B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Parsing von
Konfigurationsdateien

DIPLOMARBEIT

zur Erlangung des akademischen Grades
Diplom-Ingenieur
im Rahmen des Studiums
Technische Informatik
eingereicht von

René Schwaiger, BSc.
Matrikelnummer 0425176

an der Fakultat fur Informatik
der Technischen Universitat Wien

Betreuung: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam
Mitwirkung: Senior Lecturer Dipl.-Ing. Dr.techn. Markus Raab, BSc.

Wien, 27. November 2019

René Schwaiger Franz Puntigam

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

B Informatics

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Parsing of Configuration Files

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of
Diplom-Ingenieur
in
Computer Engineering
by

René Schwaiger, BSc.
Registration Number 0425176

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Dipl.-Ing. Dr.techn. Franz Puntigam
Assistance: Senior Lecturer Dipl.-Ing. Dr.techn. Markus Raab, BSc.

Vienna, 27% November, 2019

René Schwaiger Franz Puntigam

Technische Universitat Wien
A-1040 Wien = Karlsplatz 13 = Tel. +43-1-58801-0 - www.tuwien.at

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Erklarung zur Verfassung der Arbeit

René Schwaiger, BSc.

Hiermit erklareich, dassich diese Arbeit selbstandig verfasst habe, dass ich die verwendeten
Quellen und Hilfsmittel vollstandig angegeben habe und dass ich die Stellen der Arbeit -
einschlieRlich Tabellen, Karten und Abbildungen -, die anderen Werken oder dem Internet
im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter Angabe der Quelle
als Entlehnung kenntlich gemacht habe.

Wien, 27. November 2019

René Schwaiger

Note: We use hyperlinks quite heavily in this thesis. This makes it easier for you to quickly
jump between relevant parts of the text and allows you to access various linked online
resources. Please consider this advantage before you print this text.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acknowledgements

| would like to thank my family for their great support, especially my brother, who always
encouraged me, even when this thesis did not progress in the way it should.

A big thank you to my supervisor Markus Raab, who was always there, when | needed a
helping hand. His kind words and support were an integral part of the process of writing
and finishing this thesis. | would also like to thank Franz Puntigam for giving me the chance
to work on this interesting research topic and for his thorough reviews of the text.

Thank you to all the people who helped me in the preparation and implementation phase
of the thesis. | greatly appreciate the work of the other Elektra developers, be it documen-
tation text or support code. Your work was integral in helping me to implement the parsing
code. A special thank to all the Elektra developers that took part in the discussion about
YAML features. | also like to thank the communities of PEGTL and YAEP, which implemented
features and bug fixes that eased the implementation phase of the thesis considerably.

Last but not least, | would like to thank my friend Johannes Eder for his input in the imple-
mentation phase, debugging assistance, and for keeping me company while | worked on
this thesis.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Kurzfassung

Nahezu jede Applikation verwendet Konfigurationseinstellungen um ihr Verhalten einem
spezifischen Kontext anzupassen. Inimmer komplexer werdenden Computersystemen kann
die grofle Anzahl verschiedener Einstellungen leicht zu Fehlkonfigurationen fiihren. Die ver-
schiedenen Mdoglichkeiten Softwaresysteme zu konfigurieren und die groRe Anzahlverschie-
dener Konfigurationsformate verbessert diese Situation sicherlich nicht. Elektra ist ein auf
Plugins basierendes Konfigurationsframework, das Konfigurationseinstellungen in eine glo-
bale hierarchische Datenbank integriert und eine einheitliche Schnittstelle fiir diese anbie-
tet um Fehlkonfigurationen zu vermeiden.

Damit Elektra ohne oder nur mit geringen Modifikationen an einer Applikation arbeiten
kann, muss es das Konfigurationsformat der Applikation verstehen. Um das zu bewerkstel-
ligen verwendet Elektra ein auf Plugins basierendes System um Konfigurationsdateien in
seine internen Datenstrukturen umzuwandeln. Veranderungen der internen Datenstruktu-
ren werden dann zuriickgeschrieben, um so die Konfiguration einer Applikation tiber Elek-
tras Schnittstelle zu dndern. Nachdem eine Vielzahl von verschiedenen Konfigurationsfor-
maten existiert, miissen wir uns Gedanken machen, wie wir diese mit méglichst geringem
Aufwand syntaktisch analysieren, also parsen, kénnen.

Um zu untersuchen, welches System die beste Lésung fiir die Aufgabe des Parsens von Kon-
figurationsdateien liefert, analysieren wir zunachst erfolgversprechende Parsing-Techniken
in einer Literaturrecherche. Als Beispielsyntax fiir weitere Untersuchungen verwenden wir
ein Subset der populdren Sprache YAML, das wir urspriinglich mit Hilfe der Daten einer Be-
fragung von einigen Elektra-Entwicklern ermitteln wollten. Da das gewahlte Subset aus
Sicht der Syntaxanalyse uninteressante Eigenschaften mit hohem Entwicklungsaufwand
aufweist und wegen Problemen mit der Aussagekraft der Umfrage spezifizieren wir schlief3-
lich das YAML-Subset selbst. Wir schreiben, generieren und integrieren Parsing-Code fiir 8
neue Elektra-Plugins und erweitern eines der existierenden Plugins. Schlief3lich vergleichen
wir finf der Parser-Plugins in einer detaillierten Untersuchung.

Der Vergleich der Features der Parsersysteme zeigt, dass fiir unsere Beispielsprache ANTLR
den groRten Funktionsumfang und gute Fehlermeldungen liefert, ohne Grammatikande-
rungen zu bendtigen. Wahrend der Code des Generators weder die schnellste Laufzeit, noch
den geringsten Speicherverbrauch aufweist, zeigen unsere Messungen eine angemessene
Leistung. Um 10 000 Zeilen YAML zu konvertieren benétigt der Parser ungefahr 120ms auf
unserem Testsystem.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

Abstract

Almost any application uses configuration settings to adapt its behavior to specific con-
texts. In ever growing complex computer systems, the large amount of different settings
for different software can easily lead to misconfiguration. The different methods to config-
ure systems and the large amount of different configuration file formats does certainly not
improve the situation. Elektra is a plugin-based configuration framework that integrates
configuration settings into a global hierarchical database and provides a common interface
for configuration settings to make misconfiguration less likely.

For Elektra to work without, or with only minor modifications to an application it needs
to understand the configuration file format of said application. To do that Elektra uses
a plugin-based system to parse configuration files and convert them into its native data
structures. Changes to these data structures are then written back, effectively changing
the configuration of an application via Elektra’s interface. Since there exists a plethora of
different configuration file formats we need to think how we can parse them with as little
effort as possible.

To evaluate which parsing system offers the best fit for the task of configuration file parsing,
we first study promising techniques in a detailed literature research. As example syntax for
further analysis we use a subset of the popular language YAML. Originally we wanted to de-
termine this subset using data from a survey we conduct with some of Elektra’s developers.
Since the chosen subset includes items with high development effort that are not interest-
ing from a parsing point of view, and because of problems with the conclusiveness of the
survey, we choose the implemented subset ourselves. We write, generate and integrate
parsing code, creating 8 new Elektra plugins, and extend one of Elektra’s existing plugins in
the process. We then compare five of our parser plugins in a detailed evaluation.

The comparison of the various features of the parsing systems shows that for our example
syntax ANTLR provides the most complete feature set and good error messages without
requiring any changes to the grammar. While the parser generated by ANTLR was neither
the fastest parser, nor the parser with the lowest memory overhead, the benchmarks in our
comparison still show acceptable performance for our example data. To convert 10 000
lines of YAML the parser needs roughly 120ms on our test system.

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

ki

i
r

Contents

Kurzfassung 5
Abstract 6
Contents 7
1 Introduction 10
11 Motivation & Problem Statement L. 10

1.2 AimoftheWork e 1

1.3 Methodological Approach 13

14 Contributions e 14

1.5 StructureofthisThesis. 15

2 Background 16
21 StateoftheArt. e 16
210 Parsing e e e 16

21.2 ConfigurationFileParsing 20

21.3 ErrorHandling 22

2.2 Elektra. e e 24
2.2.1 KeY . . 24

2.2.2 KeySet e 25

223 Plugins 27

2.3 RelatedWork e 28

3 Design Challenges & Decisions 30
31 YAMLSubset e 30
3.1 Method 30

31.2 Participants. e 31

313 Results 31

314 Interpretation 38

3.2 Mapping Between Elektra’'s Data Typesand YAML 40
3.21 Mapping Arrayso e e e e e e e e e 42

3.3 Parsers ... e e e e e 43

7

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.31 Recursive DescentParser, 43

33.2 ALL(M)Parser e e 46
333 LALR(T)Parser e 48
334 EarleyParser 49
335 PEGParser e 49
3.3.6 ParserCombinator L 52
3.3.7 Augeaslens e 52
34 AdditionalPlugins L 53
341 Basebd e 53
34.2 DirectoryValue. e 54
343 YAMLSmith 55
Evaluation 57
41 Goals 57
4.2 EvaluatedPlugins 58
4.3 Performance Analysis 59
431 Method e 59
4.3.2 RuntimePerformance, 61
433 MemoryUsage e 69
44 CodeSize e 74
441 Method 74
442 Results 74
443 Analysis. e 75
444 Conclusion e 76
45 CodeComplexity i i i e 77
451 Method 77
452 Results e 77
453 Analysis. L 78
454 Conclusion 78
4.6 Ease of Extensibility and Composability 78
4.61 PluginUpdates 79
4.6.2 Component Based Grammars and Extensibility 83
4.63 Conclusion 84
4.7 ErrorReporting e e 84
4.71 InitialErroneous|input oo 85
472 BasicErrorMessageso 85
473 ANTLR e 86
474 BisSON e 88
475 YAEP . . . 89
476 PEGTL o 920
4.7.7 FinalErrorMessageso 91
478 Conclusion 95
4.8 MostPromisingPlugin o 96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8.1 Requirements for an Extended YAMLPlugin

4.8.2 EliminationProcess

5 Conclusion & Future Work

51 Conclusion
5.2 FutureWork
5.21 Additional Data Formats
5.2.2 TypeSupport
5.2.3 Lexer Level Error Messages

5.24 Additional Parser Engines/Generators
List of Figures
List of Tables
List of Listings
Acronyms
References

Online Resources

101
101
103
103
103
104
104

105

108

109

110

112

117

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Introduction

1.1 Motivation & Problem Statement

Parsing of programming languages is an often studied and revered technique in the com-
puter sciences. The same is not true for configuration file parsing. The answer to the ques-
tion “How do | solve this problem?” does usually not contain the task of creating and pars-
ing a new programming language in the process. On the other hand, the answer to “How
do | configure this?” often seems to be thinking about a new configuration file format and
then implementing handwritten parser code for it.

While handwritten parsing code can be the proper tool to convert code, for example both
Clang [Ben12] and GCC [Mye08] use handwritten parsers, often the person writing config-
uration parsing code is not an expert in parsing. As consequence, configuration file parsers
often suffer from problems such as

» bad or no error message support,
* no error recovery, and
 no proper encoding support.
One of the reasons for these problems is that computer programmers usually think of con-

figuration file parsing as easy and not that important. After all, misconfiguration is also
often seen as a problem of the user and not of the application [Xu+13].

In this thesis we will look at the configuration file parsing problem and evaluate different
options to convert configuration settings. Notable examples include:

« bidirectional programming [Fos+05; BPV06; Lut08; KZH16; Raal1é],

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.2. Aim of the Work

« code produced by a parser generator [DMO08; PHF14; WDG16; RB17],
« serialization libraries [SM12; Pac+15], and

« handwritten parsers [Mye08; Ben12].

Currently the possibilities to compare different parsing techniques are limited. The naive
approach would be to just run different parsers on the same data. In practice however, this
approach is not usable, since parser tools tend to produce very different data structures.
Some of them do not produce data structures at all, instead they let the user specify sub-
routines that should be called when the parser matches parts of the grammar.

P i
L Grammar|

| T T T T |

'user: Aquaman! .
shell: fish 0| & Parser |

user Aquamen shell fish

Input Structured Output

Figure 1.1: Simplified view of a parsing process

As part of this thesis we will tackle this problem, using different parsing techniques within a
common configuration framework. This integration eliminates the problem of comparing
the parsing process under different circumstances, since the data structures the parsers
create will always be the same. We will use Elektra, a key-value database, as configuration
framework. Elektra's storage plugin interface will act as foundation for the parsing process.
In the end the thesis should provide answers about which parsing techniques provide an
ideal balance between performance and usability.

1.2 Aim of the Work

Elektra [Raal0; Raal7] is a plugin-based framework that stores configuration parameters
in a Key Database (KDB). Elektra reads and stores configuration data via so-called storage
plugins.

n

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.2. Aim of the Work

N

N4
Figure 1.2: The diagram above shows an architecture overview of Elektra. Plugins, are
among other things, responsible for parsing and writing configuration data. The
core is written in C and provides a low-level Application Programming Interface

(API) to access configuration settings. Bindings provide higher-level access to
configuration data in C and other languages, such as Java, Lua, Python and Ruby.

As part of this thesis we compare various ways of parsing. For that purpose we wrote and
generated parsing code for different storage plugins. All of these storage plugins parse a
minimal subset of YAML, a human readable language used to specify data. We looked at
the following state of the art parsing technologies:

handwritten recursive descent parser (yaml-cpp),

« ALL(*) parser generator (ANTLR),
+ LR parser generator (Bison),

« Earley parser (YAEP),

PEG parser (PEGTL),

« parser combinator (mpc), and

bidirectional programming (Augeas).

We compare the parsing code according to the following criteria:

 runtime performance,

* memory usage,

» codesize,

« overall code complexity,

« ease of extensibility and composability, and

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.3. Methodological Approach

* error reporting.

In the scope of the above comparison we answer the following main research question.

? Main Research Question. Which parsing systems allows us to create a configuration
parsing plugin that is easily extendable, has low maintainability cost and provides good error
messages, while offering decent runtime performance and low memory overhead.

To answer the main research question we will first look at the auxiliary research questions
below.

? RQ1. How does the theoretic runtime complexity of the parsing methods compare to the
actual measured runtime of the parsing code?

? RQ2. How does the peak memory usage of the algorithms compare to each other? Do
some of the algorithms show nonlinear memory usage?

? RQ 3. How much work does it require to implement the plugins, i.e. how many lines of
code do we have to write to support our YAML subset for each parsing engine? How do the
amounts of handwritten code for the plugins compare to each other?

? RQ4. Which parsing technique allows us to stay closest to the definition of the configu-
ration language? Does staying close to the given definition allow us to extend and improve the
parser and its support code more easily?

? RQ5. What are the error handling capabilities of the parsing engines? How well can they
handle multiple syntax errors? How do the generated error messages compare to each other?

1.3 Methodological Approach

The methodological approach for this thesis consists of the steps given below.

Literature We determine the current status of parsing techniques suitable for con-
Review figuration file parsing. We then choose appropriate libraries for the pars-
ing techniques listed in the section “Aim of the Work".

Discussion To determine a minimal usable subset of YAML we decide about com-
mon features required for a new Elektra storage plugin with some of
the current developers. For that purpose we demonstrate YAML fea-
tures and ask, which ones should be supported in a survey.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1.4. Contributions

Implementation Wewrite, generate and integrate parsing code that handles our minimal

Comparison

YAML subset. In this phase we also add other necessary support code
to Elektra.

As noted in “Aim of the Work” we evaluate the different implementa-
tions of our minimal YAML subset parsers.

Runtime Benchmark: For the runtime comparison we create a bench-
mark framework to determine the speed of the different parsing
code. In this part of the thesis, we answer RQ 1.

Memory Profiling: For the memory comparison we use a memory pro-
filing tool to determine the heap memory usage of the YAML plu-
gins and answer RQ 2.

Code Count: We count the number of code lines with a code line count-
ing tool. This method allows us to consider only actual code, ignor-
ing blank lines and comments. At the end of this task we answer
RQ 3.

Complexity Measurement: We measure the Cyclomatic Complexity
(CC) of the code using a static analyzer.

Extensibility & Composability Check: To analyze the extensibility and
composability of the parsing code we look at the code difference of
commits for certain features and bug fixes. We count the amount
of updated code lines to determine the extension effort. This mea-
surement, together with a comparison between the grammar spec-
ification of YAML and the code created in this thesis, helps us to
determine the answer for RQ 4.

Error Reporting: To determine the quality of the error messages we
create erroneous files and compare the quality of the resulting er-
ror output. The purpose of this task is to answer RQ 5.

1.4 Contributions

Parsing Engine
Integration

Benchmark
Framework

We added plugins for four general purpose parsing engines (ANTLR, Bi-
son, YAEP, PEGTL) to the Elektra framework. These plugins parse a sub-
set of YAML, and can be adapted to parse other configuration languages.

We created a parser benchmark framework. This framework compares
configuration parsers under fair circumstances, since we require and ver-
ify that the parsers produce the same data for the same YAML input.

Support Plugins In this work we

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

1.5. Structure of this Thesis

- created a plugin that adds full support for mapping node-based con-
figurations formats, such as JavaScript Object Notation (JSON) and
YAML, to Elektra’s data structures,

- extended a plugin to convert Base64 encoded YAML data into binary
Elektra data, and

- created aplugin that deserializes Elektra’s data structuresinto YAML
data.

Free/Libre and During the work of this thesis the author
Open-Source

Software - reported over 100 problems in Elektra’s issue tracker,
(FLOSS) - reviewed over 80 pull requests,
Contributions

- committed over 4 000 times to Elektra,
- opened over 370 merged pull requests, and

- added over 100 000 lines to, and removed over 110 000 lines from
Elektra's code base.

1.5 Structure of this Thesis

In chapter 2 we provide background information about the state of art in configuration file
parsing. We then describe the configuration framework Elektra, and give some examples
about other parser comparison related research.

In chapter 3 we describe the design challenges we faced and the decisions we made when we
implemented the parser plugins. First we describe how we decided about the YAML subset
the parsers should be able to handle. Then we explain the mapping between YAML data
and the data structures of Elektra. After that we discuss the problems we had when we
implemented the plugins and how we solved them. At the end of the chapter we talk about
the additional Elektra plugins we wrote to improve the integration of the parser plugins
into Elektra.

Chapter 4 provides a detailed evaluation of the parsers. It first describes the goals of the
evaluation, detailing different important criteria of the parser plugins. Afterwards we ana-
lyze each of the criteria in their own section, answering our research questions in the pro-
cess. At the end of the evaluation we describe the parser plugins that best fit our criteria.

In chapter 5 we conclude the thesis with an overview of the results and describe possible
future work.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

CHAPTER

Background

In the first part of the thesis we look at the current state of configuration file parsing ac-
cording to the literature. After that we provide a short overview of Elektra, the key-value
configuration framework we use in the thesis. At the end of this chapter we provide some
examples of other research papers that evaluate parsers and parser engines.

2.1 State of the Art

211 Parsing

The book “Parsing Techniques” [G)08] provides a good overview of various up-to-date pars-
ing algorithms. It covers the most popular techniques and also less well known methods up
to 2006. The book also describes various classification possibilities for parsing techniques
[C)08, p. 85]. The most common classification is the division into bottom-up and top-down
parsers.

In top-down parsing the parser starts with a hypothesis about the structure of the given
data. The parser then tries to predict and match parts of the structure, starting from larger
parts working its way down to smaller elements.

We can further categorize parsing into directional and non-directional methods. Directional
methods read the input from left to right, while non-directional methods can use an arbi-
trary order. This implies that directional methods are simpler and faster, but less powerful
than their non-directional counterparts. As part of this thesis we only consider directional
methods, since they are faster and powerful enough to parse configuration data.

One of the most popular directional top-down methods is LL parsing. While this technique
is quite old - “Parsing Techniques” (p. 584) mentions a paper from 1961 belonging to the LL

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. State of the Art

A

key value

user Aquaman shell fish user Aquaman shell fish

(a) A top-down parser predicts and matches (b) A bottom-up parser recognizes text starting
rules from the start symbol downwards. with the terminal symbols.

Figure 2.1: Matching in top-down and bottom-up parsers

category - it is still actively used and researched. The basic idea behind LL parsing is sim-
ple: Begin with the start symbol of the grammar and the first character/token of the text.
Then predict the next grammar rule, looking at the text to the right of the current position.
We can categorize the technique further according to the number of characters/tokens the
parser uses to predict the next rule. If the parser uses one token of look-ahead we speak of
an LL(1) parser, if it uses k tokens of lookahead we speak of an LL(k) parser [RS69].

Two common methods to create an LL parser are:

1. Implement the parser code using a set of mutually recursive procedures (recursive
descent parser). The code for this is either written by hand or produced by a parser
generator such as ANTLR (Another Tool for Language Recognition) [Par13a].

2. Use a parser generator to create a table-based parser.

Examples of popular active projects that use a handwritten recursive descent parser include
Clang [Ben12] and GCC [Mye08]. The about page for ANTLR mentions some projects that
use its generated recursive descent parsers. The list includes Twitter, which uses ANTLR for
query parsing and parsers for the languages used in the Apache Hadoop projects Hive and
Pig [Par13b].

Some of the latest research developments in LL parsing include LL(*) parsing [PF11] and its
successor Adaptive LL(*) (ALL(*)) [PHF14]. Both of these algorithms use dynamic looka-
head [PF11, p. 1]. While LL(*) parsing uses a static algorithm for rule prediction, ALL(*) ana-
lyzes the input at runtime to improve prediction. As consequence of this, parsers that use
the ALL(*) algorithm will be faster after an initial warm-up phase [PHF14, p. 3]. LL(*) is part
of ANTLR 3 [PHF14, p. 3], while ANTLR 4 uses Adaptive LL parsing.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. State of the Art

As we already mentioned before, the other popular parsing technique besides top-down-
parsing is bottom-up parsing. In bottom-up parsing the parser builds a structure starting
with the smallest elements of the grammar (terminals). The parser then combines these el-
ements into larger parts. One of the earliest entries in the linear bottom-up parser category
is the LR(k) parser [Knué5]. Just as in LL(k) parsing, k specifies the number of lookahead
symbols the parser uses.

Unlike LL parsers, LR parsers are usually not created by hand, but generated by a parsing
tool such as Bison or Yacc. Since LR(k) tables are very large, even for a small numbers of
k, the parser tools mentioned before usually generate less powerful but smaller and faster
LALR(k) [DeR69] parsers.

