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Kurzfassung

Viele Programmiersprachen verwenden Tracing Garbage Collection (GC) zur automati-
schen Speicherverwaltung. Der GC gibt nicht mehr erforderlichen Speicher automatisch
wieder frei, allerdings hat die Applikation selbst kaum Einfluss darüber, wann dies
erfolgt. Der GC pausiert die Anwendung spätestens, wenn kein freier Speicher mehr
verfügbar ist. Dazu berechnet der GC den transitiven Abschluss aller von der Anwendung
erreichbaren Objekte im Arbeitsspeicher. Speicherbereiche, die nicht mehr erreicht werden
können, werden vom GC wieder freigegeben. Im Anschluss daran kann die Ausführung
der Applikation fortgeführt werden.
Dora ist eine Laufzeitmaschine für eine statisch getypte Programmiersprache. Funktionen
werden bei ihrem ersten Aufruf in Maschinensprache übersetzt, ohne vorher interpretiert
zu werden.
Diese Arbeit präsentiert den auf Generationen basierenden Speicherbereiniger Swiper. Da-
zu wird der Speicher in zwei Teilbereiche aufgeteilt: neue und alte Generation. Dies basiert
auf der Annahme, dass die meisten Objekte relativ früh sterben. Objekte werden zunächst
in der neuen Generation allokiert und werden in die alte Generation verschoben, sobald
sie genug Speicherbereinigungen überlebt haben. Swiper implementiert zwei verschiedene
Arten von Speicherbereinigungen. Eine häufig auftretende, aber verhältnismäßig kleine
Bereinigung, die tote Objekte ausschließlich in der neuen Generation findet. Dazu gibt
es noch eine volle Speicherbereinigung, die den gesamten Speicher behandelt. Swiper
ist in etwa genauso schnell wie der Copy Collector obwohl nur die Hälfte des Speichers
benötigt wird. Die Performance verschlechtert sich nur wenn die meisten jungen Objekte
nicht früh sterben.
Unterbrechungen der Applikation zur Bereinigung werden von Swiper minimiert, indem
die anstehende Arbeit auf mehrere Threads aufgeteilt und gleichzeitig abgearbeitet wird.
Je mehr Threads verwendet werden, desto schneller wird die gesamte Speicherbereinigung.
Allerdings ist die serielle Speicherbereinigung schneller als die parallele mit nur einem
Thread aufgrund von Mehraufwand zur Synchronisierung.
Allokationen werden durch sogenannte thread-local allocation buffers (TLAB) beschleu-
nigt. Diese erlauben der Applikation die meisten Objekte ohne Synchronisierung und ohne
Aufruf der Laufzeitmaschine zu allokieren. Die Laufzeit verbessert sich im binarytrees
Benchmark beinahe um das vierfache. Die meisten anderen Benchmarks verbessern sich
auch signifikant.
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Abstract

A Tracing Garbage Collector (GC) is a technique for automatic memory management
used by many programming languages. The application only allocates new memory, while
the GC automatically frees unreachable memory again. In such systems the developer
has almost no control when memory is reclaimed. When the GC runs out of memory
or when it decides a collection would be worthwhile, the collector stops the application
to release memory. It computes the transitive closure of all objects reachable from the
application. Then the memory for unreachable objects can be reclaimed. Immediately
after discarding the memory, execution of the application can continue.

Dora is a runtime for a statically typed programming language. Functions are lazily
compiled to machine code on their first invocation by the baseline compiler.

This work presents the generational GC Swiper for the Dora runtime. The collector
is based on the weak generational hypothesis, that states that most objects die young.
Based on this empirical observation the heap is split into young and old generation.
Objects are allocated in the young generation and promoted into the old one as soon
as they become old enough. The GCs duty is to reclaim unused memory. A collection
is more effective when applied on memory regions that are more likely to continue
garbage. Therefore Swiper performs two different kinds of collection: minor and full
collection. Frequent minor collections discover garbage solely in the young generation,
whereas the less common full collection handles the full heap. Swiper uses different
collection schemes for the different collections. Copy collection during minor collections
and mark-compact for full collections. Swiper ’s performance is competitive to pure Copy
collection, while using half the memory. However, it is less efficient than pure Copy
collection and mark-compact in non-generational workloads.

Pause times are reduced by distributing work to multiple worker threads. Serial collection
is faster than parallel collection with one worker thread due to synchronization overhead.
Using multiple worker threads reduces pause times compared to serial minor and full
collection.

Swiper also improves allocation performance through the implementation of thread-local
allocation buffers (TLAB). This allows the mutator to allocate most objects without syn-
chronization using only a few assembly instructions. The binarytrees benchmark becomes
almost 4 times as fast with TLAB allocation, most benchmarks improve significantly.
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CHAPTER 1
Introduction

1.1 Tracing Garbage Collection
Programming languages with manual memory management require the developer to
manually allocate and free memory on the heap. Tracing garbage collection (GC) as
used in many programming languages on the other hand provides automatic memory
management to developers. The application only allocates new memory while the GC
automatically frees unreachable memory again if the application runs out of memory.
The developer has no way of explicitly releasing memory. Ideally a GC would free all
memory that will not be accessed anymore in the future but this problem is undecidable.
A GC therefore builds a transitive closure of all objects reachable by the application,
hence all memory that could be accessed again. Unreachable memory can be released to
the operating system or used for subsequent allocations.

A GC can be tuned for different use-cases, most notably throughput or latency. However
GCs might also differ among other properties in heap overhead, allocation performance
or in how well they scale with large heaps. Many batch jobs for example are tuned
for throughput, the application is supposed to finish as fast as possible while pausing
the application for longer periods due to the GC is usually fine. This is in contrast to
interactive applications where blocking the application from answering client or user
requests for many seconds during a GC pause is unacceptable, lower throughput would
be less problematic though.

1.2 The Dora runtime
The Dora runtime1 executes programs written in the Dora programming language. Dora
is open-source and licensed under the MIT-license. Its programming language is statically

1https://github.com/dinfuehr/dora
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1. Introduction

typed and requires tracing garbage collection for automatic memory management. The
runtime itself is written in Rust, a new programming language focused on performance
and safety.
The runtime checks syntax and semantics of the program source code at runtime. It lazily
compiles code down to machine code on function granularity right at the first invocation.
This implies that Dora uses a compile-only approach and does not execute code in
the interpreter until code becomes sufficiently hot. Supporting precise tracing garbage
collection in Dora requires cooperation from the JIT-compiler. Dora’s JIT supports the
generation of both AArch64 [ARM18] and x86-64 [Int19] machine code. The runtime
itself is usable on Linux and OS X.

1.3 Motivation
The motivation behind Dora is to serve as a playground for learning and experimentation
with respect to runtimes and JIT-compilers. An important component of many runtimes
is the garbage collector. Dora aims to have a state-of-the-art GC that reduces pause
times and improves throughput by implementing fast allocation. The GC is supposed to
be used as default collector and should therefore work relatively well in most use-cases.
At the same time Dora should remain extensible, adding more collectors and switching
between them at program startup needs to be possible. In the future it might make sense
to add special-purpose GCs that would for example focus on latency. However this is
also useful for testing and performance benchmarking.

1.4 Expected result
The goal of this thesis is a general-purpose collector that can be used in Dora as a default
collector. The collector is supposed to balance between throughput and latency: pause
times should not be too excessive while on the other hand throughput should not be hurt
too much. The GC should separate the heap into multiple generations.
The young generation should use a semi-space collector using the Cheney algorithm. This
means that objects in the young generation are compacted and the fast bump-pointer
allocation can be used instead of the slower free list allocation. In addition compacting
objects improves locality and reduces heap size and therefore cache usage.
Since microservices are becoming more and more popular and replacing large monolithic
application, there is no special need to tune the GC specifically for extremly large
heap sizes for now. The old generation should therefore use mark-compact. Mark-
compact improves object locality compared to mark-sweep and allows to use bump-pointer
allocation in the old generation as well. Reducing pause times shall be achieved by
distributing work onto multiple threads.
The collector needs to cooperate with the compiler to scan the program’s root set precisely.
The GC needs to be a precise collector to be able to relocate and compact objects without
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1.5. Outline

any restrictions. The compiler emits so-called stack maps at function call sites. This
information is used by the collector to find all references in a stack frame when traversing
the stack.

1.5 Outline
The rest of this thesis is structured as follows: Chapter 2 covers the required basic
knowledge to understand GC implementations. But it is also necessary to understand
the trade-offs involved. It covers the basic collection schemes, how generational collection
works and concludes with techniques for incremental marking.

Chapter 3 will then discuss state-of-the-art garbage collectors from widely used systems.
It presents collectors of three major techniques: generational GCs, collectors using
concurrent compaction and non-moving GCs.

After discussing background collectors and other state-of-the-art collectors, Chapter
4 explains the implementation of Dora’s generational collector Swiper. It covers heap
and object layout used in Dora, but also minor and full collection. In particular how
generational collection is implemented.

Chapter 5 compares Swiper to other collectors available in Dora. Benchmark results
are presented and discussed for these GCs. This chapter also compares performance of
Swiper ’s parallel collections relative to the serial implementation in detail.

The thesis is then concluded with chapter 6 that elaborates possible directions for future
work with Dora’s garbage collectors. It also provides a short summary about the thesis.

3





CHAPTER 2
Background

Tracing Garbage Collection is a mechanism for automatic memory management utilized by
many widely-used programming languages. It increases developer productivity by freeing
the engineer from the burden of having to think about the lifetime of dynamic memory
on the heap. In languages that use manual memory management the engineer has to
allocate memory and explicitly free that memory again when it is not needed anymore.
This is quite error-prone in medium to large applications. One of the problems that might
occur is that dynamic memory is freed too early which results in use-after-free bugs.
Such failures cause undefined behavior and might result in crashes, memory corruption
or security issues. A tracing garbage collector (GC) on the other hand provides the
illusion of infinite memory - the developer’s only responsibility is to allocate memory
when needed. Unreachable memory is only freed when either dynamic memory is scarce
or the GC deems a collection to be worthwhile.

Ideally a GC would free all dynamic memory that is not going to be used in the future
anymore. However this problem is undecidable, a GC therefore only frees memory which
was proven to be unreachable from the program. A memory allocation is reachable if it
is either directly referenced from a local or global variable. It is also reachable if it is
used by another reachable memory allocation. Finding all reachable objects therefore
requires to calculate the transitive closure, this process is called marking.

Memory allocations in garbage collected systems are often simply called objects. The
initial set of reachable object is called root set. This set contains all objects directly
referenced from the current call stack (e.g. local variables or function arguments), CPU
hardware registers or global variables. In GC literature the application is often called
mutator since from the point of view of the collector, the application is mutating the
heap.

5



2. Background

A B C D E F G A C G free memory

from semi space to semi space

Figure 2.1: Semi Space Collection

2.1 Collection Schemes

This section describes the fundamental collection schemes: copy collection (see 2.1.1),
mark-sweep collection (see 2.1.2) and mark-compact collection (see 2.1.3). While these
schemes are quite simple, they are still used in similar form in most advanced tracing
garbage collectors. This section will try to give an overview about these approaches and
discuss inherent trade-offs involved. While reference counting is another form of garbage
collection, this thesis restricts itself to algorithms used in tracing garbage collection.

2.1.1 Copy Collection

Copy collection is the first collection scheme discussed. A copy collector divides the
heap into two separate contiguous semi spaces: from and to semi space. This essentially
divides the usable memory into half. Objects are always allocated in the to semi space.
A copy collection is initiated when this semi space becomes full.

At the beginning of a collection from and to semi space switch roles. Collection then
continues by copying objects in the root set from the from semi space over to the to semi
space. When copying an object into to space, the original object is marked as copied
and the object’s new location is written into it (represented by the blue edges in figure
2.1). Starting from the root set copy collection traverses all copied objects and copies all
reachable objects into the to space as well - unless of course the object was already copied.
After all reachable objects were copied there will be a single contiguous free memory
range at the end of to-space. That memory can be used for subsequent allocations by
the mutator. All memory in the from semi space is considered to be garbage and not
used until the next collection.

The main advantage of copy collection is that it only performs work proportional to
the size of the live set. This is in contrast to mark-sweep and mark-compact that will
generally need at least one pass over the whole heap. However this becomes less of an
advantage the larger the live set size becomes. Especially since mark-sweep is dominated
by the marking phase which could be run concurrently to the application as well.

Another major upside that shall not be underestimated is that it allows for fast allocation
using bump-pointer allocation. Bump-pointer increments a top pointer until it surpasses

6



2.1. Collection Schemes

before A B C D E F G H I J

after A free C free memory H free J

free list

Figure 2.2: Mark Sweep

the limit pointer. The memory region between top and limit is free and can be used for
allocations.

During a copy collection, objects are copied in object traversal order into to space which
can be quite effective for data locality. This can be experienced when traversing an array,
after the collection individual array elements will generally be allocated next to each
other in the order they appear in the array. For mark-compact this is much harder to
achieve since it has a separate marking phase, the version described in section 2.1.3 will
keep the order of objects within the heap. Mark-sweep does not even relocate objects at
all.

The obvious disadvantage of copy collection is that it is only able to use one semi space
at a time. This might not be a problem with enough spare virtual memory. While the
mutator is running the second semi space is unused and should not increase memory
usage. However during a collection this might still use up to twice the memory needed
for the same heap size in mark-sweep or mark-compact.

2.1.2 Mark Sweep

The next collection scheme presented is mark-sweep, it consists of two major distinct
phases: mark and sweep. Unlike copy collection marking is performed as a separate phase
that finds all reachable objects in the heap. Then a subsequent sweeping phase scans the
heap for unreachable objects and adds those memory regions to a free list. Allocations
after the collection can be satisfied by finding free memory regions in the free list. The
key property of mark-sweep is that objects are not relocated during a collection. Figure
2.2 illustrates how a mark-sweep collection alters the heap.

As a consequence of the distinct marking phase, mark-sweep needs one extra bit per
object to store whether an object is reachable. This bit can either be stored in the object
header or in a separate allocated bitmap. During sweeping the GC has to scan the whole
heap for unreachable objects. While this can be quite expensive, sweeping can be broken

7



2. Background

up into smaller chunks of work. These chunks are then processed lazily on subsequent
allocations. Sweeping can also be off-loaded to another thread and run concurrently to
the application. Both these approaches are able to improve latency.

In general GCs using mark-sweep can have quite short pauses. This is because both
marking and sweeping phases do not require the application to be stopped. Section 2.4
describes incremental and concurrent marking that allow reducing pause times.

As a corollary of not relocating objects the heap tends to become more fragmented
though. This decreases both data locality and cache usage. In long-running programs
fragmentation might also become more of a problem: the collector might encounter
situations where there would actually be enough free memory in total available, however
not in a single contiguous memory chunk. One approach many garbage collectors use to
alleviate such fragmentation is by having a separate space for large objects. Large objects
are often allocated in a separate non-contiguous space, the garbage collector keeps track
of objects in this space by populating a linked list.

Allocation

Another important distinction to copy collection and mark-compact is that mark-sweep
does not use bump-pointer allocation but free-list allocation. This means that allocations
are served by searching for an appropriate memory cell in the free list. There are multiple
strategies for finding a cell in the free list: first-fit, next-fit and best-fit.

