same
radio signal for information transmission and to determine the location.

5



2. State of the Art

Sound Signals

Another option is the usage of sound signals instead of radio signals. The principle of
these systems is similar to those which use radio signals. The propagation speed of
sound is significantly slower than the speed of radio signals. This makes it easier to use
differences in propagation delays to calculate the position. While it is possible to use any
frequency for the sound signal it is beneficial to use ultrasonic sound signals outside the
range of audible frequencies for humans. Sound signals which are audible for humans
can be distracting and a nuisance for people in the operating range of the system.

Optical Systems

A different approach is to use cameras. They can either be distributed in a room or
placed on a mobile object. Additional active or passive markers placed on the flying
object or within the operation area can help to improve the accuracy of such systems.
The position is determined by image processing. For more details about optical system
see Section 2.1.2.

2.1.2 Calculation Method

Using either radio, ultrasonic or optical signals it is possible to determine the location using
various methods. These will be described in the following sections. In all of the following
figures the mobile object is marked with m while Pi denote fixed receivers/senders with
known location.

Time of Arrival (TOA)

The propagation speed vsignal for the used signal must be known. Furthermore there
is a time synchronisation needed between the sender and receiver of the signal s.t. the
propagation delay δt = treceive − tsend can be measured. From this delay the distance
between sender and receiver s = δt · vsignal can be calculated. Any direction may be
used for the signal: This means the sender can be placed on the mobile object and the
receivers are placed within the operating area or the other way around.

The time synchronisation between the sender and receiver can be achieved using different
methods:

• Precise clocks
When the system is started the clocks of the mobile object and fixed receivers/senders
are synchronized. The clock drift must be below a certain limit s.t. the accuracy
of the system can be maintained for the specified operating time. An example
for such precise clocks would be atomic clocks. E.g., frequency stability for NAC1
Nano-Atomic-Clock is 8 · 10−12 [Pra+17].

6



2.1. Basic Concepts

• Signals sent in both directions
Both sides (mobile object as well as fixed stations) are equipped with a sender
and receiver. A signal is transmitted at time tsend by fixed stations and replied
by the mobile object once it receives the signal at time treceive = tsend + δt. At
time treplied = treceive + δt the signal is received at fixed receivers again. The delay
2 · δt = treplied − tsend can be measured.

• Continuous clock synchronisation
The clocks of the mobile object and fixed receivers/senders are continuously syn-
chronized by additional means. An additional radio frequency module can be used
for this purpose.

For the 2-dimensional plane a measured timespan between one sender-receiver-pair
determines a circle of known radius for possible positions of the mobile object. Using one
more of those pairs the possible positions become the intersection of two circles which
might be at most two possible locations. Using 3 pairs it is in theory possible to exactly
determine the position of the object in the 2-dimensional plane. For 3-dimensional space
one more sender-receiver-pair is needed. Figure 2.1 shows an example for Time of Arrival
(TOA): The circles indicate the possible positions based on the measured propagation
time for the respective sender-receiver-pair.

x

y

P0

P1

P2

m

Figure 2.1: Example for TOA shown in 2-dimensional plane: Mobile object (m) and
three reference points (P0, P1, P2) with known location. Red circles indicate the possible
positions based on the measured propagation time for the respective sender-receiver-pair
(m↔ Pi).
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2. State of the Art

Time Difference of Arrival (TDOA)

This method is similar to TOA but there is no synchronisation with the mobile object
needed. Again the direction of the signal can be in either direction, the sender can
be placed on the mobile object and the receivers are placed within the operating area
or the other way around. The fixed components must be synchronized, s.t. the time
difference between the propagation delay for two sender-receiver-pairs can be measured.
This means that tsend might be unknown, but δt = treceivei

− treceivej
can be determined.

From this difference in time and the known position of two fixed senders/receivers a
hyperboloid with all possible positions of the mobile object can be calculated [Lee75].
For Time Difference of Arrival (TDOA) there are at least 3 fixed stations necessary for
the 2-dimensional plane and 4 stations for the 3-dimensional space. Figure 2.2 shows
an example for TDOA: The red hyperbolas (marked by Pi △ Pj) indicate the possible
positions based on the measured time difference by two stations (Pi, Pj).

x

y

P0 △ P1 P0 △ P2

P1 △ P2

P0

P1

P2

m

Figure 2.2: Example for TDOA shown in 2-dimensional plane: Mobile object (m) and
three reference points (P0, P1, P2) with known location. Red hyperbolas (marked by
Pi △ Pj) indicate the possible positions based on the measured time difference by two
stations (Pi, Pj).

Angle of Arrival (AOA)

To calculate the position using Angle of Arrival (AOA) the receivers must be able to
determine the angle from where the signal was received. The position is then given by
the intersection of two straight lines with these angles. The exact angle for the signal
direction can be measured by rotating antennas as described by Gill and Hecht for aerial
navigation [GH28]. Figure 2.3 shows an example for AOA with exact angle measurement:
The red lines indicate the possible positions based on the measured angle for the signal.
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Sector antenna arrays can be used for AOA estimation as described by Abdalla, Razavi-
Ghods and Salous [ARS05]. The proposed antenna layout provides information of the
signal direction within a certain angular interval. Figure 2.4 shows an example for AOA
with sector antennas: Each reference point has marked 16 antenna sectors. The red areas
indicate the possible positions based on the determined antenna sector.

x

y

α0

α1

P0

P1

m

Figure 2.3: Example for AOA with exact angle measurement shown in 2-dimensional
plane: Mobile object (m) and two reference points (P0, P1) with known location. Red lines
indicate the possible positions based on the measured angles (α0, α1) for the signal.

x

y

P0

P1

m

Figure 2.4: Example for AOA with sector antennas shown in 2-dimensional plane: Mobile
object (m) and two reference points (P0, P1) with known location and 16 antenna sectors
each. Red areas indicate the possible positions based on the determined antenna sector.
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Received Signal Strength Indication (RSSI)

In free space propagation the received power level is inverse proportional to the squared
distance of sender and receiver. If there is no disturbance (e.g., reflection or shading)
the distance can be calculated if the transmitted and received power is known. If there
are at least four receiver-transmitter pairs with known distance the position of the
mobile object can be ultimately determined. Compared to free space propagation the
accuracy and precision of the determined position might be significantly lower in real
world environments. Figure 2.5 shows an example for Received Signal Strength Indication
(RSSI) based localization: The red circles indicate the possible positions based on the
measured signal power while the red regions indicate the signal level around the fixed
receivers/senders.

x

y

P0

P1

P2

m

Figure 2.5: Example for RSSI based localization shown in 2-dimensional plane: Mobile
object (m) and three reference points (P0, P1, P2) with known location. Red circles indicate
the possible positions based on the measured signal power. Red regions indicate the signal
level around the reference points.

Location Fingerprinting

For RSSI based systems there might be problems if there are a lot of obstacles. In indoor
locations this can be walls, furniture or other objects. Location fingerprinting provides
a solution for this problem. Received power is not taken as direct measurement for
the distance. Within the operation area a set of possible positions is defined and the
respective signal power levels are recorded for all base stations at these positions. To
determine the unknown position of a mobile object the current power levels for all stations
are then matched against this pre-recorded reference levels. Location fingerprinting is not

10
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only applicable to signal power levels but also to other properties which can be recorded
at all the possible positions. Figure 2.6 shows an example for location fingerprinting:
The red dots indicate the reference positions with the recorded signal power for all base
stations.
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5; 4
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m

Figure 2.6: Example for location fingerprinting shown in 2-dimensional plane: Mobile
object (m) and three reference points (P0, P1, P2) with known location. Red dots indicate
the reference positions with the recorded signal power for all base stations.

Fixed Camera Systems

A different approach is the usage of fixed cameras which are distributed in space. Based
on the images of two or more cameras the position of the mobile object is determined.
Hannah [Han74] describes matching of a target area (this could be the mobile object for
example) in a system of pictures from two cameras (stereo images). When the position of
the mobile object is identified on the pictures the position within the three-dimensional
space can be inferred. To enhance the system additional active or passive markers can
be placed on the mobile object which make it easier identifying it on the camera pictures.
Figure 2.7 shows an example of a fixed camera system: The red and green cones indicate
the camera coverage. Red and green planes indicate the respective camera viewports.

On-Board Camera Systems

It is also possible to mount a camera or several cameras on the mobile object. Image
processing is used to calculate the position based on the images of the environment.
For this method there might be active or passive optical markers distributed in space.
These markers can be compared to reference images as described by Quam [Qua71]
or by Ayache and Faugeras [AF86]. Given the known position of the markers and the
identified location in the camera images the position of the mobile object can be inferred.
Figure 2.8 shows an example of an on-board camera system: The blue cone indicates the
camera coverage and the blue area indicates the camera viewport.
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(a) Fixed camera system in 3-dimensional space.
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(b) Projection to the y-z-plane.
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(c) Projection to the x-z-plane.

Figure 2.7: Example for fixed camera system: Mobile object (m(x, y, z)) and two cameras
(P0(x, y, z), P1(x, y, z)) with known location. The red and green cones indicate the camera
coverage. Red and green planes indicate the respective camera viewports.
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(a) On-board camera system in 3-dimensional space.
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Figure 2.8: Example for on-board camera system: Mobile object (m(x, y, z)) with
downward facing camera and four fixed reference points (P0(x, y, z), P1(x, y, z), P2(x, y, z),
P3(x, y, z)) with known location. The blue cone indicates the camera coverage and the
blue area indicates the camera viewport. 13
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2.1.3 Relative Position Determination

IMUs and odometry are used in robotics to determine the relative position of mobile
objects. These systems are not capable of providing an absolute position like LPS do.
This means if the mobile object is placed at an unknown location m0 these systems
cannot determine the position without further information. Let us assume the mobile
object is first placed at known location m1 and then moved by vector ~s to the new
location m2 = m1 + ~s. Then these systems are able to determine the vector ~s. Therefore
the position m2 can be inferred based on the previously known location m1. IMUs
and odometry can furthermore be used in combination with other systems to enhance
precision and/or reliability of the overall position determination.

Inertial Measurement Unit (IMU)

An IMU is a system that measures or estimates the value of angular and linear velocities
with the help of three-axis accelerometers, three-axis gyroscopes and three-axis mag-
netometers. After integrating the accelerations corrected by the angular speeds in the
body-axis, three attitude angles are obtained [Mum+17]. In former days these devices
mainly used gyrostats which were bulky and expensive instruments. The development
of accelerometers and gyroscopes as Microelectromechanical systems(MEMSs) caused
a breakthrough in IMU applications. The sensors are much cheaper and smaller than
former sensors. Nowadays they can be found in nearly every smartphone and a lot of
consumer devices.

The mathematical model of an IMU can be described as follows: An accelerometer is
capable of directly measuring ~a(t) which gives by integration:

~v(t) =
∫

~a(t) dt

Further integration results in:

~s(t) =
∫

~v(t) dt =
∫∫

~a(t) d2t

Similarly, the gyroscope measures the angular velocity ~ω(t) which gives by integration:

~φ(t) =
∫

~ω(t) dt

Problems occur when IMUs are used over longer periods of time due to the ever increasing
error for position and orientation. Let us assume that there is a small but constant error
ǫ for the measurement of acceleration in one dimension:

a(t) = aactual(t) + ǫ
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This leads to an accumulated error which is increasing quadratically over time:

s(t) =
∫∫

aactual(t) + ǫ d2t = sactual(t) + ǫ · t2

Therefore, IMUs alone are usually only used for short time navigation and the estimated
position is regularly compared and adjusted by other means of position determination.

Odometry

Odometry can be used for nearly any ground-based robot. Given the initial position and
summing up all movements over time it is possible to determine the current position.
This is typically done by counting the revolutions of wheels or measuring other means
of mechanical propulsion. Due to its easy application this method is in wide use for
a lot of ground-based robots for already a long time [Hid+17]. Errors in the position
determined by odometry may be caused by inaccurate measurements because of sliding
wheels, uneven surfaces or incorrect wheel parameters [NAS71]. Without further sensors
these errors cannot be detected and/or corrected. However, odometry is not applicable
to flying robots because for such robots there is no mechanical propulsion with physical
contact to the environment.

2.2 Literature Survey

In the following section we will list different implementations of LPS and highlight the
specific properties of these systems. For the characterization we will look at the used
transmission medium such as radio, sound or optical signals as well as the calculation
method such as TOA, TDOA, AOA or RSSI.

2.2.1 Systems using Radio and Ultrasonic Signals

The field of robotics provides a wide range of different implementations of LPS. The
following examples give an overview of systems using radio and ultrasonic signals.

Bjerknes et al. [Bje+07] describe a TOA localization system to determine the position of
a mobile robot: In their work, they use 8 base stations to transmit ultrasonic signals and
one mobile receiver on the robot. The transmitters send single bursts in a predefined
sequence while the receiver on the robot is calculating the distance to each beacon based
on the propagation delay. Time synchronisation between beacons and the mobile unit is
done by a radio signal. Bjerknes et al. present 2D localization as well as 3D localization
with a accuracy of ±1 cm for X- and Y-Axis and ±4 cm for Z-Axis.
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Koenig, Schmidt and Hoene [KSH11] use TOA localization based on commonly known
wireless networks like IEEE 802.11: They compare TOA and RSSI using off the shelf
Wireless-LAN Hardware. The test setting consists of six Access-Points and a notebook
which acts as mobile object. They use a sequence of User Datagram Protocol (UDP)
packets which are sent over the IEEE 802.11 network in order to measure the time
delay. Furthermore they describe the optional usage of a Software Defined Radio (SDR)
which acts a a monitor node observing network traffic for a better accuracy of the time
measurements. Possible locations are restricted to the 2-dimensional plane and results
show a mean error of 1 meter.

Global Positioning System (GPS) is a very well established system which uses TDOA
[MBP99]: Time-synchronized satellites send code-multiplexed signals on two frequencies.
The signals are directly used to measure propagation delay on the one hand and also
contain system meta data like positions of the satellites on the other hand. The system
was initially built for non-civil use. Today receivers are available to everyone. The
accuracy estimation of the system varies from millimeters to tens of meters depending
on the receiver, needed time for a measurement and access to encrypted information.
Typically GPS is only used in outdoor applications since in buildings the signal reception
is either weak or not possible at all.

Pang and Trujillo [PT13] use TDOA with one omnidirectional transmitter and four
receivers for indoor localization. The position for the mobile object is limited to the
2-dimensional space. Analogous signal processing is done by a rectifier circuit and digital
signal processing is done with a low cost micro controller. Accuracy is not extensively
discussed in the paper, however, it shows that it depends on the position within the
measurement area and varies from approx. 8 cm to 25 cm to completely wrong results in
the worst cases. The paper points out that the main reason for inaccuracies might be
caused by problems detecting the edge of the transmitted signal precisely.

Oksar [Oks14] uses RSSI based localization in Bluetooth networks: Bluetooth transmitters
are used as mobile objects and three Bluetooth receivers are used as reference points with
known location. The receivers are off-the-shelf phones which have built-in means for RSSI
measurement. The localization is simplified to the 2-dimensional plane and positions
are restricted to a grid of 1 meter cell size. The presented method uses a number of
sequential measurements which take a few seconds. The position is calculated based on
Root-Mean-Square-Error metric.

Cheng, Wu and Zhang [CWZ11] use RSSI based localization in ZigBee networks: They
describe a system using six fixed ZigBee nodes and one mobile node on a wheeled robot.
There is also one TDOA node but the calculation is mainly based on RSSI. The position
of the mobile robot is restricted to the 2-dimensional plane since the robot drives on
wheels. Using filtered polynomial fitting they show an average localization accuracy of
0.5 meters.
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Koenig, Schmidt and Hoene [KSH11] demonstrate location fingerprinting based on
common known wireless network IEEE 802.11: They use location fingerprinting with
RSSI and also TOA. With a test setting consisting of six Access-Points it is possible
to determine the location of a notebook with mean error of 1.5 meters using RSSI
fingerprinting. Possible locations are restricted to the 2-dimensional plane.

2.2.2 Fixed Camera Systems

The following examples give an overview of systems using fixed cameras which are
distributed in space. Additional active or passive markers on a mobile object can enhance
the accuracy and/or reliability of the system. The position of the mobile object is
determined by image processing.