LR(k) parsers are able to handle more grammars than LL(k) parsers for the same constant
k [Hab13, section “Lookahead”]. However, LR parsers are still not able to handle ambiguous
grammars. For this purpose Lang describes the Generalized LR (GLR) [Lan74] method that is
also able to process these types of grammars. GLR parsers are sometimes also called Tomita
parsers [Tom85] after the author that described the first implementation of a generalized
LR parser.

Recent research in the space of directional bottom-up parsing includes improved versions
of techniques that are almost as powerful as canonical LR(1). One of the most promising
methods is IELR(1) [DM08]. The advantage of IELR(1) over LALR(1) is that it handles con-
flict resolution better. Parser tools such as Bison use conflict resolution to handle non-LR
grammars, i.e. grammars that contain rules where the parser is not able to decide what to
do next. To handle these types of conflicts the grammar designer manually specifies which
decision the parser should take. The current version of the parsing tool Bison supports an
experimental version of IELR(1).

Most parsing techniques can be categorized as either top-down or bottom-up. However,
some techniques use a combination of both approaches. Others are usually not listed un-
der one of the label top-down or bottom-up, because they provide other features that the
designers of these parsers deem more important, or they use features that do not fit well
within either of these groups. In the remainder of this section we will discuss some of these
techniques.

A method that can be categorized as either top-down technique with bottom-up recog-
nition, or bottom-up technique with a top-down component [GJ08, p. 206] is Earley Pars-
ing [Ear70]. Earley parsing is able to handle any context free grammar. This means the tech-
nique is as powerful as GLR parsing. This advantage comes at the cost of runtime. While LL
parsing and LR parsing run in linear time depending on the length of the input (O(n)), Earley
Parsing has an upper boundary of O(1n3). However, in 1991 Leo showed that an improved ver-
sion of the algorithm handles most LR(k) grammars in linear time [Keg11; Leo91]. In 2002
Aycock and Horspool described improvements to the algorithm [AHO2]. Their version of
Earley Parsing boosts the runtime in cases where the grammar contains nullable (empty)
grammar rules. Recently Kegler incorporated the changes proposed by Leo, Aycock and
Horspool in Marpa [Keg11].

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. State of the Art

(Chomsky)

Grammars PEGs

% Generate (4 Recognize
S—aSble S« aS?b/¢

Figure 2.2: Both the Chomsky grammar on the left and the PEG on the right describe the
same language {a"b"|n > 0}.

Allthe methods we mentioned until now work with a description that is based on a (context-
free) Chomsky grammar. These grammars describe a way to generate words and sentences
of a given language. Another way to specify the structure of a language is to give a descrip-
tion on how to recognize [GJ08, p. 506] words and sentences. One popular recognition
system is Parsing Expression Grammars (PEGs). They were introduced by Ford in the pa-
per “Parsing Expression Grammars: A Recognition-Based Syntactic Foundation” [For04].
Ford also describes how to write an efficient (top-down) parser that handles these types of
grammars in linear time [For02]. This method, called Packrat parsing, uses a specialized ver-
sion of memoization [For02, p. 1] to save intermediate results of the parsing process. It is
generally not clear, if memoization provides a runtime performance advantage in practice
for a certain grammar. In the article “DCGs + Memoing = Packrat Parsing but Is It Worth
[t?” [BSO8] Becket and Somogyi show that not using memoization can decrease the actual
runtime of a PEG parser.

Just like Packrat parsing, combinatory parsing [Fro92; Hut92] specifies a method to create re-
cursive descent parsers. As the name suggests, the focus in combinatory parsing is the com-
posability of parsers. The technique is usually used in functional programming languages,
such as Haskell. These languages support higher order functions, i.e. functions that take
other functions as their parameters [G)08, p. 564]. In combinatory parsing the parser cre-
ator typically starts by specifying parsers (functions) for the simplest parts of the grammar
(terminals). She or he then goes on to combine these simpler parsers into more powerful
parsers for more complex rules (non-terminals). Combinatory parsing has similar problems
as other top-down techniques such as LL parsing. One of these problems are left recursive
grammar rules, i.e. rules that include references to themselves in the leftmost part of the
right-hand side. Recently Frost, Hafiz, and Callaghan described a method to handle left
recursive rules in combinatory parsing efficiently in the article “Modular and Efficient Top-
Down Parsing for Ambiguous Left-Recursive Grammars” [FHCO7].

A method that is not a parsing technique per se, but a way to specify conversions of data
from a source structure to a target structure and back is bidirectional programming [Fos+05;
BPV06]. The specification that allows this conversion is called a lens [Fos+05].

19

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. State of the Art

lens

source v view
\ get ¥
1 ut create
updated P updated
source view

Figure 2.3: Lenses provide a way to both parse (get) and write (put) structured data
(Source: Boomerang Programmer’s Manual).

A programming language used to specify such lenses is Boomerang [Boh+08]. The research
of the Boomerang project lead to the creation of another project that uses lenses to parse
configuration data: Augeas. Augeas converts configuration data into a tree like represen-
tation. Berlakovich implemented an Augeas plugin for Elektra as part of his Bachelor the-
sis [Ber16].

2.1.2 Configuration File Parsing

The literature overview in the previous section focused on parsing in general. It is now time
to take a look at the current state of configuration file parsing and how it differs from the
well know problem of parsing (general purpose) programming languages.

There exists extensive literature about parsing of programming languages and compiler de-
sign. The topic is even part of famous computer science books such as Principles of Com-
piler Design [UA77] and Compilers: Principles, Techniques, and Tools [ASU06], commonly also
know as “Dragon” books [Par09], named after the Dragon (waiting to be slain) on their cov-
ers.

While parsing and compiling computer languages is seen as “slaying a Dragon”, configura-
tion file parsing is arguably a much simpler task. The reason for this is that the purpose
of configuration languages, usually only specifying data, is a subset of the purpose of pro-
gramming languages, which also manipulate data. This superset feature of programming
languages makes them sometimes also interesting for the purpose of storing configuration
data [Bal13]. Since configuration data is used by many programs that usually do not ship
with, or require an interpreter or compiler, most configuration files do not use the syntax
of a general purpose programming language. These “data only” configuration file formats
can be classified roughly into three categories.

Custom configuration file formats specify data for a specific application. Examples are
the fstab file used by the Unix program mount or the hosts file used for name
resolution.

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

2.1. State of the Art

General purpose configuration formats such as INI, and the Property list file format are
used mainly to store configuration data of many different applications.

Serialization formats such as)SON, YAML Ain’t Markup Language (YAML), and eXtensible
Markup Language (XML), store all kinds of data, not only limited to configuration
purposes.

Serialization File Formats

Figure 2.4: The Venn diagramm above shows an overview of the overall expressiveness of
the formats usually used for configuration data. Please note, that the size of
the circles does not show the level of expressiveness of a certain category of file
formats, i.e. a circle twice as large does not represent twice the level of expres-
siveness.

In general we can use serialization formats, to specify the same data as we can using gen-
eral purpose configuration languages. For example, on macOS, Property lists can be stored
on disk using JSON or XML. The same is not true for custom configuration formats, which
are often very simple, but can sometimes also use programming language code. Popular
examples for this category are the configuration files of shells, such as bash, fish and
zsh . These shells use the same syntax for programming and configuration data.

We already said that most configuration file formats do not use the syntax of general pur-
pose programming languages, but rather syntax only able to specify and not to modify data.
The simplicity of some of these languages often means that parsing code for them is not
written by an expert. Especially for simple custom configuration file formats, the same per-
son that implements a program often also implements the parser for its configuration file
format. This can result in configuration code that integrates tightly into a program, decreas-
ing the extensibility of the application. Other problems of parsers not written by experts
include: bad or no error message support, no support for error recovery, and insufficient
support for different file format encodings.

21

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. State of the Art

Some of these problems can be solved using a configuration file library that is available for
most of the more popular general file formats. Such a library takes care of the parsing,
loosening the integration of an application and its configuration code. Some problems of
theses libraries are that they

« often do not consider order, and

+ almost always throw away comments

when they write back data into a configuration file. This is a problems, since for example,
comments in configuration files can be very helpful in averting misconfiguration.

A configuration library that keeps the order of entries and commentsintactis Augeas [Lut08;
Ber16]. As we already wrote in the previous section Augeas uses so-called lenses to both
parse and write back configuration. The problem of lenses is that they only support regular
languages [Cho59] properly. For example, as we found out during the development of the
parsing code for the thesis, the YAML lens of Augeas only supports mapping data with a
nesting level of two.

Compared to Augeas, Elektra [Raa10; Raal7], with its plugin-based parsing system also sup-
ports context free and even context sensitive configuration languages. Thisis the case, since
Elektra can use a general purpose programming language to parse code. Using metadata
Elektra is also able to store the content of comments and keep the order of configuration
data intact, when writing data back. The code for this has to be implemented in the plu-
gin itself, which can become problematic. For example, while Elektra’s INI plugin preserves
comments and the order of entries, its code is also quite complicated and error-prone. As
we already stated in “Aim of the Work"” we want to improve this situation using state of the
art parsing techniques for our YAML subset plugins.

2.1.3 Error Handling

The usual goal in parsing is the processing of grammatically correct input. However, since
editing configuration data is often done by hand, there is always a possibility of erroneous
input. A method toinform the user about such errors is essential. As pointed out by Terence
Parrin The Definitive ANTLR 4 Reference [Par13b, p. 151] we also need to inform the user about
the reason for an error:

In other words, a parser that responds with “Eh?” and bails out upon the first
syntax error isn't very useful for us during development or for our users during
deployment.

The process of reacting to errors is called error handling. Error handling can be grouped into
four dependent stages [Riif16; Pot16]:

22

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.1. State of the Art

1. error detection,
2. error diagnosis,
3. error recovery, and

4. error correction.

We are mainly interested in the first three items, since error correction is generally not pos-
sible without the possibility of fixing errors incorrectly.

Error reporting is the results of

« detecting that input is incorrect (error detection),
« finding what part of the input was incorrect (error diagnosis), and

« trying to resume the parsing process in case of errors (error recovery).

The current state of error reporting capabilities depends strongly on the parsing technique.

In general, top-down recursive descent parsers without backtracking, especially those writ-
ten by hand, are able to produce good error messages. The reason for this is that such
parsers have information about the higher level grammar rules that matched until the error
point. While the error messages produced by recursive descent parsers can be good, writing
error logic by hand makes the code more complicated. If we want to react to multiple errors
in a configuration file we also need to implement error recovery, which can be “tedious and
easy to screw up” [Par13b, p. 160]. ANTLR produces parsers that integrate techniques such
as token deletion, token insertion, and resynchronization to produce parsers that provide “a
good error reporting facility and a sophisticated error recovery strategy for free" according
to its main author [Par13b].

Bottom-up parsers produced by a tool such as Bison are not suited to provide good error
messages [Jef03]. Error recovery in Bison produced parsers even requires changes to the
grammar [DS19]. There exists promising research work to improve the current situation. In
“Generating LR Syntax Error Messages from Examples” [Jef03] Jeffery shows how his tool
merr can help a user to specify error messages based on example input in a C based parser
produced by Yacc or Bison. Jeffery’s semi-automated approach is based on error states of
the parser and improves on the previous technique used in the Icon programming language,
where developers manually modified the source code produced by a custom version of Yacc.
Since Jeffery’s work looks promising, another similar approach was also used in the old Bi-
son parser' for the programming language Go [Cox10]. Recently Pottier [Pot16] extended
Jeffery’s work and added example based error reporting in the LR parsers of the CompCert
C compiler [Kas+18]. In “Reachability and Error Diagnosis in LR (1) Parsers” Pottier [Pot16]

'The developers of Go switched to a handwritten parser written in Go in 2016 [Pik16; Pro16].

23

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

2.2. Elektra

writes that he thinks that “the quality of CompCert's diagnostic messages is now on par
with that of clang and gcc”.

For now we only talked about the error capabilities of deterministic parsers - such as LL
and LR parsers - i.e. parsers that do not back up. These parsers read the input determinis-
tically from left to right. They therefore report the first position, where the parsed input is
not part of the language described by the grammar anymore. This behavior is also known
as (longest) correct/viable prefix property [SS90; Riif16; Mai+16; Pot16]. Parsers with back-
tracking, such as recursive descent parsers with backtracking, PEG parsers and the closely
related combinatory parsers usually do not have this property. While backtracking makes
these parsers more powerful, the quality of error messages suffers. The problem is that
backtracking can occur both because of a valid choice in the grammar or because of an er-
ror in the input.

There has been research to improve the situation, especially in PEG parsers. In his master
thesis [For02] Ford already describes one option to produce meaningful error messages. His
parser records all parsing results and uses the one that matched the farthest to the right in
the input for error messages. In “Error Reportingin Parsing Expression Grammars” [Mai+16]
Maidl et al. show that this error strategy can also be added to every PEG library that sup-
ports semantic actions. They also introduce a form of error reporting, inspired by the ex-
cepting handling mechanism of programming languages, based on grammar annotations
called labeled failures [Mai+16].

2.2 Elektra

In this section we describe some of the concepts of Elektra, the software that provides the
common storage facility for our YAML parsers, further. Elektra is a framework that stores
datain a global hierarchical key-value database.

2.21 Key

Key

system/elektra/version/infos/licence BSD
O——— Name (Key) ———— 0O O~ Value -0

Figure 2.5: InElektraa Key storesasingle key-value pair. The first part of the name specifies
the

The most basic entity in Elektrais the Key structure. A concreteinstance ofa Key contains
at least one non-empty attribute, which is the name of the Key . In this thesis we will also

24

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Elektra

often use the term key - please notice the non-gray background - to refer to the name of a
Key .

Besides the name an instance of a Key usually also stores a value. Figure 2.5 shows an ex-
ample Key with the name system/elektra/version/infos/licence andthevalue BSD.
Since Elektra stores data in a hierarchical database, a key consists of parts - separated by

/ - that determine the location in the database. The key in Figure 2.5 consists of 5 parts.

The first part system isthe of the key. Elektra uses namespaces to specify
context dependent data. For example, user specific data is stored under the namespace
user . Elektra uses 5 namespaces to separate data:

system specifies data values for the whole system,

user contains data for the current user,

dir stores data for the current directory,
spec contains specification of other keys, and
proc stores in-memory data.

We can use a so-called cascading keys to select the most appropriate namespace. A cascad-
ing key does not start with a namespace but rather with a leading slash. Let us look at an
example. We assume our database contains the keys:

» system/key , and

o user/key .

If a non-superuser requests the cascading key /key , then Elektra will select user/key . If

the database also contains a key dir/key for the current working directory, then Elektra
will select this key instead.

2.2.2 KeySet

As we already saw in the example before, usually we store not only one, but multiple key-
value pairs in the database. For this purpose Elektra provides the structure KeySet. A

KeySet contains aset of Key objects. The name of each Key has to be different. If we add
anew Key with an already existing name to the KeySet , then Elektra will just overwrite
the old Key with the same name.

25

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Elektra

— KeySet <

Key
[_system/eIektra/version/infos/licence BSD

J
[leerssound)
J
J

Key
[_ user/sound/pirate arr

Key
{_ user/sound/ninja woosh

\ J

Figure 2.6: Elektra uses KeySet structures to save multiple key-value pairs.

A KeySet allows ustostructure datain a fashion similarto amap (aka hash, map, hashmap,
dictionary). Maps are an important data structure, especially in high level programming
languages like Python or Ruby. Let us look at an example. We take the last three Key

objects in Figure 2.6, remove the namespace and translate the data to a Python dictionary:

sound = {'pirate': 'arr', 'ninja': 'woosh'}
We see that a value in a KeySet also maps to a value in the dictionary, while the last part
of the key (name) maps to the key in the dictionary.

Apart from the map, another important data structure is the array. Elektra also supports
arrays. For that purpose Elektra adds the character # and the index to array elements. For
example, the following Python list:

characters = ['pirate', 'ninja']

would translate to the KeySet shown in Figure 2.7.

— KeySet N
Key

[_ user/characters]
Key

{_ user/characters/#0 pirate]
Key

[_ user/characters/#1 ninja]

Figure 2.7: Elektra uses the character # to mark array elements

Since Elektra orders a KeySet alphabetically, a Key with name #10 appears beforea Key

with name #2 . To fix this problem Elektra adds underscores to keys with larger indices. For
example, the 11th element of an array ends with the name #_10 .

26

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.2. Elektra

One important difference between Python'’s list type and Elektra’s array type is that arrays
do not need to be continuous. For example, it is possible for an Elektra array to only con-
tain elements with the names #1 and #3 , while Key entries with name #0 and #2 are
missing.

Elektra also uses the KeySet structure to add metadata to single keys. For this purpose
each Key may store a KeySet containing simple key-value pairs. Figure 2.8 shows an ex-
ample Key containing two meta keys comment and check/type .

— Key N
KeySet
Key
[- comment The Answer]
Key
[— check/type short]

user/some/number 42
O0—— Name (Key) ——0 O~ Value -0

. J

Figure 2.8: Elektra uses a KeySet to save metadata fora Key .

2.2.3 Plugins

Apart from basic features, most of Elektra’s functionality is realized as plugin. This has the
advantage, that Elektra’s core can stay minimal only requiring C99, while plugins are able
to implement and use OS specific features.

Many different plugin categories exist. Elektra needs at least one resolver and one storage
plugin. The resolver plugin handles filenames and replaces files on disk. Storage plugins, on
the other hand, parse configuration files and convert read data to a KeySet . They are also

responsible for writing a modified KeySet back to a given file.

In this thesis we are mostly interested in storage plugins. However, we will also use other
plugins to implement common functionality for our YAML storage plugins. For this purpose
we use the plugin interface of Elektra to pass key sets between plugins.

The order in which Elektra calls a certain plugin is specified via the contract of the plugin.
For example, a typical storage plugin will use the positions getstorage and setstorage.

Plugins at the position getstorage will be called when Elektra tries to read a configuration
file, while Elektra calls setstorage plugins whenitis time to write a KeySet back to afile.
A plugin that wants to further process data will usually use the position postgetstorage
right after getstorage, and presetstorage the position before setstorage .

27

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Related Work

getstorage postgetstorage
YAML Baseb4
bin: !!binary "aGk=" - Bytes . KeySet —» . — KeySet ——» ...
Plugin Plugin
Baseb64 YAML bin: !!binary "aGK="
KeySet —» . KeySet —» .~ Bytes >
Plugin Plugin pinkie: pie
presetstorage setstorage

Figure 2.9: Elektra uses multiple plugins to process data.

Figure 2.9 shows a example, where Elektra uses a YAML plugin to read and write data, while
a Baseé4 plugin (see also section “Base64”) encodes and decodes binary values. Such a com-
bination of multiple plugins working together is called a backend.

In Elektra we mount a backend at a certain position of the key-value database. For example,
if we mount the backend described above at user/yaml , then the YAML plugin is responsi-

ble for storing and retrieving values below this mountpoint. If we want to save a new Key
with the name user/yaml/pinkie and thevalue pie, then Elektra
1. uses the YAML plugin to convert the current YAML configuration file to a KeySet ,
2. decodes every binary Key with the Base64 plugin,
3. adds user/yaml/pinkie tothe KeySet,

4. encodes every binary Key with the Baseé4 plugin, and

5. then stores the result in the configuration file using the YAML plugin.

2.3 Related Work

Most of the parser comparison related papers evaluate some form of new parser engine or
parser generator and compare it with existing parsers or libraries. A recent example of this
type of paper is “Parsing Gigabytes of]SON per Second” [LL19]. In this paper Langdale and
Lemire use Single Instruction/Multiple Data (SIMD) instructions to accelerate the parsing of
JSON data. In the “Experiments” section of this paper the authors compare theirimplemen-
tation with other JSON parsers, first only using the pure parsing speed, meaning that they
ignore the different output of the tested parsers. They also provide a comparison where

28

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

2.3. Related Work

they show how fast the tested parser are able to find the same data in one of the converted
documents from their data set.

While parsing one file format using a specialized parser provides information about how
fast we are able to convert certain file formats, this kind of optimization can require sub-
stantial manual work. For the plethora of different configuration file formats, it is usually
not possible to handcraft parsers by hand. Even if it would be possible, some parsers need
to store information that others do not (e.g. comments), making the process of creating a
parser that handles all these tasks by hand even harder. To fix this problem we can generate
code for the parser.

There are some papers that compare parser generators themselves. For example, in “Full
LR(1) Parser Generator Hyacc And Study On The Performance of LR(1) Algorithms” [CP11]
Chen and Pager compare the table size and the time to generate parser code for the tools
Hyacc, Menhir, MSTA and Bison. This paper does not evaluate the execution speed, error
messages or other important criteria of the generated parsers.

In “A Comparison Between Packrat Parsing and Conventional Shift-Reduce Parsing on Real-
World Grammars and Inputs” [Flo14] Flodin compares a modified version of the PEG parser
Treetop - adapted to produce C++ code - called Hilltop, and Yet Another Compiler Compiler
(Yacc). He measures both the execution speed and the heap memory usage of the generated
parsers for two different grammars. He does not compare other important criteria, such as
the error messages, mainly because the parsers generated by Treetop only print information
about the last successful production.

29

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Design Challenges & Decisions

In this chapter we first detail how we determined the subset that our YAML parsers should
be able to parse. Afterwards we describe the mapping between YAML and Elektra’s KeySet

structure. In the last part we then explain the challenges we faced implementing the parser
plugins and describe the additional plugins we created to improve the YAML support of
Elektra.

3.1 YAML Subset

The YAML standard is extensive. The document describing the serialization language in-
cludes about 200 parameterized Backus-Naur Form (BNF) grammar rules [BENO9]. To sim-
plify the parser development we decided to first determine a subset of YAML that is useful
for storing configuration data. For this purpose we discussed the language with other Elek-
tra developers.

3.1.1 Method

We used a requirement analysis to determine useful YAML features. For that purpose we
created a questionnaire that lists YAML features. For each feature we added a checkbox that
a participant should check, if they deemed it useful for a YAML subset that stores configu-
ration data. We also added one free form field participants could use to specify additional
data types they think should be supported. Since YAML is a complex language we intro-
duced the YAML syntax in a presentation to the Elektra developers first. After we talked
about a certain part of YAML, we answered questions the participants had about the infor-
mation presented so far. Afterwards we asked the participants to fill in the parts of the
questionnaire about the newly introduced feature set.