1. first-fit simply uses the first memory cell in the free list that is at least as large as
the requested allocation size. If the cell is larger than required, the cell is split and
the unused rest added to the free list.

2. next-fit is quite similar to first-fit but list iteration starts from the position where
the previous iteration succeeded. When next-fit reaches the end of the free-list,
iteration continues from the start of the list.

3. best-fit selects the memory cell that fits the new allocation the best. This usually
implies iterating the free-list longer than needed for first-fit or best-fit but helps to
reduce fragmentation.

While bump-pointer allocation outperforms free-list allocation, this operation is typically
only responsible for a small percentage of mutator time. Secondary effects like allocation
locality are probably more important for application throughput [BCM04]. With bump-
pointer allocation objects allocated right after each other are typically stored in consecutive
locations and might even be on the same cache line when the objects are small enough.
This property generally cannot be uphold with free-list allocation, especially when objects
are segregated by size.

8



2.1. Collection Schemes

Segregated-fits Allocation

Many mark-sweep collectors segregate objects by size to reduce fragmentation and to
speed-up free-list allocation. In such a collector the heap typically consists of so-called
blocks, a block has a fixed size (e.g. 8KB) and stores one or more objects of the same size.
This means that objects with different sizes are always stored in different blocks. Objects
that are too large for a single block span multiple contiguous blocks.

Having many blocks with slightly different object sizes would increase external fragmenta-
tion substantially, the collector therefore restricts allocation to a set of predetermined size
classes. When allocating an object of a given size it is allocated in the smallest size class
that is able to fully accomodate the object. Defining the number of size classes and the
actual size values has to strike a balance between external and internal fragmentation.

Segregated-fits allocation uses a separate free-list for each size class. Allocation therefore
simply uses the first entry in the free-list for the respective size class. When allocating
objects from multiple threads, each thread has its own set of free-lists to avoid locking in
the common case. Locking is typically only necessary when the thread-local free-list is
empty and the global free-list has to be accessed.

2.1.3 Mark Compact

The last collection scheme to be discussed is mark-compact. The major difference
to the other collection schemes is that mark-compact performs in-place compaction.
Similar to mark-sweep the first phase is a distinct marking phase, the subsequent phases
relocate objects and update references. While there are multiple differing approaches
for implementing mark-compact, this thesis will focus on the Lisp 2-algorithm. In this
variant there are three more phases where each phase needs to scan the whole heap:

1. compute forward address: This phase scans the heap for live objects and assigns
such objects a new address starting from the heap start. This so-called forwarding-
address is stored in the object since it is needed by the subsequent phases. This
means that objects need an additional word for storing the forwarding address
when using mark-compact.

2. update references: Now that all reachable objects store a forwarding address,
this phase scans the heap again for all live objects and updates outgoing references
by loading the respective forwarding addresses stored in the referenced objects.

3. relocate objects: The last phase moves all reachable objects to the forwarding
address by copying the memory byte by byte. Note that old and new object location
may overlap and could even be identical if all previous objects were reachable as
well.

Figure 2.3 shows how mark-compact relocates objects to a consecutive region at the
start of the heap. Everything after the relocated objects becomes free memory and is

9



2. Background

before A B C D E F G H I J

after A C H J free memory

Figure 2.3: Mark Compact

again available for bump-pointer allocation. No explicit freeing of memory is necessary.
Throughput of mark-compact is generally worse compared to mark-sweep and copy
collection because it requires multiple passes over the heap but also the relocation of
objects consumes time.

The mark-compact algorithm described above keeps allocation order of objects, this can
improve locality in many circumstances [BCM04]. It might also be used in a generational
GC as a mature space collector. Compacting is beneficial when survival rate is low while
access and mutation rates in the mature space are high. In such situations it can improve
throughput even though mark-compact implies longer collection times.

2.2 Generational Collection

Generational Garbage Collectors [Ung84] are based on the empirical observation of many
applications that a large portion of objects die young - the weak generational hypothesis
[JL96][JHM11]. The GC’s job is to reclaim memory and collection is more effective when
it focuses on objects or areas with a higher likelihood of discovering garbage. Generational
GCs split the heap into multiple generations: e.g. young and old generation. While
GCs can use more than two generations, this thesis will only discuss collectors with at
most two generations. Objects are initially allocated in the young generation and later
promoted into the old generation (sometimes called mature space) when they become
old enough. A generational GC performs two different kinds of collections: minor and
major collections.

During a minor collection only garbage in the young generation is collected, all objects
in the old generation are assumed to be alive. Minor collections work quite similar
to full-heap collections, however a minor collection only considers references to young
objects. So both scanning the root set but also visiting the outgoing references of an object
will disregard references to other generations. Figure 2.4 exhibits an exemplary heap in a
generational GC, blue edges in the graph are traversed during a minor collection.

While pointers into the old generation can be ignored, a minor collection has to take
special care of references from the old into the young generation. This is demonstrated

10



2.3. Conservative and Precise Collection

in figure 2.4 where the young object F is only kept alive by the old object H through
the red edge. F would not be reached from the young generation.

A naive implementation would scan the complete old generation for pointers into the
young generation on every collection. To avoid this expensive operation the GC tracks all
objects in the old generation with such references in a remembered set. The remembered
set is kept up-to-date with the help of a write barrier that is executed each time a
reference is written into the heap like this:

Algorithm 2.1: Write Reference into Heap
1 object.field = ref ;

The barrier adds object to the remembered set when object is an object in the old
generation and ref an object in the young generation. This allows the minor collection
to only scan the remembered set for old-to-young references instead of the whole old
generation. At the same time collections also clean up the remembered set from entries
that do not reference the young generation anymore. Otherwise the remembered set
might grow until it eventually contains the whole old generation again.

Surviving objects of a minor collection are either kept in the young generation or are
promoted into the old generation when they have become old enough. The second kind
of collection is the major collection that collects garbage in all generations. While usually
minor collections will be more frequent compared to major ones, those are still essential to
reclaim memory in all generations. Minor and major collections might even use different
collection types, for example copy collection in minor collections and mark-sweep or
mark-compact for major collections.

[Ung84] splits the young generation even further (see 2.5): 1. a new space to allocate
objects in, 2. a surivor space for young objects that survived the last collection. The
surivor space is split again into two semi-spaces: past and future survivor spaces. The
future survivor space is empty while the mutator is running. Surviving objects in the
new space and the past survivor space are copied into the future survivor space during a
minor collection unless promoted into the old generation. After the minor collection the
two survivor spaces switch roles. This layout is based again on the hypothesis that most
objects die young, the goal is to increase the size of the usable memory in the young
generation by limitting the size of the semi spaces.

2.3 Conservative and Precise Collection

Garbage Collectors are classified into either conservative or precise collectors. A precise
GC knows exactly what values on the stack, registers and in the heap are valid references
into the heap. On the other hand a conservative GC is unable to distinguish heap
references from other values for at least one of the locations above.
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Figure 2.4: Different Reference Kinds in a Generational GC
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Figure 2.5: Heap Layout in Generational Scavenger by Ungar

Precise GCs either use GC points or tagged pointers to identify heap references on the
stack and in registers [Age98]. GC points store which stack entries and registers contain
heap references at a single point in compiled code. In a single-threaded environment it is
enough to store GC points for each function call site.

Tagging pointers on the other hand allow the GC to infer which values are heap references
and therefore does not require additional metadata. The main disadvantage of a precise
GC is that it requires cooperation and support from the compiler. Interfacing between
managed and native languages also tends to become more complicated since native code
is not allowed to have direct references into the heap.

Object maps are typically used to find all references on the heap. Many language
implementations store a type or class pointer with each heap cell to have a simple mean
of finding a cell’s references. Added to this, the type word is also often required to detect
an object’s size and hence is needed for iterating all objects in a heap.

A conservative GC is simpler to implement but puts additional restrictions on the GC.
When a location might reference an object, it has to be kept alive conservatively. This
means that a conservative GC keeps more objects alive than a precise GC, however
this is often quite minimal [SBM14]. An ambiguous reference also adds the restriction
that such a referent may not be moved since updating all pointers to it is not allowed.
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Conservative GCs that only treat the stack and registers conservatively are therefore still
able to relocate most objects.

2.4 Incremental Marking
Marking reachable objects is the most expensive phase of mark-sweep and quite costly
in mark-compact. Fortunately marking can be distributed over multiple smaller pauses
to avoid the need for a single long pause to reduce latency. This approach is called
incremental marking because work is completed in multiple steps.

Incremental marking is best understood with help of the tri-color abstraction [JHM11].
This abstraction assigns each object one of three colors: white, gray or black.

1. White objects have not been reached yet and might be unreachable. After marking
has finished white objects are garbage.

2. While gray objects on the other hand are already marked as reachable. However
their outgoing references have not been or only partially visited yet. All gray
objects have to be visited and turned black before marking can be finished. When
transitioning an object from white to gray, the object is marked reachable and
appended to the collector’s marking worklist.

3. The black color signals that the object itself and all its outgoing references have
been visited and therefore marked reachable. A black object only references gray
or black objects and is not revisited anymore by the collector. Black objects are
marked reachable just like gray objects. In addition black object were already
removed from the marking worklist.

Marking finishes when there are no gray objects left to visit - the marking worklist
becomes empty. All objects are then either marked white or black: white objects are
unreachable and therefore garbage, while black objects need to survive the collection.
During marking the set of gray objects is often called wavefront in GC literature. This
is because conceptually gray objects are the boundary between white and black objects.
Transitioning an object from white to gray adds to the wavefront, while marking an
object black advances the wavefront. Some implementations also retreat the wavefront
by reverting the color of an object from black to gray.

2.4.1 Weak and Strong Tri-Color Invariant

When both mutator and collector progress independently from each other, it could happen
that the mutator changes the object graph in such a way that the collector cannot find
all reachable objects. The mutator could install a reference to a white object A in a
black object B and then remove every other path to A. The collector does not revisit
B because it was already marked black. Since there is no other path to A as well, A
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would be falsely considered garbage by the collector. The collector can only fail to mark
reachable objects when both of these two conditions hold:

1. the mutators installs a reference to a white object in a black object and

2. no path from some gray object via possibly other white objects to the white object
exists.

The weak and strong tri-color invariants describe properties that must hold during
incremental marking. If either one of them holds, the collector is guaranteed to find all
reachable objects with incremental marking. This is achieved simply by preventing one
of the conditions above.

The strong tri-color invariant states that there are no pointers from black objects to white
objects in the object graph. When the mutator stores a pointer in an object, it needs to
check whether this would create a black-to-white pointer and then handle this situation
appropriately.

The weak tri-color invariant allows black-to-white pointers but demands that all white
objects installed can be reached through some path from a gray object. The gray object
either needs to point to the white object directly or indirectly through other white objects.
Black objects on the path are not allowed since the collector would stop marking at these
objects.

2.4.2 Mutator Color

In the tri-color abstraction each heap object is assigned a color based on its state in the
marking process. Conceptually the mutator’s roots get a color as well: either gray or
black. A gray mutator can have references to white, gray and black objects. It either
means that the roots have not been scanned already or that they have to be scanned
again before marking can finish.

On the other hand a black mutator is only allowed to contain pointers to gray or black
objects. It differs to a gray mutator when finishing marking: with a black mutator the
stack does not have to be rescanned before marking finishes. When using incremental
marking with a gray mutator, roots need to be rescanned since there might be more
pointers to white objects. In the worst case such an additional white object might make
a large subgraph in the heap reachable and increase pause time significantly.

Mutator color also influences the initial color of allocated objects. Allocating objects black
might prolong the lifetime of new objects compared to white allocation. When allocating
objects black during a collection, they are guaranteed to survive the current collection
cycle even if they are not used anymore. Gray mutators can use white allocation, while
black mutators need to allocate objects black.
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2.4.3 Incremental Update and Snapshot-at-the-Beginning

Solutions for incremental marking are classified into either incremental update or snapshot-
at-the-beginning [Wil92]. Snapshot-at-the-beginning implementations retain all objects
that were live when the collection was started. Such algorithms break the strong tri-
color invariant: references from black to white objects are temporarily allowed during a
collection. Nevertheless the weak tri-color invariant is still fulfilled and therefore those
objects are eventually reached by the collector. Snapshot collectors also require a black
mutator and hence non-white allocation. If this would not be the case, the mutator could
insert the sole pointer to a white object behind the wavefront and then drop the reference.

An incremental update implementation is called this way because the mutator notifies
the collector on updates to the object graph. It preserves the strong tri-color invariant
by preventing the creation of black-to-white-references. While snapshotting retains all
objects that were live at the start of the collection, incremental update tries to only
retain objects that are live at the end of a collection. Objects that become unreachable
before they are marked are actually detected as not reachable by the collector. Allocating
objects white is permitted.

2.4.4 Barriers

This section will give an overview about barriers, that are used to coordinate the mutator
with the collector. While this thesis does not discuss all possible barriers [Pir98], it covers
those relevant for it. A barrier executes additional code when reading from or writing
into the heap. Based on the type of heap operation, barriers are distinguished as read
and write barriers. Barriers will also be grouped based on whether they are used with a
gray or black mutator.

Gray Mutator Barriers

Barriers in this section are used with a gray mutator: the Steele and Dijkstra barrier.
Both are write barriers and are used in incremental update algorithms. Therefore they
abide by the strong tri-color invariant.

The Steele barrier [Ste75] prevents black-to-white-references by executing 2.2 on writes
into the heap. The write barrier checks whether the source object is black and the referent
white. If this is the case the color of the source object is reverted from black to gray and
the object later rescanned by the collector. The Steele barrier therefore is said to retreat
the wavefront because it creates more work for the collector.

The Dijkstra barrier [DLM+78] uses a slightly different approach but still intercepts
writes into black objects (see 2.3). When a reference is written into a black object, the
barrier marks the referent reachable as well. While Steele retreats the wavefront, Dijkstra
adds to it.
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Algorithm 2.2: Steele barrier
1 object.field = ref ;
2 if color(object) = black then
3 if color(ref) = white then
4 revert(object);
5 end
6 end

Algorithm 2.3: Dijkstra barrier
1 object.field = ref ;
2 if color(object) = black then
3 mark(ref);
4 end

Black Mutator Barriers

The Baker and Yuasa barriers are used with black mutators. The Baker barrier [Bak78]
is the only read barrier described and implements an incremental update solution. It
ensures that every reference read from the heap is non-white. Listing 2.4 marks references
read from a gray object reachable to guarantee this. Since all references on the stack and
read from the heap are either gray or black, installing a reference to a white object into a
black object is impossible. The barrier only needs to check for color gray, black objects
only reference non-white objects already. While white objects cannot be encountered
because of the black mutator.

