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Abstract
Weestablish central limit theorems for natural volumes of random inscribed polytopes
in projective Riemannian or Finsler geometries. In addition, normal approximation of
dual volumes and the mean width of random polyhedral sets are obtained. We deduce
these results by proving a general central limit theorem for the weighted volume of
the convex hull of random points chosen from the boundary of a smooth convex body
according to a positive and continuous density in Euclidean space. In the background
are geometric estimates for weighted surface bodies and a Berry–Esseen bound for
functionals of independent random variables.

Mathematics Subject Classification Primary 52A22 · 52A55; Secondary 58B20 ·
60D05 · 60F05

1 Introduction andmain results

1.1 Background

The theory of random convex hulls has a long history, going back to Sylvester’s famous
four-point problem [62]. Since the seminal papers of Rényi and Sulanke [54,55], it has
become a mainstream research topic in convex, stochastic and integral geometry, with
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1346 F. Besau et al.

connections to asymptotic geometric analysis, optimization or multivariate statistics,
to name just a few.

In this article we focus on the convex hull of independent and identically distributed
points taken from the boundary of a fixed convex body K . This model of a so-called
random inscribed polytope in K was investigated in [13,16,51,52,56,57,60,64],mainly
from an asymptotic point of view (as the number of points tends to infinity). In partic-
ular, in [63] a central limit theorem is proven for the volume of the random inscribed
polytope inside a sufficiently smooth convex body in Euclidean space. Our goal is to
generalize this result to the setting of non-Euclidean geometries. Of particular inter-
est are the cases of random inscribed polytopes inside convex bodies in spherical or
hyperbolic geometry. This continues a recent trend in stochastic geometry of gener-
alizing known results to the non-Euclidean setting, and in particular to spherical and
hyperbolic geometry, see e.g. [5,6,24,28,29,32–38].

More generally, we work with projective Finsler geometries, i.e., ones for which
geodesics are affine line segments. These are the Finsler solutions of Hilbert’s fourth
problem, and have been studied intensively, see e.g. [3,20,47,50]. Since on a Finsler
manifold there is no canonical volume measure, we establish our results for a general
definition of volume, which is an assignment of Finsler volume measure obeying some
natural axioms [4].

Following the ideas of [8], we reformulate the problem in terms ofweighted random
inscribed polytopes in Euclidean space. This approach is more general and also paves
the way to some new directions. For example, it allows us to prove central limit
theorems for dual volumes, which are central to Lutwak’s dual Brunn–Minkowski
theory [40,42], as well as for themeanwidth of random polyhedral sets circumscribing
a convex body. Finally, let us also mention that the analogous result for the random
modelwhere points are distributed inside the convexbodywas proven for theEuclidean
case in [53], and were recently generalized to the non-Euclidean setting in [9].

1.2 Random inscribed polytopes in projective Riemannian geometries

We begin with the setting of Riemannian geometry. In this case there is a canon-
ical notion of volume–the Riemannian volume measure. It may be defined as the
d-dimensional Hausdorff measure of the associated metric space of the d-dimensional
Riemannianmanifold (�, g), or equivalently, as the integral of theRiemannian volume
density, which in local coordinates reads

√
det(gi j (x)) |dx1 ∧ · · · ∧ dxd |, (1.1)

where gi j (x) are themetric coefficients in the given coordinates (see, e.g., [17, §5.5.1]).
A Riemannian metric on a domain � ⊂ R

d is called projective if affine line
segments are geodesics.We consider a projectiveC2-Riemannianmetric g on a convex
domain � ⊂ R

d . The regularity assumption ensures uniqueness of geodesics, so in
particular affine line segments are the only geodesics of g.

Let K ⊂ � be a convex body of class C2+, that is, the boundary bd K of K is a C2-
smooth hypersurface with everywhere strictly positive Gauss–Kronecker curvature.
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Random inscribed polytopes in projective geometries 1347

Fig. 1 Illustration of the hyperbolic inscribed random polytope Kh(n) generated in a hyperbolic convex
body K in the hyperbolid model of the hyperbolic plane

Denote by �g the Riemannian volume measure on K , and by σg the normalized
Riemannian surface measure on bd K . Let X1, X2, . . . be a sequence of independent
random points on bd K distributed according to σg and for n ≥ d + 1 define their
convex hull Kg(n) := [X1, . . . , Xn], which is what we call a random Riemannian
inscribed polytope.

Theorem 1.1 Under the above assumptions, the Riemannian volume �g(Kg(n)) sat-
isfies a central limit theorem, that is,

�g(Kg(n)) − E�g(Kg(n))√
Var�g(Kg(n))

d−→ Z as n → ∞,

where Z is a standard Gaussian random variable. Here
d−→ denotes convergence in

distribution.

Example 1.2 (Hyperbolic geometry) The d-dimensional hyperbolic space is realized
as a projective Riemannian space in the Beltrami–Klein model. This is the unit ball
� = {x ∈ R

d : ‖x‖ < 1} equipped with the Riemannian metric with length element

ds2 = (1 − ‖x‖2)‖dx‖2 + 〈x, dx〉2
(1 − ‖x‖2)2 ,

wherewedenote by 〈 · , · 〉 and‖ · ‖ theEuclidean inner product and norm, respectively,
on R

d . This defines a (complete) projective Riemannian metric of constant sectional
curvature −1 (see e.g. [1,21] for more details, and relations with other models of
hyperbolic space). ThenTheorem1.1 implies that the hyperbolic volumeof the random
polytope generated by independent points on the boundary of a hyperbolic convex body
obeys a central limit theorem. Figure 1 illustrates a random inscribed polytope in the
hyperboloid model of the hyperbolic plane.

123



1348 F. Besau et al.

Fig. 2 The gnomonic (central)
projection from the upper
hemisphere

Fig. 3 Illustration of the
spherical inscribed random
polytope Ks (n) generated in a
spherical convex body K
contained in the open
hemisphere S2+

Example 1.3 (Spherical geometry) The spherical geometry in a hemisphere may also
be realized in a projectivemodel. The gnomonic projectionmaps the upper hemisphere
Sd+ := {x ∈ Sd : xd+1 > 0} ⊂ R

d+1 onto its tangent hyperplane at the north pole,
H := {xd+1 = 1}, by projecting along rays emanating from the origin (see Fig. 2).
To be more precise, the point x = (x1, . . . , xd+1) ∈ Sd+ is mapped to the point
p(x) = ( x1

xd+1
, . . . ,

xd
xd+1

) ∈ R
d , where we have identified H with R

d by means of an

isometry that maps the north pole of Sd to the origin of Rd . The standard Riemannian
metric on the hemisphere Sd+ is identified with the Riemannian metric on R

d with
length element

ds2 = (1 + ‖x‖2)‖dx‖2 − 〈x, dx〉2
(1 + ‖x‖2)2 .

This defines a projective Riemannian metric on � = R
d with constant sectional

curvature +1. Theorem 1.1 then implies that the spherical volume of the random
polytope generated by independent points on the boundary of a spherical convex body
obeys a central limit theorem. Figure 3 illustrates a random inscribed polytope on the
upper hemisphere S2+.