30

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

3.1.2 Participants

Nine people participated in the requirement analysis. All of the participants were at least
partially familiar with Elektra. Some also had previous experience with YAML. Seven of
them listened to the presentation, while one participant was late and another one partic-
ipated via email. The email participant received a copy of the presentation slides and the
questionnaire.

3.1.3 Results

In the following bar charts the term “Yes” refers to a checked box for the specific feature.
The term “?” means that the participant did not know enough about a part of YAML and
therefore marked the checkbox for one feature, or the heading for multiple features, with

a question mark. The value before the term “No” specifies the number of unchecked boxes
minus the number of boxes marked with “?”,

3.1.3.1 Scalars

Flow Scalars

Plain String

Yes
No
0 9
Figure 3.1: Plain Flow Scalar
Yes 'Single Quoted ''String'''
No
0 9

Figure 3.2: Single Quoted Flow Scalar

31

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

3.1. YAML Subset

Ves "Double\n Quoted\n \"String\""

9

o -
|
O|

Figure 3.3: Double Quoted Flow Scalar

Block Scalars

> # "Folded Style"
Folded
Style

Yes
No

9

o_

Figure 3.4: Folded Block Scalar

| # "Literal|\nStyle"

Literal
Style
0 9
Figure 3.5: Literal Block Scalar
>1-# "--1-Space-Indentation”
Yes .
1-Space-Indentation
No
?
0 9

Figure 3.6: Indentation Header

32

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

0 Yes

>--# "No-Trailing-Whitespace"

No Trailing Whitespace
No

o_

3.1.3.2 Lists

é #-@3 Newlines-Above-Stripped

Figure 3.7: Chomping Header

(@, O,

[Sugar, Eggs, Chocolate]
]

9

Figure 3.8: Flow Style

- @
- 9

- - Sugar

O -~ O
=z l
o
Z
(o}
<
M
[

3.1.3.3 Mappings

Yes

9 - Eggs
- Chocolate

Figure 3.9: Block Style

{ Austria: Vienna,
South Africa: {
Executive: Pretoria,

O ~
OI

Judicial: Bloemfontein,
Legislative: Cape Town }

}

Figure 3.10: Flow Style

33

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M 3ibliothek,
Your knowledge hu

3.1. YAML Subset

Yes
No

Austria: Vienna
South Africa:

Executive: Pretoria
Judicial: Bloemfontein
Legislative: Cape Town

Figure 3.11: Block Style

0 Yes
No

{ 'pretty': complex key }
- @
Still part of the key

. value

Figure 3.12: Support for Complex Keys

3.1.3.4 Multiple Documents

0 Yes
No

"Hello First Document"

'Second Document'

Third Document

Figure 3.13: Support Streams

3.1.3.5 Types

Directives

Yes
No

0 9

%YAML 1.2

Figure 3.14: YAML Version

34

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

%TAG ! tag:yaml.org,2002:
%TAG !! tag:yaml.org,2002:
%TAG !'name! tag:yaml.org,2002:

No

o_

Figure 3.15: Tag Handle Definition

'name!str 6 # "6"

o_

9

Figure 3.16: Named Tag Handle

Tags

Tag Shorthands

Isuffix value
Yes
No
?
0 9
Figure 3.17: Primary Tag Handle
suffix value
Yes
No

o_

9

Figure 3.18: Secondary Tag Handle

%TAG !'name! tag:yaml.org,2002:

35

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

Verbatim Tags
0 Yes !<!ruby/object:Set> value
No
?
0 9
Figure 3.19: Local Verbatim Tags
0 Yes I<tag:yaml.org,2002:str> value
No
?
0 9
Figure 3.20: Global Verbatim Tags
Other Tags
0 Yes ! value
No
?
0 9

Figure 3.21: Non-Specific Tag

Schemas

Remark: One participant checked the box for the core schema without ticking the boxes for
the failsafe and JSON schema. Since the core schema is an extended superset of the other
two schemas, we counted the participants answers as a “Yes” vote for the failsafe and JSON
schema.

36

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

 String
Yes
No » Sequence

* Map

9

0

Figure 3.22: Failsafe Schema

Failsafe Schema + JSON Types: « Null
Yes

« Boolean

Integer

9

e Float
Figure 3.23: JSON Schema

JSON Schema and

Yes N o Octal/Hex: 00123, Oxfefe
o

? « Multiple Notations for same value:

. null, Null, ~
9

o_

Figure 3.24: Core Schema

Ordered Map

Yes
No * Set

* Binary

o -
O
.

Time

Figure 3.25: Additional Types

Which Additional Types:

nn

« “"(No answer)

37

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

« “binary”

« “date (but implemented in plugins)”
3.1.3.6 References

\ = ‘ Yes flge;soz &flowers
No garden:

(’) é - *flowers # @ ¢ o
- *flowers # @ ¢ &

Figure 3.26: Support Anchors & Aliases

3.1.4 Interpretation

The results of the survey showed that the participants preferred double quoted flow scalars
over single quoted and plain scalars. A reason for this could be that those scalars are famil-
iar from other languages such as C, and that they are able to express arbitrary data. Asked
about block scalar styles most of the Elektra developers did not think that any of the two
styles were necessary.

In contrast to the decision about block scalars, the participants preferred the block styles
of sequences and mappings (collections) over the respective flow style. However, they also
decided that a useful YAML subset should include flow collections.

The Elektra developers decided against most of the specialized type features of YAML. Only
the result count for and against primary tag handles resulted in a draw.

The questions about general type support (schemas) showed that a minimal YAML subset
should include all types of the JSON Schema.

One of the few specialized features deemed necessary by the participants were anchors and
aliases. These two elements can be used to reference the same data multiple times in the
same document.

3.1.4.1 Summary

The list below contains a summary of the YAML features that should be part of a minimal
YAML subset according to the results of the discussion:

» double quoted flow scalars,

38

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.1. YAML Subset

block and flow collections,

JSON schema,

primary tag handle, and

« references.

3.1.4.2 Problems of the Survey

The survey was done in an early phase of the thesis to gather some insights about YAML
features for configuration data. While it showed some interesting results, we noticed prob-
lems that made the results unusable for the implementation phase.

One of these problems is the small sample size. With only 9 participants the maximum
margin of error assuming a 95% confidence interval is approximately 32%:

F0-3)

E=196-
S 96)

= 0.32(32%)

Another problem applies even when the margin of error is smaller, which is the case for
results with a high percentage for one of the options. The participants were not experts
in the area of parsing. At the time of the survey this was also true for the author of the
thesis. As a consequence the results included features, such as references, that are not
that interesting from a parsing standpoint, but would require significant work in the core
of Elektra, something that we consider out of the scope of the thesis.

3.1.4.3 Decision

In the end the decision about the implemented YAML features was largely a results of the
implementation phase (see Section Parsers). We built the parser starting with basic fea-
tures such as scalar support and then added additional features. We decided to implement
the following list of items for the YAML subset:

double quoted scalars,
« single quoted scalars,

« plain flow scalars,

block collections, and

« core schema (no tag support).

39

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

3.2. Mapping Between Elektra’s Data Types and YAML

3.2 Mapping Between Elektra’s Data Types and YAML

There are basically two more or less obvious solutions to map data between Elektra's
KeySet structure and a YAML file. Since a KeySet behaves similar to a map (see also sec-
tion “ KeySet "), connecting a certain key to a certain value, we could use YAML's map type
directly.

— KeySet
Key

[_ user/yaml/bloc]
Key

[— user/yaml/bloc/party]
Key

[_ user/yaml/bloc/party/little thoughts]
Key

[_ user/yaml/bloc/party/silent alarm]

Figure 3.27: An exemplary KeySet

Forexample, the KeySet shownin Figure 3.27 would then map to the following YAML data,

if we use user/yaml as mountpoint:

bloc:

bloc/party:
bloc/party/little: "thoughts"
bloc/party/silent: "alarm"

As we can see the resulting YAML file contains quite a lot of redundant data.

In our second solution we take the hierarchical nature of the database into account and
split on each part of a key. The result of this approach is the following YAML file:

bloc:
party:
little: "thoughts"
silent: "alarm"

The second solution removes unwanted redundancy and reflects the hierarchy much better.
However, the approach also has an obvious downside: What happens if we want to store a
valuein user/yaml/bloc or user/yaml/bloc/party ? To answer this question, let us look
at a tree representing the YAML data from above.

As we can see in Figure 3.28a the only nodes that store values are the leaves of the tree. Let
us assume we also want to store the value chain in user/yaml/bloc . Figure 3.28b shows
the resulting tree.

40

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.2. Mapping Between Elektra’s Data Types and YAML

(bloc) (bloc)

Y

Csilent) C little)

‘ alarm ‘ ‘ thoughts ‘ ‘ alarm ‘ ‘ thoughts ‘

(a) Initial representation (b) We add an additional value

(bloc) (bloc
\J

@1 chain

CORCY

‘ alarm ‘ ‘ thoughts ‘ ‘ alarm ‘ ‘ thoughts ‘

A\

(c) We add an additional Key contain- (d) The new Key overwrites the value
ing a value of the node block

Figure 3.28: The tree-like representation of YAML data shows the problem of adding non-
leaf values

We could now save chain asamap key inside bloc :

bloc:
chain:
party:
little: "thoughts"
silent: "alarm"

However using this approach we are unable to differentiate between the name and the value
of a Key . For example, if we add a new Key with the name user/yaml/bloc/chain it

would just overwrite the value of user/yaml/bloc (see Figure 3.28d).

Another option to fix our problem would be to use YAML's sequence type, and to store the
value of a Key and the data below the Key as first and second element of the sequence:

41

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
|
rk

3.2. Mapping Between Elektra’s Data Types and YAML

bloc:
- chain # First element stores value
- party: # Second element stores data below
- # ‘user/yaml/bloc/party’ contains no value
- little: "thoughts"
silent: "alarm"

However, this format is quite complicated. If we add support for Elektra’s array type - map-
ping arrays to YAML sequences - the situation is even worse.

To solve the problem we use another approach. We reserve the name ___dirdata to save
values in non-leaf nodes. The code below shows the mapping of our example data:

bloc:
___dirdata: "chain"
party:
little: "thoughts"
silent: "alarm"

Since we reserved the name ___dirdata the value below this key will always be a leaf of
the tree.

3.2.1 Mapping Arrays

Since Elektra’s array type and YAML sequences are similar, we want to map between these
data types.

— KeySet N

Key

[_ user/array Array Value]
Key

[_ user/array/#0 First Element]
Key

[_ user/array/#1 Second Element]
Key

[_ user/array/#2 Third Element]

Figure 3.29: The KeySet above describes an array containing three elements

If we use this approach, then the KeySet shown in Figure 3.29 would result in the YAML
data:

42

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Parsers

array:
"First Element"
"Second Element"
- "Third Element"

We are left with the problem, where to save the data of the parent Key of the array ele-
ments user/array . We cannot use the same approach as before:

array:
___dirdata: "Array Value"

- "First Element"

- "Second Element"

"Third Element"

since the result would be a YAML node that is neither sequence nor map. To fix this problem
we decided to convert the ___dirdata node to a sequence element:

array:
- " dirdata: Array Value"
- "First Element"
- "Second Element"

- "Third Element"

This approach produces valid YAML data and allows us to distinguish between array parents
that store values and parents that do not, by checking the first array element for the value
prefix ___dirdata: .

3.3 Parsers

The next section describes some of the implementation challenges we faced when we de-
veloped our parsing plugins.

3.3.1 Recursive Descent Parser

The first YAML plugin we developed used a handwritten recursive descent parser. This tech-
nique is quite popular, since there exists a natural correspondence between code and gram-
mar rules. Table 3.1 shows the correspondence between Augmented Backus-Naur Form
(ABNF) grammar rules and matching C like pseudocode.

43

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Parsers

Grammar Example Code
Terminal a="a" bool a() {
bool match = getc(file) == 'a';

if (!match) putc(file);
return match;

}
Sequence seq = rulel rule2 bool O {
return rulel() && rule2();
}

Alternative seq = rulel / rule2 bool O {
return rulel() || rule2();
}

Table 3.1: Correspondence between grammar rules and code in a recursive descent parser

While Table 3.1suggest writing a recursive descent parser is trivial, there are many problems
that the code above does not take into account.

Recognizer Only: The pseudocode only implements a recognizer for the language. At the
end of the parsing process we only know whether the input is part of the language
produced by the given grammar or not. Usually we want to build a data structure, in
our case a KeySet , from the given input.

Error Handling: The code does not contain any error handling. If a given input contains
errors, then the author of the data wants to know where these errors occurred. Other-
wise she or he has to check the whole input.

Left Recursion: If we translate a left recursive rules such as rulel = rulel / rule2 us-
ing the correspondences given in Table 3.1, then the resulting code would never termi-
nate. This is the case, since rulel calls rulel , which then calls rulel, and soon
and so forth (infinite recursion).

All of the problems above apply regardless of the programming language of the parsing
code. Since we implemented the recursive descent parser in C, another issue is the error
handling in Citself. The language does not provide a native exception handling mechanism.
We therefore used the return value to also transfer the error information between functions.
This approach is quite cumbersome, since it basically means that we have to check for an
error after each function call.

We used C macros to minimize the code overhead and complexity caused by the error han-
dling. Still, for a very small part of the YAML syntax described in the ABNF grammar of

44

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

M Sibliothek,
Your knowledge hub

3.3. Parsers

Figure 3.1 the parser contained about 374 lines of code (counted with cloc version 1.72).
While smaller feature additions, such as supporting multiple key-value pairs instead of only
one key-value pair were quite straightforward (14 additions, 1deletion), other modifications,
such as supporting block styles would take considerably more effort.

Since the first steps with a handwritten recursive descent parser showed that this approach
takes considerable effort we decided against extending the first prototype. Instead we
chose to use an already existing handwritten YAML parser.

NEL = %x85
WSLF = WSP / LF

; Printable characters from CO set

printable = HTAB / LF / CR

; Printable ASCII

printable =/ %x20-7e

; Next Line from C1 set

printable =/ NEL

; Characters after C1 set - Surrogate pairs
printable =/ %xa0-d7ff

; Private use characters - Replacement character
printable =/ %xe00-fffd

; All Unicode Character Starting from the Supplementary Multilingual Plain
printable =/ %x10000-10ffff

pairs = *WSLF "{" pair optionalAdditionalPairs "}" *WSLF

optionalAdditionalPairs = *("," pair)

pair = key ":" value

key = doubleQuotedSpace

value = doubleQuotedSpace

doubleQuotedSpace = *WSLF doubleQuoted *WSLF
doubleQuoted = DQUOTE content DQUOTE

content = *printable

Listing 3.1: ABNF grammar for a very small regular subset of YAML

The official YAML website prominently lists known YAML parsers. Since we decided to use
C or C++ as programming language - to improve the comparability of the parsers - we are
left with three basic options:

« Syck (YAML1.0)
« LibYAML (YAML1.1)

45

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Parsers

« yaml-cpp (YAML 1.2).

Out of these options Syck is not actively maintained any more. This leaves only LibYAML
and yaml-cpp. We decided to use yaml-cpp, since it supports the latest version of YAML
(YAML 1.2). With the help of the library we added the first plugin with full YAML support
called YAML CPP to Elektra.

3.3.2 ALL(*) Parser

The first parser generator we used as part of the thesis was ANTLR 4. As we already de-
scribed in the section “Parsing”, ANTLR 4 generates parsing code that uses an adaptive LL
algorithm called ALL(*). For the generated parser we used the C++ target for ANTLR, which
was added to the official repository of ANTLR 4 in 2016.

3.3.2.1 Initial Attempt

One of the first problems we encountered using ANTLR was the significant leading white
space used to describe the structure of YAML block collection. In YAML increased leading
white space starts a new child element, while decreasing amount of leading white space
ends an element. Users of programing languages such as Python or Haskell should be fa-
miliar with this style. Unlike Python’s grammar, YAML's reference grammar does not use
INDENT and DETEND tokens, but uses parameterized BNF productions instead. According
to the authors of the YAML specification this is necessary to describe the indentation rules
of YAML [BENO9]:

Many productions use an explicit indentation level parameter. This is less el-
egant than Python's “indent” and “undent” conceptual tokens. However it is
required to formally express YAML's indentation rules.

We first tried to parse different levels of white space using semantic predicates and rule argu-
ments [PQ95]. Semantic predicates allow us to disable certain parts of a grammar dynam-
ically, while we can use rule arguments to specify different amount of white space. This
approach worked, but only for a constant amount of white space. If we tried to specify a
different amount of leading spaces in a grammar rule, dependent on the amount of lead-
ing white space matched in the current rule, then the generated parser would be unable to
parse simple example input.

3.3.2.2 Indent & Detend Tokens

Since theinitial attempt for our ANTLR grammar did not show promising results, we looked
at how other ANTLR parsers handle significant white space.

46

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

i A W N a4

3.3. Parsers

Bart Kiers created an ANTLR grammar for Python 3, which captures the start of a docu-
ment and newline characters inside the lexer. The grammar then uses application-specific
code [Par13b, p. 48] to fill a stack with the current amount of indentation and emits INDENT
and DETEND tokens accordingly. Since this method looked promising, we created a basic
YAML parser that used the same algorithm. While this approach worked for some YAML
documents, we found simple input where the algorithm did not show the expected result.
Listing 3.2 shows an example input the parser was not able to handle.

primes:

one

three

Listing 3.2: Our indent/detend YAML parser is not able to handle the simple input above
correctly. It expects an indent or detend token in line 4, since the lexer adds
an indent token before the token one in line 3 and a detend token afterwards.
Ideally the lexer would not add these tokens, since one is just a simple scalar
that - unlike a sequence or map - does not start or end a new level.

Another problem of this approach are complex lexer rules for YAML scalars. The cause of
this problem are the parameterized BNF rules of the YAML specification, which do not trans-
late well to the basic lexer syntax used to specify characters and character ranges provided
by ANTLR.

3.3.2.3 Custom Lexer

For the final version of our ANTLR parser we looked at the source code of various YAML
parsing libraries. One of the most widely used parsing libraries is LibYAML. LibYAML is es-
pecially interesting since it was implemented by Kirill Simonov under the guidance of one
of the authors of the YAML specification: Clark Evans [Sim18].

Unfortunately LibYAML's code uses C macros quite heavily and is therefore not very read-
able. A quick look at the code and comments showed that LibYAML's handwritten lexer
already takes care of issues such as proper detection of plain scalars and simple keys. Since
the lexer uses a turing-complete language to scan the input, it is also able to handle nested
block collections.

The source code of LibYAML showed that we can take care of most of YAML's complexity
in the lexer. For further information we looked at LLVM’s YAML parser (written in C++)
and SnakeYAML Engine (written in Java). The lexer of both of these tools use the same
basicideas as LibYAML. However, the code of these libraries is easier to read than LibYAML's,
since LLVM's YAML parser and SnakeYAML Engine are written in higher level programming
languages.

47

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Parsers

The most interesting part in the lexer of the libraries described above, is probably how they
are able to add tokens for simple keys. The text below describes how the algorithm works
(in SnakeYAML Engine).

» The lexer keeps a list of tokens and stores how many of those token it has emitted.
The lexer can not simply emit a token unconditionally, since it might have to scan
additional tokens to check if the current token starts a simple key.

» When the lexer scans a YAML token that can possibly start a simple key at the current
position it adds this token as simple key candidate. For each simple key candidate
the lexer also stores the current position in the token list. This way it can insert a key
token at this position later, if a key candidate does indeed start a mapping key.

« The lexer only emits the current token, if there are currently no candidates for simple
keys. If there are simple key candidates it scans further ahead. Later it

1. removes simple key candidates if the current lexer position is more than 1024
characters’ ahead of the start position of the key candidate, or if the key candi-
date does not start in the current line.

2. adds a key token for a candidate, if it locates a key value symbol (:) for the key
candidate.

We used the algorithm described above in the final version of our basic ANTLR storage plu-
gin Yan LR. For that purpose we wrote a custom YAML lexer. Since the lexer takes care of
most of the work, the YAML subset grammar itself is quite simple, spanning about 30 lines.

3.3.3 LALR(1) Parser

After we finished the initial version of the ANTLR plugin Yan LR we developed a C++ plugin,
that uses a Bison parser, called YAMBi.

For the lexer of the plugin we used a slightly modified version of Yan LR’s lexer. This was nec-
essary since Bison, unlike ANTLR, does not provide helper methods to operate on a charac-
ter stream. For that purpose we wrote a simple class that mimics the behavior of ANTLR's
ANTLRInputStream.

Apart from the parsing algorithm, another difference between Yan LR and YAMBi is the
approach on how the plugin translates YAML datatoa KeySet . For YAN LR we use a listener
interface that operates on the parse tree created by ANTLR. Bison only offers parser actions.
These actions contain code that will be called after the parser matches certain parts of the
grammar.

"The YAML specification specifies this value to limit the lookahead needed to parse a simple key.

48

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Parsers

YAMBI uses parser actions to call methods of a class that stores temporary data to create
the KeySet . The code for this approach is actually not that different from the one of the

listener we use for Yan LR. The only problematic part was translating code that added a Key

for a YAML mapping that contains no value to a KeySet . For Yan LR we just check, if the
mapping parser rule matched a value. This data is already available when we enter the rule,
since the listener operates on a completed parse tree. In the corresponding grammar rule
of the Bison parser this information is not available yet. To solve this problem we added an
additional action to the Bison grammar and moved the code that adds an empty key into a
later phase of the conversion process.

3.3.4 Earley Parser

For the Earley parser plugin we used a parsing library called Yet Another Earley Parser (YAEP).
We used this library, since it uses C and C++ as programming language, which improves
the comparability with the other parsing tools we used. We also found another C Earley
Parser implementation by Amirouche Boubekki. However, his parser looked incomplete and
unmaintained.

Unlike ANTLR and Bison, YAEP does not generate parsing code, but uses a function to parse
input according to a user specified grammar. The output of YAEP is a heterogenous Ab-
stract Syntax Tree (AST). To construct the tree the user annotates the grammar with tree
construction rules (marked with #). For example, the first line in the code:

elements : element # 0
| elements element # elements(0 1)

.
2

states that the rule elements should return the same node element produced (0), if it
matches a single element . If the rule elements matched a rule elements followed by
the rule element (second line), then YAEP creates a new node with the name elements
that contains the nodes produced by the rule elements as first child (©) and the node
produced by element assecond child (1).

