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Zusammenfassung

Der Durchgang von hochgeladenen Ionen durch Festkörper wird mit Hilfe von
klassischer und quantenmechanischer Transporttheorie untersucht. Wir be-
trachten die Zeitentwicklung von elektronischen Zuständen von wasserstoffar-
tigen Projektilionen während vielfacher Stöße im Festkörper. Die Dynamik
der Elektronen in hoch angeregten Projektilzuständen und im Kontinuum
wird durch eine klassische Transporttheorie beschrieben. Wir verwenden eine
quantenmechanische Transporttheorie für die Beschreibung tief gebundener
Zustände. Für die Zeitentwicklung von offenen Quantensystemen (OQS)
haben wir eine verallgemeinerte nichtunitäre Lindblad Mastergleichung und
deren Monte Carlo Lösung mittels Quantentrajektorien entwickelt. Diese
Beschreibung nichtunitärer OQSs erlaubt es, Systeme zu beschreiben, die
auch in Bezug auf Wahrscheinlichkeitsfluss (d.h. Elektroneneinfang und Ion-
isation) offen sind.

Mit Hilfe der klassischen Transporttheorie untersuchen wir Convoyelek-
tranen im Spektrum der emittierten Elektronen. Mittels der quantenmecha-
nischen Transporttheorie beschreiben wir die Entwicklung von tief gebunde-
nen Zuständen. In einer ersten Anwendung der neuen Theorie untersuchen
wir transiente Kohärenzen erzeugt durch Stoßanregung im Transport von
Kr35+ Ionen durch K<?hlenstofffolien. Gegenüber vorangegangenen Arbeiten
konnte eine bessere Ubereinstimmung mit experimentellen Daten erreicht
werden.

Als eine zweite Anwendung untersuchen wir transiente Kohärenzen erzeugt
im Elektroneneinfang durch ein anfänglich vollständig ionisiertes Argonion
und Dekohärenz in weiterer Wechselwirkung mit dem Festkörper. Elek-
traneneinfang besetzt eine teilweise kohärente Superposition von wasserstof-
fartigen Projektilzuständen, während die Wechselwirkung mit der Umgebung
(Targetatome und Elektronen, radiativer Zerfall) in stoßinduzierter und dy-
namischer Mischung von Populationen und Kohärenzen wie auch Ionisation
resultiert. Wir können nI Populationen während des Transports mit Mes-
sungen vergleichen. Im Grenzfall dünner Folien können wir direkt Einfang-
wirkungsquerschnitte gegen experimentelle Ergebnisse testen. Für dickere
Targets haben wir die Möglichkeit die Dynamik des offenen Quantensystems
in Wechselwirkung mit dem Festkörper als Funktion der Wechselwirkungszeit
zu verfolgen. Die erhaltenen Resultate sind in guter Übereinstimmung mit
den experimentellen Daten und bestätigen die Genauigkeit der Einfangwir-
kungsquerschnitte wie auch die Beschreibung der Zeitentwicklung innerhalb
des OQS Ansatzes.
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Abstract

We investigate the passage of highly charged ions through solids by means of
classical and quantum transport theory. We focus on the time evolution of
electronic states of hydrogenic projectile ions as they suffer multiple collisions
and radiative decay inside the solid. We use a hybrid approach where the
dynamics of electrons in highly excited projectile states and in the continuum
is described by a classical transport theory while we adopt a quantum trans-
port theory for the description of deeply bound states. For the evolution of
open quantum systems (OQS) we have developed a generalized non-unitary
Lindblad master equation and its quantum trajectory Monte Carlo imple-
mentation allowing for a description of non-unitary OQSs that are also open
with respect to probability flux (i.e. electron capture and ionization).

We apply the classical transport theory to the emission of electrons and
investigate properties of the convoy electron peak. Within the quantum
transport theory we focus on the evolution of deeply bound states. In a first
application of the new theory we investigate transient coherences created by
collisional excitation in transport of Kr35+ ions through a carbon traget. We
find improved agreement of the non-unitary transport theory with experi-
mental data.

In a second application we investigate transient coherences created in elec-
tron capture by an initially bare argon projectile and decoherence in further
interaction with the solid. Electron capture populates a partially coherent
superposition of hydrogenic projectile states while interaction with the envi-
ronment (target atoms and electrons, radiative decay) results in collisional
and dynamical mixing of populations and coherences as well as ionization .
We compare nI populations during transport with measurements. In the limit
of thin targets we can directly test electron capture cross sections against ex-
perimental findings while for thicker targets we have the opportunity to follow
the dynamics of the open quantum system in interaction with the solid as
a function of interaction time. The observed results are in close agreement
with the experimental data confirming the accuracy of electron capture cross
sections as well as the description of the time evolution within the OQS
approach.
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Chapter 1

Introduction

The passage of an atom or ion through a solid represents a system with a
variety of interesting physical phenomena that is, however, difficult to de-
scribe. We probe the effect of the solid on the internal degrees of freedom of
the projectile by focusing on hydrogenic projectiles penetrating the target at
moderately relativistic velocities. The complexity of a theoretical treatment
of the projectile-solid interaction originates from the many-body nature of
the solid. Additionally, the large Hilbert space of the hydrogenic projectile
prohibits a full quantum mechanical solution within the entire Hilbert space.
Different approaches have been developed in the past applicable for different
collision systems.

A description within classical mechanics was successfully adopted for sys-
tems where the electron is weakly bound to the projectile nucleus. A clas-
sical transport theory (CTT) was developed [Bur88, Bur90a] describing the
time evolution of an electron bound to the projectile ion during the transport
through a solid. By a discretization of the electronic phase space density indi-
vidual classical electron trajectories can be followed according to a Langevin
equation. Initially the studies of ion-solid transport were motivated by the
application of stripping foils in a tandem accelerator scheme for spallation
neutron sources [Ger96, Gu196] first accelerating H- ions that get converted
into H+ in the foil and are then stored in a accumulation ring of a spalla-
tion neutron source. A detailed knowledge of the electron dynamics provided
helpful information for the design of optimal foils such that stripping is effec-
tive but does not result in significant beam spreading and energy loss. The
dynamics of the active electron can be followed during the excitation and
in the continuum by a classical trajectory Monte Carlo (CTMC) simulation.
First calculations based on classical dynamics were performed for ions with
low nuclear charge.

Energy spectra of emitted continuum electrons exhibit a sharp peak in

1
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forward direction at the same velocity as the projectile ion. Various aspects of
this convoy electron peak were studied in the non-relativistic velocity regime
in the past decades [Dre76, Bur83a, Els85]. The shape and intensity of this
cusp reveals details not only about the dynamics in the low-energy continuum
but also about excited state populations prior to ionization. The CTT is
appropriate for the description of this electron emission process.

To access quantum effects a quantum transport theory (QTT) has been
developed. The time evolution of the density matrix is described by a quan-
tum master equation (QME). In a system with Ns states the direct solution
of the QME involves N~ couplings. Solving the QME for the density ma-
trix directly [VerOl] is only possible for a reduced set of couplings due to
the large projectile Hilbert space of a hydrogenic ion. Alternatively, the
QME can be solved by means of a Monte Carlo discretization with quantum
trajectories. The time evolution of each trajectory was in a first QTT deter-
mined by a stochastic Schrödinger equation [Arb99, ArbOO,Min02a, Min02b].
The importance of this quantum trajectory Monte Carlo (QTMC) method
[Car93, Min03a] and closely related techniques such as the Monte-Carlo wave-
function method [DaI92, Mo193, Dum92] lies in the reduction of dimension-
ality of the problem. Propagating states rather than the density operators
leads to a scaling with N~. In both transport theories (CTT and QTT) the
interaction of the projectile electron with the solid was taken into account in
the quasi-free electron limit. As the QTT reduces to the CTT in the limit of
highly excited states, the transition from the quantum regime to the classical
domain could be studied [Arb99, ArbOO].

Considerations beyond the quasi-free electron approximation are neces-
sary for deeply bound states of highly charged ions. This step requires signif-
icant extensions of the QTT which was done by means of an open quantum
system approach [Min03a]. The open quantum system (OQS) approach pro-
vides a useful theoretical framework for describing the time evolution of a
system interacting with an environment representing a large number of de-
grees of freedom. The underlying concept of studying the partially coherent
dynamics of the reduced "small" system under the influence of all other
degrees of freedom of the problem to be traced out is at the core of the
investigations of decoherence. For example, the coupling between an atom
(the small system) and the vacuum fluctuations of the radiation field (the
environment) results in spontaneous transitions in the atomic system (i.e.
radiative decay) and thus in decoherence as well as in modifications of the
eigenstates by shifting their eigenenergies (the Lamb shift).

The passage of an atomic system through solids under multiple-scattering
conditions provides a typical example of the interaction of an open quantum
system (the projectile) with a large environment (the solid). Studying such
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transport problems has the advantage that the system-environment interac-
tion is switched on suddenly when the projectile enters the solid and ceases
suddenly after escaping from the solid, thus allowing the time-resolved study
of the evolution of the density matrix on an attosecond to femtosecond time
scale.

Starting point of a theoretical analysis of OQSs is, typically, the reduction
of the master equation for the reduced density matrix to a Redfield equation
by applying the Born-Markov approximation [DaI92, Mo193, Dum92, Car93,
Min03a]. Even with such a drastic simplification which treats the coupling
to the environment in first-order perturbation theory and neglects memory
effects, a solution of the equation of motion for the density matrix is still
a formidable task. Difficulties in describing OQSs in terms of the evolution
of the reduced density matrix originate from the high dimensionality of the
problem.

Solving the Redfield equation by QTMC techniques requires its reduc-
tion to a form strictly preserving positive definiteness of the reduced density
matrix. This can be conveniently achieved by a reduction to a Lindblad
form [Lin76a, Lin76b]. Alternatively, a solution of the Redfield equation by
QTMC methods has been proposed [Kle02, Kon03] requiring, however, an
extended state space. Depending on the physical system to be described, the
reduction to the Lindblad form is not unique and is still an open problem. A
form for this reduction that accounts for both the build-up of coherences as
well as the decoherence [Min03a] was recently developed opening up a wide
range of applications.

The first analysis was directly related to experimental studies of collision-
ally induced coherences in highly charged Krq (q=35) ions traversing carbon
foils at high velocity (vp=47 a.u.). While good agreement was found for
thin foils corresponding to short interaction times, discrepancies for thicker
distances (~ 104 a.u.) corresponding to propagation times of ~ 5 fs were ob-
served [Min03a]. These discrepancies were particularly troubling as they only
appeared within the formulation of quantum transport in terms of a Lind-
blad equation [Min03a] while with an earlier more phenomenological model
[Min02a] better agreement could be obtained. Understanding and resolving
these discrepancies was the starting point of the investigations leading to the
results discussed in this thesis.

One key feature of the Lindblad equation is the unitarity of the evolution
of the described reduced system, built in by construction. The point to be
noted is that preservation of positivity does not necessarily require unitar-
ity. In fact, the unitarity of the Lindblad equation is of limited value when
dealing with any truncated Hilbert space of the reduced system in a real-
istic simulation. As flux out of this subspace into its outgoing complement
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can and, in general, is bound to occur, enforcing unitarity means unphysical
suppression of flux out of the system and thus distortion of the evolution
within the truncated Hilbert space. A classic example is the propagation of
wavepackets of continuum electrons. Within any basis expansion or finite
elements (grid) representation of finite dimension, only a bounded region in
coordinate space can be represented. The wavepacket will therefore be artifi-
cially reflected at the boundary unless absorbing boundary conditions, optical
potentials or masking functions are introduced [Yos99]. All of these methods
result in absorption of probability flux and thus in a manifestly non-unitary
evolution. In analogy, we introduce in this thesis a generalized non-unitary
Lindblad equation and its QTMC realization that accounts for probability
flux out of the truncated Hilbert space to be explicitly treated. The class
of open quantum systems discussed in the following are not only open with
respect to energy transfer but also with respect to probability flux in analogy
to a grand canonical ensemble in statistical mechanics. In the application
to the projectile state evolution in the solid the present approach permits to
treat explicitly the low-lying states of the ion within a finite Hilbert space of
a size manageable within a numerical solution using a Monte Carlo method,
while implicitly accounting for the flow of probability towards highly excited
bound states and continuum states in the complement. This method signifi-
cantly modifies the results and leads to better agreement with measurements.
A shortcoming of this first extension of the Lindblad master equation to a
non-unitary form is that while it can account for probability flux out of the
system no flow into the system is considered.

To account for this deficiency we introduce a scheme that allows to solve
a Lindblad master equation including a source term. This generalization en-
ables to address the question of coherence in a system that has a continuous
influx of probability. As an application we turn to the transport of projec-
tiles entering the solid without an electron attached. The projectile degrees of
freedom are subsequently populated by electron capture. The open quantum
system approach renders the possibility to investigate the role of coherence
populated by electron capture as well as by excitation. Furthermore, in com-
parison with measurements different methods for the calculation of capture
cross sections can be tested.

Electron capture in ion-atom collisions is treated using a variety of sophis-
ticated methods. Due to the complexity of the three-body dynamics, different
methods often lead to different results. Capture cross sections can be recon-
structed from single ion-atom collisions or from ion-solid interactions. The
disentanglement of the single collision contributions from transport effects in
the measured signal constitutes one of the aims of a theoretical description
of the full transport problem. Recently an effort was made to resolve the
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issue of electron capture [Min04a]. To provide an accurate description, the
time-dependent Schrödinger equation has been solved on a lattice with the
help of an up-to-date large scale computer facility. We present a comparison
of cross sections in the single collision regime and during transport with other
methods. We also present a study of transient coherences during different
stages of the time evolution.

Outline

The thesis is organized as follows. After an overview of the elementary pro-
cesses of ion-solid interaction we sketch the experiments that triggered our
investigations of solid-state effects (chapter 2). In chapter 3 we provide the
calculation of cross sections for the various scattering mechanisms such as
collisions and electron capture. We describe the classical transport theory
(CTT) and apply it to the emission of convoy electrons (chapter 4). We
present a quantum transport theory (QTT) by means of an open quantum
system (OQS) approach for ion-solid transport that describes also loss to an
unobserved complement (chapter 5). The calculation of the modified colli-
sional decay operators entering this non-unitary QTT is addressed in chapter
6. In a first application to Kr35+(ls) transport we investigate transient co-
herences in comparison with a simple model for decoherence (chapter 7). In
chapter 8 we discuss an OQS approach describing systems with a source and
present calculations of the radiative cascade of excited states feeding deeply
bound states. In the application to Ar18+ transport we investigate transient
populations and coherences created by electron capture (chapter 9). 'We
discuss different models for electron capture and their performance in com-
parison with experimental data. Atomic units (a.u.), where lel=me=n=l
and c=137, will be used throughout this thesis unless otherwise stated.

Parts of this thesis have already been published [Se105a, Se103, SeIDl,
Tak03] are in print [Se105b]and in preparation [Se105c].



Chapter 2

Overview

The evolution of a projectile states through a solid is a very complicated
issue due to the many-body dynamics. To get an insight into the dynamics
we subdivide the target into its individual constituents and consider their
interactions. The solid is composed of atomic cores and electrons bound to
these cores. The relevant processes in ion-solid transport can be divided into
two groups: exchange of energy with the solid and exchange of constituents.
Collisions lead to transfer of energy and momentum while electron capture
transfers electrons from the target to the projectile. Ionization is the effect in
the opposite direction transferring electrons from the projectile to the target.
In the following we present a brief overview over the processes relevant in
the further discussion. In the next chapter we go into the details of the
cross section calculations for these processes as they will be the input for the
simulation of transport problems.

At the end of this overview we briefly sketch the setups of the experi-
ments we will compare with. These experiments use fast highly charged ions
to probe the interaction with the solid. The first setup was designed to mea-
sure electrons emitted during transport. In the second experiment emitted
photons were recorded. For very short interaction times the projectile can
only interact only once with the solid. The gradual shift from this single
interaction picture to a multiple interaction scheme indicates the effects of
the solid.

2.1 Elementary processes
Collisions

We shall consider the interaction of the projectile electron with the solid. The
interaction with atomic cores and electrons exhibits different characteristic

6
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features. The scattering at target atoms can be considered as electron scat-
tering at a central potential. This potential is not a pure Coulomb potential
because target electrons partially shield the atoms. The mass of the target
atom is very large compared to the projectile electron mass. In a collision
almost no energy is transfered to the target. Consequently the kinetic en-
ergy of the projectile electron in the target rest frame is not modified. Only
the direction of the velocity vector is changed. Therefore the scattering at
target atoms is sometimes referred to as elastic scattering. However, this
process allows for the transformation of translational energy into excitation
of internal projectile degrees of freedom. In other words, free electrons are
scattered at target atoms elastically while electrons attached to projectiles
can undergo state-to-state transitions within the hydrogenic Hilbert space.
Henceforth we call this process scattering at atomic cores.

In scattering at target electrons also energy can be transferred. Therefore
this scattering process is sometimes referred to as inelastic scattering. The
valence electrons in the target can get excited easily and they are mobile.
This has three consequences. First, the amount of momentum and energy
transfered to the projectile electron can be small while core scattering is
a more violent event. Secondly, the target electrons represent a strongly
coupled ensemble where also collective oscillations can be excited. Thirdly,
the mobility in combination with the projectile Coulomb potential causes
the target electrons to move towards the projectile. This effect induces the
so-called wake field we will focus on now.

Wake field

The highly charged projectile in the solid attracts target electrons. The
electrons move as long as the projectile potential is not completely shielded.
For an ion at rest the target electrons have enough time to adjust to the
perturbation such that the ion is shielded. In case the ionic projectile is
faster than the Fermi velocity of target electrons, complete shielding at small
distances to the ion is not possible any more. Target electrons try to shield
the projectile but are too slow to succeed. The perturbation introduces
electron density fluctuations. The effective potential of these fluctuations
has a maximum behind the projectile with respect to the moving direction.
Figure 2.1 depicts an example of the potential of electron density fluctuations.
Due to its structure it is called the "wake" potential.

This wake potential is responsible for a number of interesting effects. At
the position of the ion the potential has a slope that results in an electric
field. This field is slowing down the ion and therefore contributes to the
"stopping power". An electron attached to the projectile ion evolves in the
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Figure 2.1: Wake potential of a bare argon ion during transport through a
carbon foil with an energy of 13 MeVlamu. The direction of the projectile
velocity is parallel to the z-coordinate.

vicinity of the combined potential of the ion and the wake potential. The
presence of the wake potential modifies the hydrogenic Hamiltonian in two
ways. (i) The energy levels are shifted according to the value of the potential
at the ion position. (ii) The slope of the potential producing an electric field
results in Stark mixing.

Electron capture

A highly charged ion in a solid attracts target electrons by its high nuclear
charge. Consequently an ion at rest is neutralized very fast. A moving ion
attracts target electrons as well, but the short interaction time prevents a
fast neutralization. Nevertheless, a target electron can be captured by the
projectile ion. If the final state is in the projectile continuum we speak of
electron capture to continuum (ECC) [Luc80, Bur86]. Here we are interested
in electron capture into hydrogenic bound states of highly charged ions at
moderate relativistic velocities.

The dynamics of electron capture is complicated by the fact that the
target electrons move in the potentials of both the target and the projectile.
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Figure 2.2: Classical picture of electron capture in a collision of a bare highly
charged ion with a neutral atom. We show the different stages of the capture
process; (a) distortion of initial state; (b) charge transfer; (c) post collision
interaction.

To follow this many-body problem in time is a formidable task. First we
would like to estimate which target electrons contribute most and what final
states are to be expected to be predominantly populated.

Charge transfer cross sections are related to the overlap in phase space
of the initial with the final state. To estimate the region of phase space the
following "velocity matching" consideration has been proven to be useful.
Electrons in target bound states have a certain velocity distribution cen-
tered around the Bohr velocity ZT/n. A moderately relativistic projectile
exhibits a velocity overlap in the tails of these velocity distributions. The
overlap is larger for higher Bohr velocities. Consequently the velocity over-
lap is maximal for the 1s target electron. Capture from 2s is suppressed by
the significantly larger velocity mismatch and hence less overlap in the tails.
Therefore capture from 1s is the dominant channel. Most calculations con-
sider the 1s target electron as the only active electron in the capture process
at high projectile velocities.

After having identified the dominant initial state we can also make an es-
timation for the spatial region where charge transfer occurs. The 1s electron
is initially localized close to the target nucleus. Therefore the major con-
tribution to capture cross sections can be expected to originate from small
impact parameters. At these distances the Coulomb potential of the pr~
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jectile strongly acts on the electronic states making a theoretical description
challenging.

To close in on the problem and in view of the complexity of the three-
body dynamics we first identify the different stages of the time evolution.
For simplicity we first choose a classical picture (figure 2.2). The nuclear
motion is unaltered due to the high relative velocity. While the projectile
approaches, the initial target state gets distorted as indicated by the elliptic
orbit of the classical trajectory of the active electron (figure 2.2 (a)). In the
region of closest approach the charge transfer occurs (figure 2.2 (b)). At this
close distance the electron is strongly perturbed. After the internuclear dis-
tance has increased enough such that charge transfer has ceased the electron
is attached to the projectile nucleus with a certain probability (figure 2.2
(c)). The long range Coulomb potential of the ionized target atom perturbs
the final states of the projectile whilst its departure for the collision region.
This effect is called the post collision interaction (PCI) and is in general sig-
nificantly mixing the final projectile states. Previous investigations [Rei04]
indicated that the target atom can get completely ionized as a result of the
very close passing-by of the highly charged bare projectile ion. The remaining
bare target ion with a high nuclear charge is responsible for a considerable
amount of mixing of projectile states during the PCL

2.2 Experimental realization

Magnetic

Figure 2.3: Schematic drawing of the experimental setup with the magnetic
spectrometer for convoy electrons and the subsequent separation of ion charge
states. Solid lines: trajectories of Ar ions; dotted line: convoy electron
trajectory in the magnetic spectrometer [Tak99a].

For ion-atom collisions a variety of detector systems has been developed
not only to measure the reaction products but also to obtain information
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Figure 2.4: Schematic picture of the experimental setup for measurements of
photons emitted in transport of Ar18+ and Kr36+projectiles through a solid
target [Lam97].

on differential cross sections. In the following we present two examples of
detector systems that are relevant for measurements of ion-solid interactions.
Later we will compare our simulation results with the measured data from
these two experimental setups.