Algorithm 2.4: Baker read barrier
1 ref = object.field;
2 if color(object) = gray then
3 mark(ref);
4 end
5 return ref ;

The Yuasa barrier [Yua90] allows for a black mutator algorithm with just a write barrier.
As a snapshot-at-the-beginning barrier, it keeps all objects alive that were reachable at
the start of the collection. It works by marking the overwritten value as reachable as
can be seen in listing 2.5. Inserting a reference to a white object into a black object is
temporarily allowed. Therefore this barrier only adheres to the weak tri-color invariant.
The Yuasa barrier conservatively assumes that an overwritten value was hidden behind
the wavefront and therefore has to be marked.
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Algorithm 2.5: Yuasa barrier
1 mark(object.field);
2 object.field = ref ;

Concurrent Marking

While the barriers described are used in incremental marking they can also be used in a
similar form for concurrent marking. Concurrent marking marks reachable objects while
the application keeps running. Compared to incremental marking special care has to be
taken about the ordering of memory operations used in a barrier. In addition reads and
writes to the heap are required to be atomic.
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CHAPTER 3
Related Work

Tracing GC is used for automatic memory management in many widely used systems.
This chapter discusses the garbage collectors of some of those systems, in particular
how the heap is organized and how a collection operates. It also tries to give a brief
glimpse into tradeoffs the different implementations had to make. The GCs are broadly
classified into 1. generational, 2. concurrent compacting and 3. non-moving collectors.
First the generational garbage collector V8 (3.1) is introduced. With Shenandoah (3.2)
and ZGC (3.3) two collectors are then discussed that compact objects concurrently to
the application. Finally the non-moving collectors JavaScriptCore (3.4) and Go (3.5) are
presented.

3.1 V8
V8 is a JavaScript engine used in the Chromium project, it uses a generational collector
named Orinoco. The heap is split into a new and old space. Objects are allocated in the
new space and later promoted into the old space when they survive enough collections.

While usually most objects allocated by the mutator are stored in either of these spaces,
there are more spaces for special object kinds: Executable code objects are allocated in
the code space, while large objects are part of the large object space. Immutable and
immortal objects are stored in the special read-only space and map objects are allocated
in the separate map space.

Maps in V8 are an important performance optimization used in many dynamically
typed languages [CUL89]. Strictly speaking a JavaScript object is actually a key-value
dictionary, hence each field access would require an expensive dictionary lookup. However
in practice many objects share the same object layout, maps exploit this property by
allowing cheap field access through the field’s offset in the object similar to statically-typed
languages. A map stores information shared by all objects of this map kind, including
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field names, field offsets and object size. Each object stores a reference to its map object
in its first word, Orinoco uses this word to lookup an object’s size and pointer fields.

Each space consists of multiple pages, note that page in this context is a V8 term and
shall not be confused with an OS page. A V8 page is a contiguous memory area that is
always aligned to 512K and usually 512K in size. Each page consists of a header and the
object area, the header stores the page metadata while the object area stores the actual
heap objects. Aligning pages to 512K makes it cheap to calculate the page address and
hence allows fast access to the page’s metadata with a simple bitmask from the object
address. As already mentioned, pages are 512K bytes large with the exception of pages
in the large object space. Each large object is stored as a separate page, therefore the
page has to be large enough to accomodate the respective object.

3.1.1 Minor Collection

A minor collection focuses collection of garbage in the new space, objects in all other
spaces are assumed to be reachable and are not collected. New space is further split into
two semi spaces (from and to space) that are collected using a parallel scavenger similar
to the one described in [Hal84]. Initially the to space is empty, all surviving objects in
the from space are copied to the to space or promoted into the old space if the object is
old enough.

V8 tracks references from other spaces into the new space to achieve faster collection
times. All objects in non-new spaces are assumed to be alive and therefore references
from that space to the new space keep additional objects in the new space alive. If V8
had not remembered these references, the whole heap would have to be scanned to find
all references into the new space.

V8 achieves this by executing a generational write barrier anytime a reference is stored
in an object. The barrier checks if a reference to a new object is stored in a non-new
object. If this is the case the field’s address is appended to the store buffer.

When the store buffer becomes full, all its entries are transfered to the old-to-new
remembered set. The remembered set stores all interesting slots in a V8 page as a bitmap.
If a bit is set, the corresponding slot is considered part of the remembered set. Allocating
a bitmap for the whole page even in cases when only few bits are set is quite expensive,
hence a page’s bitmap is divided into multiple individual buckets. A bucket is a fixed
size section of the original bitmap and is only allocated when at least one bit in the
respective area is set.

Processing the store buffer can be done concurrently to the application while execution
of the application continues with a second alternative empty store buffer. Typically when
one store buffer becomes full, the other buffer is already processed and the application
can switch the buffers immediately without waiting.

Note again that V8 keeps track of the exact slot for such old-to-new references. While
Dora’s generational garbage collector on the other hand marks small memory regions

20



3.1. V8

(so-called cards) dirty instead of individual slots.

One of the defining characteristics of a generational GC is that objects are eventually
promoted into the old space when they become old enough. In V8 all objects that survive
a second collection are promoted into old space. V8 uses an age marker to determine
the number of collections an object has survived. After a minor collection the address
of the end of the new space is stored in the age marker. All objects located before this
marker have already survived a minor collection, they are going to be promoted on the
next collection. While objects that were allocated after the last collection are located
after the marker and hence stay in new space for one more collection.

3.1.2 Full Collection

In contrast to the minor collection, the full collection collects garbage in all spaces. A
full collection consists of three major phases: 1. marking, 2. evacuation and 3. pointer
updates.

When starting a full collection the GC decides which pages in the old or code space are
evacuated during the collection, all such pages are marked as an evacuation candidate.
All pages in the new space are treated as evacuation candidates as well. Evacuating a
page moves all live objects to another page, therefore V8 prioritizes pages for evacuation
with the least live bytes. Since V8 has to select the evacuation candidates before marking
starts, liveness information is based on the last collection.

Marking in Orinoco as usually builds the transitive closure of all reachable objects in
the heap. While traversing reachable objects, the GC also needs to record slots with
references from an object on a non-evacuated page to an object that will be evacuated.
All these slots are collected in the old-to-old remembered set, which is handled similarly to
the old-to-new remembered set used for minor collections. V8 supports both incremental
and concurrent marking to move at least part of the work out of the GC pause to reduce
yank, this is described in more detail in the next section (3.1.3).

In the second phase pages chosen to be part of the collection set are evacuated into newly
allocated and empty pages. Moreover the GC installs a forwarding pointer to the object’s
new location in each relocated object. After copying the object, V8 also needs to scan
the copied object for interesting references. References into the young generation are
added into the old-to-new remembered set, while references to evacuated pages are added
to the old-to-old remembered set.

In the last phase the GC needs to update all references to relocated objects in all pages
except for those that already got evacuated. V8 can use the old-to-old remembered set
to find all those references within a page and updates them by following the forwarding
pointer stored in the relocated object. This phase also updates the old-to-new remembered
set by removing slots that do not store a reference to the new space anymore. This could
either be because the target object was promoted into old space or the slot was updated
by the mutator to reference an object in old space.
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3.1.3 Incremental and Concurrent Marking

The basic idea behind incremental marking is that it divides marking work over multiple
smaller GC pauses to avoid having one large GC pause on the main thread. When
V8 is embedded within the Chromium project, incremental marking steps can even be
scheduled when the application is idling [DEE+16]. Concurrent marking runs on one
or more worker threads while the application continues to run. A Dijkstra style write
barrier [DLM+78] is used to prevent the mutator from hiding objects from the collector
by ensuring the strong tri-color invariant holds [HJH10].

Algorithm 3.1: V8 incremental write barrier
1 object.field = value;
2 if color(value) = white then
3 mark(value);
4 end

The write barrier does not check whether the object’s color is actually black to avoid the
need for an expensive memory fence between writing into an object’s field and checking
its color. This certainly leads to a more coarse-grained write barrier that detects more
objects reachable and in consequence more floating garbage.

An additional complication with concurrent marking for dynamically typed languages
like JavaScript is that some actions can cause object layout changes, e.g. adding a new
property to an object. At the same time V8 stores both tagged and untagged values in
an object for performance reasons, which means that the value alone is not sufficient to
determine whether the given value is an object reference. The object’s map has to be
inspected as well, it knows which fields might contain object references.

With active concurrent marking it could now happen that while a concurrent worker
thread marks an object, the application changes the object’s layout concurrently. The
GC could therefore already read an untagged value but still assumes it is a valid pointer
according to the old layout. Such situations need to be noticed by the GC, this is the
reason objects are marked black and immediately traced when its layout is changed by
the application thread. When an object is marked in a concurrent marking thread, V8
first reads all references in an object into a snapshot buffer. Afterwards it tries to mark
the object black atomically, if this operation succeeds the object layout has not changed,
all references in the snapshot buffer are valid. If marking the object black has failed
though, the object’s layout was changed by the main thread and therefore references in
the snapshot buffer might be unsafe. In this case the snapshot’s content is ignored, no
other work is required.
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3.2 Shenandoah
Shenandoah [FKD+16] is a GC for OpenJDK that focuses on minimizing latency. It
achieves this by evacuating objects while the application is running.

Shenandoah is not a generational garbage collector like V8’s Orinoco 3.1. Generational
garbage collectors often perform a minor collection in a stop-the-world pause and even
though the young generation is likely to be fast, there can still be latency spikes which
Shenandoah tries to avoid.

Shenandoah organizes the heap as a set of equally-sized regions. Objects are allocated
sequentially within a region and apart from humongous objects do not span multiple
regions. Humongous objects span at least one or more consecutive regions.

A garbage collection cycle in Shenandoah is organized in multiple phases:

1. Start Marking: Shenandoah marks objects in the rootset during a stop-the-world.

2. Concurrent Marking: GC worker threads mark reachable objects concurrently
to the application threads. Shenandoah uses a Yuasa write barrier [Yua90] that
marks overwritten values reachable.

3. Finish Marking: This phase finishes marking by draining all Snapshot-at-the-
beginning buffers. Subsequently a collection set is chosen based on the amount of
live objects or bytes in each region. Basically the collection set is a set of regions
that gets evacuated during the collection. Objects in other regions are not relocated.
Finally objects in the root set that are part of the collection set are evacuated.

4. Concurrent Evacuation: Walk all regions in the collection set and evacuate
objects unless they were already evacuated by the mutator.

5. Start updating references: Makes the heap parsable for the next concurrent
update references phase. The application is paused in this phase.

6. Concurrent updating references: Traverse the heap and forward references
concurrently to the application.

7. Finish updating references: Pause the application again, there are no more
references into the collection set left. The regions in the collection set can now be
freed.

Shenandoah does not get rid of stop-the-world pauses completely but limits work done in
those pauses rigorously. Required pauses only have work proportional to the size of the
root set but not the live-set or heap size. Updating references can also be combined with
the next collection’s marking phase if the GC decides so. In this case the pause after
concurrent evacuation finishes evacuation and the current collection cycle.
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Figure 3.1: Brooks pointer

3.2.1 Concurrent Evacuation

Shenandoah stores a Brooks pointer [Bro84] right before each individual object. Although
this increases memory usage it is necessary for evacuating objects concurrently. The
Brooks pointer references the evacuated version of this object, if there is no evacuated
version it references itself (see figure 3.1).

Shenandoah requires both a read and write barrier for heap accesses to allow for concurrent
evacuation. Its read barrier simply follows the brooks pointer before loading a field as
can be seen in listing 3.2.

Algorithm 3.2: Shenandoah read barrier
1 realObject = object.brooks;
2 value = realObject.field;

Even though the read barrier only requires one additional instruction, it can still degrade
performance considerably. Read barriers are quite performance sensitive since they
tend to be so frequent - about an order of magnitude more often than a write barrier
[YBFH12].

Shenandoah already requires a Yuasa write barrier for concurrent marking. In addition
Shenandoah requires a second write barrier while objects are evacuated. Fortunately
write barriers tend to be less frequent than read barriers, this allows Shenandoah to
afford more complex logic in them. When concurrent evacuation is running, writes into
objects that are in the collection set are intercepted. Before such a write the object is
first evacuated and the write is performed later outside of the collection set on the copied
object. Therefore no writes into the collection set can happen. When writing a reference
into the heap, the write barrier also implements a read barrier for the referent. This
stops the distribution of unforwarded references over the heap. Also note that both read
and write barriers need to be performed for both reference and non-reference types.
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color good color bad mask
marked0 0001 1110
marked1 0010 1101
remapped 0100 1011
finalizable 1000 0111

Table 3.1: Colors in ZGC

Evacuating an object copies it into its new location. After copying the GC tries to update
the Brooks indirection pointer with an atomic compare-and-swap operation. When this
operation succeeds the evacuation was successful, otherwise it was beaten by another
application or GC worker thread that evacuated the object first. The first thread that
updates the indirection pointer wins, the other threads either unroll the allocation or fill
the allocation with a filler object if this is not possible.

3.2.2 Traversal GC

Shenandoah supports another mode of operation that merges marking and evacuation of
objects into a single phase. The collection set is chosen in the start marking pause based
on the liveness information of the last collection. The first collection after starting the
program does not have liveness information however. Marking an object and possibly
evacuation, if the object is part of the collection set, is performed at once. There are only
tree phases with Shenandoah’s Traversal GC: 1. Start Traversal, 2. Concurrent Marking
and Evacuation, 3. Finish Traversal.

3.3 ZGC
ZGC is another GC that tries to minimize GC pauses for OpenJDK [Lid18]. Nevertheless
it is different and interesting enough to warrant its own section in this thesis. Similarly to
Shenandoah 3.2 it uses a read barrier, does not perform generational garbage collection
and separates its heap into regions. However in ZGC parlance regions are called pages.
There are small, medium and large pages, which means not every page has the same size,
but each page is a multiple of 2MB on x86-64. Large objects are stored alone in a single
page, while small and medium pages are able to store multiple objects.

3.3.1 Colored Pointers

ZGC uses colored pointers or pointer tagging to store additional metadata in references.
The color of the pointer can be used to determine whether the object was already marked
or relocated. There are four different colors: marked0, marked1, remapped and finalizable.
Each so-called color is actually an individual bit in the pointer.

ZGC’s read barrier (listing 3.3) checks whether the pointer has the current good color,
which is the color that the active GC phase requires. If the pointer does not have the
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required color, the barrier executes a slow path that repairs the pointer by e.g. marking
or relocating the object. Afterwards execution is resumed with the pointer updated to
the good color.

Table 3.1 lists the good colors and the corresponding bad masks in ZGC. The bad mask
is the negation of the good color and the value that is actually used in the read barrier.
The pointer is tested against the bad mask, this prevents entering the slow path for null
references.

Algorithm 3.3: ZGC read barrier
1 if object.field & badMask then
2 slowPath(object, field);
3 end
4 value = object.field;

ZGC gets by with just a read barrier - no writer barrier required. Compared to Shenan-
doah, read barriers are only required when loading references from the heap but not for
non-reference types like integer or floating point. On the other hand the read barrier
invokes the slow path solely based on the color of the pointer - not on the state of the
object. This means that application threads might have to call into the slow path multiple
times when there are multiple pointers to the same object. Which is not a problem for
correctness since the slow path can simply check whether the object was already marked
or relocated, but it could decrease throughput by visiting the slow path more often. Also
ZGC requires to repair each pointer during the relocating phase through its read barrier
even though the object is not part of the collection set. Shenandoah can here be a bit
more restrictive with its dedicated write barrier.

Pointers in the root set are repaired during the stop-the-world pause. Intuitively this
means that every local variable is guaranteed to have the right color. Additional references
can only come from reading from the heap, which again is protected by a read barrier.
That implies that pointers on the stack are always of the right color. Another nice
property of ZGC’s read barrier is that it could potentially enable more use cases like
storing infrequently accessed pages on the disk and only load it back when it is accessed
again.