Since the output of our storage plugin YAwn should be a KeySet and not an AST, we cre-
ated a function that traverses (“walks”) the AST. This function calls certain methods of an
auxiliary class Listener that creates the KeySet . We already used this pattern for the
ANTLR plugin Yan LR. The most significant difference to the approach used in Yan LR is that
we had to write the tree walking code ourselves.

3.3.5 PEG Parser

All of the previously described parser generators and libraries divide the parsing process into
two distinct phases:

49

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.3. Parsers

1. lexing (generating a stream of tokens from the textual input), and

2. parsing (forming a data structure from the stream of tokens emitted by the lexer).

Figure 3.30 shows a graphical example of this process.

START_MAP

PLAIN: key
key: “value')| 4 Lexer |T) (VALUE | A Parser
Input (éUOTED: ”valuef)
Structured
Tokens Output

Figure 3.30: A lot of parser engines use two distinct phases (lexing and parsing) to process
input.

Unlike ANTLR, Bison and YAEP, the library PEGTL does not use a separate lexing phase. In-
stead the Parsing Expression Grammar Template Library (PEGTL) parses the input in one
sweep using C++ templates to combine simple matching functions into more elaborate
parsers. The process of combining parsers this way is also known under the name “parser
combinators” (see also Section “Parsing”). Besides the possibility to create custom match-
ing function, the library also supports:

« custom actions to react to matched input, and

« custom state to store contextual data.

Using the three features above we were able to create a PEG parser plugin called YAy PEG
that uses grammar rules that are similar to the ones described by the YAML specification.

The translation of some of the rules from the YAML specification to PEGTL rules was trivial.
For example, the rule:

ns-plain-first(c) ::= (ns-char - c-indicator)
| ((Il?ll | ll:|l | |l_l|)
/* Followed by an ns-plain-safe(c)) */)

translates to the following code:

struct ns_plain_first : sor<seg<not_at<c_1indicator>, ns_char>,
1 1

seq<one<'?', ':', '-'>,
at<ns_plain_safe>>> {};

50

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Parsers

Therule sor represents ordered choice, meaning that it tries to match it’s template argu-
ments:

1. seg<not_at<c_1indicator>, ns_char, and

1 1 1

2. seg<one<'?', ':', '-'s>, at<ns_plain_safe>>

in order. It succeeds if one of the argument matches, or fails if all of them fail. The rule
seq on the other hand tries to match all its template arguments in sequence and either

succeeds, if all of them succeed, or fails, if one of them fails. The rules at and not_at

represents the PEG predicates & and ! . The predicaterule at (&) succeeds if the current
input matches the given input and fails if it does not. The predicate rule not_at behaves
exactly opposite. Neither of these predicates consumes any input. The only remaining rule
is one , which tries to match any of the given characters, '?', ":' or in our example.

1 1

While translating the rule ns-plain-first(c) was not that hard, other rules that con-
tained nested contextual data such as:

1+block-sequence(n) ::= (s-indent(n+m) c-1-block-seq-entry(n+m))+
/* For some fixed auto-detected m > 0 */

proved more difficult to express in the PEGTL. To translate these kind of rules we added a
custom state that contains a stack for the indentation (the values n and n+m above). In
the example above a metarule puts the value n+m on the stack before the parser tries to
match s-indent(n+m) and c-1-block-seq-entry(n+m) multiple times. Afterwards the
metarule removes the last value from the stack leaving the previous value n. We called
the general metarule that makes this possible with_updated_state :

template <typename UpdateStateRule,
typename RevertStateRule,

typename... Rules>
struct with_updated_state :
seg<UpdateStateRule,

sor<seqg<Rules...>,
seq<RevertStateRule, failure>>,
RevertStateRule> {};

As we can see above with_updated_state first invokes the rule UpdateStateRule to up-
date the state, then it tries to match a sequence of all rules stored in the template parame-
ter pack Rules . Depending on the success of seq<Rules>,

1. the rule with_updated_state either applies RevertStateRule (third argument of
outermost seq) and succeeds, if seq<Rules...> succeeds, or

51

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.3. Parsers

2. it applies RevertStateRule and fails (second argument of sor) if seq<Rules...>
failed.

We used with_updated_state to create rules that update nested versions of the indenta-
tion (n and m in the YAML spec) and context (¢ in the YAML spec). Using this approach
we were able to translate all YAML rules for our subset.

For the conversion of the parsed data to a KeySet we used the parse tree facility provided
by PEGTL. The whole parse tree contains many unnecessary nodes. Fortunately PEGTL sup-
ports parse tree selection and tree rewriting. These features allowed us to keep the parse
tree simple. We then use custom tree walking code to walk this tree, invoking a listener at
certain nodes, to create a KeySet . This approach is very similar to the one we used for the
YAwn plugin (see Section “Earley Parser”).

3.3.6 Parser Combinator

As described in the previous section “PEG Parser” we already used a parser combinator li-
brary to create a parser for our basic YAML subset. Initially we also wanted to use a second
parser combinator library called mpc. However we decided against using mpc, since

« the parser engine only supports ASCIl encoded data,
» requires manual memory management - mpc is written in C - and

 does not provide built-in support for advanced features such as tree selection.

In the end we did not think the effort to create yet another parser was worth the time, since
at least in theory PEGTL seemed to be the better choice.

3.3.7 Augeas Lens

Augeas [Lut08] is a tool that uses so-called lenses to edit configuration data. The main ad-
vantage of lenses is that they handle both the parsing and writing process. Since Elektra
already includes a plugin for Augeas [Ber16], it sounds like a YAML lens is the ideal tool to
convert YAML data to a KeySet . In reality there are multiple problems with this approach.
Besides the issues mentioned by Berlakovich in his bachelor thesis [Ber16], one of the main
problems is that YAML is a context-sensitive language [Lut17], while Augeas offers only full
support for regular languages. With this in mind we tested the official YAML lens with Elek-
tra’s kdb tool. Since even the conversion of a single single key-value pair failed, we used
the tool augcheck to make sure the YAML lens is able to parse our example data. This tool
showed us that the YAML lens currently supports nested mappings, such as

52

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4. Additional Plugins

root:
key: value

but is unable to handle a non-nested mapping:

key: value

and other simple data. With the current state of the YAML lens and the problems of the
Augeas plugin in mind, we decided to not look any further into developing an Augeas lens
for our YAML subset.

3.4 Additional Plugins

While most of the problems of adding a YAML storage plugin deal with the parsing process
itself, there are other issues we handled using additional plugins. Elektra’s plugin system
allows us to use multiple plugins in conjunction as part of a so-called backend (see also
section “Plugins”).

3.4.1 Baseé4

One of the first plugins we used to improve the YAML support of Elektra was the Base64
plugin of Peter Nirschl [Nir18]. The plugin en- and decodes binary values using the Base64
algorithm [Jos06].

Since Elektra supports values containing binary data, we can use the Base64 plugin to en-
code this data and store it using ASCII values in a YAML file. However, the plugin used a
common prefix to mark base64-encoded data. For example, if we want to store the dec-
imal numbers 104 (0x68) and 105 (0x69), then the plugin would encode these values as
aCtk= and add the prefix @BASE64 . The resulting value would then be "@BASE64aCk="".
In YAML a value should not contain a prefix. Instead YAML marks base64 encoded data
with the tag (data type) !!binary . We therefore need to store the two values above as

'1binary "aGk=" in a YAML file. For this purpose we added a new mode to the Base64
plugin.
The new meta mode uses metadata to mark a key-value pair that contains a base64-encoded
value. Instead of a prefix Base64 adds a meta-key type with the value binary . Figure 3.31

shows an example, where Elektra uses the Base64 plugin to encode and decode the bytes
0x68 and 0x69 (code points for the ASCII string hi).

We should mention here that we only added support for the Base64 encoded data to the
YAML CPP plugin, since we decided to not support tags for our YAML subset (see Section
“Decision”).

53

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4. Additional Plugins

Get Storage
File YAML CPP

key: !!binary "aGK="

Set
KDB

("key",
\X68\X69 KEY_VALUE, “hi”,
KEV_META, "type”, "binary”,
. KEY_BINARY,

h i

KEY_END) ;

("key",
KEY_VALUE, "aGk=",

Read KEY_META, "type", "binary",
KEY_END) ;

Post Get Storage
Base 64

Pre Set Storage
Base 64

("key",
KEY_VALUE, “hi”
KEY_META, "type
KEY_BINARY,
KEY_END) ;

("key",
KEY_VALUE, "aGk
KEY_META, "type
KEY_END) ;

\X68\x69

Get
KDB

Set Storage

YAML CPP File

", "binary", key: !!binary "aCK="

Figure 3.31: The Base64 plugin decodes and encodes binary data.

3.4.2 Directory Value

We already described the problem of storing a value in a non-leaf (directory) Key inthe Sec-
tion “Mapping Between Elektra's Data Types and YAML". Since the problem is independent
of the parser engine and also relevant to other plugins, we implemented the functionality

in a plugin named Directory Value.

The Directory Value plugin adds an additional Key with the prefix ___ dirdata for ev-
ery non-array Key that has children and contains a value in the set direction (position
preset). For example, for the KeySet shown in Figure 3.32a, the plugin adds the Key

o user/yaml/bloc/__ dirdata and

o user/yaml/bloc/party/__ dirdata.

The plugin then moves the data stored in the parent Key to the newly created Key .

54

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

3.4. Additional Plugins

— KeySet
Key
Tuser/yam\/array J
Key
Fuser/yam\/array/#o __dirdata: Array Value]
Key
(— KeySet Tuscr/yam\/array/ﬂ First Element J
Key
Key
r user/yaml/array Array Value J Tuser/yam /array/#2 Second Element J
Key
r user/yaml/array/#0 First Element J T ey }
r Tger/ywm\/array/w Second Element J C Key J
Key Key
r J Tuser/yam\/b\oc/party }
Key Key -
r user/yaml/bloc/party Hard J ruser/yam\/b\oc/party/id\rdata Hard J
Key N Key
r user/yaml/bloc/party/little Thoughts J ruser/yam|/b|oc/par1y/|ittle Thoughts]
Key - Key
r user/yaml/bloc/party/silent _Alarm J Fuser/yamI/bloc/party/silent Alarm J

(a) We use the KeySet above as input (b) The KeySet above shows the result of the

for the Directory Value plugin at the conversion at the preset position.
preset position.

Figure 3.32: The Directory Value plugin adds data at the position preset (3.32b) and then
restores the original data (3.32a) at the position postget .

In addition, the plugin inserts a new Key for every array parent that stores a (non-binary)
value at the first position of the array. In our example, the plugin adds a new Key with the

value __ dirdata: Array Value atthe first position of user/yaml/array and increases
the index of all other array elements by one.

Figure 3.32b shows the KeySet after the whole conversion at the position preset. This
KeySet is also the input for the Directory Value plugin at the position postget .

3.4.3 YAML Smith
Elektra's storage plugins need to both:

1. convert a configuration file format to a KeySet , and

2. convert a KeySet to aconfiguration file format.

Since the second task is always the same, regardless of the parser library we use, we created
a plugin called YAML Smith that takes care of this task.

55

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.4. Additional Plugins

This plugin first determines all leaf keys of a KeySet . After that it counts the levels of the
parent key so it knows how many levels it has to skip for each leaf. The plugin then iterates
over each leaf key.

For every leaf key the plugin iterates over each level of the name. First it skips all levels of
the parent key. After that it skips all levels of the prefix it shares with the key that came
before. In this process it adds a constant amount of spaces for each of the levels to an
initially empty string and stores the result in a variable called indent . Now the plugin
adds each remaining level of the key in its own line. To do that it first writes the content of
indent , then adds the current part of the key, and after that the appropriate marker, either
- for an sequence, or : for a map. For each written level of the key the plugin increases
indent forthe next key part. In the last step for a specific leaf key, the plugin adds another
newline, the current indentation and finally writes the value of the key in double quotes.

56

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

CHAPTER

Evaluation

Inthe evaluation phase of the work we compare our parser plugins. For that purpose we first
describe our comparison criteria in the first section of this chapter. After that we measure
and analyze the plugins according to each criteria in the following sections. At the end we
determine the plugins that best fit our criteria.

4.1 Goals

The goal of this evaluation is to find one or more parser plugins that

« are fast,
+ have low resource usage,

use code that is

= both maintainable and

- easily extendible, and

has good error reporting capabilities.

To make sure that the plugins are reasonably fast we compare their execution time using
runtime benchmarks and answer RQ 1.

? RQ1. How does the theoretic runtime complexity of the parsing methods compare to the
actual measured runtime of the parsing code?

For the resource usage we analyze the heap memory consumption and answer RQ 2.

57

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.2. Evaluated Plugins

? RQ 2. How does the peak memory usage of the algorithms compare to each other? Do
some of the algorithms show nonlinear memory usage?

To make sure that the plugins are maintainable we analyze code sizes and take a look at the
cyclomatic complexity. Using the information gained in this task we answer RQ 3.

? RQ 3. How much work does it require to implement the plugins, i.e. how many lines of
code do we have to write to support our YAML subset for each parsing engine? How do the
amounts of handwritten code for the plugins compare to each other?

We also examine the extensibility and composability of the plugins looking at code changes
for specific bug fixes and feature additions. This step helps us to answer RQ 4.

? RQ4. Which parsing technique allows us to stay closest to the definition of the configu-
ration language? Does staying close to the given definition allow us to extend and improve the
parser and its support code more easily?

To make sure the plugins produce good error messages we also compare these messages for
specific input files in a detailed analysis and answer RQ 5.

? RQ5. What are the error handling capabilities of the parsing engines? How well can they
handle multiple syntax errors? How do the generated error messages compare to each other?

4.2 Evaluated Plugins

The mapping between the parsing plugin names and the parser libraries/generators might
be not apparent to everybody. Since we mainly use the plugin name in the evaluation we
provide an overview of the mapping in Table 4.1. The colored text shows how you can mem-
orize the mapping more easily. Apart from YAwn all plugins share at least two consecutive
letters with the used parsing library. The name of YAwn is based on the very bad that “pun”
that you might have to “yawn" if you get up earl(e)y.

Table 4.1: Plugin Overview

Plugin Library/Generator Parsing Technique
- Handwritten Recursive Descent Parser
Y T ALL(*)
o YAMBI Bison Look-Ahead LR (LALR)
e YAwn YAEP Earley Parser
e YAy PEC PECTL PEG Parser

58

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

4.3 Performance Analysis

In the following section we analyze the runtime and memory usage of our plugins for certain
input files. We first describe the overall methodical steps we took for both the runtime and
memory benchmarks. Then we describe, measure and analyze both of these criteria in their
own sections.

4.3.1 Method

To make all benchmarks reproducible we start by detailing the whole setup including used
hardware, software, build configuration options and how we generated the input files.

4.3.1.1 Hardware

For all of the tests we used the hardware described in Table 4.2.

Table 4.2: Hardware Setup

MacBook Pro (Retina, 15-inch, Late 2013)

CPU i7-4960HQ

2.6 GHz

6 MB L3 Cache

128 MB L4 Cache
RAM 16 GB

1600 MHz DDR3
HD Apple SSD SM1024F

1TB

4.3.1.2 Software

Table 4.3 shows the overall software setup for the benchmarks. We tested the performance
both on macOS and Linux. For the Linux setup we used the Mac version of Docker. The basis
of the runtime benchmark is commit 54a4c019 of Elektra’s code base, while we measured
the memory usage using commit ea418f17. We used two different commits, because we
measured the memory usage some weeks after the run time. No code of any of the tested
plugins changed between the two commits.

59

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

Table 4.3: Software Setup

(a) Mac Setup

(b) Linux Setup

oS mac0S 10.14.5 Docker 18.09.2, build 6247962
Base Image Debian sid (sid-20190506)
Compiler Clang 8.0.0 Compilers Clang 6.0.1/GCC 8.3.0
Generators ANTLR 4.7.2 Generators ANTLR 4.7.2
Bison 3.4.1 Bison 3.3.2
Libraries yaml-cpp 0.6.2 Libraries yaml-cpp 0.6.2
YAEP 550de4cc YAEP 550de4cc
PEGTL 2.8.0 PEGTL 2.7.1
Other Software CMake 3.14.4 Other Software CMake 3.13.4
Ninja 1.9.0 Ninja 1.8.2
hyperfine 1.5.0 hyperfine 1.5.0
cloc1.82

4.3.1.3 Build Setup

The following list shows the CMake options that we used for all benchmarks:

* -GNinja,

-DPLUGINS=ALL ,

-DENABLE_LOGGER=OFF , and

-DENABLE_DEBUG=0FF .

4.3.1.4 Input

-DCMAKE_BUILD_TYPE=Release

As first input for the benchmarks we used a JSON configuration file of the YAJL plugin that
we converted to block syntax using the YAML CPP plugin. We then modified the exported
data by removing all !<!elektra/meta> tags, which are not supported by the other YAML

plugins. We call the resulting file keyframes.yaml in the remainder of the thesis. This file
and all other data of the benchmarks is available here:

I http://rawdata.libelektra.org/tree/master/YAML

60

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

For another input file called combined.yaml we copy and pasted parts of test data and
various other YAML files in Elektra’s repository into a single file. While the file content is
nonsensical, it should at least contain a mix of YAML data that covers most of the code
paths of the YAML plugins.

Since both of these files are relatively small, keyframes.yaml contains 218 lines, while
combined.yaml contains 152 lines, we also generated data using a Python script that we

called generate-yaml . This script generates YAML maps using Universally Unique Identi-
fiers (UUIDs) as scalar keys and values. For the YAML scalars the script randomly selects
one of the three flow scalar styles:

« single quoted scalar,
» double quoted scalar, or
« plain scalar.
This always works since UUIDs contain no character sequence that has special meaning ac-

cording to the YAML specification. Using this method we generated two files composed of
mappings and scalars.

» The file generated.yaml contains 10 000 lines and has a maximum nesting of 26
levels.

» Thefile generated_100000.yaml contains100 000 lines and has a maximum nesting
of 31 levels.

We also created another script called cut_input to generate additional smaller input
files that contain the first 50000, 10000, 5000, 1000, 500, 100, 50, 10, 5 and 1 lines of
generated_100000.yaml .

4.3.2 Runtime Performance
4.3.2.1 Method

To compare the runtime performance we used the C application benchmark_plugingetset
that opens an Elektra plugin using a specific configuration file. For the whole benchmark
process we created a Bash script, called benchmark-yaml, that uses the benchmarking

tool hyperfine tocall benchmark_plugingetset using different YAML plugins. Figure 4.1
shows a diagram of this setup.

61

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

benchmark-yaml [file] -

Download non-cached |
YAML input file \

Import and export data |
using all YAML plugins |
R !

continue, if successful redo, if statistical

,,,,,,,,,,,,,,,,,,,,, .
|

Benchmark YAML plugins
oo —

Compare exported data |
BUSE _

continue, if successful

outliers were reported

hyperfine — é.report/export — ! for given input files \

1. call//
/ 2. call

\ —~~ 'e Statistical outliers |
5. call Lo T _

4. call \

benchmark_plugingetset .. 3. call benchmark_plugingetset ..
get / \ get

benchmark_plugingetset ..
get

\

4

benchmark_plugingetset ..
get

benchmark_plugingetset ..

get

Figure 4.1: The diagram above shows the basic sequence of steps to measure the runtime
performance of the YAML plugins.

For the measurement we use hyperfine, since this tool

1. automatically determines how often it should call benchmark_plugingetset for mean-

ingful measurement results,

2. shows us when it is time to redo the benchmark, by informing us about statistical

outliers, and

3. prints important statistical data such as the mean runtime and the standard deriva-

tion.

62

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

To make sure we repeat the benchmark every time hyperfine reports statistical outliers
we created the Shell script benchmark-runtime . This script calls benchmark-yaml for ev-
ery input file and repeats a benchmark, until hyperfine does not report any warnings.

The script benchmark-runtime does ignore warnings about runtimes under 5 milliseconds

though, since benchmark_plugingetset might take less execution time for small YAML
files.

4.3.2.2 Results

The graphs in this section show the results of the benchmark for different input files.

Linux/GCC
Linux/Clang

15.8£0.8 macOS
273+23 | Linux/GCC
258+ 1.6 | Linux/Clang

macOS

Linux/GCC
Linux/Clang
macOS

Linux/GCC
Linux/Clang
macOS
Linux/GCC
Linux/Clang

Oms 30ms
o YAMLCPP <YanLR eYAMBi e YAwn e YAyPEG

Figure 4.2: This bar chart shows the run time of the plugins for the input keyframes.yaml .

63

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.3. Performance Analysis

macOS

Linux/GCC
Linux/Clang
9.3+0.5 macOS
246+1.5 | Linux/GCC
22.8+1.5 | Linux/Clang
macOS
Linux/GCC
Linux/Clang
macOS
. Linux/GCC
% Linux/Clang
2 Linux/GCC
2 Linux/Clang
S . | .
@2 Oms 30ms
3 % ©YAMLCPP <“YanLR eYAMBi eYAwn eYAyPEG
S E Figure 4.3: This bar chart shows the run time of the plugins for the input combined.yaml .
(]
8=
52
% ‘ macOS
g5 Linux/GCC
§ < Linux/Clang
= 119.9+1.1 macOS
5 S 123.7%2.2 Linux/GCC
2. 124.5+52 Linux/Clang
=4 mac0s
2 ﬁ Linux/GCC
= Linux/Clang
50 macOS
el Linux/GCC
ge Linux/Clang
£g macOS
58 Linux/GCC
53 Linux/Clang
88 | .
55 Oms 385ms
oo ®YAMLCPP ©YanLR ®YAMBi eYAwn e YAyPEG
(el

Figure 4.4: This bar chart shows the run time of the plugins for the input generated.yaml .