The first experiment performed at the Heavy Ion Medical Accelerator in
Chiba (HIMAC) [Tak99a, Tak99b, Tak03] schematically depicted in figure 2.3
investigates the passage of relativistic hydrogenic ions through a solid target.
For these measurements a beam of Arl7+ ions accelerated to an energy of
390 MeVlu corresponding to a velocity of vp=97 a.u. has been used. The
target is a self-supporting amorphous carbon foil. The final charge state of
the projectile is observed by a magnetic spectrometer. Putting an energy
dispersive detector at the end of the beam line (for example a semiconductor
detector) allows to measure the kinetic energy of the transmitted projectiles.
As the projectile undergoes inelastic collisions depositing energy in the solid
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Figure 2.5: Spectrum of emitted photons from Arl7+ in the transport of
initially Ar18+ as a function of channel number in arbitrary units, i.e. counts
[Lam05]. Black line: gaseous CH4 target; red line: amorphous carbon target
of 47.2 p,g/cm2 thickness. The scaling is chosen individually for each part of
the spectrum separated by vertical lines. The counting rate decreases with
increasing n, i.e. from left to right.

its kinetic energy is reduced. Thick targets can even stop the projectile. The
amount of stopping, the stopping power, gives information about the material
or about the actual thickness of the target. The thickness is typically denoted
in units of mass per area like p,g/cm2 (1p,g/cm2 ~ 94 a.u.).

To get a deeper insight into the dynamics of the projectile in the solid the
state of the attached electron has to be analyzed. One possibility is to observe
the continuum state of the electron by means of a magnetic spectrometer
where a semi-conductor detector counts all electrons in Li.E = ~ 9 keV
centered around the nominal kinetic energy (figure 2.3). Momentum spectra
of electrons can be accumulated by scanning the magnetic field strength
of the spectrometer. Electron spectra recorded by this setup will be later
discussed. The differential electron spectra provide in combination with a
simulation insight into the electron emission process as well as information
about excited states prior to ionization.

Detailed information on the dynamics of deeply bound states can be ac-
quired by measurements of emitted photons. The detection of the emit-
ted characteristic photons allows the determination of excited state popu-
lations. These experiments were performed at GANIL (Grand Accélérateur
National d'Ions Lourde) on the LISE (Ligne d'Ions Super Epluchés) facility
[Ver98, Lam97, FouOO]. The projectiles used were hydrogenic Kr35+ at an
energy of 60 MeV/amu corresponding to a collision velocity of vp=47 a.u.
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and Ar18+ at 13.6 MeVjamu (vp=23 a.u.). Photons emitted during and af-
ter interaction of the projectile with the target (carbon foil) were measured
by different detectors (figure 2.4). Spectra of Balmer and Lyman lines can
be recorded by semiconductor photo-detectors based on Ge and Si(Li). In
order to separate individual components a high-resolution high-transmission
Bragg-crystal spectrometer has been developed. A mosaic graphite crystal
reflects the high energy photons onto a position sensitive detector allowing
to achieve a resolving power of 2.2 x 10-2 which corresponds to a linewidth
of 7 eV for 3.1 keV photons. The arm length of the spectrometer determines
the acceptance window of photon energies. Modification of this length allows
to adapt each detector to a certain energy range and thus to cover the whole
spectrum of Lyman and Balmer lines as will be later shown for the example
of fully stripped argon ions. The first spectrometer with a long arm length
of 1634 mm could resolve individual fine-structure components of the Lyman
a-line as displayed in figure 2.5. With the second spectrometer with a short
arm length of 775 mm Lyman lines from n>2 were recorded up to n=12.

The 2s state does not relax to the ground states by a single photon transi-
tion but via a 2-photon decay with a lifetime much longer than, for example,
the lifetime of the 2p state. A long lifetime implies a decay far behind the
target in contrast to the dipole photon transitions emitting photons only mil-
limeters after the foil. To this end a Si(Li) detector was placed downstream
from the target extending the acceptance region up to 127 mm behind the
foil. As energy conservation has to be satisfied only for the sum of the two
photon energies the linewidth of a two-photon decay is much broader than
that of a single-photon transition. Therefore the resolving power of a semi-
conductor detector was efficient for this purpose.

2.3 0 bservation of solid state effects
The available carbon foils can be very thin such that the projectile interacts
at most only once corresponding to single collision conditions. These con-
ditions are experimentally also realizable by dilute gaseous targets such as
CH4. When we consider a certain observable measured under single colli-
sion conditions, the interesting question is how this observable will change
with increasing target thickness. For longer interaction times with the target
modifications of the measured data can be expected.
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Figure 2.6: Experimental ratio ofphoton intensities (2Plj2 ~1s)/(2p3j2 ~1s)
as a function of carbon foil thickness emitted by an Arl7+ projectile with a
velocity of vp= 23 a.u. initially in the Ar18+ state [Lam97]. Data obtained
by a gaseous target plotted as reference line.
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Figure 2.7: Experimental photon intensities as a function of foil thickness
emitted by an Arl7+ projectile in transmission through an amorphous carbon
foil with a velocity of vp= 23 a.u. initially in the Ar18+ state [Lam97].
Extrapolation of single collision values to thicker targets according to 1 -
exp( -ax) indicated as lines. The parameter a was fitted to measurements
for thinnest foils.
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To verify this assumption the integrated peak intensities of the spectrum
(figure 2.5) are compared for different transitions. As an example, in fig-
ure 2.6 the ratio between two transitions is depicted. Measurements with a
gaseous target as well as measurements with the thinnest carbon foils yield
the same value. However, for thicker solid targets we observe a dramatic
increase of the measured ratio as a result of the interaction with the solid.

In figure 2.7 individual integrated peak intensities of Lyman transitions
for different target thicknesses are displayed. The clear deviation from the
extrapolation to thicker targets based on single-collision data reveals the pres-
ence of solid state effects. These measurements provide direct information
on excited state populations during the interaction of the projectile with the
solid. The exploration of these solid state effects is the major goal of this
thesis.

After a qualitative description of the different processes in the solid and
the experimental realization to measure these solid state effects we focus in
the next chapter on the explicit calculation of the various cross sections.
We will describe collisions with constituents of the target, i.e. atomic cores
and electrons, presenting calculations of the collision cross sections for state-
to-state transitions as well as for free electrons. We provide a description
of the wake potential and the calculation of matrix elements entering the
Hamiltonian. Finally we turn to electron capture as treated within different
approximations.



Chapter 3

Processes in ion-solid transport

In this chapter we describe the calculation of cross sections as they enter
the simulation of transport problems. We first discuss the properties of the
unperturbed hydrogenic Hamiltonian and its eigen-energies. Then we give
a description of the calculation of collisional cross sections for the interac-
tion with atomic target cores and with electrons (section 3.2). The matrix
elements of the wake field and the modification of the Hamiltonian is dis-
cussed (section 3.3). Models for electron capture are presented followed by a
comparison of capture cross section (section 3.4).

3.1 Energy spectrum of hydrogenic ion
The hydrogenic Hamiltonian

H~nonrei) = _\J~/2 - Zp/r (3.1)

with the kinetic and potential energy terms exhibits bound state eigen-
energies as a function of the principal quantum number n according to

(3.2)

with the nuclear charge Zp. In vacuum the eigen-spectrum is degenerate with
respect to the angular momentum 1and its projection onto the quantization
axis mI. By including relativistic corrections f:lHrel, i.e. fine structure and
Lamb shift, the Hamiltonian becomes

(3.3)

The eigenstates of Hs can be quantified by the quantum numbers n, l, j and
mj. Considering the electron spin and the fine-structure the energy spectrum

16
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is given as a function of the total angular momentum J = l+ sas

17

E = J.LC2 ((1 + (---=O'.ZP =) 2) -j _1) + ELs
n - j - ! + J (j + !)2 - (O'.Zp)2

(3.4)
with the fine-structure constant 0'. = 1/ c and the reduced mass J.L = Mp/ (Mp + 1)
(Mp: mass of projectile).

The only 1dependent term is the Lamb shift correction ELS. The Lamb-
shift can be parameterized by [Pa198]

411
ELS = (O'.Zp) -3 -A (3.5)

7rn 0'.

with A listed in table 3.1. As a result of the Lamb shift the energy of the P1/2

___ ~ argon I krypton I
A(ls1/2) 3.2302 2.0975
A(ns1/2) 3.4832 2.3949
A(np1/2) -0.0980 -0.0486
A(np3/2) 0.1402 0.1707

Table 3.1: Lamb-shift parameter A for argon and Krypton according to (3.5)

state lies below the energy of the 81/2 state and analogously d3/2 is slightly
below P3/2' The resulting eigen-energies are listed in table 3.2.

~ n=l I n=2 n=3 n=4

Sl/2 -162.66 -40.714 -18.0763 -10.15989
P1/2 -40.720 -18.0781 -10.16062
P3/2 -40.543 -18.0256 -10.13850
d3/2 -18.0257 -10.13852
d5/2 -18.0084 -10.13122
f5/2 -10.13122
f7/2 -10.12758

Table 3.2: Eigen energies (a.u.) of an electron bound to an argon nucleus
including fine-structure and Lamb shift corrections.

The important point for the later investigation of coherences is that the
energy spectrum has three classes of energy spacings between two levels. The
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•

large inter-shell energy spacings according to equation (3.2) are of the order
of magnitude of la a.u .. The intra-shell energy spacings are determined by
fine-structure (equation (3.4)) and Lamb-shift (equation (3.5)). Both scale
to first order as n -3. In combination with the n -2 scaling of the inter-shell
energy this leads to a decreasing role of intra-shell energy splittings compared
to inter-shell splittings with increasing value of n. Nevertheless, the dominant
fine-structure splitting is always one order of magnitude larger than energy
spacings due to Lamb-shift.

3.2 Collisional cross sections
After having given a qualitative description of the scattering processes in
solids in section 2.1 we now tackle the explicit calculation of the corre-
sponding cross sections. In perturbation theory scattering cross sections are
obtained by Fermi's Golden Rule in first order Born approximation. This
implies the assumption of linear response of the target which is valid for
weak perturbations of the target. Within linear response theory the target
is always found in its ground state prior to interaction. This assumption is
certainly valid for the fast projectiles we are studying throughout this thesis.

As the projectile moves through the solid it induces a perturbation. This
perturbation is quantified by means of a momentum transfer k and an energy
transfer w. The strength of the response of the target to this perturbation
determines the differential cross section for k and w. Therefore the target
response has to be quantified in order to obtain the scattering cross sections.
The response of the target to the perturbation given by momentum k and
energy w consists of fluctuations of target particle density PT(XT). In coor-
dinate space the target density is represented by a sum over the positions
ij of all interacting particles PT(XT) = l:jb(XT - ij) while PT(k) denotes
the Fourier transform of the target particle density. Evaluating the sum over
transitions from the initial ground state to all possible final states of the
target is demanding due to the exceedingly large sum over the target states.
Since target particles interact with each other as well as with the projectile,
excitations of collective resonances become possible making the evaluation
of the response even more challenging. In many-body physics [Pin89] the
response of a target to a perturbation k, w is described by the susceptibility
denoted as X (k, w). In this context the imaginary part of X (k, w) (denoted as
X" (k, w)) describes the dissipative part of the response. The sum over tran-
sitions from the initial target ground state lOT) to all possible final states of
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(3.6)

the target 1fT) can be assigned to [Pin89]

X"(k, w) = 7r L IUTI'oT(k)IOT)12 c5(WT- w) .
fr

where WT describes the energy difference between the states 1fT) and lOT) and
'oT(k) denotes the Fourier transform of the target particle density. The con-
venience of (3.6) is that while the details on the dynamics of target particles
may be inaccessible, X"(k,w) can be determined by other means, theoreti-
cally or experimentally. Later we will discuss the evaluation of X" (k, w) for
different scattering mechanisms.

With the approximation (3.6) we can express the differential scattering
cross section far a transition from the initial projectile state Ii) to the final
state If) by [Min03a]

dafi~k) = ~ VßT(k) IUleikrli)12 X"(k,Wif - kvp) (3.7)
dk vp

where VPT(k) is the Fourier transform of the interaction potential and eikr
the Fourier transform of the projectile density for a point-like particle at
position r. The energy transfer w in equation (3.6) is shifted (due to the
transformation from the projectile to the target rest frame) by the transla-
tional energy parallel to the projectile velocity k'up. The cross section in (3.7)
is of the form

•
da~~k) = ISif(k)1

2

with the transition operator

(3.8)

(3.9)

For the calculation of state-to-state cross sections for scattering of a hy-
drogenic projectile, we have to evaluate the scattering form factor Uleikrli)
in (3.9) in the hydrogenic basis. This implies that Ii) and If) are to be taken
as hydrogenic bound state wave functions.

To obtain scattering cross sections for free electron scattering we choose
the wave functions of free electrons. These are plane waves in coordinate
space given by 4Ji(T) = exp(ikiT)/(27r)3/2 with the electron momentum ki'
We consider the momentum ki of Ii) and kf of If) in the rest frame of the
target. Evaluation of the scattering form factor leads to

(3.10)
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with the initial and final momentum, ki and kj, respectively. The resulting
delta function expresses momentum conservation or, in other words, the final
momentum as kj = ki + k. The differential cross section is

(3.11)

In transport theory it has proven useful to consider mean free paths rather
than cross sections. The mean free path (MFP) is the path length that the
projectile, on average, travels through the target between two subsequent
scattering events. The MFP À is related to the cross section (J as À = l/(nA(J)
with the number density of the scattering particles per unit volume as nA.
In case the cross section has been calculated as scattering at an ensemble
of particles, the number density is already contained in (J. Also the inverse
MFP (IMFP) is frequently used. From (3.11) we can construct the differential
IMFP for free electron scattering as

(3.12)

•

being differential with respect to energy and momentum transfer. From
the point of view of scattering a target consists of two constituents: the
atomic cores and the electrons. We first consider the core scattering and
later describe electron scattering.

3.2.1 Electron-core collisions

The atoms in the target attract the target electrons that partly shield the
pure nuclear Coulomb potential. A useful approximation of this shielding is a
Yukawa type potential as VPT(T) = -(ZT/r) exp( -r /aTF) with the Thomas-
Fermi screening length aTF = 0.885Z,;-1/3 and the nuclear charge of the target
atoms ZT' At close distances VPT(T) resembles the unscreened core potential
while it vanishes at large distances due to screening. The Fourier transform
is ~(k) = -(47rZT)/(k2 + aT~)' The density PT(XT) = Lj c5(XT - fj) is
a sum over target atomic positions fj. In this case the susceptibility in
(3.6) describes the response of the target atomic cores to a perturbation.
Collective excitations of atomic cores are called phonons. Estimating the
relation between k and w in X" (k, w) we can use the simpIe free-particle
dispersion relation

(3.13)
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where Me is the mass of a target atom. In view of the large atomic mass
compared to the electron mass no phonon excitation can occur, since the
scattering does not transfer a significant amount of energy to the target.
Consequently, for free-electron scattering the kinetic energy of the projectile
electron and thus the absolute value of the momentum vector remains con-
stant, Ik!1 = Ikïl, while only the direction is changed. Under these conditions
we can consider free-electron-core scattering as elastic. Assuming the target
to remain in the ground state lOT), the susceptibility can be evaluated as

2

X"(k,w) = 7r (OTI2:éi;fjIOT) = 7r 2: = 7rnA
j j

(3.14)

(3.17)

•

with the number density nA of target atoms per unit volume.
Neglecting phonon effects implies that the system transitions are solely

driven by the translational projectile motion with the energy transfer kzvp.

This requirement fixes the parallel component of the momentum transfer for a
certain state-to-state system transition as kz = w!dvp reducing the dispersion
to the perpendicular component kl.' The corresponding transition operator
is written as

Si~)(l;~) ~ l::A VPT(k) (W"li) (3.15)

with k = kl. + zw!dvp. The differential IMFP reads

d2)..-;1(k,w) 87rnAZ~ k c:5(w). (3.16)
dwdk v~ (k2 + aT~)2

The inverse mean free path (IMFP) is obtained by integration of (3.16)
over all possible momentum transfers. The maximum momentum transfer is
limited by the incident projectile momentum P='Ypvp with 'Yp=(1-v;/c2)-1/2
carried into the collision. In the case of backscattering the maximum mo-
mentum transfer kmax=2p=2'Ypvp is delivered. In this limit the IMFP can be
written as

kmax

)..-1 = J d)..-;1(k) dk = 47rnAZ~ 1
c dk v~aT~ 1+ (2Vp'YpaTF )-2 .

o
If the integration is performed from zero to infinity we obtain an inverse
mean free path (IMFP) of

(3.18)
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In a Monte Carlo simulation the momentum transfer k has to be randomly
distributed with a random number Tc E [0,1] according to

(3.19)

Accordingly, the momentum transfer k for a given realization can be ex-
pressed in terms of the random number Tc as

(3.20)

(3.21)

An analytical expression for the distribution Pc(k) of the momentum transfer
k can be obtained from (3.19) by calculating the derivative of Tc with respect
to k

Pc(k) = dTc(k) = 2 1 + (2VP1paTF )-2
dk k3afF (1 + (kaTF )-2) 2 .

Since the velocity-dependent term in the enumerator is negligible for the ve-

•
0.1 1 10

Momentum transfer k [a.u.]
100

Figure 3.1: Momentum transfer distribution for free electron scattering in
amorphous carbon. Solid line: core scattering Pc(k); dashed line: electron-
electron interaction Pe (k ).
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locities considered here (1+(2vpTpaTFr2=1.002~1 for vp=23 a.u.) we obtain
a momentum transfer distribution irrespective of the projectile velocity

(3.22)

•

•

This limit corresponds to neglecting the maximum momentum that can be
transferred and taking kmax -7 CX) as we have done to derive the IMFP in
equation (3.18). This momentum transfer distribution has a maximum at
about k=l a.u. as shown in figure 3.1.

The direction of the momentum transfer supplied in a core scattering
event is determined by <5(w) in the differential IMFP in equation (3.16) lead-
ing to conservation of kinetic energy in the rest frame of the target. This
means that the momentum after the scattering event points into another di-
rection with the same absolute magnitude on a circle. This circle is called the
"Newton circle". For Ikl « Ikil this condition implies that the momentum
transfer k is perpendicular to the initial momentum ki.

3.2.2 Electron-electron collisions

The second constituent of the target the projectile interacts with are the
target electrons. The interaction VPT is a pure Coulomb potential with the
Fourier transform given by VPT (k) = 47f/ k2. The density PT (XT) contains
the positions of all target electrons. Unlike for core scattering, the dispersion
relation w = k2/2 favors excitations of the target. To be more specific, the
small mass of the target electrons allows for a certain value of momentum
transfer k also to transfer a relevant amount of energy w. Target electrons in
the outer shells are loosely bound and can thus be considered as quasi-free
from the point of view of the fast projectile. Collective excitations of the
electron gas are called plasmons.

For an electron gas X" (k, w) is related to the negative imaginary part of
the dielectric response function é(k, w) as

" ( .... ) k
2 [-1]X k,w = 47f Im é(k,w) . (3.23)

In the present approach é (k, w) is parameterized in terms of a sum of n
Drude-type functions introduced by Ashley [Ash79]. The parameters are
determined from the opticallimit (k = 0) where experimental optical data
for the loss function Im[-l/é(k = O,w)] is available for many materials. For
carbon the loss function can be fitted by a sum of five Drude-type functions
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[WiI72, Ash79]

24

(3.24)

fixing the parameters Wpj, WOj and r/j (j = 1..5) for k = O. The use of
the relativistic free particle dispersion relation for the resonance frequency
WOj (k) = WOj + c2 ( VI + k2 / c2 - 1) allows to access regions with k > O. The
advantage of such a parameterization is that E( k, w) accounts not only for
collective effects but also for single-particle-single-hole excitations. As also
internal degrees of freedom of the reservoir can be excited, system transitions
are not only driven by the translational motion but also by direct energy
exchange. This leads, unlike for core collisions, only to an upper bound of
the energy transfer and thus to kz :::; Wfd vp for a certain transition i ---+ f.
The resulting transition operator is given by

(3.25)

(3.26)

•

leading to a differential IMFP (3.12) of

cf2>-.;I(k,w) = _2_ Im[ -1 ]
dwdk 7rv~k E(k, w) .

The total mean free path is obtained by integration of (3.26) over the
momentum and energy transfer as

(3.27)

where the integration limits are determined by the kinematics.
The momentum transfer is chosen via a random number Te E (0,1) that

is given by

with the derivative

(3.28)

(3.29)

Figure 3.1 shows the momentum transfer distribution Pe(k) in comparison
with the distribution for core scattering Pc(k).
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Although the DIMFP for e-e scattering in (3.26) is proportional to V;2,
the normalized momentum transfer distribution Pe(k) is independent of the
electron velocity. Fig. 3.1 displays the qualitative difference between core
and electron scattering. Transitions of bound electrons induced by core scat-
tering transfer a considerable amount of momentum while electron scattering
transfers only a small amount of energy and momentum. The direction of
the momenta transferred in interaction of free electrons with the electron gas
is oriented predominantly anti parallel to the initial electron momentum.

3.2.3 Radiative decay

The cross section for a radiative transition of a hydrogenic ion from an initial
state i to a final state f is given in the electric dipole approximation by
[Bet77]

(3.30)

with the energy difference Wij between the initial and final state correspond-
ing to the energy of the emitted photon. From (3.30) the transition operator
can be constructed according to [Min03a] as

(3.31)

where J=X,y and z denotes the polarization direction of the photon and the
step function accounts for transitions from energetically higher states to lower
ones in order to consider radiative decay processes only.

3.3 Wake field
The passage of the highly charged swift projectile ion induces density fluc-
tuations of the target electrons that, in turn, produce an electric potential.
In figure 2.1 an example of this potential is illustrated. In linear response
theory we can approximate it by [Ech79, Ech86]

(3.32)

with the dielectric response function é(q, w) of the target electron gas.
The resulting shape of V(w) resembles that of a wake, i.e. the ion moves in

front of of the center of the induced potential. Since the projectile velocity is
larger than the Fermi velocity of target electrons, the perturbation is effective
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only in a narrow cone around the projectile path resembling the shape of a
supersonic (Mach) cone. The fluctuations form a wave pattern behind the
ion that is constant in the rest frame of the projectile. The strength of the
wake potential scales proportional to the projectile charge Zp (prefactor in
(3.32)) and inversely proportional to the projectile velocity vp entering via
the dielectric response function.

At the position of the projectile ion the potential exhibits a slope parallel
to the projectile velocity vp resulting in an effective electric field. We choose
the coordinate system such that the z-axis is parallel to the direction of vp

and the quantization axis to coincide with this direction. The slope is, in first
order, constant at the scale of deeply bound states resulting in a constant
electric field F.