Remark 1.4 The classical Beltrami theorem states that any projective Riemannianmet-
ric on a convex domain � ⊂ R

d is of constant sectional curvature, and hence locally
isometric to (a rescaling of) either the Euclidean, hyperbolic, or spherical space (see,
e.g., [10,19,44,58]). Moreover, if the metric is complete and the underlying space
simply connected, it is globally isometric to one of these spaces.
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Random inscribed polytopes in projective geometries 1349

1.3 Random inscribed polytopes in projective Finsler geometries

We turn now to the more general case of projective Finsler metrics. For this we let
� ⊂ R

d be a convex body, equipped with a Finsler metric F , i.e., a continuous
function F : T� → R on the tangent bundle T� of � such that for all x ∈ �,
F(x, · ) : Tx� → R is a norm, where we write Tx� for the tangent space of � at x .
We assume that F is C3-smooth away from the zero section of T� and is strongly
convex, that is, the vertical Hessian ∂2F2

∂vi ∂v j
(x, v) is non-degenerate at every v �= 0. We

assume moreover that F is projective, that is, straight line segments are geodesics of
F . Again, the regularity assumption on F implies that these are the only geodesics.

We note that in Finsler geometry, unlike Riemannian geometry, there does not
exist a canonical choice of volume measurement. However, any ’reasonable’ notion of
Finsler volume is completely determined by its value on normed spaces (see e.g. [17,
§5.5.3]). A Lebesgue measure on a d-dimensional normed space X can be described
in terms of a (positive) density, that is, a norm on the (1-dimensional) top exterior
power

∧d X . This leads to the following axiomatic definition due to Álvarez Paiva
and Thompson [4].

Definition 1.5 A definition of volume on d-dimensional normed spaces is an assign-
ment to each d-dimensional normed space X of a norm μX on

∧d X such that the
following conditions are satisfied:

1. If T : X → Y is a short map (i.e., a linear map of norm ≤ 1), the induced map∧d T :∧d X →∧d Y is short as well.
2. The assignment X 
→ (

∧d X , μX ) is continuous in the Banach–Mazur topology.
3. If X is a Euclidean space, μX is the standard Euclidean volume measure.

Given a definition of volume on a d-dimensional normed space, one can define a
volume on a general d-dimensional Finsler manifolds, by the following procedure.
If (M, F) is a Finsler manifold, that is, a differentiable manifold M together with a
Finsler metric F on T M , then for each x ∈ M we obtain a norm μTx M on

∧d TxM .
This norm varies continuously with x , and hence defines a continuous volume density
onM . Volume densities can be integrated (see e.g. [11,46]), yielding a volumemeasure
on M .

The following examples are taken from [4].

Example 1.6 (The Busemann definition [18]) The Busemann definition of volume of
a d-dimensional normed space X is such that the volume of the unit ball of X is
VolBus(B) = κd , where κd is the volume of the d-dimensional Euclidean unit ball.
The corresponding density on X is given by

μBus(v1 ∧ · · · ∧ vd) = κd

Vol(B; v1, . . . , vn)
,

where Vol(B; v1, . . . , vn) denotes the volume of B with respect to the Lebesgue
measure determined by the basis v1, . . . vd . The resulting volume measure on a d-
dimensional continuous Finsler manifold is known to coincide with its d-dimensional
Hausdorff measure (see [18, §6].)
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Example 1.7 (The Holmes–Thompson definition [30]) The Holmes–Thompson vol-
ume definition uses the canonical symplectic structure on X × X∗ (see e.g. [4,45]),
and the associated symplectic volume. The Holmes–Thompson volume of the unit
ball B of X is equal to the symplectic volume of B × B∗ ⊂ X × X∗ divided by κd .
The corresponding density is given by

μHT(v1 ∧ · · · ∧ vn) = Vol(B∗; ξ1, . . . , ξd)

κd
,

where ξ1, . . . , ξd is the basis of X∗ dual to v1, . . . , vd . It is known that the resulting
Holmes–Thompson volume of a d-dimensional Finsler manifold is equal to the sym-
plectic volume of the unit co-disc bundle B∗(M) ⊂ T ∗M with respect to the canonical
symplectic structure on T ∗M , divided by κd (see e.g. [4,45]).

Example 1.8 (The Gromovmass andmass∗ definitions [27]) The Gromovmass defini-
tion is such that the maximal cross-polytope inscribed in the unit ball of X has volume
2n/n!. The corresponding density is given by

μmass(a) = inf ‖v1‖ · · · ‖vd‖,

where the infimum extends over all v1, . . . , vd such that a = v1 ∧ · · · ∧ vd .
The dual notion is theGromovmass∗ definition, forwhich theminimal parallelotope

circumscribed about the unit ball of X has volume 2d . The corresponding density is
given by

μmass∗(v1 ∧ · · · ∧ vd) = [μmass(ξ1 ∧ · · · ∧ ξd)]
−1 ,

where ξ1, . . . , ξd is the dual basis to v1, . . . , vd , and the mass definition on the right
hand side is applied to the dual space of X .

We now return to our setting of a projective Finsler metric on a convex domain
�. We fix a definition of volume on d-dimensional normed spaces, which defines a
volume measure on �, as we explained above. We denote this volume measure by �.
Now, given a convex body K ⊂ � of class C2+, fixing another definition of volume
on (d − 1)-dimensional normed spaces defines a surface measure on bd K , and we
denote the resulting normalized probability measure on bd K by σ . Let X1, X2, . . .

be a sequence of independent random points on bd K distributed according to σ . For
n ≥ d + 1 the convex hull KF (n) := [X1, . . . , Xn] is called the random inscribed
Finsler polytope.

Theorem 1.9 Let � ⊂ R
d be an open and convex domain, and F be a projective

Finsler metric on � that is strongly convex and C3-smooth away from the zero section
of T�. Then the Finsler volume �(KF (n)) of the random Finsler polytope KF (n)

satisfies a central limit theorem, that is,

�(KF (n)) − E�(KF (n))√
Var�(KF (n))

d−→ Z as n → ∞,
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(a) (b)

Fig. 4 a The Hilbert distance in a convex domain �. b The Finsler norm of a Hilbert (or Funk) geometry
in �

where Z is a standard Gaussian random variable.

Remark 1.10 Theorem 1.1 is almost a special case of Theorem 1.9, except it allows
for slightly weaker regularity of the metric.

Example 1.11 (Hilbert geometry) The best known example of a projective Finsler
metric is the Hilbert metric inside an open and convex domain � ⊂ R

d . The Hilbert–
Finsler norm is defined by

H�(x, v) = 1

2

[
1

t+(x, v)
+ 1

t−(x, v)

]
,

where t±(x, v) are defined by (see Fig. 4)

t±(x, v) = sup{t > 0 : x ± tv ∈ �}. (1.2)

The induced distance function on � is given by

ρ�(x, y) = 1

2
log

(‖a − x‖
‖a − y‖

‖b − x‖
‖b − y‖

)
,

where a and b are the intersection points of the line passing through x and y with
bd�, arranged so that (a, x, y, b) lie in that order on the line (see Fig. 4). We refer
the reader to [48] for more details on Hilbert geometries.

From Theorem 1.9 we deduce that, for any two fixed definitions of volume on d-
and (d − 1)-dimensional normed spaces, the Finsler volume of the convex hull of
independent random points on the boundary of a convex body in a Hilbert geometry
obeys a central limit theorem.

Let us remark that in order to apply Theorem 1.9, we need to assume that the
Hilbert–Finsler norm H� is C3-smooth and strongly convex (which is the case if �

is a bounded convex domain of class C3, whose boundary has everywhere positive
Gauss–Kronecker curvature.) However, in case of Hilbert geometries we may in fact
relax these regularity assumptions, which were made in order to ensure the uniqueness
of geodesics. For Hilbert geometries, it is known that this holds if� is a strictly convex
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domain (see [49, Corollary 12.7]). Thus is � if a strictly convex domain of class C1,
the asymptotic normality of random inscribed polytopes still holds.