64

Y 3ibliothek,
Your knowledge hu

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.3. Performance Analysis

Execution Time [s]

[
(2]

©
S
n

0.01s

[N
[%2]

0.1s

0.01s

=
(7]

I
Filg
»

0.01s

Linux
Clang 6.0.1
i R=0.67,p<2.2e-16
T R=0.68,p<2.2e-16
— R=074,p<22e-16
T \R=0.72,p<2.2e-16, 2
- A] ‘P—.
B = — |
Ellll 1 1 IIIIIIl 1 1 IIIIIIl 1 1 IIIIIIl 1 1 IIIIIIl 1 1 IIIIIIl
Linux
GCC 8.3.0
- R=0.64,p<22e-16
T R=0.74,p<2.2e-16
— R=067,p<22e-16
T R=0.74,p<2.2e-16,
:Illl 1 1 IIIIIIl 1 1 IIIIIIl 1 1 IIIIIIl 1 1 IIIIIIl 1 1 IIIIIIl
macOS
Clang 8.0.0
- R=0.81,p<2.2e-16
T R=0.83,p<22e-16
+— R=0.75,p<2.2e-16
T R=085,p<2.2e-16
EIII 1 IIIIIII 1 IIIIIII

10° 10* 10% 10° 10* 10°
Number of Lines/Scalars

Plugin

=== YAMBI

=== YAML CPP
Yan LR
YAwn

YAy PEG

——
——

Figure 4.5: The diagrams above show the runtime of the plugins for the input file

generated_100000.yaml and other files that contain only the first # number

of lines of this file.

4.3.2.3 Analysis

If we look at Figure 4.5 we see that the runtime seems to grow linearly after a certain number
of input lines. To verify this hypothesis we removed all samples with a line length smaller
than 1000. Figure 4.6 shows the result.

65

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.3. Performance Analysis

Execution Time [s]

1s

0.1s

0.01s

1s

0.1s

0.01s

=
(7]

o
=
2]

? RQ1.

Linux

Clang 6.0.1

R=0.95, p<2.2e-16
=— R=0.99,p<2.2e-16

R=0.95
R=0.99,

F—I 1 1 1 ' 1 1 LI} I 1 1 1 '
Linux

GCC 8.3.0

R=0.95,p<2.2e-16
= R=0.98,p<2.2e-16

R=0.97,p<2.2e-16
R=0.99,p<2,

F—II 1 1 1 | 1 1 III 1 1 1 |
macOS

Clang 8.0.0

' 1 1 LI} ' 1 1 ' 1 '
10° 10%° 10* 105 10°
Number of Lines/Scalars

generated_100000.yaml almost certainly grows linearly.

Plugin

——

——
——

YAMBI
YAML CPP
Yan LR
YAwn

YAy PEG

Figure 4.6: The diagrams above shows that the runtime for the first lines of the file

From the correlation coefficients (R) of 0.95 and higher we deduce that the runtime for all
plugins almost certainly grows linearly. This means that the approximate runtime of the
plugins should be the same. Now it is time to answer RQ 1.

How does the theoretic runtime complexity of the parsing methods compare to the
actual measured runtime of the parsing code?

The runtime of a non-backtracking recursive descent parser for an LL(1) grammar, as used by

66

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

YAML CPP, should be O(n). According to the literature the upper boundary for the runtime

of

ALL(*), used by Yan LR, is O(n*), but the algorithm often performs linearly [PHF14, p.
11,

LALR, used by YAMBI, is O(n) [Bax17],
an Earley parser, used by YAwn, is O(n?) for unambiguous grammars [HU69, p. 145],

a general PEG parsers, as used by YAy PEG, is exponential [Mos14, p. 1] (O(c™)) and
for PEG parsers that use memoization is O(n) [For02].

We now compare the theoretic runtimes with the measured runtimes shown in Figure 4.6.
The text below lists some of our observations.

The deterministic (aka non-backtracking) parsers (YAML CPP, YAMBI) show the ex-
pected linear behavior.

Yan LR also executes in linear time for the input. This is probably the result of the
relatively simple grammar used by the parser. At least for all our input and test files
we also checked that the grammar works with the simpler, but faster Strong LL(*)
(SLL(*)) strategy. This was indeed the case.

YAwn also shows the linear behavior, even though YAEP does not implement Leo’s
optimization [Leo91] that makes sure that the algorithm runs in linear time for every
LR(k) grammar.

Even YAy PEG’s backtracking parser without memoization shows linear behavior. As
we already mentioned before in “State of the Art” it is generally not clear, if memo-
ization provides runtime improvements for a certain grammar. This seems also one
of the reasons, why PEGTL does not use memoization, as can be seen in a quote of
Colin Hirsch [Hir16], one of the authors of PEGTL, below.

...it would increase the complexity of the library beyond our design goals
and only be useful in a very limited number of cases - in practice packrat
parsers often perform worse than simple recursive descent parsers despite
being in a better time complexity class.

Figure 4.4 shows that the constant factor between the linear runtimes can be relatively high.
For example on macOS, the fastest plugin YAwn is nearly five times faster than the slowest
plugin YAy PEG for the file generated.yaml :

Sy 41
—— =493 (4.1)

Other interesting observations concerning the runtime are listed below.

67

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

1. The difference between the runtime of the fastest and slowest plugin for large files is
nearly twice as large on macOS.

2. The OS seems to play a much more important role than the compiler for all of the
used YAML libraries.

3. While Yan LR and YAwn perform similarly on macOS and Linux, the difference be-
tween YAML CPP, YAMBI and YAy PEG on both operating systems can be quite signif-
icant.

Since the runtime of the plugins is quite different on the two benchmarked operating sys-
tems we also determined mean of the mean values for the file generated.yaml . We use a
weight of

+ 0.5 for the combination macOS/Clang,
+ 0.25 for the combination Linux/Clang, and

« (.25 for the combination Linux/GCC

and obtain the formula:

t=05- EmacOS/Clang +0.25- ¥Linux/GCC +0.25 'ZLinux/Clang (4.2)

Figure 4.7 shows a bar graph with the result of this calculation.

Oms 300ms
o YAML CPP YanLR e YAMBi e YAwn e YAyPEG

Figure 4.7: This bar chart shows the mean of the mean run times of the plugins according
to Equation 4.2 for the input generated.yaml .

4.3.2.4 Conclusion

We determined with a high confidence that all of the YAML plugins show a linear runtime
behavior (see Figure 4.6), at least for the file generated_100000.yaml . This puts all plugins,

68

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

(]
I
rk

4.3. Performance Analysis

into the same computational complexity class. The constant factors between the runtimes
can still be relatively high as we can see in Equation 4.1.

The fastest plugin according to the mean of the mean runtimes (see Figure 4.7) is YAwn if
we weigh the results of the two tested operating systems equally. This is interesting, since
Earley himself mentions in his dissertation [Ear70, p. 122] that his parsing technique was
too slow for practical use at the time, as you can see in the quote below.

First we ask, what impact will our algorithm have on the parsing done in produc-
tion compilers for existing programming languages? The answer is, practically
none. Production compilers require guessing time proportional to n with a fairly
low coefficient of n.

Yan LR and YAMBI showed the second best runtimes, and were about 1.6 times slower than
YAwn. YAML CPP, which was, according to the results of Figure 4.7, about 2.5 times slower
than Yawn takes the second to last place. Yay PEG was the slowest plugin on both tested
operating systems, and is about 3.5 times slower than the fastest plugin according to Fig-
ure4.7.

4.3.3 Memory Usage
4.3.3.1 Method

We measured the heap memory usage with the heap profiler Massif. Most of the other setup
is similar to the one we used for the runtime benchmark, described in the section “Runtime
Performance”. We still use the C application benchmark_plugingetset toexecute the plu-
gins. The input files are also the same as before.

This time we do not need to determine the mean value of the results. Massif always pro-
duces the same output on the same hardware/software combination, since it runs the in-
strumented program benchmark_plugingetset on a “synthetic CPU" [Val19].

To automate the process of measuring the memory usage for the different input files, we
created a Shell script called benchmark-memory . We only benchmarked the memory usage
on Linux, since Massif did not support macOS 10.14 at the time we executed the benchmark
script.

4.3.3.2 Results

The graphs in this section show the results of the memory benchmark for different input
files.

69

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.3. Performance Analysis

Linux/GCC
Linux/Clang

23.8 Linux/GCC
23.8 Linux/Clang

Linux/GCC
Linux/Clang
Linux/GCC
Linux/Clang

Linux/GCC
Linux/Clang

oOMB 25MB
©YAMLCPP «YanlLR eYAMBi eYAwn e YAyPEG
Figure 4.8: This bar chart shows the peak heap memory usage of the plugins for the input
keyframes.yaml .

Linux/GCC

Linux/Clang
Linux/GCC
| Linux/Clang
Linux/GCC
Linux/Clang
Linux/GCC

Linux/Clang
Linux/GCC
Linux/Clang

OMB 25MB

o YAMLCPP «YanlLR eYAMBi eYAwn eYAyPEG

Figure 4.9: This bar chart shows the peak heap memory usage of the plugins for the input
combined.yaml .

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

70

Y 3ibliothek,
Your knowledge hu

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

Y 3ibliothek,
Your knowledge hu

4.3. Performance Analysis

Linux/GCC
Linux/Clang
483.5 Linux/GCC
| Linux/Clang

Linux/GCC

Linux/Clang
Linux/GCC
Linux/Clang

Linux/GCC
Linux/Clang

700MB
®YAMLCPP «YanLR eYAMBi eYAwn eYAyPEG

oMB

Figure 4.10: This bar chart shows the peak heap memory usage of the plugins for the input

generated.yaml .

71

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.3. Performance Analysis

10 000 MB —
- R=0.93,p=5.2e-10
_— R=0.95,p=1.1e-11
" R=0092 , p=1e-09
- R=0.95,p=8.1e-12
1000 MB—
g | Plugin
F‘E B === YAMBI
() B “+= YAML CPP
g
%] Yan LR
-}
o == YAwn
© 100 MB—
T = === YAy PEG
10 MB

7lll 1 1 I|IIII| 1 1 I'Illl| 1 1 I'Illl| 1 1 l'llll 1 1 l'llll
10° 10* 10% 10° 10* 10°
Number of Lines/Scalars

Figure 4.11: The diagrams above show the peak heap memory usage of the plugins for the
input file generated_100000.yaml and other files that contain only the first n
number of lines of this file.

4.3.3.3 Analysis

Figure 4.11 shows that the memory usage seems to grow linearly for large line numbers. To
analyze this behavior further, we limited the data for the graph to observation where the
line number is 1000 or higher. Figure 4.12 shows the graph after this modification. From
the correlation coefficients (R) of 1 and the low probabilities of the null hypothesis being
wrong (p) we conclude that the memory consumption almost certainly grows linearly for

72

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

w 3ibliothek,
Your knowledge hu

4.3. Performance Analysis

all plugins.
3000 MB —
1000 MB —
iy i Plugin
g i g
& - ~— YAMBI
o ~— YAML CPP
S 5
* Yan LR
D 300MB—
o == YAWN
o
T 5 —— YAy PEG
100 MB —
30 MB—

10° 10%° 10* 10*° 10°
Number of Lines/Scalars

Figure 4.12: This diagram above shows that the memory usage of the YAML plugins almost
certainly grows linearly for the first # lines of the file generated_100000.yaml

4.3.3.4 Conclusion

We conclude the subsection about the memory evaluation, by answering RQ 2.

? RQ2. How does the peak memory usage of the algorithms compare to each other? Do
some of the algorithms show nonlinear memory usage?

73

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.4. Code Size

While the asymptotic memory usage of all plugins grows linearly according to our measure-
ments, the factors between the memory usages can be quite high. If we look at the data for
the file generated.yaml (see Figure 4.10), then YAwn performs best, while YAMBI needs
about 20% more heap memory. The memory usage of the other plugins is much worse. Yan
LR allocates about three times the heap memory of YAwn, YAML CPP takes about 3.4 times
the memory amount of YAwn, and YAy PEG needs even more than 4 times the heap memory
of YAwn.

4.4 Code Size

4.41 Method

We created a Shell script called count-lines that counts the code lines of the YAML plu-
gins using the tool cloc. Since cloc does not support Bison grammar files, we wrote code
that removes comments and empty lines from a Bison grammar, and afterwards counts
the remaining lines using the Unix tool wc .

4.4.2 Results

Figure 4.13 shows the results reported by count-lines . As you can see, we did not have
to write a grammar for the library based YAML CPP plugin. For the other plugins, we either
created a grammar (Yan LR, YAMBI, YAwn), or specified the grammar as handwritten code
(Yay PEG). Only the ANTLR (Yan LR) and Bison (YAMBI) based plugins use generated code.
YAwn, which is based on YAEP, uses the grammar directly.

Handwritten
24 Grammar

717 | Handwritten
1108 | Generated
86 Grammar

Handwritten
Generated

50 Grammar
Handwritten
Handwritten

0 Lines of Code 2100 Lines of Code
o YAML CPP YanLR e YAMBi e YAwn e YAyPEG

Figure 4.13: This bar chart shows the line counts of of the YAML plugins.

74

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

4.4. Code Size

4.4.3 Analysis

Figure 4.13 shows the individual line counts and therefore answers the first part of RQ 3.

? RQ 3. How much work does it require to implement the plugins, i.e. how many lines of
code do we have to write to support our YAML subset for each parsing engine? How do the
amounts of handwritten code for the plugins compare to each other?

To answer the second part of the question we have to analyze the individual code sizes fur-
ther.

Figure 4.13 show that YAML CPP requires the least amount of code. This results is not surpris-
ing, considering that the plugin uses yaml-cpp, a library that already represents the YAML
file using high-level abstract data structures. We can convert these data structures into
Elektra's KeySet structure relatively easily, keeping the code size of the plugin small.

For a fair size comparison we also have to take the library code itself into consideration. We
use the command

cloc --include-lang='C++,C/C++ Header' src include

to determine the code size of version 0.6.2 of the yaml-cpp library. The command reports
8413 lines of code, showing us that parsing the full YAML standard requires a relatively large
amount of code.

If we look at the other YAML plugins, we had to write the least code for Yan LR, followed
by YAMBI, YAwn, and YAy PEG. The higher line counts of YAMBi and YAwn compared to Yan
LR are not that surprising, considering that we implemented some functionality already
provided by ANTLR, for those plugins ourselves.

For YAMBI we wrote two classes,

+ one that represents the input for the lexer (63 code lines), and
« another class that stores data about a lexer symbol (53 code lines).

The sum of the lines of code (63 + 53 = 116) explains the difference between the amount
of handwritten code between Yan LR and YAMBI (717 — 609 = 108) pretty well.

For YAwn we also added a symbol (69 code lines) and input class (101 code lines) as we did
for YAMBI. Additionally we added

« tree walking code (124 code lines),
« alistener (126 code lines),

« an error listener (94 code lines), and

75

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.4. Code Size

« classes storing positional information (38 code lines).

The 552 code lines mentioned above are responsible for about half of the code of the whole
plugin (1%& = 548).

YAy PEG, with its scanner-less parsing engine based on C++ templates, uses the most hand-
written code. Just like for YAwn we wrote

« tree walking code (128 lines of code), and

« alistener (122 lines of code)

for the plugin. The other handwritten code take care of parsing (822 code lines) and the
communication between the plugin and Elektra (115 code lines). The amount of parsing
code of YAy PEG is quite large, compared to the grammar code of the other plugins. How-
ever, we have to consider

 that YAy PEG's parsing code supports a subset of YAML that is a little bit larger, than
the one of the lexer based parsing plugins (Yan LR, YAMBi, YAwn), and

« that the parsing code also takes care of the work usually done by a lexer.

If we look at the lexer based plugins, they use between 352 (YAMBI) and 416 (Yan LR) code
lines for the lexer.

Handwritten code requires manual work, and is therefore the most interesting criteria when
we compare the code size of the plugins. However, the difference between the amount of
generated code between the ANTLR based Yan LR plugin (1108 code lines), and the Bison
based YAMBI plugin (2046 code lines) is also interesting. One reason for the big difference
might be that ANTLR also requires a runtime library, while Bison generates all code needed
for the parser. Both of these approaches have advantages and disadvantages. While Bisons'
approach means no additional dependencies, ANTLR's runtime library provides space ad-
vantages. If multiple programs on the same machine use an ANTLR based parser, they can
use the same compiled code, which only has to be stored in memory and on disk once.

4.4.4 Conclusion

If we take the amount of handwritten plugin code as main criteria for the code size compari-
son, then YAML CPP takes the lead, requiring the least amount of code. This is not surprising,
considering that the parsing code of the plugin is part of the external yaml-cpp library, and
not part of the plugin code itself.

The parser based plugin with the least amount of code is the ANTLR based Yan LR. The main
reason for thisis, that ANTLR already generates code for functionality that we had to create

76

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.5. Code Complexity

ourselves for the other plugins. While writing this support code is usually not that hard, it
is certainly an advantage that ANTLR already provides support for common tasks, such as

tree walking.

4.5 Code Complexity

4.51 Method

For the code complexity analysis we measured the Cyclomatic Complexity (CC) of

« the parsing libraries and generators,

« the generated code (Yan LR, YAMBI), and the

« handwritten plugin code

with the analyzer lizard. Since we had to measure the complexity of many different code
parts and we wanted to improve the reproducibility of the measurement we created a script
for this task called measure-complexity .

4.5.2 Results

Table 4.4: The table below shows the measurement results of the script measure-complexity .

Plugin Part NLOC Average CC Warnings FunctionRT NLOCRT
YAML CPP yaml-cpp 7841 2.5 7 0.01 0.09
Plugin 556 4.6 0 0 0
Yan LR ANTLR C++ Runtime 15760 23 18 0.01 0.15
Plugin 610 21 0 0 0
Generated Code 105 1.4 0 0 0
YAMBI Bison 12677 4.8 22 0.04 0.28
Plugin 667 23 0 0 0
Generated Code 1526 2.9 8 0.07 0.42
YAwn YAEP 5944 3.9 10 0.04 0.28
Plugin 990 2.5 0 0 0
YAy PEG PEGTL 8858 1.6 4 0.01 0.05
Plugin 1094 29 0 0 0

CC...Cyclomatic Complexity

Function RT =

Warnings

Number of Functions

NLOC...Noncommented Lines Of Code

NLOCRT =

NLOC with Warnings

NLOC inside Functions

77

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Ease of Extensibility and Composability

4.5.3 Analysis

The most interesting parts of Table 4.4 are the last two columns that show the relative
amount of code that has a higher cyclomatic complexity than 15. None of the handwritten
plugin code contains any function with a CC over this threshold. This is the result of using
the static code analyzer OCLint to check the code while we developed the plugins. Other
than that, only the code generated by ANTLR contains no code with a cyclomatic complexity
over 15. The cyclomatic complexity of the generated code by Bison is higher, which does not
seem that surprising considering that LR parsers, contrary to LL parser, are almost never
written by hand, because of their inherent complexity. If we look at the parser libraries and
parser generators themselves, PEGTL is the library containing the least amount of code over
the complexity threshold, followed by yaml-cpp, and ANTLR’s C++ runtime. Bison and YAEP
are the generator and library that contain the most code with a high cyclomatic complexity.

4.5.4 Conclusion
While cyclomatic complexity has “never been unambiguously correlated with defective or

unmaintainable code” [Mar+17], the measurements in this section provide at least some
indication about code that might be problematic due to high code complexity.

4.6 Ease of Extensibility and Composability

One advantage of parsing libraries and parser generators over handwritten parsers is that
we can update the language grammar without having to rewrite parsing code. This way
we can extend the parsed YAML subset easily without many manual code changes. In the
first part of the next section we analyze how many code line changes it took to fix bugs in,
and add minor features to, the YAML plugins. The amount of code changes provides a good
metric on how much effort it takes to extend the parser plugins.

In the second part of this section we will take a look at how the composability of our parsing
code influences the extensibility. One option to create an extensible system is to base it on
components. We can reuse these components to keep the amount of code for a new feature
or bug fix low. We can imagine that the rules of a grammar represent components in our
parsing systems. Parsing systems without a separate lexing phase such as PEGTL take the
composability idea one step further. In PEGTL we can compose the parser for the whole
grammar out of smaller parser that build on each other. We will analyze if the component
based parser of YAy PEG provides extensibility advantages over the other parsers. We will
also answer RQ 4 in this part of the thesis.

? RQ 4. Which parsing technique allows us to stay closest to the definition of the configu-
ration language? Does staying close to the given definition allow us to extend and improve the
parser and its support code more easily?

78

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

4.6. Ease of Extensibility and Composability

4.6.1 Plugin Updates

In the next subsections we look at the effort it took to add certain features to, and fix certain
bugs in, the YAML plugins.

4.6.11 Method

As measurement for the extendibility effort we use the amount of changed code lines. Since
we want to keep the comparison fair, we only look at the code changes needed for a certain
feature or bug fix, excluding additional test code and documentation updates.

4.6.1.2 Support for Elektra’s Boolean Data Type

Elektra's Key data structure usually saves data as untyped character string. We can add

type information for a certain key by adding a type meta key (see also Section “ KeySet).
If we do that Elektra ensures that applications store and retrieve the right kind of data for
that specific key. Elektra’s C++ API offers a direct way to store and retrieve a typed value via
templated functions. We used these functions to improve the support for boolean data in
the YAML plugins.

YAML'’s]SON schema represents boolean data as scalar with the canonical value false or

true [BENO9]. More advanced schemas, such as the core schema offer additional aliases
for true and false values. For the YAML plugins in this thesis we only added support for the
JSON schema though. For this to work we had to translate the YAML values false and
true to Elektra's boolean values 6 and 1.

Just like Elektra, yaml-cpp, the library used by the YAML CPP plugin, also offers templated
functions to retrieve and set boolean values. One problem of yaml-cpp’s APl is that there
seems to be no way to check for the type of a YAML node, without the possibility of throw-
ing an exception [Bed13]. This can be problematic for the runtime efficiency, since YAML
CPP might trigger multiple exceptions before it converts a YAML node to a correctly typed
Elektra key. To improve the runtime performance of YAML CPP we checked the textual value
of a YAML node before we converted it. The implementation of this more complicated ap-
proach modified 16 code lines (15 additions, 1 deletion), while the implementation of the
direct approach - that might cause more exceptions for data without many boolean values
- modified only 9 additional code lines (8 additions, 1 deletion).

Adding support for boolean values modified 10 lines in Yan LR’s code base (9 additions, 1
deletion), and 9 lines (8 additions, 1 deletion) in each of the other plugins (YAMBI, YAwn,
YAy PEG). The similar line counts are a direct result of all of the plugins using a listener
interface to convert parsed YAML data. To add boolean support we only had to change
code in one of the functions of the listeners.

79

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Ease of Extensibility and Composability

Direct Approach

Complex Approach

0 Lines of Code 20 Lines of Code

o YAMLCPP «YanlLR eYAMBi eYAwn e YAyPEG
Figure 4.14: This bar chart shows the number of modified lines needed for adding better
boolean support to the YAML plugins.

