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Abstract: Shallow groundwater is one of the primary sources of fresh water, providing river base-
flow and root-zone soil water between precipitation events. However, with urbanization and the 
increase in demand for water for irrigation, shallow groundwater bodies are being endangered. In 
the present study, 101 hydrographs of shallow groundwater monitoring wells from the watershed 
of the westernmost brackish lake in Europe were examined for the years 1997–2012 using a combi-
nation of dynamic factor and cluster analyses. The aims were (i) the determination of the main driv-
ing factors of the water table, (ii) the determination of the spatial distribution and importance of 
these factors, and (iii) the estimation of shallow groundwater levels using the obtained model. Re-
sults indicate that the dynamic factor models were capable of accurately estimating the hydrographs 
(avg. mean squared error = 0.29 for standardized water levels), meaning that the two driving factors 
identified (evapotranspiration and precipitation) describe most of the variances of the fluctuations 
in water level. Both meteorological parameters correlated with an obtained dynamic factor (r = −0.41 
for evapotranspiration & r = 0.76 for precipitation). The strength of these effects displayed a spatial 
pattern, as did the factor loadings. On this basis, the monitoring wells could be objectively distin-
guished into two groups using hierarchical cluster analysis and verified by linear discriminant anal-
ysis in 98% of the cases. This grouping in turn was determined to be primarily related to the eleva-
tion and the geology of the area. It can be concluded that the application of the data analysis toolset 
suggested herein permits a more efficient, objective, and reproducible delineation of the primary 
driving factors of the shallow groundwater table in the area. Additionally, it represents an effective 
toolset for the forecasting of water table variations, a quality which, in the view of the likelihood of 
further climate change to come, is a distinctive advantage. The knowledge of these factors is crucial 
to a better understanding of the hydrogeological processes that characterize the water table and, 
thus, to developing a proper water resource management strategy for the area. 
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1. Introduction 
Shallow groundwater (SGW) is one of the main sources of freshwater on Earth [1] 

affecting all terrestrial ecosystems by providing river base-flow and root-zone soil water 
in the lack of precipitation [2]. Thus, SGW serves as an important source for irrigation [3] 
and the maintenance and restoration of ecosystems (for details, see Fan et al. [4]). By the 
early 2010s, it was the source of one third of freshwater withdrawals world-wide [5]. The 
scale of this makes clear the necessity of a deeper understanding of the complex spatio-
temporal dynamics of SGW, dynamics which are driven by hydrological processes [6]. 
The variability of the SGW level is driven by both anthropogenic and natural factors [6]. 
In the case of the former, this is mainly related to irrigation (~70% of global freshwater 
withdrawals at the turn of the century [7]) and the needs of industry. These together cause 
drops in the water table. The natural factors are related to local meteorological conditions 
(precipitation and temperature [8]) and subsurface re/discharge [9], both of which affect 
the groundwater reservoir budget. 

Net recharge is determined by rainfall, surface water, soil and aquifer properties and 
topography [10]. These factors should all be considered in determining groundwater vul-
nerability, since, with recharge water, pollutants enter the subsurface water bodies and 
can travel laterally within the aquifer or vertically to the water table [11], rendering higher 
risks to higher recharge rates [10].The SGW table plays an important role in groundwater-
dependent ecosystems [12], and has an effect on surface vegetation and yield of agricul-
tural crops [13,14]. Consequently, a decline in the water table can reduce well yield and 
increase pumping costs, having serious economic impact on areas where groundwater is 
used as the major source of irrigation [15–17]. While in temperate climates diurnal fluctu-
ations in the groundwater table are driven in large measure by the water consumption of 
vegetation [18], it can also be affected by other factors, such as the depth of the water table, 
soil moisture, and so on. It is worth mentioning that withdrawals from, or interaction 
with, a river (via pressure propagation) can have an even more direct effect on the ground-
water level and its fluctuation. 

With increased agricultural and industrial activity and urbanization, SGW outtake 
began to surpass the rate of natural replenishment in certain regions of the world, causing 
a drop in water tables (for reviews, see the works of Fan et al. and Taylor et al. [4,5]). 
Moreover, with climate change, the spatial pattern of water demand for irrigation has 
changed and will continue to do so, rendering the indirect effects of climate on ground-
water smaller than the direct impacts of climate on recharge [5]. Climate and land cover 
are in constant interaction with the subsurface water table, since the former determines 
the amount of precipitation and evapotranspiration, while the potential amount of water 
reaching the subsurface water table is regulated by local soil and geology [5]. Therefore, 
changes in local climate patterns will inevitably induce changes in the SGW table [19], 
together with changes in soil moisture and surface water [5]. Due to the increased proba-
bility of extreme climate events (e.g., droughts and floods) which are both more severe 
and longer in duration, the importance of SGW for irrigation purposes in agriculture is 
likely to grow further. Therefore, determining the relative strengths and interplay of the 
main drivers of SGW level fluctuation is critical in water resource management [20]. 

The area selected for the study was the north-westernmost part of the Danube Basin 
adjacent to the Viennese Basin on the border of Austria and Hungary (Figure 1) covering 
a part of Burgenland (AT) and a small part of the Little Hungarian Plain (HU) (~4000 km2; 
Figure 1). As a vulnerable agricultural region composed of diverse landscapes, this was 
considered a suitable setting in which to determine the main drivers of the SGW table. 
The region has several characteristics that make it particularly interesting with regard to 
the fluctuation of the SGW table: (i) as in the whole of Austria, SGW is the main source for 
irrigation [21], and in the studied area 72% of SGW withdrawal is used for agricultural 
purposes, mostly for irrigation; [22]. (ii) it includes the watershed of Lake”Neusiedlersee” 
in northern Burgenland, the largest steppe (endorheic) lake in Europe [23,24] and the larg-
est (surface area 309 km2) shallow lake in Austria [25,26]; (iii) about two-thirds of the area 
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is under Ramsar Convention protection, and is an International Union for Conservation 
of Nature protection zone [27]; it is also a UNESCO biosphere reserve [28,29], and has 
even been designated as a World Heritage site [30,31]; (iv) certain parts of the Seewinkel 
region (E part of the study area; Figure 1) have an exceptionally high ecological value due 
to the presence of saline lakes, which form a unique biotope [30] requiring a high ground-
water table in order to sustain the stabilization of the salt content and ensure the capillary 
uptake of salt from the soil [32]; (v) the climate of the area is under the influence of semi-
arid conditions [33], with an annual average precipitation amount of ~670 mm year−1 
(1997–2012) and its climate can be classified as temperate without a dry season, but with 
cold summers denoted by Cfb [34]. 

In arid and semi-arid regions, groundwater serves as the most reliable and sustaina-
ble water source for drinking, agriculture, industry, ecosystem services and even recrea-
tional purposes [35]. Thus, sustaining subsurface water bodies in good quality and quan-
tity is of outmost importance [36]. Unfortunately, natural and anthropogenic influences 
can negatively alter the quantity and quality of groundwater rendering it at higher vul-
nerability than surface water in arid and semi-arid regions [37]. 

Although the annual average precipitation is not below 500 mm year−1, one of its sub-
regions, the Seewinkel (Figure 1), has previously been classified as a semi-arid region [32]. 
Such regions of the world are under constantly growing stress from the negative effects 
of climate change [38], and these are further aggravated by local land surface processes 
taking place due to human activities [39]. 