Example 1.12 (Funk geometry) The discussion of definition of volume applies to
Finsler norms which are reversible, i.e., satisfy F(x,−v) = F(x, v) for all x ∈ �

and v ∈ Tx�. However, for non-reversible Finsler norms, one may still define the
Buseman and Holmes–Thompson volume densities. A famous example of a projec-
tive non-reversible Finsler norm is the Funk geometry in a convex domain � ⊂ R

d .
This is the Finsler norm

F�(x, v) = 1

t+(x, v)
,

where t+(x, v) is defined as in (1.2), see also Fig. 4. We refer again to [48] for more
details on Funk geometries. Assume that � is C1-smooth and strictly convex, then
the Funk metric is uniquely geodesic (see [49, Corollary 7.8]). Then, fixing either
the Buseman or the Holmes–Thompson volume definitions for the d- and (d − 1)-
dimensional volumemeasurements, we have that the Finsler volume of the convex hull
of independent random points on the boundary of a convex body in a Funk geometry
obeys a central limit theorem.

1.4 Dual Brunn–Minkowski theory

The dual Brunn–Minkowski theory, introduced by Lutwak [40,42], is a variant of
classical Brunn–Minkowski theory, which has become a central piece of modern con-
vex geometry, see e.g. [2,7,14,25,26,31,43]. Its starting point is the replacement of
Minkowski sum by the so-called radial sum of convex bodies, or more generally,
star bodies. Dual mixed volumes and related concepts are then derived analogously
to classical mixed volumes. While not dual to the classical theory in a precise sense,
many results and constructions of the dual theory mirror those of the classical one
(see e.g. [59] for details about dual Brunn–Minkowski theory as well as the references
cited therein). Here we focus on the dual volumes, which may be derived from dual
mixed volumes, or defined directly by dualizing the Kubota formula. Namely, the j-th
dual volume of a star body A ⊂ R

d is, up to a constant, the average volume of the
intersection of A with a j-dimensional linear subspace, chosen according to the Haar
probability measure on the Grassmannian of j-dimensional linear subspaces ofRd . In
[41] Lutwak proved the following formula for the j-th dual volume of a convex body
A ⊂ R

d containing the origin in terms of its radial function ρA : Sd−1 → (0,+∞),
defined by ρA(u) = max{r > 0 : ru ∈ A}:

Ṽ j (A) = κd

∫

Sd−1
ρA(u) j du, (1.3)

where we recall that κd is the volume of the d-dimensional Euclidean unit ball. More-
over, du denotes the infinitesimal element of the normalized surface measure on the
unit sphere Sd−1. Using (1.3), Lutwak extended the definition of the dual volumes Ṽ j
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to any j ∈ R, and it is this extension which we investigate here. Our next result is a
central limit theorem for dual volumes of random inscribed polytopes. However, we
note that with positive probability, the random inscribed polytope does not contain the
origin. To remedy this, we consider the convex hull of the random polytope with a
fixed convex set T containing the origin, which is strictly contained in K , where the
specific choice of T is irrelevant for our result. Let us emphasize that, for large n, the
random inscribed polytope contains T with overwhelming probability, in which case
this convex hull is simply the polytope itself.

Theorem 1.13 Let K ⊂ R
d be a convex body of class C2+ and let T ⊂ K be another

convex body, which is strictly contained in K and contains the origin. Let σ be a
probability measure on bd K with positive continuous density. Denote by Kσ,T (n) the
convex hull of the random inscribed polytope Kσ (n) and T . Then, for any real j �= 0,
the dual volume Ṽ j (Kσ,T (n)) satisfies a central limit theorem, that is

Ṽ j (Kσ,T (n)) − EṼ j (Kσ,T (n))√
Var Ṽ j (Kσ,T (n))

d−→ Z as n → ∞, (1.4)

where Z is a standard Gaussian random variable.

1.5 Random polyhedral sets

In this section we consider a dual model of a random circumscribing polyhedral set.
Let K ⊂ R

d be a convex body of class C2+. Fix a probability measure σ on bd K with
a positive and continuous density ς with respect to the (d−1)-dimensional Hausdorff
measure on bd K . For a point x ∈ bd K denote by H(x) the unique supporting
affine hyperplane to K at x , and by H−(x) the closed half-space determined by
H(x) containing K . We define a (weighted) random polyhedral set as follows: Let
X1, X2, . . . be a sequence of independent randompoints on bd K distributed according
to σ , and define

Pσ (n) =
n⋂

i=1

H−(Xi )

for n ≥ d +1. We denote byW (L) the mean width of a convex body L ⊂ R
d , that is,

W (L) =
∫

Sd−1
w(L, u) du,

where, as above, the integration is with respect to the normalized spherical Lebesgue
measure andw(L, u) is the width of L in direction u, i.e.,w(L, u) = hL(u)+hL(−u)

with hL(y) = max{〈x, y〉 : x ∈ L}, y ∈ R
d being the support function of L .We showa

central limit theorem for themeanwidth of the randompolyhedral set Pσ (n). However,
as this set is unbounded with positive probability, we will consider its intersection with
a fixed convex window L which strictly contains K . A common choice for L in the
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literature is the parallel body K1 := {x ∈ R
d : dist(x, K ) ≤ 1}, but the result does

not depend on the choice of L .

Theorem 1.14 Under the above assumptions, the mean width of Pσ (n) ∩ L satisfies a
central limit theorem, that is,

W (Pσ (n) ∩ L) − EW (Pσ (n) ∩ L)√
VarW (Pσ (n) ∩ L)

d−→ Z as n → ∞,

where Z is a standard Gaussian random variable.

In this context we would like to mention that the expected mean width of random
polyhedral sets Pσ (n) ∩ L has been analysed in detail in [12,15] under different
smoothness assumptions on the body K . Theorem 1.14 adds a central limit theorem
to this line of research.

1.6 Weighted random inscribed polytopes

Let us finally turn to the main result of this paper, which we use to derive Theo-
rems 1.1, 1.9 and 1.13 as special cases aswe shall explain in Sect. 4. It is the counterpart
for inscribed random polytopes of [9, Theorem 2.1], which holds for random convex
hulls with points chosen inside a convex body. At the same time it generalizes the
main result in [63] for the volume of random convex hulls of uniformly distributed
random points on the boundary of a convex body of class C2+ to weighted volumes
and to random points chosen according to a density.

To formally describe the set-up, fix a space dimension d ≥ 2 and let K ⊂ R
d

be a convex body whose boundary bd K is a C2-smooth submanifold of Rd with
everywhere positive Gauss–Kronecker curvature. We fix a probability measure σ on
bd K with a continuous and positive density ς > 0 with respect to the (d − 1)-
dimensional Hausdorff measure on bd K . Additionally, we let � be a measure on K
with a positive density φ > 0 with respect to the Lebesgue measure on K , such that
φ is continuous on a (relative) neighbourhood of bd K in K .

This puts us into the position to define what we mean by a weighted random
inscribed polytope in K . We choose a sequence X1, X2, . . . of independent random
points on bd K according to the probabilitymeasure σ , and for n ≥ d+1 set Kσ (n) :=
[X1, . . . , Xn] to be the convex hull of X1, . . . , Xn . We will prove that the �-measure
of Kσ (n) satisfies a central limit theorem, as n → ∞.