Depending on the instruction-set architecture colored pointers are implemented differently:
On AArch64 the highest byte of a 64-bit word is automatically masked out on every store
and load. The color bits can therefore be stored in this byte without any consequences.

This is not the case on x86-64 where masking the color out of the pointer would have
to be done manually before each load and store. ZGC avoids these additional masking
instructions by mapping the heap multiple times into the virtual memory: for marked0,
marked1 and remapped. Depending on the GC phase loads and stores on the same object
happen on different virtual addresses, as listed in table 3.2. On this architecture color
bits are stored in bits 42-45 (figure 3.2). The low 42 bits store the object offset, which
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unusable 0 1 1 1 1 object offset

17 bits 42 bits

04142434445464763

un
us
ed

fin
al
iz
ab

le

re
m
ap

pe
d

m
ar
ke
d1

m
ar
ke
d0

Figure 3.2: Encoding metadata in pointers on x86-64

color bits virtual address range
marked0 0001 4-8TB
marked1 0010 8-12TB
unused 0011 12-16TB

remapped 0100 16-20TB

Table 3.2: Virtual address space in ZGC on x86-64

limits the heap to 4TB in size with ZGC. While the highest 17-bits and the unused bit
46 are always zero.

3.3.2 Collection Overview

The phases in a collection cycle are again very similar to Shenandoah: 1. Start Marking
Pause, 2. Concurrent Marking, 3. Finish Marking Pause, 4. Concurrent Prepare Relocation,
5. Start Relocation Pause, 6. Concurrent Relocation.

When ZGC decides to start a collection the application is initially paused to start marking.
In the pause all objects directly referenced from the root set are marked. While doing this
all pointers in the root set are updated to have the same marking color, either marked0
or marked1. ZGC will use marked0 as marking bit when the last collection used marked1
and vice-versa. This phase does not only perform marking but also forwards pointers
to the object’s new location if needed since there is no separate update references phase
in ZGC. ZGC calls that remapping since references might have to be forwarded but no
relocation has to be performed. References with the last collection’s marking color need
to be both forwarded and marked, while those with the remapped color only need to be
marked.

Concurrent marking then continues this work by marking all objects reachable from the
root set in GC worker threads. ZGC’s read barrier calls the slow path for unmarked
references in the application threads. Such references are pushed into a thread-local
marking buffer and are only passed to the worker threads when the buffer becomes full.

When the marking threads finish their work the application is paused again to finish
marking. All marking buffers are drained and all unmarked references left are processed. If
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the final marking phase takes too long ZGC can stop the pause and repeat the concurrent
marking phase.

When marking is finished, relocation is prepared. This entails processing non-strong
references and choosing a collection set concurrently to the application. As soon as a
collection set is chosen the application can be paused again to start the relocation phase.
Objects directly referenced by the root set are relocated and updated to the new good
color remapped. The new location of relocated objects is stored in a per-page forwarding
table outside of the page itself. It is organized as a key-value dictionary, which maps the
object’s old offset in the page to the new memory address.

Afterwards the GC worker threads relocate objects by sequentially visiting all marked
objects in the pages of the collection set. Just like in Shenandoah, application threads
might compete with worker threads to relocate the object. The first thread to update
the forwarding table atomically wins. Again ZGC’s read barrier detects references that
are not remapped yet and will remap and/or relocate references loaded from the heap.
There is no additional pause when the relocation phase ends, the GC cycle stops when
all worker threads have finished their work.

As already discussed ZGC does not have a separate update references phase, so the
next collection’s marking phase might still have to forward references. This means the
forwarding table is needed until the next collection’s marking phase finishes. Shenandoah
stores the forwarding pointer (the Brooks pointer) right before each object while ZGC
stores this information outside of the heap in the already mentioned forwarding table.
This allows ZGC to immediately free a page when all objects in it are relocated, only the
forwarding table needs to be kept around for remapping.

3.3.3 Heap Layout

Another interesting feature of ZGC is that it distinguishes physical and virtual memory
for the heap. ZGC allocates a physical memory backing storage that can be expanded up
to the maximum heap size. It reserves a virtual memory address space of currently 4TB
on x86-64 as well. When allocating memory in the heap, physical memory is mapped
to a contiguous free address space in the virtual memory. The physical memory for an
allocation does not have to be contiguous, only the virtual address area needs to be.
Usually there is plenty of virtual memory (4TB) while physical memory is more scarce,
so this requirement should be easy to satisfy. This mechanism lets ZGC suffer less from
fragmentation. Usually an allocator would fail to allocate x bytes of memory when not
available as a single contiguous memory chunk - even though there would be enough free
memory in total. ZGC can map multiple free chunks of memory in the physical memory
to a single contiguous virtual memory address range to satisfy the allocation.
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3.4 JavaScriptCore

JavaScriptCore (JSC) is WebKit’s JavaScript engine, its GC is completely non-moving,
this means objects are never relocated [Piz17]. Another defining feature of JavaScriptCore
is that it scans the root set conservatively. This means that for determining the root set
all words on the stack and in registers are inspected for pointers to objects. While JSC
is conservative in the root set, it is still precise for references on the heap. JSC knows
which other objects an object references.

3.4.1 Heap Layout

Not relocating objects also entails a different heap organization compared to many moving
GCs. The heap is organized as a set of blocks of 16KB size. Objects are segregated by
size, that means each block only stores objects of the same size. Objects larger than
approximately 8KB are simply allocated with the native memory allocator using malloc.
Large objects need to be tracked separately in a linked list and can be distinguished
cheaply from objects in blocks by their alignment: Objects in a block are aligned to 16
bytes, while large objects are only 8 byte aligned.

3.4.2 Collector Phases

A collection cycle consists of two major phases: marking and sweeping. Marking is mostly
done concurrently to the application, while blocks are usually swept lazily on subsequent
allocations in the allocation slow path. Sweeping adds unreachable objects in the block
to a free list, subsequent allocations can use the memory from the free list again.

JSC supports adding of so called user-defined constraints. These constraints are executed
during a pause and can perform additional actions and mark more objects. Even gathering
and marking the root set is implemented as such a constraint. Constraints are executed
until no more objects are marked - hence a fixpoint is reached. However, if there were
objects marked a concurrent marking phase has to follow. When concurrent marking
finishes, constraints need to be run again. A GC cycle might have multiple transitions
between concurrent marking and constraint execution.

JSC also supports generational garbage collection and is able to perform either eden or
full collections. Both collection types essentially work the same, eden collections just
do not clear the mark bits when starting a new GC cycle. The collector can decide to
perform an eden instead of a full collection when there is enough spare memory. Letting
mark bits stick means that only objects allocated since the last GC cycle are not marked
yet, so only recently allocated objects are marked - the eden generation. The advantage
of this approach is that eden collections do not only work very similar to full collections
but can also be executed mostly concurrent to the application. Typical generational GCs
usually perform minor collections in a pause which could increase latency.

29



3. Related Work

3.4.3 Retreating Wavefront

JSC combines both generational and concurrent marking barrier into a single write barrier
quite similar to the Steele barrier [Ste75]:

Algorithm 3.4: JSC write barrier
1 object.field = value;
2 if color(object) = black then
3 slowPath(object);
4 end

Requiring only one barrier improves throughput compared to having two distinct barriers.
The Steele barrier reverts the color of black objects on updates back to gray and revisits
the object in marking. In the slow path of the write barrier the object is added to the
remembered set, all objects in the set are later revisited by the collector. This solves the
problem of storing a white object in a black object and hence hiding it from the collector.

The same barrier is also used as a generational barrier where the meaning of the color of
objects changes: black means old, gray is remembered and white is eden. JSC’s barrier is
used as a generational barrier outside of a collection cycle and collects old objects with
potential references to eden objects in the remembered set. An eden collection treats
the remembered set as part of the root set, while a full collection does not require this
information and just ignores this information.

Compared to the original Steele barrier JSC does not check if the color of value is
indeed white in 3.4. The barrier is therefore less precise and adds more objects to the
remembered set than actually necessary. For correctness it is necessary that the store in
line 1 is executed before loading the color of the object. On modern CPUs an expensive
memory fence is necessary to guarantee this, therefore JSC makes the fence conditional
and enables it only while a collection cycle is running. Algorithm 3.5 shows how the
write barrier is actually implemented in JSC. barrierThreshold is a global variable that
is updated when starting and finishing a collection cycle. This variable ensures that the
slow path is always executed during a collection cycle. Outside of a collection the slow
path is only invoked for black (respectively old) objects.

Algorithm 3.5: JSC write barrier
1 object.field = value;
2 if object.color ≤ barrierThreshold then
3 slowPath();
4 end

The slow path of the write barrier looks similar to 3.6. Line 1 checks if a collection is
currently active. During a GC cycle the memory fence on line 2 stops the CPU from
reordering the store to the field with the load of the object’s color on line 3. As already
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mentioned during concurrent marking the barrier’s slow path is always executed. The
slow path therefore checks whether the color of the object is actually black and bails out
if not. The object is then appended to the remembered set for both the generational and
concurrent barrier.

Although executing the slow path for every write barrier certainly hurts throughput, this
solution avoids executing an expensive memory fence outside of collections.

Algorithm 3.6: write barrier slow path
1 if collecting then
2 fence();
3 if color(object) 6= black then
4 return
5 end
6 end
7 addToRememberedSet(object);

3.5 Go

Go is another programming language that uses tracing garbage collection for memory
management. Its GC is a concurrent, non-moving and non-generational GC that was
optimized for very low latency [Hud18]. Go uses a mark-sweep collector, it stops-the-world
for starting and terminating marking. Sweeping is performed after the pause for mark
termination concurrently to the application, but also lazily on subsequent allocations.

3.5.1 Heap Layout

Similar to JSC 3.4 objects are segregated by size in the heap, however Go organizes
this differently and does not use the system’s memory allocator. Go’s GC design was
probably also influenced by the design of the Go programming language were interior
pointers are quite common. Allowing interior pointer means that pointers are able to
point into the middle, not just to the start of an object. In a size-segregated heap it is
cheap to determine the object start address from a random interior pointer. Even though
an interior pointer might only reference a small part of the object, it keeps the full object
reachable.

Go divides the full address space into so-called arenas with a fixed-size of 64MB. Within
an arena Go allocates spans which themselves then store the actual objects. Spans are
always sized to be a multiple of 8KB and only store objects of the same size class. Small
objects up to 32KB are separated into almost 70 size classes. Large objects are allocated
in its own span, such a span might even span multiple contiguous arenas to accomodate
very large objects.
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Another important difference to many other platforms is that Go does not store a type
pointer in each object’s first word. Usually this word is used to identify an object’s size
and what words in it store references to other objects. Go instead allocates a bitmap for
each arena that stores which words contain a heap reference. The bitmap stores exactly
two bits for each word in the arena: 1. the bottom bit, which is set if this word stores
a heap reference and 2. the top bit, which is set when there are more pointers in the
subsequent words in the current object, otherwise scanning the object can be finished
since it does not contain more heap references.

While the arena owns the bitmap to detect heap references, the span stores both the
allocation and marking bitmap. The allocation bitmap stores what slots in the span
are currently used, while the marking bitmap is used during a GC cycle to store what
slots are reachable. After a collection unreachable slots are free, therefore the allocation
bitmap can be replaced by the marking bitmap. The marking bitmap is then replaced
with new zeroed memory. Go only needs one bit for each slot in the span: either the
object is marked or unmarked. Gray objects in Go are both marked and on a marking
queue, while a black object is marked but not in any marking queue anymore.

Allocations in Go do not require locking in the fast-path. Each goroutine has a local
cache of spans that can be used for allocation. The allocator requests a span from the
cache for the given size class. The span knows the index of its next free slot, the allocator
then sets the corresponding index in the allocation bitmap.

3.5.2 Concurrent Marking

Obviously Go also marks reachable objects without stopping the application to reduce
yank. A write barrier is used during collections to support concurrent marking. 3.7
shows the typical code generated in Go for writes into the heap. Checking whether a
collection is currently running requires reading a global variable. During collections the
more expensive write barrier is required, otherwise a simple memory store is sufficient.

Algorithm 3.7: heap store
1 if collecting then
2 writeBarrier(object.field, value);
3 else
4 object.field = value;
5 end

Compared to other systems Go does not scan the stacks of all threads respectively
goroutines during a stop-the-world pause. During the pause Go only sets up the root
scanning and marking jobs. Scanning stacks in Go might be quite expensive since there
could be hundreds of thousands goroutines and stacks in Go can be arbitrarily large. Go
uses a Snapshot-at-the-beginning (SATB) approach with its write barrier and therefore
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only needs to scan stacks once. However as described in section 2.4, SATB requires a
black mutator.

Go’s write barrier solves this by combining the Yuasa [Yua90] and Dijkstra barrier
[DLM+78]. As can be seen in listing 3.8, Go marks both the overwritten value and the
new referent when writing into the heap. Line 1 implements the Yuasa barrier that allows
to use SATB by having black stacks. By marking the overwritten value the mutator can
not hide the only reference to an object by moving it from the heap to the stack.

Combining this barrier with the Dijkstra barrier on line 2 is needed since the goroutine’s
stack is not immediately blackend during the GC pause. Before a goroutine’s stack is
blackened, the mutator could move the only reference of an still unmarked object from
the stack into a black heap object. This would hide the reference from the marking job,
Go therefore uses a coarsened Dijkstra barrier to rule out such situations. If the stack
would already be black in such situations this would be impossible since all references on
the stack would already be marked.

Algorithm 3.8: write barrier
1 mark(object.field);
2 mark(value);
3 object.field = value;

For improving performance of the write barrier, Go always writes both object.field and
value into a local buffer. Only later when the buffer becomes eventually full it calls into
the runtime to mark those references reachable. Another consequence of this barrier
is that it requires black allocation, hence Go’s allocation function marks all allocated
objects while a collection is running.
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CHAPTER 4
Implementation

This chapter discusses Dora’s generational GC implementation and also explains other
aspects of the runtime that are relevant for this thesis. Dora is a runtime that parses,
type checks and executes source code at runtime. Its programming language is statically
typed and makes use of tracing garbage collection for automatic memory management.
For good performance Dora relies on compilation to machine code using its JIT-compiler.
The compiler is method-based, which means it compiles code on function-granularity.
Functions are compiled lazily on the first execution.

Dora’s GC is precise, the collector always knows what values in the root set and the
heap are actual pointers. In order to find all pointers in the root set, the compiler emits
stack maps that determine what stack entries and registers contain valid pointers. This
is needed because pointers and values in Dora are untagged. All heap objects start with
a type pointer that allows to lookup an object’s size and reference fields.

Dora’s GC is called Swiper and based on the weak generational hypothesis with frequent
minor collections in the young generation and more rare full collections for the whole
heap. Minor collections make use of copy collection, while the full collection implements
mark-compact. Swiper aims to be a general-purpose collector by not sacrificing one of
throughput, latency or memory usage too much.

While this chapter and thesis is mostly about Swiper, Dora has actually more collectors:

1. The zero collector never collects garbage but allows for fast bump-pointer allocation
in the heap.

2. A pure copy collector, which treats the whole heap as a semi space.

3. A mark-compact collector that compacts the whole heap on every collection.
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Figure 4.1: Swiper’s Heap Layout

These collectors serve as a reference implementation of the respective collection schemes
in Dora and are quite valuable for comparisons with Swiper. However they are also useful
for testing and debugging.