Lastly, (vi), as in the Everglades National Park (FL, USA) [40], active water resource 
management measures are being taken in the area to retain the surface waters, prevent 
flooding and minimize SGW extraction to the level of only that which is absolutely neces-
sary. 

In the interests of efficient water resource management strategies for such vulnerable 
SGW aquifers, the countervailing and/or reinforcing influence of the driving characteris-
tics of the above-mentioned phenomena on the SGW levels must be understood and quan-
tified. Several multivariate analysis methods, such as principal component analysis (PCA) 
and factor analysis (FA), have long proven useful in obtaining a picture of the drivers of 
the SGW table [41]. Both the named approaches aim to decompose the total variance of 
the examined variables into orthogonal vectors, which can subsequently be examined in 
terms of their relation to potential driving phenomena. Such studies have been conducted 
on SGW systems all around the world, from the North China Plain, where precipitation 
and water outtake for irrigation have been found as the main driving factors of SGW table 
variations [42], to the Thessaly Basin (Greece) [43], from the watershed of four lakes in the 
USA [41] to Korea [44], where sets of hydrographs with similar behavior were determined 
for more efficient water resource management. 

It should be noted that, although the application of PCA (and FA) have proved suc-
cessful in both the determination of driving factors in sets of hydrograph time series and 
in increasing the effectiveness of water resource management, in these cases the lagged 
serial correlation structure of the data was not taken into account, rendering the results 
inaccurate [45,46]. Thus, when analyzing the common trends in time series with serial 
correlation, it is suggested that dynamic factor analysis (DFA) be used, since it allows the 
estimation of common patterns and interactions in several time series, as well as studying 
the effect of explanatory time-dependent variables [47,48]. 
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Figure 1. Location of the shallow groundwater (SGW) level monitoring stations and meteorological stations assessed in 
the study. The digital elevation model (DEM) was constructed from Shuttle Radar Topography Mission (SRTM) data [49]. 

The question of determining the driving factors of the subsurface water table using 
DFA has been addressed in a few studies in recent decades, e.g., for aquifer vulnerability 
studies [50], for predicting the intensity of common trends governing the changes in 
groundwater level in karstic [45] and other hydrogeological systems [47,51,52], or for de-
termining common trends in order to explore the driving factors of the temporal variation 
in soil and bedrock water content [53]. 

The specific objectives of the present study were therefore to determine (i) the main 
driving factors of the SGW table in the area, (ii) the spatial distribution and importance of 
these factors, and (iii) the possibility of estimating SGW levels using the derived dynamic 
factor model in the agriculturally important border region between Austria and Hungary 
by means of dynamic factor analysis. 

2. Materials and Methods 
2.1. Hydrogeological Characteristics of the Study Area 

In the studied area, most of the SGW wells are located in an unconfined (~95%) mixed 
gravel and sand aquifer complex, generally 5 to 25 m thick [32]. Only a small part can be 
considered confined or semi-confined, that which lies in the upper northern section. The 
conductivity is generally low but does vary widely over the aquifer [54,55]. The relief of 
the aquitard is undulating and sometimes interaction between the groundwater and the 
small salt lakes in the area east of Lake”Neusiedlersee”may be observed [30]. Due to the 
interaction between groundwater and surface water, groundwater protection will, in the 
long run, become an even bigger priority in the protection of surface water ponds [56]. 
However, comprehensive studies employing state-of-the-art statistical tools to explore the 
SGW characteristics of the area are extremely scarce. 

The amount of water taken for irrigation purposes varies from season to season. 
Nearly nothing is pumped during winter, while during summer pumping depends 
mainly on the weather situation and can vary between only 1–2 L s−1 up to 80–100 L s−1 for 
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a sole irrigation well. The wells generally used for irrigation in the area tap the same aq-
uifer. It should be noted that pumping is constrained by regulations when the groundwa-
ter falls below a certain level. 

2.2. Subsurface Water Levels (Response Parameters) 
In the course of the research, the monthly time series (1997–2012) of 101 SGW level 

monitoring wells were assessed, 15 from the Hungarian and 86 from the Austrian part of 
the study area (Figure 1). The former set was provided by the Hungarian North-Trans-
Danubian Water Directorate, while the latter came from the database of the Austrian Fed-
eral Ministry of Agriculture, Regions and Tourism. The average distance between the 
SGW monitoring wells is 2469 m (min: 37.2 m, max: 9939.8 m), with a mean screening 
depth of ~7.4 m. The aquifer thickness is 2 to 25 m in the Seewinkel area and is very het-
erogeneous due to the relief of the aquiclude. 

2.3. Environmental Explanatory Parameters 
For reasons which should become clear, it was reasonable to suspect that precipita-

tion and evapotranspiration would be the environmental parameters driving SGW levels. 
Daily precipitation data were retrieved from 38 meteorological stations (Figure 1) 

and were downscaled to integrated monthly precipitation time series (Prec; Equations (1) 
and (2)), then, lastly, an areal average was arrived at: 

𝑦𝑦𝑡𝑡 = 𝑥𝑥𝑡𝑡 − 𝑚𝑚� + 𝑦𝑦𝑡𝑡−1 , 𝑖𝑖𝑖𝑖 𝑡𝑡 > 0 (1) 

where 𝑥𝑥𝑡𝑡 is the original time series, 𝑦𝑦𝑡𝑡  the integrated time series, 𝑚𝑚�  the average of 𝑥𝑥𝑡𝑡 
and: 

𝑦𝑦0 = 𝑥𝑥0 − 𝑚𝑚�  (2) 

Similar integrated time series were used from the potential evapotranspiration data 
(pET) estimated using the Penman equation [57] from the synoptic meteorological data of 
the Andau station (Figure 1; monthly average of the daily minimum and maximum tem-
peratures, relative humidity, wind speed, air pressure, vapor pressure, cloud cover and 
daily bright sunshine hours, height of the flora and latitude). 

2.4. Data Preprocessing 
As the first preprocessing step in any data analysis procedure [58], the typos and 

outlying records of the assessed hydrographs were filtered manually by inspecting the 
time series of the SGW levels at each sampling site and consulting with the authorities 
(data owners) if there were questionable values. Missing data were imputed using multi-
variate regression analysis of the neighboring wells within a 20 km search radius correlat-
ing at least to a value of r > 0.7 and when the number of complete cases was larger than 
36. The maximum number of consecutive values imputed was six. If an SGW well still had 
missing data after the previous steps had been taken, it was excluded from the analysis. 
Since the temporal sampling frequency was not uniform in the two countries, monthly 
averages were formed from the data to make them comparable in the analyses. 

2.5. Applied Methodology 
Dynamic factor analysis (DFA) was the method applied to find the background fac-

tors driving the common trends of the SGW levels while taking their lagged autocorrela-
tion structure into account [48,59,60]. DFA is a specialized time series technique devel-
oped originally to study economic time series models [60]; it has, however, been applied 
in various fields of earth sciences, e.g., fisheries [61], limnology [46], oceanography [62], 
karst-hydrology [50], and hydrogeology [45,63]. In the present study it was applied to the 
monthly average SGW level time series. The factor loadings determined the weight of the 
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different SGW levels of the wells in a given factor. Following a commonly used method-
ology [46,50], the obtained DF time series were correlated with the possible explanatory 
variables determining which background factor is driving a set of SGW monitoring wells’ 
hydrographs. In the following step, the SGW level time series were estimated and the 
estimations’ accuracy determined employing mean squared error (MSE), using the ob-
tained factor time series and weights. 