Szaloki et al. [Sza+13] apply the localization method using fixed cameras to the 3-
dimensional space with a system called Smart Mobile Eyes for Localization (SMEyeL). A
robotic arm is used in this experiment to move a marker which is filmed by three cameras
simultaneously. The results show a precision of approximately 1 mm for a distance of 1
to 2 meters.

The motion-capture system Vicon MX is used in the work of How et al. [How+08] in
which a test environment for autonomous indoor vehicles is described. This system uses
reflective markers on mobile objects and it is capable of measuring the position at a rate
of 100 Hz. The accuracy for an object which does not move is stated to be less than
0.325 mm in x-dimension, and less than 0.199 mm in y-dimension, z-dimension is fixed to
zero in this test. 18 cameras are used in a room with dimensions of 8 by 5 by 3 meters.

An example for a fixed camera system is demonstrated by the company Festo in a project
called eMotionButterflies [Fes15]. The robots in this project are very lightweight with
only 32g and equipped with beating wings with a wingspan of 50cm for propulsion. The
shape and moving pattern of these robots is inherited from butterflies. Every flying robot
is equipped with two active markers consisting of infrared LEDs. The system uses 10
infrared cameras with a frame rate of 160 Hz. Accuracy is not stated in the article but it
can be assumed that it is significantly less than the size of the flying robots.

Jeong and Jung [JJ12] describe the localization of a quadcopter using a single camera
for indoor application. The paper addresses the needed correction for radially distorted
images by camera lenses. It further describes the usage of markers on the quadcopter.
Accuracy for a region of approximately 3 by 3 meters is stated as 2 cm by the resolution
of the used camera.
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2.2.3 On-Board Camera Systems

It is also possible to mount one or several cameras on a mobile object. Image processing
is used to calculate the position based on the images of the environment.

Wang et al. [Wan+12] present a self-localization system for mobile robots. A predefined
map is used in this example to determine the location of a robot with one mobile video
camera. A computer vision algorithm is used to perform feature extraction on the video
feed. Experimental results are carried out and show an accuracy of 7 to 20 cm depending
on the environment where the robot is located.

Hijikata, Terabayashi and Umeda [HTU09] propose a method using infrared LEDs. In
contrast to feature extraction on the full video input it uses infrared LEDs as markers
which are spread across the room. The camera is fitted with a infrared filter, s.t. only
the LEDs are visible as light pixels in the video feed. This information is processed in
order to calculate the position of the mobile robot. Tests in the paper show an accuracy
of 5 to 15 cm depending on the test conditions.

2.2.4 Comparison

The described systems provide an accuracy ranging from less than a millimeter to
several meters. Table 2.1 shows a comparison of the given examples. In this comparison
the optical systems provide the best accuracy ranging from less than 0.4mm to 50cm.
Ultrasonic based systems provide mid-range accuracy ranging from 1cm to 25cm. The
last ranked systems by accuracy are radio based ones ranging from 0.5m to 10m.
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System
Type of
system

Calculation
method

2D/3D Accuracy

Bjerknes et al. ultrasonic TOA 2D 1cm

Bjerknes et al. ultrasonic TOA 3D 4cm

Koenig, Schmidt and Hoene
radio
(IEEE 802.11)

TOA 2D 1m

GPS radio TDOA 3D 10mma - 10m

Pang and Trujillo ultrasonic TDOA 2D 8cm - 25cm

Oksar
radio
(Bluetooth)

RSSI 2D 1m

Cheng, Wu and Zhang
radio
(ZigBee)

RSSI 2D 0.5m

Koenig, Schmidt and Hoene
radio
(IEEE 802.11)

location
fingerprinting

2D 1.5m

Szaloki et al.
optical
(3 fixed cameras)

image
processing

3D 1mm

How et al.
optical
(18 fixed cameras)

image
processing

2D < 0.4mm

Festo
optical
(10 fixed cameras)

image
processing

2D ≪ 50cm

Jeong and Jung
optical
(1 fixed camera)

image
processing

3D 2cm

Wang et al.
optical
(on-board camera)

image
processing

2D 7cm - 20cm

Hijikata, Terabayashi and
Umeda

optical
(on-board camera)

image
processing

2D 5cm - 15cm

Table 2.1: Comparison of different LPSs.

aBest accuracy of GPS depending upon access to encrypted signals for military use [MBP99].
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CHAPTER 3
System design

In this chapter we are first introducing and later specifying the requirements which
are needed for a LPS and our implementation. Then, we select an appropriate system
based on the requirements, the described basic concepts and the literature survey. Then,
we formulate the mathematical model and decide on the parameters for our concrete
implementation.

3.1 Local Positioning System Requirements

First we need to specify which requirements are needed for a LPS that is capable of
determining the position for an UAV in indoor locations. The following list gives an
overview of these requirements:

• Maximum range
We can assume to have an indoor location (e.g., lecture hall, seminar room, gym,
etc.) to operate the UAV. The size of this indoor location therefore gives the
required maximum range.

• Maximum weight
For every UAV there is a maximum take-off weight and therefore also a maximum
weight for payload. If there are parts of the LPS placed on the UAV these parts
must not exceed the maximum payload weight. Furthermore, additional weight,
which is added to the UAV, decreases flight time. Therefore, the parts of the LPS
which are placed on the UAV should be as light as possible.

• Maximum speed
The LPS must be functional even if the UAV is moving very fast. This implies that
the maximum speed of the UAV is another requirement.
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• Accuracy
The difference of the measured position given by the LPS and the actual position
must not exceed a certain limit. This defines the required accuracy.

• Measurement frequency
For certain applications (e.g., autopilot systems) it is crucial to have position data
which is updated with a high frequency. Therefore the measurement frequency is
an important requirement.

• Number of mobile objects
Depending on the application the LPS must be capable of determining the position
of 1 up to n mobile objects.

In the following sections we will analyse two quadcopters as examples for UAVs. We will
also describe a specific example where UAVs are operated in an indoor location. Based
on these examples we will thereafter conclude the requirements for our implementation.

3.1.1 AscTec Pelican

The AscTec Pelican built by Ascending Technologies is a quadcopter flight system
intended for research applications. The manufacturer lists the following areas as main
applications for this quadcopter [Asc14]: Integration of custom sensors, indoor navigation
with cameras and laser scanner as well as computer-vision applications.

Technical data [Asc14] for this quadcopter is listed in Table 3.1.

AscTec Pelican

Dimensions 65.1 x 65.1 x 18.8 cm

Propeller size 10"

Motors 4 x 160W

Maximum thrust 36N

Maximum payload 650g

Maximum total weight 1650g

Maximum airspeed 16m/s

Maximum flight time 30mins (without payload)

Battery 6250mAh (LiPo)

Table 3.1: Technical data for quadcopter AscTec Pelican [Asc14].
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Given the maximum thrust of 36N and net weight of 1000g we can calculate the maximum
acceleration of this quadcopter.

amax =
F

m
=

36N

1kg
= 36m/s2

Taking the needed thrust for hovering (against gravity) into account we conclude the
maximum acceleration upwards.

aup = 36m/s2 − 9, 81m/s2 ≈ 26, 2m/s2

And maximum acceleration sidewards.

aside =
√

(36m/s2)2 − (9, 81m/s2)2 ≈ 34, 6m/s2

3.1.2 Parrot AR Drone 2.0

The AR Drone 2.0 is built by Parrot for home and entertainment use. A Software
Development Kit (SDK) [Par16] is provided for this quadcopter which makes it popular
as low-cost research platform as well.

Technical data [Par15b] for this quadcopter is listed in Table 3.2.

AR Drone 2.0

Dimensions 52 x 52 x 11 cm

Motors 4 x 14.5W

Total weight (internal frame) 380g

Total weight (external frame) 420g

Maximum flight time 12mins / 18mins

Battery 1000mAh / 1500mAh (LiPo)

Table 3.2: Technical data for quadcopter AR Drone 2.0 [Par15b].

This quadcopter has officially no rating for a maximum payload capacity. But there is
an official add-on component for GPS tracking that can be placed on the quadcopter.
This module weights 31g [Par15a].

Unofficial information for maximum payload can be found in various online reports about
custom modifications. A test video shows the quadcopter with payload of approx. 162g
[ARD13].
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3.1.3 Air Race competition

The Air Race competition is part of the international championship for self-made,
autonomous, and mobile robots called RobotChallenge [INN15a].

For the Air Race competition an UAV follows a track as fast as possible within a
predefined timespan. The track consists of two poles which are circled by the UAV in
an 8-figure. Points are given for each complete round. If the UAV touches the ground
or the safety net, it restarts a new attempt and the points are reset to zero. The track
area is rectangular with dimensions btrack ≥ 5m and ltrack ≥ 10m. See Figure 3.1 for a
drawing of the track.

In 2015 there was a participant at this competition who successfully managed to fly 50
rounds on this track within 10 minutes. This number of rounds included multiple starts
but the time was taken as net flight time.

The approximate length of the track is calculated as follows.

Pole distance: dpole = 5m

Circle radius: rcirc = 2m

Diagonal length: sdiag =
√

d2
pole + (2 · rcirc)2 =

√

(5m)2 + (2 · 2m)2m ≈ 6, 4m

Half-circle length: scirc =
2 · rcirc · π

2
=

2 · 2m · π

2
≈ 6, 3m

Total track length: strack = 2 · sdiag + 2 · scirc ≈ 2 · 6, 4m + 2 · 6, 3m = 25, 4m

The quadcopter of the aforementioned participant completed the track 50 times within
10 minutes which makes it possible to calculate the average speed.

v =
s

t
=

50 · 25, 4m

10 · 60s
≈ 2, 11m/s
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Figure 3.1: Track for Air Race competition: Two poles with a distance of at least 5
meters are circled by the robot in an 8-figure. [INN15b]
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3.1.4 Specified Requirements

Based on the analysed quadcopters we specify the following requirements for our imple-
mentation:

• Maximum range
As reference for an indoor location we choose the Air Race competition. Therefore
the maximum distance is specified by: smax = max(btrack, ltrack) = 10m

• Maximum weight
For the two analysed quadcopters the maximum payload is 650g and 31g (respec-
tively 162g). We specify the maximum weight for the parts of the LPS which are
placed on the UAV with mmax = 100g. This ensures that both of the analysed
quadcopters can be operated with the LPS.

• Maximum speed
For the maximum speed of the quadcopter s.t. the LPS is still able to track the
position we will take the reference of the aforementioned participant at Air Race
competition. We will round this value up and take it as requirement for maximum
speed: vmax = 3m/s.

• Accuracy
The horizontal dimension of the two analysed quadcopters is 65.1cm and 52cm. In
order to achieve reasonable results for trace recording and autopilot applications we
specify the accuracy of the LPS by one tenth of this dimension: saccuracy = 5cm.

• Measurement frequency
Based on the specified maximum speed and the specified accuracy we can calculate
the minimum frequency needed to satisfy both of these requirements: fmin =
vmax/saccuracy = 3m/s

5cm = 60Hz

• Number of mobile objects
As pointed out in motivation we implement a LPS which is capable to determine
the position of one UAV. The requirement for the number of mobile objects is
therefore nobjects = 1.

A summary of all specified requirements is listed in Table 3.3.
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Specified requirements

Maximum range smax = 10m

Maximum weight mmax = 100g

Maximum speed vmax = 3m/s

Accuracy saccuracy = 5cm

Measurement frequency fmin = 60Hz

Number of mobile objects nobjects = 1

Table 3.3: Specified requirements for our LPS implementation.
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3.2 System Selection

For our implementation of the LPS we need to select the transmission medium and
calculation method as laid out in Section 2. We look at the described options and analyse
if they are suitable for the specified requirements.

3.2.1 Transmission Medium

In Section 2.1.1 radio signals, sound signals, and optical systems are described as possible
transmission medium for LPSs. Due to the computational complexity of optical systems
(see examples for implementations in Section 2.2) we decide not to use an optical system.

To decide between radio and sound signals we look at the following calculation: Given
the specified accuracy we calculate the time which the signal takes to cover this distance.
The required accuracy is specified by saccuracy = 5cm.

We calculate the timespan for sound signals with

tsound =
saccuracy

vsound
=

5cm

340m/s
≈ 150µs.

Let us assume the system is running at fclk = 50Mhz. Then we calculate the number of
clock cycles within this timespan with

ncycles = tsound · fclk = 150µs · 50Mhz = 7500.

We also calculate the timespan for radio signals with

tlight =
saccuracy

vlight
=

5cm

3 · 108m/s
≈ 1.5 · 10−4µs.

Let us again assume the system is running at fclk = 50Mhz. This gives far less then one
clock cycle within this timespan with

ncycles = tlight · fclk = 1.5 · 10−4µs · 50Mhz = 7.5 · 10−3 ≪ 1.

Sound signals are therefore preferred over radio signals due to slower signal propagation
and therefore easier signal processing. Furthermore we decide to use ultrasonic signals
because they are outside the range of audible frequencies for humans.
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3.2.2 Calculation Method

In Section 2.1.2 we describe various calculation methods such as TOA, TDOA, AOA,
RSSI, location fingerprinting, fixed camera systems, and on-board camera systems. Since
we use ultrasonic signals it remains to choose an appropriate calculation method.

For AOA based calculation we would need to measure the angle from where the signal
is received. This could be achieved using rotating antennas or sector antennas (see
Section 2.1.2). Rotating antennas would make the system mechanically complex and
sector antennas would imply the usage of a lot of ultrasonic receivers. Therefore we
decide not to use AOA.

It remains to decide between methods based on propagation delay (TOA, TDOA) and
based on received signal power (RSSI, location fingerprinting). Methods based on received
signal power are described to be very unreliable due to shadow fading and because the
receiver cannot distinguish between signal strength in line-of-sight path and reflected
path [Nai+12]. Therefore we decide to use a method based on propagation delay.

For TOA based systems there is a time synchronisation needed between the sender
and receiver of the signal s.t. the propagation delay can be measured. We describe
several methods (precise clocks, signals sent in both directions, and continuous clock
synchronisation) for this task (see Section 2.1.2). All this methods require additional
hardware to be placed on the mobile object. To reduce the weight on the UAV we
therefore decide not to use TOA. As a result of all these considerations we decide to use
TDOA for our implementation.

3.2.3 Fixed Senders vs. Mobile Sender

Depending on the number of mobile objects and the number of fixed reference points it
can be beneficial to use mobile senders with fixed receivers or the other way round. We
specified the number of mobile objects to be nobjects = 1. Let nref denote the number of
fixed reference points. As laid out in Section 2.1.2 there are at least 4 reference points
needed for TDOA in the 3-dimensional space. Therefore, it holds that nref ≥ 4.

• Fixed senders and mobile receiver
Using a ultrasonic signal with only one carrier frequency we need to use time-
multiplexing for a number (nref ) of multiple senders. This means that every
transmitter needs a timeslot where it can send its signal. The duration of each time-
slice for time-multiplexing is given by the signal delay for the specified maximum
range (tslice = smax/vsound). After all nref signals were received TDOA calculation
can be carried out on the receiver. This makes it possible to determine the location
every

tinterval = tslice · nref .
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3. System design

For the specified value of smax = 10m this gives

tinterval =
smax

vsound
· nref =

10m

340m/s
· nref =

nref

34
s.

Based on nref ≥ 4 this gives a lower bound of tinterval ≥ 0.12s.

• Mobile sender and fixed receivers
The single (nobjects = 1) mobile transmitter is sending its signal and all nref

reference points receive the signal after the maximum propagation delay of δtmax =
smax/vsound. Then TDOA calculation can be carried out. This makes it possible
to determine the location every δtmax. For the specified value of smax = 10m this
gives

δtmax =
smax

vsound
=

10m

340m/s
=

1

34
s ≈ 0.03s.

For the specified number of mobile objects nobjects = 1 the method to use one mobile
sender with fixed receivers is preferred. This makes it possible to determine the position
with tinterval/δtmax = nref times higher frequency. Since nref ≥ 4 the frequency is at
least by a factor of 4 higher. Using more fixed reference points results in even a larger
factor.

3.3 Mathematical Model

In order to determine the position of the UAV a mathematical model is needed which
makes it possible to get the UAV’s unknown position by any measurable values. TDOA
provides a model to get the position by measured differences of the signal propagation
delay. For the following formulas we assume a 3-dimensional space and an euclidean
coordinate system.

Let M denote the position of the UAV and Pn the position of base station n (where N
stations exist).