Theorem 1.15 Under the above assumptions one has

�(Kσ (n)) − E�(Kσ (n))√
Var�(Kσ (n))

d−→ Z as n → ∞,

where Z is a standard Gaussian random variable.
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Remark 1.16 In our proof we establish the following quantitative version of Theo-
rem 1.15:

sup
t∈R

∣∣∣P
(�(Kσ (n)) − E�(Kσ (n))√

Var�(Kσ (n))
≤ t
)

− P(Z ≤ t)
∣∣∣ ≤ C n− 1

2 (log n)3
d+1
d−1

for some constant C = C(K , ς, φ) > 0 only depending on K , ς and φ. Clearly,
taking n → ∞ this yields the distributional convergence stated in Theorem 1.15. In
the same spirit it is possible to upgrade Theorem 1.1, Theorem 1.9, Theorem 1.13 and
Theorem 1.14 as well.

2 Preliminaries

In this paper we denote absolute constants by c,C, . . . and whenever a constant
depends on additional parameters a, b, . . ., say, we indicate this by writing c =
c(a, b, . . .),C = C(a, b, . . .) etc. Our convention is that constants may depend on
the convex body K and the measures � and σ , but never on the number of points n.

2.1 Geometric tools

Throughout this section we keep the assumptions from Sect. 1.6, namely,� ⊂ R
d is a

convex domain, and K ⊂ � is a convex body of classC2+,� and σ are measures on K
and bd K , respectively, with positive densities φ and ς , with respect to the Lebesgue
measure and (d − 1)-dimensional Hausdorff measure, respectively, such that ς is
continuous and φ is continuous in a neighbourhood of bd K .

For a hyperplane H ⊂ R
d we use the notation H± for the two closed half-spaces

bounded by H . For a parameter t ∈ (0, 1), the σ -surface body (or weighted surface
body) of K with parameter t is defined by

K t
σ =

⋂
{H+ : H ⊂ R

d a hyperplane, σ (bd K ∩ H−) ≤ t}.

Note that we get back the classical surface body K t from [61] if we choose for σ the
normalized (d − 1)-dimensional Hausdorff measure on bd K .

For a point z ∈ bd K and t > 0, define the visibility region of z (with respect to the
measure σ ) as all points in K\K t

σ visible from z around the ’obstacle’ K t
σ , that is

Visσ (z, t) = {y ∈ K\K t
σ : [z, y] ∩ K t

σ = ∅}.

As above, when σ is the (d−1)-dimensional Hausdorff measure we denote the vis-
ibility region simply by Vis(z, t). We will require the following estimates on visibility
regions (Fig. 5):
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1356 F. Besau et al.

Fig. 5 The visibility region
Visσ (z, t) of a point z ∈ bd K

Lemma 2.1 Let K ⊂ R
d be a convex body of class C2+. Then there is a constant

C = C(K , σ,�) such that for all sufficiently small t > 0 one has

sup
z∈bd K

�(Visσ (z, t)) ≤ Ct
d+1
d−1 (2.1)

and

sup
z∈bd K

σ({y ∈ bd K : Visσ (z, t) ∩ Visσ (y, t) �= ∅}) ≤ Ct . (2.2)

The proofs of (2.1) and (2.2) for the unweighted case (i.e., when � is the Lebesgue
measure and σ is the (d − 1)-dimensional Hausdorff measure) can be extracted from
existing literature (see [65, Lemma 6.3] and [57, Lemma 6.2]), and the general case
follows by a ‘sandwiching’ argument similar to [8, Lemma 5.2]. For transparency, we
sketch a direct argument below.

Proof The result follows from elementary properties of caps. By definition, a cap in K
is a subset of the form K ∩H+, where H is an affine hyperplane. Any capCK contains
a unique point z ∈ bd K of maximal distance from H , which we call the center ofCK .
When σ(CK ∩bd K ) = t , we call CK a t-cap. The important (and trivial) observation
here is that Visσ (z, t) is precisely the union of all t-caps containing z.

The proof requires the following estimates on caps: there exists positive constants
M, t0, ρ0, depending only on K , σ and �, for which the following holds.

• Any t-cap with t ≤ t0 has diameter ≤ Mt
1

d−1 and �-measure ≤ Mt
d+1
d−1 .

• Any subset Y ⊂ bd K with diameter ρ ≤ ρ0 is contained in the t-cap centered at
any point y ∈ Y , where t = Mρd−1.

These facts can be proven by a simple direct computation, using the fact that our
assumptions on K imply uniform upper and lower (away from zero) bounds on the
principle curvatures. Assuming this, it easily follows that for any z ∈ bd K , Visσ (z, t)
is contained in the (Mt)-cap centered at z. Using the bound on �-measure in the first
item, this fact implies (2.1). Moreover, this fact also implies uniform bounds on the
diameter of the sets {y ∈ bd K : Visσ (z, t) ∩ Visσ (y, t) �= ∅}, which by the second
item implies (2.2). ��

Finally, we will make extensive use of the fact that Kσ (n) contains the σ -surface
body with overwhelming probability. More precisely, we require the following result
from [57, Lemma 4.2].
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Lemma 2.2 Let K ⊂ R
d be a convex body of class C2+, and let σ be a probability

measure on bd K with positive and continuous density with respect to the (d − 1)-
dimensional Hausdorff measure. Then for any α > 0 there exists c = c(α) > 0 such
that for n sufficiently large one has, denoting τ = c log n

n ,

P
(
K τ

σ �⊂ Kσ (n)
) ≤ n−α.

2.2 A normal approximation bound

The purpose of this section is to rephrase a very general normal approximation bound
for non-linear functionals of independent and identically distributed random variables
from [22,39]. We present it in the framework of general Polish spaces E with a prob-
ability measure μ, although in our application in the proof of Theorem 1.15 E will
be the boundary of a smooth convex body in R

d and μ the probability measure σ on
bd K . For n ∈ N, let f : ⋃n

k=1 E
k → R be a symmetric and measurable function.

By this we mean that f is a symmetric function acting on point configurations in E
of at most n points. If x = (x1, . . . , xn) ∈ En and i ∈ {1, . . . , n}, we introduce the
notation

x¬i := (x1, . . . , xi−1, xi+1, . . . , xn) ∈ En−1.

Similarly, for two indices i, j ∈ {1, . . . , n}with i < j we denote by x¬i, j ∈ En−2 the
(n − 2)-tuple arising from x by removing both xi and x j . We are now in the position
to define the first- and second-order difference operator of f by

Di f (x) := f (x) − f (x¬i ),

and

Di, j f (x) := Di (Dj f (x)) = f (x) − f (x¬i ) − f (x¬ j ) + f (x¬i, j ),

respectively. In other words, Di f (x) measures the effect on the functional f when xi
is removed from x , and similar interpretation is valid for Di, j f (x).

Let now X = (X1, . . . , Xn) be an n-tuple of independent random elements from
E with distribution μ, and let X ′ and X ′′ be independent random copies of X whose
coordinates are denotedby X ′

i and X
′′
i , i ∈ {1, . . . , n}, respectively.Bya recombination

of {X , X ′, X ′′}we understand a random vector Z = (Z1, . . . , Zn) having the property
that Zi ∈ {Xi , X ′

i , X
′′
i } for each i ∈ {1, . . . , n}. This allows us to introduce the

following quantities:

B1( f ) := sup
(Y ,Y ′,Z ,Z ′)

E
[
1{D1,2 f (Y ) �= 0}1{D1,3 f (Y

′) �= 0} (D2 f (Z))2(D3 f (Z
′))2
]
,

B2( f ) := sup
(Y ,Z ,Z ′)

E
[
1{D1,2 f (Y ) �= 0} (D1 f (Z))2(D2 f (Z

′))2
]
,

B3( f ) := sup
Y

E| f (X)(D1 f (Y ))3| ,
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1358 F. Besau et al.