The spatial distribution of the determined background factors was assessed using 
hierarchical cluster analysis (Wards’ method, squared Euclidean distance [64]), and vali-
dated with the use of linear discriminant analysis (LDA; [65]). The groups of SGW moni-
toring wells thus obtained were then characterized to achieve a better understanding of 
their SGW levels. 

All computations were performed in an R statistical environment [66] with MARSS 
[67], mass, and stats packages, while for the visualizations MS Excel and Golden Software 
Surfer 17 were used. 

Dynamic Factor Analysis 
The principle of DFA is very similar to traditional factor analysis, in which multidi-

mensional vectors are replaced by vectors with a much smaller number of dimensions. 
The important difference, however, is that neither the original vectors nor the replacement 
vectors are independent. A general formulation for a model with p common trends can be 
described as follows. 

𝜂𝜂𝑡𝑡 = 𝜂𝜂𝑡𝑡−1 + 𝑤𝑤𝑡𝑡 ,𝑤𝑤𝑡𝑡~𝑁𝑁𝑝𝑝(0,𝑄𝑄) (3) 

𝜉𝜉𝑡𝑡 = 𝑍𝑍𝜂𝜂𝑡𝑡 + 𝑎𝑎 + 𝑣𝑣𝑡𝑡 , 𝑣𝑣𝑡𝑡~ 𝑁𝑁𝑛𝑛(0,𝑅𝑅) (4) 

𝜂𝜂0~𝑁𝑁𝑝𝑝(𝜋𝜋,𝛬𝛬) (5) 

The vector 𝜉𝜉𝑡𝑡 = �
𝜉𝜉𝑡𝑡,1
⋮
𝜉𝜉𝑡𝑡,𝑛𝑛

� contains the n time series, and 𝜂𝜂𝑡𝑡 = �
𝜂𝜂𝑡𝑡,1
⋮
𝜂𝜂𝑡𝑡,𝑝𝑝

� is a vector of di-

mension p containing common random walks (hidden trends) at time t. Meanwhile, 𝑤𝑤𝑡𝑡 , 𝑣𝑣𝑡𝑡 
are multivariate Gaussian distributed white noises with 𝑄𝑄 and 𝑅𝑅 covariance matrices. 𝑍𝑍 
is the loadings matrix and 𝑎𝑎 is the offset [67]. 

Following common practice, it was assumed that matrix 𝑄𝑄 is an identity matrix, thus 
the coordinates of 𝑤𝑤𝑡𝑡 are independent. The time series 𝜉𝜉1, . . . , 𝜉𝜉𝑛𝑛 were standardized and 
thus vectors 𝑎𝑎 and 𝜋𝜋 appeared as null vectors. To make the model identifiable 𝑧𝑧𝑖𝑖,𝑗𝑗(𝑗𝑗 >
𝑖𝑖, 𝑖𝑖 < 𝑝𝑝) was set to zero. 

The covariance matrix R can be estimated using the following four settings: 
• a diagonal matrix with equal variances in the diagonal 
• a diagonal matrix with unequal variances in the diagonal 
• a non-diagonal matrix with equal variances in the diagonal and equal covariances 
• an unconstrained covariance matrix 

As in many dimension reduction techniques (i.e., PCA and FA), the determination of 
the number of common trends is crucial. The use of more common trends results in a 
better fit; in such cases, however, more parameters must be estimated. The small-sample 
corrected Akaike Information Criterion (AICc) was used, and this may be defined as twice 
the difference between the log likelihood function and the number of parameters to de-
termine the number of trends (p) and the type of the covariance matrix R [48]. 

Finally, since dynamic factor analysis provides multiple solutions, varimax rotation 
was applied to the factors in order to determine the 𝑯𝑯 matrix in the case in which the 
largest difference is obtained between loadings. 
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3. Results 
3.1. Estimation of Common Trends and Driving Factors of the SGW Levels and Their Spatial 
Distribution 

The question of which external influences drive the common trends of the SGW lev-
els, and to what extent, in the area was investigated. Since the SGW levels’ monthly aver-
age time series showed persistence over time (average r1(192) = 0.90, p = 0.00085 for the 
101 SGW monitoring wells), the application of conventional dimension reduction meth-
ods (e.g., PCA, FA) was rejected, since these do not account for the lagged autocorrelation 
structure of the given time series [46,48,50,68]. 

Thus, DFA was applied, with different model criteria. The best result was obtained 
in the case of three factors (AICc = −178.5) in such a way that the elements of the 𝑅𝑅 covar-
iance matrix were not constrained, but instead variances and covariances are estimated. 
The error matrix indicated that the less complex models performed the least well (Table 
A1). 

After obtaining the three common trends of the SGW levels, the dynamic factor time 
series were correlated with the possible explanatory variables (see Sect. Environmental, 
explanatory parameters). The first dynamic factor (DF1) was found to be driven by pET 
(Figure 2A; r(192) = −0.41, p = 0.0597), the second (DF2) by precipitation (Figure 2B; r(192) 
= 0.76, p = 0.028), while no external driving factor was identified for the third dynamic 
factor, which indicated the least variability. The areal integrated precipitation time series 
was also characterized through the use of DFA. Dynamic factors of the 38 meteorological 
stations’ integrated precipitation time series were obtained and correlated with DF2. The 
first factor showed a similar correlation coefficient (r(192) = 0.77, p = 0.029) as calculated 
from the monthly averages (r(192) = 0.76, p = 0.028). 

 
Figure 2. The time series of the first dynamic factor and integrated potential evapotranspiration 
data (pET) (A); the time series of the second dynamic factor and integrated precipitation (Prec) (B). 
The inversed values of the integrated pET values are shown (A), due to its water level decreasing 
effect. The Pearson correlations between the dynamic factor time series and the environmental 
variables’ time series are reported in the upper right corner of the panels and both values were 
significant (p < 0.06). 
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By determining the factor loadings for each of the SGW monitoring wells, it becomes 
clear how important their previously identified driving factors are at any given location 
(Figure 3). In order to explore the spatial pattern of SGW level fluctuations in the area, the 
dynamic factor loadings belonging to the DFs were grouped using hierarchical cluster 
analysis. Based on the dendrogram obtained (Figure A1), two groups could be delineated 
(GR1 and GR2; Figure 3) and the ratio of the original grouped cases were 98.01% as vali-
dated by LDA, rendering it a perfectly acceptable result. 