4.6.1.3 Conversion of Empty Values

Depending on the context, empty content (empty nodes) in a YAML stream might represent
null values. Elektra should store these null values in a key with a zero length binary value.
This was not the case in the first version of the parser based YAML plugins (Yan LR, YAMBI,
YAwn, YAy PEG). Instead the plugins would incorrectly convert these null values into empty
strings.

Another similar problem was that the lexer based plugins would not convert empty content
null values right before the end of a file (EOF). The result of this bug was that the lexer
would not terminate for a stream such as the one shown in Figure 4.15.

-—I—| Key

k e y : EOF {system/k‘e{-y
t

“empty node”
null

O0— Name —o0 0O-Value-0

|

Figure 4.15: The YAML data on the left represents a map that contains one key-value pair
with the name key that stores a null value. The Key structure on the right
shows the converted YAML data, if we store it directly below the Namespace
(NS) system .

Figure 4.16 shows the amount of changed lines for the Yan LR, YAMBI, YAwn, and YAy PEG
plugin. The code changes for all the lexer based plugins (Yan LR, YAMBI, YAwn) are almost
identical, since we had to fix the problems in the lexer and listener code, which is quite
similar for all of those plugins.

For YAy PEG we only had to fix the support for empty nodes in the middle of a YAML stream,
since YAy PEG’s parsing code already handled empty nodes at the end of a file correctly. This

80

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Ease of Extensibility and Composability

is probably a direct result of using grammar code that is quite similar to the one from the
YAML specification. The notable difference between the amount of code we added for the
empty node fix (5 additions, 1 deletion) compared to the one of the lexer based plugins (1
addition) is also a result of YAy PEG’s grammar. YAy PEG uses the same code path to add
empty and non-empty mapping values. The lexer based plugins on the other hand check for
an empty value inside the listener code for a key-value pair. We could also use this approach
in the YAy PEG plugin, but that would possibly require substantial code changes to the tree
walking code.

1 Empty Node
5

Empty Node

| Empty Node Before EOF

Empty Node Before EOF

Empty Node
Empty Node Before EOF
Empty Node

0 Lines of Code 10 Lines of Code

e YAMLCPP «YanlLR eYAMBi eYAwn eYAyPEG

Figure 4.16: This bar chart shows the additional lines needed for fixing the null value support
of the YAML plugins.

4.6.1.4 Conversion of Empty Documents

According to the YAML specification an empty file corresponds to a null value. We did not
consider this in the initial versions of the YAML plugins, which meant the empty documents
shown in Figure 4.17 were translated incorrectly. Figure 4.18 shows the amount of code lines
we modified to fix this problem for the Yan LR, YAMBI, YAwn and YAy PEG plugin.

Empty document

Figure 4.17: The examples above show two options on how to store “nothing” (null) using
YAML.

81

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Ease of Extensibility and Composability

0 Lines of Code 20 Lines of Code

o YAMLCPP «YanlLR eYAMBi eYAwn eYAyPEG

Figure 4.18: This bar chart shows the amount of code lines we modified to fix the conversion
of empty documents.

When we implemented the fixes for the empty document conversion we noticed that we
added nearly identical code to the listener (Yan LR, YAwn, YAy PEG) respectively driver
(YAMBI) of the plugins. These modifications took 6 additions for Yan LR and 5 additions
for the other plugins. We should mention here that we could also have avoided two addi-
tional lines for the Yan LR plugin, which consisted of a using statement and the inclusion
of an optional header file.

The other code line differences were a result of grammar updates to

» Yan LR (3 additions, 1 deletion),
» YAMBI (7 additions, 5 deletion), and

» YAwn (5 additions, 1 deletion)
and updates to tree walking code of:

* YAwn (4 additions), and

« YAy PEG (5 additions).
The relatively high number of changes to the grammar of YAMBI is deceiving, since we also
moved a 4 line grammar block (4 additions, 4 deletion) in the bug fix update for the plugin.

Figure 4.19 takes this code block movement and the optional line changes for Yan LR into
account to give a better overview of the code changes we needed to implement the bug fix.

82

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.6. Ease of Extensibility and Composability

0 Lines of Code 20 Lines of Code

YAMLCPP «YanLR eYAMBi eYAwn eYAyPEG
Figure 4.19: This bar chart shows the “minimal” code line modifications we needed to fix the
conversion of empty documents.

4.6.2 Component Based Grammars and Extensibility

The YAML specification includes a detailed grammar description of the language in a pa-
rameterized BNF like syntax. The grammar rules of the specification are very reminiscent
of parser combinator functions [Hut92; HM96]. This is not that surprising considering that
YAML's reference parser is also based on parser combinators. A large part of the reference
parser actually uses slightly modified versions of all of the rules of the YAML spec. Since “the
order of alternatives in the grammar is significant” [BENO9] (ordered choice) and some of
the parsing rules also uses positive and negative lookahead we can also categorize YAML's
reference grammar as an extended version of a PEG.

In the section “PEG Parser” we already mentioned that the grammar description of the YAy
PEG plugin resembles the YAML specification grammar quite closely. It is time to analyze,
if this close resemblance provides advantages over the other YAML plugins, which use a
description that is quite different to the one of the YAML specification.

Table 4.5: The table below lists some advantage and disadvantages of PEG based (YAy PEG)
and lexer based (Yan LR, YAMBI, YAwn) plugins regarding extensibility.

e YAy PEG ® o Lexer Based Plugins
+ Grammar Extension via “Copy & Paste” + Simple Grammar

- Complicated Grammar - Handwritten Lexer

- Debugging

Using the PEG library certainly offers advantages considering the extensibility of the gram-
mar, since we can more or less copy the grammar rules from the specification or reference
parser and modify them slightly for PEGTL. Fortunately the reference parser already con-
tains a relatively large test suite, which means the chance of errors in the reference gram-
mar is quite low. This is helpful, since the specification grammar consists of 211 rules, which
can be quite complicated. This is also one of the disadvantages of using PEGTL, since the
grammar of YAy PEG is more complicated than the one of the lexer based plugins. The com-
plexity is a result of using a single pass to parse YAML data instead of using a separate lexer

83

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.7. Error Reporting

and parser phase. The single parsing phase also makes debugging harder since we cannot
debug the lexer and parsing code separately.

Keeping the information above in mind we can now answer RQ 4.

? RQ4. Which parsing technique allows us to stay closest to the definition of the configu-
ration language? Does staying close to the given definition allow us to extend and improve the
parser and its support code more easily?

The parser of YAy PEG certainly stays closest to the grammar definition of the YAML specifi-
cation. This closeness is helpful, if we look at the extension of the grammar. However, since
YAy PEG'’s grammar code also handles low-level details of the parsing process we have to
consider these details later in the parsing process, which reduces the extensibility of the
parsing support code compared to the one of the lexer based plugins.

4.6.3 Conclusion

The examples at the start of this section show that the extensibility of the different YAML
plugins depend on the specific bug we want to fix or the feature we like to add. Sometimes
the code changes can be quite similar, at least for all the lexer based plugins (Yan LR, YAMBI,
YAwn). Other times we need to change code in nearly all parts of a plugin. In these cases
plugins that use generators and libraries that provide more built-in code support are easier
to extend. If we take the built-in support code into account, then the order of ease of ex-
tensibility for the lexer based plugins is roughly Yan LR, followed by YAMBI and then YAwn.

YAML CPP’s extensibility depends on the specific part we need to extend. While we can
modify the conversion code of the plugin easily, fixing bugs in the lexer or adding features,
such as comment preservation would require us to change the library code of yaml-cpp.
This would take more effort, than it would for the other YAML plugins for a similar feature,
since we would have to update yaml-cpp’s handwritten parser code instead of the code of
a more compact grammar file.

YAy PEG'’s advantage considering grammar extensibility is that the plugin uses parsing code
that is very similar to the one of the YAML specification. This allows us to extend the
grammar relatively easily by taking rules from the YAML specification and modifying them
slightly. The similarity of the grammar code can also be a disadvantage though, since the
support code of the plugin needs to consider the many rules of the specification grammar
compared to the relatively simple grammar rules of the lexer based plugins.

4.7 Error Reporting

While there exist techniques to enhance error reporting, by using external tools or modify-
ing a parser engine (see Section “Error Handling"), we will only consider built-in solutions

84

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.7. Error Reporting

or slight modifications to a grammar. We do this, since extending a parser engine is out of
scope of the thesis and elaborate extensions would also make the comparison concerning
error reporting unfair.

4.7.1 Initial Erroneous Input

Listing 4.1 shows the erroneous YAML data we used initially to compare the error reporting
capabilities. Listing 4.2 and 4.3 show two solutions to fix the problematic part of the YAML
document.

key:
- element 1
- element 2

Listing 4.1: The indentation of the sequence item - element 2 is incorrect in the code
above. One of the most obvious solutions to fix the syntax error would be to add
a single space character right before - element 2 (see Listing 4.2). Another so-
lution is to remove - element 2 altogether (see Listing 4.3).

key:
- element 1
- element 2

Listing 4.2: Usually a person would fix the error shown in Listing 4.1by adding an indentation
character before the sequence item - element 2.

key:
- element 1

Listing 4.3: One of the easiest solutions to fix the code in Listing 4.1 for a computer program
istoremove - element 2.

4.7.2 Basic Error Messages
We started the comparison by listing the basic error messages for the YAML plugins. These
messages contain the error location and the auto-generated error text by the parsing en-

gines. For the sake of brevity we removed data that is identical for all plugins, such as the
filename of the parsed file.

85

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.7. Error Reporting

Table 4.6: Basic error messages

Plugin Parser Message

YAML CPP yaml-cpp yaml-cpp: error at line 3, column 1: end of map not found
Yan LR ANTLR 3:1: mismatched input '- ' expecting BLOCK END

YAMBI Bison 3:1: syntax error, unexpected ELEMENT,
expecting KEY or BLOCK END
YAwn YAEP 3:1: Syntax error on token number 9:

“<Token, ELEMENT, -, 3:1-3:2>"
YAy PEG PEGTL 3:0(18): parse error matching tao::yaypeg::eof

4.7.2.1 Interpretation

As we can see in Table 4.6 all of the parsing engines report the error location for the code
from Listing 4.1 correctly. The error messages also shows that the question whether the
first position after a newline is at column O or 1, is still open for debate. We also see that
YAML CPP, Yan LR, and YAMBI show information about the expected element at the error
position (end of a block collection is missing). YAML CPP provides the best error message,
since the plugin also shows which type of end element is missing (end of map). This type
of information can also be determined easily in all of the lexer-based parsing engine plu-
gins (Yan LR, YAMBI, YAwn). We modified them accordingly. Table 4.7 shows the slightly
improved error messages, highlighting the updated part of the text.

Table 4.7: Slightly improved error messages

Plugin Parser Message

YAML CPP yaml-cpp yaml-cpp: error at line 3, column 1: end of map not found
Yan LR ANTLR 3:1: mismatched input '- ' expecting MAP_END

YAMBI Bison 3:1: syntax error, unexpected ELEMENT,
expecting MAP_END or KEY
YAwn YAEP 3:1: Syntax error on token number 9:

“<Token, ELEMENT, -, 3:1-3:2>"
YAy PEG PEGTL 3:0(18): parse error matching tao::yaypeg::eof

After the slight modifications to the YAML parser plugins we decided to take a closer look
at the error handling capabilities of each of the parsing engines on their own in the next
subsections.

4.7.3 ANTLR

ANTLR uses an error listener class that provides a callback method that includes access to

86

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.7. Error Reporting

the location,

« the offending symbol,

the used recognizer class,

the thrown exception, and

the default error message

for each detected error. As we already saw in Table 4.7, the default error message provided
by ANTLR usually describes an error already well. For the initial version of the Yan LR plu-
gin, we only stored the last error message reported by ANTLR. Since ANTLR uses methods
such as token deletion and insertion to keep parsing a file, even if it contains multiple er-
rors [Par13b], the last error message usually will not provide the most obvious information
on how to fix an error.

key: I element 1
- element 2 # Incorrect Indentation!

Listing 4.4: The indentation of the sequence element - element 2 isincorrectin the code
above.

For example, for the input shown in Listing 4.4 the parser produced the following error out-
put:

2:37: extraneous input 'MAP END' expecting {STREAM_END, COMMENT}

To fix this defect in the Yan LR plugin we stored all error messages, which resulted in the
better error report:

2:1: mismatched input '- ' expecting MAP_END
2:37: extraneous input 'MAP END' expecting STREAM_END

You might also notice that in the error report COMMENT is missing from the list of expected
tokens. This difference is the result of an ambiguity in the ANTLR grammar we fixed.

One of the more recent improvements in error messages of modern compilers such as Clang
and GCCis the ability to highlight erroneous input. We also implemented this error report-
ing mechanism based on the Java code in The Definitive ANTLR 4 Reference, page 158 [Par13b].
The text:

2:1: mismatched input '- ' expecting MAP_END

- element 2 # Incorrect Indentation!
AN

2:37: extraneous input 'MAP END' expecting STREAM_END

- element 2 # Incorrect Indentation!
N

87

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.7. Error Reporting

shows the improved error message for Listing 4.4. One thing that this error report still lacks
is a more human friendly representation of the tokens. Someone with limited knowledge
of the YAML specification and Yan LR’s lexer code will probably not know what MAP_END ,

MAP END and STREAM_END mean. One option to improve this situation is to replace the

text used by the lexer (MAP END) and the parser (MAP_END , STREAM_END). The update of
therelevant lexer codeis trivial, since we can create tokens containing arbitrary text. For the
parser code generated by ANLTR, we used a script that uses regular expressions to replace
the relevant strings such as "MAP_END" and "STREAM_END" . After this update the error
report for the YAML data in Listing 4.4 looks like this:

2:1: mismatched input '- ' expecting end of map
- element 2 # Incorrect Indentation!
AN
2:37: extraneous input 'end of map' expecting end of document

- element 2 # Incorrect Indentation!
N

4.7.4 Bison

In the firstimprovement step for the error messages of the Bison parser, we defined alterna-
tive names for tokens, just as we did for Yan LR. Bison supports this feature directly, which
means we did not have to write a script to replace the symbols in the generated parser code.
After this update the error message from Table 4.7 changed from:

3:1: syntax error, unexpected ELEMENT, expecting MAP_END or KEY

to

3:1: syntax error, unexpected element, expecting end of map or key

We then looked into the error recovery capabilities of Bison. Unlike ANTLR the generated
parser does not do error recovery by default, but rather exits on the first error. To improve
the error behavior, Bison offers the possibility to add the predefined error tokentoagram-
mar. Every time the Bison parser encounters an error it will produce this token [DS19]. We
modified the grammar to allow errors inside YAML maps and sequences:

88

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.7. Error Reporting

pairs : pair
| pairs pair
| pairs error /* Allow errors after key-value pairs */

.
b

elements : element
| elements element
/* Allow errors after elements of a sequence */
| elements error

This way the parser is able to report multiple syntax errors.

key 1: I element 1

- element 2
key 2: scalar
- element 3

Listing 4.5: The indentation of the sequence item - element 2 is incorrect in the code
above. Another error is that the value of key 2 can not be both a scalar

(scalar) and a sequence (containing - element 3).

After the update the parser produces an error message that looks like this:

2:2: unexpected start of sequence, expecting end of map or key
- element 2
N

4:8: unexpected start of sequence, expecting end of map or key

- element 3
N

for the input shown in Listing 4.5. As you can see above, we also added the erroneous input
to the error message, just as we did in the Yan LR plugin.

4.7.5 YAEP

Just as Bison, YAEP also requires that we add error tokens to the grammar to specify lo-
cations for error recovery. We therefore defined the same error recovery locations inside
sequences and maps, as we did for Bison. The other updates were quite similar too: We
improved the name of tokens inside error messages and added the erroneous input to the
error message.

After all these changes the output for the YAML data from Listing 4.5 looks very similar to
the one produced by YAMBi:

89

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.7. Error Reporting

2:2: Syntax error on input “start of sequence”
- element 2
N

4:8: Syntax error on input “start of sequence”

- element 3
N

The only thing missing is the information about the expected type of token.

4.7.6 PEGTL

We already talked about general error strategies for PEG parsers in the Section “Error Han-
dling”. PEGTL does neither implement the error handling strategy described by Ford [For02],
nor labelled failures [Mai+16]. Instead the library offers a grammar rule called must , which
states that a certain rule, specified as template argument, has to match at a given position
or an error will be raised. We can customize the code executed for a given must rule ac-
cording to this template argument. Effectively this strategy allows us to specify different
error messages for each expected but unmatched rule.

As we described in the section “PEG Parser”, we tried to keep the grammar of our PEG parser
plugin YAy PEG close to the grammar of the YAML specification [BENQO9]. This also meant
that the grammar contained only a single must rule that makes sure that the grammar
matched the whole input:

struct yaml : if_must<l_yaml_stream, eof> {};

The code above also explains the initial version of the error message shown in Table 4.7:

3:0(18): parse error matching tao::yaypeg::eof

which tells us that the parser was unable to match the expected “end of file” in line 3 of the
input. We customized the error message above to show a more user friendly text:

3:0: Incomplete document, expected “end of file”

- element 2
N

As you can see we also added the erroneous input to the message, just as we did for the
other parsing engines.

The same single error message, regardless of the error, is not helpful. For good error report-
ing we need to add other must rules. However, adding failure points (must rules) changes
the behavior of the grammar and might even cause the parser to fail on valid input. To mini-
mize the probability of incorrect grammar changes we only added a few rules for situations
we were sure that the remainder of a grammar rule had to match. For example, when the
parser reads an unescaped single or double quote character (outside of a block scalar) at the
beginning of a line or after a white space character, it found a quoted flow scalar. Therefore

20

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

1
2
3

4.7. Error Reporting

1. thetext after theinitial quote has to be followed by a (possibly empty) text containing
only certain characters, and

2. the last character of the flow scalar has to be an unescaped quote.

If one of those two rules is not fulfilled, then the parser found a syntax error. After we
updated the code accordingly the error message for the YAML data

"double quoted

looks like this:

1:14: Missing closing double quote or
incorrect value inside flow scalar
"double quoted

AN

As you may have noticed we included both error possibilities in the error message, since
reacting to both errors independently would require fundamental changes to the grammar.

4.7.7 Final Error Messages
4.7.71 Element Outside of Sequence

Table 4.8 shows the final error messages for the code of Listing 4.1:

key:
- element 1
- element 2

91

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

4.7. Error Reporting

Table 4.8: Final error messages for the YAML code of Listing 4.1

Error Messages

error at line 3, column 1: end of map not found.

mismatched input '- ' expecting end of map

- element 2
AN

: syntax error, unexpected element,
expecting end of map or key

- element 2
AN

€

: Syntax error on input

- element 2
AN

: Incomplete document, expected “end of file”

- element 2
N

Interpretation

« All the parsing engines report the correct error location.

» YAy PEG and YAwn do not tell us in which YAML node the error occurs. All the other
plugins report that a map ended prematurely.

» The error message of YAMBI reports an additional option - besides deleting the input
- to fix the error: adding a key (in the line between - element 1 and - element 2).

The list below shows a ranking of the plugins according to the interpretation of the error

messages above.

2. YAMLCPP, Yan LR

3. YAy PEG, YAwn

4.7.7.2 YAML Data Containing Multiple Errors

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

The YAML data from Listing 4.1 only contains a single syntax error. To compare the error re-
covery capabilities of the parsing libraries, we used YAML data that contains multiple syntax
errors as input (see Listing 4.6).

thele

(]
blio
nowledge

(]
I
rk

92

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

N

O 0 N O U1 AW

4.7. Error Reporting

key 1:
key 2:
- element 1
- element 2
element 3 # Missing -
key 3: "double quoted scalar"
key 4:
key 5:
- element 4
- element 5
key 6: # Not on same level as key 5
- element 6
key 7: 'single quoted scalar'
key 8:
- element 7
scalar # Not a key

Listing 4.6: The YAML data above contains three syntax errors that we directly describe in
the comments right next to the error positions.

Table 4.9 shows the error messages of the different storage plugins for the YAML input of
Listing 4.6. As we can see the error output is quite different.

93

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.7. Error Reporting

Table 4.9: Error messages for the YAML code of Listing 4.6

Plugin Error Messages
YAMLCPP error at line 5, column 5: end of map not found.
Yan LR 5:5: mismatched input 'element 3' expecting end of sequence
element 3 # Missing - °
ANNANNNNANNNAN
6:1: extraneous input 'end of sequence' expecting end of map
key 3: "double quoted scalar"
N
11:4: mismatched input 'start of map' expecting end of map
key 6: # Not on same level as key 5
N
13:1: mismatched input 'end of map' expecting end of document
key 7: 'single quoted scalar'
N
YAMBI 5:5: syntax error, unexpected plain scalar,
expecting end of sequence or element
element 3 # Missing - °
ANNANNNNNAN
11:4: syntax error, unexpected start of map,
expecting end of map or key
key 6: # Not on same level as key 5
N
13:1: syntax error, unexpected key, expecting end of document
key 7: 'single quoted scalar'
N
YAwn 5:5: Syntax error on input “element 3”
element 3 # Missing - °
ANANNNNANNAAN
11:4: Syntax error on input “start of map”
key 6: # Not on same level as key 5
N
13:1: Syntax error on input “key”
key 7: 'single quoted scalar'
N
16:1: Syntax error on input “scalar”
scalar # Not a key
ANNANN
YAy PEG 5:0: Incomplete document, expected “end of file”

element 3 # Missing - °

94

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

4.7. Error Reporting

Interpretation

» YAML CPP and YAy PEG do not provide any error recovery.

YAy PEG shows the correct line number for the first error, but not the correct column
number. The plugin also only provides a very generic error message.

« All of the plugins that use error recovery (Yan LR, YAMBI, YAwn) print a spurious error
messages about an error at line 13.

« Yan LR shows two error messages for the first syntax error, and one for the second
syntax error. Error messages one and three describe the problematic part of the YAML
data reasonably well.

« Compared to Yan LR, YAMBI’s (non-spurious) error messages also describe a second
option to fix the erroneous input. However, while the first error message provides
a useful suggestion on how to fix the error (insertion of a sequence element), the
second option in the second error messages (insertion of a key), will probably confuse
anyone that does not know how YAMBI's lexer works.