B4( f ) := E|D1 f (X)|3 ,

B5( f ) := E|D1 f (X)|4 ,

where the suprema in the definitions of B1, B2 and B3 are taken over all tuples of
recombinations (Y ,Y ′, Z , Z ′), (Y , Z , Z ′) and Y , respectively, of {X , X ′, X ′′}.

To measure the distance between (the laws of) two random variables W and V we
use the Kolmogorov distance. We recall that the Kolmogorov distance betweenW and
V is given by

dKol(W , V ) := sup
x∈R

∣∣P(V ≤ x) − P(W ≤ x)
∣∣ , (2.3)

and note that convergence of the Kolmogorov distance implies convergence in distri-
bution.

We are now prepared to rephrase the following normal approximation bound, which
combines, in a slightly simplified form, Theorem 5.1 and Proposition 5.3 from [39].

Lemma 2.3 Fix n ∈ N. Let X1, . . . , Xn be independent random elements taking values
in a Polish space E and are distributed according to a probability measure μ, and
let f : ⋃n

k=1 E
k → R be a symmetric and measurable function. Define W (n) :=

f (X1, . . . , Xn) and assume that EW (n) = 0 and EW (n)2 = 1. Then there exists an
absolute constant c > 0 such that

dKol (W (n), Z) ≤ c
[
n
√
nB1( f ) + n

√
B2( f ) + nB3( f ) + nB4( f ) +√nB5( f )

]
, (2.4)

where Z is a standard Gaussian random variable.

Remark 2.4 Let us point out that in the recent (and yet unpublished) work [23], the
bound given by Lemma 2.3 was improved by removing the terms B3 and B4 from
(2.4). Using this improved results leads to a somewhat simpler proof of Theorem
1.15, as well as to slightly improved rate of convergence, given by a better exponent
of the logarithmic term (see Remark 1.16.) For sake of completeness, we have chosen
to apply the results of [39].

3 Proof of Theorem 1.15

This section is devoted to the proof of ourmain result aboutweighted random inscribed
polytopes. The proof uses Lemma 2.3. To obtain the required bound on the right hand
side of (2.4) we need to combine an upper bound on the difference operators with a
lower bound on the variance. As the two are independent, we treat them separately,
the latter in Sect. 3.1 and the former in Sect. 3.2

3.1 A lower bound for the variance

Richardson,Vu andWu [57, Theorem1.1] established a lower bound for the variance of
the volume of the random inscribed polytope Kσ (n) by adapting the proof of Reitzner
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Random inscribed polytopes in projective geometries 1359

[53, Theorem 3]. With some further adaptation to their arguments we will show that
the the following more general theorem holds as well.

Theorem 3.1 Let K ⊂ R
d be a convex body of class C2+ and fix a probability measure

σ on bd K with continuous density ς > 0 with respect to the (d − 1)-dimensional
Hausdorff measure. Then set Kσ (n) as the random inscribed polytope generated as the
convex hull of n independent randompoints distributedwith respect toσ . Furthermore,
let � be a measure on K with continuous density φ > 0 with respect to the Lebesgue
measure on K . Then there exist constants c = c(K , ς, φ) > 0 and N = N (K , ς, φ) ∈
N such that for all n ≥ N we have that

Var�(Kσ (n)) ≥ cn− d+3
d−1 .

One of the key constructions is to approximate bd K around a fixed point x ∈ bd K
by an elliptic paraboloid Qx . If we choose coordinates such that x is at the origin and
such that Rd−1 is the tangent hyperplane to bd K at x where the outer unit normal
nK (x) of bd K at x is −ed . Then

Qx := {z ∈ R
d : κ1(x)z

2
1 + · · · + κd−1(x)z

2
d−1 ≤ 2zd},

where κ1(x), . . . , κd−1(x) are the principal curvatures of bd K at x . We may map the
standard elliptic paraboloid E = {z ∈ R

d : z21 + · · · + z2d−1 ≤ zd} to Qx via a linear
map, i.e., if we set

Ax := diag

(√
2h

κ1(x)
, . . . ,

√
2h

κd−1(x)
, h

)
, (3.1)

then Qx = Ax E . Here, the dependence on h > 0 is chosen in such a way that the cap
CE (0, 1) := {z ∈ E : zd ≤ 1} of height 1 is mapped to

CQx (x, h) := {z ∈ Qx : zd ≤ h} = AxC
E (0, 1).

Note also that

det Ax = 2
d−1
2 κ(x)−

1
2 h

d+1
2 ,

where κ(x) := ∏d−1
i=1 κi (x) is the Gauss–Kronecker curvature of bd K at x . Since K

is of class C2+ there are h0 > 0 and c0 > 1 such that for all h ∈ (0, h0) we have that

1

c0
h

d+1
2 ≤ |det Ax | ≤ c0h

d+1
2 . (3.2)

Since the (Lebesgue) density function φ of � is positive and continuous near bd K ,
we also find c1 > 1 such that for all h small enough we have that

1

c1
Vold(C

Qx (x, h))(φ(x) + oh(1)) ≤ �(CK (x, h))
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≤ c1 Vold(C
Qx (x, h))(φ(x) + oh(1)),

where oh(1) → 0 as h → 0+, and CK (x, h) := {z ∈ K : 〈x − z, nK (x)〉 ≤ h} is the
cap of K of height h with apex in x . Here we use the fact that for h > 0 small enough
(independently of x ∈ bd K ), the cap CK (x, h) is contained in the neighbourhood of
bd K where φ is continuous.

Next, let us repeat the random simplex construction in the standard paraboloid E . In
the following we denote by H(u, t) the affine hyperplane with unit normal u ∈ Sd−1

and signed distance t from the origin, i.e., H(u, t) = {x ∈ R
d : 〈x, u〉 = t}. We first

consider the simplex S = [v0, . . . , vd ] in the cap CE (0, 1), where the vertex v0 is the
origin and [v1, . . . , vd ] is a regular simplex inscribed in the (d − 1)-dimensional ball
{z ∈ E : zd = hd}, where hd < 1

2d2
is chosen small enough so that

{λz : λ ≥ 0, z ∈ S} ⊃ (2E) ∩ H(ed , 1)

= {(z1, . . . , zd−1, 1) ∈ R
d : ‖(z1, . . . , zd−1)‖ = √

2}.

This condition ensures that the cone spannedby S is “flat” enough andwill be important
later on, see (3.3), to ensure a certain independence property, see (3.5).

Now we consider the orthogonal projection projRd−1 : Rd → R
d−1, defined by

projRd−1(z) = (z1, . . . , zd−1). We consider a balls Bi ⊂ R
d−1 of radius r > 0

around v0 = 0 = v′
0 and projRd−1(vi ) for i = 1, . . . , d. We further set B ′

i := bd E ∩
proj−1

Rd−1(Bi ) for i = 0, . . . , d. We will choose r > 0 later, but it will be small enough
so that for all wi ∈ B ′

i , i = 0, . . . , d, we have that [w0, . . . , wd ] is sufficiently close
to S = [v0, . . . , vd ]. In particular, we have that

{λz : λ ≥ 0, z ∈ [w0, . . . , wd ]} ⊃ (2E) ∩ H(ed , 1),

for all wi ∈ B ′
i , i = 0, . . . , d (see Fig. 6).

Furthermore, if W is randomly distributed on B ′
0 with respect to a continuous and

positive probability density ϑ , then there exists c3 > 0 such that

VarW (Vold([W , v1, . . . , vd ])) ≥ c3 > 0,

where for some random element X the notation VarX (and also EX below) indicates
that the variance (or the expectation) is taken with respect to the law of X .