The two sets of SGW monitoring wells were distributed mainly following the relief 
of the region (Figure 3). Most of the sampling sites of GR1 (circles on Figure 3) can be 
found in the more elevated areas (mean surface elev. of the wells: ~177.1 m asl.), while the 
sampling sites of GR2 (triangles on Figure 3) are located in lower elevated areas (mean 
surface elev. of the wells ~124.8 m asl.). If the loadings themselves are plotted together 
with the groupings, it can be concluded that the SGW monitoring wells did not display 
different characteristics in the two groups regarding DF1 (Figure 3A). However, there was 
a clear distinction between the groups regarding DF2 (Figure 3B), which had previously 
been found to be related to Prec (Figure 2B), i.e., the loadings of DF2 were higher in GR2, 
than in GR1 (Figure 3B). This implies that the background processes behind DF2 play a 
more important role in separating the cluster groups than those of DF1. This pattern in 
large part resembles the pattern indicated by the loadings, with DF2 dominating the 
north-eastern part of the study area, and almost fully overlapping with the Seewinkel area 
(Figure 1). 

 
Figure 3. The spatial distribution of the factor loadings of dynamic factor (DF)1 (A) and DF2 (B). The grouping of the 
shallow groundwater (SGW) wells is indicated by shapes (circle: group 1; triangle: group 2). The base map in an SRTM 
digital elevation map of CGIAR Consortium for Spatial Information (http://srtm.csi.cgiar.org/). 

3.2. Estimation of SGW Levels from the Dynamic Factor Models 
For each SGW well the water level time series was estimated based on the dynamic 

factor model obtained (Equations (3)–(5)) and then compared to observed values. The 
goodness of these estimations was evaluated using MSE ranging between 0.05–0.96 (Table 
1, Figure A2), resulting in a spatial pattern (Figure 4A). The best estimations were obtained 
in the SGW time series of GR2, dominated by DF2 and located mostly in the Seewinkel 
area (Figure 4A). In the case of the wells belonging to GR1, the interquartile range of the 
MSE values calculated between the observed and estimated water level time series was 
more than two times higher than those in GR2 (Figure A2). With the DF models it became 
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possible to estimate the SGW time series of numerous wells almost perfectly—these are 
shown in white in Figure 4A. For example, SGW levels of well 305524 was estimated al-
most perfectly (MSE: 0.07) using the DFA model (Figure 4B). The poorest estimations were 
obtained along the Wulka Stream (Figure 4A, mean MSE: 0.46, max: 0.96). 

 
Figure 4. Spatial distribution of the MSE obtained from the measured and modelled shallow 
groundwater (SGW) time series (1997–2012) (A); and an example of the original and estimated 
time series by the dynamic factor (DF) model presented for SGW levels of well 305524 (B). 

Table 1. Group statistics of mean squared error (MSE). 

Statistics GR1 GR2 All 
Mean 0.451 0.195 0.286 

Median 0.414 0.178 0.224 
Standard deviation 0.217 0.098 0.194 

Range 0.785 0.349 0.911 
Minimum 0.173 0.046 0.046 
Maximum 0.958 0.396 0.958 

Number of wells 36 65 101 
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4. Discussion 
The groundwater of the studied area is recharged primarily by precipitation, while 

the only natural small river (Wulka) is fed mainly from the aquifer [69]. The area studied 
is often characterized by pronounced fluctuations in climatic conditions, which manifest 
themselves in longer periods of occasionally wet but more usually periods of dry-to-
drought conditions—both of which affect the groundwater body. The expected changes 
in climate (higher temperatures and changes in precipitation intensity and distribution) 
make the study area especially vulnerable [70]. However, the changes forecast in precipi-
tation and shifts in seasonal patterns are still very uncertain due to the uncertainties in-
volved in deriving small-scale statements from the climate models for this region [71,72]. 
Taken together, these factors underline the importance of water resource management 
measures. Results concur with general knowledge that, at the level of interannual varia-
bility, changes in SGW levels are driven primarily by evapotranspiration and the interan-
nual distribution of precipitation [73]. Therefore, finding significant correlations between 
precipitation and SGW level variations can help assess aquifer vulnerability [17,74]. 

The common trends of the SGW level time series were determined using different 
model criteria as suggested by Zuur et al. [48], linking the best-performing common 
trends (Table A1) to external driving phenomena. The SGW wells primarily related to DF1 
were mostly located in the close vicinity of the open water surfaces, such as the Lake 
“Neusiedlersee” and the small brackish ponds (Lacken) of the area (Figure 3A), which 
proved to be driven by pET (r = −0.41, p = 0.0597). Here, the depth of the water table is 
generally lower (Figure A3B), which results in higher evapotranspiration. In these SGW 
wells the amplitude of the change in SGW levels and pET varied (Figure 2A). This is most 
probably caused by the intensive irrigation of the croplands in the area [75], which results 
in water outtake from the SGW primarily in the months when pET shows a secular in-
crease [76]. Moreover, the varying water requirements of the different cultivated species 
in the area with the highest water demand (e.g., flowers, field vegetables, leaf vegeta-
bles/glasshouse, turnips, potato, intensive fruit (e.g., strawberries), sweet corn, etc.) [22] 
also change water outtake on a yearly basis. The SGW wells related to DF2, were primarily 
located in the NE part of the area, overlapping with the Seewinkel, and their water level 
fluctuations were determined by Prec. (r(192) = 0.76, p = 0.028). DF2 was also correlated 
with the common trend of the Prec. time series obtained by DFA. The correlation coeffi-
cient was close to the value calculated with the areal average Prec. However, in cases 
where the regional distribution of precipitation is uneven (e.g., large differences in relief 
conditions) common trends for precipitation are derived and correlated with the SGW 
dynamic factors rather than the areal precipitation averages. It may occur that not only 
one but multiple common trends of the SGW time series have a strong connection with 
precipitation, which can be distinguished by deriving the previously mentioned common 
trends of precipitation. These in turn can provide a spatial picture on the strength of the 
relationship between precipitation and SGW levels even considering their lagged correla-
tion structure [50]. 

The determination of the spatial patterns of the common hydrographs trends is use-
ful in (i) exploring the areal characteristics of recharge and discharge, (ii) determining the 
importance of the obtained driving factors (iii) and selecting candidates for representative 
index wells (or sets of wells) for long-term monitoring [41] and water resource manage-
ment purposes. 

The SGW monitoring wells were grouped on the basis of their DF loadings, and two 
groups were obtained (LDA classification 98.01%); this was in contrast to other studies 
[41–43], in which the SGW wells were grouped arbitrarily using the factor loadings’ 2D or 
3D plots. In the present case, however, the procedure was carried out on an objective re-
producible basis (See Section: Estimation of common trends and driving factors of the 
SGW levels and their spatial distribution), that is, based on the DF scores of the wells. 
While the loadings of DF2 were higher in the SGW wells in the least elevated parts (GR2) 
of the Seewinkel area, in relation to DF1no such distinction was found. This implies that 
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there is a clear sub-regional difference in the importance of precipitation (related to the 
SGW wells in GR2), which cannot be observed in the case of evapotranspiration [77]. 

The seasonal pattern of SGW level fluctuations also displayed a distinctive spatial 
pattern. While the SGW level fluctuations in GR1 is moderate, GR2 can be characterized 
by a range over twice the size (GR1: 0.50 m GR2: 1.11 m, Figure 5). A similar pattern has 
been observed in the North China Plain, where smaller seasonal fluctuations were ob-
served in the more highly elevated areas of the region than the lower plains [42]. In flat 
sedimentary landscapes (e.g., the Seewinkel) the SGW table is typically shallow [4,78] and 
local climatic change (the ratio of precipitation vs. evapotranspiration) plays a significant 
role in raising/lowering the water table level, as also in other lake watersheds in the U.S. 
[41]. To tackle the phenomenon of high evapotranspiration and/or low precipitation lead-
ing to negative groundwater recharge in the area, the introduction of further external wa-
ter supplies to the Seewinkel area should be considered as a management measure. In 
parallel, a rethink of agriculture in the direction of the cultivation of plants that use less 
water should also be considered. Both courses of action would be in accordance with var-
ious evaluations indicating the sensitive nature of the Seewinkel area. 