The presence of the electric field has two consequences for the projectile.
First, it exerts an electric force on the projectile pulling it backwards resulting
in a slowing down. This effect is called the electronic stopping power. In view
of the thin targets this stopping power is negligible compared to the projectile
kinetic energy for the collision systems investigated throughout this thesis.

The second effect of the wake field is the Stark splitting of states

(3.33)

with the dipole matrix elements (ilzlj). More sophisticated approximations
account for the non-linearity of the wake potential by a state dependent wake
field

E&W) = -Fij (ilzlj)

as for example Ponce [Roz99]

p(Ponce) = Z (1.07) 2 I (2V;) -a(w)niy'1.0228/Zp

lJ p v
p

n 1.07 e

with the parameter

(3.34)

(3.35)

(3.36)

where Lmax = max (Li, Lj). a(w) describes intra-shell mixing (ni=nj) while
conserving the projection of angular momentum (mi=mj)'

Contributions beyond ,the dipole approximation up to all orders can be
obtained by calculating the expectation values for the full potential as given
in equation (3.32)

y:;w)= (iIV(w)(T)lj) = 2ZP2 J d3q 12 (( ~ --+ --+) - 1) (iléf-rlj) .
7r q é q, w - q . vp

(3.37)
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As seen from the Taylor series expansion of the boost operator

27

(3.38)

for negligible momentum transfers the boost has no effect. The zero-order
component in (3.38) leads to a constant energy shift of all eigenstates. This
energy shift can be observed, for example, in spectra of emitted photons in
radiative electron capture. The first-order term kz corresponds to the dipole
approximation in (3.34) with a state selective wake field. The description of
the wake potential by the dipole operator leads to a coupling obeying the
dipole selection rule li=lj~1. Higher-order components described by the full
boost operator account for the coupling beyond the dipole.

The main ingredient of the calculation is the boost operator (ileikorlj)
describing a transition from the state j into the state i by the transfer of a
momentum k to the system in an arbitrary direction. It can be expressed
in terms of the boost where the momentum is transferred parallel to the
quantization axis z as

(ileikorlj) = (nilimileikorlnjljmj)
m'=min(li,lj)

L (R~'mi(O, c/J))* (nilim'leikZlnjljm')R~'m/O, c/J) (3.39)
m'=- min(li,l;)

with the rotation operator R~'mi (0, c/J). The Euler angles 0 and c/J denote
the angles between the vector k and the quantization axis z. The third
Euler angle is not required for the rotation of a one dimensional structure.
The rotation of the azimuthal angle c/J corresponds to a complex phase and
simplifies the rotation operator to

RIo (il A.) 10 (il) -imoljJ~'mi u, 'f' = r~'mi V e " (3.40)

(3.41)

where the matrix elements for the remaining rotation r~'mi(O) are given by
the Wigner formula in reference [Mes86].

The overall dependence of the boost operator on the azimuthal angle c/J
is given by exp( -i(mj - mi)c/J) whose integration over all possible values of
c/J = (0,27r) leads to a Kronecker-delta function

~127r
dA. e-i(m;-mi)1jJ = () 0 0

2 'f' m,m,
7r 0

implying that the boost operator only couples states with the same quantum
number m.
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Figure 3.2: Stark map of wake field for n=2 (a) and n=3 (b) as a function of
field strength in an adiabatic turn-on of the field. Solid lines: results obtained
with the full potential (equation (3.37)); dashed lines: approximation of
Ponce (equation (3.35)).

The matrix elements of the boost operator (nilim'leikzlnjljm') can be
evaluated analytically in the parabolic Sturmian basis set (nI, n2, m, €) where
€ is the Sturmian parameter [MeI92,Me193,Bur83a]. By setting € = Zp/n
we obtain the matrix elements in the hydrogenic basis.~Jw) is added to the unperturbed Hamiltonian (equation (3.3))

H(solid) = Hs + V(w) . (3.42)

The diagonal elements of ~Jw) result from the zero-order term of the boost
operator and account for the overall energy shift. For an argon projectile
launched through a carbon target with a velocity of vp=23 a.u. this shift
amounts to 0.73 a.u .. Since it affects all states equally we can omit this con-
tribution and only consider the off-diagonal elements of ~Jw). Each eigen-
vector of the combined Hamiltonian (3.42) contains an admixture of states
coupled by the wake field, i.e. intra-shell states with same mj' In figure 3.2
we show the eigenvalues as a function of the strength of the wake field, i.e.
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Hi<;Olid) = HS,ij + ÀV:;w) for À E (0,1). In the unperturbed system (À=O) the
states are separated in energy by the Lamb shift and by the fine-structure.
When adiabatically turning on the wake field, the degeneracy with respect
to Imj I is lifted. This Stark effect is well observed, for example, in 2p3/2 in
figure 3.2 (a) as the eigenenergy of the 2p3/2,1/2 state increases due to an
admixture of 2p1/2,1/2 and 2S1/2,1/2' For two states with same j and same
mj the eigenvalue of the component with smaller I is increased while the
one with larger I is reduced (see figure 3.2 (b)). States with the maximum
angular momentum j=n-1+1/2 parallel to the quantization axis Imjl=j have
no other state within their shell to be coupled with by the wake potential.
Correspondingly, this group of states remains unchanged as can be seen in
figure 3.2 (a) for 2p3/2,3/2 and in figure 3.2 (b) for 3d5/2,5/2 .
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3.4 Electron capture
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The strong perturbation during charge transfer requires a detailed description
of the close collision event. Different techniques have been developed for this
purpose. What most of these sophisticated methods have in common is that
the computation is very time consuming restricting the described part of the
capture event to the closest distance between projectile and target. This is
the region where the actual charge transfer occurs.

Most of these approaches describing the charge transfer at the close-
collision region cannot be utilized to describe the PCI on the long time scale
and vast spatial distances. On the other hand, during the PCI the Coulomb
interaction is not so strong any more and a less sophisticated solution may
still give accurate results. Therefore usually a hybrid approach [Bur81b] is
chosen describing the close-collision region accurately and solving the PCI
with a different method.

In the following we briefly discuss a selection of theoretical approaches for
electron capture. First we stay within the classical picture and describe the
calculation of cross sections by means of a classical trajectory Monte Carlo
(CTMC) method (section 3.4.1). Then we discuss two quantum mechani-
cal non-relativistic methods: the continuum-distorted wave (CDW) method
(section 3.4.2) and the solution of the time-dependent Schrödinger equation
on the lattice (LTDSE) in section 3.4.3. The CDW calculation makes use
of a hybrid approach by evaluating the cross sections in a distorted basis in
the charge transfer region while the PCI is accounted for by Stark mixing
in a parabolic basis set. In the LTDSE method the PCI is evaluated by an
atomic orbital coupled channel (AOCC) calculation.

Motivated by the experimental measurements that could resolve differ-
ences is capture cross sections for fine structure states (see measurements in
figure 2.6), we briefly discuss the description of electron capture in a rela-
tivistic framework applying the eikonal approximation in section 3.4.4. We
compare the resulting cross sections in section 3.4.5 for capture by a bare
Ar18+ projectile with a velocity of 23 a.u. in transport through amorphous
carbon

3.4.1 Classical description of electron capture

In this section we consider a classical description of the electron capture
process. This method has been introduced by Abrines and Percival [Abr66].
A full description can be found in reference [Per75, 01s77]. We solve the
time evolution of the distribution function p of the electron probability in the
vicinity of the projectile and target Coulomb potential, Vp(f') and VT(r, t),.
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respectively. In the rest frame of the projectile VT is time dependent. The
phase-space master equation describing the phase-space flow is

:tp(i, il, t) = (-il. Vr + V (Vp(f') + VT(i, t)) . Vv) p(i, il, t) , (3.43)

with the kinetic part in the first term and the gradient of the combined
potential in the second term. In a classical simulation we discretize the initial
phase space density with classical test particles. In this case with electrons.
Then we propagate each test particle according to its equation of motion
which is Newton's equation of motion involving both Coulomb potentials as

(3.44)

The equation of motion can be integrated with the help of a standard method
as for example the Runge-Kutta integration scheme [Pre86].

The final phase space distribution is constructed out of the ensemble of
propagated test particles. The larger the number of propagated trajectories
is, the smaller is the statistical uncertainty of the result which scales as the
inverse square root of the number of trajectories.

We can divide the solution of the capture problem by terms of classical
trajectories into three stages In the first stage the quantum mechanical initial
state is represented with a classical electron distribution. This generation of
initial conditions is only approximate. The phase space distribution of the
microcanonical ensemble of classical electron can be constructed such that it
agrees with the quantum mechanical momentum distribution of the Is ground
state while the spatial distribution differs from the exact quantum mechan-
ical result [Sch92]. This is mainly due to the fact, that unlike a quantum
mechanical wave function, the classical particle ensemble can extend only up
to a maximum radius which is determined by the balance of potential and
kinetic energy. This deficiency of the classical particle discretization to re-
produce the phase space properties of the unperturbed atomic wave function
may introduce a significant source of uncertainty into the result for charge
transfer [Sch92].

In the second stage of the calculation of electron capture each test particle
is propagated in time along a classical trajectory according to its equation
of motion (3.44). Therefore this method is referred to as the classical trajec-
tory Monte Carlo (CTMC) method. Here lies the convincing advantage of
a classical description. The numerical integration of the three-body system
subject to Coulomb forces takes all the interactions into account exactly.

To obtain state-to-state charge transfer cross sections the final classical
phase space density is mapped onto quantum numbers in the third stage of
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the calculation. A method developed by Becker and McKeller [Bec84] based
on the proportionality of quantum and classical weights provides a good
description of the n,l capture distribution [Men90, Sch92]. This is achieved
by mapping the classical principal number ne = Zp/ y'- 2Ee where Ee is the
binding energy of the electron in the rest frame of the projectile onto the
principal quantum number n as

n(n - 1/2)(n - 1) :::;n~ :::;n(n + 1/2)(n + 1) (3.45)

Similarly, the classical angular momentum le is mapped onto its quantum
equivalent as

(3.46)

The coherences between two states with different angular momentum can
be extracted from a classical calculation through their correspondence to the
expectation values of combinations of the Runge-Lenz vector and the angular
momentum [Bur83b].

To summarize, a classical calculation allows for a test particle discretiza-
tion of the initial condition and to propagate each test particle according to
the corresponding equation of motion in the time dependent combined elec-
tron field of the target and projectile nucleus. This Monte Carlo technique
is quite robust and is also suitable to calculate efficiently capture into higher
excited states. The deficiency is not only the lack of quantum effects in the
dynamics but also the incapability of exactly reproduce the initial quantum
phase space distribution.

3.4.2 Continuum-distorted-wave approximation

In the following we discuss two non-relativistic quantum mechanical models
for electron capture. The solution of the full Schrödinger equation for the long
time evolution and the large number of states is prohibitingly difficult. Only
recently computing facilities that can handle the problem became available
as we will discuss in the next section.

An efficient method to simplify the calculation of electron capture cross
sections is to include the effect of the core potentials in the unperturbed ba-
sis functions and consider the kinetic electron energy as perturbation. This
continuum-distorted-wave (CDW) model [Che64] can be adopted for bare
targets and projectiles, i.e. for unscreened Coulomb potentials. Cross sec-
tions are obtained as an integral over the perpendicular momentum transfer
ki as

(3.47)
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with the overall momentum transfer k = k.l.. + ikz. The parallel component
of the momentum transfer is fixed by the amount of energy brought into
the collision as -kzvp=Ekin+b.Ebind where Ekin is the initial kinetic energy
of the electron in the projectile rest frame as Ekin = v2/2 and b.Ebind is
the difference in binding energy of the electronic initial and final state. The
transition amplitudes Ti-+O:,ß(k) denote transition matrix elements for the
initial state i to a final state a or ß as a function of momentum transfer. Due
to the velocity matching argument (see section 2.1) the largest contribution
to the cross section comes from the Is projectile ground state. To account for
the presence of other electrons of the neutral carbon projectile atom we use
for the initial wave function parameterized Roothaan-Hartree-Fock atomic
wave functions tabulated, among others, also for carbon in reference [Cle74].

Since the interaction strength varies strongly between very strong in the
close-collision region to vanishingly small in asymptotic far distance a hybrid
approach is utilized [Bur81a, Bur81b]. At close projectile-target distance, the
transition amplitudes are evaluated in the basis of continuum-distorted waves
and then projected onto a parabolic basis set. Ti-+o:,ß contain higher order
scattering contributions in the perturbation expansion and are therefore able
to account for capture into higher angular momentum states. The CDW
method is suitable for collision systems with similar projectile and target
charge since it treats deformation of initial and final states in the distorted
wave functions on the same footing.

A projection of Tï-+o:,ß onto parabolic states has the advantage of an easy
inclusion of subsequent post collision interaction (PCI) with the Coulomb
field F(T) of the residual target ion resulting in Stark mixing of final states.
This combined approach, the CDW-PCI model, considers long range Stark
mixing as well as multiple-scattering contributions in the close-collision re-
gion [Bur81b, Bur84]. The time evolution operator for PCI is given as an
integral over the remaining path

U(PCI) = exp (; I dri(r). J)
<r>n

(3.48)

with the dipole operator J. The size of the close-collision region where charge
transfer takes place is'determined by the region of significant overlap of initial
and final wave functions. This border line can be approximately drawn at
a distance between target and projectile that is of the size of the final state
<r>n. In a parabolic basis U(PCI) results in an additional phase, the so-called
PCI-phase, that can be evaluated in closed form [Bur81a, Bur81b, Bur85]
under certain assumption. A detailed comparison with a first order (single
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scattering) theory on excited states cross sections and their sensitivity to
PCI is discussed in references [Bur84, Bur85] where it has been demonstrated
that this post collisional Stark interaction modifies the final state populations
significantly.

To summarize, the extention of the unperturbed wave functions by the
distortion of the core potentials makes the calculation significantly faster
than a solution of the underlying time-dependent Schrödinger equation. The
non-relativistic quantum mechanical CDW method allows to calculate cross
sections of higher angular momentum states and is most suitable for sym-
metric collision systems. By the implementation of the hybrid approach the
long range interaction is also accounted for.

3.4.3 Solving time-dependent Schrödinger equation on
a lattice

The charge transfer in electron capture is determined by the time-dependent
Schrödinger equation (TDSE). Accounting numerically for the large Hilbert
space including the large quasi-continuum with a considerable number of
bound-continuum transition channels open, posses a formidable task. One
effective method of resolution is to solve the TDSE on a 3D lattice discretizing
the continuous space centered around the projectile ion at the distance of
closest approach. Very recently such a calculation for electron capture has
been implemented by Minami et. al. and first promising results were reported
[Min04a]. This non-perturbative method gives a complete description of the
collision problem within non-relativistic quantum mechanics.

The size of this lattice (and thus the calculation effort) is mainly de-
termined by two considerations. First, all described bound states shall be
contained within the lattice as is indicated in figure 3.3 (a). The second
criterion for the lattice extention is determined by the internuclear distance
at which the probability of the captured electron is not exchanged between
target and projectile any more, i.e. charge transfer ceases. For further prop-
agation the electron probability attached to the projectile is projected onto
a basis of atomic-orbital coupled-channels (AGCC) at this distance. From
there on the AGCC are propagated in the time (i.e. distance) dependent
electronic field F\r; of the residual target as indicated in figure 3.3 (b). This
calculation has to be performed until the projectile has reached a distance
from the target ion where the post collision interaction (PCI) is not effective
for mixing any more.

With this hybrid approach, the multi-center dynamics at the distance of
closest approach can be treated accurately while the dynamics of single-center
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Figure 3.3: Schematic picture of the calculation of electron capture in a colli-
sion of a bare argon with a neutral carbon atom performed by Minami et. al.
[Min04a]: (a) lattice (mesh not to scale) in the region of closest approach cen-
tered around the argon ion for the solution of the time-dependent Schrödinger
equation (LTDSE); (b) atomic-orbital coupled-channels (AGCC) calculation
for the post ionization interaction at large distances. Bohr radii for n=1,2,3
for argon and n=l for carbon are indicated to scale as orbits.

projectile states during the departure from the region of charged transfer can
be treater effectively as well. It has to be pointed out that while the AOCC
calculation of the PCI is relatively fast from the point of view of computa-
tional effort, the solution of the TDSE on a 3D lattice for a series of impact
parameters is very extensive requiring large scale computing resources.

The method was first applied by Minami et. al. to calculate electron
capture by a proton out of a helium atom [Min04a] solving the TDSE in a
grid of 3203 points. For this collision system a series of experimental studies
covering a wide range of impact energies is available. Results of other the-
oretical calculations are also available for this collision system. Comparison
with results obtained by LTDSE demonstrated the accuracy of the method.

To summarize, the LTDSE provides a complete description of the close-
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collision interaction within non-relativistic quantum mechanics and is there-
fore expected to be the most accurate method for the calculation of capture
cross sections available. The price to pay is the large amount of computing
time needed to solved the TDSE on a relatively large 3D grid for different
impact parameters. As in the CDW method, the hybrid approach allows
to spend this computing power for the important close-collision region while
adopting a less computing time intensive method to account for the asymp-
totic Stark mixing.

3.4.4 Relativistic eikonal theory of electron capture
In the collision system we consider vp = 23 a.u. such that ß = vp/ c ~
0.17 which is moderately relativistic. To probe possible relativistic effects
we consider a theory that predicts cross sections in the relativistic energy
regime. A method to consider relativistic effects in electron capture is the
relativistic eikonal approximation [Eic85, Eic90]. This relativistic eikonal
theory is suitable of collisions where the kinetic energy of a free electron
(traveling with the speed of the projectile) brought into the collision by far
exceeds the binding energy of the initial target state as well as of the final
projectile state. The energies involved in the collision system considered here
just satisfy this requirement. Since we use this theory on the border line of its
applicability accuracy of the resulting cross sections may be not guaranteed.
However, we expect ratios between cross sections of different fine structure
states to be still reliable and account for possible relativistic effects.

State-to-state capture cross sections are calculated as an integral over the
impact parameter b as

(3.49)

with the statistical weighting of initial projection of total angular momentum
mi and the transition amplitudes A. The cross sections obtained are summed
over final mf' The transition amplitudes are constructed as

(3.50)

with the electron-target interaction entering in first order which is of Coulomb
form in the projectile system and is subsequently transformed into the target
frame by the spinor transformation S. A Dirac eigenfunction is Lorenz trans-
formed by S from the target to the projectile frame as lJ!'(r~, t') = SlJ!(f'r, t).
We denote space-time coordinates in the projectile frame with a prime.
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C (lS1/2)

C (2S1/2)

Ar (2Pl/2)
6.699
1.112

Ar (2p3 2)
6.437
1.072

Table 3.3: Electron capture cross sections evaluated within the relativistic
eikonal theory for charge transfer from carbon 1s and 2s into the fine structure
manifold of 2p in argon in units of 10-22cm2 [Eic05].

The initial time-dependent wave function in the transition amplitude con-
sists of the stationary target wave function '!/Ji and the phase as a function of
the relativistic eigen energy Ei as

(3.51)

containing the eikonal phase as phase-distortion by the electron-projectile
interaction in the last term. In this way, in a certain approximation, the
electron-projectile interaction is treated non-perturbatively, while the electron-
target interaction enters in first order in equation (3.50). By contrast the
final wave function is \I!f(r~, t') = '!/J/(f';,) exp( -iE/t). Since the eikonal
approximation is an asymptotic theory the effect of the higher charge should
be described more accurately. In the collision system considered, Zp > ZT
making the use of the so-called post form appropriate.

Electron capture cross sections solving equation (3.49) within the rela-
tivistic eikonal theory are tabulated for a wide range of relativistic energies
and collision systems in reference [Ich93]. Additional data for the collision
system considered here were provided by these authors [Eic05]. The results
for capture into 2p are listed in table 3.3 showing two interesting aspects. (i)
The capture from carbon 2s is less effective as from 1s. This we expect as
a result from the "velocity matching" consideration made before in section
2.1. Interestingly the relativistic eikonal approximation predicts contribu-
tions from the 2s initial state to be of the order of 15 %. (ii) Capture into
the fine structure final states 2Pl/2 and 2P3/2 is not exactly equal giving a
hint on a relativistic effect.

3.4.5 Comparison of electron capture cross sections

Here we compare electron capture cross sections under single collision con-
ditions obtained by the methods described above for the collision of a bare
Ar18+ with a neutral carbon atom at a velocity of 23 a.u .. CTMC results
(CCTMC) were calculated by Reinhold as described in [ReiOO]and references
therein. CCDW was obtained from the program presented in [Bur84]. CLTDSE
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final state CTMC CDW LTDSE
Iso 163.00 106.20 123.18
2so 73.94 66.27 68.24
2po 117.16 49.36 68.24
2p1 34.78 9.95 15.55
3so 29.65 30.44 29.32
3po 53.46 22.09 29.88
3p1 13.92 4.49 5.86
3do 8.07 3.15 5.64
3d1 2.59 1.86 2.47
3d2 0.14 0.35 0.23
4so 13.27 15.63
4po 26.31 10.52
4P1 6.47 2.30
4do 5.88 1.82
4d1 1.81 1.13
4d2 0.06 0.25
4fo 0.00 0.18
4f1 0.01 0.11
4f2 0.00 0.13
4f3 0.00 0.04
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Table 3.4: Electron capture cross section for a bare Ar1S+ ion colliding with
a carbon atom at a velocity of 23 a. u. in units of 10-22 cm2 as a function of
final state calculated by CTMC 3.4.1, CDW 3.4.2, and LTDSE 3.4.3.

was calculated by adapting the method introduced in [Min04a] to this colli-
sion system by the same authors [Min04b].

All the methods consider capture from the Is ground state of the target.
To account for the contribution of the second electron in the Is state we
have multiplied the cross sections by two. In table 3.4 we list the capture
cross sections calculated of the three described methods while in figure 3.4
we visualize this data for a better comparison. The overall observation is
that capture into p-states is the dominant channel while capture into higher
angular momentum states is rare. Within a fixed angular momentum, ml=O-
states are predominantly populated.

Generally speaking, these features of the cross sections are reproduced
by all methods. Nevertheless, at a closer look we observe differences in
magnitude and structure. Overall, CTMC cross sections are larger than
those obtained by LTDSE. This difference is most pronounced for p-states.
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Figure 3.4: Electron capture cross section for Ar1S+ +C---+(Arl7+)*+C1+ (vp=
23 a.u.) for different shells: n=l and n=2 (a); n=3 (b); and n=4 (c) calcu-
lated within different approximations: CTMC (.); CDW (t); and LTDSE
(.).