4.1 Heap Layout

When initializing the runtime, Swiper reserves contiguous memory for constructing the
heap with a given maximum size. Figure 4.1 illustrates the heap partitioning employed
by Swiper. Since Swiper is a generational GC the heap is split into two generations:
young and old generation. However Swiper also uses an additional large space for objects
of size 16K or larger. Large objects are never relocated since this usually does not pay
off due to the cost of copying. Conceptually the large space is considered part of the old
generation as well, even though those objects are technically in a separate space.

There are even two additional spaces missing in this figure: code and perm space. These
spaces are managed by the runtime instead of each individual GC. The code space is
exclusively used for allocating executable memory for machine code. Immutable objects
are allocated in the perm (short for permanent) space. These objects are never collected
by the GC.

In addition Swiper needs to allocate memory for the card table and crossing map. The
card table is about 1

512 of the heap size, while the crossing map is 1
512 of the old generation.

The card table is used to keep track of old-to-young references in the collector. The
crossing map is used for iterating objects starting from a specific card in the old generation.
The usage of these two memory areas will be discussed in more detail in section 4.3.

The young generation is further split into two spaces: eden and survivor space. The
survivor space is again partitioned into two equally-sized semi spaces.
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4.1.1 Large Object Space

Large objects are not necessarily allocated in consecutive locations in the large object
space. Therefore this space is organized unlike all other spaces. All large objects are
tracked in a linked list, the large object space stores the head of the list. Large objects
use an extended header that stores pointers to the next object in the list. Figure 4.2
shows such a space with two large objects. In addition to the next pointer a header also
stores the committed memory size of the current object. This allows cheap access to a
large object’s size in memory without following the object’s class pointer.

The large object space tracks which memory regions in its reserved memory area are
currently unused. When a large object is allocated, the collector uses first-fit to find
the first free memory region large enough to accomodate the object. The memory area
needed for the object is committed. The remaining free memory of this region is still free
and can be used for subsequent large object allocations. When the full collection finds an
unreachable large object, its memory area is added again to the memory regions available
for allocation. In addition the collector also discards the pages occupied by the object.

4.2 Object Layout

Each object in Dora starts with a type or class pointer as its first word. This word is
required for heap parsability since it is used for determing an object’s size and type. The
runtime also reserves an additional word in the object header that can be used for storing
additional metadata. Mark-compact uses this word to store each object’s forwarding
pointer and marking bit. Arrays are dynamically sized, their size depends on the number
of elements stored and the size of the element type. Therefore arrays need to store an
additional word length for calculating the size of such objects. This means that on a
64-bit system the smallest object is 16 bytes large (respectively two words). The smallest
array with zero elements needs 24 bytes storage or three words.
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4.3 Generational Collection

Swiper splits the heap into young and old generation. Objects are allocated in the young
generation by default and only promoted into the old generation when they survive
long enough. This mode of operation is based on the weak generational hypothesis -
the empirical observation that most objects die young. Swiper exploits this property
by performing two different kinds of collections. Frequent minor collections to reclaim
memory exclusively in the young generation. But also the less common full collection to
collect garbage in the whole heap.

Objects of size 16K or larger are allocated in the large object space. This space is only
collected during full collections and therefore considered part of the old generation. While
smaller objects are always allocated in the young generation first, large objects directly
go into the old generation.

4.3.1 Remembered Set

Minor collections in the young generation require the GC to track references into this
generation. All objects in other generations are retained during a minor collection and
therefore might keep additional young objects reachable. The data structure that stores
all old-to-young references is the remembered set, which is scanned and kept up-to-date
during a minor collection. To this end Swiper conceptually divides the heap into cards
of 512 bytes each. Each such card is either considered clean or dirty. If a card was
marked dirty, at least one of the objects stored in the card’s respective memory area
might contain a reference to the young generation. While Dora does not track the precise
word storing the old-to-young reference, it tracks more coarse-grained memory areas that
might contain such a reference. If a card is clean, there are no references into the young
generation in the respective memory area.

Section 4.1 already introduced the card table, it is used to store each card’s state. Since
each card is 512 bytes large, the card table is 1

512 of the heap size.
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4.3.2 Write Barrier

The remembered set respectively the card table in Dora is updated through a generational
write barrier. The barrier used in Dora was described in [CH93]. When writing a reference
into an object, the barrier simply marks the object’s corresponding card unconditionally
as dirty.

Algorithm 4.1: Swiper’s write barrier
1 object.field = ref ;
2 card(object)← dirty;

The compiler emits the write barrier each time a reference is written into an object.
Note that the barrier is not needed for non-pointer types. The card’s state is indeed
updated unconditionally, the barrier does not check whether object is actually in the old
generation and ref a young object. As a consequence more cards are marked dirty than
required. dirty therefore might just mean that some reference was written into a specific
memory area since the last collection. Collections in Swiper therefore reset a card’s state
to clean when the card was found to contain no reference into the young generation. If
this was not the case, minor collections might eventually degrade to perform a full scan
of the old generation.

The card table also needs additional space for the states of cards in the young generation,
even though the GC never reads their state. Nevertheless the write barrier still needs to
modify a young card’s state, this allows the GC to use a cheaper and more coarse-grained
write barrier.

Another subtle detail of the write barrier is that it calculates the card based on the start
of an object instead of the modified field’s address. With objects spanning multiple cards
both approaches might actually update the state of different cards. When scanning a
card for references, regular fixed-size objects are always fully scanned as shown in figure
4.4.

This could be problematic with very large objects, typically arrays. In such cases a single
write into such an object could force the collector to scan huge amounts of memory.
Therefore the write barrier is actually implemented differently for arrays compared to
regular objects.

Algorithm 4.2: Swiper’s write barrier for arrays
1 array[ind] = ref ;
2 card(array[ind])← dirty;

The card is calculated from the updated array element instead of the array start. This
allows the collector to stop scanning for references at card boundaries for arrays. Figure
4.4 illustrates the difference between regular objects and arrays with respect to the card
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Figure 4.4: Mapping objects and arrays to cards

table. The fixed-size regular objects A, B and C are fully scanned if card #0 is dirty.
Even though large parts of C would actually be in card #1. In the case that these objects
were arrays, the collector would still fully scan both A and B. However the runtime would
only partially scan references in C and stop as soon as card #1 is reached. The part of C
that is located in card #1 would only be scanned in the case that card #1 was marked
dirty. Basically if the last object in a card is a regular object the full object is scanned.
In the case that the last object is an array, scanning of the array stops at the end of the
card.

This approach of updating and scanning the card table enables the implementation of a
very fast write barrier. The algorithms 4.1 and 4.2 showed pseudo code for the two kinds
of write barriers. However the actual implementation was not shown so far, on x86-64
the write barrier can be implemented with two assembly instructions.

1 movq %ref, <field offset>(%object) ; store into field
2 shrq $9, %object ; write barrier
3 movb $0, <card table offset>(%object)

Listing 4.1: Object write barrier on x86-64

field offset and card table offset are constants known to the compiler. field offset is the
offset of the field in the object, while card table offset is the offset added to an object’s
address to reach its card table entry. In Dora the card table is located right after the
heap, therefore the card table entry can be calculated like this:

card = card table address + object− heap start
512 (4.1)

Calculating the card from an object requires the address of the card table and the address
of the first object in the heap. Both the card table and the heap start are aligned to the
card boundary of 512 bytes. The write barrier avoids the subtraction of the heap start
address by using the following two formulas. Only 4.3 has to be calculated in machine
code for each individual write barrier in listing 4.1.
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card table offset = card table address− heap start
512 (4.2)

card = card table offset + object
512 (4.3)

False Sharing Problem

While the write barrier is quite fast, it could induce false sharing problems [LTHB14].
False sharing is a problem in multi-threaded applications that can substantially degrade
performance. It occurs when multiple threads update distinct memory that is stored on
the same cache line. Assuming a cache line size of 64 bytes and Dora’s card size of 512
bytes means that the write barrier stores to the same cache line for 32KB of contiguous
memory. In other words this means that 64 consecutive cards store their state in the
same cache line. The compaction of the old generation increases the likelihood of false
sharing. This problem not only degrades performance but also the scalability of the
application, it becomes worse with the number of threads writing to the same cache line.

It is especially problematic since false sharing on the card table is entirely caused by the
implementation. Some developers might not even be aware of this specific implementation
detail. What complicates the matter is that the developer has no control over the order
of allocation of objects in Dora. An application is even more prone to this problem
after a collection compacts the heap. In the case that this becomes a major problem in
the future, Dora could switch to another, probably more expensive, write barrier. For
example the unconditional store to the card could be made conditional.

4.3.3 Crossing Map

When a minor collection finds a dirty card, objects in this area need to be scanned for
references into the young generation. Yet objects in the old generation are not aligned to
card boundaries and might span multiple cards. The old generation uses bump-pointer
allocation just like the young generation, without additional metadata finding a card’s
first object would require iterating the old generation right from the beginning. The
crossing map provides this information by storing the offset of the first object for each
card as a single byte.

While the card table needs to reserve an entry for all cards in the heap, the crossing map
is only needed for the old generation and is therefore smaller than the card table. This is
because young cards never need to be scanned. Also the GC knows where large objects
start and large objects are already allocated at card boundaries.

One byte for each card is enough to encode all the information needed about a card.
Table 4.1 lists all possible different meanings of a crossing map entry. Each time an
object is allocated in the old generation that spans multiple cards, the crossing map has
to be updated. A card consists of 64 words on 64-bit systems, therefore the offset of
the first object in the card has to be between 0 and 63. Some cards do not even have
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Encoding Possible values Meaning

0 - 63 0 - 63 The offset of the first object in the card.

64 1 No references on this card.

65 - 128 1 - 64 Number of leading references in the card
before the first object. Used when an ob-
ject array crosses card boundaries.

129 - 130 1 - 2 An object array starts one or two words
before the card start.

Table 4.1: Crossing Map Encodings in Swiper

references at all and therefore marked to store no references. This state is used when
allocating regular objects or non-object arrays that span at least three cards. The cards
in the middle are marked to have no references. While Dora updates the crossing map
for these cards in the middle, they should never be marked dirty.

Object arrays are again treated differently to regular objects and non-object arrays. The
last card of an object array stores the number of references on this card. The next object
in this card starts after the leading references from the object array. When such a card
is dirty, the collector first scans the leading references and then continues scanning the
subsequent objects. Cards in the middle of the first and last card of an object array are
marked to be full with references.

Another complication is caused by the object’s layout shown in figure 4.3. An object
array could start one or two words before the card boundary. In such cases the first
word in the card would either be the array’s length or the header word. Both values
are certainly not valid heap references and therefore need to be skipped by the collector.
Swiper therefore uses a different marker when an object array starts one or two words
before the card boundary. If the array starts three or more words before that mark, the
first word in the card is already a reference again and the leading references marker can
be used.

4.3.4 Generation Resizing

Having multiple generations in the heap raises the issue of how much space each generation
should take. Dora simply reserves the address space for the maximum heap size for
each the young and old generation to have maximum flexibility when resizing. The large
object space reserves twice the maximum heap size to counter possible fragmentation.
While Dora reserves address space for a multiple of the maximum heap size, that memory
is only committed when needed.

Resizing the young generation might affect performance of an application drastically.
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In the case that the young generation is too small, the application suffers from too
many minor collections. New objects do not have enough time to die before a minor
collection, which leads to many short-lived objects promoted into the mature space. As a
consequence the frequency of expensive full collections increases, which again decreases
maximum mutator utilization further.

On the other hand increasing the size of the young generation also increases pause times
significantly for collections with a high survivor rate. Reducing young generation size
can therefore be used to control the average minor pause time of an application. Another
aspect is that minor collections are not guaranteed to succeed in Swiper. As can be seen
in the heap layout in 4.1, a single survivor semi space is not large enough to accomodate
all objects from eden and the second semi space. Usually this is not a problem because
enough of these objects do not survive a minor collection. Also in the unlikely case
that there are too many survivors, objects are promoted directly into the old generation.
However even the promotion of objects might fail when there is not enough space left in
the old generation. While Swiper ’s minor collection can handle such situations this is
certainly not ideal. This works by keeping young objects in their current location when
promotion fails and forcing a full collection immediately afterwards.

Swiper assigns half of the available memory to the young generation after any collection.
This ensures that there is enough copy space available such that minor collections succeed.
Initially the heap is empty and therefore the young generation takes up half of the
maximum heap size. The more objects are promoted the smaller the young generation
becomes. A full collection is performed as soon as it becomes smaller than a certain
treshold. It is quite important to enforce the lower bound on the young generation size.
Otherwise performance suffers through constant minor collections of the small young
generation. It might take some time until the heap becomes eventually full with a low
survivor rate.

4.3.5 Heap Verifier

An essential part in the implementation of Swiper was the heap verifier. The heap
verifier is enabled for testing and verifies the correctness of the heap before and after each
collection. As can be seen from this whole chapter there are more than enough invariants
to satisfy that there is quite some potential for subtle bugs. While strictly speaking the
verifier is not needed for functionality, it made the development much easier. Bugs in the
collector might be hard to discover and only be observable long after the error happened.
The verifier scans each object in the heap and makes sure that various conditions are
fulfilled. All outgoing references in objects are checked whether they actually point into
the active part of the heap. It also makes sure that references point to the start of
another object. In the old generation both the card table and crossing map are controlled
to be in sync with the state of the heap. It even verifies that the right memory areas in
the old generation are committed and have the proper access rights.

Along with the verifier adding assertions to the collector proved to be quite valuable as
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Figure 4.5: Storing the Forwarding Pointer

well. Assertions are used to guarantee assumptions at certain points in the collection.
Cheap assertions were added to the release build, while more expensive ones are only
active in debug builds of Dora. While running debug builds with the heap verifier enabled
takes a lot of time, such tests can easily be run on a Continuous Integration system. This
ensures that each commit has to pass all GC-specific tests.

4.4 Serial Minor Collection
Minor collection is implemented using copy collection with the Cheney algorithm [Che70].
This collection copies surviving objects from eden and the from space to the to space.
Objects that are old enough are promoted into the mature space.

The mutator allocates objects both in the eden and to space. At the start of a minor
collection from and to semi spaces switch roles though. The from space now contains
all objects, while the to space is empty. When copying an object into the to space, the
original object gets tagged as forwarded. The type pointer in each object’s first word is
replaced with a forwarding pointer to the new location of the object. Note that the type
pointer information is not lost in the original object since it can always be read from the
copy. The collector distinguishes type and forwarding pointer through the value of the
least significant bit. Both pointers are guaranteed to be aligned to at least 8 bytes and
therefore this bit always contains zero. Swiper therefore uses this bit to store whether an
object was forwarded already. 0 means that the object was not forwarded and that word
still contains the type pointer, while 1 indicates a forwarding pointer (see figure 4.5).

Collection starts by scanning the root set, referenced young objects are copied into the
to space and marked as forwarded. The object’s new location is written into the entry of
the root set as well. In case that a young object was already forwarded, only the object’s
address in the root set entry is updated. References into the old generation are simply
ignored.