M =







x
y
z






,∀0 ≤ n < N : Pn =







xn

yn

zn







The distance between the UAV and a base station is given by the euclidean norm of the
difference vector.

dn = ||M−Pn|| =
√

(x− xn)2 + (y − yn)2 + (z − zn)2

Let v denote the speed of signal propagation and tM the time when a signal was sent by
the UAV. The signal is detected at base station n at time tPn .

tPn = tM +
dn

v
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The time differences rmn can be measured with synchronized base stations.

rmn = tPm − tPn =
dm − dn

v
; 1 ≤ n < N, 0 ≤ m < n

In 3-dimensional space there are 3 values which can be measured using 3 base stations:
r01, r02, r12.

r01 =

√

(x− x0)2 + (y − y0)2 + (z − z0)2 −
√

(x− x1)2 + (y − y1)2 + (z − z1)2

v

r02 =

√

(x− x0)2 + (y − y0)2 + (z − z0)2 −
√

(x− x2)2 + (y − y2)2 + (z − z2)2

v

r12 =

√

(x− x1)2 + (y − y1)2 + (z − z1)2 −
√

(x− x2)2 + (y − y2)2 + (z − z2)2

v

In general this would be sufficient to solve the three unknown variables x, y and z. But
due to the square root terms there is no simple solution for this set of equation*s [BM02].

In the 3-dimensional space there are 6 values that can be measured using 4 base stations:
r01, r02, r12, r03, r13, r23. Adding this additional station makes it much easier to solve the
set of equations. The work of Bucher and Misra [BM02] presents an explicit solution for
x, y and z.

3.4 Design Decisions

In the previous section we describe the selection of the transmission medium and cal-
culation method. We use TDOA calculation based on ultrasonic signals. The UAV is
equipped with a transmitter and the fixed reference points are equipped with receivers.

To actually implement the LPS we need to decide on further parameters of the system
such as carrier frequency and signal waveform. We need to check for this parameters if
the specified requirements (e.g., measurement frequency) can be satisfied.

3.4.1 Ultrasonic Carrier Frequency

In order to define the ultrasonic carrier frequency we carry out a survey of available
ultrasonic transmitters and receivers on the market. It turns out that they have fixed
resonance frequencies with low bandwidth. One example manufacturer of ultrasonic trans-
mitters and receivers is Pro-Wave Electronics Corporation [Pro15]. Pro-Wave Electronics
Corporation lists these center frequencies for its products: 25kHz, 32.8kHz, 40kHz,
43kHz, 48kHz, 50kHz, 80kHz, 125kHz, 200kHz, 235kHz, and 320kHz. SensComp
Global Components [Sen18] states that absorption varies with frequency. Attenuation
due to absorption in air is higher if the frequency is higher. Therefore lower frequencies
are better suited for long range propagation. Given the availability of components and
for low attenuation by absorption we decide to use an ultrasonic carrier frequency of
fc = 25kHz.
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3. System design

3.4.2 Ultrasonic Signal Waveform

Some sensors, which use ultrasonic signals, send a packet of several ultrasonic impulses.
This is often referred to as burst (see Figure 3.2). The figure shows the voltage on the
ultrasonic transmitter while sending one ultrasonic burst. In this example the burst
consists of 8 pulses of the respective carrier frequency. One example for such an sensor is
SRF05 [Dev15].

t

v(t)

silence burst silence

Figure 3.2: Voltage on the ultrasonic transmitter while sending one ultrasonic burst. The
burst consists in this example of 8 pulses of the respective carrier frequency.

Using a burst as transmitted signal makes it difficult to determine the accurate propagation
delay since there is no sharp slope for the received signal. Figure 3.3 shows the transmitted
(yellow) and received (blue) signal for a single burst of 8 pulses. The shape of the received
signal makes it difficult to measure a precise propagation delay. Furthermore there might
be multiple echo paths from walls or other objects in the room (these can also be seen in
Figure 3.3) which might get confused with the next burst of pulses. Pang and Trujillo
[PT13] point out that they had issues using simple burst signals. The accuracy was
therefore significantly reduced.

Continuous Signal: Gold Code

To achieve more precise measurement we do not use a single burst of pulses but a
continuous (pseudo) random signal. The received signal is then correlated against a
reference to determine the propagation delay. For the signal it is important that auto-
correlation value is low to avoid incorrect matches. Gold [Gol67] describes sequences
which satisfy the needed properties.

We carry out several tests on real hardware using such sequences. However, these tests
show that the waveform of this sequences is not suitable for ultrasonic transmission.
Ultrasonic transducers behave like oscillating circuits and need some time after bursts
in order to decay. Figure 3.4b shows the received signal for a sequence of 32 bits gold
code. The received signal keeps high amplitudes for short interruptions by single 0 bits.
Figure 3.4a shows the transmitted signal for other 32 bits gold code. The sequence is
amplitude modulated s.t. each bit is encoded by 8 pulses of the carrier frequency.
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3.4. Design Decisions

Continuous Signal: Improved Sequence

Based on the tests above we need to adapt the transmitted signal. Single 0 have to be
avoided in any case because they were overshadowed by the slow decay of ultrasonic
transducers. More tests show that also 00 sequences should be removed because of the
same reason. Therefore the improved sequence is generated as a alternating sequence
of one to four times the 1 symbol and three to seven times the 0 symbol. Furthermore
the complete sequence needs low auto-correlation to avoid incorrect matches. This is
solved by generating sequences and testing the correlation value until a good sequence
is found. To further improve correlation quality the length of the received sequence is
doubled from 32 symbols to 64 symbols. And the length of the complete reference signal
is reduced to 372 symbols. Figure 3.5 shows an example of a received signal and the
corresponding reference.

Relaxed Version: Burst Signal

As it turned out during hardware implementation the correlation of the continuous signal
is very prone to variations in frequency. Therefore, we have to step back to a relaxed
version of the ultrasonic signal. As an alternative we use burst signals similar to various
examples in literature to get a working system.
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3. System design

Figure 3.3: This oscillogram shows an ultrasonic signal test using one ultrasonic burst.
Channel 1 (yellow) shows the voltage on the ultrasonic transmitter. Channel 2 (blue) shows
the voltage on the ultrasonic receiver.
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(a) Transmitted sequence of 32 bits gold code. The sequence is amplitude modulated s.t.
each bit is encoded by 8 pulses of the carrier frequency.
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(b) Received sequence of 32 bits gold code. The received signal keeps high amplitudes for
short interruptions by single 0 bits.

Figure 3.4: Tests transmitting and receiving ultrasonic signal using gold code sequences.
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(a) Transmitted signal for 64 bits of the improved sequence (matched to the received signal
below).
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(b) Received signal for 64 bits of the improved sequence. The sequence is generated
alternating one to four times the 1 symbol and three to seven times the 0 symbol.

Figure 3.5: Tests transmitting and receiving ultrasonic signal using improved sequence.
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3.4.3 ADC Conversion

To perform timing measurements we implement correlation on the received signal. This
makes it possible to align the carrier frequency of the transmitted signal to the reference
signal. We are using an ultrasonic carrier frequency of fc = 25kHz. To satisfy the
Nyquist-Shannon sampling theorem [Sha49] the sampling frequency must be at least the
double of the bandwidth: fsample ≥ 2 ·B. This is in our case fsample ≥ 2 · fc = 50kHz.

First, we use the National Semiconductor ADC128S022, 8-Channel, 12-bit Analog-to-
digital converter (ADC). The following calculation gives the actual sampling frequency:

System clock fsysclk = 50MHz. ADC clock: fadcclk = fsysclk

16
= 3.125MHz.

One ADC-Sample needs 16 clock cycles: fsample = fadcclk

16
≈ 195kHz.

Later, the Linear Technology LTC2308 low noise 8-Channel, 12-bit ADC is used. This
ADC is part of the FPGA-Boards which are used to implement the system. The revised
calculation in Section 5.2.4 gives the actual sampling frequency which still satisfies the
the Nyquist-Shannon sampling theorem.

Based on the initial modulation waveform (Continuous signal: Gold code) the following
section calculates the maximum update frequency of the position measurement.
Given the ultrasonic carrier frequency fc = 25kHz, the period length equals tc = 1

fc
=

1

25kHz = 40µs. Using 8 pulses per bit gives the following for the modulated signal:
tbit = 8 · tc = 8 · 40µs = 0, 32ms.
Assuming a sample depth of nsample = 2048, the correlation (and therefore the position

determination) can be performed approx. 100 times per second: fcorr = fsample

nsample
=

195kHz
2048

≈ 95Hz. This gives a time duration between each correlation of tcorr = 1

fcorr
=

1

95Hz = 10, 5ms and results in the following number of transmitted bits (of the modulated

waveform) per correlation: ncorr = tcorr

tbit
= 10,5ms

0,32ms ≈ 32bit.

3.4.4 Echo Elimination

In order to properly handle echo signals, which might be caused by reflections at walls or
similar objects, the period length of the pseudo random signal is chosen long enough. The
echo can travel twice the maximum distance as specified for the LPS secho = 2·smax = 20m.
For this distance the echo needs time techo = secho

vsound
= 20m

340m/s ≈ 0.059s. During this

timespan necho = techo

tbit
= 0.059s

0.32ms ≈ 184 Bits are transmitted. Therefore the period of
the pseudo random signal needs to be longer than 184 bits so that an echo within the
specified maximum distance can be recognized as such.
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CHAPTER 4
Simulation

Given the selected system we carry out simulations for essential parts of the system using
Matlab from The MathWorks, Inc. [The19]. These essential parts include the method
to measure the time delay and the TDOA calculation algorithm. For the time delay
measurement we first simulate the correlation of the received signal with a reference
sequence and then the burst detection. For the TDOA calculation we first simulate the
algorithm described by Bucher and Misra [BM02] and then a particle filter as presented
by Gustafsson and Gunnarsson [GG03].

4.1 Correlation

To execute the LPS calculation we first need to measure the difference in propagation
delay for the transmitted signal. This signal consists of the ultrasonic carrier frequency
which is modulated by the pseudo random sequence. To achieve maximum accuracy for
time delay measurements we use the correlation of the received signal with the reference
of the pseudo random sequence. This makes it possible to match the received signal to
the reference in the time domain and further conclude the propagation delay.

For the following simulations we use actual data for the sampled signal which is recorded
using the test circuit shown in Section 5.1.2.

Figure 4.1a shows the recorded signal in red and the matched part of the reference signal
in blue. Figure 4.1b shows the correlation for the recorded signal with the reference
signal. The maximum and the second highest value are marked with red circles. This
simulation shows that it is possible to find the correct part of the reference signal by
correlation.
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(a) The recorded signal using ADC and FPGA is shown in red and the matched part of
the reference signal is shown in blue.
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(b) The correlation of the recorded signal with the reference signal is shown in blue. The
maximum and the second highest value are marked with red circles.

Figure 4.1: Simulation of signal correlation.
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4.1.1 Modified Correlation Function

Formula for correlation is given as follows [Yar10]:

Rxh(τ) = x(τ) ⋆ h(τ) =

∞
∫

−∞

x(t) · h(t + τ)dt

For discrete periodic functions this leads to the formula for discrete circular correlation
(for signal sig of N samples and reference ref with length of M):

R(m) =
N−1
∑

n=0

sig(n) · ref((m + n) mod M); 0 ≤ m < M (4.1)

Since multiplication is an expensive operation in FPGAs we replace it with the following
function (which can be implemented using a case distinction):

fmult(s, r) =


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9 if shi < s ≤ smax ∧ r = 1

6 if shi < s ≤ smax ∧ r = 0.8

0 if shi < s ≤ smax ∧ r = 0

−6 if shi < s ≤ smax ∧ r = −0.8

−9 if shi < s ≤ smax ∧ r = −1

3 if savg < s ≤ shi ∧ r = 1

2 if savg < s ≤ shi ∧ r = 0.8

0 if savg < s ≤ shi ∧ r = 0

−2 if savg < s ≤ shi ∧ r = −0.8

−3 if savg < s ≤ shi ∧ r = −1

−3 if slo < s ≤ savg ∧ r = 1

−2 if slo < s ≤ savg ∧ r = 0.8

0 if slo < s ≤ savg ∧ r = 0

2 if slo < s ≤ savg ∧ r = −0.8

3 if slo < s ≤ savg ∧ r = −1

−9 if smin ≤ s ≤ slo ∧ r = 1

−6 if smin ≤ s ≤ slo ∧ r = 0.8

0 if smin ≤ s ≤ slo ∧ r = 0

6 if smin ≤ s ≤ slo ∧ r = −0.8

9 if smin ≤ s ≤ slo ∧ r = −1

(4.2)
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Where parameter s is the sampled signal and r the reference signal.

smax =
N−1
max
n=0

sig(n)

smin =
N−1

min
n=0

sig(n)

savg =
1

N

N−1
∑

n=0

sig(n)

shi = savg +
smax − savg

2

slo = savg −
savg − smin

2

Since the sampling frequency is 8 times the ultrasonic carrier frequency the reference
signal can be stored as sequence of possible values out of the set {−1,−0.8, 0, 0.8, 1}
(see Figure 4.2). Using the alternative function fmult (see Equation 4.2) instead of
multiplication gives the following modified formula for correlation.

R∗(m) =
N−1
∑

n=0

fmult(sig(n), ref((m + n) mod M)); 0 ≤ m < M (4.3)

We perform simulations using this modified correlation to verify that the signal still
matches the correct position of the full reference signal. Figure 4.3 shows a comparison
of the original correlation function (Figure 4.3b) and the modified correlation function
(Figure 4.3c).
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Figure 4.2: The reference signal is stored as sequence of possible values out of the set
{−1,−0.8, 0, 0.8, 1}.
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(a) The recorded signal using ADC and FPGA is shown in red and the matched part of
the reference signal is shown in blue.
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(b) The correlation of the recorded signal with the reference signal is shown in blue. For
this computation the original correlation function in Equation 4.1 is used. The maximum
is marked with a red circle.
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(c) The correlation of the recorded signal with the reference signal is shown in blue. For
this computation the modified correlation function in Equation 4.3 is used. The maximum
is marked with a red circle.

Figure 4.3: Simulation of signal correlation using original and modified correlation
function.
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4.2 Burst Detection

We replace the continuous pseudo random ultrasonic signal by a burst signal. Therefore,
the receiver needs to detect this burst signal instead of computing the correlation function
for a given reference. The block diagram for the implemented burst detector is shown
in Figure 4.4. The received signal is converted to a 12 bit value by the ADC. Then the
signal is further processed in the FPGA. First, the signal is processed by a half-wave
rectifier with integrated decay. The transfer function for this rectifier block is defined as:

yrect(t) =















0 if t = 0

x(t) if x(t) > yrect(t− 1)

yrect(t− 1)− δdecay else

Then, the output is processed by two low-pass filters with different cut-off frequencies.
For the first filter the cut-off frequency is adjusted s.t. it gives a long-term average of the
background noise. For the second filter the cut-off frequency is adjusted s.t. it retains
the received burst signals but filters out disturbances with high frequency (e.g., glitches).

The two low-pass filters are realized as infinite impulse response filters:

ylp(t) =







0 if t = 0

ylp(t− 1) · klp−1

klp
+ x(t) · 1

klp
else

klp ∈ N ∧ klp ≥ 2

The difference between the two low-pass filters is then compared against a fixed threshold.
This output indicates a detected burst.

In order to determine the value for the fixed threshold and the filter parameters we carry
out simulations. As input for the burst detector we use generated signals which are
similar to those recorded from real hardware. For input signals in a range of (−450, 450)
the following values turn out as reasonable during the simulation: δdecay = 1, klp1 = 64,
klp2 = 256 and threshold = 50.

The simulation of the burst detector shows that a burst can even be detected in case
of a noisy signal. The test signals are modelled by noise which was recorded from real
hardware with an amplitude modulated signal. This modulated signal represents the
burst and consists of a constant value Vnoise and a superimposed sine half-wave with
peak-amplitude Vburst. Figure 4.5 shows an example with little noise ( Vburst

Vnoise
= 5), whereas

Figure 4.6 shows an example with a lot of noise (Vburst

Vnoise
= 0.5).
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US-Receiver
(incl. amplifier

and filter)
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Figure 4.4: Burst detector block diagram: First, the signal is processed by a half-wave
rectifier with integrated decay. Then, the output is processed by two low-pass filters
with different cut-off frequencies. The difference between the two low-pass filters is then
compared against a fixed threshold. This output indicates a detected burst.
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(a) The input signal for the burst detector is shown in blue. The output of the half-wave
rectifier with integrated decay is shown in purple. The outputs of the two low-pass filters
with different cut-off frequencies are shown in red and orange.
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(b) The outputs of the two low-pass filters with different cut-off frequencies are shown in
red and orange. This output of the detector indicating a burst is shown in blue.