CHAPTER 3. PROCESSES IN ION-SOLID TRANSPORT 40

CTMC predicts much larger - about a factor of 2 - cross sections for p-states.
CDW gives results slightly below values calculated by LTDSE. For capture
into s-states the three methods give very similar results, except for capture
into Is. CDW seems to overestimate capture into states with 1>2 (figure 3.4
(c)). Capture into n=2 is strongest and drops off rapidly for higher shells
(figure 3.5). This decrease is first for lower n proportional to n-2 and n-3 for
higher n. This feature is reproduced by all three approaches. The off-diagonal
elements of the capture density matrix are very similar in the comparison of
CDW and LTDSE results in table 3.5. In accordance with the higher cross
sections for populations (diagonal elements) of CLTDSE also the magnitude
of coherences of CLTDSE is slightly higher than CCDW. Nevertheless, the
complex phase is comparable in both methods.

The cross section for capture into any projectile is given by the trace over
the capture density matrix Cij as Tr[C]. For the three methods discuses here
we obtain

Tr[CC™C] = 6.1 x 1O-2°cm2

Tr[CCDW ] = 3.5 x 1O-2°cm2

Tr[CLTDSE] = 3.7 x 1O-2°cm2 (3.52)

•

where the discrepancy between classical and quantum methods is most evi-
dent. In [Min04a] p-He capture cross sections were obtained by the LTDSE
method. In comparison with a CTMC calculation and the CDW approach
it was found that for p-He the LTDSE gives results agreeing reasonably well
with results obtained by the CTMC calculation while considerable differences
with CDW results have been found. This is especially remarkable since for
the argon-carbon system the agreement is exactly the opposite.

In summary, the two quantum results are comparable in magnitude and
structure while CC™C is higher and overestimates the dipole character of
charge transfer, i.e. capture for the initial s-state into p-states. In the present
transport simulation we consider the time evolution of the density matrix up
to n=4, but cross sections from LTDSE are available only for n::;3. In view of
the similarities between CDW and LTDSE results we construct CLTDSE such
that for n::;3 LTDSE values remain and for n=4 we adopt CDW results. In
the experiment we will compare with, populations of p-states for n::;4 and of
2s have been measure. The comparison of results of the present simulation
of transport enables us to bench mark the different methods for calculation
of electron capture cross sections.
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CDW! LTDSE I
2so 2po 7.07 +i 48.01 6.28 +i 56.12
3so 3po 4.07 +i 22.03 3.93 +i 25.02
3po 3do 0.88 +i 7.19 1.33 +i 11.75
3so 3do -5.33 +i 1.99 -7.23 +i 2.21
3p-1 3d_1 0.15 +i 2.32 0.06 +i 3.57
3P1 3d1 0.15 +i 2.32 0.06 +i 3.57

Table 3.5: Intra-shell coherences of electron capture density matrix for a bare
Ar18+ ion colliding with a carbon atom (vp= 23 a.u.) in units of 10-22 cm2

calculated by different methods (CDWand LTDSE) for n=2 and n=3 .

•
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Figure 3.5: Electron capture cross section Ar18++C--+ (Ar17+)*+C1+ for
vp=23 a.u. into different shells within different approximations (CTMC (.);
CDW (.); and LTDSE (.)). The scaling with n for results obtained with
CTMC is indicated for small n as ex: n-2 (dashed line) and in the limit of
high n as ex: n-3 (dotted line).
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Chapter 4

Classical transport theory

4.1 Introduction
We first consider a classical picture of the ion transport through solids. Fol-
lowing the electron on a classical path provides insight into different aspects
of the complex problem that are helpful for the understanding of a quantum
mechanical description. A classical theory is suitable for the treatment of
highly excited Rydberg states and also electrons in the continuum. It fails
to account for quantum effects and is therefore less suitable for a descrip-
tion of deeply bound electrons in highly charged ions. Consequently, the
electronic Hilbert space of a hydrogenic ion covers a region where a classical
description is appropriate but also a region where only a description within
quantum mechanics can lead to reliable results. None of the methods can be
used to describe the whole Hilbert space accurately. In this work we choose
a pragmatic approach. We describe the time evolution of electrons deeply
bound to highly charged ions within a quantum approach, while we switch to
a classical model for highly excited states. To be more specific, we calculate
the time evolution of the reduced density matrix for core states according
to the quantum mechanical master equation and extrapolate towards higher
excited states using scaling properties learned with the help of a classical
simulation. This is the first application of a classical theory in this thesis.
As a second example we apply a classical description to the emission of elec-
trons into the low-lying continuum of the projectile ion in section 4.4 and
discuss an extension to multi-electron projectiles. Before presenting these
applications we briefly outline the classical description of the time evolution
of an electron attached to a projectile ion in transport through a solid.

42
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Figure 4.1: Random walk along a Kepler orbit. Momentum transfer of colli-
sions indicated by ßp.

4.2 Classical transport theory
The evolution of the state of an electron is represented within the classical
transport theory (CTT) [Bur90a, Kur98, Rei92] by a probability density in
phase space p( T,f/). p( T,f/) is initially given either by a microcanonical en-
semble with the binding energy of the active electron in the initial state or
the phase space distribution obtained in a separate electron capture calcula-
tion 3.4.1. For hydrogenic 1s states, the momentum distribution pcp) agrees
with its quantum mechanical counterpart while the spatial distribution has
a maximum at the point of balance between potential and kinetic electron
energy.

The time evolution of the electron is given by a reduced Liouville equation

where the relaxation operator il contains the interaction with the solid in
all its complexity. This master equation can be solved by test particle dis-
cretization (i.e. classical trajectory Monte Carlo (CTMC) sampling). Mi-
croscopically, the dynamics of each test particle is governed by a Langevin
equation involving both a deterministic Coulomb force and a stochastic force
acting on the electron

(4.2)

where Vp denotes the interaction potential between the active electron and
the projectile. For hydrogenic ions, Vp(T) = -Zp/r, with the projectile
charge Zp. The interaction with the solid enters in the last term of (4.2). At
high velocities, the electron-solid interaction can be treated in the impulsive
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(4.4)

•

momentum transfer approximation, i.e. momenta /).iÏi are transferred instan-
taneously at collision times ti reducing the transport problem to a random
walk of the projectile electron along Kepler orbits subject to a stochastic
sequence of momentum transfers (figure 4.1). The collisional cross sections
are obtained in the quasi-free electron limit as described in section 3.2. The
distribution of momentum transfers /).iÏi is discussed in section 3.2.1 and
3.2.2. An individual /).iÏi is chosen randomly according to the corresponding
differential MFP. The flight times between two collisions /).t are obtained
according to the Poisson distribution

P(/).t) = .x-I e-C::.t/>'c,l,t as /).t = -ln(r).xc,l,t (4.3)c,l,t

with a random number r E (0,1) for the individual scattering processes.
Those are core collisions (c), longitudinal (1) and transverse (t) electron-
electron interactions.

For deeply-bound electrons, the quasi-free electron approximation is poorly
justified. In a quantum mechanical treatment of the projectile electronic sys-
tem, the final state after a collision is restricted by the discrete level structure
of bound states leading to suppression of small momentum transfers in soft
collisions for deeply bound electrons. Considering the transition operators
in (6.4) for core collisions and (6.23) for electron-electron interaction, the
parallel component of the momentum transfer, ky, is restricted by the energy
spacing between the considered states leading to a lower bound of the amount
of transferred momentum. A classical description of the transport problem
does not provide such a feature. To partly account for this inadequacy we
introduce the requirement of a minimum energy transfer Wmin in the rest
frame of the projectile ion which is determined by the energy gap between
the binding energy before and after the collision. Accordingly, we introduce
a minimum momentum transfer kmin as a lower cut-off for the momentum
transferred by the collision in the modified differential inverse mean free path
(DIMFP)

(
d2.x;'I~t(k,W)) _ d2.x;'I~t(k,w) _ .

dwdk - dwdk B(k kmm)
m

through the Heaviside step function B(k-kmin). In the limit of highly excited
states the modified DIMFP in Eq. (4.4) resembles the free electron DIMFP.
We thus partly include the quantum mechanical suppression of small mo-
mentum transfers in the classical treatment of collisions of bound electrons.

The relative importance of the cut-off is largest for electron-electron scat-
tering while the comparatively large amount of momentum transferred in
core collisions mostly exceeds the cut-off kmin. As a consequence, core states
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are excited by core scattering while excited states are subject to both inter-
actions. In section 4.4 we discuss an application where this sequential fading
plays an important role.

4.3 Transport of bound states populated by
capture

~n=1
-n=2
-+-n=3
~n=4

-D--n=5
-<>-n=6
--6-n=7
--r-n=8
~n=9
-e>-n=10

1O~
o 234567890123456789

Angular momentum I Angular momentum I

Figure 4.2: Populations obtained with a classical calculation for the transport
of an Arl7+ ion through amorphous carbon of thickness 3.5 J.Lg/cm2(a) and
200 J.Lg/cm2 (b) as a function of angular momentum I with the principal
quantum number n as parameter. Solid lines: populations with n::;4; dotted
lines populations with n>4. The initial state is Ar18+.

In this section we discuss results obtained within the classical transport
theory for the transport of an Ar18+ ion (vp=23 a.u.) through amorphous
carbon. The initial conditions are determined by the phase space distribution
of electrons captured according to the description in section 3.4.1. Further
propagation through the solid is calculated as a random walk along Kepler
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•

orbits (section 4.2). The resulting classical phase space is mapped onto the
principal quantum number n and the angular momentum quantum number
l according to (3.45) and (3.46) respectively.

For thin foils the populations resemble the initial conditions produced
by electron capture (see section 3.4.5). The overall probability to find an
electron in a given shell scales with n-3 (figure 3.5). The angular momen-
tum distribution of the initial condition shown in figure 3.4 corresponds to
the limit of infinitesimal short propagation length through the solid. There
electron capture into p-states is the dominant feature of the I-distribution.
In figure 4.2 (a) we show the distribution of Arl7+ populations for a prop-
agation length of 322 a.u. corresponding to a foil thickness of 3.5 Jlgjcm2.

The angular momentum distributions peak for small values of l and rapidly
subside for large values of l. Unlike the initial distribution we can observe
after short propagation angular momentum diffusion towards higher values
of l. At short propagation paths as d=3.5 Jlgjcm2 (figure 4.2 (a)) d-states
become dominant while higher angular momentum states are still less pro-
nounced. After a long interaction time, i.e. propagation length, the picture
is considerably different as shown in figure 4.2 (b) for d=200 Jlgjcm2=18400
a.u.. A large number of collisions has redistributed the probability towards
a statistical mixture of states resulting in a linear 21+1 scaling with l.

4.4 Convoy electron emission
In this section we present an application of the classical transport theory
and put the emphasis on disentangling contributions from different collision
mechanisms onto the spectra of emitted electrons. The angular and energy
distributions of electrons emitted in ion-atom and ion-solid collisions have
been studied extensively [Bre82, Gib91] during the last few decades. In
ion-atom collisions one of the most prominent features of these emission
spectra is that in the forward direction they exhibit a cusp-shaped peak at the
energy corresponding to the velocity of the incident ion. In ion-solid collisions
this feature is commonly referred to as convoy electron peak (CEP)[Bre82].
Its origin is far more complex than in ion-atom collisions as a multitude
of collision processes opens alternative pathways for populating these low-
lying continuum states. Recently, measurements of the CEP for relativistic
projectiles have become available [Tak99a]. Due to the vanishingly small
cross section for electron capture to continuum (ECC)[Luc80] at very high
velocities loss from the projectile by stepwise excitation (electron loss to
continuum (ELC)) [Bur83a] and multiple scattering of liberated electrons are
the main source of the CEP in this case.
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Figure 4.3: Schematic picture of the convoy emission process within a clas-
sical transport theory.

We investigate the convoy electron emission by (moderately) relativistic
projectiles. Here we briefly sketch the main results while a detailed discussion
can be found in [Se103, Tak03]. In line with the experiment [Tak99a], we
focus on Ar17+ ions with an energy of 390 MeV/amu (vp=97 a.u.) traversing
thin self-supporting amorphous carbon foils of thickness varying from 25 to
9190 J-lg/ cm2. This collision system has several attractive features: In the
relativistic velocity regime the average distance between two collisions, the
mean free path, is long. The thinnest carbon foils available have a thickness
of the order of the collisional mean free path, thus providing a testing ground
for the limit of single collisions. By varying the foil thickness we have the
opportunity to follow the time evolution of the projectile for up to several
hundred collisions.

4.4.1 Random walk

We follow the evolution of the electron initially attached to the projectile
by means of a CTMC calculations. The process is schematically depicted in
figure 4.3. The multi-step ionization of transient highly excited states leaves
a clear mark on the charge state probability for different regions of propa-
gation length. Figure 4.4 shows the charge state distribution as a function
of carbon foil thickness for 390 MeV/u incident Arl7+ ions. Since at very
high collision energies the electron capture process is negligible, only Arl7+

and Ar18+ ions were observed. The fraction of Ar18+ ions was 0.8% at 25
J-lg/ cm2, and increased to more than 99% at ",10000 J-lg/ cm2. The charge
state distribution is still not fully equilibrated even at '" 10000 J-lg/ cm2. The
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Figure 4.4: Outgoing fractions of Arl7+ and Ar18+ ions as a function of foil
thickness resulting from the transmission of 390 MeV lu Arl7+ ions through
amorphous carbon foils. Experimental data for Arl7+ (squares) and Ar18+
(circles); short dashed line: simulation neglecting multiple excitation (i.e.
single collision ionization from ground state); solid line: full CTT simulation;
long dashed line: electron emission probability per 106 a.u. path length.
The thickness of 1J.Lg/cm2 of amorphous carbon with a density of 2g/cm3

corresponds to a propagation length of 92 a.u ..

agreement with the simulation based on the CTT is excellent over orders of
magnitude in thickness and probability. We also show the calculated charge
state probabilities when only direct ionization from the ground state is taken
into account, i.e. when stepwise excitation in multiple collisions prior to ion-
ization is neglected. The charge state probability P17(d) (d: foil thickness)
for the initial state (Arl7+) obeys in this case a simple exponential decay
law P17(d) = exp( -dl '\18) with the MFP for ionization of the 1s ground
state .\18 c::: 3000 J.LgIcm2• The fact that we observe clear deviations from
such a simple exponential decay provides direct evidence for the random
walk in state space prior to ionization. The probability per atomic unit
path length for emitting an electron is proportional to the slope of the ion-
ization probability and is also shown in figure 4.4. For very thin foils the
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emission rate of electrons is constant at a value of w = 1.1 X 10-7, because
ionization from ground state is the dominant electron loss process. With in-
creasing foil thickness other processes start contributing thereby enhancing
the emission rate and reaching a maximum around a propagation distance of
d = 1000 /Lg/ cm.2 rv 105 a. u. before rapidly decreasing. This multi-step ion-
ization determines the spectra of emitted electrons at different propagation
path lengths.

4.4.2 Convoy electron distribution

The velocity distribution P( v) of emitted electrons carry signatures of differ-
ent pre- and post-ionization processes. Detailed information about the con-
voy electron emission and the post-ionization interactions can be obtained
from the two-dimensional distribution of the parallel (vII) and a perpendicu-
lar (v_d component of the velocity with respect to the beam direction (figure
4.5). The propagation distances considered in figure 4.5 vary from the single-
collision regime to the multiple scattering regime involving up to hundreds
of collisions. The direct ionization from the ground state results in a near-
isotropic distribution with a weak enhancement in the transverse direction
(d = 25 /Lg/cm2). For thicknesses d ~ 250/Lg/cm.2 the distribution becomes
increasingly squeezed in both (vII) and (v -d directions reflecting the growth
of ionization from excited states built-up in preceding collisions. This is due
to the fact that electrons emitted via a step-wise excitation provide a mea-
sure of the momentum distribution (Compton profiles) immediately before
ionization. As the momentum distribution of the excited states scales as
Zp/n, the velocity distribution of electrons directly ionized from such states
becomes narrower with increasing n.

Up to a foil thickness of d = 250 /Lg/cm.2 post-ionization transport is not
yet important. The velocity distribution resembles that of ion-atom colli-
sions, more specifically, that of an ensemble of initial states with increasing
weight of excited states. The distribution P( v) becomes increasingly oblate
ellipsoidal [Se103,Sza93] with a pronounced dominance of transverse compo-
nents. During the transport through thicker foils, post-ionization collisions
have a significant effect on the angular velocity distribution: Core collisions
of the free electrons transfer a momentum perpendicular to the electron ve-
locity in the rest frame of the target. Additionaly the kinetic energy in the
target rest frame is preserved. Since the change of velocity is relatively small
compared to the velocity in the taget restframe, core collisions therefore effec-
tively modify the electron velocity along a circle. The velocity of an ensem-
ble of electrons initially with the same velocity vector is by spread along this
Newton circle. On the other hand, electron-electron post-ionization collisions
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Figure 4.5: Contour plot of the velocity distribution P( v) of convoy elec-
trons emitted by an Arl7+ (390 MeVlu) traversing carbon foils of different
thickness. The foil thickness is denoted in each graph and the intensities
are normalized to one and taken on a logarithmic scale. We show the dis-
tribution of the parallel (vII) and one perpendicular (V..l = Vx or vy) velocity
component.
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transfer, on average, a smaller amount of momentum to the free electron and
therefore modify the vII distribution in two ways while leaving VJ. almost un-
affected: vII is broadened and also shifted towards lower energies due to an
overall energy loss (stopping) becoming noticeable after propagation through
foils thicker than d = 1000 JLg / cm2• Since core and e-e collisions have dif-
ferent strengths (compare momentum transfer distributions in figure 3.1),
they effectively modify the continuum distribution at different propagation
distances. We thus have the opportunity to disentangle the contributions of
these two collisional interactions in figure 4.5.

4.4.3 Comparison with experiment
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Figure 4.6: Comparison of the theoretical calculation (solid line) with exper-
imental data (symbols) for convoy electrons emitted by the transport of an
Arl7+ ion (390 MeV /amu) through a carbon foil of following thickness: (a)
25 JLg/cm2 (2500 a.u.); (b) 530 JLg/cm2; (c) 9190 JLg/cm2. Theoretical data
has been convoluted with the experimental resolution (!:lB = :f:1°, !:lE = :f:9
keV). Intensity has been normalized to one.



CHAPTER 4. CLASSICAL TRANSPORT THEORY 52

The experimental setup was described in section 2.2. In order to compare
the theoretical findings with the measurements, simulated electron spectra
with ß() = :1:10 are convoluted with the detector resolution of ßE = :1:9
keY. The three different frames in figure 4.6 pertain to the three different
regimes accessible: figure 4.6(a) displays the convoy electron peak in the
(approximate) single-collision regime. Figure 4.6(b) is a much narrower CEP
reflecting the oblate spheroidal distributions analyzed in the previous sec-
tion. Finally figure 4.6(c) displays a drastically broadened and shifted CEP
that is subject to a large number of slowing collisions subsequent to ioniza-
tion. For all three cases we find excellent agreement with experimental data
confirming, among other properties, the highly anisotropic emission pattern
at intermediate propagation distances.

In summary, study of convoy electron emission induced by moderately
relativistic highly charged ions allows the study of the evolution of the CEP
from the near single-collision limit to the true multiple scattering regime in-
volving up to hundreds of electron-ion core and electron-electron collisions.
The discussed classical transport theory (CTT) based on a Monte Carlo
solution of a microscopic Langevin equation is capable to describe this com-
plex evolution process, including the transient build-up of a high degree of
anisotropy, quite well.

4.5 Summary
In this chapter we have taken a first glance at ion transport through solids
by a classical approach. While a description within the quantum transport
theory (QTT) is suitable for (and is also limited by the increasing size of
the Hilbert space to) deeply bound core states, the classical transport theory
(CTT) enables us to follow the electron in a highly excited state and in the
continuum.

In order to partly account for the discrete structure of quantum eigen-
states we have introduced a minimum momentum transfer requirement for
collisions of the quasi-free electron effectively suppressing electron-electron
collisions of core states (section 4.2). We investigate this effect for the ex-
ample of multi-step convoy electron emission (section 4.4) by illustrating its
consequences on the velocity distribution of convoy electrons in the emission
process as well as in further transport in the continuum. Because of the high
charge, high projectile energies, and a wide range of thicknesses the path of
sequential excitation and ionization of an initially bound electron could be
followed in, - for ion solid collisions - unprecedented detail. The build-up
of excited states is, through the narrowing of the Compton profile, clearly
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reflected in the narrowing of the convoy peak. The width of the convoy peak
evolves non-monotonically as a function of the foil thickness: narrowing due
to the generation of projectile excitation by multiple scattering is followed
by broadening in both energy and angle due to further multiple scattering
of the liberated electrons. The charge state distributions of the transmitted
ions and the convoy electron spectra calculated by the CTT simulation are in
good agreement with the experiment over a wide range of target thicknesses,
i.e., from a single collision regime to a multiple collision regime.



Chapter 5

Quantum transport theory

5.1 Introduction
We present a quantum transport theory based on the solution of quantum
master equation. We discuss the Lindblad master equation and its solution
by a quantum trajectory Monte Carlo method. We first briefly review the
open quantum system approach while a detailed description can be found in
[Min03a]. Starting form the underlying Liouville-van Neumann equation we
discuss the reduction to a master equation of the Redfield form by means of
the Born-Markov approximation. A further mapping onto a master equation
of the Lindblad form allows for a significant simplification of the solution.
This is that the Lindblad master equation can be transformed to a non-
linear stochastic Schrödinger equation without further approximation. The
advantage of this additional step is that the latter can be solved by means
of a quantum trajectory Monte Carlo method making a large number of
problems accessible to a numerical solution. In the following applications of
this method we will explore this fact.

We present the extension for a system with a net flux out into a comple-
ment and discuss the quantum trajectory Monte Carlo implementation. This
modification of the Lindblad master equation is necessary since the standard
Lindblad formalism is strictly unitary and does not account, actually forbids,
for outgoing as well as for incoming probability flux. We show its validity of
the Monte Carlo solution by an analytical proof and by a numerical test con-
sidering the comparison with an exact system. As we will see in this chapter,
for collisions this generalization implies certain approximations that will be
discussed in detail in the next chapter before we can apply this method to
the calculation of ion-solid transport. In chapter 8 we present a more general
form of the Lindblad framework that accounts for incoming flux as well.