After scanning the root set, the heap has to be scanned for old-to-young references as
well. This is because Swiper is a generational collector and old objects also keep young
objects alive. This means that the old generation’s card table is scanned for dirty cards.
When a dirty card was found, the objects in the card are scanned according to the rules
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Figure 4.6: Copy Collection with the Cheney Algorithm

explained in 4.3. Again young references are updated through the same logic as used for
the root set.

After scanning root set and dirty cards, the minor collection is fully set up. The Cheney
algorithm now makes sure that the transitive closure of all reachable objects is copied.
The algorithm just requires two pointers: scan and free. In the beginning scan points to
the start of to space, while free points to the first free memory in it. When an object is
copied into to space, it is copied to the location referenced by free. free is then advanced
by the copied object’s size to reference the first free memory address again.

scan conceptually divides the to space into two areas. Objects located before scan are
black objects, all these objects were already scanned for young references. That means
all young references already point into the to space. All objects at scan or afterwards
are gray objects. These objects were already identified as reachable and therefore copied
into to space. However outgoing references in them still have to be scanned for further
young references. Allocating objects moves free forward, while scanning objects for young
references moves scan forward. The copy collection finishes when scan and free meet.
Then no more objects are left that need to be scanned.

Figure 4.6 showcases this algorithm on a simple heap. The root set only referenced object
B, B was therefore copied into the to space as B′. After copying B, the root set now
references B′. Next object B′ was scanned for more young references, which in turn
copied D into the to space as D′. D′ is the next object to be scanned, it still references
B in the from space. After updating this reference scan and free meet: the collection is
finished.

Not all young objects marked reachable are copied into to space however. Objects old
enough are promoted into the old generation. Object age is based on the number of
minor collections each object has survived. As soon as an object survives the second
minor collection it is promoted in Swiper. Unlike other collectors, Dora does not store
the age for each object individually. The field age marker is updated after each minor
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collection to the address of the free memory in the to space. This is similar to how V8
operates. Objects before that marker have already survived one minor collection and
are going to be promoted in the next cycle. While objects afterwards were just recently
allocated and stay in the young generation.

Note that promoted objects need to be scanned as well, therefore both the young and the
old generation have a scan/free pointer-pair. In fact Swiper has its own pair of pointers
for each region in the old generation. As will be explained in section 4.8, parallel full
collection splits the old generation into multiple regions. Scanning of old objects is more
involved than for young objects: The collector also needs to test whether a promoted
object contains pointers into the young generation after scanning. In this case the card
has to be marked as dirty. As previously mentioned in section 4.3 regular objects and
arrays follow different rules here.

4.5 Serial Full Collection

Full collection in Swiper uses the mark-compact collection scheme. Live objects are moved
towards the start of the old generation. Compaction uses the Lisp 2 algorithm described
in 2.1.3. Collection is performed in 4 distinct phases: 1. marking, 2. compute forwarding
pointer, 3. update references and 4. relocate. Since the general algorithm was already
discussed, this section focuses more on the specific implementation details in Swiper.

The marking phase marks all reachable objects in the heap, hence young, old and large
objects. In contrast to the minor collection, the full collection collects garbage in the
whole heap. The bit required to store whether an object was found reachable is stored in
the least significant bit of the header word in each object.

In the compute forwarding pointer phase the collector calculates the new location for
young and old objects. Similar to the marking bit, the forwarding pointer is also stored in
the header word of each object. This is possible because the forwarding pointer is aligned
and therefore the least significant bit is always zero. First the collector arranges live old
objects towards the beginning of the heap. All live young objects are promoted into the
old generation. This means that both the eden and survivor spaces are completely empty
after a full collection. The surviving young objects are located immediately after the
reachable old objects. The order is important here since otherwise young objects would
overwrite still required objects in the relocation phase. Large objects are not relocated
and therefore not traversed in this phase.

Swiper could consider the age of young objects similar to the minor collection. This would
allow the full collection to only promote some objects based on their age, while objects
allocated after the last collection would be copied into the survivor space. However the
problem is that this would complicate the implementation significantly. Assuming that
a full collection promotes all young objects, it is enough to clear the full card table.
As soon as objects remain in the young generation this is not possible anymore. The
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implementation would have to check whether objects contain young references and change
the card state accordingly.

The next phase then scans the heap again to update all outgoing references in all live
objects. References need to be updated for all generations, respectively spaces: young,
old and large objects. All references in the root set are forwarded during this phase as
well. When traversing large objects, dead large objects are removed from the space and
their memory is freed as well. This avoids traversing large objects twice, however dead
young and old objects are simply skipped. At the same time cards are cleared for both
live and dead large objects.

In the final phase objects are relocated to their destined location. In addition this phase
also updates the crossing map for the old generation. At the very end the card table is
reset to clean for the old generation.

4.6 Parallel Marking
Marking is one of Swiper ’s most expensive full collection phases and therefore predestined
for further speedup through parallelization. Algorithm 4.3 illustrates marking imple-
mented as a serial algorithm. While Swiper follows the tri-color abstraction, it does not
explicitly store the color gray for each object. As previously mentioned Dora only stores
a single marking bit in the header word for each object. This bit simply determines
whether an object was marked reachable or not. The collector would have to inspect
whether the worklist contains the object to decide whether an object is actually gray
or black. This would be quite expensive, however Swiper right now does not need to
perform such tests at the moment. If the collector would need these in the future, it
could simply use a second bit in the header word for storing whether an object is gray.

Algorithm 4.3: Serial Marking
1 worklist← ∅;
2 for root in rootSet do
3 mark(root);
4 worklist.push(root);
5 end
6 while worklist non empty do
7 object← worklist.pop();
8 for field in fields(object) do
9 if field not marked then

10 mark(field);
11 worklist.push(field);
12 end
13 end
14 end
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Performing marking on multiple threads is not straightforward since work can not be
partitioned statically. The load between multiple worker threads has to be balanced
dynamically. To this end parallel marking is implemented using a work-stealing technique
such that work is shared more equally between workers.

The basic setup of the parallel algorithm works as follows: Swiper creates a pool of
worker threads that perform all the necessary work. Marking is finished when all worker
threads run out of work and quit. Each worker thread has to acquire units of work and
run them. In this parallel marking algorithm the unit of work is a single object address.
A worker thread scans all outgoing references of that object and marks them reachable.
Objects that have just been found to be reachable are pushed again onto the worklist
such that all transitive reachable objects are eventually marked. Work can come from
multiple sources in this implementation:

1. Each worker has a work queue that it uses to push and pop work from. Other
worker threads can only steal work from this queue.

2. If the local queue is empty, the worker tries to retrieve work from the global work
queue. The global work queue is shared by all threads. Initially this queue is filled
with the objects referenced from the root set.

3. As a last resort, the runtime tries to steal work from other threads. Stealing works
by trying to acquire work from another thread’s local worker queue. The collector
randomly chooses a thread to steal from [Hel12]. Stealing is repeated until it
eventually succeeds or hits an upper limit of attempts. Each worker tries to steal
work 2n times, where n is the number of worker threads.

If the thread could not acquire work from any of these sources, it tries to quit. The
algorithm used for suspending workers is described in 4.6.2.

4.6.1 Chase-Lev Deque

The worklist used by each worker thread is a lock-free Chase-Lev work-stealing deque
[CL05]. Swiper uses the implementation of the deque from the Rust crate crossbeam1.
Utilizing this widely-used library simplified implementation a lot; it is notorioulsy hard
to ensure the correctness of lock-free data structures. Especially when the support of
multiple architectures with different memory models is needed, as in the case of Dora
[LPCZN13].

The Chase-Lev deque is a double-ended queue, it allows cheap insertion and removal
at one side and stealing from the other end. For this end it provides three different
operations: pushBottom, popBottom and steal. Only the worker thread itself is allowed
to use pushBottom and popBottom on its deque. While steal can be used by all other

1https://github.com/crossbeam-rs/crossbeam
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Figure 4.7: Chase-Lev Deque

threads to remove elements from the top of the deque. Stealing from such a deque
requires synchronization. On the other hand elements can be inserted and removed at
the bottom of the deque without synchronization unless the last element gets removed.
Not requiring synchronization for the worker in most cases makes these operations quite
efficient. This data structure is backed by a circular array that is allowed to be grown.
When an element cannot be inserted into that array anymore, pushBottom allocates a
fresh and larger array. All data is transferred to the new array, subsequent operations
are performed on this array.

Even though updating the deque from the worker is cheap, each worker has an additional
local worklist as well. This has proven to improve pause times during evaluation. That
local worklist is a simple vector, objects are primarily pushed and popped from this stack
without any synchronization at all. Only when an array would not fit into the worklist
anymore, the work-stealing deque is used. Entries in the local worklist cannot be stolen
from, therefore a worker thread pushes half of its local worklist into the global worklist
after some time. This allows other threads to assist in marking theses objects reachable.

4.6.2 Termination Protocol

In this parallel algorithm, threads cannot simply quit when no more work could be found.
It could happen that there is still some thread with local work that cannot be stolen,
while all other threads run out of work. That thread could discover a huge new subgraph
that needs to be marked. In this case this thread then would have to mark all objects
itself.

Therefore Swiper uses a termination protocol such that threads do not quit until all
threads have run out of work [FDSZ01]. The runtime uses a counter that is initialized to
the number of threads. When a worker thread fails to acquire more work, it atomically
decrements that counter by 1. Afterwards the thread now waits a short amount of time
to check the counter again and see if all other threads are ready to quit as well. If the
counter is zero after this timeout, all other threads have run out of work as well, therefore
all threads are allowed to quit. If this is not the case and the counter is still non-zero,
the worker atomically increases that counter again by 1. Termination is cancelled and
the thread repeats the whole process of acquiring work again.
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4.7 Parallel Minor Collection
Swiper also has a parallel version of the single-threaded minor collection [FDSZ01]. Both
approaches are completely separate implementations: while there are certainly many
similarities between them, they are different enough to warrant two distinct versions.
This ensures that neither of them holds back the other or performance suffers for one of
them.

In the parallel minor collection Swiper performs all the work during a single pause again.
However, this time the collector uses multiple threads for distributing work. The goal of
this approach is to reduce pause times for reclaiming memory in the young generation.
The approach uses dynamic load balancing, utilizing the same technique already known
from parallel marking (see 4.6). For parallel marking the worker thread marked all
outgoing references of an object and pushed them again onto the worklist. In the minor
collection, workers scan an object for outgoing references into the young generation. They
either copy young objects into to space or promote them and then append them to the
worklist. In addition they also update references to the young generation to the new
location of the object. This already clarifies that both serial and parallel minor collection
follow the same architecture. For example the same objects are promoted, albeit in a
different order.

The runtime starts the worker threads immediately after pausing the application. The
threads perform two separate phases: 1. scanning of roots & dirty cards and 2. scanning
of gray objects (see figure 4.8). Processing of the second phase cannot start before all
threads have not finished phase one. These two phases are separated using a barrier.
Only after every worker thread has reached that barrier, execution continues. The reason
for this was to not have cleaning of cards in the first phase and dirtying of cards in the
next phase interfere with each other. Note that while roots are evacuated in parallel,
determining the root set is still single-threaded in the runtime.

Scanning the old generation for dirty cards is parallelized as well, since this could become
quite expensive for large old generations. Cards are therefore divided into N strides: the
first stride would be the cards {0, N, 2N, . . .}, the second stride {1, N + 1, 2N + 1, . . .}.
N in this context is a multiple of the number of worker threads used, cards are therefore
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overpartitioned. The reason for this approach compared to dividing all cards into
contiguous ranges is that according to [FDSZ01] dirty cards tend to occur in clumps.
This approach therefore divides work more equally in such cases.

However cards for large objects are scanned at once by the thread that obtained that
object. Traversing all large objects is distributed between worker threads using a simple
Mutex. The first thread to lock the mutex acquires the next large object. In the future
it might become apparent that this design choice has too much synchronization overhead.
In this case one thread could traverse all large objects without synchronization and then
distribute work to the other threads in similar sized chunks. Alternatively strides could
be used for large objects as well. Both approaches would allow distributing scanning of
very large objects.

4.7.1 Forwarding Pointer

Updating the forwarding pointer stills works as illustrated in figure 4.5. This time the
collector needs to take special care to update the pointer atomically. The worker thread
first allocates a new location for an object and then copies the object to it. Afterwards
it tries to atomically update the forwarding pointer in the original object. For this an
atomic compare-and-swap operation is used: the operation is only successfull if the first
word in the object still stores the object’s type pointer. If this fails, another thread has
already replaced this word with another forwarding pointer. Since the other thread was
first with installing the forwarding pointer, the allocation can be undone if possible. The
object’s new location was therefore defined by another thread. This approach ensures
that each young object only has one active copy.

4.7.2 Local Allocation Buffer

All workers perform sequential allocation both in the young and old generation. This
requires synchronization between all threads for the allocation of each object. This
would be quite expensive, therefore each worker thread allocates so-called local allocation
buffers. Subsequent allocations can be served from within this buffer without requiring
synchronization. This is only needed for the allocation of the buffers itself. Each thread
needs distinct local allocation buffers (LAB) for both the young and old generation.
However, the runtime only needs to obtain a buffer when the first object in this area
needs to be allocated. This is illustrated by figure 4.9, where the third worker has not
allocated a LAB for the old generation yet.

As soon as the first object does not fit into a LAB anymore, a fresh one needs to be
allocated. It is not unlikely that the old LAB still has unallocated memory at the end of
the buffer. Swiper needs the heap to be parsable, so the worker fills the free memory
with an unused filler object. The object is then allocated in the new LAB.

LABs introduce a certain amount of fragmentation in the heap. The collector tries to
reduce this by only allocating small objects in the LAB. Therefore the gap at the end
of a LAB should not be too excessive. In the contrast to small objects, medium-sized
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Figure 4.9: Local Allocation Buffers

objects are allocated outside of LABs. Medium-sized objects are small enough to not
be allocated in the large object space but they are still assumed to be less frequent
than small objects. This should mean that still requiring synchronization for them is
acceptable for performance.

4.8 Parallel Full Collection

Swiper also reduces pause times for full collections by distributing work to multiple
threads. Similar to the minor collection Dora supports serial and parallel full collection
through two separate implementations. Mark-compact is still composed of the four phases
known from the serial version: 1. marking, 2. compute forwarding pointer, 3. update
references and 4. relocate. The marking phase is parallelized using dynamic load balancing
and work-stealing as previously described in 4.6.

4.8.1 Old Generation Layout

The major difficulty of this approach is ensuring that still required objects are not
overwritten by another thread in the parallel relocation phase. To this end the old
generation is split into multiple regions. Instead of relocating objects to the start of the
heap, each object is only relocated within its surrounding region. Each worker thread
takes over a region and relocates all live objects within it. This ensures that copying
objects does not conflict with other worker threads.

Each region starts with an allocated memory area, optionally followed by free memory.
As can be seen in figure 4.10, the regions cover all of the old generation’s memory.
Initially the old generation only consists of one region, the first parallel full collection will
then divide it into multiple regions. Scanning all objects in the old generation requires
scanning from the start of each region. Regions are object-aligned but presumably not
card- or page-aligned.
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Figure 4.10: Regions in Old Generation

4.8.2 Compute Forwarding Pointer

All phases in the parallel full collection use a pool of worker threads for distributing work.
To make this possible the heap is separated into about 8n approximately equal-sized
units, where n stands for the number of workers.