Figure 4.5: Burst detector simulation with a strong burst and little noise ( Vburst

Vnoise

= 5).
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(a) The input signal for the burst detector is shown in blue. The output of the half-wave
rectifier with integrated decay is shown in purple. The outputs of the two low-pass filters
with different cut-off frequencies are shown in red and orange.
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(b) The outputs of the two low-pass filters with different cut-off frequencies are shown in
red and orange. This output of the detector indicating a burst is shown in blue.

Figure 4.6: Burst detector simulation with a weak burst and a lot of noise ( Vburst

Vnoise

= 0.5).
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4.3 TDOA Calculation and Accuracy

To estimate the implications of measurement errors we perform several simulations of the
mathematical model of TDOA. For these simulations a 3-dimensional space is used as
specified in the requirements. We use the track of the Air Race competition as reference
(see Section 3.1.3). The available space for the location of the mobile object is therefore
0 ≤ x ≤ 10m, 0 ≤ y ≤ 5m and 0 ≤ z ≤ 4m. Figure 4.7 shows this space together with
the positions of the base stations P0 to P ∗

4 , whereas P ∗
4 is only used in simulations with

5 base stations. Example location of the UAV denoted by m is given at (8, 3, 1).
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P ∗
4 (3, 5, 2)
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Figure 4.7: TDOA simulation setting: The available space for the location of the mobile
object is given by 0 ≤ x ≤ 10m, 0 ≤ y ≤ 5m and 0 ≤ z ≤ 4m. P0 to P ∗

4
indicate the

positions of the base stations, whereas P ∗

4
is only used in simulations with 5 base stations.

m denotes the example location of the UAV.

Bucher and Misra [BM02] present an algorithm for the TDOA calculation. We use
this algorithm in our simulations. The implementation of this algorithm is attached in
appendix (see Listing 8.1, Listing 8.2 and Listing 8.3).
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The simulation is performed for randomly chosen positions within the bounding box. For
m1 = (8, 3, 1) the algorithm works fine and yields the correct result: 8.0000 3.0000

1.0000. But during the simulation it turns out that there are some points (e.g.,
m2 = (10, 2, 2.5)) where the results are not correct. For m2 the algorithm calculates the
following two incorrect positions: 29.3009 4.2239 21.7354 and 17.6916 3.5073

11.7182.

Detailed analysis of the algorithm turns out that there are some causes which might lead
to incorrect results:

1. Given four base-stations (P0, P1, P2, P3) there are six measurements for difference
in propagation delay (r01, r02, r03, r12, r13, r23). But the algorithm uses only four
of those values. If the base-stations are given in a different order, the results are
different.

2. The difference in propagation delay is used as absolute value (|rmn| instead of rmn).
This causes a loss of information because it makes a difference at which of two
base-stations the signal is received first (i.e., if rmn is positive or negative).

3. The calculation leads to two results. This is by design of the algorithm because it
contains a root operation.

In order to improve the calculation method/algorithm, we perform the following tasks:
The order of the 4 base-stations is permuted and calculation is performed 24 times. The
results are checked against a predefined bounding box (0 ≤ x ≤ 10m, 0 ≤ y ≤ 5m,
0 ≤ z ≤ 4m). Differences in the propagation delay are calculated for the resulting values
and checked against the given values. All the results are counted and the final result is
voted by the number or occurrences.

The improvements help to solve the problem for the point m2 = (10, 2, 2.5), which results
in: 10.0000 2.0000 2.5000. But there are still points which cause problems: The
resulting position for m3 = (8, 1, 3.5) is: 8.2501 0.9320 3.9780. It turns out that
for this result all differences in signal delays are equal to point m3 (see Listing 8.4).
Therefore, there is no way to distinguish these points based on given signal propagation
difference measurements.

To further analyse this effect we perform a simulation which calculates the position
for every point of a 0.5m grid spanning the complete bounding box. Results for this
simulation are shown in Figure 4.8. Green circles indicate correctly calculated positions
while blue circles indicate wrongly calculated positions. The base-stations are marked
with red stars.

Bucher and Misra [BM02] describe in their work that there is the need for either a
fifth base-station or some additional condition to get the correct position out of the two
results which are given by the algorithm. In the case of GPS they describe the additional
condition as checking if the value is in the horizon relative to earth. Therefore, we repeat
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the grid simulation with 5 base-stations. Calculation is done the same way as before:
All time difference measurements are passed to the algorithm using all permutations of
the base-stations. The results are shown in Figure 4.9. Green circles indicate correct
positions. Base stations are marked with red stars. It turns out that there are no wrongly
calculated positions any more.

To check the accuracy for various locations in case of errors for time delay measurements,
we perform simulations with gaussian distributed errors. Locations for mobile objects
were randomly chosen within the bounding box m1 = (8, 3, 1), m4 = (6, 4.5, 3), m5 =
(0.1, 0.1, 0.1), m6 = (3.1, 1.5, 1.6) and m7 = (5, 2, 3). Figure 4.10 shows a scatter plot with
the resulting positions with σ = 5ms (σ ≈ 15 · tbit). The circles indicate the calculated
positions. Base stations are marked with red stars and reference positions are marked
with blue stars. Deviation from the exact position varies for the different test locations.
The scatter plot shows that the most of the calculated positions are correct and match
the reference position within a certain accuracy. But in the light orange marked areas
there are some purple colored circles which indicate positions that are wrongly calculated.

It turns out that an exact solution of the TDOA using the algorithm of Bucher and
Misra [BM02] is not useful if the number of receivers is greater than four or five. Since
we use additional receivers to mitigate problems with destructive interference a different
algorithm or heuristic is presented for TDOA calculation in Section 4.4.
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Figure 4.8: TDOA calculations for every point of a 0.5m grid spanning the complete
bounding box using 4 base-stations. Green circles indicate correctly calculated positions.
Blue circles indicate wrongly calculated positions. The base-stations are marked with red
stars.
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Figure 4.9: TDOA calculations for every point of a 0.5m grid spanning the complete
bounding box using 5 base-stations. Green circles indicate correctly calculated positions.
The base-stations are marked with red stars. There are no wrongly calculated positions.
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Figure 4.10: TDOA calculations with gaussian distributed errors (σ = 5ms) using 5
base-stations. The circles indicate the calculated positions. Base stations are marked with
red stars. Reference positions are marked with blue stars. Orange marked areas indicate
positions that are wrongly calculated.
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4.4 Particle Filter

It turns out that an exact solution of the TDOA problem is not practical in our imple-
mentation for the following reasons:

1. Overdetermined system
We use additional receivers to mitigate problems with destructive interference.
Therefore, we have a much larger number of receivers in our test environment than
it is required by the TDOA calculation algorithm presented by Bucher and Misra
[BM02]. It would be required to take a subset of the measurements to apply this
algorithm. But this contradicts the motivation for adding more receivers.

2. Noisy values
There is an error ǫδt in the measurements of propagation delay because it is difficult
to exactly detect the received burst signals. This error has an influence on the
accuracy of the determined position. Depending on the geometrical arrangement of
the base-stations and therefore possible glancing intersections (see Section 2.1.2)
this may lead to very inaccurate results.

3. Outliers
To mitigate problems with destructive interference additional receivers are added. It
can happen that some of the receivers do not detect the transmitted burst properly.
The time delay measurements for these receivers should then be regarded as outliers
and not be incorporated in the position determination.

Gustafsson and Gunnarsson [GG03] present a static particle filter used for finding the
position of the mobile object given TDOA measurements. We subsequently implement
and simulate such a filter. As addition to the original algorithm presented by Gustafsson
and Gunnarsson we add an additional abort constant I for the case that P̂i does not
converge. We also formalize the criteria of convergence for P̂i which is not stated by
Gustafsson and Gunnarsson.

Algorithm 4.1 shows the steps which are necessary to compute the particle filter (for the
mathematical model and variable names see Section 3.3).
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Algorithm 4.1: Particle filter based on Gustafsson and Gunnarsson [GG03]

Input:
K: number of particles
I: maximum number of iteration steps
N : number of base stations

Pn =







xn

yn

zn






, 0 ≤ n < N : positions of base stations

xmin, xmax, ymin, ymax, zmin, zmax: size of bounded space in x, y, and z-dimension
σjitter: jittering constant for particles
rmn: measured TDOA values
vsound: velocity of sound
thr: threshold for span to check if estimated position has converged
Output: determined position P̂i

1 for k ← 0 to K do

2 Qk,0 =







xk,0

yk,0

zk,0






=







randuniform(xmin, xmax)
randuniform(ymin, ymax)
randuniform(zmin, zmax)






;

3 end
4 for i← 1 to I do
5 for k ← 0 to K do
6 for n← 0 to N do
7 dk,i,n = ||Qk,i −Pn|| ; // euclidean distance

8 end
9 for n← 0 to N do

10 for m← 0 to n do

11 rk,i,mn = dk,i,m−dk,i,n

vsound
; // TDOA values for particles

12 end

13 end
14 wk,i = 1/

∑

1≤n<N,0≤m<n(rk,i,mn − rmn)2 ; // particle weights

15 end
16 Vi =

∑

0≤k<K wk,i;
17 for k ← 0 to K do
18 vk,i = wk,i

Vi
; // normalize weights s.t.

∑

0≤k<K vk,i = 1

19 end

20 P̂i =
∑

0≤k<K vk,i ·Qk,i ; // estimated position

21 spanx,i = max0≤k<K xk,i −min0≤k<K xk,i;
22 spany,i = max0≤k<K yk,i −min0≤k<K yk,i;
23 spanz,i = max0≤k<K zk,i −min0≤k<K zk,i;

24 spani = spanx,i · spany,i · spanz,i ; // quality metric for P̂i

25 . . . continue on next page . . .
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26 . . . continued from previous page . . .
27 if spani ≤ thr then
28 break for ; // estimated position has converged

29 end
// resample particles for step i + 1:

30 for k ← 0 to K do
31 pick Qk,i+1 from Qj,i : 0 ≤ j < K where the probability to pick a particle is

proportional to its weight vj,i;
32 end
33 for k ← 0 to K do

34 Qk,i+1+ = σjitter

i2 ·







randgaussian(−1, 1)
randgaussian(−1, 1)
randgaussian(−1, 1)






;

35 end

36 end

37 return P̂i

The listings of the simulations are attached in appendix (see Listing 8.5 and Listing 8.6).
The simulation of this algorithm shows that the quality of position determination heavily
depends on the noise of the time measurements. This behaviour is expected since even
small errors in time measurements might have a large influence on the position because
of the geometric properties of the TDOA equations (see Section 2.1.2).

Figure 4.11 and Figure 4.12 show examples of particle filter simulations. These examples
use the same sensor locations as in real-word testing scenarios. All of the sensors are
placed at the z-axis in the range from 20 to 90cm. The particles after convergence are
indicated by green circles. These are scattered around the determined position which is
shown by a red circle. It turns out that for this sensor placement the deviation for the
particles in z-dimension (spanz) is significantly larger than in x- and y-dimension (spanx

and spany).
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Figure 4.11: Particle filter simulation (simulated TDOA errors: σ = 0.1ms). Subfigures
(a), (b), and (c) show the process of the calculation. The particles after convergence are
indicated by green circles and the estimated positions during intermediate iteration steps
of the calculation are indicated by a red line. The actual position of the mobile object is
marked by a blue star and the determined position is shown by a red circle. The base
stations are indicated by red stars, while an example for the planned flight path is shown
by a blue line. In subfigure (d) the converge criteria spani is shown for all iteration steps.

56



4.4. Particle Filter

X [cm]

0 200 400 600 800 1000

Y
 [

c
m

]

0

100

200

300

400

500
x-y plane

X [cm]

0 200 400 600 800 1000

Z
 [

c
m

]

0

50

100

150

200
x-z plane

particles in last step

convergence trace

actual position

determined position

receiver locations

planned flight path

Y [cm]

0 100 200 300 400 500

Z
 [

c
m

]

0

50

100

150

200
y-z plane

iteration steps

5 10 15 20 25 30 35

s
p

a
n

 [
c
m

]

0

500

1000

1500

2000

2500

3000

span

span
x

span
x

span
y

span
y

span
z

span
z

(a) (b)

(c) (d)

Figure 4.12: Particle filter simulation (simulated TDOA errors: σ = 0.5ms). Subfigures
(a), (b), and (c) show the process of the calculation. The particles after convergence are
indicated by green circles and the estimated positions during intermediate iteration steps
of the calculation are indicated by a red line. The actual position of the mobile object is
marked by a blue star and the determined position is shown by a red circle. The base
stations are indicated by red stars, while an example for the planned flight path is shown
by a blue line. In subfigure (d) the converge criteria spani is shown for all iteration steps.
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CHAPTER 5
Implementation

This chapter shows the implementation which is done in hard- and software to demonstrate
the functionality of the system and to verify the desired quality metrics. Figure 5.1 shows
an block diagram as overview of the implementation.

5.1 Hardware Implementation

The first test circuit is built to examine the physical properties of the ultrasonic signal
propagation. Therefore, it consists of a test signal generator with an ultrasonic transmitter
and an ultrasonic receiver with amplifier and filter. Digital signal processing is performed
using a FPGA together with an ADC for signal sampling. For later versions of the
hardware the test circuits are adapted and improved.
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UAV
with

US-Transmitter
FPGA 0

US-Receiver

US-Receiver

US-Receiver

US-Receiver

FPGA 1

US-Receiver

US-Receiver

US-Receiver

US-Receiver

Raspberry Pi

PC

. . . US-Receiver . . . FPGA 2 to n

Ultrasonic

EIA-232

Ethernet

Figure 5.1: Block diagram as overview of implementation. A transmitter which is placed
on the UAV sends ultrasonic signals. Every base-station is equipped with a FPGA-Board
and four ultrasonic receivers in order to capture and process the signals. All FPGA-Boards
are connected by a custom implemented network interface for time synchronisation and
data exchange. A Raspberry Pi acts as gateway in order to connect a PC for further signal
processing and TDOA calculation.
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5.1. Hardware Implementation

5.1.1 Transmitter Circuit

The transmitter circuit is built around an Atmel ATtiny841 microcontroller. It is operated
at fuC = 8MHz using the internal oscillator. The ultrasonic carrier frequency as well as
the encoded signal is generated by the microcontroller. A timer is configured s.t. a pin
toggles with an period length of tUSS = 40.96µs, which represents the fUSS = 24.41kHz
carrier frequency. This carrier can be modulated in an arbitrary way to generate the
final test signal.

Microcontroller
ATtiny841

Power
amplifier

US-Transmitter
250ST160

Figure 5.2: Transmitter circuit block diagram. It consists of a Atmel ATtiny841 micro-
controller which generates the test signal. This signal is fed into the power amplifier and
then into the the ultrasonic transmitter.

Before the signal is fed into the ultrasonic transmitter 250ST160 it is amplified by a
BD6232 H-Bridge power amplifier to get 10VP P maximum. A micro-USB-plug is used on
the transmitter module to power the device by an USB-Power-Bank. Figure 5.3a shows
a picture of the first version of the transmitter module. The corresponding schematic
and test point documentation are included in appendix.

Since the beam angle of the ultrasonic transmitter is 85° for 250ST160 [Pro15] it is
needed to incorporate additional means for a more omnidirectional emission of the
signal. Bjerknes et al. [Bje+07] use a reflector cone to improve the directional pattern.
Figure 5.3b shows the test module with an attached reflector cone. However, the cone
did not lead to a omnidirectional emission but rather to a pattern which was limited to
the form of a torus around the transmitter.