Using the linear transformation Ax defined at (3.1), we set

Di (x) := Ax Bi ⊂ Tx bd K ∼= R
d−1,

where Tx bd K is the tangent space of bd K at x , which is isometric (∼=) to R
d−1.

Further, we set

D′
i (x) := f̃x (Di (x)) ⊂ bd K ∩ CK (x, h),
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Fig. 6 Construction of the random simplex [w0, . . . , wd ]

where fx : Rd−1 → R locally defines bd K around x via f̃x (y) = (y, fx (y)) ∈ bd K .
We also stress that D′

i (x) ⊂ bd K isnot the imageof B ′
i under Ax since Ax B ′

i ⊂ bd Qx .
Finally, for sufficiently small h > 0, we find that

1

c4
h

d−1
2 ≤ σ(D′

i (x)) ≤ c4h
d−1
2 ,

for some constant c4 > 1 and

{λz : λ ≥ 0, z ∈ [y0, . . . , yd ]} ⊃ (2Qx ) ∩ H(nK (x), 〈x, nK (x)〉 − h)

⊃ K ∩ H(nK (x), 〈x, nK (x)〉 − h),
(3.3)

for all yi ∈ D′
i (x).

We are now ready to adapt to our situation the main lemma [57, Lemma 3.1], that
has to be changed in the proof of [57, Theorem 1.1].

Lemma 3.2 There exists r0 > 0 such that for all r ∈ (0, r0) there is h0 = h0(r) > 0
and c5 = c5(r) > 1 such that for all yi ∈ D′

i (x), i = 1, . . . , d, and h ∈ (0, h0) we
have that

1

c5
hd+1 ≤ VarY �([Y , y1, . . . , yd ]) ≤ c5h

d+1, (3.4)

where Y is a random point in D′
0(x) ⊂ bd K distributed with respect to a continuous

density function ς > 0.
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Proof To prove [57, Lemma 3.1] one first shows [57, Claim 8.1], where the first and
second moment of the volume are asymptotically bounded. Following the proof of
[57, Claim 8.1] and [57, Claim 8.2] we obtain

EY�([Y , y1, . . . , yd ]) = (1 + or ,h(1))
1

Vold−1(B0)∫

B0
�([ f̃x (A′

x z), y1, . . . , yd ]) dz,

where we recall from (3.1) that Ax is the linear transformation that maps the standard
paraboloid E to the approximating paraboloid Qx = Ax E of bd K around x and A′

x

is the restriction of Ax to R
d−1, i.e., A′

x = diag
(√

2h
κ1(x)

, . . . ,
√

2h
κd−1(x)

)
. Now, since

φ is continuous at x ∈ bd K and since [Y , y1, . . . , yd ] ⊂ CK (x, h), we find

�([ f̃x (A′
x z), y1, . . . , yd ]) = Vold([ f̃x (A′

x z), y1, . . . , yd ])(φ(x) + oh(1)).

By setting

ψ1(r) := 1

Vold−1(B0)

∫

B0
Vold([b̃(z), v1, . . . , vd ]) dz,

where b̃(z) = (z, ‖z‖2) parametrizes E , we therefore derive

lim
h→0+

EY�([Y , y1, . . . , yd ])
|det Ax | ψ1(r)

= (φ(x) + or (1)),

similar to [57, Equation (33)]. Analogously, by setting

ψ2(r) := 1

Vold−1(B0)

∫

B0
Vold([b̃(z), v1, . . . , vd ])2 dz,

we obtain

lim
h→0+

EY�([Y , y1, . . . , yd ])2
|det Ax |2 ψ2(r)

= (φ(x)2 + or (1)).

Hence,

lim
h→0+

VarY �([Y , y1, . . . , yd ])
|det Ax |2

= (ψ2(r) − ψ1(r)
2) (φ(x)2 + or (1))

= [VarW Vold([W , v1, . . . , vd ])
]
(φ(x)2 + or (1)) > 0

for r > 0 small enough, since φ(x) > 0 and VarW Vold([W , v1, . . . , vd ]) > 0 for all
r > 0.
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Thus, there is c6 > 1 and h0 > 0 such that for all h ∈ (0, h0) we have that

1

c6
|det Ax |2 ≤ VarY �([Y , y1, . . . , yd ]) ≤ c6 |det Ax |2 ,

which completes the proof by (3.2). ��
Proof of Theorem 3.1 Replacing [57, Lemma 3.1] with Lemma 3.2 in the proof of
[57, Theorem 1.1] essentially yields the statement. Let us briefly recall the main
steps: Choose n points Y1, . . . ,Yn in bd K at random according to ς . Furthermore,
choose n points x1, . . . , xn ∈ bd K and corresponding disjoint caps CK (x j , hn),
j = 1, . . . , n, according to the economic cap covering, see [57, Lemma 6.6], and in
each capCK (x j , hn) define the sets D′

i (x j ), i = 0, . . . , d as constructed before. Here,

1

c7
n− 2

d−1 ≤ hn ≤ c7n
− 2

d−1 ,

and

1

c8n
≤ σ(CK (x j , hn) ∩ bd K ) ≤ c8

n
,

for some constants c7, c8 > 1 and n large enough.
Now let A j , j = 1, . . . , n, be the event that exactly one random point, say

Y0, . . . ,Yd , is contained in each of the sets D′
i (x j ), i.e., Yi ∈ D′

i (x j ), i = 0, . . . , d,
and every other point is outside of CK (x j , hn) ∩ bd K , i.e., Yi /∈ CK (x j , hn) ∩ bd K
for i = d + 1, . . . , n − 1. Then,

P(A j ) =
(

n

d + 1

)
P(Yi /∈ CK (x j , hn) ∩ bd K , i ≥ d + 1)P(Yi ∈ D′

i (x j ), i = 0, . . . , d)

≥
(

n

d + 1

)
(1 − σ(CK (x j , hn) ∩ bd K ))n−d−1

d∏
i=0

σ(D′
i (x j ))

≥
(

n

d + 1

) (
1 − c8

n

)n−d−1
c

d2−1
2

7 (c4n)−d−1.

As a consequence, there is c9 > 0 such that for all n large enough and all j = 1, . . . , n,
we have that

P(A j ) ≥ c9 > 0,

which yields

E

n∑
j=1

1A j =
n∑
j=1

P(A j ) ≥ c9n > 0.
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Next, let F be the σ -algebra generated by the positions of all (Y1, . . . , Yn) except
thosewhich are contained in D′

0(x j )with1A j = 1 for at least one j = 1, . . . , n. Hence,
if (Y1, . . . ,Yn) is F-measurable and 1A j = 1, then, up to reordering, we may assume

that Y j ∈ D′
0(x j ) is random and Y j+k = y j

k ∈ D′
k(x j ) is fixed for k = 1, . . . , d.

Let (Y1, . . . ,Yn) be an arbitrary F-measurable random vector. If 1A j (Y1, . . . ,Yn) =
1Ak (Y1, . . . ,Yn) = 1 for some j, k ∈ {1, . . . , n}, j �= k, and assuming without loss
of generality that Y j ∈ D′

0(x j ) and Yk ∈ D′
0(xk), then Y j and Yk are vertices of

Kσ (n) = [Y1, . . . ,Yn] and by (3.3) it is not possible that there is an edge between Y j

and Yk . Therefore, the change of weighted volume affected by moving Y j in D′
0(x j )

is independent of the change of the weighted volume of moving Yk in D′
0(xk). This

yields

Var[�(Kσ (n))|F] =
n∑
j=1

1A j VarY j �([Y j , y
j
1 , . . . , y j

d ]) (3.5)

Thus, for large enough n, we finally derive from the total variance formula that

Var�(Kσ (n)) = EVar[�(Kσ (n))|F] + VarE[�(Kσ (n))|F]
≥ EVar[�(Kσ (n))|F]

= E

n∑
j=1

1A j VarY j �([Y j , y
j
1 , . . . , y j

d ])

≥ 1

c5
(hn)

d+1
E

n∑
j=1

1A j ≥ cn− 2(d+1)
d−1 +1 = cn− d+3

d−1 ,

where c > 0 is some constant. This completes the prove of Theorem 3.1.