 
Figure 5. Mean seasonal cycles of SGW level fluctuation on the basis of the two groups obtained 
from the cluster analysis of DFA loadings. For all the time series, a centered 12-month simple mov-
ing average was calculated and subtracted from the original time series to eliminate the trend 
component. 

The annual period present in most of the SGW wells may be explained by the infil-
tration processes characteristic of spring and fall. In certain areas, the replenishment of 
the subsurface water resource has already begun in October, while in other places it starts 
a couple of months later, and this is highly dependent on the SGW table depth [32]. 

Furthermore, the depletion of groundwater supplies, conflicts between groundwater 
users and surface water users, and the potential for groundwater contamination are con-
cerns that will become increasingly important as further aquifer development takes place 
here, or indeed in any basin [3]. 

On the basis of the DF models, the water level time series of the wells proved to be 
efficiently estimated in most cases. The best results were obtained in the Seewinkel area, 
and the worst along the Wulka stream, and this was presumably because of the numerous 
inflows bringing water from outside of the region with different characteristics. Similar 
applications on SGW along the banks of the River Danube (HU) [50,63], or even in agri-
cultural areas adjacent to the Everglades National Park (USA) [40,47] highlight that, with 
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DFA, an enhanced understanding of the reasons for changes in the fluctuation of ground-
water can be achieved which could assist in the development of sustainable water man-
agement and irrigation strategies and preparation for varying potential climate change 
scenarios. Such results cannot be obtained with common multivariate techniques which 
search for common trends (e.g., PCA, FA) due to their lack of consideration of the lagged 
correlation structure of the data at hand. 

5. Conclusions and Outlook 
In the present study the assessment of common trends of 101 SGW monitoring wells 

in the Lake “Neusiedlersee” area recorded between 1997–2012 allowed the determination 
of their primary driving factors, and the spatial distribution of the weights of these factors. 
The most important drivers were precipitation and evapotranspiration. Instead of con-
veniently choosing only two factors to assess, multiple models were put to trial with dif-
ferent parameter settings (a combination of a different number of obtained common 
trends and the structure of variance-covariance matrix) to achieve a best fit. The accuracy 
of these models was compared on the basis of the AICc values and the factor loadings of 
the best fit model facilitated the objective grouping of the wells through the use of cluster 
analysis, relating the groups primarily to the elevation and the geology of the area. The 
dynamic factor models: 
(i) provided a detailed insight into the most important drivers of the SGW table in the 

area 
(ii) yielded an accurate estimation of the SGW table fluctuations 
(iii) facilitated the spatial grouping of the wells 

These were achieved by taking into account the lagged correlation structure of the 
time series, something that had not previously been done in any model of the region. With 
the model presented here and using historical data, sub-regionalized forecasts could be 
made with reasonable accuracy, thereby facilitating location-based water resource man-
agement. 

The combined application of the used data analysis methods (DFA, HCA, LDA) to 
the SGW data and additional explanatory environmental parameters have proven to be 
sufficient to provide an extensive overview of their relationship with the regional mete-
orological conditions and topography as determining their primary characteristics; while 
the different behavior of the clusters of the SGW wells provides the foundation to deline-
ate the different flow regimes (recharge and discharge areas) [17]. 

Although this study has focused on the thorough assessment of SGW hydrographs 
in the watershed of the Lake “Neusiedlersee”, the principles applied here could be ex-
tended to other, similar study areas. The present study provides a preliminary first-order 
approach to the understanding of the spatiotemporal controls of the SGW table in this 
critical region, the watershed of Lake “Neusiedlersee”. A knowledge of these factors is 
crucial to a better understanding of the hydrogeological processes that characterize the 
water table, something which is crucial to the development of an appropriate water re-
source management strategy for the area. The excess knowledge provided by the present 
study could serve as a benchmark for further preparation for the severe negative effects 
likely to come about as a result of climate change in the area [17,79,80]. 
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Appendix A 

Table A1. Model selection results in increasing order of Akaike Information Criterion (ΔAICc). 
AICc = −178.5 is determined as the benchmark; all other AICc are relative to this value given as 
ΔAICc. 

R Matrix Number of Factors ΔAICc 

different variances & covariances 
3 0 
2 36.8 
1 191.4 

different variances & no covariance 
3 19,326.2 
2 24,461.2 

same variances & same covariance 
3 

24,674.1 
same variances & no covariance 25,846.9 

same variances & same covariance 
2 

28,591.4 
same variances & no covariance 30,351.3 

same variances & same covariance 
1 

32,570.6 
different variances & no covariance 34,279.2 

same variances & no covariance 37,725.7 

 
Figure A1. Dendrogram of DFA loadings, where the different colors mark the two groups of SGW wells obtained. The 
dashed horizontal line marks the intersection of the dendrogram at 60% of the maximum linkage distance. 
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Figure A2. Boxplot of the mean squared errors (MSE) values by the obtained groups. The boxes 
show the interquartile range and the black lines within the boxes are the medians. The horizontal 
lines end at the minimum/maximum value within 1.5 times the interquartile range. 

 
Figure A3. The spatial distribution of the factor loadings of dynamic factor (DF)1 (A) and the depth of water table (B). 

  



Water 2021, 13, 290 15 of 17 
 

 

References 
1. Rodell, M.; Velicogna, I.; Famiglietti, J.S. Satellite-based estimates of groundwater depletion in India. Nature 2009, 460, 999–1002, 

doi:10.1038/nature08238. 
2. Miguez-Macho, G.; Fan, Y. The role of groundwater in the Amazon water cycle: 1. Influence on seasonal streamflow, flooding 

and wetlands. J. Geophys. Res. Atmos. 2012, 117, D15113, doi:10.1029/2012JD017539. 
3. Nayak, P.C.; Rao, Y.S.; Sudheer, K. Groundwater level forecasting in a shallow aquifer using artificial neural network approach. 

Water Resour. Manag. 2006, 20, 77–90. 
4. Fan, Y.; Li, H.; Miguez-Macho, G. Global patterns of groundwater table depth. Science 2013, 339, 940–943. 
5. Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, 

M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329, doi:10.1038/nclimate1744. 
6. Wang, P.; Yu, J.; Pozdniakov, S.P.; Grinevsky, S.O.; Liu, C. Shallow groundwater dynamics and its driving forces in extremely 

arid areas: A case study of the lower Heihe River in northwestern China. Hydrol. Process. 2014, 28, 1539–1553. 
7. Döll, P.; Hoffmann-Dobrev, H.; Portmann, F.T.; Siebert, S.; Eicker, A.; Rodell, M.; Strassberg, G.; Scanlon, B.R. Impact of water 

withdrawals from groundwater and surface water on continental water storage variations. J. Geodyn. 2012, 59–60, 143–156, 
doi:10.1016/j.jog.2011.05.001. 