Revised Transmitter Circuits

We design a revised version of the transmitter circuit with four transmitters. A quartz
is added to this version and used as clock source for the microcontroller. This quartz
provides a higher accuracy for the operating frequency than the internal oscillator of
the microcontroller. The ultrasonic transmitters are bent by 40° and facing outwards in
four directions. This angle is chosen, s.t. the specified beam with 85° of the 250ST160
covers the half of a sphere. The circuit is built as stacked module s.t. the transmitters
can be removed from the main PCB. This design is used because it is possible to add an
extra PCB (e.g., additional power amplifier) in between. To transmit more power via the
ultrasonic transmitters a higher amplitude is needed. Therefore, we add a voltage doubler
ADM660 to the improved design. While keeping the operating voltage at V CC = 5V
this makes it possible to operate the H-Bridge power amplifier at a voltage of 10V which
results in 20VP P at the ultrasonic transmitters. The H-Bridge is replaced by the power
amplifier B57928 (TLE4202B compatible version) which contains two independent power
comparators.
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(a) Transmitter module consisting
of a microcontroller, H-Bridge power
amplifier and ultrasonic transmitter.

(b) Transmitter module with addi-
tional reflector cone attached on top
of the ultrasonic transmitter.

Figure 5.3: First version of transmitter module (v1.0).

A picture of the second version of the transmitter module is shown in Figure 5.4a and
Figure 5.4b. The corresponding schematic and test point documentation are included in
appendix.

Using more than one ultrasonic transmitters results in the problem of interference. There
are some angles where the distance of the transmitters is the half of the wavelength which
causes destructive interference. This problem is mitigated by using four receivers for each
base-station (see Figure 5.12) to minimize the risk of interference for all receivers.

To use the transmitter module on the UAV a thinner version is built with directly attached
ultrasonic transmitters. The corresponding schematic and test point documentation are
included in appendix. This version also allows stacking of another PCB to add four more
transmitters (see Figure 5.5b).
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5.1. Hardware Implementation

(a) Transmitter module consisting of
a microcontroller, a voltage doubler
and H-Bridge power amplifier (with-
out ultrasonic transmitters).

(b) Transmitter module with addi-
tional stacked PCBs. These PCBs
contain an additional H-Bridge power
amplifier and four ultrasonic trans-
mitters.

Figure 5.4: Second version of transmitter module (v2.0).

(a) Transmitter module consisting of
a microcontroller, a voltage doubler,
H-Bridge power amplifier and four
ultrasonic transmitters.

(b) Transmitter module with stacked
PCB containing four additional ultra-
sonic transmitters.

Figure 5.5: Third version of transmitter module to be used on the UAV (v2.2).
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5.1.2 Receiver Circuit

The receiver circuit consists of the ultrasonic receiver 250SR160, two RC band-pass
filters with amplification and resistors to adapt the signal level for the used ADC (see
Figure 5.6). A picture of the first version of the receiver module is shown in Figure 5.7.
The corresponding schematic and test point documentation are included in appendix.
This receiver module is used to verify the intended behaviour of the amplifier and filter
design.

US-Receiver
250SR160

Band-pass filter
with amplification

Band-pass filter
with amplification

Signal level
adaption

Output

Figure 5.6: Receiver circuit block diagram. It consists of the ultrasonic receiver, two RC
band-pass filters with amplification and resistors to adapt the signal level on the output.

Amplifier and Filter

In order to sample the signal from ultrasonic receivers there is an amplifier needed since
the signal level would otherwise be to too low for the ADC. Furthermore, the signal
should be filtered s.t. the ultrasonic carrier frequency is amplified and other frequencies
are suppressed. To design and simulate the amplifier and filter we use LTspice IV [Lin15].
It is implemented as two first-order active RC band-pass filters. The schematic of the
filter is shown in Figure 5.8. Figure 5.9 shows its corresponding bode diagram. The filter
is designed s.t. the center frequency equals ffilter = 24kHz. This is equal to the rated
frequency for the used ultrasonic receivers.

Figure 5.7: First version of receiver module (v1.0). It consists of the ultrasonic receiver,
two RC band-pass filters with amplification and resistors to adapt the signal level on the
output.
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Figure 5.8: Schematic of amplifier and filter circuit. It is implemented as two first-order
active RC band-pass filters.

Figure 5.9: Bode-diagram of amplifier and filter circuit. The filter is designed s.t. the
center frequency equals ffilter = 24kHz. Since it is implemented as two first-order active
RC band-pass filters power decreases by 40 dB per decade.

Revised Receiver Circuit

For subsequent implementation we design a smaller version using only SMD components.
The complete PCB is covered with a heat shrinking tube to protect against short-circuits
and mechanical damages. Figure 5.10 shows two of the improved modules, one of them
before assembling the heat shrinking tube. The corresponding schematic is included in
appendix.
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Figure 5.10: Second version of receiver module (v2.0). It consists of the ultrasonic
receiver and two RC band-pass filters with amplification. The receiver modules are covered
with a heat shrinking tube for protection. The right module is shown before assembling
the heat shrinking tube s.t. the SMD components are visible.

5.1.3 FPGA and Adapter-Board

The DE0-Nano-SoC Development and Education Board is used to sample and process
the signals. This FPGA-Board consists of an Altera Cyclone® V SE 5CSEMA4U23C6N
FPGA and among other peripherals also a Linear Technology LTC2308 low noise 8-
Channel, 12-bit ADC. An Adapter-Board is built to power the FPGA-Boards and to
connect them over a distance of at least smax = 10m (see Section 3.1.4). Since the
DE0-Nano-SoC Development and Education Board contains pin headers on the top layer
of the PCB it is easy to build a custom PCB which can be stacked onto the FPGA-Board.

To exchange data among the FPGAs we use a EIA-485 interface. The EIA-485 standard
is chosen because its industry-proven reliability and resistance against interference.
Two transceiver ICs ISL83491 are used on each Adapter-Board in order to operate
two completely independent network channels. One of them is solely used for time
synchronization. The other one is used for data exchange between the FPGAs. All
modules are connected to the same power supply. A step-down converter LM2672N-5.0
on the Adapter-Board provides the 5V input for the FPGA-Board. This makes it possible
to power the system with up to 24V . As physical connection we use RJ45-jacks since
cables with RJ45-plugs are cheap and widely available. The first version of the Adapter-
Board allows the connection of up to three receivers to the analog channels of the ADC.
A second improved version is built later to connect up to six receivers. A picture of the
first version (v1.0) of the Adapter-Board is shown in Figure 5.11a and a picture of the
second version (v1.1) is shown in Figure 5.11b. The corresponding schematics and test
point documentation are included in appendix.
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(a) First version (v1.0) of the
Adapter-Board. It contains three
jacks for analog channels of the ADC.

(b) Second version (v1.1) of the
Adapter-Board. It contains six jacks
for analog channels of the ADC.

Figure 5.11: Two different versions of the Adapter-Board. Both versions contain two
RJ45-jacks and transceiver ICs for EIA-485 connections as well as a step-down converter
to provide 5V input for the FPGA-Board.

5.1.4 Mounting Platform

A mounting platform is built where the FPGA-Board is placed in the center and the
four receivers on X-shaped booms. The mounting platform is built using mainly lasercut
plywood. The booms are built using thin aluminium strips in order to reduce the weight
of the whole platform. Figure 5.12 shows the dimensions of this mounting platform and
the positions of the four receivers (red circles) relative to the reference point (grey circle).
Figure 5.13 shows one of the mounting platforms.

67



5. Implementation
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(a) Frontal view.
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(b) Side view.
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Figure 5.12: Drawings indicating the dimensions of the mounting platform for the FPGA-
Board and four receivers on X-shaped booms. The positions of the four receivers are
indicated by red circles and the the reference point is indicated by a grey circle. The
mounting platform is tilted by 21° in drawing (b) and (c). The mounting platform is tilted
by 21° and rotated by 45° in drawing (d).
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Figure 5.13: Picture of the mounting platform for the FPGA-Board and four receivers
on X-shaped booms. The mounting platform is built using mainly plywood and the booms
are built using thin aluminium strips.
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5.2 FPGA Implementation

All time-critical parts of the system are implemented in the FPGAs. This includes the
interface to the ADC, signal processing such as correlation and/or burst detection as
well as real-time communication of the detected time instants. Further calculation such
as determination of the position based on the measured time instants could also be
performed on the FPGA in the future but is done on a different platform for now.

5.2.1 Time Synchronization

For the implementation of our LPS we use one FPGA-Board for each base station. In
order to exchange time measurements a synchronized timebase is needed. Therefore, a
counter is used to provide timestamps which can be exchanged among the components
of the system. This counter is derived from the system clock and counts with ticks of

tsyscnt =
1

fsysclk/64
=

1

50MHz/64
=

1

781, 25kHz
= 1.28µs.

It is chosen so that the clock counts faster than the sample time of the ADC (which
is tsample = 5.12µs). This ensures that there is no additional inaccuracy caused by the
resolution of time measurement.

The counter is implemented as 40 Bit number which makes it possible to count up to
nmax = 240 − 1 ≈ 1, 1 · 1012. This results in a maximum operating time (limited by a
counter overrun) of toperation = nmax · tsyscnt ≈ 390h ≈ 16 days.

Time Synchronization Module

The counter needs to be synchronized among all base stations. Therefore a distinct
cable connection is used on which the master FPGA transmits the current timestamp
approx. 100 times per second and all other FPGAs use this signal to synchronize the
local counter.

Figure 5.14 shows the principle of this time synchronization module. A quartz is connected
on every FPGA-Board which works at nominal frequency of fsysclk = 50MHz. This
frequency is fed into the prescaler which divides the clock by factor 64. The prescaler
feeds the local counter which counts with nominal ticks of tsyscnt = 1.28µs. The output
of local counter syscnt is the timebase which can be used by all other modules within
the FPGA. This value of the counter is transmitted by the master. On all other FPGAs
a receiver is triggered on the first edge of the data packet and compares the local counter
value to the received value. If the difference exceeds a threshold a reset of all other
modules in the FPGA is triggered and the local counter is set to the received value.
Otherwise, the difference is used to derive the deviation between the oszillators and the
needed adjustment for the local counter. On the slave FPGAs the clock division factor
can be modified (depending on +/- input) to incorporate these adjustments. Like in
the master FPGA the output of the local counter syscnt is the timebase for all other
modules within the FPGA.
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The local counter value is not directly influenced by the synchronization but counting
speed is adjusted (using the +/- input of the prescaler). This design ensures that the
values for syscnt are always in order. There are no duplicated or missing values as long
as no reset happens.

Counter Transmission Signal

The value of the counter is transmitted by the master using Non-Return-to-Zero coding
with 81.92µs per bit. Since the correct transmission of the counter value is very critical
(incorrect values could trigger a reset of the FPGAs) a 16 Bit CRC [Sta10] is used. Every
transmitted packet consists of 50 bits (see Table 5.1). For encoding the counter value
(40 bit counter) 27 bits are sufficient since the 13 least significant bits are zero for every
transmission. The first bit is zero in every packet in order to generate the first edge which
is used by the receivers to trigger the packet. Figure 5.15 shows a packet (blue signal)
together with a debug signal (yellow signal). The debug signal is an internal trigger that
starts the transmission of the packet.

Test of Synchronization

The FPGA operates with a system clock of fsysclk = 50MHz. To get an estimation for
the expected deviation for the clock frequencies for two FPGA-Boards we examine the
typical properties for quartzes. Manufacturer Abracon lists a wide range of different
quartzes on its website [Abr16]. The quartz with the highest tolerance is specified with
a stability of ±100ppm and a tolerance of ±50ppm. To be an the save side we assume
a deviation of ±1000ppm which results in fmin = 50MHz · 0.999 = 49.95MHz and
fmax = 50MHz · 1.001 = 50.05MHz. These frequencies are tested on a single FPGA
using two PLLs to generate the specified frequency (see Figure 5.16).

• Case fmin:
Desired frequency is fmin = 49.95MHz. The configured PLLs result in frequencies
fP LL1 = 50.2MHz and fP LL2 = 49.949MHz. Which gives an time offset (measured
with oscilloscope) of δtmin1

= +19µs to δtmin2
= +21µs. This time offset would

result in an error of δsmin1
= vsound · δtmin1

= 340m/s · 19µs ≈ 0.6cm to δsmin2
=

vsound · δtmin2
= 340m/s · 21µs ≈ 0.7cm for TDOA measurements. Requirements

for accuracy (see Section 3.1.4) are satisfied since δsmin1
< saccuracy and δsmin2

<
saccuracy.

• Case fmax:
Desired frequency is fmax = 50.05MHz. The configured PLLs result in frequencies
fP LL1 = 49, 8MHz and fP LL2 = 50.049MHz. Which gives an time offset (mea-
sured with oscilloscope) of δtmax = −83µs. This time offset would result in an
error of δsmax = vsound · δtmax = 340m/s · 83µs ≈ 2.8cm for TDOA measurements.
Requirements for accuracy (see Section 3.1.4) are satisfied since δsmax < saccuracy.
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Figure 5.14: Time synchronization module principle: A quartz is connected on every
FPGA-Board. The frequency of this quartz is fed into the prescaler. The prescaler drives
the local counter syscnt which is the timebase used by all other modules within the
FPGA. The value of the counter is transmitted by the master. All other FPGAs compare
the local counter value to the received value and adjust the prescaler (+/- input) or execute
a reset in case the difference exceeds a threshold.
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Bit number Content Note

0 constant 0 used to generate the first edge
1 counter value bit 39 most significant bit of counter value
2 counter value bit 38
. . . . . .
37 counter value bit 13
38 CRC bit 15
39 CRC bit 14
. . . . . .
49 CRC bit 0

Table 5.1: Packet for transmitting system counter consisting of a constant first bit in
order to generate the first edge, the counter value and a CRC.

Figure 5.15: Example of a transmitted packet for time synchronization. The blue signal
shows the packet which is encoded using Non-Return-to-Zero. The yellow signal shows a
debug signal which is an internal trigger that starts the transmission of the packet.
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FPGA
(testing)

syscnt module
simulating master

syscnt module
simulating slave

PLL 2 PLL 1
quartz

oscillator

oszilloscope

fsysclkfP LL1fP LL2

Figure 5.16: Time synchronization test principle. The module simulating the master
is directly fed by the quartz oscillator and the module simulating the slave is fed by a
modified frequency. This modified frequency is generated by two consecutive PLLs. A
debug signal of both syscnt modules is connected to the oscilloscope s.t. the time offset
can be measured.
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5.2.2 User-defined FPGA Network

Based on a EIA-485 physical link we develop a protocol for data exchange between the
FPGAs. It is capable of handling up to 16 devices which may send up to 256 bits of
data per transmission cycle. Bus arbitration is done by a time-division approach which
is based on the synchronized timebase.

Based on the 40 Bit system counter syscnt the timebase is sliced into 16 slots with 512
ticks of syscnt each. This makes it easy to determine the current sending device by
extracting bits 12 to 9 of the 40 bit counter. The duration for each bit using Non-Return-
to-Zero coding on the bus is tbit = 1

fsysclk/64
= 1

50MHz/64
= 1

781,25kHz = 1, 28µs (which is

the same as tsysclk). Each timeslot is capable of 512 bits but not the whole timeslot is
used for transmission. Every transmitted packet consists of 256 data bits and a 16 bit
CRC [Sta10] to ensure data integrity in case of errors on the physical channel (details
see Table 5.2).

For the whole network the bitrate can be calculated as follows:

1

tbit
·

256

512
=

1

1, 28µs
·

1

2
=

781, 25kbit/s

2
≈ 390kbit/s.

This results in 390kbit/s
16

≈ 24kbit/s for each FPGA.

Network module

To perform network communication a distinct module is implemented in the FPGA which
deals with bus arbitration based on system counter syscnt, transmission timing, CRC
generation and error detection. Figure 5.17 shows an overview of this network module.
Each FPGA sends data which is represented as internal signals as well as button inputs
in the respective timeslot. This data is mainly calculated by the signal processing unit
and contains, for example, the instant of received ultrasonic signals.

An auxiliary sending unit is available to forward data from a PC to the FPGA network.
This unit is only enabled at exactly one FPGA-Board using an external jumper input.
The auxiliary sending unit uses the fixed timeslot with ID 1111 (= 15). Data from the
PC contains configuration parameters and various control information.