3.2 Proof of themain theorem

In this section we prove Theorem 1.15. To do so, we apply Lemma 2.3 to the random
variable

W (n) = �(Kσ (n)) − E�(Kσ (n))√
Var�(Kσ (n))

and deduce that dKol(W (n), Z) → 0 as n → ∞, where Z is a standard Gaussian
randomvariable. To apply the lemma,we consider a vector X = (X1, . . . , Xn) of inde-
pendent points on bd K distributed according to σ . We set f̃ (X) = �([X1, . . . , Xn])
and f (X) = f̃ (X)−E f̃ (X)√

Var f̃ (X)
and note that by definition f (X) = W (n). Note more-

over that f and f̃ may be extended in an obvious manner to symmetric functions on⋃n
k=1(bd K )k .
Our estimation of the first- and second-order difference operators is based on

the following simple observation. For a point z ∈ bd K and a convex L ⊂ K we
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set �(z, L) := conv(L ∪ {x})\L . Then, if the σ -surface body K τ
σ is contained in

[X2, . . . , Xn], one has

�(X1, [X2, . . . , Xn]) ⊂ Visσ (X1, τ ). (3.6)

With this preparation,we can already bound themoments of the fist-order difference
operator. We state the next result in general, although we will apply it below only with
p = 6.

Lemma 3.3 Fix an integer p ≥ 1. There exists a constant C = C(K ,�, σ, p) > 0
such that for large enough n one has

E|D1 f (X)|p ≤ C n− p
2 (log n)p

d+1
d−1

In the proof below and subsequent ones, the letterC stands for an arbitrary constant
(independent of n), whose value may change from line to line. As we explained above,
C is allowed to depend on K , � and σ .

Proof of Lemma 3.3 Fix α > 0, which will be specified later. By Lemma 2.2, there
exists a constant c(α) > 0 such that, denoting τ = c(α)

log(n−1)
n−1 , the event A :=

{K τ
σ ⊂ [X2, . . . , Xn]} has P(Ac) ≤ (n − 1)−α ≤ Cn−α (where C depends on α, for

example one can take C = 2α). On A, we use our observation (3.6) and the bound
(2.1) to obtain

|D1 f̃ (X)| ≤ �(Visσ (X1, τ )) ≤ Cτ
d+1
d−1 ≤ C

(
log n

n

) d+1
d−1

. (3.7)

On Ac we have the trivial bound

|D1 f̃ (X)| ≤ �(K ) =: D. (3.8)

Combining these estimates with the convexity of the function t 
→ t p we find that

E|D1 f̃ (X)|p = E|1A · D1 f̃ (X) + 1Ac · D1 f̃ (X)|p

≤ 2p−1
E

[
1A · C

(
log n

n

)p d+1
d−1 + 1Ac · Dp

]

≤ C

[(
log n

n

)p d+1
d−1 + n−α

]

Choosing now α > p d+1
d−1 , this yields

E|D1 f̃ (X)|p ≤ C

(
log n

n

)p d+1
d−1

.
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Finally, since by Theorem 3.1 we have that Var f̃ (X) ≥ Cn− d+3
d−1 , we conclude that

E|D1 f (X)|p = Var f̃ (X)−
p
2 E|D1 f̃ (X)|p ≤ C

(
log n

n

)p d+1
d−1

n
p
2

d+3
d−1

= C n− p
2 (log n)p

d+1
d−1 .

This completes the argument. ��
With this preparation, we turn to prove the asymptotic normality for the weighted

volume of random weighted inscribed polytopes.

Proof (Proof of Theorem 1.15) Let, as above, W (n) = f (X) = �(Kσ (n))−E�(Kσ (n))√
Var�(Kσ (n))

,

and observe that EW (n) = 0 and VarW (n) = 1. We estimate the five terms in the
bound (2.4). We start the last three terms, which involve only the first-order difference
operator. For the term B3( f ), we apply the Cauchy–Schwarz inequality to deduce

B3( f ) = sup
Y

E| f (X)(D1 f (Y ))3|

≤ √Var f (X) · sup
Y

√
E|D1 f (Y )|6 =

√
E|D1 f (X)|6, (3.9)

where we have used the facts that Var f (X) = 1 and that any recombination Y of
{X , X ′, X ′′} is equal in distribution to X .
For the term B4( f ) we use again the Cauchy-Schwarz inequality, and obtain

B4( f ) = E|D1 f (X)|3 ≤
√
E|D1 f (X)|6. (3.10)

Finally, to bound the term B5( f ) we use Hölder’s inequality which gives

B5( f ) = E|D1 f (X)|4 ≤
(
E|D1 f (X)|6

)2/3
. (3.11)

Now, in view of (3.9), (3.10) and (3.11), Lemma 3.3 implies that

max
{
nB3( f ), nB4( f ),

√
nB5( f )

}
≤ C n− 1

2 (log n)3
d+1
d−1 . (3.12)

Next, we turn to the terms B1( f ) and B2( f ), involving the second-order difference

operator. We note that for j = 1, 2 one has Bj ( f ) = Bj ( f̃ )
/

Var f̃ (X)2. Therefore

we estimate first the terms Bj ( f̃ ). We start with B1( f̃ ). Observe that D1,2 f̃ (Y ) = 0
whenever the regions �(Y1, [Y3, . . . ,Yn]) and �(Y2, [Y3, . . . ,Yn]) are disjoint. We
consider therefore the event

A′ =
⎧
⎨
⎩K τ

σ ⊂
⋂

W∈{Y ,Y ′,Z ,Z ′}
[W4, . . . ,Wn]

⎫
⎬
⎭ .
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Using Lemma 2.2 (along with the union bound), for a fixed α > 0 (to be specified
later), one can find c(α) > 0 such that, for τ = c(α)

log n
n , one has P((A′)c) ≤ Cn−α .

On A′, our observation (3.6) implies that

1{D1,2 f̃ (Y ) �= 0} ≤ 1{Visσ (Y1, τ ) ∩ Visσ (Y2, τ ) �= ∅},

and the analogous statement holds for D1,3 f (Y ′). Combined with the bound (3.7)
for the first-order difference operator and the estimate (2.2) (and on (A′)c, the trivial
bound (3.8)), this yields

B1( f̃ ) = E

[
1{D1,2 f (Y ) = 0}1{D1,3 f (Y

′) = 0} |D2 f (Z)|2 |D3 f (Z
′)|2
]

≤ E

[
1A′1{Visσ (Y1, τ ) ∩ Visσ (Y2, τ )}1{Visσ (Y ′

1, τ ) ∩ Visσ (Y ′
3, τ )}C

(
log n

n

)4 d+1
d−1
]

+ E

[
1(A′)c D

2
]

≤ C

(
log n

n

)2 ( log n
n

)4 d+1
d−1 + CD2n−α,

where in the last step we used the independence of Y and Y ′ and the fact that the event
A′ depends only on the entries Wj for j ≥ 4. Finally, picking α = 6 > 2 + d+1

d−1 for
any d ≥ 2, we derive that

B1( f̃ ) ≤ C

(
log n

n

)4 d+1
d−1+2

.