54
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5.2 Master equation
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Consider a system (8) of interest with Hamiltonian Hs with the reduced
density matrix a interacting with an environment referred to in the following
as reservoir (R) with Hamiltonian HR and aR through a coupling interaction
VSR (Fig. 5.2(a)). The time evolution of the density matrix p(t) = a(t) Q9
aR(t) of the entire interacting system is given by the Liouville-von Neumann
equation

d .
dtP(t) = -z [H, p(t)], (5.1)

including the total Hamiltonian H = Hs + HR + VSR'
Clearly, the solution of the full Liouville-von Neumann equation is out of

reach for realistic systems involving a large number of degrees of freedom.
Instead, the focus is on a master equation, an equation of motion for the
reduced density matrix of the system of interest a(t), which is obtained by
tracing out all degrees of freedom of the reservoir by a(t) = TrR[P(t)]. One
requirement for the reservoir is that it has a large number of degrees of
freedom compared to those of the system such that the energy spacing of
reservoir states is much smaller than that of the system providing a quasi-
continuous excitation spectrum. The reduction entails usually a number of
additional approximations such as the Born-Markov approximation which
neglects memory effects, treats the coupling VSR in first-order perturbation
theory, and yields a master equation of the Redfield type [Min03a].

The Born-Markov approximation is valid for systems that are initially
disentangled. This means that the interaction is initially switched off and we
can write the tensor product for t=O as

p(O) = a(O) Q9 aR(O) . (5.2)

In a beam-foil setup the interaction is effective only during the passage of a
projectile through the target. There system and reservoir variables get entan-
gled. This entanglement has to be weak from the point of view of the reservoir
such that aR is unaffected by the interaction and remains approximately in
its ground state as aR(t) ~ aR(O). This corresponds to the assumption of
linear response in reservoir variables. Obviously this assumption is only valid
on a certain time scale. The fluctuations in aR destroy the entanglement of
system and reservoir variables such that this perturbation is dissipated on a
time scale te that is the reservoir correlation time. Consequently, when we
restrict ourself to observables changing slower that te, i.e. a(t + te) ~ a(t),
we can assume

p(t) = a(t) Q9 aR(O) (5.3)



CHAPTER 5. QUANTUM TRANSPORT THEORY 56

to be valid on this longer time scale.
Considering a swift projectile moving through a solid the correlation time

te is of the order of the inverse projectile velocity. On the other hand the
secular motion of projectile electronic observables occurs on a longer time
scale making the Born-Markov approximation applicable for the description
of projectile observables. In other words, it is the projectile velocity that
ensures a fast dissipation of fluctuations of reservoir variables and that the
projectile experience a reservoir in its ground state.

Within the Born-Markov approximations the Liouville-von Neumann equa-
tion can be reduced to the Redfield equation which is a master equation for
the time evolutions of the reduced density matrix of the system as

(5.4)

with the relaxation operator R(R)

R(R)fJ(t) = -~ J d3k [Xt(k)Y(k)a(t) + a(t)Xt(k)Y(k)

-X(k)a(t)yt(k) - Y(k)a(t)Xt(k)] (5.5)

R(R) describes transitions induced by the interaction with the environment.
R~:2l maps each element of the matrix akl on the time derivative of each
element of aij making it a rank four tensor. The product XY is determined
according to (3.7)

splitting up into the individual components

(5.7)

and

(5.8)

Hence in the Redfield master equation the bra and ket wave vectors of the
density matrix aij = IWi)(Wjl are described by different operators, i.e X and
Y. This extra complexity makes the solution of the Redfield master equation
(5.4) cumbersome.
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Lindblad proposed an alternative form of a master equation that describes
the time evolution of bra and ket wave vectors by means of the same operator
S. This is achieved by the following form of R which is called the Lindblad
form

Rcy(t) = -~ J d3k [St(k)S(k)CY(t) + cy(t)st (k)S(k) - 2S(k)CY(t)St(k)] (5.9)

with the transition operator S. Mapping the Redfield transition operators
X and Y on the Lindblad transition operator S is not unique and requires
additional approximations. All terms in equation 5.4 cary oscillatory phase
factors of the form exp(iwijt) in the interaction picture. The usually applied
secular approximation assumes that for long interaction times the phases
average out. Only those terms survive where Wij=O leading to the mapping

(5.10)

A diagonal transition operator as ssec can only account for decay of off-
diagonal elements of the density matrix, but no build-up of off-diagonal ele-
ments can occur.

By taking the geometric mean of X and Y [Min03a]

we obtain a symmetrical form that is applicable in the Lindblad form of the
master equation. Since Sij contains also off-diagonal elements, a build-up of
off-diagonal elements of the density matrix is possible. The transition op-
erators S describing state-to-state transitions can be calculated for different
environments as shown in section 3.2.

The two particularly important properties of the Lindblad form of the
master equation are first the possibility to solve it by means of a Monte
Carlo technique opening up a wide range of applications. In this thesis
we will explore this feature. The second important point is that due to
the specific choice of the transition operators (5.11) the Lindblad master
equation can account for the build-up of diagonal elements of the reduced
density matrix, i.e. coherences. To be more specific, the application of the
transition operator S simultaneously from the left and also from the right on
CY allows for transitions from one initial state to more than one final state.
These final states have at that point a certain phase relation, that is, they
form a coherent superposition. In [Min03a] it was shown that the mapping
allows to account for the phase information on the time scale of the secular
motion of system observables.
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5.3 Unitary open quantum systems
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In this section we consider the case of a Lindblad master equation that de-
scribes an open quantum system that is open with respect to energy ex-
change but closed for probability flux. The master equation describes a uni-
tary transformation. Therefore we name this version of master equation the
"unitary" Lindblad equation in contrast to the later discussed "non-unitary"
version that describes open quantum systems that are also open with respect
to probability flux.

5.3.1 Unitary Lindblad master equation
The unitary Lindblad master equation is written as

d .
dt (J(t) = -z[Hs, (J(t)] + R(J(t)

with the relaxation superoperator

R(J(t) = - 2~ L [st (k)S(k)a(t)
k

+(J(t)St(k)S(k) - 2S(k)(J(t)St(k)] ,

(5.12)

(5.13)

that describes the interaction of the system with the reservoir and involves a
sum containing the transition operator S(k). The transition operator repre-
sents transitions between states of!HIs due to the coupling with the reservoir
determined by VSR' The physical meaning of the summation label k and
quantization volume V depends on the system under consideration. In the
following k represents the wavenumber vector of the momentum exchange
between system and reservoir but mayalso include polarization indices etc.
The time evolution of the reduced density matrix (J(t) in this formalism is
governed by Hs, the part of the total Hamiltonian acting on the system
solely, and by the Lindblad transition operator S(k). With this decomposi-
tion we separate the description of the dynamics into an unperturbed part
of the small system without an environment (Hs) and put all effects of the
presence of an environment (i.e. driving transitions within the open quan-
tum system) into the relaxation superoperator (R). In the quantum Monte
Carlo trajectory realization the first term of (5.12) and the first two terms
of (5.13) of the Lindblad master equation result in a continuous time evolu-
tion while the last terms in (5.13) is responsible for discontinuous ("jump")
processes. Built into Eq. (5.12) is the strict positivity of (J(t) for all times,
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i.e. CTii(t) 2: 0 for all i and t. The Lindblad Eq. describes an open quantum
system (OQS) allowing for energy exchange

while preserving the total probability

d
dt 1'rs[CT(t)] = 0 .

(5.14)

(5.15)

The latter follows from the explicitly built-in unitarity of the evolution into
the relaxation operator (Eq. (5.13)). Eq. (5.12) describes a unitary mapping
of the Hilbert space of the system, lHIs,onto itself.

5.3.2 Quantum trajectory Monte Carlo solution

The popularity of the Lindblad equation is, in part, due to the fact, that it
can be mapped onto a nonlinear stochastic Schrödinger equation (NLSSE)
without further assumptions or approximations. The advantage of such a
mapping is that the NLSSE can be solved by propagating a Monte Carlo
ensemble of state vectors: i.e. using the quantum trajectory Monte Carlo
(QTMC) or Monte Carlo wavefunction (MCWF) method. In analogy to
classical statistical mechanics, where the Boltzmann equation can be solved
using test particle discretization following the trajectories of an ensemble of
test particles in time according to a Langevin equation 4.2, the Lindblad form
of the master equation can be solved by an ensemble of quantum trajectories.
The dynamics of the classical trajectories in phase space is governed by the
Langevin equation while in the quantum version each realization corresponds
to a stochastically propagated state vector (quantum "trajectory" in Hilbert
space) according the NLSSE.

Within the QTMC method the density matrix of a pure state is obtained
as

(5.16)

where T} is one stochastic realization and Ntraj is the number of quantum
trajectories controlling the statistical uncertainty. In the limit Ntraj --+ 00,

the ensemble average can be shown to be strictly equivalent to the solution of
the original Lindblad equation [Gar99]. The time evolution of each trajectory
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Id\!l7J(t)) =

et..

is governed by the NLSSE

[
-iHSdt - dvt L (St(k)S(k) - (St(k)S(k)) )2 _ t,7J

k

+~ LdN~(t) ( S-.(k) -. -1)] 1\!I7J(t)) (5.17)
f (St(k)S(k)) t,7J

The differential, also called Ito differential, dN~(t) = N~(t+ot) - N~(t) takes
for a given quantum trajectory TJ for an infinitesimally short time interval Öl
the value 1 when a jump happened and 0 for no jump. This stochastic
element generates different stochastic realizations of quantum trajectories
labeled by TJ. We show in 5.4.3 that the reduced density matrix calculatèd
as the Monte Carlo average (5.16) yields the Lindblad equation (5.12) when
the expectation value of the Ito differentials for the system in state I \!I7J) at
time tare chosen as

dN:!(t)dN:!,(t) = dN
k
:!(t)8ff, = dt / St(k)S(k)) 8ff,. (5.18)

k k \ t,7J

Because the right hand side of the NLSSE (5.17) explicitly depends on the
expectation value of the transition operator S the NLSSE is nonlinear leading
to a non-Hamiltonian form.

Solving the NLSSE the time evolution of each quantum trajectory is
constructed by applying the time evolution operator onto the initial wave
function as 1\!I7J(t)) = U7J(t,O)I\!I7J(O)). The time evolution operator UTJ(t,O)
is constructed as a sequence of continuous time evolution operators and dis-
continuous jump operators as

n

UTJ(t,O) = U20nt(t, tn) IIUfump(kj, tj)U20nt(tj, tj-I)
j=1

(5.19)

with to = O. The application of the continuous time evolution operator
results in

= U20nt(tj, tj-d IIJITJ(tj_d)
e-iHeff(trtj-l) I\!I7J (tj-d)

- Ile-iHeff(tj-tj-d 1\!I7J(tj-d) II '
with the effective Hamiltonian

He!! = Hs - 2~ L St(k)S(k)
f

(5.20)

(5.21)



CHAPTER 5. QUANTUM TRANSPORT THEORY 61

including the unperturbed atomic Hamiltonian of the system (Hs) and the
modification of the eigenstates due to the presence of the environment making
the effective Hamiltonian non-Hermitian. In the last term we identify the
decay operator r as

r = ~ L:r(k) = ~ L:St(k)S(k)
k k

The discontinuous transitions

(5.22)

(5.23)

(5.24)

.'

are specified by a transition time (jump time) tj and the parameter kj which
are determined by the coupling to the reservoir degrees of freedom. In spite
of the non-Hermitian nature of Heff, the evolution (Eq. 5.20-5.23) remains
unitary as the renormalization of the kets (Eq. 5.20 and 5.23) restores the
norm at each step.

The time between two jumps is determined by the stochastic variable
dN~(t) whose average is defined by the expectation value of the decay oper-

k
ator r (see equation (5.18)). From (5.18) we can define a probability density
for jump times per unit time as

jt+clt
t pl1(t')dt' = 8t (r)l1t = 8t (wl1(t)lfiwl1(t))

which is constant in an infinitesimal time interval with the length 8t.
A possible choice is to consider the decay of norm determined by the

continuous time evolution operator when omitting the normalization in the
denominator in equation (5.20)

(5.25)

with the normalization 100

pl1(t')dt' = 1 (5.26)

such that the integral over the probability density pl1(t) is in the interval
between 0 and 1 for each positive upper time.

In order to find for a certain trajectory the next random jump time based
on the probability density pl1(t) we chose a random number r in the interval
(0,1) and find the next jump time t' that fulfills the implicit equation

(5.27)
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This means that we have to propagate the wavefunction in time until equation
(5.27) is satisfied. The Newton iteration method for root-finding proved to
be very efficient and converges to a satisfactory level within less than five
iterations [Pre86].

It has to be pointed out that equation (5.27) describes a multi-exponential
decay determined by the decay operator r. In a special case when we would
consider only single-exponential decay, i.e. only one channel that can decay,
we can use the expectation value of the decay operator directly to simplify
the implicit equation (5.27) to

• giving a jump time as
t' = -ln(1 - r)/ (r)1/t

(5.28)

(5.29)

Since in the general case we are confronted with a multi-exponential decay,
we have to solve (5.27) using the Newton iteration.

In a special case when the subspace Rs contains states for which rii = 0
(i.e., states that do not decay at all) the integrated probability density for
jump times adopts the form

(5.30)

.'
where the step function () selects only states that contribute to the reduction
of norm in (5.27). A hydrogenic ion that can only radiatively decay by
emitting one photon represents such a special case where the 2s metastable
and the Is ground state are such a probability sink.

After the jump time has been determined the value of k is chosen accord-
ing the conditional probability density

(5.31)

In Figure 5.1 we show an example trajectory within the QTMC method.
The left side shows the initial density matrix 0"(0) with an initial state de-
noted as an entry in the bottom left corner of the matrix with a red square
while the other elements are 0 (empty entries). For this example we have
chosen a hydrogenic Krypton in the Is ground state as initial state. We
show only a subspace of 16 states. The initial density matrix is decomposed
according to 0"(0) = Iw(O)) (W(O)I into the bra and ket wavevectors indi-
cated next to the matrix. Then we take the ket wavevector and propagate
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Figure 5.1: Example trajectory of the QTMC method for a Kr35+ ion initially
in the 1s ground state. Left side shows the initial density matrix and its
decomposition into a bra and ket wavevector. Middle segment shows the
next step of one stochastic realization of the time propagation of the ket
wavevector 1\11(0))-t 1\I1(l)(t)). We show one stochastic realization as a
function of time for a subspace. On the right side the density matrix of the
first quantum trajectory is put together.

•

it in time according to its equation of motion, the NLSSE (5.17). Since the
NLSSE has a stochastic element we will create one stochastic realization of
the time evolution. This is shown in the middle section of Figure 5.1 as a
function of time. What happens in detail is that until the first quantum
jump at t1 ~ 50 a.u. the probability stays in the ground state. Then at t1
the jump operator spreads the probability into higher excited states. FUrther
interaction redistributes the probability that partly decays into the ground
state or goes into higher excited states that are not displayed in the fig-
ure (at time ~ 250 a.u.). Then a sequence of continuous and discontinuous
time evolutions redistributes the probability. The final density matrix at
a certain time t (t = 650 a.u. in this example) is reconstructed according
to (1(1)= 1\11(1))(\11(1)1.In the right side of Figure 5.1 we show the density
matrix for one stochastic realization. The solution of the underlying Lind-
blad master equation is a sum over a sufficiently large number of stochastic
realizations as is written in equation (5.16).

The advantage of the QTMC method is the lower-order scaling of the
solution with the basis size Ns. A direct solution of the Lindblad master
equation scales with N~ which makes larger systems inaccessible for a the-
oretical description. The solution of the NLSSE by means of the QTMC
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method scales with N~ because we obtain the time evolution of the density
matrix by propagating wavefunctions in time. The additional scaling with
the number of stochastic realizations (Ntraj) controls the statistical uncer-
tainty.

5.4 Non-unitary open quantum systems
In this section we introduce a generalized version of the Lindblad master
equation that describes an open quantum system that is open not only with
respect energy exchange but also with respect to probability flux.

The unitarity constraint, Eq. (5.15), built into the Lindblad equation,
poses a hurdle for realistic numerical simulations as it remains in force when
the Hilbert space is truncated to dimension Ns. For realistic high, but fi-
nite, dimensional systems which include continuum states a strictly unitary
evolution is unphysical. Only a subspace P of the Hilbert space lHIscan be
represented in a numerical simulation by a truncated basis of dimension Np
(see Fig. 5.2(b)). The subspace P is coupled to its complement Q by VSR.

The flow of probability between P and Q is therefore not an artifact but real
for any computationally feasible truncated basis set. The point to be noted is
that Q refers to a subspace of the system Hilbert space, not to the reservoir.

(a)

open quantum VSR
reservoir

system IHIRlHIs
(b)• reservoir

IHIR

Figure 5.2: Schematic picture of the open quantum system lHIsinteracting
with the reservoir lHIRvia the interaction VSR' (a) full system lHIsand (b)
decomposition into subspace P and complement P.

In practice, numerical simulations take this effect into account by optical
potentials or masking functions [Yos99]. Their purpose is to prevent "reflec-
tion" of wavepackets, i.e. the artificial confinement within P rather than the
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flow into Q. Such approximations can account for a flow from lP' into Q while
neglecting the backcoupling from Q to lP'. Their consequence is the violation
of unitarity within lP' C ll:IIs. In the application to the excited state evolu-
tion in the solid (see chapter 7), lP' will represent the hydrogenic bound-state
space up to n~nc where the cut-off quantum number is typically nc~4. (The
dimension of lP' is Ns=60). Accordingly, Q represents higher-lying bound
states (n>4) and the continuum spectrum of ionized electrons. Our goal is
therefore to go beyond the restriction (5.15) and to develop a new master
equation that accounts for the probability flow from lP' into Q as is indicated
in Fig. 5.3.

5.4.1 Non-unitary Lindblad equation
The time evolution of the density matrix describing the full Hilbert space
lliIsis unitary and is determined - in case it is fully contained in the basis -
by the previously described unitary version of the Lindblad master equation.
We label it aU (t). The density matrix describing the subspace lP' is labeled
as aNU (t) since the time evolution is not unitary within lP' any more. We
obtain the non-unitary density matrix by tracing out of aU (t) all degrees of
freedom associated with the complements Q as

(5.32)

•
The next step is to construct a Lindblad master equation for aN U ( t) from
the one governing the time evolution of the unitary density matrix

Formally we can write it as

(5.34)

which means that we have to consider a{'Ju (t) for states that are only from the
subspace lP'. Since the subspace lP' is not a closed system the time evolution
for (JNU(t) is written as

(5.35)
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•

Since we consider the density matrix in the basis where the system Hamilto-
nian Hs is diagonal, we can set i = a and can leave the first term in (5.35)
unchanged.

The second term in equation (5.35) describes for ß =1= j the decay of
coherences. In the case ß E JP> those coherences are contained in the subspace
JP>. For ß E Q the density matrix (J'gj(t) describes coherent superpositions
between two states where one of them is included in (J'NU(t) and the other
is not. Those coherences are very short-lived. For the systems we consider
in this work, i.e. hydrogenic ions, the borderline between the subsystems JP>
and Q is usually realized by a certain cut-off quantum number ne' Therefore
the energy spacing between two states, one in JP> and the other Q is at least
of the order of the inter-shell energy spacing between ne and ne + 1, which
is considerably large. As we will discuss below in section 7 in more detail,
these inter-shell coherences dephase very fast and thus play no role on the
time scales we consider here. We can neglect those coherences and consider
only

(5.37)

(5.36)

(5.38)J-L, v E JP> .

ßEJP>.
Because of the definition of the decay operator r as

_ 1 ~ t.... ....rißEIP - V ~ Sim(k)Smß(k)
k

the state index m also covers states in the complement Q.
In the third term and last term in equation (5.35) the states J-L and v

are elements of JP> EBQ. For J-L, v E Q this term describes coupling from the
complement Q back to the subspace JP>. Because we are not able to describe
the time evolution of the complement we are thus not able to account for its
coupling back to the described subsystem JP>. We consider only• Here we also have to neglect cross coherences between Q and JP> as it was the
case for the second term in equation (5.35).

Using the approximations (5.36) and (5.38) we introduce a generalized
Lindblad equation

ddt (J'NU (t) = -i[Hs, (J'NU (t)] + RNU (J'NU (t) , (5.39)

in which the relaxation superoperator RNU is replaced by

RNU (J'NU (t) = - 2~ L (pIP St(k)S(k)PIP (J'NU (t) + (J'NU (t)PIP St(k)S(k)PIP

k

(5.40)
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Figure 5.3: Schematic picture showing the decomposition of the full Hilbert
space Rs into the subspace IP' and the complement Q in the energy space of
hydrogenic eigenstates. We indicate the mechanism responsible for probabil-
ity flux between these two subspaces.

In (5.40) S is defined in the entire Hilbert space lHIswhile SIP is the submatrix
of S mapping IP' onto itself. That is, SIP=pIPSpIP, where PIP=LaEIP la)(al is
the projector operator onto the subspace IP'. This gives rise to the decompo-
sition

rIPIP= ~ ~SIP\k)SIP(k) = ~ ~rIPIP(k)
k k

rIP = ~ ~PIPSt(k)S(k)PIP = ~ ~rIP(k),
k k

where the former describes the decay matrix within IP' while the latter also
includes the decay from IP' to Q. In other words, (5.41b) involves the sub-
matrix SIPQ(k) mapping IP' onto Q (see Fig. 5.3). This allows us to write the
non-unitary relaxation operator in a compact form as

(5.42)

to

RNU (J'NU(t) = -~ [rIP, (J'NU(t)] + + ~ SIP(k)(J'(t)sIP\k) .
k

Consequently the norm of (J'(t) is no longer conserved but decays according

(5.43)
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where SL and Svß in this equation correspond only to matrix elements of
the submatrix SPo..