The receiver unit decodes all packages from the bus, checks the CRC and processes the
payload. All data, except for transmitter ID 1111 (= 15), is stored in an internal RAM.
This means that data from all senders is available at all FPGAs at any time for further
processing. Data which was forwarded from the PC to the network is further parsed to
filter out the configuration parameters and control information for the respective FPGA
and then provided to other modules using internal signals.
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Bit number Content Note

0 constant 0 used to generate the first edge
1 data bit 256 sender FPGA ID bit 3 = most significant bit of packet
2 data bit 255 sender FPGA ID bit 2
3 data bit 254 sender FPGA ID bit 1
4 data bit 253 sender FPGA ID bit 0
5 data bit 252 begin of other payload
6 data bit 251
. . . . . .
256 data bit 0
257 CRC bit 15
258 CRC bit 14
. . . . . .
272 CRC bit 0
273 constant 1 set bus into idle state
274 constant 1 set bus into idle state

Table 5.2: Packet for network transmission consisting of a constant first bit in order to
generate the first edge, the FPGA ID of the sender, payload, a CRC and constant trailer
bits to set bus into idle state.
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test111
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Figure 5.17: Overview of the network module. The transmitter unit deals with bus
arbitration (based on system counter syscnt) and sends data which is provided as internal
signals. An auxiliary sending unit is available to forward data from a PC to the FPGA
network. The receiver unit decodes packages from the bus and stores the data depending
on the type of the package in an internal RAM or provides it as internal signal.
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5.2.3 EIA-232 Interface

To exchange data between a FPGA-Board and a PC a EIA-232 module is implemented.
Low level processing of the EIA-232 signals is done using the IP-Core rs232_with_buf-
fer_and_wb by Tobias Jeppe [Jep13]. This IP-Core is published on the OpenCores-
webpage under the GNU Lesser General Public License (LGPL). We implement a custom
module which utilizes this IP-Core and transmits data according to the following packet
scheme.

The EIA-232 port is operated with 8 data bits, odd parity, 1 stop bit and 115200 baud.
The most significant bit is used to distinguish control information and actual data. Every
packet starts with a status byte which has set the most significant bit to 1. A fixed
number of bytes follow (see Table 5.3) and the last byte represents a constant trailer.
If debug information is transmitted the package is initiated with a different start byte.
Then 2 bytes of debug information (see Table 5.4) follow and the last byte also represents
a constant trailer. The configuration data which is sent from the PC to the FPGA is
transmitted in a similar way (see Table 5.5).

Byte number Content (in binary format) Note

0 1000 SSSS S = status
1 0000 FFFF F = FPGA ID n
2 0000 0000 reserved for future use
3 0000 0000 . . .
4 0000 0001

5 0000 0000

6 0000 0000

7 0000 0010

8 000P PPPP P = payload from FPGA n
9 0PPP PPPP . . .
10 0PPP PPPP

11 0PPP PPPP

12 0PPP PPPP

13 0PPP PPPP

14 1111 1110 constant trailer

Table 5.3: Packet for EIA-232 transmission to PC consisting of status byte, the FPGA
ID of the original sender, payload and constant trailer to indicate the end of the packet.
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Byte number Content (in binary format) Note

0 1101 SSSS S = status
1 0DDD DDDD D = debug payload
2 0DDD DDDD . . .
3 1111 1110 constant trailer

Table 5.4: Packet for EIA-232 transmission of debug information to PC consisting of
status byte, debug payload and constant trailer to indicate the end of the packet.

Byte number Content (in binary format) Note

0 1000 FFFF F = FPGA number n
1 0CCC CCCC C = configuration for FPGA n
2 0CCC CCCC . . .
. . . . . .
36 0CCC CCCC

14 1111 1111 constant trailer

Table 5.5: Packet for EIA-232 transmission from PC consisting of the FPGA ID of the
target, configuration data for this FPGA and constant trailer to indicate the end of the
packet.

5.2.4 ADC Interface

The ADC Interface module polls the ADC via the Serial Peripheral Interface (SPI)
connection and provides the values of all n ADC-channels as internal signals for further
processing. It is strictly driven by a time-schedule which depends on an internal counter
which is derived from the global clock. Using this time-schedule the channel configuration
is sent and sampling data is read continuously according to the protocol specified by the
ADC manufacturer.

A readout of one channel needs n1ch = 27 = 128 clock cycles. The clock of the SPI
is operated at fadcclkSP I = fsysclk

2
= 25MHz. Reading four channels results in n4ch =

4 ·n1ch = 512 clock cycles per conversion. This gives a sampling frequency of fsample4ch =
fsysclk

n4ch
≈ 97.7kHz.

Using only two channels would result in n2ch = 2 · n1ch = 256 clock cycles per conversion
and therefore a sampling frequency of fsample2ch = fsysclk

n2ch
≈ 195.3kHz can be reached.
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5.2.5 Signal Processing

High speed signal processing is entirely implemented in the FPGA. First we implement
the correlation to detect the modulated signal. After changing to the relaxed signal (see
Section 3.4.2) we also implement the burst detector in the FPGA.

Correlation

For each channel of the ADC the read value is stored in an internal dual-port RAM. This
RAM provides the storage for the necessary values for the correlation. The correlation
itself is partially parallelized to speed up the calculation. Figure 5.18 shows the block
diagram of the correlation module. The correlation unit (corr_unit) is started by a
trigger signal (start) and provides the maximum (position and value) of the correlation
function as a result (match_pos, match_val). Internally the parallelization is done by
submodules (G_proc) which are present npar times. Given the following function (see
Section 4.1.1):

R∗(m) =
N−1
∑

n=0

fmult(sig(n), ref((m + n) mod M)); 0 ≤ m < M,

the npar instances of G_proc implement the following function:

N−1
∑

n=0

fmult(sig(n), ref((m + n + i) mod M)); 0 ≤ i < npar.

The function fmult(s, r) is implemented in the module ref_add, and the function ref(k)
is implemented in the module ref.

Calculation is performed by the state machine which is shown in Figure 5.19. In state
do corr. the actual calculation is performed. The values sig(n) are read from the RAM
(by iteration of ram_index) and npar values for R∗(m) are generated. Afterwards in
state do calc. the maximum of these values for R∗(m) is calculated (by iteration of
calc_index). The whole process is repeated (edge from done calc. to start corr.) and
the next npar values for R∗(m) are generated. If current_pos = ⊤ then all values for
R∗(m) : 0 ≤ m < M were processed, the final results are updated (as output signals of
the module in state done) and a new trigger is awaited (transition to state initial).
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Figure 5.18: Correlation module block diagram
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initialstart
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do
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start
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do
calc.

done
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if start = 1

current_pos := 0
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ram_index + +

if ram_index = ⊤

calc_index := 0

calc_index + +

if calc_index = npar

current_pos
+ = npar

if current_pos = ⊤

Figure 5.19: Correlation module state machine
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Burst Detection

For the relaxed signal the burst detector is implemented in the FPGA analogous to
the simulated filter (see Section 4.2). The block diagram is also the same as shown
in Figure 4.4. The half-wave rectifier with integrated decay and low-pass filters are
implemented as digital infinite impulse response filters.

The transfer function of the half-wave rectifier with integrated decay is given as follows:

yrect[n](x[n], yrect[n− 1]) =















0 if n = 0

x[n] if x[n] > yrect[n− 1]

yrect[n− 1]− 1 else

The transfer function of the two low-pass filters is given as follows:

ylp[n](x[n], ylp[n− 1]) =







0 if n = 0

ylp[n− 1] · 2
Klp −1

2
Klp

+ x[n] · 1

2
Klp

else

Klp ∈ N ∧Klp ≥ 1

The filters are designed s.t. there are only multiplications and divisions by factors of two
(2Klp) since these become shift operations in binary representation.

5.3 Software Implementation

All measured time instants are transmitted to a PC for further processing and TDOA
calculation. This could also be performed on the FPGA in the future but is done on a
different platform for now.

5.3.1 EIA-232 - Ethernet Gateway

The single board computer Raspberry Pi 1 Mod. B+ [Ras14] is used as EIA-232 - Ethernet
Gateway. It is operated by Raspbian (a Linux operating system based on Debian) [Ras18].
The only task of this single board computer is to act as gateway from EIA-232 to Ethernet.
One of the FPGA-boards is connected to the single board computer via a 3V3 EIA-232
link on the GPIO pins of the Raspberry Pi. Any computer which is connected via
Ethernet can then attach via software to this serial port (e.g., by using TCP forwarding).

5.3.2 PC Software with User Interface

The software for the PC is implemented in C/C++ using ncurses [Fre18] for the text
user interface. It parses the data from the FPGA which contains the time instants
of the received signals. These time measurements are then periodically processed by
the particle filter (see Section 4.4) to determine the location of the mobile object. The
particle filter is implemented using multiple threads s.t. it utilizes the optimal number of
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CPU cores. On the used PC (Sun Fire X4140 ) the software is running on 12 cores and
calculates positions with up to 14Hz. If the position is outside of the bounding area in
any dimension it is discarded. It is also discarded if the value for span is above a certain
level. To reduce the risk of wrongly calculated values the final position is given by a
three point running median for every dimension. This means the median of the last three
points is regarded as correct position.

The further tasks of the PC software include input and output for control parameters as
well as logging functionalities in order to visualise and analyse a trace later. In order to
directly test the usefulness of the localization system for an autopilot system the interface
to a quadcopter control system is added to the PC software.

Text User Interface

The text user interface shows the current position of the mobile object, current parameters
which were set in the FPGAs, control information of the quadcopter as well as all relevant
debug information. Figure 5.20 shows a screenshot of the user interface.

Figure 5.20a shows a matrix with the differences between time instants when a burst
signal was detected by FPGA nF on receiver nR. The columns and rows contain the
labels F#nF _nR. Figure 5.20b shows a matrix with the time instants when a burst
signal was detected by each FPGA and receiver. These are raw values of the global
system counter syscnt. In Figure 5.20c the table shows all the parameters which can
be set in the FPGAs. These parameters change the properties of the burst detection (see
Section 5.2.5). In Figure 5.20d the list shows possible keyboard commands with a short
description. Figure 5.20e shows the current status of the quadcopter including control
state, battery level, orientation, altitude, and speed. Figure 5.20f shows the values for
the flight controller including set points for orientation and altitude as well as the current
position of the mobile object and the current target waypoint. In Figure 5.20g the list
shows the debug output of the performed steps while determining the position using the
particle filter. These entries include the position and the span-value for every nth step.
Figure 5.20g shows the counter of already completed 8-figures which is incremented at
every transition of the last waypoint.
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(d)
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Figure 5.20: The PC software text user interface shows the current position of the
mobile object, current parameters which were set in the FPGAs, control information of
the quadcopter as well as all relevant debug information.
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CHAPTER 6
Validation

The implemented parts of the system are tested as individual components to check their
functionality. Using the component-wise verified parts the whole LPS is assembled and
tested in two stages: First it is used to determine static positions of the mobile object.
As soon as the system is verified to be reliable it is then used to implement an autopilot
system for an UAV.

6.1 Test of Components

During implementation the different components, such as transmitter modules, receiver
modules and parts of the FPGA implementation, are tested individually. Based on these
component tests further adjustments (e.g., revised hardware modules) are made to ensure
the correct functionality of each component.

6.1.1 Transmitter Module

The functionality of the transmitter module is tested by measuring the output directly at
the ultrasonic transmitter (see Figure 6.1). First the correct frequency (fUSS = 24kHz)
and amplitude (VUSS = 20VP P ) is verified (see Figure 6.2). The transmitter module is
capable of generating an arbitrary modulated waveform. The oscillogram in Figure 6.3
shows the test of such a waveform modulation. In this case a modified gold code is shown
(see Section 3.4.2). Other waveforms such as the later used burst signals are verified also
by inspection using a oscilloscope (see Figure 6.4).
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∼
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US-Transmitter u(t) Oscilloscope

Figure 6.1: Block diagram of transmitter module test. The functionality of the transmitter
module is tested by measuring the output directly at the ultrasonic transmitter.

Figure 6.2: Test of transmitter module: The oscillogram shows the carrier frequency of
24.57kHz and the amplitude of 20VP P .
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Figure 6.3: Test of transmitter module: The oscillogram shows the carrier frequency
which is modulated (turned on and off) by a modified gold code sequence.

Figure 6.4: Test of transmitter module: The oscillogram shows a burst signal where the
carrier frequency is switched on for the duration of 4.94ms.
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6.1.2 Receiver Module

The functionality of the receiver module is tested by measuring the output of the receiver
module and also the signal which is transmitted by the ultrasonic transmitter (see
Figure 6.5). A basic test of the receiver module is shown in Figure 6.6. This oscillogram
shows the transmitted signal on channel 1 (yellow) and the received signal on channel 2
(blue). In this test the amplitude is high and the burst signal can be identified clearly
because the receiver is placed only one meter away from the transmitter and is directly
aimed.

To verify the directional receiving pattern a transmitter is placed on a static position
and configured to continuously transmit the ultrasonic carrier without any modulation.
A receiver module is placed approximately four meters away on a mounting platform
with an offset in the plane by 30 centimeter from the center of rotation and manually
rotated while the received power at fUSS = 24kHz is measured using the FFT function
of the oscilloscope. Figure 6.7a shows the recorded values for this test, while Figure 6.7b
represents the reference from the manufacturer datasheet [Pro15]. The difference between
these two graphs is caused by the offset in the horizontal plane when the mounting
platform is rotated. Despite from this the directional receiving pattern of the receiver
module is successfully verified with the reference pattern of the ultrasonic transducer.

Similar to the directional pattern the signal strength as function of the distance from
the transmitter to the receiver is verified. Every 0.5m a point is measured. Figure 6.8
shows the result for this measurement. If the distance between the transmitter and
the receiver is less than three meters the receiver is fully saturated and therefore the
amplitude is independent from the distance in this range. Because of spherical divergence
for any signal there is a theoretical intensity drop of 6dB per distance doubled [Sen18].
Furthermore, there is atmospheric attenuation which depends on the frequency of the
signal, the temperature and humidity. For a frequency of 25kHz, a temperature of 24°C
and a relative humidity of 50% this is 0.75dB/m [ISO93]. Adding these effects results
in a loss of 6dB + 3 · 0.75dB = 8.25dB for a change in the distance from 3m to 6m.
However, the measurements indicate a higher loss of 9.5dB.

Figure 6.9 shows another test where the time delay of ultrasonic signals is shown. Two
receivers are placed at different locations (P1 and P2) with known distance to the
transmitter at location M. The difference δd = d1 − d2 is known (where dn denotes the
distance from the transmitter to the respective receiver dn = ||M−Pn||). In this test
scenario the distance is δd = 50cm. The signal is received by each of the two receivers
and the time delay can be measured: δt = 1.4ms. Given the time delay and the speed of
sound the distance can be calculated: s = δt · vsound = 1.4ms · 340m/s ≈ 47.6cm. The
deviation of s and δd is caused by imprecise manual measurement of the timing at the
oscillogram.
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Figure 6.5: Block diagram of receiver module test. The functionality of the receiver
module is tested by measuring the output of the receiver module and also the signal which
is transmitted by the ultrasonic transmitter.

Figure 6.6: Test of receiver module: The oscillogram shows the transmitted signal on
channel 1 (yellow) and the received signal on channel 2 (blue).
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Figure 6.7: Test of directional receiving pattern for the receiver module: Amplitude
as function of orientation angle. The receiver module (v2.0) is placed approximately
four meters from the transmitter and manually rotated while the received power at
fUSS = 24kHz is measured using the FFT function of the oscilloscope.
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Figure 6.8: Test of the signal strength as function of the distance from transmitter to
receiver. A receiver module is placed at different distance from the transmitter while the
received power at fUSS = 24kHz is measured using the FFT function of the oscilloscope.
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Figure 6.9: Test of receiver module: The oscillogram shows the received signal by two
receiver modules on channel 1 (yellow) and channel 2 (blue). The two modules are located
at a different distance from the transmitter and therefore the signal delay is different by
1.4ms.

93



6. Validation

6.2 Static Positions

Static position tests are carried out with six FPGA-Boards, with four receivers each,
in an rectangular area with xmax = 6m and ymax = 3m. The transmitter is placed on
a tripod at various locations within this area. Figure 6.10 shows the traces for eight
different locations of the mobile object. The light blue, red, magenta and green lines
indicates the traces of the mobile object. The blue stars indicate the actual position of
the mobile object which was measured manually while the red stars indicate the positions
of the receivers.