A very similar computation yields the estimate

B2( f̃ ) ≤ C

(
log n

n

)4 d+1
d−1+1

.

Using the bound Var f̃ (X) ≥ Cn− d+3
d−1 provided by Theorem 3.1, we deduce that

B1( f ) = B1( f̃ )

Var f̃ (X)2
≤ C

(
log n

n

)4 d+1
d−1+2

n2
d+3
d−1 = C n−4 (log n)4

d+1
d−1+2

and

B2( f ) = B2( f̃ )

Var f̃ (X)2
≤ C

(
log n

n

)4 d+1
d−1+1

n2
d+3
d−1 = C n−3 (log n)4

d+1
d−1+1.

From this we get

max
{
n
√
nB1( f ), n

√
B2( f )

}
≤ C n− 1

2 (log n)2
d+1
d−1+1. (3.13)
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Finally, we apply Lemma 2.3 and the bounds (3.13) and (3.12) to conclude that

dKol(W (n), Z) ≤ C
[
n
√
nB1( f ) + n

√
B2( f ) + nB3( f ) + nB4( f ) +√nB5( f )

]

≤ Cn− 1
2 (log n)3

d+1
d−1 ,

where, as before, Z is a standard Gaussian random variable. In particular, since the
last expression tend to zero as n → ∞, this implies convergence in distribution of
W (n) to Z . ��

4 Proofs of other results

4.1 Random inscribed polytopes in projective Riemannian geometries

Proof of Theorem 1.1 WefixaEuclidean structure on�,with associatedd-dimensional
Lebesgue measure and (d − 1)-dimensional Hausdorff measure on bd K . We have to
verify that σg and�g meet the conditions of Theorem 1.15. Indeed, by the uniqueness
of the Riemannian volume measure (see Sect. 1.2), the Euclidean Lebesgue measure
on K and (d − 1)-dimensional Hausdorff measure on bd K can be considered as
the Riemannian volume measures on K and bd K , respectively, associated with the
Euclidean structure. As the local expression (1.1) shows, both σg and the (d − 1)-
dimensionalHausdorffmeasure on bd K are given by integratingC1-volume densities,
and hence (as the space of volume densities is one-dimensional) they differ by a
positive C1-function. A similar reasoning applies to �g and the Lebesgue measure on
K . Therefore, Theorem 1.15 applies here, and proves the result. ��

4.2 Random inscribed polytopes in projective Finsler metrics

Proof of Theorem 1.9 We fix a Euclidean structure on �, with an associated d-
dimensional Lebesgue measure and (d−1)-dimensional Hausdorff measure on bd K .
We have to verify that � and σ satisfy the assumptions of Theorem 1.15. Indeed, by
definition σ , as well as the (d−1)-dimensional Hausdorff measure on bd K , are given
as integrals of continuous volume densities. Since the space of densities on Tx bd K is
one-dimensional for all x ∈ bd K , the two volume densities differ by multiplication
by a positive continuous function. The same applies to � and the Lebesgue measure
on K . Therefore, we can apply Theorem 1.15 and deduce asymptotic normality of
�(KF (n)).

4.3 Dual Brunn–Minkowski theory

In what follows we will require the following adaptation of Theorem 1.15. We keep
the assumptions of that theorem, and let T be a fixed convex body strictly contained
in K and such that T contains the origin in the interior. We use the notation Kσ,T (n)

for the convex hull of Kσ (n) and a T . Then we claim that the �-measure of Kσ,T (n)
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satisfies a central limit theorem, that is,

�(Kσ,T (n)) − E�(Kσ,T (n))√
Var�(Kσ,T (n))

d−→ Z , (4.1)

as n → ∞, where Z is a standard Gaussian random variable. The adaptation of
the proof of Theorem 1.15 to this case is rather minor; it suffices to note that for
small enough t > 0, T is contained in the σ -surface body K t

σ , and hence, in view of
Lemma2.2,with overwhelming probability, Kσ,T (n) = Kσ (n).We use this adaptation
to prove Theorem 1.13.

Proof of Theorem1.13 A simple integration in polar coordinates using formula (1.3)
gives

Ṽ j (A) =

⎧
⎪⎪⎨
⎪⎪⎩

j

d

∫

A
‖x‖ j−d dx, j > 0,

| j |
d

∫

Rd\A
‖x‖ j−d dx, j < 0,

for a convex body A ⊂ R
d containing the origin, where dx indicates integration with

respect to the Lebesgue measure on R
d .

This formula brings the dual volumes into the framework of Theorem 1.15, with
the caveat that for j < 0 the density function ‖x‖ j−d is not integrable at the origin.
For j > 0, however, the density function φ j (x) = j

d ‖x‖ j−d is integrable on K
and continuous near bd K , and Ṽ j (Kσ,T (n)) = � j (Kσ,T (n)). For j < 0 we note
that by definition Kσ,T (n) contains T , so we can get around the problem by taking
a measure � j with Lebesgue density φ j , such that, on R

d\T , φ j (x) = | j |
d ‖x‖ j−d ,

and φ j is continuous and positive on T . With this definition we have Ṽ j (Kσ,T (n)) =
� j (R

d) − � j (Kσ,T (n)). Therefore, for any j �= 0, the result follows immediately
from the modification (4.1) of Theorem 1.15.

��

4.4 Random polyhedral sets

Proof (Proof of Theorem 1.14)We may assume without loss of generality that K con-
tains the origin. First, we note that by [40, Lemma 2], for a convex body A containing
the origin, W (L) = 2

κd
Ṽ−1(L∗), where Ṽ−1 denotes the dual volume considered in

Sect. 1.4, and L∗ denotes the polar body of L , namely

L∗ = {y ∈ R
d : ∀x ∈ L 〈x, y〉 ≤ 1}.

Therefore, denoting Cd := 2
κd

we find that

W (Pσ (n) ∩ L) = Cd Ṽ−1(conv(Pσ (n)∗ ∪ L∗)). (4.2)
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Consider the Legendre transform � : bd K → bd K ∗, which assigns to x ∈ bd K the
unique point �(x) ∈ bd K ∗ which is proportional to the outer normal to bd K at x .
Since by assumption K is of class C2+, � is a diffeomorphism. Then,

Pσ (n)∗ = (H−(X1) ∩ · · · ∩ H−(Xn)
)∗ = [�(X1), . . . , �(Xn)].

As the Xi are independent and distributed according to σ on bd K , the points �(Xi )

are independent and distributed according to the push-forward measure σ ∗ := �∗σ
on bd K ∗. Note that σ ∗ has a continuous and positive density with respect to the
(d − 1)-dimensional Hausdorff measure on bd K ∗. Explicitly, according to [15, equ.
52], if σ has density ς , σ ∗ has density κ(�−1(y))ς(�−1(y)) 〈y,nK∗ (y)〉

‖y‖d , where κ is the

Gauss–Kronecker curvature of bd K and nK ∗(y) is the unit normal vector to bd K ∗ at
y.

In other words, Pσ (n)∗ = [�(X1), . . . , �(Xn)] is equal in distribution to K ∗
σ ∗(n),

the random polytope inscribed in K ∗ generated by n independent random points
with distribution σ ∗ on bd K ∗, and therefore, in the notation of Theorem 1.13,
conv(Pσ (n)∗ ∪ L∗) is equal in distribution to K ∗

σ ∗,L∗(n). Combining this with (4.2),

we find that the random variables W (Pσ (n) ∩ L) and Cd Ṽ−1(K ∗
σ ∗,L∗(n)) are equal in

distribution. The result now follows from Theorem 1.13. ��
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