Units are memory regions completely filled with either live or dead objects. The collector
guarantees that units are object-aligned, this means each object in the young and old
generation belongs to exactly one unit. Creating old generation units requires access
to the crossing map for finding object boundaries in a card. The young generation is
split into exactly three units at the moment: an unit for the eden, from and to space.
This is because there are no crossing map entries for the young generation and therefore
splitting those spaces into multiple units would require linear scanning of each space at
the moment.

As soon as the collector has appointed all units in the heap, the worker threads scan each
unit for the exact number of live bytes in it. The worker thread simply scans objects in
the unit and increases the number of live bytes if an object was marked reachable in the
previous marking phase. This is the only additonal work needed in the parallel collection
but not in the single-threaded implementation. Based on the number of live bytes in each
unit, units in the old generation are partitioned into n regions of approximately equal
size. Each region consists of one or more consecutive units and is therefore object-aligned
as well. Note that while units in a region need to be consecutive, there might still be
gaps of free memory between them. As a result regions before and after a full collection
do not necessarily match, they might grow or shrink in their maximum boundaries. This
is illustrated in figure 4.11, where the new second region consists of units of region #1
and #2 before the collection.

A region spans the memory area from the start of the first unit to the end of its last
unit. It is paramount that each region only moves objects strictly within these bounds,
otherwise data from other regions is overwritten. After computing regions from the old
generation units, the young generation units are placed in one of the regions. These young
units are evacuated and therefore the collector has more freedom when relocating them.
The collector simply assigns a young unit to the first region that is able to accomodate
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Figure 4.11: Assigning Units to Regions in Old Generation

its live objects. The surviving young objects are located right after the compacted old
objects of a region.

It is also important to point out that regions are only guaranteed to be object-aligned
but not card-aligned. This means regions might have live objects on the same card. As a
consequence the first and last card of all regions are not cleared during serial and parallel
minor collections. Marking the last card of a region clean, could also mistakenly clean
the next region’s first card. The collector would then miss references into the young
generation and wrongly reclaim memory.

Now that both units and regions are determined, the collector can finally calculate the
new locations of live objects in the heap. Objects in a region are slided towards the start
or end of the region. Regions are relocated in alternating directions to have larger blocks
of contiguous free memory available after the collection. Figure 4.12 shows that this
makes it possible to reduce the number of regions after a collection. Regions during and
after the collection are actually different in Swiper. Workers obtain an unprocessed unit
and assign new locations to live objects. This is feasible without synchronization since
both the new start address of the unit and the total number of live bytes in it is known
to the runtime.

4.8.3 Update References

The next phase updates all outgoing references in live objects by following the forwarding
pointer. This phase is quite similar to the serial version in 4.5. The full task is again
distributed as units to the individual worker threads. Apart from obtaining units no
synchronization is needed for young and old units.

After processing units large objects are iterated by all worker threads using a simple
Mutex, this is quite similar to the mechanism described for the parallel minor collection in
4.7. The collector traverses large objects only once in collections and therefore performs
more work for them. Initially the card table entries for all large objects are reset to clean.
Dead large objects are immediately freed during the traversal, while in reachable objects
references are updated. Live objects are appended to a local list of large objects for each
worker thread. As soon as a worker thread is finished, it appends its local list to the

54



4.9. Thread-local Allocation

region #1 region #2 region #3 region #4

region #1 region #2 region #3

during

after

Figure 4.12: Sliding Regions in Alternating Directions

global list used for the large object space. Synchronization is therefore only needed once
at the very end for each worker thread to construct a single list of all live large objects.

4.8.4 Relocation

The final phase relocates objects according to each object’s forwarding pointer. This time
worker threads acquire regions as the unit of work to guarantee that units are evacuated
in the right order. Regions that are compacted to the start, need to relocate the left-most
unit first. When compacting regions towards the end, the right-most unit is processed
first instead. This order assures that no required data is overwritten. Since units for the
young generation are completely evacuated, these units are copied after all old units in
this region were processed.

In addition to relocating objects, this phase also cleans cards for the old generation.
Work is divided based on regions, with the boundaries that were used before the current
full collection. As soon as worker threads have relocated objects, they try to acquire
regions to clean their cards. As previously mentioned, the cards for large objects were
already cleaned when updating references.

4.9 Thread-local Allocation

Another important aspect of a collector is the allocation of objects. Swiper supports
fast bump pointer allocation both in the young and old generation. However this still
requires the mutator to call into the runtime on every allocation. In addition multiple
threads might be allocating at the same time and therefore object allocation needs
to be synchronized using an atomic Compare-and-Swap operation. Although Dora is
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single-threaded right now, allocation in Dora is already synchronized to allow for simpler
implementation of multi-threading features in the future.

Hence Dora provides thread-local allocation to improve allocation throughput. Instead of
allocating individual objects each thread allocates an allocation buffer from the runtime.
When the mutator then tries to allocate an object, the request is served by allocating
memory from within the buffer. No call into the runtime or synchronization is required
anymore. Only when the buffer becomes full, the application calls into the runtime again
to acquire a new buffer. With a thread-local allocation buffer (TLAB) allocating a new
object becomes extremely cheap.

4.9.1 Implementation in the Runtime

Thread-local allocation needs to be supported both by the collector and the runtime.
Dora needs two additional pointers for implementing a TLAB: tlab_top and tlab_end.
tlab_top stores the address of the next allocated object and is incremented at each
allocation by the object’s size. The second pointer is tlab_end which stores the end of
the current allocation buffer. Allocation succeeds as long as tlab_top is less than or
equal to tlab_top. As soon as allocation fails, another call into the runtime for a new
allocation buffer has to be performed. However this is now much more infrequent than
without TLABs and helps quite a lot in many benchmarks. To reduce fragmentation,
only small objects are allocated in a TLAB. Medium-sized allocations still require the
more expensive allocation.

The runtime also needs to make these pointers easily accessible from the compiled code.
In Dora each thread has its own instance of the ThreadLocalData structure (see listing
4.2) that can be used to store both pointers. Dora keeps a pointer to the current thread’s
ThreadLocalData in a specific register at all times in compiled code. This register needs
to be initialized when calling Dora functions from native code, but also needs to be
saved before calling into native code and restored after returning from native code into
Dora-compiled code again.

1 pub struct ThreadLocalData {
2 d2n: *const DoraToNativeInfo,
3 tlab_top: Address,
4 tlab_end: Address,
5 }

Listing 4.2: Thread-local Data

Loading tlab_top and tlab_end is therefore a simple load instruction:
1 movq <offset tlab_top/tlab_end>(%thread_register), %dest

Listing 4.3: Loading tlab_top and tlap_end

Storing into tlab_top is again just a simple store instruction, tlab_end does not need to
be modified by compiled code but can be initialized directly by the GC.
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Figure 4.13: Gap in TLAB

4.9.2 Heap Parsability

Heap parsability is an important property since it allows walking through all objects in a
heap simply by increasing a pointer by the current object’s size. With TLABs the heap
is not as easily parsable anymore since there might be gaps at the end of the buffer (see
figure 4.13). This happens anytime the buffer is already too small to allocate the next
object. In this case the runtime fills the TLAB with an unused object that spans the rest
of the buffer up to its limit. This makes the heap parsable again. Depending on the size
of the gap a different object type is used.

As previously mentioned the smallest object spans at least two words. Nevertheless there
are going to be cases where the gap is only one word wide. In this cases the runtime
stores null in this class pointer word. When the collector later tries to walk through all
objects in the heap, it needs to check for a null class pointer and increment the pointer
by one word when encountered.

If the gap is two words wide, a regular object is written into this location. Larger gaps
of three or more words are filled with integer arrays. Even in the worst case for large
integer arrays the runtime has to perform at most three memory writes: the data in an
integer array is not cleared. This is not necessary since no other object can reference the
array and therefore not read its elements. Also using an integer array means that the
object has no outgoing references. Therefore the runtime can simply skip such objects
when scanning them for references.
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CHAPTER 5
Evaluation

This chapter evaluates Swiper ’s serial and parallel collections. Various metrics are
compared to other basic collection schemes implemented in the Dora runtime.

5.1 Methodology
Various aspects of GC performance are measured in this evaluation. For this end,
benchmarks are run 20 times and the average of those runs is reported as result. Pause
and execution times are recorded by the Dora runtime itself using the system’s monotonic
clock.

Benchmarks are run after a reboot with no other applications running. To reduce the
number of running processes on the machine, the operating system is booted into console
without a GUI. For simplicity simultaneous multithreading (SMT) is disabled for all
benchmarks even if they will create more threads than the CPU has cores. Also Turbo
Boost is disabled to preclude differences in clock frequency between cores and different
benchmarks.

5.1.1 Configuration

Dora was compiled using the latest Rust Nightly version 1.36.0 (from 2019-04-24). Note
that the release build of Dora is used. Additionally checks like the heap verifier are
disabled throughout this chapter.

5.1.2 Test Environment

All tests were performed on the same system using an AMD Ryzen 2700X with 3.70GHz.
The CPU has 8 cores and 16 threads, which come handy when testing Swiper ’s parallel
collections. The system has 32GiB DDR4 main memory with 3200Mhz bus speed. A
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5. Evaluation

Samsung NVMe SSD 970 EVO is used for disk storage. The operating system is Fedora
29 with Linux 5.0.7.

5.2 Benchmark

This section discusses the benchmarks used throughout this evaluation. At the moment
there are no large real-world applications written in the Dora programming language.
Translating such huge programs to Dora would be infeasible in the time budget for
this thesis. Therefore this chapter uses synthetic micro-benchmarks for measuring.
Nevertheless these benchmarks have interesting GC behavior and stress both allocation
and collection. They were also used for evaluation in other GC-related papers. The
benchmarks were translated to Dora from Java, JavaScript and C# programs.

5.2.1 gcbench

This application was translated from Hans Boehm’s GC benchmark, it was also used
in [ABCS03] for performance evaluation. It creates trees of various sizes both from
bottom-up and top-down. Trees also have different lifetimes, initially a large tree is
allocated that remains live until the end of the application.

5.2.2 binarytress

binarytrees is an adapted version of gcbench and was taken and translated from the
Computer Language Benchmark Game1. The benchmark is also studied in detail in
[FCJH16]. Initially this application creates a large short-lived tree to stretch the heap.
Afterwards a slightly smaller tree is created that is kept alive during the whole execution.

In each iteration the application then creates a certain number of short-lived trees of the
same size. With each iteration the application creates fewer but larger trees. During the
creation of very large trees the GC is likely to perform multiple collections. Hence such
trees are promoted into the old generation.

5.2.3 gcold

gcold is a benchmark for testing the old generation and major collections. Initially
an array of trees is created, where each tree is about one megabyte in size. In the
configuration used in this thesis, the array contains about 300M of data. After the initial
setup of live data, the benchmark executes a specific number of steps. In each step
short-lived data is allocated, that immediately becomes garbage in the next step. In
addition random trees and subtress of the long-lived array are replaced with fresh ones.
This means part of the old generation becomes garbage and some newly allocated data
lives long. For every byte of long-lived data, 3 bytes of short-lived data are allocated.

1https://benchmarksgame-team.pages.debian.net/benchmarksgame/

60

https://benchmarksgame-team.pages.debian.net/benchmarksgame/


5.3. Serial Swiper

In each step the application then also performs mutations on the long-lived data. This
benchmark application was used in [FDSZ01] in a similar configuration.

5.2.4 splay

This benchmarks is part of Google’s benchmark suite Octane2 and was translated from
JavaScript. The application implements a splay tree. A splay tree is a balanced binary
tree that allows cheap access to recently accessed data. The benchmark initially creates
a tree of random values with 32000 nodes. Then the application inserts repeatedly new
nodes and removes other ones again.

5.2.5 splunc

splunc was used in [SBH05] and implements a splay tree as well. This benchmark inserts
repeatedly new nodes into the splay tree and then truncates the tree at a depth of 50
nodes. Additionally the nodes that are inserted into the tree vary in their size.

5.3 Serial Swiper

In this section the benchmarks binarytrees, gcold and splay are run using different GCs:
Copy, Compact and the generational Swiper with its serial collections. Copy implements
copy collection, whereas mark-compact is used in Compact. Each benchmark is executed
with multiple heap sizes to expose potential differing GC behavior. Note that when
running the benchmark using the Copy collector, Dora is executed with twice the heap
size. This is certainly unfair to the other collectors, however allows for simpler comparison
in this thesis.

For each benchmark the total execution time, collection time and mutator time is recorded.
The collection time is the time spent collecting garbage in the GC, hence it is the sum of
all GC pauses. Whereas the mutator time is the time spent in the application including
allocation. In addition L1 data cache misses and data TLB misses were recorded while
the mutator was running. These metrics are useful to explain differences in mutator time.

The results are depicted in the figures 5.1-5.15. As expected Swiper spends more time in
the mutator compared to Copy and Compact. This is partly because of the write barrier
used in Swiper and depending on the benchmark due to cache misses. Swiper performs
quite well for binarytrees and gcold, its execution time is comparable to Copy while using
half the maximum heap size. However for splay, Swiper is even slower than Compact:
splay violates the weak generational hypothesis. For this reason Swiper needs to copy data
more often than Compact to promote objects into the old generation. This demonstrates
that Swiper works best in generational workloads. Even though performance degrades
for splay with Swiper, the regression is still acceptable.

2https://github.com/chromium/octane
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Tables 5.1 and 5.2 contain more information about the individual GC pauses in Copy
and Compact during the benchmark. The results for both collectors show that increasing
the heap size reduces the number of collections. However increasing the heap size also
increases the pause time when a collection finally happens. Increasing the heap size
only postpones collections, but memory has to be reclaimed eventually. Nevertheless the
collection time is still reduced overall when increasing the heap size.