The deviation of the determined position to the actual position in x- and y-dimension is
significantly smaller than in z-dimension. This is caused by the placement of the receivers.
The used mounting platform is standing on the floor and therefore all receivers are below
90cm on the z-axis. This behaviour is consistent with the simulation.

In Table 6.1 the measured and calculated values are given for m∗
0 to m∗

7 (units for all
values are centimeters). The actual positions (xact, yact, zact) with median (xmed, ymed,
zmed) and standard deviation (σx, σy, σz) are given. At each position ndp values were
determined by the LPS. The deviations between the actual positions and the median of
the determined positions (xdev, ydev, zdev) as well as the absolute value of the deviation
(|xdev|, |ydev|, |zdev|) are given. For some columns the table contains the mean (avg),
minimum (min), maximum (max), and median (med). The deviation is calculated by
xdev = xmed − xact, ydev = ymed − yact, and zdev = zmed − zact.

These tests show that depending on the position the standard deviation for static objects
in x- and y-dimension is 1.9 to 4.9cm. Standard deviation for z-dimension is 5.8 to
13.4cm. Figure 6.11 shows a histogram for the measurements in x-, y- and z-dimension
for the static position m∗

4. This example shows a standard deviation of σx = 3.3cm,
σy = 4.9cm and σz = 12.0cm. In these tests the absolute deviation between the actual
positions and the median of the determined positions vary in x- and y-dimension from
0.0 to 7.6cm. For z-dimension this deviation is 2.3 to 18.2cm.
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Figure 6.10: Trace of eight measurements for static positions while the transmitter is
mounted on a tripod. The light blue, red, magenta and green lines indicates the traces of
the mobile object (which is located on static positions). The blue stars indicate the actual
position of the mobile object while the red stars indicate the positions of the receivers.
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Figure 6.11: Histogram for the measurements in x-, y- and z-dimension for the static
position m∗

4
. These measurements show a standard deviation of σx = 3.3cm, σy = 4.9cm

and σz = 12.0cm.

Position xact yact zact xmed ymed zmed σx σy σz ndp xdev ydev zdev |xdev| |ydev| |zdev|

m∗
0 250 70 90 253.6 69.6 92.7 4.2 3.8 5.8 552 3.6 -0.4 2.7 3.6 0.4 2.7

m∗
1 530 150 180 529.5 152.5 161.8 4.6 2.8 13.4 247 -0.5 2.5 -18.2 0.5 2.5 18.2

m∗
2 120 185 75 121.4 185.8 72.7 1.9 2.8 5.9 311 1.4 0.8 -2.3 1.4 0.8 2.3

m∗
3 210 55 70 207.8 55.0 66.9 3.2 3.9 9.3 461 -2.2 0.0 -3.1 2.2 0.0 3.1

m∗
4 360 230 155 363.0 231.5 144.5 3.3 4.9 12.0 519 3.0 1.5 -10.5 3.0 1.5 10.5

m∗
5 430 170 35 437.6 173.4 44.1 3.6 3.2 10.8 354 7.6 3.4 9.1 7.6 3.4 9.1

m∗
6 260 130 35 264.3 134.9 43.6 4.5 2.7 6.2 317 4.3 4.9 8.6 4.3 4.9 8.6

m∗
7 515 70 155 515.9 66.3 140.1 2.7 2.7 8.0 331 0.9 -3.7 -14.9 0.9 3.7 14.9

avg 3.5 3.4 8.9 2.3 1.1 -3.6 2.9 2.2 8.7

min 1.9 2.7 5.8 0.5 0.0 2.3

max 4.6 4.9 13.4 7.6 4.9 18.2

med 3.5 3.0 8.7 2.6 2.0 8.9

Table 6.1: Measurements for static positions where the transmitter is mounted on a tripod.
Units for all values are centimeters. Actual positions (xact, yact, zact) with median (xmed,
ymed, zmed) and standard deviation (σx, σy, σz) for ndp determined positions. Deviations
between the actual positions and the median of the determined positions (xdev, ydev, zdev)
and absolute value of the deviation (|xdev|, |ydev|, |zdev|).
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6.3 Mobile Object

After testing static positions, we perform further tests with an actually moving object.
For this purpose a model railway is used and the transmitter is placed on a waggon.
Figure 6.12 shows the setup. The tracks of the railway are measured manually in
order to get a reference for the actual positions. The outer dimension of the track
is ltrack = 220cm and btrack = 220cm. The oval shape of the track gives a length of
strack = 2 · (ltrack − btrack) + btrack · π = 5.35m.

For the first test the model railway is operated with low speed. The duration per round
is tlow = 28s. This gives the speed vlow = strack

tlow
= 5.35m

28s ≈ 0.2m/s for the mobile object.
Figure 6.13 shows the result for the test with the given speed. The blue line indicates
the trace of the mobile object and the red line indicates the tracks as reference. The
red stars indicate the positions of the receivers. For another test the model railway is
operated with the maximum speed. The duration per round is thigh = 7.4s. This gives
the speed vhigh = strack

thigh
= 5.35m

7.4s ≈ 0.75m/s for the mobile object. Figure 6.14 shows the

result for the test with the higher speed.

Histograms of the deviation between the determined position and the reference track in x-
and y-dimension are given in Figure 6.15 and Figure 6.16 respectively. The results show
a standard deviation of 6.0 to 7.3cm for moving objects. Due to the large number of
measurements at various locations the median of the deviation between the determined
position and the reference track results in values from 0.0 to 0.3cm. The values for z-axis
are omitted since the calculation of z-values is modified in these tests and is therefore not
representative to characterize the accuracy of the system in z-dimension. The test with
low speed and with the higher speed do not lead to significant differences in standard
deviation. The differences are comparable to the results for static positions where the
standard deviation varies at different locations.

Figure 6.12: Transmitter module v2.0 is placed on a model railway waggon for testing a
dynamic scenario with known positions.
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Figure 6.13: Trace of model railway on a oval shaped tracks operated with vlow = 0.2m/s.
The blue lines indicates the trace of the mobile object and the red line indicates the tracks
as reference. The red stars indicate the positions of the receivers.
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Figure 6.14: Trace of model railway on a oval shaped tracks operated with vhigh =
0.75m/s. The blue lines indicates the trace of the mobile object and the red line indicates
the tracks as reference. The red stars indicate the positions of the receivers.
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Figure 6.15: Histogram for the measurements in x and y-dimension for the mobile object
moving with vlow = 0.2m/s. These measurements show a standard deviation of σx = 7.3cm
and σy = 6.0cm.
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object moving with vhigh = 0.75m/s. These measurements show a standard deviation of
σx = 6.2cm and σy = 6.0cm.

100



6.4. Quadcopter Autopilot

6.4 Quadcopter Autopilot

After successfully carrying out static and mobile tests, we move on to a dynamic setup.
The transmitter is mounted on the quadcopter in order to control it. This transforms
our system from simple measurements to a control loop. An overview of the quadcopter
autopilot system is shown in Figure 6.17.

For this tests the AR Drone 2.0 quadcopter is used and the transmitter module is
placed in the center on the bottom of the UAV. Figure 6.18 shows this setup. The
Raspberry Pi, which acts as EIA-232 - Ethernet Gateway, is equipped with a Wireless
LAN interface using a USB Wireless LAN adapter. This is necessary since the used
quadcopter is controlled via Wireless LAN. All autopilot tests are carried out in an
area with xmax = 10m and ymax = 5m. Figure 6.19 shows the test setup used for the
dynamic tests. As reference flightpath the 8-figure of Air Race-Competition is used (see
Section 3.1.3).

An UAV control system is implemented using the Parrot AR Drone SDK [Par16]. This
makes it possible to control the AR Drone 2.0 over Wireless LAN. For this purpose
the SDK provides commands to control the quadcopter, e.g., commands for takeoff and
landing, emergency shutdown and orientation which implies movements.

The autopilot is implemented by a flight path which consists of a set of waypoints. Given
the current position of the UAV (determined by the local positioning system) and the
next waypoint (WP ) as target a proportional controller is used to determine the needed
orientation of the quadcopter:

θcontrol = (xW P − xUAV ) ·Kx

φcontrol = (yW P − yUAV ) ·Ky

Fcontrol = (zW P − zUAV ) ·Kz

The values θcontrol, φcontrol and Fcontrol are the control parameters which are transmitted
to the quadcopter via Wireless LAN. If the distance projected to the plane δs is less
than a certain threshold the waypoint is considered as reached and the next waypoint is
selected as target. The distance δs is computed as:

δs =
√

(xW P − xUAV )2 + (yW P − yUAV )2

Figure 6.20 shows the partial trace of such a test. This example shows that the UAV
stays inside the the test area for several repetitions of the complete 8-figure. There are
some deviations of the UAV’s position and the reference flight path. These deviations
might be caused on the one hand by the simple proportional controller and on the other
hand by delays because of the Wireless LAN link.

A video of a flight where the UAV autonomously performs several repetitions of the
complete 8-figure is available at:
https://q.lanthan.at/ff8db3a3bfaf182f683c29d071c78ea9
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Figure 6.17: Block diagram of the implemented LPS with dynamic test setup including
UAV autopilot. A transmitter which is placed on the UAV sends ultrasonic signals. Every
base-station is equipped with a FPGA-Board and four ultrasonic receivers in order to
capture and process the signals. The time measurements are sent through the Raspberry
Pi gateway to the PC. The PC performs TDOA calculation and computation of the control
parameters. These control parameters are sent via Wireless LAN to the UAV.
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6.4. Quadcopter Autopilot

(a) Top side of the UAV which is used for the dynamic tests.

(b) Bottom side of the UAV which is used for the dynamic tests. The transmitter
module v2.2 is placed in the center on the bottom of the UAV.

Figure 6.18: Quadcopter AR Drone 2.0 which is used for the dynamic tests.
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Figure 6.19: Autopilot test area setup with a dimension of xmax = 10m and ymax = 5m.
The four of the base stations are placed on the corners of the test area and two on the
border at x = 5m. The centers of the 8-figure (reference flightpath) is marked by orange
traffic cones.
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Figure 6.20: Partial trace of flight path of autopilot test. The red stars indicate the
positions of the receivers and the blue line indicates the trace of the mobile object. The
reference flightpath (8-figure) is indicated by a green line.
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6.4.1 RobotChallenge China

The system was planned to be used in the Air Race competition at the RobotChallenge
2017 in Bejing, China [You17]. For this purpose all parts of the mounting platform (see
Section 6.2) are built modular so that they can be disassembled into small parts. The
whole hardware was packed into a suitcase and transported to China.

Unfortunately, more than 25 different Wireless LAN networks were present. Due to this
fact it was not possible to transmit any control information in time via the wireless LAN
link to the quadcopter. The typical delay for control-messages was about several seconds
which made it impossible to operate the quadcopter in this environment and therefore it
was not possible to successfully take part in the competition.

(a) Hardware used at the competition. (b) Competition area with safety net.

Figure 6.21: Air Race competition at the RobotChallenge 2017 in Bejing, China. a)
shows the hardware that was used at the competition. The mounting platforms for the for
the FPGA-Boards and four receivers on X-shaped booms each in the back, quadcopter AR
Drone 2.0 with transmitter module in the front. b) shows the competition area with safety
net. The reference flight path (8-figure) is marked by a black dashed line on the ground.
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CHAPTER 7
Conclusion and Outlook

In this work we successfully implemented a LPS to be used for an UAV in an indoor
location. We are able to demonstrate the fitness of the implemented system to be used
in an autopilot setup for a quadcopter. With this autopilot setup the quadcopter is
able to follow a path consisting of pre-defined waypoints. The successful operation is
demonstrated in a video where the quadcopter autonomously performs several repetitions
of an 8-figure.

7.1 Solved Difficulties

The following difficulties had to be solved in order to implement a functional LPS. This
was on the one hand a major design decision which had to be revised. On the other
hand there were problems for which we describe methods of mitigation or alternative
implementations.

• Ultrasonic Signal
Initially we planned to use a continuous ultrasonic signal (see Section 3.4.2) in
order to measure the time delay as precise as possible. Simulations looked very
promising to measure the time delay using correlation of the received signal with the
reference waveform (see Section 4.1.1). However, during hardware implementation
it turned out that the correlation of the continuous signal is very prone to variations
in frequency. This forced us to implement the system using a relaxed version of
the ultrasonic signal (see Section 3.4.2). Due to this relaxed ultrasonic signal the
accuracy in time measurements is limited and therefore the accuracy of the whole
system is limited as well. The specified accuracy of saccuracy = 5cm could therefore
not be reached.
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• Beam Pattern and Destructive Interference
The angular beam pattern of the used ultrasonic transmitters is specified with
85°. Since the transmitter is placed on the UAV and the receivers are located in
all directions around the UAV there is the need for a more omnidirectional beam
pattern of the whole transmitter module. This was achieved using four (or eight)
ultrasonic transmitters on the transmitter module. Using more than one ultrasonic
transmitters resulted in the problem of destructive interference. This problem was
mitigated by using four receivers for each base-station. With this modification the
risk of interference for all receivers was minimised.

• TDOA Calculation Algorithm
The algorithm for TDOA calculation described by Bucher and Misra [BM02] did not
result in correct results using only four base stations. Furthermore, it turned out
that an exact solution of the TDOA problem is not practical in our implementation
for the following reasons: As a result of the mitigation strategy to the previous
problem the number of received signals was multiplied by four which results in
an overdetermined system. Outliers were problematic as well. These were values
of receivers which did not recognize the correct signal and there led to wrongly
calculated time delay measurements. We therefore changed our calculation method
to a particle filter and subsequently implemented such a filter.

7.2 Outlook and Further Work

We identified several aspects which can be improved in the implemented LPS in order
to achieve a better accuracy, higher measurement rates, or a more reliable system. The
following aspects should be considered in further work to enhance the system.

• State Estimation
Given the current position, the current speed, and the physical properties of the
UAV, the position for the next timestep can be estimated. This estimated position
can then be incorporated within the TDOA calculation resulting in, speeding up
the calculation and therefore leading to a higher measurement rate.

• Correlation of Received Signal
Since there have been problems with the initially planned waveform a burst signal
was used as alternative (see Section 3.4.2). If the problems with variations in
frequency can be sorted out by using additional means of signal processing the
correlation of the received signal with a reference signal can be used to measure
the time delay. This may improve the accuracy of the time delay measurements
and therefore also the accuracy of the system.
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• Calculation on FPGA
For the current implementation of the system the actual TDOA calculation is
performed on a PC. The TDOA calculation could be executed on the FPGA. If
the implementation of the TDOA calculation is optimized for parallel execution
on the FPGA this may speed up the calculation and therefore lead to a higher
measurement rate.

• Identification of Outliers
Since we added additional receivers to mitigate problems with destructive interfer-
ence (see Section 4.4) there might be outliers for time delay measurements. Using
the current implementation all measurements are processed by the particle filter. If
the outliers can be identified beforehand and omitted from the particle filter it may
speed up the convergence for the estimated position and also increase the accuracy
of the determined position.

• Quality Metric for Time Measurements
The outlier identification could be further improved to a quality metric for each
time delay measurement. The particle filter could then also incorporate the quality
of the measurements. This would give more weight to measurements which are
identified as very certain. Whereas more uncertain measurements contribute to the
calculation with less weight. The quality metric to determine how much certitude
is given by a measurement could be inferred from the value of the maximum
correlation.

• Optimized Particle Filter
The particle filter was implemented as contingency plan since the originally planned
algorithm turned out to be not usable (see Section 4.4). The filter parameters of
the particle filter were not extensively optimized yet. This could be done to further
improve the position determination.

• Code Multiplexing
If the problem with correlation can be sorted out, a continuous (pseudo) random
signal can be used as initially planned. This would make it possible to extend the
system for more mobile objects which can be in operation at the same time by
using orthogonal codes (which have low cross-correlation to each other).
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CHAPTER 8
Appendix

This appendix includes schematics and test point documentation of the implemented
hardware modules. It also contains listings of relevant parts of the simulations.

• Transmitter circuit
Figure 8.1 shows the schematic of transmitter circuit v2.2. Figure 8.4 shows the
test point documentation for transmitter circuit v2.2.

• Receiver circuit
Figure 8.2 shows the schematic of transmitter circuit v2.0. Figure 8.5 shows the
test point documentation for receiver circuit v1.0.