8. Perez-Valdivia, C.; Sauchyn, D.; Vanstone, J. Groundwater levels and teleconnection patterns in the Canadian Prairies. Water 
Resour. Res. 2012, 48, W07516, doi:10.1029/2011WR010930. 

9. Healy, R.W.; Cook, P.G. Using groundwater levels to estimate recharge. Hydrogeol. J. 2002, 10, 91–109. 
10. Nahin, K.T.K.; Basak, R.; Alam, R. Groundwater Vulnerability Assessment with DRASTIC Index Method in the Salinity-Af-

fected Southwest Coastal Region of Bangladesh: A Case Study in Bagerhat Sadar, Fakirhat and Rampal. Earth Syst. Environ. 
2020, 4, 183–195, doi:10.1007/s41748-019-00144-7. 

11. Jaseela, C.; Prabhakar, K.; Harikumar, P.S.P. Application of GIS and DRASTIC Modeling for Evaluation of Groundwater Vul-
nerability near a Solid Waste Disposal Site. Int. J. Geosci. 2016, 7, 558–571, doi:10.4236/ijg.2016.74043. 

12. Kløve, B.; Ala-Aho, P.; Bertrand, G.; Gurdak, J.J.; Kupfersberger, H.; Kværner, J.; Muotka, T.; Mykrä, H.; Preda, E.; Rossi, P.; et 
al. Climate change impacts on groundwater and dependent ecosystems. J. Hydrol. 2014, 518, 250–266, doi:10.1016/j.jhy-
drol.2013.06.037. 

13. Kroes, J.; Supit, I.; van Dam, J.; van Walsum, P.; Mulder, M. Impact of capillary rise and recirculation on simulated crop yields. 
Hydrol. Earth Syst. Sci. 2018, 22, 2937–2952, doi:10.5194/hess-22-2937-2018. 

14. Mejia, M.N.; Madramootoo, C.A.; Broughton, R.S. Influence of water table management on corn and soybean yields. Agric. 
Water Manag. 2000, 46, 73–89, doi:10.1016/S0378-3774(99)00109-2. 

15. Salem, G.S.A.; Kazama, S.; Shahid, S.; Dey, N.C. Impact of temperature changes on groundwater levels and irrigation costs in a 
groundwater-dependent agricultural region in Northwest Bangladesh. Hydrol. Res. Lett. 2017, 11, 85–91, doi:10.3178/hrl.11.85. 

16. Abou Zaki, N.; Torabi Haghighi, A.; Rossi, P.M.; Tourian, M.J.; Kløve, B. Monitoring Groundwater Storage Depletion Using 
Gravity Recovery and Climate Experiment (GRACE) Data in Bakhtegan Catchment, Iran. Water 2019, 11, 1456. 

17. Garamhegyi, T.; Hatvani, I.G.; Szalai, J.; Kovács, J. Delineation of Hydraulic Flow Regime Areas Based on the Statistical Analysis 
of Semicentennial Shallow Groundwater Table Time Series. Water 2020, 12, 828. 

18. Gribovszki, Z.; Szilágyi, J.; Kalicz, P. Diurnal fluctuations in shallow groundwater levels and streamflow rates and their inter-
pretation—A review. J. Hydrol. 2010, 385, 371–383. 

19. Barthel, R.; Reichenau, T.G.; Krimly, T.; Dabbert, S.; Schneider, K.; Mauser, W. Integrated modeling of global change impacts 
on agriculture and groundwater resources. Water Resour. Manag. 2012, 26, 1929–1951. 

20. Mercau, J.L.; Nosetto, M.D.; Bert, F.; Giménez, R.; Jobbágy, E.G. Shallow groundwater dynamics in the Pampas: Climate, land-
scape and crop choice effects. Agric. Water Manag. 2016, 163, 159–168, doi:10.1016/j.agwat.2015.09.013. 

21. Siebert, S.; Burke, J.; Faures, J.-M.; Frenken, K.; Hoogeveen, J.; Döll, P.; Portmann, F.T. Groundwater use for irrigation–a global 
inventory. Hydrol. Earth Syst. Sci. 2010, 14, 1863–1880. 

22. Reisner, G. Data Collection, Data Preparation and Description of the Agricultural Irrigation Requirement; Burgenländische Einrichtung 
zur Realisierung Technischer Agrarprojekte: Eisenstadt, Austria, 2014; p 7. (In German) 

23. Magyar, N.; Hatvani, I.G.; Székely, I.K.; Herzig, A.; Dinka, M.; Kovács, J. Application of multivariate statistical methods in 
determining spatial changes in water quality in the Austrian part of Neusiedler See. Ecol. Eng. 2013, 55, 82–92, 
doi:10.1016/j.ecoleng.2013.02.005. 

24. Herzig, A.; Hatvani, I.G.; Tanos, P.; Blaschke, A.P.; Sommer, R.; Farnleitner, A.H.; Kirschner, A.K.T. Microbiological-hygienic 
examinations at Lake Neusiedl—From the individual examination to the overall concept. Österreichische Wasser- Und Abfall-
wirtschaft 2019, doi:10.1007/s00506-019-00626-y. (In German) 

25. Hatvani, I.G.; Kirschner, A.K.; Farnleitner, A.H.; Tanos, P.; Herzig, A. Hotspots and main drivers of fecal pollution in Neusiedler 
See, a large shallow lake in Central Europe. Environ. Sci. Pollut. Res. 2018, 25, 28884–28898. 

26. Wolfram, G.; Zessner, M. Neusiedler See. Österreichische Wasser- Und Abfallwirtschaft 2019, 71, 481–482, doi:10.1007/s00506-019-
00633-z. 

27. Dinka, M.; Kiss, A.; Magyar, N.; Ágoston-Szabó, E. Effects of the introduction of pre-treated wastewater in a shallow lake reed 
stand. Open Geosci. 2016, 8, 62–77, doi:10.1515/geo-2016-0008. 

28. Dinka, M.; Ágoston-Szabó, E.; Berczik, Á.; Kutrucz, G. Influence of water level fluctuation on the spatial dynamic of the water 
chemistry at Lake Fertõ/Neusiedler See. Limnologica 2004, 34, 48–56, doi:10.1016/S0075-9511(04)80021-5. 



Water 2021, 13, 290 16 of 17 
 

 

29. Kovács, J.; Kovács, S.; Magyar, N.; Tanos, P.; Hatvani, I.G.; Anda, A. Classification into homogeneous groups using combined 
cluster and discriminant analysis. Environ. Model. Softw. 2014, 57, 52–59, doi:10.1016/j.envsoft.2014.01.010. 

30. Hatvani, I.G.; Magyar, N.; Zessner, M.; Kovács, J.; Blaschke, A.P. The Water Framework Directive: Can more information be 
extracted from groundwater data? A case study of Seewinkel, Burgenland, eastern Austria. Hydrogeol. J. 2014, 22, 779–794. 

31. Magyar, N.; Trásy, B.; Kutrucz, G.; Dinka, M. Delineating water bodies on the Hungarian side of Lake Fertő/Neusiedler See. In 
Theories and Applications in Geomathematics: Selected Studies of the 2012 Croatian-Hungarian Geomathematical Convent; GeoLitera: 
Opatija, Croatia, 2013. 