« YAwn prints the same error messages as YAMBI, without the crucialinformation about
the expected element. In addition YAwn prints a fourth error message that addresses
the third syntax error.

According to the interpretation we concluded that all of the plugins with error recovery
provide about the same level of useful error information. YAML CPP describes the first error
reasonably well, while the error message from YAy PEG is not that useful. This leaves us
with the following ranking of the error capabilities of the plugins based on the input of
Listing 4.6:

1. Yan LR, YAMBI, Yawn

2. YAML CPP

3. YAy PEG

4.7.8 Conclusion

We conclude this section by answering RQ 5.

? RQS5. What are the error handling capabilities of the parsing engines? How well can they
handle multiple syntax errors? How do the generated error messages compare to each other?

95

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8. Most Promising Plugin

While the parsing libraries do not produce particularly great error messages, at least the
ANTLR (Yan LR) and Bison (YAMBI) plugin, provide error messages that are comparable in
quality to the ones of the handwritten parsing engine (YAML CPP).

One advantage of Yan LR, YAMBI, and YAwn is that their parsers offer error recovery. They
are therefore able to report multiple errors in a file. This is something that YAML CPP is
currently not able to do. ANTLR offers error recovery for free, while Bison and YAEP require
the addition of error tokens to the grammar. This can be problematic, since these error
tokens can produce conflicts in the case of Bison, and ambiguous parsing results in the case
of YAEP.

The parsing plugin that showed the least useful error messages is YAy PEG. While the PEGTL
offers basic error handling facilities that are able to provide good error messages for char-
acter level errors, producing good error messages for “high-level” errors would require a
substantial amount of work.

4.8 Most Promising Plugin

Using the information we collected in this chapter it is time to determine the most promis-
ing YAML plugin. Let us start by saying that we think all of the parser based YAML plugins
(Yan LR, YAMBI, YAwn, YAy PEG) could be extended to parse a more complete subset of
YAML. However, some of them fit all the requirements we have for a more complete YAML
plugin better than others. Since the whole evaluation is quite extensive we summarize gen-
eral information about the used parser libraries in Table 4.10 and the concrete parsing plug-
ins in Table 4.11.

96

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8. Most Promising Plugin

Table 4.10: Overview of the used parsing libraries and their characteristics

yaml-cpp ANTLR Bison YAEP PEGTL
Parser » Recursive o SLL(*) » LALR Earley * PEG Parser
Techniques Descent o ALL(*) . :_EF{_R Parser
 GLR
Lexer Handwritten Integrated External External Integrated
Support (Regex) (PEG)
Grammar » C++ Code « Standalone « Annotated « Annotated Templated
« Annotated with Code with AST C++ Code
with Code Rewriting
Rules
Conversion + Node Class « Parser » Parser o AST « Parser
Interface Actions Actions Actions?
e« AST o« AST
e Tree
Walking
(Listener
& Visitor)
Input API _
(Encoding) X
Token
Handling -
AST
Support - X
Tree
Walking - X X X
Tree
Rewriting - X X
Error
Listener - X X X
Error E E
Recovery X X
Language o C++ o C++ e C e C o C++
Support - CH# o C++ o C++
« Go * Java
* Java
« JavaScript
« PHP
 Python
« Swift

A Since PEGs use backtracking the action code has to take “accidentally” taken actions into con-

sideration.

E Error recovery support requires non-trivial changes to the grammar.

97

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8. Most Promising Plugin

Table 4.11: Overview of the YAML parsing plugins and their characteristics

YAML CPP Yan LR YAMBi YAwn YAy PEG
Parser Recursive ALL(*) LALR(1) Earley Parser PEG Parser
Technique Descent
Lexer Used Existing Custom C++ Custom C++ Custom C++ Templated
Lexer Lexer Lexer Lexer C++ Code
Handwritten « Converter e Lexer e Input e Input e Grammar
Code Functions” « Grammar Support Support + State
o Listener £ « Token » Token o Listener
* Error Supportt Support * Error
Listenert o Lexer » Location Listener
« Grammar Info * Tree
« DriverP o Lexer Walking
* Grammar
» Listener
e Error
Listener
e Tree
Walking
Run TimeR 188.9 ms 122 ms 119.9 ms 74.9 ms 261 ms
Memory UsageM 540.7 MB 482.2 MB 195.6 MB 160.4 MB 676.6 MB
Code Lines" 609 741 852 146 187
Extensibility & srwsrn Kk ke *kkFrte Kok A Kok A
Maintainability*
Error X X
Recovery
Error Kok oA Kk kA Kk kA Kk kA Kt e dete
Messages*
Main 6.8.2017 - 6.2.2018 - 25.8.2018 - 11.9.2018 - 26.9.2018 -
Development 10.10.2017 27.7.2018 10.9.2018 9.10.2018 20.1.2019

Time FrameFf

E Here we extended generated code.

F The data in this row specifies the date from the initial commit of the respective plugin up to the
first mehrged version of the plugin. The time frames do not include all the time necessary for
research.

P The driver contains similar code that we implemented in the “Listener” and “Error Listener” parts
of the other plugins.

L This number includes the line number of the grammar, but not any generated code, according
to the data shows in Figure 4.13.

M This row shows the (rounded average) peak heap memory usage in MB of the plugins for the

input generated.yaml according to the data shown in Figure 4.10.

R This row contains the mean of the execution times in milliseconds for the file generated.yaml
show in Figure 4.7.

T We translated the node based structured output produced by yaml-cpp into a KeySet .

X This line shows an overall rating according to the conclusion section about the respective fea-

ture.
98

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8. Most Promising Plugin

4.8.1 Requirements for an Extended YAML Plugin

Issue #2330 of Elektra’s issue tracker specifies some of the desirable features for an ex-
tended YAML plugin. We list them below in their order of importance according to Elektra’s
maintainer.

1. Round Trip: Assume a plugin

a) converts some YAML data to a KeySet , then
b) writes back the converted KeySet to a YAML file, and afterwards
c) reads the new YAML file again.

In this scenario the KeySet read in step a) and step c) should be identical.

2. Auxiliary Data: Additional file data such as comments and ordering of keys should
be kept, when the plugin adds new data to a YAML file.

3. Maintainability & Modularity: The code of the plugin should be readable and ex-
tendable. Specific tasks should be handled by specific parts of a plugin or other spe-
cialized plugins.

4. Error Messages: The plugin should provide good error messages for common mis-
takes.

5. Line Information: The plugin should store line information to provide this data to
other plugins and users.

4.8.2 Elimination Process

To minimize the list of candidates for extension we first eliminate some of them according
to the requirements listed in the previous section.

YAML CPP The library used by the plugin (yaml-cpp) does currently not store comments
(2. requirement) or line information (5. requirement). Adding this kind of infor-
mation should be possible, but would require large modifications of yaml-cpp's
code base.

YAy PEG The error message information provided by the plugin is quite bad and does
therefore not meet requirement 4.

After the elimination three possible candidates are left. It is now time to answer our main
research question.

929

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.8. Most Promising Plugin

? Main Research Question. Which parsing systems allows us to create a configuration
parsing plugin that is easily extendable, has low maintainability cost and provides good error
messages, while offering decent runtime performance and low memory overhead.

Yan LR

YAMBI

YAwn

Compared to YAwn, the plugin performed worse in the runtime benchmark. It
also requires more memory to parse our example data than YAMBi and YAwn.
On the other hand, ANTLR provides a lot of support code we had to write for
the other plugins ourselves.

The plugin performed wellin the runtime performance test on Linux and - com-
pared to Yan LR - only required a relatively small amount of memory for our ex-
ample data. The plugin does require more support code than Yan LR though. A
problem considering the maintainability of the plugin might be the LR parsing
algorithm. If there are any problems like shift/reduce conflicts in the gram-
mar, then a developer usually needs at least some information on how the LR
parsing algorithm works to fix the problem. Bison also offers considerable less
support code for common parsing task than ANTLR (see Table 4.10), which can
be a problem, e.g. if we are not able to only use parser actions for an extension
of the YAMBi plugin.

While the plugin showed good runtime performance and the lowest memory
usage, we found two disadvantages, compared to YAMBi and Yan LR.

1. YAEP is more or less the work of a single author: Vladimir N. Makarov.
Recently another author, Alexander Klauer, fixed some of the problems of
the project and modernized parts of the code base. However, compared
to ANTLR and Bison, the community behind the parsing library is rather
small.

2. YAEP requires more support code than Yan LR and even YAMBI. While this
support code is not that complicated, it would still be something we need
to maintain and extend for a more complete support of YAML and the
requirements listed in “Requirements for an Extended YAML Plugin”.

With all the information above in mind, we decided that the best candidate for extension
is Yan LR. We think ANTLR's advantages, such as

 providing the most complete set of support code of all of the tested libraries and
generators, and

» producing good error messages without any changes to the grammar,

make up for the worse runtime performance compared to YAEP, and the relatively large
heap memory usage compared to Bison and YAEP.

100

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

CHAPTER

Conclusion & Future Work

5.1 Conclusion

In the thesis we compared different parsing techniques using the KeySet data structure of
the configuration framework Elektra. The aim of this work was to find the most promising
parsing technique for configuration files using a subset of the language YAML as example.

In a detailed evaluation we determined the answer to our auxiliary research questions.

? RQ1. How does the theoretic runtime complexity of the parsing methods compare to the
actual measured runtime of the parsing code?

The benchmarks showed a big difference between the runtime of the parsing plugins espe-
cially for large files. However, at least for our example data, all the plugins showed linear
runtime behavior. Even the PEG parser library PEGTL that has a theoretical exponential run-
time in the worst case showed this linear behavior. Interestingly, YAEP, the library that uses
one of the most powerful parsing techniques tested (Earley parsing), showed the best run-
time performance on macOS. On Linux the library was only slightly slower than the fastest
parser, based on Bisons’ LALR code.

? RQ 2. How does the peak memory usage of the algorithms compare to each other? Do
some of the algorithms show nonlinear memory usage?

All of the parser plugins showed a linear peak memory usage increase for a linear increase
of the size of the input. The difference between the peak memory usage was substantial,
though. The YAEP parser needed the least amount of memory, while the Bison parser re-
quired about 20% more memory. The other parsers required about three, up to more than
four times more peak heap memory.

101

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.1. Conclusion

? RQ 3. How much work does it require to implement the plugins, i.e. how many lines of
code do we have to write to support our YAML subset for each parsing engine? How do the
amounts of handwritten code for the plugins compare to each other?

The parser based on the YAML library yaml-cpp required the least amount of handwritten
code. This was not surprising, since we can translate the high level output of the library
relatively easily. If we only consider the plugins for which we wrote or generated the parsing
code ourselves, then the ANTLR based plugin takes the lead, followed by the plugins based
on Bison, YAEP and PEGTL.

? RQ4. Which parsing technique allows us to stay closest to the definition of the configu-
ration language? Does staying close to the given definition allow us to extend and improve the
parser and its support code more easily?

We showed that the PEG library PEGTL allowed us to stay much closer to the representation
of the specification of our example language YAML. This closeness provides utility, when we
compare the ease of extensibility of the language grammar. However, in the case of YAML,
the language specification is rather low-level. This means the extension of the support code
that converts the data in Elektra's data structures takes considerable more effort than for
the lexer based parsers.

? RQ5. What are the error handling capabilities of the parsing engines? How well can they
handle multiple syntax errors? How do the generated error messages compare to each other?

Only ANTLR offers multi-error message support (error recovery) without requiring any gram-
mar changes. The Bison and YAEP parsers on the other hand need manual grammar updates

to add error recovery points, which can cause conflicts (Bison) or ambiguous output (YAEP).
Overall the error messages produced by the ANTLR, Bison and YAEP parsers are not great,

but comparable to the ones produced by the handwritten recursive descent parser of yaml-
cpp. Since yaml-cpp’s parser does not support error recovery it is only able to report the

first syntax error. The library with the most limited built-in error handling capabilities was

PEGTL. The parser plugin based on this library only shows a single very limited error mes-
sages that might also not report the correct error location.

The answer to the research question above helped us to answer our main research question.

? Main Research Question. Which parsing systems allows us to create a configuration
parsing plugin that is easily extendable, has low maintainability cost and provides good error
messages, while offering decent runtime performance and low memory overhead.

In the end, ANTLR, the parsing engine

« that provides the most complete support code,

102

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

5.2. Future Work

« that produces good error messages, and

« offers error recovery without any changes to the grammar

showed the best overall results according to our evaluation. Bison and YAEP also showed
promising results, while yaml-cpp and PEGTL did not fit all requirements for an extended
YAML storage plugin well. In the beginning of the thesis we also considered using the bidi-
rectional programming library Augeas and the parser combinator library mpc. However, in
the implementation phase we found that both of these libraries are unsatisfactory for our
needs. Augeas is not able to process the context sensitive language YAML, and mpc does
not seem to offer any significant advantage over the similar library PEGTL.

Overall this thesis contributes a thorough comparison of state of the art implementations
of parsing techniques in the context of configuration data. While the current literature
mostly compares different parsers that produce different output, we verify that our parsers
produce the same data, providing a fair comparison of the given parser engines. Unlike
other research we do not only compare the execution time and memory usage of the parser
plugins, but also provide a detailed analysis of other important criteria, such as the error
handling capabilities of the evaluated parsers.

5.2 Future Work

While we think that the comparison presented in this theses is thorough, we found some
limitations future research could take into consideration.

5.2.1 Additional Data Formats

The YAML file format we used as example is quite complicated. We therefore used a custom
lexer instead of a standard tool, like ANTLR's lexer or flex, to make the parsing process of the
white space rules of the language easier. It would make sense to also write, generate, and
compare parsing code for simpler data configuration formats, such as JSON, TOML or INI.
These formats should make it easier to use a standard lexing tool, and allow us to determine
how much influence a lexing tool has on the overall parsing process.

5.2.2 Type Support

We did not consider proper type support in the thesis. While we added support for binary
data to the YAML CPP plugin, most of the other code we wrote does not support types
properly. This can lead to problems, such as unwanted conversions from boolean data to
integer values.

103

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

5.2. Future Work

5.2.3 Lexer Level Error Messages

The custom lexer code written in this thesis does not detect or report errors at the token
level. Adding support for this feature should be relatively easy and allow us to compare er-
ror messages for common low-level mistakes. This is especially interesting, since we would
be able to assess, if the PEG library PEGTL is able to provide the same error message quality
as handwritten custom code for low-level errors.

5.2.4 Additional Parser Engines/Generators

To improve the comparability of the runtime and memory benchmarks we only considered
tools written in C or C++ in this thesis. However, some of the most interesting parsing
research focuses on tools written in other programming languages.

LPegLabel (Lua) This library supports some of the recent interesting features for error
handling in PEGs, such as labeled failures [Mai+16] and syntax error re-
covery [MM18].

Marpa (Perl) Marpa is a parsing library based on Earley’s parsing algorithm. The li-
brary implements improvements to the algorithm from Leo [Leo91] and
Aycock and Horspool [AH02]. According to the author [Keg19]: “Marpa
is intended to replace, and to go well beyond, recursive descent and the
yacc family of parsers”.

Menhir (OCaml) Menbhirisan LR parser generator that provides support for “example based
error reporting” [Jef03; Kas+18; PR19]. In theory we should be able to
generate parsers with Menhir that produce error messages comparable
to the ones of handwritten recursive descent parsers, used in tools such
as Clang or GCC [K&s+18, p. 2].

104

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Figures

1.1 Simplified view of a parsingprocess n
1.2 The diagram above shows an architecture overview of Elektra. Plugins, are
among other things, responsible for parsing and writing configuration data. The
coreis written in C and provides a low-level API to access configuration settings.
Bindings provide higher-level access to configuration data in C and other lan-
guages, such as Java, Lua, PythonandRuby. 12
21 Matchingin top-down and bottom-upparsers 17
2.2 Both the Chomsky grammar on the left and the PEG on the right describe the
same language {a"b"n > 0}. 19
2.3 Lenses provide a way to both parse (get) and write (put) structured data
(Source: Boomerang Programmer’s Manual). 20
2.4 The Venn diagramm above shows an overview of the overall expressiveness of
the formats usually used for configuration data. Please note, that the size of
the circles does not show the level of expressiveness of a certain category of file
formats, i.e. a circle twice as large does not represent twice the level of expres-
SIVENESS. . . & o o e e e e e e e e e e e e 21
2.5 InElektraa Key stores a single key-value pair. The first part of the name speci-
fiesthe namespace (NS). L L e 24
2.6 Elektra uses KeySet structures to save multiple key-value pairs. 26
2.7 Elektra uses the character # to mark arrayelements 26
2.8 Elektrausesa KeySet tosave metadatafora Key.. 27
2.9 Elektra uses multiple pluginsto processdata. 28
31 PlainFlowScalar e 31
3.2 SingleQuotedFlowScalar 31
3.3 DoubleQuoted FlowScalar 32
34 FoldedBlockScalar. 32
3.5 [LiteralBlockScalar L 32
3.6 IndentationHeader. 32
3.7 ChompingHeader e 33
3.8 FlowStyle e e 33
3.9 BlockStyle e 33
300 FlowStyle 33
105

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
10
edge

b

now!

i
r

3.1
3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21
3.22
3.23
3.24
3.25
3.26
3.27
3.28

3.29
3.30

3.31
3.32

4.1

4.2
43
44

4.5

4.6

4.7

4.8

4.9

Block Style e 34

Support for ComplexKeys 34
SupportStreams L L e e e 34
YAMLVErsiON o e e e e e e e e e e 34
Tag Handle Definition 35
NamedTagHandle 35
PrimaryTagHandle. e 35
SecondaryTagHandle 35
LocalVerbatimTags e 36
GlobalVerbatimTags 36
Non-SpecificTag e 36
FailsafeSchema 37
JSONSchema e e 37
CoreSchema e 37
Additional Types L e 37
Support Anchors & Aliases 38
Anexemplary KeySet e 40
The tree-like representation of YAML data shows the problem of adding non-

leafvalues e 41
The KeySet above describes an array containing threeelements 42
A lot of parser engines use two distinct phases (lexing and parsing) to process

INPUL. . . L e e e e 50
The Base64 plugin decodes and encodes binarydata. 54
The Directory Value plugin adds data at the position preset (3.32b) and then

restores the original data (3.32a) at the position postget. 55

The diagram above shows the basic sequence of steps to measure the runtime
performance of the YAML plugins. 62
This bar chart shows the run time of the plugins for the input keyframes.yaml. 63

This bar chart shows the run time of the plugins for the input combined.yaml. 64

This bar chart shows the run time of the plugins for the input generated.yaml. 64
The diagrams above show the runtime of the plugins for the input file
generated_100000.yaml and other files that contain only the first n number

oflinesofthisfile. 65
The diagrams above shows that the runtime for the first lines of the file
generated_100000.yaml almost certainly grows linearly. 66
This bar chart shows the mean of the mean run times of the plugins according
to Equation 4.2 for the input generated.yaml. 68
This bar chart shows the peak heap memory usage of the plugins for the input
keyframes.yaml. e 70
This bar chart shows the peak heap memory usage of the plugins for the input
combined.yaml. e 70
106

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

4.10

41

412

413
414

415

4.16

417

418

4.19

This bar chart shows the peak heap memory usage of the plugins for the input
generated.yaml. e e e e
The diagrams above show the peak heap memory usage of the plugins for the
input file generated_100000.yaml and other files that contain only the first n
number of linesof thisfile. L
This diagram above shows that the memory usage of the YAML plugins almost
certainly grows linearly for the first 7 lines of the file generated_100000.yaml
This bar chart shows the line counts of of the YAML plugins.
This bar chart shows the number of modified lines needed for adding better
boolean supporttothe YAML plugins.
The YAML data on the left represents a map that contains one key-value pair
with the name key that stores a null value. The Key structure on the right
shows the converted YAML data, if we store it directly below the NS system .
This bar chart shows the additional lines needed for fixing the null value support
ofthe YAMLplugins. e
The examples above show two options on how to store “nothing” (null) using

This bar chart shows the amount of code lines we modified to fix the conversion
of emptydocuments. e
This bar chart shows the “minimal” code line modifications we needed to fix the
conversion of emptydocuments. o

73
74

83

107

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

List of Tables

3.1 Correspondence between grammar rules and code in a recursive descent parser 44
41 Plugin Overview e e e e 58
4.2 HardwareSetup e e 59
4.3 SoftwareSetup e 60

44 The table below shows the measurement results of the script
measure-complexity 77

4.5 Thetable below lists some advantage and disadvantages of PEG based (YAy PEG)
and lexer based (Yan LR, YAMBI, YAwn) plugins regarding extensibility. 83
4.6 Basicerrormessagesot e e e e e e e e e 86
4.7 Slightlyimproved errormessages e 86
4.8 Final error messages for the YAML code of Listing4.1 92
4.9 Error messages for the YAML code of Listing4.6 94
410 Overview of the used parsing libraries and their characteristics 97
411 Overview of the YAML parsing plugins and their characteristics 98
108

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
blio
nowledge

(]
I
rk

3.1
3.2

41

4.2

4.3

44

4.5

4.6

List of Listings

ABNF grammar for a very small regular subsetof YAML 45
Ourindent/detend YAML parser is not able to handle the simple input above
correctly. It expects an indent or detend token in line 4, since the lexer adds
an indent token before the token one in line 3 and a detend token after-
wards. Ideally the lexer would not add these tokens, since one isjust a sim-
ple scalar that - unlike a sequence or map - does not start or end a new level. 47
The indentation of the sequence item - element 2 isincorrectin the code
above. One of the most obvious solutions to fix the syntax error would be
to add a single space character right before - element 2 (see Listing 4.2).