• FPGA Adapter-Board
Figure 8.3 shows the schematic of FPGA Adapter-Board v1.1. Figure 8.6 shows
the test point documentation for FPGA Adapter-Board v1.1.

• TDOA calculation simulation
Listing 8.1 shows the TDOA algorithm as presented by Bucher and Misra [BM02].
Listing 8.2 shows the simulation for differences in propagation delays given the
known position of the mobile object. Listing 8.3 shows the simulation of TDOA
calculation for a pre-defined location of the mobile object. Listing 8.4 shows the
simulation of TDOA calculation resulting in a wrongly calculated position.

• Particle filter simulation
Listing 8.5 shows the algorithm for one step of the particle filter. Listing 8.6 shows
the script for particle filter simulation.
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8. Appendix

8.1 Schematics

S
p
ic

e
O

rd
e
r 

1
S

p
ic

e
O

rd
e
r 

2

GND

+
3

V
3

220u/16V

GND

ATTINY84V-10SSU

+
3

V
3

1
0

k

+
3
V

3

10u/25V

GND

+
3

V
3

LD6836TD/30P
GND

+
3
V

3

+
5
V

+
5

V

4
k
7

NX7002AKA

+
5

V

GND

GND

NX7002AKA

GND

+
5

V

GND

MKS1852-6-0-202

FUSE 0.75A

+
5

V

GND

+
5

V

GND
FUSE 0.75A

+
5

V

GND

GND

ADM660ARZ

GND

GND

+10V

+
5

V

10u/25V

+10V

MKS1853-6-0-303

MKS1853-6-0-303

1
5

p
F

1
5
p

F

GND

GND

MKS1853-6-0-303

MKS1852-6-0-202

GND GND GND

+
5
V

+
3
V

3

TLE4202B

220u/16V

GND

+10V

g
ru

e
n

g
ru

e
n

g
ru

e
n

g
ru

e
n

SV1

1 2
3 4
5 6
7 8
9 10

C1

U3

VCC
1

PA0_(ADC0/AREF/PCINT0)
13

PA1_(ADC1/AIN0/PCINT1)
12

PA2_(ADC2/AIN1/PCINT2)
11

PA3_(ADC3/T0/PCINT3)
10

PA4_(ADC4/USCK/SCL/T1/PCINT4)
9

PA5_(ADC5/DO/MISO/OC1B/PCINT5)
8

(PCINT6/OC1A/SDA/MOSI/DI/ADC6)_PA6
7

(PCINT7/ICP/OC0B/ADC7)_PA7
6

GND
14

(PCINT8/XTAL1/CLKI)_PB0
2

(PCINT9/XTAL2)_PB1
3

(PCINT10/INT0/OC0A/CKOUT)_PB2
5

(PCINT11/RESET/DW)_PB3
4

R
4

C2

U4

IN
1

EN
3

GND
2

OUT
5

NC
4

R
5

T6

S1

13
4 2

T1

INPUT

1
2

R1

D
1

R2

TP5

1
1

2
2

3
3

4
4

5
5

J1

V+
8

FC
1

LV
6

OSC
7

CAP+
2

CAP-
4

GND
3

OUT
5

U1

C3

J
P

1

123

X1

1
2
3

X2

1
2
3

T
P

1

Q
1

2
1

C
5

C
6

X5

1
2
3

X7

1
2

IC2

IN3-REF
6

IN1
1

IN2
7

OUT1
3

OUT2
5

VCC
2

GND
4

C7

L
E

D
2

P
$
1

P
$
1

P
$
2

P
$
2

P
$
1

P
$
1

P
$
2

P
$
2

P
$
1

P
$
1

P
$
2

P
$
2

P
$
1

P
$
1

P
$
2

P
$
2

R
3

L
E

D
1

R
6

L
E

D
3

R
7

L
E

D
4

R
8

++
+

+

U
S

S
-W

a
n
d
le

r

U
S

S
-W

a
n
d
le

r

U
S

S
-W

a
n
d
le

r

U
S

S
-W

a
n
d
le

r

Figure 8.1: Schematic: Transmitter circuit v2.2
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Figure 8.4: Test point documentation: Transmitter circuit v2.2
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Figure 8.5: Test point documentation: Receiver circuit v1.0
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8.3 Listings

1 function [ p1, p2 ] = tdoa_solve( pi, pj, pk, pl, rvals )

2 %determine x, y, and z of mobile object by difference of signal propagation

3 %delays

4

5 % unit for time: 1 s

6 % unit for distance: 1 m

7 % unit for speed: 1 m/s

8 v = 340;

9

10 xi=pi(1); yi=pi(2); zi=pi(3); % position for base station ’i’

11 xj=pj(1); yj=pj(2); zj=pj(3); % position for base station ’j’

12 xk=pk(1); yk=pk(2); zk=pk(3); % position for base station ’k’

13 xl=pl(1); yl=pl(2); zl=pl(3); % position for base station ’l’

14

15 % %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16 % calculation is taken from the following paper:

17 %

18 % Ralph Bucher and D. Misra. "A Synthesizable VHDL Model of the Exact

19 % Solution for Three-dimensional Hyperbolic Positioning System". In: VLSI

20 % Design 15.2 (202), pp. 507-520. doi: 10.1080/1065514021000012129.

21

22 xji=xj-xi;

23 xki=xk-xi;

24 xjk=xj-xk;

25 xlk=xl-xk;

26 xik=xi-xk;

27 yji=yj-yi;

28 yki=yk-yi;

29 yjk=yj-yk;

30 ylk=yl-yk;

31 yik=yi-yk;

32 zji=zj-zi;

33 zki=zk-zi;

34 zik=zi-zk;

35 zjk=zj-zk;

36 zlk=zl-zk;

37

38 rij = v*(rvals(1)); % = abs((v*(ti-tj)));

39 rik = v*(rvals(2)); % = abs((v*(ti-tk)));

40 rkj = v*(rvals(3)); % = abs((v*(tk-tj)));

41 rkl = v*(rvals(4)); % = abs((v*(tk-tl)));

42 ril = v*(rvals(5)); % = abs((v*(ti-tl)));

43 rjl = v*(rvals(6)); % = abs((v*(tj-tl)));

44

45 s9 =rik*xji-rij*xki;

46 s10=rij*yki-rik*yji;

47 s11=rik*zji-rij*zki;

48 s12=(rik*(rij*rij + xi*xi - xj*xj + yi*yi - yj*yj + zi*zi - zj*zj) -rij*(rik*rik + '

xi*xi - xk*xk + yi*yi - yk*yk + zi*zi - zk*zk))/2;

49 s13=rkl*xjk-rkj*xlk;

50 s14=rkj*ylk-rkl*yjk;

51 s15=rkl*zjk-rkj*zlk;

52 s16=(rkl*(rkj*rkj + xk*xk - xj*xj + yk*yk - yj*yj + zk*zk - zj*zj) -rkj*(rkl*rkl + '

xk*xk - xl*xl + yk*yk - yl*yl + zk*zk - zl*zl))/2;

53

54 a= s9/s10;

55 b=s11/s10;
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56 c=s12/s10;

57 d=s13/s14;

58 e=s15/s14;

59 f=s16/s14;

60 g=(e-b)/(a-d);

61 h=(f-c)/(a-d);

62 i=(a*g)+b;

63 j=(a*h)+c;

64 k=rik*rik+xi*xi-xk*xk+yi*yi-yk*yk+zi*zi-zk*zk+2*h*xki+2*j*yki;

65 l=2*(g*xki+i*yki+zki);

66 m=4*rik*rik*(g*g+i*i+1)-l*l;

67 n=8*rik*rik*(g*(xi-h)+i*(yi-j)+zi)+2*l*k;

68 o=4*rik*rik*((xi-h)*(xi-h)+(yi-j)*(yi-j)+zi*zi)-k*k;

69 s28=n/(2*m);

70 s29=(o/m);

71 s30=(s28*s28)-s29;

72 root=sqrt(s30);

73

74 z1=s28+root;

75 z2=s28-root;

76 x1=g*z1+h;

77 x2=g*z2+h;

78 y1=a*x1+b*z1+c;

79 y2=a*x2+b*z2+c;

80

81 p1 = [ x1 y1 z1 ];

82 p2 = [ x2 y2 z2 ];

83

84 end

Listing 8.1: TDOA calculation function

1 function [ rvals ] = tdoa_simulate_rvals( pi, pj, pk, pl, m )

2 %simulate difference of signal propagation delays by known position of

3 %mobile object

4

5 % unit for time: 1 s

6 % unit for distance: 1 m

7 % unit for speed: 1 m/s

8 v = 340;

9 eps = 0.0;

10

11 xm=m(1); ym=m(2); zm=m(3); % position for mobile object

12 xi=pi(1); yi=pi(2); zi=pi(3); % position for base station ’i’

13 xj=pj(1); yj=pj(2); zj=pj(3); % position for base station ’j’

14 xk=pk(1); yk=pk(2); zk=pk(3); % position for base station ’k’

15 xl=pl(1); yl=pl(2); zl=pl(3); % position for base station ’l’

16

17 % signal propagation delays (add eps to avoid r_mn which are zero)

18 ti=sqrt((xm - xi)^2 + (ym - yi)^2 + (zm - zi)^2 + 1*eps)/v;

19 tj=sqrt((xm - xj)^2 + (ym - yj)^2 + (zm - zj)^2 + 2*eps)/v;

20 tk=sqrt((xm - xk)^2 + (ym - yk)^2 + (zm - zk)^2 + 3*eps)/v;

21 tl=sqrt((xm - xl)^2 + (ym - yl)^2 + (zm - zl)^2 + 4*eps)/v;

22

23 rij=(ti-tj);

24 rik=(ti-tk);

25 rkj=(tk-tj);

26 rkl=(tk-tl);

27 ril=(ti-tl);
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28 rjl=(tj-tl);

29

30 rvals = [rij rik rkj rkl ril rjl];

31

32 end

Listing 8.2: Calculate signal propagation timings

1 % simulate TDOA calculation

2

3 m = [ 8 3 1 ]; % position for mobile object ’m’ in format [x y z], unit: 1m

4 p0 = [ 0 0 0 ]; % position for base station ’P_0’ in format [x y z], unit: 1m

5 p1 = [ 0 5 0 ]; % position for base station ’P_1’ in format [x y z], unit: 1m

6 p2 = [ 7 5 0 ]; % position for base station ’P_2’ in format [x y z], unit: 1m

7 p3 = [ 5 0 2 ]; % position for base station ’P_3’ in format [x y z], unit: 1m

8

9 rvals = tdoa_simulate_rvals( p0, p1, p2, p3, m );

10 [ m1, m2 ] = tdoa_solve( p0, p1, p2, p3, rvals );

11 position_of_mobile_object = m1

Listing 8.3: Script for TDOA simulation

1 % simulate TDOA calculation

2

3 m = [ 8 1 3.5 ]; % position for mobile object ’m’ in format [x y z], unit: 1m

4 p0 = [ 0 0 0 ]; % position for base station ’P_0’ in format [x y z], unit: 1m

5 p1 = [ 0 5 0 ]; % position for base station ’P_1’ in format [x y z], unit: 1m

6 p2 = [ 7 5 0 ]; % position for base station ’P_2’ in format [x y z], unit: 1m

7 p3 = [ 5 0 2 ]; % position for base station ’P_3’ in format [x y z], unit: 1m

8

9 rvals = tdoa_simulate_rvals( p0, p1, p2, p3, m ) % calculate TDOA timings for m

10 [ m1, m2 ] = tdoa_solve( p0, p1, p2, p3, rvals );

11 m1 % possible location m1

12 m2 % possible location m2

13

14 rvals1 = tdoa_simulate_rvals( p0, p1, p2, p3, m1 ) % calculate TDOA timings for m1

15 rvals2 = tdoa_simulate_rvals( p0, p1, p2, p3, m2 ) % calculate TDOA timings for m2

16

17 rvals1 - rvals2 % difference for timings is less than 1.0e-17.

Listing 8.4: Script for TDOA simulation

1 function [ particles, estimate ] = particle_solve_one_step( N, particles, p, dvals, '

sigma, max_range, v_sound )

2 %One step of particle solver for TDOA

3

4 % distance and weight calculation

5 w = zeros(N,1);

6 for i = 1:N % iterate over all particles

7 d_particle = tdoa_sim_d_vals( p, particles(i,:), 0 ); % calculate TDOA values '

for current particle

8

9 diff = dvals - d_particle;

10 diff2 = diff .* diff;
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11

12 w(i) = 1/sum(sum(diff2)); % weight = likelyhood for particle to be chosen

13 end;

14 w = w / sum(w);

15

16 % current position estimate based on weighted particle positions

17 weighted_x = w .* particles(:,1);

18 weighted_y = w .* particles(:,2);

19 weighted_z = w .* particles(:,3);

20 estimate = [ sum(weighted_x), sum(weighted_y), sum(weighted_z)]; % estimated current '

position

21

22 w_sums = zeros(N,1);

23 ssum = 0;

24 for i = 1:N % iterate over all particles

25 ssum = ssum + w(i);

26 w_sums(i) = ssum; % sum of weights (up to index i), needed for resampling (see '

below)

27 end;

28

29 % resampling

30 particles_new = particles;

31 for i = 1:N % iterate over all particles

32 rrand = rand();

33 for j = 1:N % iterate over all particles

34 if w_sums(j) >= rrand

35 particles_new(i,:) = particles(j,:) + ([ randn() randn() randn() ] * '

sigma);

36 break;

37 end;

38 end;

39 end;

40 particles = particles_new;

41

42 end

Listing 8.5: Particle filter (one step)

1 % simulate TDOA calculation with error in one time difference measurement

2

3 %unitM = 1; % unit: 1m

4 unitM = 100; % unit: 1cm

5

6 %unitT = 1; % unit: 1s

7 unitT = (5.12*(1/(1000 * 1000))); % 1.28us

8

9 v_sound = (340 * unitM) * unitT;

10

11 p = csvread(’data_pos_rec.csv’);

12 p_count = size(p,1);

13 way = csvread(’data_pos_waypoints.csv’);

14 way_count = size(way,1);

15 dvals_read = csvread(’data_dvals.csv’);

16

17 max_range = [ 10 5 2 ] * unitM; % maximum area for mobile object in format [x y z]

18 m = [ 1 2 0.3 ] * unitM; % position for mobile object ’m’ in format [x y z]

19 m = [ 8 2 1.5 ] * unitM; % position for mobile object ’m’ in format [x y z]

20

21 %sigma = 0.001 / unitT; % 1ms
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22 %sigma = 0.0005 / unitT; % 0.5ms

23 sigma = 0.0001 / unitT; % 0.1ms

24 N = 300; % number of particles

25 dvals = tdoa_sim_d_vals( p, m, sigma ); % get distance values for simulated position

26 %dvals = dvals_read(1:p_count,1:p_count); % use actual measurements

27

28 particles = [ rand(N, 1) * max_range(1), rand(N, 1) * max_range(2), rand(N, 1) * '

max_range(3) ]; % randomize N particles

29

30 max_iter = 35; % limit the number of iterations for finding a position

31 sigma_iter = 5 * unitM; % jittering constant

32

33 estimates = [0 0 0];

34 spans = 0;

35 spans_x = 0;

36 spans_y = 0;

37 spans_z = 0;

38

39 for i = (1:max_iter)

40 [ particles, estimate ] = particle_solve_one_step( N, particles, p, dvals, '

sigma_iter/i^2, max_range, v_sound);

41 estimates(i,:) = estimate;

42

43 span_x = max(particles(:,1)) - min(particles(:,1));

44 span_y = max(particles(:,2)) - min(particles(:,2));

45 span_z = max(particles(:,3)) - min(particles(:,3));

46

47 span = span_x * span_y * span_z;

48 spans(i) = span;

49 spans_x(i) = span_x;

50 spans_y(i) = span_y;

51 spans_z(i) = span_z;

52 [ (span / unitM^3) i ]

53 if span < (0.1 * unitM)^3 % less than 10 cm in every dimension

54 break;

55 end;

56 end

57

58 particle_plot_est( N, max_range, particles, p, way, m, estimates, spans, spans_x, '

spans_y, spans_z);

59

60 d_val_max_range = sqrt(max_range(1)*max_range(1) + max_range(2)*max_range(2) + '

max_range(3)*max_range(3))/ v_sound * 0.9

Listing 8.6: Script for particle filter simulation
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