5.4.2 Quantum trajectory Monte Carlo solution
This non-unitary extension of the Lindblad equation has the advantageous
feature that the positive-definiteness requirement remains satisfied within lP'.
Consequently it can be solved using a QTMC algorithm as well provided
that a modified NLSSE and generalized versions of the continuous and jump
operators

(5.44)

is used. The non-hermitian effective Hamiltonians entering Eq.(5.44) are

(5.45)

The interesting point to be noted is that the flow of probability from lP' to Q
is realized by the continuous time evolution operator Udont(tj, tj-I) in (5.44)
where we use different effective Hamiltonians in the nominator and denomi-
nator which is due to the different decay operators rP and rPP entering there.
Since in (5.42) the loss of norm is only realized by rP in the anti-commutator
and because this part of the Lindblad master equation corresponds to con-
tinuous propagations in time, only Udont(tj, tj-d accounts for the probability
flow out of lP'. The jump operator describes only transitions within lP' as

by leaving the norm unchanged which is achieved by the prefactor IIW1/(t)ll.
In contrast to (5.20), the continuous operator ((5.44)) does not preserve

the norm of the wavefunction. The corresponding NLSSE now becomes
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where the expectation values are now defined as

69

(5.48)

In order to yield the generalized Lindblad form (5.40), the expectation value
of the Ito differentials when the system is in state I\l11J) at time t is chosen as

dN:! (t) = dt / rll'lI' (k))
k \ t,1J (5.49)

In this case, the jump times dt till the next jump can be obtained from the
implicit equation

(5.50)

where r is a uniformly distributed random number, r E [0, 1].
In this section we have introduced an extension of the unitary Lindblad

master equation to a non-unitary generalized Lindblad master equation. This
formalism enables us to describe open quantum systems that are open with
respect to probability flux out of the system. We have presented a solution
algorithm by means of an adapted quantum trajectory Monte Carlo method.
In the following we show that the Monte Carlo technique solves the general-
ized non-unitary Lindblad master equation. First we discuss the analytical
equivalence in the next section and close this chapter with a numerical test
in section 5.4.4.

5.4.3 Analytical equivalence

In this section we briefly show the correspondence of the solution of the
QTMC method with the solution of the Lindblad master equation. Our
analysis applies to both the unitary and non-unitary QTMC method. The
derivation below is done for the more general case of a non-unitary system. In
the unitary case the difference between rll' and rll'lI' vanishes and HII' becomes
HII'll'. The Lindblad master equation is a relation for the time derivative of
the density matrix. Therefore we consider the short time behavior of the
QTMC method and show that it solves the Lindblad master equation.

The wavevector is propagated in time according to a time evolution op-
erator U1J(tj, tj-I) from time tj-I to tj. We decompose the time evolution
into a continuous part from time tj-I to tj and a discontinuous part with a
jump at the time tj. Then U1J(tj, tj-d becomes

1\l11J(tj)) = U1J(tj, tj_I)I\l11J(tj_I)) = Ufump(k, tj)U:Ont(tj, tj_I)I\l11J(tj_d)
(5.51)
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•

where TI labels the stochastic realization. We define a variable N'J(t) that
k

counts the number of jumps up to a time t for a given quantum trajectory T}

and index k of the transition.
When we consider the time evolution of the wavefunction not for a time

interval given by the jump time tj-I and tj, but for an infinitesimal short
time M we have

11Ji"(t+ 6t)) ~ (~ ~ dNf(t + 6t)Uj;'mp(k, t Ht)) ~nt(t + 01, t) 11Ji"(t))

+ (1- ~~dN~(t+6t)) U;!,nt(tHt,t)IIJi"(t)) (5.52)

where the first term corresponds to the case when a jump happens in the time
interval M weighted with probabilities V-IdN'f(t). The continuous time evo-
lution operator is applied to the wave function first and afterwards the jump
operator acts on the evolved quantum trajectory. When no jump happens
(second term with the complementary probability of 1-V-I L-f dN'f(t)) only
the continuous time evolution contributes via U~nt(t + öt, t).

For an infinitesimally short time interval M we set in the argument of the
Ito differential and the jump operator t + öt ---+ t. Since U~nt(t + M, t) is
applied in both cases we can simplify (5.52) to

I1Ji"(t + 01)) ~ [1+ ~ ~ dN~(t) (U;;'mp(k, t) - 1)] U;!,nt(t + 01, t)IIJi"(t))

(5.53)
We make the following ansatz for the continuous time evolution operator

U~nt(t + öt, t) as

(5.54)

Since we are interested in the short time behavior we expand the exponentials
in (5.54) using the Taylor series

e-iH::
P

dt = 1- iH:{1J>dt + O(dt2) (5.55)

up to first order in dt leading to

UT/ ( d ) I'T'T/( )) = (1 - iH:trdt)IWT/(t))
cant t + t, t 'i' t 1/2 .

[(WT/(t)l(l + iH::tdt)(l- iH::dt)IWT/(t))]
(5.56)
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By inserting the definition of the effective Hamiltonian H:j~rr>= Hs - ~rrr>,rr>rr>
the denominator of Eq. (5.56) simplifies to ((W17(t)ll- rrr>rr>dtlw17(t)))1/2, so
that we obtain in first order of dt

using the definition of the expectation value as

rrr>rr> _ (W17(t) Irrr>rr>(t) IW17(t)) _ (W17( t) Irrr>rr>1W17(t))
( \'17 - (w17(t)lw17(t)) - Ilw17(t)112 (5.58)

omitting all higher order terms on bt.
We insert the explicit form of U'20nt(t + dt, t) from equation (5.57) into

equation (5.53). By considering the differential change of the wave function
as Idw17(t)) = -IW17(t)) + IW17(t + bt)) we obtain

Idw17(t)) = (5.59)

[-iHsdt - ~ (rP
- (r")",) + ~ ~dN~(t)(Uj~mp(k, t) -1)] 11[1'(t)).

All terms proportional to dN:!(t)dt vanish to first order in dt when we take
k

the average over all stochastic realizations of a quantum trajectory. Also
the product of two Ita differentials for the same time is dNE(t)dNf,(t) =

dN:!(t)bf f' because only one jump can occur in an infinitesimal short time
k ,

interval dt.
For the jump operator we make the following ansatz

• rr> ....
U17 (k t) Iw17(t)) -llw17(t)11 S (k) IW17(t))

jump , - IISrr>(k) IW17(t))11

leading directly to the NLSSE

(5.60)
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Finally, the differential change of the reduced density matrix for a stochas-
tic realization d(i" ( t) = Id\IJ17( t) ) (d\IJ17( t) I is given by

dt
da17(t) = -i [Hs, a17(t)] dt + 2 [rIP, a17(t)] + + (rlPlP)t,17a17(t)dt

+ ~ L dNE(t) ((r~IP)~~SIP(k)a17(t)SlPt (k) - a17(t))
k

With the ansatz for the averaged Ito differential

dNE (t) = dt \ rlPlP (k) ) t,17 (5.62)

we relate the average time between two stochastic quantum jumps to the
expectation value of the decay operator. Using this definition for an ensemble
of stochastic realizations a(t) = Nt-;'~j L:~rtja17(t) we directly obtain the
generalized Lindblad form of the master equation

d:~t) = -i [Hs, a(t)] + ~ [rIP, a(t)] + + ~ L SIP(k)a(t)SlPt(k) .
k

(5.63)

The equivalence of equation (5.42) and equation (5.63) shows that the
QTMC method solves the Lindblad master equation.

5.4.4 Test case: radiative cascade as sink
In this section we illustrate accuracy of the non-unitary QTMC method in
comparison with an exactly solvable model problem: the multilevel time
evolution of an excited hydrogenic atom subject to spontaneous radiative
decay. Since spontaneous decay leads only to transitions to lower lying levels
(unlike collisional excitation) truncation of the bound-state Hilbert space
does not introduce errors and thus allows for an exact solution by directly
integrating the Lindblad equation.

We consider a highly charged hydrogenic ion, Kr35+, in the vacuum. The
only interaction with the environment is the coupling to the vacuum fluctua-
tions of the radiation field manifesting itself in two ways: the coupling driven
by this interaction is the spontaneous radiative decay of the electron from
an excited state and also the modification of the eigenenergies of the system
by the Lamb shift [Bra83, Joh85]. Since radiative decay is an exothermic
process, i.e. the final state energy of the electron is always below its initial
energy, the Hilbert space necessary for a representation of all possible final
states is restricted. For example, the time evolution of an electron initially
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Figure 5.4: Test model for a free Kr35+ ion under the influence of radiative
decayonly. (a) Full Hilbert space lHIswith the initial state 4p. (b) Decom-
position into the subspace P and the complement Q. (c) Comparison of the
real and imaginary parts of the relative coherence between the 3S1 1 and the

2'2
3d~,t states calculated exactly for the entire Hilbert space lHIs (C~~3d) and
using the non-unitary reduction for the subspace P (C:s 3d)',

in the 4p state is completely represented in the Hilbert space covering the
first four shells of the electronic states rendering the unitary system within
a finite Hilbert space lHIs,as is schematically shown in Fig. 5.4a.

We can now test the non-unitary QTMC evolution by arbitrarily dividing
this finite system into two subspaces consisting, e.g., of the third and fourth
shells representing P containing the initial state 4p (Fig. 5.4b). Accordingly,
the complement Q contains the first and second shells. This system features
now a net flux from P to Q (e.g. by a direct Ly1' transition or a radiative
cascade) and is thus open with respect to probability flux. Moreover, there is
no probability flowing back from the energetically lower lying complement Q
to the subspace P. Therefore, for this model system, a properly constructed
non-unitary QTMC should exactly reproduce the results from the full unitary
simulation of the whole system for any observables in P.

Using the dipole approximation (aIVrIß) = wßo(alf1ß) with wßo = wß-
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Wa we obtain the transition operator S for the radiative (r) decay as
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(5.64)s~J(:J) = ~ W~~2 (air) Iß) O(wßa) ,
v3c3

where the index J indicates the polarization of the emitted photon. The
unperturbed Hamiltonian of the system including relativistic corrections is

(5.65)

where !:1Hrel reërresents relativistic and Lamb shift corrections. The transi-
tion operator S:J (J) is defined in the entire HHbert space lHIsof the electronic
states of a hydrogenic atom. By allowing the state indices a and ß to cover
only the subspace IP' we obtain s~t(J) = S~J(:r). The construction of the
decay operators is straightforward,

rlP'lP' = '"' '"' s(r)t( )S(r)( )aß ~~ av J vß J
vEIP' J

(5.66)

considering only transitions within the subspace IP'. The decay operator ac-
counting for the loss is

(5.67)

where the complete Hilbert space lHIs= IP' EBQ is represented as a direct sum
over the subspace IP' and the complement Q. The sum of the state index,
over the subspace IP' corresponds to rlP'lP' as defined in the previous equation
(5.67) while the sum over the complement Q remains as

rIP' - rlP'lP' '"' '"' s(r)t( )S(r)( )aß - aß + ~ ~ œy J 'Yß J .
'YEQ J

(5.68)

The unique feature of this test system is that the sum over Q extends
over a small number of states and therefore can be performed without fur-
ther approximation. On the contrary, for an ion in a collisional environment
collisions couple to higher excited states and to the continuum. In the latter
case, the sum over, (states in Q) has an infinite number of terms. Approx-
imating this sum introduces an additional source of discrepancies which is
not the case for the present system using radiative decay.

In Figure 5.4(c) we show the time evolution of the reduced density matrix
starting initially from a 4p state. A remarkable and often overlooked aspect
of the radiative decay is that unless the wave packet is projected, i.e. a
measurement is taken to determine the state of the emitted photon, the
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spontaneous decay generates a partially coherent superposition of states. The
relative coherence depicted in Fig. 5.4(c) is defined by

(5.69)

for a=3s1 1 and ß=3d;! 1. Because of laaßI ~ yŒaaaßß, the absolute magni-
2'2 2'2

tude of the relative coherence, IGaßI, takes values in the interval 0 ~ IGaßI ~
1. IGaßI = 1 if the system is in a pure state while relative coherences smaller
than one imply that the system is in a partially coherent state.

The near-perfect agreement between the exact result calculated in !HIs
and the one calculated with the non-unitary QTMC method employing the
split into the lPand Q subspaces demonstrates the validity of the non-unitary
dynamics in lP. Clearly this level of agreement is, in part, due to the fact that
the back-coupling from Q to lP, which is neglected in our approach, vanishes
exactly in this problem.

5.5 Alternative solution

5.5.1 Solving quantum master equation directly

Alternative the Lindblad master equation can be solved directly. When we
consider a system with Ns eigenstates, the direct solution of the full mas-
ter equation scales with N~. For a projectile in transport through a solid
with typically Ns ~ 102 necessary the direct solution is infeasible. However,
when using a limited set of couplings a numerical solution is feasible. Re-
cently this method was adopted for ion-solid transport [VerOl] calling this
approach the master equation approach (MEA). The collisional transition
rates are calculated in plane-wave first Born approximation (PWBA) thus
adopting a quasi-free electron approximation. The effect of the wake field
is described within the approximation provided by Ponce [Roz99] shown in
equation (3.34). Convergence is reached for calculations involving all sub
states up to n=6. Electron capture cross section are obtained by CDW calcu-
lations 3.4.2. This method shows good agreement with experimental findings
for the transport of highly charged ions through carbon foils [VerDI].

5.5.2 Lindblad master equation for quasi-free electrons

When considering electrons in the continuum or in highly excited Rydberg
states the open quantum system approach can be significantly simplified.
The energy difference between two states Wij becomes small compared to the
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Doppler shift kzvp. Setting Wij to zero in the calculation of the transition
operators leads to

(5.70)

where the imaginary part of the susceptibility is state independent. The
decay operator is then

rij = J d3k x"Cf, -kzvp) I\%(k)r L(i!e-ik'TIJL) (JL!éi;'Tlj)
/-L

(5.71)

where the sum over JL is 1 for i=j and vanishes else.
The non-linear stochastic Schrödinger equation in (5.17) reduces in this

limit to a linear stochastic Schrödinger equation (LSSE). In previous quan-
tum transport theories [Arb99, ArbOO,Min02a, Min02b] the LSSE was solved
by means of a QTMC method.

5.6 Summary
We have presented and extension of the standard unitary Lindblad formalism
by considering only a subspace of the system Hilbert space by excluding parts
of it as the complement. The dynamics is modified by this projection in a
way that it does not apply to the complement any more but still probability
flux into the complement is accounted for. An analytical equivalence of the
quantum trajectory Monte Carlo solution of the dynamics could be shown.

A prerequisite for an exact equivalence of the solution is the knowledge of
the decay operator rIP' that contains also contributions from transitions from
IP to Q. We could demonstrate the accuracy of the numerical solution for a
system where rIP' can be calculated, in a certain approximation, exactly. We
point out that for an ion in a collisionary environment an infinite number
of IP --+ Q transitions exist and that additional approximations are required
in order to evaluate rIP' in equation (5.41b). Before applying the method on
ion-solid transport we discuss these approximations in the next chapter.



Chapter 6

Collisional decay operators for
non-unitary approach

6.1 Introduction
In the last chapter we have introduced a Lindblad master equation where the
probability is not confined in the simulated subspace. In a first application
we tested the method for a radiative cascade (section 5.4.4). The comparison
with the exact solution confirmed the validity of the non-unitary approach.
The non-unitary Lindblad master equation could describe the problem ex-
actly only because the transition operators describing the probability flux
out of the subspace are exactly known.

The decay operator for a non-unitary system is according to (5.41b) is
given by

rIP = ~ L pIPSt(k)S(k)PIP = ~ L rIP(k) ,
k k

defining rIP (k) as

(6.1)

(6.2)IP - ""' t - - IPIP- IPQ-r aß(k) = ~ SalL(k)SILß(k) = r aß(k) + r aß(k)
ILE(IPœQ)

where a, ß E P. Probability flux outwards is described by the decay operator
for loss

(6.3)

The evaluation of r~~(k) contains a sum over states in the complement Q.
For the radiative cascade (section 5.4.4) this sum could be evaluated without

77
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any further approximation. For collisions the situation is different. Since
the number of degrees of freedom in Q is infinite for an ion in a collisional
environment, we have to make an additional approximation when calculating
rIPQ•

In section 3.2 we have described the construction of the transition oper-
ator S for the collisional environments, namely see) for core collisions (3.15)
and see) for electron-electron interaction (3.25). In the present chapter we
perform the calculation of rlPQ for these interactions. The result will complete
the non-unitary QTMC method enabling us to perform numerical calcula-
tions of ion-solid transport (chapter 7).

6.2 Electron-core collisions
In section 3.2.1 we have calculated the cross sections for core scattering. The
Lindblad transition operator for the interaction with the reservoir of screened
ionic cores of the solid (3.15) was found to be

with the number density nA of the ions in the solid and the Fourier transform
of the screened Coulomb potential

(6.5)

with the Thomas-Fermi screening length aTF = O.885Z;;-I/3 and the nuclear
charge of the target atoms ZT' The component of momentum transfer par-
allel to the projectile velocity, kz, is fixed by the requirement wßa = k . vp,

while the component k1.. specifies the perpendicular momentum transferred.
The transition operator see) (equation (6.4)) can be expressed in the form

(6.6)

with the prefactor jec) (wßa, k1..) given by equation (6.4). This factorization
of see) will be used below. The decay operator for loss in core collisions (6.3)
IS

rec)IPQ(k ) = ""' Sec)t(k )Sec)(k )
aß 1.. ~ aIL 1.. ILß 1.. ,

ILEQ

where the states Q and ß are elements of JP>.

(6.7)
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6.2.1 Closure approximation
For the further evaluation of equation (6.7) we employ the approximate fac-
torization (equation (6.6))

r~JIl'Q(ki-) ~ j(c)*(wa, ki-)j(c) (wß, ki-) L(al e-ik<> (k.d'TI JL) (JLleikß(k.d'TIß)(6.8)
ILEQ

with ka(ki-) = ki- + zwa/vp and kß(ki-) = ki- + zWß/vp where we have ap-
proximated the energy transfer walL (WßIL) by an average excitation energy Wo.
(wß) independent of the state JL. The latter is a prerequisite for using the
closure relation

L (aIe-ik<>(k.d'TIJL) (JLleik<>(k.d'TIß) = baß.
ILElHIs

Consequently, we obtain the decay operator for loss rll'Q

(6.9)

r(c)Il'Q(k- ) '"
aß 'i-- Ij(C)(wa, ki-)12 X

X (baß - L (ale-ik<>(k.d'TIJL) (JLleik<> (k.d.TIß)) (6.10)
ILEIl'

valid for all diagonal elements (a=ß) and the most important subset of off-
diagonal elements a=l-ß between nearly degenerate states with wa=wß, wa=wß
and consequently ka(ki-)=kß(ki-)'

With the closure approximation (6.9) we reduce the infinite sum over
the complement Q in (6.7) to sums in the finite Hilbert subspace JP> of the
system. The price we have to pay is the approximation of the energy transfer
walL (WßIL) by an average excitation energy Wo. (Wß) so that the prefactor can
be pulled out of the sum over JL E Q in equation (6.8). A proper choice of
Wo. (wß) determines significantly the quality of the closure approximation for
r(c)ll'(ki-)' For fast collisional excitations in a solid it has been shown [Ino71]
that the generalized oscillator strength distribution ("Bethe ridge") peaks
around the ionization threshold, i.e. a highly excited state or a low-lying
continuum state. These considerations suggest the choice of the ionization
energy for the average excitation energy

(6.11)

implying wIL ---+ O.
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6.2.2 Decay rates

The total decay matrix for loss r~bI?Q is obtained from equation (6.10) by
the integration over all possible perpendicular momentum transfers k1.. as

r(e)I?Q = _1_ fd2k r(e)I?Q(k ) = D(e)o _ M(e)
aß (27T)3 1.. aß 1.. a aß aß ' (6.12)

while the parallel component kz is fixed according to equation (6.4). We label
the integral over the second term in equation 6.10 as

M~~ = f d2k1..lf(e) (wa, k1..)12 L(ale-ika(k.d'TI/-l)(/-lléï;;a(k.d'TIß), (6.13)
/-LEI?

while we denote the integration over the first term in equation (6.10) by

D(e)- _1_ f d2k If(e)(- k )12
a - (27r)3 1.. Wa, 1.. , (6.14)

which depends only on the state index a because of the Kronecker-delta
function oaß. After inserting fee) from (6.4) we have to solve the integral

(6.15)

where the CPk integration gives an additional factor of 27T and only a one-
dimensional integration remains. This integration can be solved analytically
according to reference [Br097] so that (6.15) reduces to

(6.16)

The only state dependence of D~e) is contained in wa. Taking wa = Ea

in equation (6.11) means that wa is mainly determined by the shell-energy
Ea = - Z; I(2n2) whereas other corrections (discussed in section 3.1) are
relatively small and therefore can be neglected in the calculation of D~e).

Hence D~e) is only a function of the shell n. In table 6.1 we have summarized
values of D~e) for the two collision systems considered in this work. For
deeply bound states the correction is small and saturates for highly excited
states. As we will see in section 3.2.1, the expression for D~e) for wa ~ a is
the same as for the decay rate in the limit of quasi-free electron scattering.
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Ar18+, vp=23 a.u. Kr35+, vp=47 a. u.
n=l 5.36 x la 3 7.26 x la -4

n=2 3.94 x 10-2 8.76 X 10-3

n=3 5.97 x 10-2 2.15 X 10-2

n=4 6.54 x 10-2 2.85 X 10-2

n-+ 00 6.84 x 10-2 3.35 X 10-2
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Table 6.1: Values of D~c) calculated according to equation (6.16) as a function
of principal quantum number n with WOl = -Z;/(2n2) for the two relevant
collision systems, namely Ar18+ (vp=23 a.u.) and Kr35+ (vp=47 a.u.) on
amorphous carbon. To obtain the value for n -+ 00 we set wOl = a in
equation (6.16).

Next we consider the second term M~Jin the decay operator for loss 6.12.
By transforming it into polar coordinates and considering the <Pk dependence
of the boost operator (see section 3.3) we see that the <Pk-integration yields
21f<)m",mß (see equation (3.41)). The integral we have to solve can be written
as

Ml1 - 8":;Z} 1dk~k~ (kl + (~:)' + aT~r
x L(ale -i(k.LX+~z) .rlJ.l) (J.llei( k.L:î:+~z) .rIß) .

/.LEI?

(6.17)

The diagonal element M~~ contains the elastic scattering in the term J.l = Œ

which can be the dominant part of the sum. The Taylor expansion of diagonal
elements of the boost

(6.18)

is 1 for small k. The second term, the dipole element is zero while higher
order terms ~ k2 provide the leading corrections. To first order the elastic
component of M~~ exactly cancels D~c) (6.16) in (6.10) It is worth mention-
ing, that this is not a correction of the elastic component of core scattering in
r~&I?I? because in the original sum in equation (6.7), that the closure relation
approximates, an elastic term (J.l = a) is not included. The only contribution
to elastic scattering is contained in r(c)I?I? and is given by

(6.19)
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It is, as expected, not affected by the coupling to the complement Q.
For off-diagonal elements between non-degenerate states (fa =I- fß) we in-

vokethe additional approximation that the degreeof coherence r~J/ r~lr~J
is the same for r~JlP'lP' and r~{. We thus calculate r~JlP' by resealing r~JlP'lP'
for Cl =I- ß as

r(e)lP' _ r(e)lP'lP'
aß- aß

r(e)lP'r(e)lP'
aa ßß

r(e)lP'lP'r(e)lP'lP'.
aa ßß

(6.20)
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State Il

Figure 6.1: Correction terms to the closureapproximation for different states
within the subspace ]pl for core scattering of Arl7+ in carbon with vp = 23
a.u.. The correction term D~) is calculated according to equation (6.16)
(tabulated in table 6.1) while MJx~ is the result of numerical evaluation of
the integral in equation (6.17). The overall correction Die) - MJx~ is entering
equation (6.12). We omit states with m < O.