32. Blaschke, A.; Gschöpf, C. Groundwater Flow Model Seewinkel; Burgenländische Landesregierung: Eisenstadt, Austria, 2011. (In 
German). Available online: https://wasser.bgld.gv.at/fileadmin/user_upload/news/Kurzfassung_Bericht_GWM.pdf (accessed 
on 10 July 2020). 

33. Karner, K.; Mitter, H.; Schmid, E. The economic value of stochastic climate information for agricultural adaptation in a semi-
arid region in Austria. J. Environ. Manag. 2019, 249, 109431. 

34. Kottek, M.; Grieser, J.; Beck, C.; Rudolf, B.; Rubel, F. World map of the Köppen-Geiger climate classification updated. Meteorol. 
Z. 2006, 15, 259–263. 

35. Appelo, C.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; Balkema: Rotterdam, The Netherlands, 2005. 
36. Wang, Y.; Ma, T.; Luo, Z. Geostatistical and geochemical analysis of surface water leakage into groundwater on a regional scale: 

A case study in the Liulin karst system, northwestern China. J. Hydrol. 2001, 246, 223–234, doi:10.1016/S0022-1694(01)00376-6. 
37. Anim-Gyampo, M.; Anornu, G.K.; Agodzo, S.K.; Appiah-Adjei, E.K. Groundwater Risk Assessment of Shallow Aquifers within 

the Atankwidi Basin of Northeastern Ghana. Earth Syst. Environ. 2019, 3, 59–72, doi:10.1007/s41748-018-0077-3. 
38. Blöschl, G.; Blaschke, A.P.; Haslinger, K.; Hofstätter, M.; Parajka, J.; Salinas, J.; Schöner, W. Impact of climate change on Austria’s 

water sector—An updated status report. Österreichische Wasser- Und Abfallwirtschaft 2019, 70, 462–473. 
39. Huang, J.; Ji, M.; Xie, Y.; Wang, S.; He, Y.; Ran, J. Global semi-arid climate change over last 60 years. Clim. Dyn. 2016, 46, 1131–

1150, doi:10.1007/s00382-015-2636-8. 
40. Muñoz-Carpena, R.; Ritter, A.; Li, Y.C. Dynamic factor analysis of groundwater quality trends in an agricultural area adjacent 

to Everglades National Park. J. Contam. Hydrol. 2005, 80, 49–70, doi:10.1016/j.jconhyd.2005.07.003. 
41. Winter, T.C.; Mallory, S.E.; Allen, T.R.; Rosenberry, D.O. The Use of Principal Component Analysis for Interpreting Ground 

Water Hydrographs. Groundwater 2000, 38, 234–246, doi:10.1111/j.1745-6584.2000.tb00335.x. 
42. Zhang, R.G. Groundwater Hydrograph Patterns in North China Plain during 1982–1986 Interpreted Using Principal Compo-

nent Analysis. Adv. Mater. Res. 2012, 356–360, 2320–2324, doi:10.4028/www.scientific.net/AMR.356-360.2320. 
43. Seferli, S.; Modis, K.; Adam, K. Interpretation of groundwater hydrographs in the West Thessaly basin, Greece, using principal 

component analysis. Environ. Earth Sci. 2019, 78, 257, doi:10.1007/s12665-019-8262-8. 
44. Moon, S.-K.; Woo, N.C.; Lee, K.S. Statistical analysis of hydrographs and water-table fluctuation to estimate groundwater re-

charge. J. Hydrol. 2004, 292, 198–209. 
45. Márkus, L.; Berke, O.; Kovács, J.; Urfer, W. Spatial prediction of the intensity of latent effects governing hydrogeological phe-

nomena. Environmetrics Off. J. Int. Environmetrics Soc. 1999, 10, 633–654. 
46. Hatvani, I.G.; Kovács, J.; Márkus, L.; Clement, A.; Hoffmann, R.; Korponai, J. Assessing the relationship of background factors 

governing the water quality of an agricultural watershed with changes in catchment property (W-Hungary). J. Hydrol. 2015, 521, 
460–469. 

47. Ritter, A.; Muñoz-Carpena, R. Dynamic factor modeling of ground and surface water levels in an agricultural area adjacent to 
Everglades National Park. J. Hydrol. 2006, 317, 340–354, doi:10.1016/j.jhydrol.2005.05.025. 

48. Zuur, A.F.; Fryer, R.J.; Jolliffe, I.T.; Dekker, R.; Beukema, J.J. Estimating common trends in multivariate time series using dy-
namic factor analysis. Environmetrics Off. J. Int. Environmetrics Soc. 2003, 14, 665–685. 

49. Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L. The shuttle 
radar topography mission. Rev. Geophys. 2007, 45, RG2004, doi:10.1029/2005RG000183. 

50. Kovács, J.; Márkus, L.; Halupka, G. Dynamic factor analysis for quantifying aquifer vulnerability. Acta Geol. Hung. 2004, 47, 1–
17, doi:10.1556/ageol.47.2004.1.1. 

51. Kovács, J.; Márkus, L.; Szalai, J.; Barcza, M.; Bernáth, G.; Székely, I.K.; Halupka, G. Exploring Potentially Hazardous Areas for 
Water Quality Using Dynamic Factor Analysis. In Water Quality Monitoring and Assessment; InTech: Rijeka, Croatia, 2012; pp. 
227–256. 

52. Kovács, J.; Márkus, L.; Szalai, J.; Kovács, I.S. Detection and evaluation of changes induced by the diversion of River Danube in 
the territorial appearance of latent effects governing shallow-groundwater fluctuations. J. Hydrol. 2015, 520, 314–325, 
doi:10.1016/j.jhydrol.2014.11.052. 

53. Kisekka, I.; Migliaccio, K.W.; Muñoz-Carpena, R.; Schaffer, B.; Li, Y.C. Dynamic factor analysis of surface water management 
impacts on soil and bedrock water contents in Southern Florida Lowlands. J. Hydrol. 2013, 488, 55–72, doi:10.1016/j.jhy-
drol.2013.02.035. 

54. Kroiss, H.; Zessner, M.; Schilling, C.; Kavka, G.; Farnleitner, A.; Mach, R.; Blaschke, A.; Kirnbauer, R.; Tentschert, E.; Hassler, C. 
Effect of seepage and trickling of wastewater mechanically and biologically treated by small sewage treatment plants in decen-
tralized locations. In Endbericht. Im Auftrage des Bundesministeriums für Land-und Forstwirtschaft und Umwelt; Bundesministerium 
für Landwirtschaft, Regionen und Tourismus: Stubenring, Austria, 2006; pp. 1–249. (In German) 



Water 2021, 13, 290 17 of 17 
 

 

55. Kroiss, H.; Matsche, N.; Vogel, B.; Zessner, M.; Kavka, G.; Farnleitner, A.; Mach, R.; Gutknecht, D.; Blaschke, A.; Heinecke, U. 
Effects of the infiltration of biologically treated wastewater on the groundwater. In Report for BuMi Wirtschaft u. Arbeit, BuMi 
Bildung Wissenschaft u. Kultur, BuMi Land-Forstwirtschaft, Umwelt und Wasserwirtschaft, Amt der Burgenländischen Landesregierung 
Abteilung; Amt der burgenländischen Landesregierung: Eisenstadt, Austria, 2002; Volume 9. (In German) 

56. Kersebaum, K.; Steidl, J.; Bauer, O.; Piorr, H.-P. Modelling scenarios to assess the effects of different agricultural management 
and land use options to reduce diffuse nitrogen pollution into the river Elbe. Phys. Chem. Earth Parts A/B/C 2003, 28, 537–545. 