Tables 5.3, 5.4 and 5.5 illustrate the pause times and the duration of individual phases
for minor and full collections in Swiper. Depending on the benchmark, respectively the
amount of live data in the heap, either marking or compute forward is the most expensive
phase of the full collection. According to the results in these benchmarks, the minor
collection is indeed much more frequent than the full collection. However, unlike Copy
and Compact the number of collections is not reduced for heap sizes of 500M and 550M
for binarytrees. This spike in minor collections can also be observed in the total execution
and collection time for the benchmark (see 5.1 and 5.3). The fact that the average minor
collection pause decreases significantly though, helps understanding the reason for the
regression. Swiper uses a simple heuristic for deciding between minor and full collections:
if the young generation is smaller than 1M, a full collection will be performed. In some
cases the young generation is only slightly larger than that and minor collections do not
promote enough objects such that the threshold is not reached for some time. Hence
Swiper performs a lot of minor collections with quite small young generations. This
behavior can be avoided by increasing the minimal young generation size, this would
force Swiper to collect the full heap before running into this pathological case. However a
better long-term solution would probably be to implement a more sophisticated heuristic
for this.
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Figure 5.2: gcold Total Time
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Figure 5.3: binarytrees Collection Time
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Figure 5.4: gcold Collection Time
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Figure 5.5: binarytrees Mutator Time
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Figure 5.6: gcold Mutator Time
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Figure 5.7: splay Total Time
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Figure 5.9: splay Collection Time

350 400 450 500 550 600

0.6

0.8

1

1.2
·107

Heap Size (MB)

T
LB

m
iss

es
Copy

Compact
Swiper

Figure 5.10: binarytrees TLB misses
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Figure 5.11: splay Mutator Time
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Figure 5.12: gcold L1 data cache misses
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Figure 5.13: splay L1 data cache misses
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Figure 5.15: splay TLB misses
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Heap Size btrees gcold splay

250M � �
Count 281
Avg 95.0ms
Min 92.1ms

Max 196.1ms

300M �
Count 275

Avg 123.0ms
Min 117.7ms
Max 244.6ms

Count 108
Avg 111.1ms
Min 106.4ms
Max 195.4ms

350M
Count 125
Avg 65.0ms
Min 23.5ms

Max 106.3ms

Count 61
Avg 142.8ms
Min 136.4ms
Max 258.1ms

Count 67
Avg 121.8ms
Min 115.9ms
Max 192.4ms

400M
Count 102
Avg 71.2ms
Min 59.7ms

Max 127.5ms

Count 34
Avg 157.3ms
Min 149.8ms
Max 271.4ms

Count 48
Avg 130.3ms
Min 123.1ms
Max 197.1ms

450M
Count 82

Avg 67.7ms
Min 59.9ms

Max 112.7ms

Count 24
Avg 168.7ms
Min 159.3ms
Max 279.2ms

Count 38
Avg 137.0ms
Min 128.5ms
Max 197.3ms

500M
Count 69

Avg 66.0ms
Min 59.8ms

Max 132.1ms

Count 18
Avg 178.3ms
Min 168.6ms
Max 287.9ms

Count 31
Avg 142.7ms
Min 133.7ms
Max 196.7ms

550M
Count 61

Avg 69.1ms
Min 59.8ms

Max 132.8ms

Count 14
Avg 187.5ms
Min 175.9ms
Max 290.4ms

Count 26
Avg 147.2ms
Min 136.6ms
Max 196.3ms

600M
Count 53

Avg 67.6ms
Min 59.8ms

Max 131.7ms

Count 12
Avg 195.8ms
Min 182.8ms
Max 298.8ms

�

Table 5.1: Collection Pauses in Copy
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Heap Size btrees gcold splay

250M � �
Count 310

Avg 172.4ms
Min 162.2ms
Max 178.3ms

300M �
Count 275

Avg 361.3ms
Min 310.3ms
Max 385.9ms

Count 120
Avg 189.2ms
Min 185.8ms
Max 192.6ms

350M
Count 125

Avg 241.3ms
Min 139.7ms
Max 263.1ms

Count 61
Avg 369.7ms
Min 328.6ms
Max 391.8ms

Count 74
Avg 203.8ms
Min 196.5ms
Max 206.6ms

400M
Count 102

Avg 265.5ms
Min 192.4ms
Max 318.6ms

Count 34
Avg 379.0ms
Min 339.3ms
Max 401.1ms

Count 54
Avg 218.7ms
Min 208.7ms
Max 221.2ms

450M
Count 82

Avg 278.5ms
Min 247.2ms
Max 327.1ms

Count 24
Avg 387.1ms
Min 351.2ms
Max 408.1ms

Count 42
Avg 233.2ms
Min 219.8ms
Max 236.5ms

500M
Count 69

Avg 295.2ms
Min 284.0ms
Max 310.8ms

Count 18
Avg 396.0ms
Min 363.0ms
Max 418.7ms

Count 35
Avg 247.1ms
Min 232.1ms
Max 250.2ms

550M
Count 61

Avg 315.8ms
Min 302.5ms
Max 362.7ms

Count 14
Avg 403.9ms
Min 372.5ms
Max 423.6ms

Count 29
Avg 261.5ms
Min 245.0ms
Max 264.9ms

600M
Count 53

Avg 331.5ms
Min 320.3ms
Max 359.7ms

Count 12
Avg 413.4ms
Min 382.9ms
Max 434.2ms

�

Table 5.2: Collection Pauses in Compact
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5.4. Parallel Swiper
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Figure 5.16: Total Time with Parallel Swiper

5.4 Parallel Swiper
This section compares Swiper ’s parallel collections to their serial version. Benchmarks
are run with 1, 2, 4 and 8 worker threads in the parallel collection. This time benchmarks
are executed with exactly one heap size each: binarytrees and gcold with 350M, while
splay uses 400M. Heap size was selected such that many collections need to be performed
during execution. Results are shown in the figures 5.16-5.20. The individual collection
phases are listed in the tables 5.6-5.8.

When using parallel collection, mutator time increases slightly. This is due to reduced
locality, resulting from a different order of copying in the minor collection. Parallel
collection with one worker thread is less efficient than the serial collection. This is as
anticipated, because there is some overhead and synchronization needed for parallel
collections. Whereas collection time with two worker threads already improves on the
serial collection in these benchmarks. Increasing the number of threads even reduces
collection time further. The improvement in collection time is large enough such that
total execution time improves as well.

Using work-stealing for parallel minor collections also introduces non-determinism in the
collection. Allocating objects in LABs might increase memory usage in the young and
old generation and might cause more or sooner collections than the serial version. This
could also vary in each run. Nevertheless both pause times for minor and full collections
improve using multiple worker threads significantly. Reducing minor collections pause
times is harder since most collections are already quite short. The effect of parallelization
is here best seen in the maximum minor collection pause time. Note that reset cards is
merged with the relocation phase in the parallel implementation.
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Figure 5.17: Collection Time with Parallel Swiper
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Figure 5.18: Mutator Time with Parallel Swiper
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Figure 5.19: L1 data cache misses with Parallel Swiper
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Figure 5.20: TLB misses with Parallel Swiper
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5.4. Parallel Swiper
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5. Evaluation
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5.5. Allocation Time
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Figure 5.21: TLAB Allocation vs. Regular Allocation (1)

5.5 Allocation Time

The next benchmark allocates 20 million objects in a tight loop in each started thread. The
benchmark is run using the zero collector with a large enough heap. Zero is used because
this benchmark focuses solely on the allocation time of the runtime using TLABs. While
Dora is single-threaded at the moment, it already supports multiple threads partially.
The current implementation allows to test TLAB allocation on multiple threads.

The results show that TLABs decrease allocation time substantially in figures 5.22 and
5.21. The difference between these two approaches becomes bigger with the number of
threads allocating. This behavior matches the expectation, since more threads increase
contention in the allocation routine. When using TLABs most allocations are still
served from the local buffer, contention increases less compared to the regular allocation.
Nevertheless even the single-threaded run already needs more than fives times as long
when allocating objects with the regular allocation. In addition to synchronization, it
is also expensive to call into the runtime compared to the few instructions needed for
TLAB allocation.

This improvement in allocation performance is also observable in the micro-benchmarks
used. Only Splunc’s performance does not depend on allocation as much, while binarytrees
on the other hand allocates a lot of memory and performance becomes nearly 4 times
better thanks to the use of TLABs. When running 16 threads, the operating system
needs to schedule the threads onto the 8 CPU cores.
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5. Evaluation
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Figure 5.22: TLAB Allocation vs. Regular Allocation (2)

5.6 False Sharing
Section 4.3 mentioned that false sharing might become a problem due to Swiper ’s write
barrier. Therefore a benchmark was written to determine how much this can influcence
throughput. The application initially creates 32K of objects and promotes those objects
into the old generation. Immediately afterwards it starts all worker threads, which write
into a distinct subset of these objects in the old generation. Each object is modified by
exactly one thread.

The benchmark was executed with 1, 2, 4, 8, 16 and 32 threads. The CPU has only 8
cores, so for 16 and 32 threads the operating system has to schedule the threads onto
the cores. The execution time with Swiper is compared to the Zero collector. Zero is
well suited for this comparison because it does not need a write barrier. To prove that
the additional overhead comes indeed from the write barrier, Swiper was modified to
not emit write barriers. While this does not work in general, it is enough for this short
benchmark.

The results in figure 5.23 show that performance becomes worse with the number of
running threads. While performance degrades, it is not enough to warrant a different
write barrier for now. Also the regression might be fixed when using a conditional store
instead, as was discussed previously in 4.3.
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5.6. False Sharing
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Figure 5.23: False Sharing with Zero and Swiper
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CHAPTER 6
Future Work and Summary

This chapter discusses possible directions for future work and will give a summary about
this thesis.

6.1 Future Work

While the current implementation of Swiper is a fully working generational GC, there is
always room for further improvement. Chapter 5 shows that while the GC does its best
to keep pauses short, they might still be too long for some use cases. Therefore a future
goal for Swiper is to reduce pause times even further while not sacrificing throughput or
memory usage too much.

6.1.1 Concurrent Marking

As previously discussed in chapter 5, marking is an expensive phase of the mark-compact
collection. As a consequence it would be worthwhile to move the marking phase out
of the collection pause. Section 2.4 discussed techniques to achieve this by using either
incremental or concurrent marking. In the case of Dora concurrent marking seems to
be the most reasonable choice. Dora is typically used on machines with multiple CPU
cores. Also there is no marking operation in Dora that would require the application to
be paused as well.

Using concurrent marking requires an additional write barrier in the mutator. This
certainly reduces throughput of the application, hence this feature should be able to
be turned-off at application startup. Making this feature optional should come with no
performance disadvantage and is quite useful for testing.

Since the goal for Swiper is to be a good general-purpose collector it makes sense to
use a gray mutator architecture. Using a read barrier for this collector would certainly
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6. Future Work and Summary

considered to be too expensive. Having a gray mutator allows the runtime to allocate
objects white and generally reduces the amount of floating garbage in a collection. A
Snapshot-at-the-beginning approach would retain more objects and increases memory
usage. Swiper should use a slightly changed Dijkstra write barrier for concurrent marking
similar to V8. It might retain more objects than the Steele barrier but using barrier
guarantees that marking makes progress. With the Dijkstra barrier the mutator could
still outpace the collector by allocating more and more objects. However with the Steele
barrier, the mutator could create more marking work simply by modifying objects. The
collector therefore has to make sure it makes progress, which might require additional
incremental marking pauses.

The Dijkstra barrier requires to scan the roots at least twice, both at the start and end
of the marking phase. While this could increase pause times when discovering a large
object graph in the final marking pause, this should be acceptable for Swiper. Black
mutator collectors face a similar problem when draining write barrier buffers in the final
marking pause.

6.1.2 Mark Sweep

While mark-compact has some advantages it is also responsible for longer pause times
in Dora. Swiper reduces pause times by using multiple threads and performing work in
parallel. Nevertheless pause time will always be longer since objects are relocated and
the heap has to be scanned multiple times. For very large heaps full collection pause
times could take multiple seconds, which might be too long in specific use cases - even
when such pauses should be quite rare.

Switching the full collection to mark-sweep would decrease pause times significantly.
The marking phase can run concurrently to the application just like with mark-compact.
Sweeping the heap can easily run in a separate thread outside the collection pause as
well. Changing the collection scheme requires major adjustments to the collector though.
This is why this feature probably cannot be offered as another option of Swiper. It will
probably have to be implemented in a separate collector and reuse code from Swiper.
Using mark-sweep for the old generation also necessitates changes to the minor collection.
During such collections objects are promoted into the old generation. With mark-sweep
objects cannot be promoted anymore simply by using bump-pointer allocation. Objects
are then segregated by size and allocated in blocks. The crossing map used to find the
first object in a card when using mark-compact could be removed. Another improvement
possible with mark-sweep would be to get rid of the second word in each object’s header.
It currently is used to store the forwarding pointer during a full collection.

While bump-pointer allocation is not possible with mark-sweep this should not regress
performance too much since sequential allocation is still used in the young generation.
Objects are only allocated in the old generation during collections. This is also the reason
allocation locality is also believed to become only slightly worse than with mark-compact.
Therefore mark-sweep should bring shorter pause times and smaller object headers while
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regressing other characteristics of Swiper only slightly. Many applications should actually
benefit from this change.

6.1.3 Concurrent Compaction

While Swiper is meant to be used us as a general-purpose collector, it makes sense to add
another collector trying to minimize latency as much as possible. There are real-time
usages where Swiper ’s pause times would be insufficient even with both concurrent
marking and mark-sweep in the old generation. Trying to reduce pause times even further
with Swiper would probably decrease throughput too much. Especially considering that
many applications do not have such rigid latency requirements. Therefore it makes sense
for Dora to have a separate collector that focuses on latency above all else.

This new collector would ideally still be moving objects such that bump-pointer allocation
is still possible. However the relocation of objects would be performed concurrently to
the application. Pauses would only perform work proportional to the root set size. The
collector splits the heap into regions of equal size. Marking and evacuation of objects
should be performed in a single combined phase. In an initial pause to start the collection
cycle, the collector chooses a collection set based on the liveness information of the
last collection’s cycle. In this initial pause the collector would therefore also mark and
evacuate objects referenced from the root set. Afterwards concurrent GC worker threads
perform marking and evacuation concurrently to the application. When the GC threads
run out of work, the application is stopped again to finish the collection cycle. Evacuated
regions can be freed at this point. Scanning the root set is only necessary in the initial
pause since this collector would require a black mutator and as a consequence black
allocation.

In this algorithm the read barrier would check the color of an object. If the object was
still white, it is marked and if part of the collection set then also evacuated. This ensures
that the mutator only sees objects that were already marked and evacuated.

6.1.4 Stop the World

While the runtime and all the collectors would already support multi-threading, there
is one operation left to be implemented: stopping the world. This operation stops all
application threads such that the GC can collect garbage without any interference from
the mutator. In a single-threaded application this is not necessary since the collector
is always invoked through the allocation function. Simply invoking the runtime from
the sole application thread conceptually stops the mutator. In contrast to that, in a
multi-threaded system the collector might be invoked when one application thread runs
out of memory. However all the other threads might continue to run, either because they
do not allocate objects at the moment or have sufficient thread-local storage. Therefore
the runtime needs a way to stop application threads. Dora already emits additional
code at the end of functions and all loops that check whether a pause was requested
from another thread. In the case there was, the thread calls into the runtime to block
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its execution. Placing the checks in the generated code guarantees that all threads are
eventually suspended.

Nevertheless this does not solve the problem yet. These checks are only inserted into
managed code written in Dora. However managed code might still invoke native code
written in another programming language like Rust or C. An application thread that
executes native code at the moment a GC is requested does not have to be stopped. The
thread is only suspended when the native code tries to access the heap or returns into
managed code before the pause is over. This requires adapting Dora’s entry and exit
stubs, they are executed before entering and after leaving native code.

6.2 Summary
This thesis discussed Swiper, a generational and parallel tracing garbage collector. It is
written in Rust and is used in the Dora runtime for memory management. The main
goal was to have good throughput with acceptable pause times.

To this end the heap was split into young and old generation. Objects are allocated by the
default in the young generation and are promoted when they become old enough. This
organization is based on the weak generational hypothesis that states that most objects die
young. This means that the collector is more effective when focusing collection on areas
that are likely to reclaim more memory: the young generation. The collector therefore
implements two kind of collections: minor and full collection. Typically Swiper frequently
performs minor collections that collect garbage only in the young generation. Infrequent
full collections are required to reclaim memory for the whole heap. Parallelizing the
collection decreases pause times by distributing work to multiple threads. Using moving
collection schemes allows the mutator to use the efficient bump-pointer allocation.
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