Another solution is to remove - element 2 altogether (see Listing4.3). . . 85
Usually a person would fix the error shown in Listing 4.1 by adding an inden-
tation character before the sequence item - element 2. 85
One of the easiest solutions to fix the code in Listing 4.1 for a computer pro-
gramistoremove - element 2. oL 85
The indentation of the sequence element - element 2 is incorrect in the
codeabove. 87

The indentation of the sequenceitem - element 2 isincorrectin the code
above. Another error is that the value of key 2 can not be both a scalar

(scalar) and a sequence (containing - element 3). 89

The YAML data above contains three syntax errors that we directly describe

in the comments right next to the error positions. 93
109

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

Acronyms

ABNF Augmented Backus-Naur Form. 43
ALL(*) Adaptive LL(*). 12,17, 58, 67, 97,98

ANTLR Another Tool for Language Recognition. 5, 6, 14, 17, 23, 46-50, 60, 74-78, 86-88,
96,100, 102

APl Application Programming Interface. 12, 79, 105

AST Abstract Syntax Tree. 49, 97

BNF Backus-Naur Form. 30, 46, 83

CC Cyclomatic Complexity. 14, 77,78

EOF End Of File. 80

FLOSS Free/Libre and Open-Source Software. 15

GLR Generalized LR. 97

IELR Inadequacy Elimination LR. 97

JSON JavaScript Object Notation. 15, 21, 28, 36-39, 79, 103
KDB Key Database. 11

LALR Look-Ahead LR. 58, 97, 98
LL Left to right/Leftmost derivation. 16-19, 24, 46, 66, 78

LR Left to right/Rightmost derivation in reverse. 18, 23, 24, 67, 78, 97, 104

NLOC Noncommented Lines Of Code. 77

10

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

NS Namespace. 24, 25, 80, 105, 107

PEG Parsing Expression Grammar. 12, 19, 24, 50, 51, 83, 90, 97,102, 104

PEGTL Parsing Expression Grammar Template Library. 4, 14, 50-52, 67, 78, 83, 86, 96, 101-
104

SIMD Single Instruction/Multiple Data. 28
SLL(*) StronglLL(*). 67,97

UUID Universally Unique Identifier. 61
XML eXtensible Markup Language. 21

Yacc Yet Another Compiler Compiler. 23, 29
YAEP Yet Another Earley Parser. 4, 14, 49, 58, 67, 74,78, 86, 89,100-103

YAML YAML Ain’t Markup Language. 8, 9, 12-14, 21, 24, 27, 28, 30, 31, 34, 38-50, 52, 53, 55,
60-63, 68, 73-76, 78-81, 83-86, 88, 89, 91-96, 99-101, 103, 106-109

M

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[ASUO6]

[AHO2]

[BS08]

[Ber16]

[BPVO6]

[Boh+08]

[CP11]

[Cho59]

References

Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers: Principles, Techniques,
and Tools. Pearson Education, Inc, 2006.

John Aycock and R Nigel Horspool. “Practical Earley Parsing”. In: The Computer
Journal 45.6 (2002), pp. 620-630. URL: http://staff.icar.cnr.it/ruffolo/
progetti/projects/10.Parsing%20Earley /2002 - Practical%20Earley%
20Parsing-10.1.1.12.4254. pdf.

Ralph Becket and Zoltan Somogyi. “DCGs + Memoing = Packrat Parsing but Is It
Worth 1t?" In: Practical Aspects of Declarative Languages. Ed. by Paul Hudak and
David S. Warren. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp. 182-
196. ISBN: 978-3-540-77442-6.

Felix Berlakovich. “A Universal Storage Plugin for Elektra”. B.S. Thesis. Technis-
che Universitat Wien, 2016. UrRL: http://www.libelektra.org/ftp/elektra/
berlakovich2016universal.pdf.

Aaron Bohannon, Benjamin C. Pierce, and Jeffrey A. Vaughan. “Relational
Lenses: A Language for Updatable Views". In: Proceedings of the Twenty-fifth
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems.
PODS '06. Chicago, IL, USA: ACM, 2006, pp. 338-347. 1sBN: 1-59593-318-2. po1:
10.1145/1142351.1142399. URL: http://doi.acm.org/10.1145/1142351.
1142399.

Aaron Bohannon et al. “Boomerang: Resourceful Lenses for String Data"”. In:
ACM SIGPLAN Notices. Vol. 43. 1. ACM. 2008, pp. 407-419. URL: http:/ /www.
cis.upenn.edu/~bcpierce/papers/boomerang.pdf.

Xin Chen and David Pager. “Full LR(1) Parser Generator Hyacc And Study On The
Performance of LR(1) Algorithms". In: Proceedings of The Fourth International C*
Conference on Computer Science and Software Engineering. ACM. 2011, pp. 83-
92. URL: http://hyacc.sourceforge.net/files/Xchen_c3s2e11.pdf.

Noam Chomsky. “On Certain Formal Properties of Grammars”. In: Information
and control 2.2 (1959), pp. 137-167.

12

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[DMO8]

[DeR69]

[Ear70]

[Flo14]

[For02]

[For04]

[Fos+05]

[Fro92]

[FHCO7]

[C)o8]

[HU69]

[Hut92]

[HM96]

[Jef03]

Joel E Denny and Brian A Malloy. “IELR(1): Practical LR(1) Parser Tables for Non-
LR(1) Grammars with Conflict Resolution”. In: Proceedings of the 2008 ACM sym-
posium on Applied computing. ACM. 2008, pp. 240-245. urL: https://people.
cs.clemson.edu/~malloy/publications/papers/sac08/paper.pdf.

Franklin L DeRemer. “Practical Translators for LR (k) Languages”. PhD thesis.
MIT Cambridge, Mass., 1969.

Jay Earley. “An Efficient Context-free Parsing Algorithm”. In: Commun. ACM13.2
(Feb. 1970), pp. 94-102. 1ssN: 0001-0782. poi: 10.1145/362007 . 362035. URL:
http://doi.acm.org/10.1145/362007.362035.

Daniel Flodin. “A Comparison Between Packrat Parsing and Conventional Shift-
Reduce Parsing on Real-World Grammars and Inputs”. MA thesis. Uppsala Uni-
versity, Department of Information Technology, 2014. UrL: http://uu.diva-
portal.org/smash/record. jsf?pid=diva2%3A752340.

Bryan Ford. “Packrat Parsing: Simple, Powerful, Lazy, Linear Time". In: ACM SIG-
PLAN Notices. Vol. 37. 9. ACM. 2002, pp. 36-47.

Bryan Ford. “Parsing Expression Grammars: A Recognition-Based Syntactic
Foundation”. In: ACM SIGPLAN Notices. Vol. 39.1. ACM. 2004, pp. 111-122.

) Nathan Foster et al. “Combinators for Bidirectional Tree Transformations: A
Linguistic Approach to the View Update Problem”. In: ACM SIGPLAN Notices
40.1 (2005), pp. 233-246. URL: https://www.cs.cornell.edu/%7Ejnfoster/
papers/lenses.pdf.

Richard A. Frost. “Constructing Programs as Executable Attribute Grammars”.
In: The Computer Journal 35.4 (1992), pp. 376-389.

Richard A Frost, Rahmatullah Hafiz, and Paul C Callaghan. “Modular and Effi-
cient Top-Down Parsing for Ambiguous Left-Recursive Grammars”. In: Proceed-
ings of the 10th International Conference on Parsing Technologies. Association
for Computational Linguistics. 2007, pp. 109-120.

Dick Grune and Ceriel JH Jacobs. “Parsing Techniques”. In: Monographs in Com-
puter Science. Springer, Second Edition. ISBN 978-1-4419-1901-4. (2008).

John E Hopcroft and Jeffrey D Ullman. Formal languages and their relation to
automata. Addison-Wesley Longman Publishing Co., Inc., 1969. URrL: https://
archive.org/details/HopcroftUllman_cinderellabook/page/n153.

Graham Hutton. “Higher-Order Functions for Parsing”. In: Journal of Functional
Programming 2.03 (1992), pp. 323-343.

Graham Hutton and Erik Meijer. “Monadic Parser Combinators”. In: (1996). URL:
http://www.cs.nott.ac.uk/~pszgmh/monparsing.pdf.

Clinton L Jeffery. “Generating LR Syntax Error Messages from Examples”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 25.5
(2003), pp. 631-640.

13

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Jos06]

[Kas+18]

[Knué5]

[KZH16]

[Lan74]

[LL19]

[Leo91]

[Lut08]

[Mai+16]

[Mar+17]

[MM18]

Simon Josefsson. “The base16, base32, and base64 data encodings”. In: (2006).
URL: https://tools.ietf.org/pdf/rfc4648.

Daniel Kastner et al. “CompCert: Practical Experience on Integrating and Qual-
ifying a Formally Verified Optimizing Compiler”. In: ERTS 2018: Embedded Real
Time Software and Systems. SEE, Jan. 2018. uRL: http: / /xavierleroy.org/
publi/erts2018 compcert.pdf.

Donald E Knuth. “On the Translation of Languages From Left to Right". In: Infor-
mation and control 8.6 (1965), pp. 607-639. URL: https://doi.org/10.1016/
S0019-9958(65)90426- 2.

Hsiang-Shang Ko, Tao Zan, and Zhenjiang Hu. “BiGUL: A Formally Verified Core
Language for Putback-Based Bidirectional Programming”. In: Proceedings of the
2016 ACM SIGPLAN Workshop on Partial Evaluation and Program Manipulation.
ACM. 2016, pp. 61-72. URL: http://research.nii.ac. jp/~hu/pub/pepmi6.
pdf.

Bernard Lang. “Deterministic Techniques for Efficient Non-Deterministic
Parsers”. In: Automata, Languages and Programming. Springer, 1974, pp. 255-
269. URL: https : / / www . researchgate . net / publication / 220898271 _
Deterministic_Techniques_for_Efficient_Non-Deterministic_Parser.

Geoff Langdale and Daniel Lemire. “Parsing Gigabytes of J]SON per Second”. In:
CoRR abs/1902.08318 (2019). arXiv: 1902.08318. URL: http://arxiv.org/abs/
1902.08318.

Joop MIM Leo. “A General Context-Free Parsing Algorithm Running in Linear
Time on Every LR (K) Grammar Without Using Lookahead". In: Theoretical com-
puter science 82.1(1991), pp. 165-176.

David Lutterkort. “Augeas - A Configuration API". In: Linux Symposium, Ottawa,
ON. 2008, pp. 47-56. URL: https://ols.fedoraproject.org/OLS/Reprints-
2008/ lutterkort-reprint.pdf.

André Murbach Maidl et al. “Error Reporting in Parsing Expression Grammars”.
In: Science of Computer Programming 132 (2016). Selected and extended papers
from SBLP 2013, pp. 129-140. IssN: 0167-6423. pol: https://doi.org/10.1016/
j.sclco.2016.08.004. URL: https://arxiv.org/abs/1405.6646v3.

Stewart Martin-Haugh et al. “C++ software quality in the ATLAS experiment:
tools and experience”. In: Journal of Physics: Conference Series. Vol. 898. Institute
of Physics Publishing Ltd. 2017. urL: http://iopscience.iop.org/article/
10.1088/1742-6596/898/7/072011.

Sérgio Medeiros and Fabio Mascarenhas. “Syntax Error Recovery in Parsing Ex-
pression Grammars". In: Proceedings of the 33rd Annual ACM Symposium on Ap-
plied Computing - SAC "18 (2018). pol: 10.1145/3167132.3167261. URL: https:
//arxiv.org/abs/1806.11150.

14

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Mos14]

[Nir18]

[Pac+15]

[Par09]

[Par13b]

[PQ95]

[PF11]

[PHF14]

[Pot16]

[Raa10]

[Raa16]

[Raal7]

[RB17]

[RS69]

Aaron Moss. “Derivatives of Parsing Expression Grammars”. In: arXiv preprint
arXiv:1405.4841(2014). urL: https://arxiv.org/pdf/1405.4841. pdf.

Peter Nirschl. “Cryptographic Methods For Elektra”. B.S. Thesis. Technische Uni-
versitat Wien, 2018. URL: https : / /www . libelektra . org/ ftp /elektra/
publications/nirschl2018cryptographic.pdf.

Francesca Pacini et al. “Performance Analysis of Data Serialization Formats in
M2M Wireless Sensor Networks”. In: ewsn 20175 (2015), pp. 7-8.

Terence Parr. Language implementation patterns: create your own domain-
specific and general programming languages. Pragmatic Bookshelf, 2009.

Terence Parr. The Definitive ANTLR 4 Reference. Pragmatic Bookshelf, 2013. urL:
http : / / pragprog . com / book / tpantlr2 / the - definitive - antlr - 4 -
reference.

Terence). Parr and Russell W. Quong. “ANTLR: A Predicated-LL (k) Parser Gener-
ator”. In: Software: Practice and Experience 25.7 (1995), pp. 789-810. URL: https:
//www.antlr3.org/article/1055550346383/antlr.pdf.

Terence Parr and Kathleen Fisher. “LL (*): The Foundation of the ANTLR Parser
Generator”. In: ACM SIGPLAN Notices 46.6 (2011), pp. 425-436.

Terence Parr, Sam Harwell, and Kathleen Fisher. “Adaptive LL (*) Parsing: The
Power of Dynamic Analysis”. In: ACM SIGPLAN Notices. Vol. 49. 10. ACM. 2014,
pp. 579-598. URL: https://www.antlr.org/papers/allstar - techreport.
pdf.

Francois Pottier. “Reachability and Error Diagnosis in LR (1) Parsers”. In: Proceed-
ings of the 25th International Conference on Compiler Construction. ACM. 2016,
pp. 88-98. URL: http://gallium. inria. fr/~fpottier /publis/fpottier -
reachability-cc2016.pdf.

Markus Raab. “A Modular Approach to Configuration Storage”. MA thesis. 2010.
URL: http://www.libelektra.org/ftp/elektra/thesis.pdf.

Markus Raab. “Improving System Integration Using a Modular Configuration
Specification Language”. In: Companion Proceedings of the 15th International
Conference on Modularity. ACM. 2016, pp. 152-157. URL: https : / [/ www .
libelektra.org/ftp/elektra/publications/raab2016improving.pdf.

Markus Raab. “Context-aware configuration”. PhD thesis. TU Vienna, Dec. 2017.
URL: http://book.libelektra.org.

Ashley Robinson and Christopher Bates. “APRT - Another Pattern Recognition
Tool". In: GSTF Journal on Computing 5.2 (Jan. 2017). UrL: http://shura. shu.
ac.uk/14312/.

Daniel) Rosenkrantz and Richard Edwin Stearns. “Properties of Deterministic
Top Down Grammars”. In: Proceedings of the first annual ACM symposium on The-
ory of computing. ACM. 1969, pp. 165-180. URL: http://dl.acm.org/citation.
cfm?1d=805431.

15

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[RUf16]

[S590]

[SM12]

[Tom85]

[UA77]

[WDG16]

[Xu+13]

Michael Riifenacht. “Error Handling in PEG Parsers”. MA thesis. University of
Berne, Switzerland, 2016. UrRL: http: //scg . unibe. ch/archive /masters/
Ruefi16a.pdf.

Seppo Sippu and Eljas Soisalon-Soininen. Parsing Theory: Volume Il LR (k) and LL
(k) Parsing. Vol. 20. Springer Science & Business Media, 1990.

Audie Sumaray and S. Kami Makki. “A Comparison of Data Serialization For-
mats for Optimal Efficiency on a Mobile Platform”. In: Proceedings of the 6th
International Conference on Ubiquitous Information Management and Commu-
nication. ICUIMC "12. Kuala Lumpur, Malaysia: ACM, 2012, 48:1-48:6. ISBN: 978-
1-4503-1172-4. pOI: 10.1145/2184751.2184810. URL: http://doi.acm.org/10.
1145/2184751.2184810.

Masaru Tomita. Efficient Parsing for Natural Language: A Fast Algorithm for
Practical Systems. Norwell, MA, USA: Kluwer Academic Publishers, 1985. I1SBN:
0898382025.

Jeffrey D Ullman and Alfred V Aho. Principles of Compiler Design. Addison-
Wesley, 1977.

Alessandro Warth, Patrick Dubroy, and Tony Garnock-Jones. “Modular Seman-
tic Actions”. In: Proceedings of the 12th Symposium on Dynamic Languages.
DLS 2016. Amsterdam, Netherlands: ACM, 2016, pp. 108-119. IsBN: 978-1-4503-
4445-6. pOl: 10.1145/2989225.2989231. URL: http://doi.acm.org/10.1145/
2989225.2989231.

Tianyin Xu et al. “Do Not Blame Users for Misconfigurations”. In: Proceedings of
the Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM. 2013,
pp. 244-259. URL: https://cseweb.ucsd.edu/~tixu/papers/sosp13.pdf.

16

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Bal13]

[Bax17]

[Bed13]

[BENO9]

[Ben12]

[Cox10]
[DS19]

[Hab13]

[Hir16]

[Keg11]

[Keg19]

[Lut17]

Online Resources

Marc Balmer. Lua as a Configuration And Data Exchange Language. Jan. 2013.
URL: https://www.netbsd.org/~mbalmer/lua/lua_config.pdf.

Ira Baxter. What is the time and space complexity of a shift-reduce parser? 2017.
URL: https://www.quora.com/What-1is-the-time-and-space-complexity-
of-a-shift-reduce-parser (visited on 04/21/2017).

Jesse Beder. Obtain Type of Value Stored in YAML::Node for yaml-cpp. 2013. URL:
https : / / stackoverflow . com / questions / 19994312 / obtain - type - of -

value - stored - in - yamlnode - for - yaml - cpp / 19995193#19995193 (visited
on 11/15/2013).

Oren Ben-Kiki, Clark Evans, and Ingy dét Net. YAML Ain‘t Markup Language
(YAML™) Version 1.2. Oct. 2009. URL: https://yaml.org/spec/1.2/spec.html.
Eli Bendersky. How Clang Handles the Type / Variable Name Ambiguity of C/C++.
June 2012. URL: http://eli. thegreenplace.net/2012/07/05/how-clang-
handles-the-type-variable-name-ambiguity-of-cc.

Russ Cox. Generating Good Syntax Errors. Jan. 2010. URL: https: / /research.
swtch.com/yyerror.

Charles Donnelly and Richard Stallman. Bison - The Yacc-compatible Parser Gen-
erator. May 2019. URL: https://www.gnu.org/software/bison/manual.

Josh Haberman. LL and LR Parsing Demystified. June 2013. urL: http://blog.
reverberate.org/2013/07/11-and- lr-parsing-demystified.html (visited
on 10/09/2016).

Colin Hirsch. RFE: Memoization. 2016. URL: https : / / github . com/ taocpp/
PEGTL/issues/35 (visited on 11/24/2016).

Jeffrey Kegler. What is the Marpa algorithm? Nov. 2011. UrL: http: //blogs.
perl.org/users/jeffrey_kegler/2011/11/what-1is-the-marpa-algorithm.
html (visited on 11/10/2016).

Jeffrey Kegler. The Marpa parser. 2019. urL: https: //jeffreykegler.github.
io/Marpa-web-site/.

David Lutterkort. Support all YAML multiline modes. Nov. 2017. UrL: https://
github.com/hercules- team/augeas/pull/524#issuecomment-343698357.

17

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

Die approbierte gedruckte Originalversion dieser Diplomarbeit ist an der TU Wien Bibliothek verfligbar.

The approved original version of this thesis is available in print at TU Wien Bibliothek.

thele

(]
lio
nowledge

b

i
r

[Mye08]

[Pari3a]

[Pik16]

[PR19]

[Pro16]

[Sim18]
[Val19]

Joseph Myers. New C Parser. Jan. 2008. URL: https://gcc.gnu.org/wiki/New_
C_Parser (visited on 01/10/2008).

Terence Parr. Recursive Descent Parsing and ANTLR. Dec. 2013. urL: http: //
stackoverflow. com/questions /20708126 / recursive - descent - parsing -
and-antlr/20709551#20709551 (visited on 11/02/2016).

Robert C. Pike. [AMA] We are the Go contributors: ask us anything! Feb. 2016.
URL: https://www.reddit.com/r/golang/comments/46bd5h/ama_we_are_
the_go_contributors_ask_us_anything/d03zx6f (visited on 02/17/2016).

Francois Pottier and Yann Régis-Gianas. Error handling: the new way. June 2019.
URL: http://pauillac.inria. fr/~fpottier /menhir /manual. html#sec67
(visited on 06/26/2019).

The Go Project. Go 1.6 Release Notes. Feb. 2016. urL: https://golang.org/doc/
gol.6.

Kirill Simonov. LibYAML. June 2018. URL: https://pyyaml.org/wiki/LibYAML.

Valgrind Developers. What Valgrind does with your program. 2019. UrL: http:
//valgrind.org/docs/manual/manual-core.html (visited on 06/13/2019).

18

https://www.tuwien.at/bibliothek
https://www.tuwien.at/bibliothek

	Kurzfassung
	Abstract
	Contents
	Introduction
	Motivation & Problem Statement
	Aim of the Work
	Methodological Approach
	Contributions
	Structure of this Thesis

	Background
	State of the Art
	Parsing
	Configuration File Parsing
	Error Handling

	Elektra
	[on line, arc=2pt, colback=gray!20!white, boxsep=2pt, left=1pt, right=1pt, top=1pt, bottom=1pt, boxrule=0pt, bottomrule=0pt, toprule=0pt ,options@for=codebox]c|Key|
	[on line, arc=2pt, colback=gray!20!white, boxsep=2pt, left=1pt, right=1pt, top=1pt, bottom=1pt, boxrule=0pt, bottomrule=0pt, toprule=0pt ,options@for=codebox]c|KeySet|
	Plugins

	Related Work

	Design Challenges & Decisions
	YAML Subset
	Method
	Participants
	Results
	Interpretation

	Mapping Between Elektra’s Data Types and YAML
	Mapping Arrays

	Parsers
	Recursive Descent Parser
	ALL(*) Parser
	LALR(1) Parser
	Earley Parser
	PEG Parser
	Parser Combinator
	Augeas Lens

	Additional Plugins
	Base64
	Directory Value
	YAML Smith

	Evaluation
	Goals
	Evaluated Plugins
	Performance Analysis
	Method
	Runtime Performance
	Memory Usage

	Code Size
	Method
	Results
	Analysis
	Conclusion

	Code Complexity
	Method
	Results
	Analysis
	Conclusion

	Ease of Extensibility and Composability
	Plugin Updates
	Component Based Grammars and Extensibility
	Conclusion

	Error Reporting
	Initial Erroneous Input
	Basic Error Messages
	ANTLR
	Bison
	YAEP
	PEGTL
	Final Error Messages
	Conclusion

	Most Promising Plugin
	Requirements for an Extended YAML Plugin
	Elimination Process

	Conclusion & Future Work
	Conclusion
	Future Work
	Additional Data Formats
	Type Support
	Lexer Level Error Messages
	Additional Parser Engines/Generators

	List of Figures
	List of Tables
	List of Listings
	Acronyms
	References
	Online Resources