6.2.3 Numerical results for core collisions
In figure 6.1 we illustrates Die) and MJx~ for all Cl E ]pl within the first four
shells in the unperturbed n,l,ml-basis. D~e) exhibits a shell dependent step
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n=1 n=2
8

7

cr6
b............5
Q)

êa....4
~
CJ
Q) 3
CI

2

o

n=3 n=4

Iso 2so 2po 2P! 3so 3po 3P! 3do 3d! 3d2 4so 4po 4P! 4do 4d( 4d2 4fo 4f( 4f2 4~

Staten

Figure 6.2: Decay rates for Arl7+ ---+ C (vp = 23 a.u.) as a function of state
a (m~O). r~tlP' considers only transitions within JP> while r~t contains the
correction (D~c) - M~~) for flow of probability flux out of JP>. The decay rate
for free electrons (equation (6.21)) is shown for comparison.

(6.21)

structure as indicated in table 6.1. M~~ shows large inter-shell variations
and a smaller intra-shell state dependence. Since the interaction depends
only on the magnitude of the angular momentum projection m, we do not
show entries for m < 0 in the following figures. Figure 6.1 also shows the
convergence of D~c) towards the value for wQ ---+ 0 for higher principal quan-
tum numbers n. For comparison the decay rate in the quasi-free electron
limit obtained by

r(c) - >.-1
free - vp c

from equation (3.18) is also displayed.
After havinfc calculated the correction terms for the decay operator we

can calculate r ;llP' by inserting the results for D~c) (from equation (6.16)) and
for M~~ (from equation (6.17)) into equation (6.12). This step is visualized in
figure 6.2 where we present the diagonal elements of r~llP'lP'and r~llP' with the
correction term D~cJ- M~~. The decay rate r~llP'lP'accounting for transitions
within JP> is lowest for states in the fourth shell while it is largest for those
states resulting in a decay rate r~tthat is almost independent of the state
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a. To be more precise, r~llP resembles for all states a E JP> the value of the
transition rate of a free electron under the same collision conditions

\:;fa E JP> • (6.22)

----- free electron
• n=4
.Â n=3
• n=2
• n=l
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So Po p) do d) d2 fo f) f2 f3 So Po p) do d) d2 fo f) f2 f3
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•
Figure 6.3: Decay rates for Arl7+ ---? C (vp = 23 a.u.) as a function of intra-
shell angular momentum states omitting the elastic component 1'ic) for the
confined system (r~llPlP- 1'ic))and open system (r~t - 1'ic))for principal
quantum numbers n = 1,2,3 and 4. For comparison the decay rate for free
electrons (equation (6.21)) is also shown.

The small deviation from (6.22) is a measure for the accuracy of our
calculation justifying the choice of an average excitation energy as Wo: =
Eo: (see equation (6.11)). It is important to note that the result r~~~
r~llPis valid for the complete decay operator r~llPalso containing the elastic
component 1'ic) (as described in equation (6.19)) that accounts for transitions
from the state a to itself. This elastic transition influences the phase and thus
the coherence, but has no effect on transition probabilities to other states.

By subtracting the elastic component 1'ic)from r~ctlPand r~t we obtain
the decay rates of populations in the state a which are visualized in figure 6.3.
The decay rates in the confined system for n = 3 and n = 4 are of the same
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strength whereas r~llP' - "tic) approaches the quasi-free electron limit for high
principal quantum numbers n. The consequence for the time evolution of
electron probability during transport is, that In the confinedsystem the high
shells (n = 3,4) are depleted too slowlyand we can expect to observe a pile-
up of probability there. The intra-shell structure of variations of the decay
rates is very similar for all shells while the overall magnitude is increasing
with n. Another interesting point is that for a certain state (n,l) the decay
rate increases linearly with ml. This feature is reproduced in both systems.

6.2.4 Convergence for high n

- - - - - free electron
• n = 15

max
• n =8

max
• n =4max

•

8

7

6

2

o

.~.- ......_-. --." -.. ~ ..
I~ . -- ~~.,- ~ . ~ ..

/- " ....
1 "~'. ~

2 3 4 5 6 7 8 9 10 11 12 13 14 15

Principal quantum number n

Figure 6.4: Decay rates of s-states for Arl7+ ~ C (vp = 23 a.u.) as a function
of shell n for different sizes (nmax) of the subspace W. Dotted lines: confined
system (r~llP'lP'- "tic)); solid lines: open system (r~llP' - "tic)) accounting for
loss to the complement Q; dashed line: quasi-free electron limit (equation
(6.21))

In figure 6.4 we compare decay rates for core collisionsup to a principal
quantum number of nmax = 15. We depict only the s-sates and subtract
the elastic component "tic) such that we compare the decay rates governing
the ~opulations. Considering the decay rate within the confined system
(r~llP' - "tic)) (dotted lines in figure 6.4) we observe a maximum around



CHAPTER 6. NON-UNITARY DECAY OPERATORS 86

n = 5. This is due to the fact that the momentum transfer distribution
peaks around 1 a.u. (see section 3.2.1) with a vanishing probability for
small momentum transfers making a collisional transfer between two near-
degenerate states improbable. Considering the difference between r~tlP_,ie)
and r~t_,ie) we see that a large fraction of deeply bound electrons scatters
into the subspace P while for higher excited electrons loss to the complement
Q becomes dominant. The fact that the effective decay rate r~~1P- lie) is
identical for different sizes of the subspace P indicates the accuracy of the
numerical integration of the corrections M~~.

6.3 Electron-electron collisions
In this section we turn to electron-electron (e-e) scattering. The Lindblad
operator for the reservoir of quasi-free electrons was given in equation (3.25)
by

(6.23)

•

with the dielectric response function of the electron gas é(k, w) and the mo-
mentum k transferred in the transition. Since the projectile moves with a
velocity vp through the electron gas, the frequency spectrum of the response
is Doppler shifted by k. vp introducing a minimum energy transfer given by
the step function e in (6.23). The transition operator s(e) (equation (6.23))
can be expressed in the form

(6.24)

with the prefactors f(e) (wßO;' k) given by equation (6.23). The decay operator
for loss in scattering at the electron gas is calculated as

r~JIPQ(k) = f(e)*(wO;, k)j<e) (wß, k) L(o:le-ik.rll1) (11Ieik.rIß)
tlEQ

(6.25)

with the transition operator S~~(k) specified in (6.23). 0: and ß denote states
in P.
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Arl8+, vp=23 a. u. Kr35+, vp=47 a. u.
n=l 5.33 x 10 -4 7.74 X 10-5

n=2 7.65 x 10-3 1.40 X 10-3

n=3 2.01 x 10-2 4.87 X 10-3

n=4 3.18 x 10-2 9.50 X 10-3

n- 00 9.33 x 10-2 5.67 X 10-2
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(6.27)

•

•

Table 6.2: Values of D~e) calculated according to equation (6.30) as a function
of principal quantum number n with Wo: = -Z;/(2n2) for the two relevant
projectiles in amorphous carbon. To obtain the value for n - 00 we set
Wo: = 0 in equation (6.30) .

6.3.1 Closure approximation and decay rates

Unlike the corresponding equation for core collisions (6.8), the momentum
transfers k of the boost operators in (6.25) are identical in (Œ!e-ikorlJ..L) and
(J..Lleikorlß). Hence we can apply the closure approximation without restricting
the resulting r:{(k) to near-degenerate states with Co:= cß as for core
scattering and obtain

r:J]]>Q(k) ~ f(e)*(wo:, k)f(e) (wß, k) (bO:ß - L(Œle-ikorlJ..L) (J..LleikorIß)) {6.26)
ILE]]>

The total transition matrix for loss r~J]]>Q is then obtained by the integration

r(e)]]>Q = _1_ J d3k r(e)]]>Q(k) = D(e)b - M(e)o:ß (27r )3 o:ß 0: o:ß o:ß

without any further approximation. We label the integration over the first
part of (6.26) as

and the second part as

M~~ J d3k f(e)*(wo:, k)f(e) (Wß, k) L(Œle-ikorllL)(lLleikorIß) .
ILE]]>

(6.28)

(6.29)

The O-function in the transition operator s(e) in equation (6.23) restricts
the component of the momentum transfer parallel to the projectile velocity
to an upper limit of kz ::; min(wo:, wß)/vp• The Doppler shift of the frequency
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spectrum of the dielectric response function é is due to the projectile motion
that serves as a heat bath. This means that excitations of the target electron
gas are driven to a large extent by the kinetic energy of the projectile rather
than by the internal degrees of freedom of the projectile. Performing the
integration in cylindrical coordinates the <Pk-integration for D(e) gives 27Tand
we have

00 w",jvp ( )
(e) _ 2 1 -1DQ -;;:!dk~k~ ! dk, k' + k' Im ( , ,_ )

o -00 z.l é J kz + k.l' Wa - kz vp

(6.30)
Since the loss function Im( -l/é(k, w)) is a bounded function, the integrand of
(6.30) is also bounded and the two-dimensional integration can be performed
numerically within finite intefcration limits.

As it was the case for Dac), also D~e) is to a good approximation only
shell dependent. The values of D~) are listed in table 6.2 for different shells
for the two relevant collision systems including the limit of n ---+ 00. Similar
as for core collisions, this correction is small for deeply bound states and
saturates for hiXhly excited states although in this case for the considered
shells (n:S;15) Da

e) has still not converged to the value calculated for n ---+ 00.

The last integration in (6.27) is calculated as

•
M(e) -

aß -

6.3.2

x Im C (v'k; + k~~WQ_ k'VP)) Im C (v'k; + k~~WP- k'VP))
x L(al e-i(k.L:î:+kzZ)'TÎJ.l) (J.llei(k.LX+kzz)'TIß) . (6.31)

/LEP

Numerical results for electron collisions
The two-dimensional integrals for D~) and M~~ in equation (6.30) and (6.31)
have to be solved numerically. In figure 6.5 we show the integrand for M~~
which corresponds to the momentum transfer distribution of the selected
decay rate. The shape is a result of the convolution of the loss function
along a circle centered around kz=-vp=-23 a.u .. Since the integrand varies by
several orders of magnitude (see figure 6.5) we adopt the following numerical
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Figure 6.5: Absolute magnitude of the integrand of M~~ in equation (6.31)
for Arl7+ in carbon with vp = 23 a.u.. In the upper figure (a) we show
the integrand for a=ß=1s and each contour line corresponds to one order of
magnitude. Blue is lowest and red highest. In the lower figure (b) a=1s and
ß=2s and four contour lines represent one order of magnitude .

integration scheme. We divide the 2D-plane into a grid of 100 x 100 points
and evaluate the integrand at these points. In case any of these values is
higher than a certain threshold, we subdivide the corresponding 2D-interval
into 5 x 5 points. If the integrand at any of the new points exceeds a second
thresholds a next step of refining is issued. By repeating this refinement for
two more times we obtain a combined search and integration algorithm with
a very fine mesh at the significant regions of the integrand only. The three
adaptive thresholds for refinement are chosen such that the total number of
mesh points for the calculation of each D~e) and M~~ is 2 X 105 leading to a
converged result.

The resulting decay rates are displayed in figure 6.6 for all states within
the first four shells with m ~ O. For electron-electron scattering we make the
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Figure 6.6: Decay rates for electron-electron collisions of Arl7+ ~ in carbon
(vp = 23 a.u.) as a function of state a for m 2: O. We show the decay rates
for the confined (red lines) and for the open (blue lines) system with respect
to probability flux. The corrections D~e) and M~~ are calculated according
equation (6.30) and (6.31) respectively. Solid lines: full decay rate; dotted
lines: effective decay rates omitting the elastic component "Yie). The decay
rate for free electrons (6.32) is shown for comparison.

same qualitative observations as for core scattering in the previous section .
The decay rates that allow only for transitions within the confined subspace
!P with nmax (f(e)JI>JI» are highest for a =1s and decrease with increasing
principal quantum number n. The corrections (D~) - M~~) accounting for
loss to the complement Q are mainly shell dependent with small intra-shell
variations leading to a corrected decay rate f(e)JI> that is almost constant and
resembles the decay rate of a free electron that is obtained by

(6.32)

from equation (3.27). A comparison of effective decay rates (without the
elastic component "Y~e)) reveals that for electrons in n = 4 the loss to Q is of
the same intensity as scattering into !P.
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Figure 6.7: Effective electron-electron decay rates of s-states for Arl7+ --+

C (vp = 23 a.u.) as a function of shell n for different sizes (nmax) of the
subspace lP. Dotted lines: confined system (r~llP'lP'- "'fie)); solid lines: open
system (r~llP' - "'fie)) accounting for loss to the complement Qj dashed line:
free electron limit (6.32).

Increasing the size of the subspace lP to nmax = 8 and 15 respectively we
observe the highest difference between r(e)1P'1P' and r(e)1P' always for n = nmax.

The convergence towards the limit of quasi-free electron scattering is much
slower with increasing n as it is the case for core scattering (figure 6.4)
where r(c)1P' = r~~ for n = 10. The reason for the slow convergence is that
the momentum transfer distribution for electron-electron collisions peaks at
k --+ 0 (see figure 3.1). The deviations of the effective decay rates r~llP' - "'fie)
for different sizes of the subspace lP are due to the numerical inaccuracy in
the calculation of Mà~because for nmax=15 we deal with matrices of size
1240 x 1240.
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In this chapter we have discussed details of the calculation of the decay oper-
ators as they enter the non-unitary QTMC method. For core collisions and
electron-electron interaction transitions to the infinitely large complement
cannot be evaluated exactly necessitating an approximative approach. We
have used a closure approximation with an average excitation energy to es-
timate the contribution of the subspace to transitions into the complement.
We have shown that for high n the transition rates converge towards the
quasi-free electron limit.

After having calculated the decay operators for the non-unitary subspace,
we have accumulated all ingredients to apply the non-unitary QTMC method
to a realistic transport problem. In the next chapter we use it to inves-
tigate transient coherences during transport. In chapter 9 we extend the
non-unitary QTMC method to account also for probability flux into the sub-
space and explore transient coherences by electron capture and collisions
simultaneously in transport of initially bare projectile ions.



Chapter 7

Application to Kr35+ transport

7.1 Introduction
In this chapter we study the transport of a hydrogenic projectile ion through
a solid. The projectile is a Kr35+(ls) ion with a velocity of 47 a.u. penetrat-
ing amorphous carbon foils of varying thickness, corresponding to varying
evolution times. We investigate the build-up of transient coherences and de-
coherence of electronic states in this collisional environment. Before entering
the solid the projectile electron is assumed to be in the 1s ground state.
Therefore the reduced density matrix of the projectile electronic degrees of
freedom is initially in a pure state. The primary source for build-up of excited
states and transient coherences during transport is the collisional excitation
of the 1s electron. In chapter 9 we will go one step further and consider
transient coherences built-up by electron capture.

The experiment we compare with has been performed on the LISE (Ligne
d'Ions Super Epluchés) facility at GANIL(Grand Accélérateur National d'Ions
Lourde). Details of the experimental setup are described in the references
[Ver98, Lam97, FouOO].A schematic picture can be found in figure 2.4. We
consider the ratio of emitted photons by 3pl/2 ---+ 281/2 and 381/2 ---+ 2pl/2
which shows a significant solid state effect as a function of target thickness
(see figure 7.1). The ratio is initially approximately 2 and increases for thick
targets. Several models have been employed to explain this solid state effect.
A direct solution of the Lindblad master equation with a reduced number
of couplings (see section 5.5.1) is able to describe the experimental findings
[Ver01]. The couplings describe transitions induced by collisions and radia-
tive decay. Collisional rates have been calculated using a plane-wave first
order Born approximation (PWBA). We refer to this approach as the master
equation approach (MEA).

93
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Figure 7.1: Relative line emission intensities 13P1/2/1381/2 resulting from the
transmission of a Kr35+(ls) ion through amorphous carbon at a velocity of
47 a.u. as a function of target thickness. Symbols: experimental data from
ref. [Ver98];Lines: theoretical calculations; dashed line: linear stochastic
8chrödinger equation (L88E) [Min02a]; dash-dotted line: master equation
approach (MEA) [Ver01];solid line: unitary QTMC [Min03a].

The first quantum transport theories mapped the Lindblad master equa-
tion on a linear stochastic 8chrödinger equation (L88E) that could be solved
by a quantum trajectory Monte Carlo (QTMC) method [Min02a]. In this ap-
proximation the projectile electron is treated in the quasi-free electron limit.
The obtained results are in good agreement with the measurements (com-
pare figure 7.1). They also agree with the MEA results for thin as well as for
thick targets. In the region of intermediate thicknesses, however, differences
can be observed. The collisional mean free path (MFP) is approximately
500 a.u. (chapter 6). Therefore results obtained for much thinner targets re-
semble single collision conditions. 8ince both methods treat collisions in the
quasi-free electron limit they give same results in the single collision regime.
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Figure 7.2: Charge state fraction of a Kr35+(ls) ion in transport through
amorphous carbon at a velocity of 'Up = 47 a.u. as a function of foil thickness.
Symbols: experimental data from ref. [Ver98]; lines: results of the non-
unitary QTMC simulation.

At propagation paths of the order of the collisional MFP different results can
be observed resulting from the different description of the dynamics.

To further analyze this issue Minami et. al. [Min03a] mapped the
Lindblad master equation on a non-linear stochastic Schrödinger equation
(NLSSE) and solved it by a QTMC method. It turned out that the LSSE is
the limiting case of the NLSSE when the quasi-free electron approximation
can be applied (see section 5.5.2). Remarkably, the comparison with exper-
imental findings shows a significant discrepancy for thick targets although
the NLSSE is expected to describe the transport problem more accurately.
To resolve this difference was the motivation for the investigations presented
in this chapter.

The method presented in [Min03a] describes the time evolution of the
reduced density matrix within a reduced Hilbert space. A manageable basis
contains typically deeply bound states up to the fourth shell. One limitation
of this method is that probability is artificially confined within this Hilbert
space and hence ionization cannot be accounted for. We refer to this method
as the unitary QTMC method. The application of a unitary QTMC descrip-
tion was motivated by measurements of outgoing charge state fractions after
transport (see figure 7.2). They show that ionization is very slow for this
collision system and only for the thickest targets about 10 percent of the
projectile ions are ionized.

In this work we have derived a non-unitary Lindblad master equation
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and its QTMC solution that allows for probability flux out of the reduced
Hilbert space and thus can describe ionization. To explore the effect of the
ionization channel we compare the newly developed non-unitary Lindblad
master equation with a simulation using the unitary version from [Min03a].

The Hamiltonian of the system outside the foil is the unperturbed hydro-
genic Hamiltonian (see section 3.1)

(7.1)

including relativistic corrections tlRrel, i.e. fine structure and Lamb shift.
An eigenstate of Rs can be quantified by the quantum numbers n, l, j and
mj' The unperturbed Hamiltonian inside the solid contains additionally the
contribution from the wake field (section 3.3)

R~SOlid) = R s + V(w) . (7.2)

Depending on the approximation we use for V(w), the eigenstates of this
Hamiltonian H~solid) are different. We employ a sudden approximation at
the foil entrance at which the wake field in the Hamiltonian is switched on.
Likewise, we project onto atomic final states in vacuum (eigenstates of Rs)
at the exit surface invoking, again, a sudden approximation. If not stated
otherwise, we use for V(w) the approximation given in equation (3.37).

The interaction with the environment contains scattering at the atomic
cores rlP(c), interaction with the electron gas rlP(e) and radiative decay r(r) (see
chapter 3). The total decay operator is the sum of these three contributions

entering the effective Hamiltonian

R - R(solid) _ !:.. rIP
eff - S 2'

(7.3)

(7.4)

First, we consider the unitary QTMC method within the subspace JID
spanned by the hydrogenic basis set with the quantum numbers n, l, j and
mj' This method has been described in section 5.3. We label the resulting
time evolved unitary density matrix as (JU(t). We choose JID as the Hilbert
space represented by the first four shells of the hydrogenic basis set (nmax = 4)
limiting the size of (JU(t) to 60 x 60. We note, however, that extensions to
larger subspaces are computationally feasible. Increasing the dimension of JID,
for example to 182 x 182 (corresponding to nmax = 6), does not significantly
modify the results. The time evolution is governed by the decay operator
rlPlP (describing only transitions within JID) rather than rIP (containing also
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ionization) in the effective Hamiltonian in equation (7.4). This calculation
reproduces the results of the previous simulation in [Min03a].

We perform a second calculation using the non-unitary QTMC method
describing not only the time evolution within the subspace JP> but also ioniza-
tion (section 5.4). This calculation involves rIP in (7.4). All other parameters
are unchanged. The resulting non-unitary density matrix will be denoted by
aNU (t).

The interaction of the projectile nucleus with the solid is weak due to
the high velocity and mass of the projectile. For the considered propagation
lengths the ion follows approximately a straight line trajectory with constant
velocity vp- We use time t in the projectile rest frame and distance d in the
laboratory frame interchangeably with d(t = 0) = 0 at the entrance of the
foil and d(t) = vpt/ JI - (vp/c)2.

7.2 Numerical results
The charge state fraction shown in figure 7.2 is an approximate measure of
the loss of probability of the one-electron bound-state Hilbert space due to
transitions to the continuum. More precisely, all high-lying bound states
with n>nmax also belong to Q thus overestimating this fraction somewhat.
In addition, capture of a second electron leading to the formation of Kr34+
would represent a further loss channel corresponding to the transition from
a one-electron to a two-electron Hilbert space. Figure 7.2 indicates that
this channel is for the system under consideration a slow process leading to
only 1% Kr34+ for the thickest foil and is neglected in the description of
this collision system. Loss due to ionization dominates. By comparing the
experimental findings with the results of the non-unitary QTMC we find that
the trace of the density matrix, Tr[aNU(d)] and 1 - Tr[aNU(d)], agree well
with the charge state probability for Kr35+ and Kr36+, respectively.