57. Allen, R. An update for the calculation of reference evapotranspiration. ICID Bull. 1994, 43, 35–92. 
58. Ben-Gal, I. Outlier Detection. In Data Mining and Knowledge Discovery Handbook; Maimon, O., Rokach, L., Eds.; Springer: Boston, 

MA, USA, 2005; pp. 131–146, doi:10.1007/0-387-25465-x_7. 
59. Bánkövi, G.; Ziermann, M. Questions of dynamic forecasts of economic relations. Közgazdasági Szle. 1973, 11, 1269–1286. (In 

Hungarian) 
60. Geweke, J. The dynamic factor analysis of economic time series. In Latent Variables in Socio-Economic Models; Elsevier: Amster-

dam, The Netherlands, 1977. 
61. Zuur, A.; Pierce, G.J. Common trends in northeast Atlantic squid time series. J. Sea Res. 2004, 52, 57–72. 
62. Mendelssohn, R.; Schwing, F. Common and uncommon trends in SST and wind stress in the California and Peru–Chile current 

systems. Prog. Oceanogr. 2002, 53, 141–162. 
63. Trásy, B.; Magyar, N.; Havril, T.; Kovács, J.; Garamhegyi, T. The Role of Environmental Background Processes in Determining 

Groundwater Level Variability—An Investigation of a Record Flood Event Using Dynamic Factor Analysis. Water 2020, 12, 2336, 
doi:10.3390/w12092336. 

64. Tabachnick, B.G.; Fidell, L.S.; Ullman, J.B. Using Multivariate Statistics; Pearson: Boston, MA, USA, 2007; Volume 5. 
65. Fisher, R.A. The use of multiple measurements in taxonomic problems. Ann. Eugen. 1936, 7, 179–188. 
66. R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 

2013. 
67. Holmes, E.; Ward, E.; Kellie Wills, N.; Federal, M.E.H.-N. Package ‘MARSS’. 2018. Available online: https://cran.r-pro-

ject.org/web/packages/MARSS/MARSS.pdf (accessed on 14 April 2020). 
68. Zuur, A.; Tuck, I.; Bailey, N. Dynamic factor analysis to estimate common trends in fisheries time series. Can. J. Fish. Aquat. Sci. 

2003, 60, 542–552. 
69. Blaschke, A.; Merz, R.; Parajka, J.; Salinas, J.; Blöschl, G. Effects of climate change on the water supply of ground and surface 

water. Österreichische Wasser-und Abfallwirtschaft 2011, 63, 31–41. (In German) 
70. Blöschl, G.; Schöner, W.; Kroiß, H.; Blaschke, A.; Böhm, R.; Haslinger, K.; Kreuzinger, N.; Merz, R.; Parajka, J.; Salinas, J. Adap-

tation strategies to climate change for Austria’s water management—Goals and conclusions of the study for federal and state 
governments. Österreichische Wasser-und Abfallwirtschaft 2011, 63, 1–10. (In German) 

71. Chimani, B.; Heinrich, G.; Hofstätter, M.; Kerschbaumer, M.; Kienberger, S.; Leuprecht, A.; Lexer, A.; Peßenteiner, S.; Poetsch, 
M.; Salzmann, M. ÖKS15 climate scenarios for Austria. Daten Methoden und Klimaanalyse Report Vienna 2016. (In German). 
Available online: https://data.ccca.ac.at/dataset/endbericht-oks15-klimaszenarien-fur-osterreich-daten-methoden-
klimaanalyse-v01/resource/06edd0c9-6b1b-4198-9f4f-8d550309f35b (assessed on 7 August 2020). 

72. Gobiet, A.; Kotlarski, S.; Beniston, M.; Heinrich, G.; Rajczak, J.; Stoffel, M. 21st century climate change in the European Alps—
A review. Sci. Total Environ. 2014, 493, 1138–1151. 

73. Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Upper Saddle River, NJ, USA, 1979. 
74. Green, T.R.; Taniguchi, M.; Kooi, H.; Gurdak, J.J.; Allen, D.M.; Hiscock, K.M.; Treidel, H.; Aureli, A. Beneath the surface of 

global change: Impacts of climate change on groundwater. J. Hydrol. 2011, 405, 532–560, doi:10.1016/j.jhydrol.2011.05.002. 
75. Schönhart, M.; Trautvetter, H.; Parajka, J.; Blaschke, A.P.; Hepp, G.; Kirchner, M.; Mitter, H.; Schmid, E.; Strenn, B.; Zessner, M. 

Modelled impacts of policies and climate change on land use and water quality in Austria. Land Use Policy 2018, 76, 500–514, 
doi:10.1016/j.landusepol.2018.02.031. 

76. Bond, N.A.; Bumbaco, K.A. Summertime Potential Evapotranspiration in Eastern Washington State. J. Appl. Meteorol. Climatol. 
2015, 54, 1090–1101, doi:10.1175/jamc-d-14-0228.1. 

77. Duethmann, D.; Blöschl, G. Why has catchment evaporation increased in the past 40 years? A data-based study in Austria. 
Hydrol. Earth Syst. Sci. 2018, 22, 5143–5158. 

78. Kovács, J.; Kovács, S.; Hatvani, I.G.; Magyar, N.; Tanos, P.; Korponai, J.; Blaschke, A.P. Spatial Optimization of Monitoring 
Networks on the Examples of a River, a Lake-Wetland System and a Sub-Surface Water System. Water Resour. Manag. 2015, 29, 
5275–5294, doi:10.1007/s11269-015-1117-5. 

79. Dokulil, M.T.; Teubner, K.; Jagsch, A.; Nickus, U.; Adrian, R.; Straile, D.; Jankowski, T.; Herzig, A.; Padisák, J. The Impact of 
Climate Change on Lakes in Central Europe. In The Impact of Climate Change on European Lakes; George, G., Ed.; Springer: Dor-
drecht, The Netherlands, 2010; pp. 387–409, doi:10.1007/978-90-481-2945-4_20. 

80. Dokulil, M.T. Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios. 
Hydrobiologia 2014, 731, 19–29, doi:10.1007/s10750-013-1550-5. 

View publication statsView publication stats

https://www.researchgate.net/publication/348775533

	1. Introduction
	2. Materials and Methods
	2.1. Hydrogeological Characteristics of the Study Area
	2.2. Subsurface Water Levels (Response Parameters)
	2.3. Environmental Explanatory Parameters
	2.4. Data Preprocessing
	2.5. Applied Methodology
	Dynamic Factor Analysis


	3. Results
	3.1. Estimation of Common Trends and Driving Factors of the SGW Levels and Their Spatial Distribution
	3.2. Estimation of SGW Levels from the Dynamic Factor Models

	4. Discussion
	5. Conclusions and Outlook
	Appendix A
	References