While the population in Is decreases very slowly, excited states popu-
lations first grow relatively fast and saturate at long propagation paths as
displayed in figure 7.3. We can identify three characteristic regions with
respect to the propagation path lengths. (i) For very thin foils interaction
time with the solid is so short that excited states populations result from
a single interaction proportional to the transition probability from Is.(ii) In
the intermediate region of propagation lengths between 103 and 104 a.u. the
populations deviate strongly from a simple linear increase. In this region
mixing by multiple collisions starts playing an important role. (iii) At longer
propagation paths the populations in figure 7.3 saturate indicating a dynam-
ical balance between populating by excitation from the ground state, mixing
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Figure 7.3: Excited states populations of Kr35+ ions in transport through
carbon (vp = 47 a.u.) as a function of propagation length. Results of the
non-unitary simulation are summed over fine structure quantum numbers j
and mj.

in further transport and loss. We note that this equilibrium is transient as
the feeding by excitation from Is is still considered to be a constant source
and capture of electrons is neglected.

7.2.1 Role of loss channel
As a next step we discuss the role of the loss channel in the time evolution
of individual elements of the reduced density matrix. The shell population
ratios P(n)/ P(n') show drastic modifications when loss into <Q is taken into
account (figure 7.4). For small propagation lengths the ratios between shell
populations are controlled by single collisions and remain constant. Theyare
identical in the unitary and non-unitary QTMC simulation. In the multiple
collision regime the unitary simulation accumulates the electron probability
in the higher-lying shells while in the non-unitary simulation the ratios ap-
proach saturation. In this regime the flow of probability among states in IP
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Figure 7.4: Evolution of shell population ratios as a function of propaga-
tion length for the non-unitary QTMC (solid lines) and a unitary QTMC
simulation (dotted lines) with nmax = 4.

balances the flow of flux from IPto Q and back to the Is state.
The relative subshell populations of states with different angular momenta

within a shell resemble for thin targets the final state distribution of single
collision excitation of the Is state. Since dipole transitions are the domi-
nant component of the boost operator (compare Taylor expansion of boost
in (6.18)) predominantly p-states are initially occupied. In subsequent trans-
port these populations are redistributed. High angular momentum states are
populated for long propagation times. We briefly discuss the combined effect
of collisions and wake field on the angular momentum distribution first de-
scribed in [Reiaa]. Collisions deliver a momentum transfer k perpendicular
to the quantization axis z hence they are distributed in the x-y-plane. For
an electron with an angular momentum vector fin the x-y-plane a series of
momentum transfers k in the x-y direction results in a change of the angular
momentum vector f towards the z-axis. For collisions in the solid this im-
plies an increase of ml towards 1. The wake potential exerts an electric field
parallel to z and hence mixes states with the same value of the projection
of the angular momentum ml but different values of 1. The combination of
these two mixing mechanisms leads to a mixing of angular momenta as well
as of the projections. The remarkable point is that none of the interactions



CHAPTER 7. APPLICATION TO KR35+ TRANSPORT 100

0=4 (c)

3s

- Q1MC non-unitary
- Q1MCunitary

1.0

0.8

0.2

0.0

0.8
-.
M

~ 0.6
~

~
0.4

0.2

0.0

0.8
-.10.6
~d' 0.4
"-"~

0.2

0.0

-.
N
~ 0.6
"-"

~-t: 0.4

102 103 104

Propagation length [au.]

Figure 7.5: Evolution of relative populations of Kr35+ states as a function
of propagation length for the full non-unitary QTMC (solid lines) and a
unitary QTMC simulation (dotted lines) with nma.x = 4. The results are
shown as a function of the principal quantum number n and the angular
momentum 1. The populations are normalized to the overall probability in
the corresponding shell. (a) P(n=2,1) for n=2, (b) P(n=3,1) for n=3 and (c)
P(n=4,1) for n=4.
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Figure 7.6: Evolution of selected populations and coherences of the internal
state of a Kr35+ ion traversing an amorphous carbon foil with velocity vp=47
a.u. as a function of propagation length. The system is initially prepared
in the 1s ground state. We compare results of the non-unitary simulation
(solid lines) with results obtained in a unitary simulation (dotted lines) with
nmax = 4. (a) Populations of the 3S1/2,-1/2 and 3Pl/2,-1/2 states, (b) ratio of
these populations, and (c) relative coherencebetween these two states.
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could populate these high I-states on its own but only the combined effect re-
sults in an effective angular momentum diffusion from the initial distribution
peaking at 1=1 towards higher values of 1.

The relative subshell populations as a function of propagation length
agree for the unitary and non-unitary QTMC calculations for short distances
(figure 7.5). However, differences become noticeable at large distances. Rel-
ative to the non-unitary QTMC result, the unitary transport enhances the
probability for higher angular momentum states. The effect of the non-
unitary evolution on individual state populations and coherences is shown in
figure 7.6 for the 3S1/2,-1/2 and 3p1/2,-1/2 subspace. The most pronounced
difference is observed for the populations of these states. While in a unitary
calculation the feeding from low-lying states remains dominant even for long
propagation lengths, in the non-unitary simulation loss from higher excited
states into the complement Q leads to a depletion and thus to a dynamical
equilibrium of the populations shown in figure 7.6(a) following closely the
findings for shell populations in figure 7.4. Remarkably, the population ratio
between states of different angular momenta within the same shell (figure
7.6(b)) is very similar in both calculations, the non-unitary QTMC results
showing a slightly higher ratio for thick targets. Also for the relative coher-
ence (equation (5.69)) only a slight increase is observed.

7.2.2 Transient coherences

The build-up and decay of coherences is most directly observed in the re-
duced density matrix la~u (d) I, which displays, on one hand, the excitation
to excited states in the diagonal elements a~u (d) and, on the other hand, the
coherences in the off-diagonal elements of a~U(d) (i =1= j). The absolute mag-
nitude of the elements of aNU for excited states is given in figure 7.7 while the
matrix of relative coherences is shown in figure 7.8 for different propagation
distances d. While figure 7.7 (a) and (b) reflect the excitation from single
collisions, figure 7.7(c) and (d) reflect the multiple collision regime, where we
can observe not only the initially generated coherences by excitation from the
Is ground state but also coherences generated by deexcitation. Coherences
most robust against decoherence and still visible after a propagation length
of 3 x 104 a. u. (rv 15 fs) are intra-shell coherences between different angular
momentum states.

The matrix of relative coherences (equation (5.69)) displayed in figure 7.8
shows the gradual shift and decay of coherences as a function of propagation
distance (or foil thickness). The intra-shell coherences between the 2s and
2p states survive longest.
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Figure 7.7: Reduced density matrix aNU(d) of a Kr35+ ion in transport
through amorphous carbon at a velocity of vp = 47 a.u. at various propaga-
tion lengths. (a) d=lO a.u., (b) d=102 a.u., (c) d=103 a.u. and (d) d=3x104

a.u.. Absolute magnitude of excited states matrix elements la~U(d)1from
n=2 and n=3 involving mj > 0 is shown.



CHAPTER 7. APPLICATION TO KR35+ TRANSPORT 104

li'''I'I...I'''' 6:~~.". 0.40
0.25
0.16
0.10
0.06
0.04
0.03
0.02
0.01

~~~~;~~~~!~~~~~~~1~~!~~~~1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
~~~ ~~~~~~~~~~~~N~~~~~~~~~--

3d 5f1.,512
3d 512,312
3d 5f1.,112
3d 312,312
3d 312.112
3p 312,312
3p 312,112
3D 112.112
3s 112.112
2p 312,312
2p 312,112
2D 112.112
2s 112.112
3d~~ 3d~~
3d 512,312 3d 512,312
3d 512,112 3d 5f1.,1f1.
3d 3f1.,312 3d 312,3f1.
3d 312.112 3d 3f1..112
~312~ ~312m
3p 312,112 3p 312,112
3D 1f1..112 3D 112.1f1.
3s 112.112 3s 1f1..112
2p 312,312 2p 312,3f1.
2p312,112 2p312,112
2D 1f1..112 2D 1f1..112
2s 1f1..112 28 112.112

~~~~~~~~~~~~~~~~~~~~~~~~~~~I~~~~I##;~~~~~I~I~~~~I#~;~~~~~I
Figure 7.8: Relative coherences IC~u(d) I (5.69) of the reduced density matrix
of a Kr35+ ion in transport through amorphous carbon at a velocity of vp = 47
a.u. at various propagation lengths. (a) d=lO a.u., (b) d=102 a.u., (c)
d=103 a.u. and (d) d=3x104 a.u .. Only matrix elements from n=2 and n=3
involving mj > 0 are shown.
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We would like to obtain a qualitative estimate of the time evolution of off-
diagonal elements of the reduced density matrix (J. For this purpose we
consider the Lindblad master equation (LME) for only one off-diagonal ele-
ment ((Jij (t)) and assume the remaining elements of 0"( t) to be constant in
time

O"mn(t) = (Jmn(t = 0) for m =1= i and n =1= j . (7.5)

This allows us to simplify the LME such that we can find closed expressions
for O"(t). We can identify certain characteristic patterns in the time evolution
of the coherence. Later in the application to a complex system we can try to
classify the numerical results with respect to the findings for a simple system
as it is discussed in this section.

7.3.1 A simple model for transient coherence

In the Lindblad master equation (LME) we can identify a damping term and
a gain term as

~
gain

d 1
dtO"(t) = -iwO"(t) - 2(r(J(t) + O"(t)r) + L S(k)O"(t)St(k) .

, ~ 'k
damping "-

(7.6)

For the damping term we consider only direct coupling from (Jij(t) to dO"ij(t)jdt
and can hence make the following approximation

1 1 -
2(ritPJLj(t) + O"iJL(t)r JLj) ---t 2(rii + rjj)O"ij(t) ---t rijO"ij(t) (7.7)

In order to estimate the qualitative time evolution of O"ij(t) we consider the
gain term in (7.6) as constant and denote it by G in the following

L S(k)O"(t)St (k) ---t G .
k

(7.8)

With these approximations we can write the Lindblad master equation for
O"ij(t) as

d -
dt (Jij(t) = -iWijO"ij(t) - rijO"ij(t) + G (7.9)

which is an inhomogeneous first-order differential equation. We first investi-
gate the homogeneous solution for G = 0 which corresponds to the case of a
coherence that is only decaying and no build-up occurs.
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Homogeneous solution (G=O)

For G = 0 the solution is an exponential function

O"ij(t) = O"ij(O) e-iWijt e-rijt
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(7.10)

with the initial condition O"ij(O) at t=O. The first exponential in the time
evolution is responsible for rotation in the complex plane

with the time constant for one revolution given by

-iw .. t -i27rt/T2
.7f h T27r /e 'J = e 'J wit ij = 27r Wij .

(7.11)

(7.12)

The second exponential in equation (7.10) results in damping exp( _t/~~amp)
with the time constant

~amp = ~
lij -.r..

~J

(7.13)

(7.15)

•

The overall time evolution of the coherence is a revolution in the complex
plane with Wij with the center at the origin. The radius O"ij(O) is damped by
fij leading to a spiral towards limt--+ooO"ij(t) ---+ O.

Inhomogeneous solution (G#O)

The inhomogeneous solution of (7.9) with G # 0 and the initial condition
O"ij(O) = 0 is the integral over the homogeneous solutions in (7.10) weighted
by the constant gain term G as

(7.14)

In analogy to the homogeneous solution, we expect to find an oscillatory
behavior related to Wij and damping related to fij. In the further analysis
we distinguish two extreme cases depending on the relative strength of Wij

compared to fij.

For Wij > > fij the oscillatory term dominates over damping and we can
simplify the solution (7.14) by setting fij = 0 to

iG ( . t )O"ij(t) = - e-~Wij - 1
Wij

which results in a rotation of O"ij (t) in the complex plane as indicated in figure
7.9. The radius is determined by the absolute magnitude of the prefactor in
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Figure 7.9: Schematic drawing of the inhomogeneous solution of O'ij(t) (7.14)
in the complex plane with time as parameter for Wij > >fij with the initial
condition O'ij(t = 0) = o. Solid line: solution from equation (7.15) with
G proportional to i with the center point denoted by M. Dashed line along
imaginaryaxis: solution neglecting decay O'(nd)(t) = Gt.

(7.15) as the ratio between gain and energy difference IG/Wijl. The center
point M is shifted by the last term in (7.15) by the length of this radius.
This means that O'ij(t) evolves along a circle in the complex plane that goes
through the origin. Consequently, at times that equal integer multiples of~;7rthe coherence becomes zero again. The position of M with respect to
the origin is determined by the phase of the prefactor in (7.15). In figure 7.9
we show O'ij (t) for G being purely imaginary. Combined with the i in the
prefactor of (7.15) this results in a shift of the central point M towards the
negative real axis .

An important consequence of this analysis is that the maximum of the
coherence is bounded to

max [IO'ij(t)1J = 21 ~j 1 (7.16)

regardless the fact that the source G is constantly feeding the coherence. A
coherent superposition not affected by decay increases with time as O'(nd) (t) =
Gt (figure 7.9). We can normalize O'ij(t) to the case without decay and obtain

O'ij(t) = 1 (e-iwijt _ 1) (7.17)
O'(nd) (t) -iwijt

and

I
0'ij (t ) 1 ( 'Trt ) -1 I. ('Trt) 1

O'(nd)(t) = T
i
;7r sm Tj7r (7.18)
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which decreases with time. Consequently, the coherence is reduced with
respect to the non-decaying case. Therefore the restriction (7.16) can be
interpreted as an effective decay of the coherence. Note that this decay
mechanism is a feature of the inhomogeneoussolution due to the interplay of
a constant gain (G) with the complex term iwijUij(t) in the Lindblad master
equation. Henceforth we will refer to this mechanism as "dephasing".

•
Icr..(t)1

IJ
,,,,,,,,

............................;t .
,,

cr.. (t)=Ot ,,'
IJ ,,,

time

•

Figure 7.10: Schematic drawing of the inhomogeneoussolution of the abso-
lute value of Uij(t) (7.14) for Wij « fij as a function of time with the initial
condition Uij(t = 0) = o. Solid line: solution from equation (7.19); dashed
line: short time solution (7.21) neglecting decay proportional to Gt; dot-
ted line: asymptotic solution Gjfij (7.22); dash-dotted line: crossing point
corresponding to ~amp.

For Wij « fij in (7.14) the oscillatory term can be neglected (Wij -
0) and the damping term governs the time evolution. This requirement is
satisfied for coherencesbetween degenerate and near-degenerate states. Thus
we can approximate -iwij - fij ---+ -fij in (7.14) and express the solution
as

Uij(t) = G (1 - e-Ï't;t) . (7.19)
fij

To estimate the characteristic behavior of Uij(t) we perform a Taylor expan-
sion with respect to time t

1- e-Ï'.;t = fijt - f~l2+ O(t3) .

On a short time scale Uij(t) increases linearly with time

lim u ..(t) = Gt
t-+O+ ~J ,

(7.20)

(7.21)
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while in the asymptotic limit of long times the exponential in (7.19) becomes
zero and the coherence takes the constant value of

lim Uij(t) = G . (7.22)
t-+oo r..

lJ

For the damping time ~amp defined in (7.13) the two limits (equation (7.21)
and (7.22)) meet as it is displayed in figure 7.10. At this time the second
order in the Taylor expansion of the exponential in (7.20) starts to exceed
the first order linear term. Consequently, at T;jampthe coherence Uij(t) starts
to be effectively damped. Relative to the ideal case of no decay we find

IUij(t)1 = _1_ (1 _ e-riit) (7.23)
u(nd)(t) rijt .

Thus Uij (t) is effectively decreased. Hereafter we will refer to this mechanism
as "damping".
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• Figure 7.11: Uij(t) solving the LME (7.9) as a function of time with the
initial condition Uij(t = 0)=0. The parameters are chosen as G=1, fij=1
and J:;7r=1 and hence ~amp=1 and wij=27r. (a) Absolute value of Uij(t)
(7.14) within different approximations: dash-dotted lines: no decoherence
(U(nd) (t)=Gt); dotted lines: decoherence by damping (1-exp(-t)) (7.19);
dashed lines: decoherence by dephasing (lsin(7rt)I/7r) (7.15); solid lines: com-
bined decoherence by dephasing and damping (lsin(7rt)lexp(-t)/7r) (7.14).
(b) Solutions normalized to the case of no decoherence IUij(t)/u(nd)(t)1 -
IUij(t)l/t.

Via this short analysis of the solution of the LME for one coherence we
could identify two mechanisms of decoherence: dephasing and damping. For
this model system we compare the solution of the LME (7.9) in different
limits (Uij(t = 0)=0) in figure 7.11.
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I n=2 ~ 2S1/2 I 2Pl/2 I
2p3/2 110 107
2pl/2 4954

I n=3 ~ 3S1/2 I 3pl/2 I 3P3/2 I 3d3/2 I
3d5/2 274 270 1118 1125
3d3/2 363 355 178224
3p3/2 363 356
3Pl/2 16547

110

Table 7.1: Dephasing length d;ß (7.24) in a.u. that a Kr35+ ion traverses
during the time T;ß = 27r/ IWaß I with a speed of 47 a. u. for intra-shell
combinations of hydrogenic eigenstates with the unperturbed Hamiltonian
specified in (5.65).

7.3.2 Numerical results for coherences

Although in the application to transport we are dealing with a highly coupled
system that is strongly perturbed we nevertheless try to find characteristic
features of the simple model presented in section 7.3.1. First we estimate
the involved time scales. The dephasing time is given by the inverse energy
spacing (7.12). For a transport problem it is more convenient to transform
the dephasing time into a path length traversed by the projectile, i.e.

d21l" T21l" 27rVp
aß = Vp aß = -I -I .

Waß
(7.24)

In table 7.1 we list values of d2
1l" for the krypton projectile with a velocity of

47 a.u. for intra-shell states (a, ß).
The damping constant Ï\ is defined in the simple model according to

(7.7). The corresponding propagation length is

ddamp = '!!...p ~ 1 V
p

r. . - (r .. + r .. )~J 2 Il JJ

(7.25)

with the decay operators of the two diagonal elements of the corresponding
coherence Œij. For the dynamics in the non-unitary version of the QTMC
we take rTï for rii. In figure 6.2 we have shown that for core collisions
rTï resembles the decay rate of a free electron. This observation is state
independent and applies also to electron-electron scattering (see figure 6.6).
With these findings we can calculate the damping length as ddamp ~500 a.u.
which is state independent too.
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Figure 7.12: Relative coherence as a function of propagation length. Solid
line: IC2s1/2,2P3/21;dashed line: IC3s1/2,3Pl/21.

The main contribution to the population of excited states and also to co-
herences of excited states originates from the excitation of Is. The gain term
G in (7.9) is thus proportional to the excitation rate from Is and is purely
imaginary as expected for a single collision when the Born approximation
holds.

The combination of d~j and ~amp for a certain coherence (Jij and the range
of investigated propagation lengths subdivide coherences into four groups
classified by the energy spacing between the two coherent states. Inter-shell
coherences decay very fast due to their very short dephasing length and are
therefore unobservable in the experiment considered here. They are relevant
on a short timescale where the Born-Markov approximation (see section 5.2)
is not valid any more.

Coherences of states split by fine-structure decay slow enough to reach the
time scale where the Born-Markov approximation is valid but fast compared
to damping in further transport. They still decay in the single collision regime
and we have the chance to observe dephasing before significant damping sets
in. This corresponds to the limit discussed in equation (7.15). Figure 7.12
shows an example for dephasing of a fine-structure split coherence.

Coherences of states split by Lamb-shift have a longer dephasing path d27r.
These coherences do not get completely washed out by dephasing when mul-
tiple collisions and damping start contributing at longer propagation paths.
In figure 7.12 we depict an example for t~s case in contrast to a coherence
decaying by dephasing only. The 2S1/2-2p3/2is purely determined by dephas-
ing as it is obvious by comparison with figure 7.11. The minima are located
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at integer multiples of d21T.The fact that it does not start at the value 1
for thin foils is the result of the different normalization in (5.69) and (5.69).
For this case the simple model described in section 7.3.1 seems to reproduce
the result of the complex system well. Differences are apparent in the sec-
ond example shown in figure 7.12. The dephasing length for the 3S1/2-3pl/2
(compare table 7.1) is much longer than the damping length. The results can
be approximately traced by equation (7.23) corresponding to decoherence by
damping. However, two major differences can be observed. (i) The actual
damping length seems to be approximately 1000 a.u. which is about a factor
of two longer than predicted by the simple model in equation (7.25). (ii)
The coherence is not entirely damped to zero but remains at a finite value.
This indicates that the coherence populated by another source G that was
not active at the beginning of the transport. In this case it is the excitation
from 2s that starts contributing to 3S1/2-3pl/2'

The fourth group of coherences is between degenerate or near-degenerate
states where d27ris very long and damping is the solely mechanism responsible
for decoherence of these states. This corresponds to the limit discussed in
equation (7.19). For a small subset of coherences damping is very weak
allowing for a long lifetime for these coherences. The point to be noted is
that most of the non-vanishing coherences in figure 7.7 and 7.8 survive for
longer times than predicted by equation (7.24). The reason is that, as long
as the primary source, the Is ground state, is still populated, the excited-
state coherences get replenished and a transient dynamical equilibrium is
established for these coherences. In other words, decoherence and build-up
of coherence compensate in these cases. In the following we discuss all these
types of coherences (except for inter-shell coherences) in more detail.

Figure 7.7 and 7.8 do not present direct information on the phase of the
density matrix element (J~u. We therefore display in figure 7.13, 7.14 and
figure 7.15 the trajectories of a selected set of density matrix elements in
the complex plane with snapshots taken at different propagation distances.
While coherences shown in figure 7.13 and 7.14 are destroyed by dephasing, in
figure 7.15 damping is the dominant decoherence mechanism. We investigate
coherences split by fine-structure in figure 7.13 and 7.14 and such split by
Lamb-shift in figure 7.15. For a better comparison we scale in figure 7.13 and
7.14 the propagation distance with the corresponding dephasing distance d27r
for each coherence separately. Starting at the origin, the selected elements
of the reduced density matrix (J~u(d) (figure 7.13) evolve counterclockwise
in the complex plane with increasing propagation path (compare figure 7.9).
This subset has in common that the build-up of coherence already occurs
in the single-collision regime. These elements approximately complete one
circle after each multiple of d27r. The shift, i.e. the fact that after 27r the
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Figure 7.13: Evolution of selected elements of the density matrix O"~uof a
Kr35+ ion in transport through amorphous carbon at a velocity of vp = 47
a.u. for different propagation lengths in the complex plane. The propagation
length of each coherence has been chosen individually, such that in (a) it
corresponds to the dephasing length shown in table 7.1; (b): d=2 d211";(c)
d=3 d211".Solid lines: 0"3NpU 3d ; dotted lines: 0"3NpU 3d ; dashed3/2.3/2. 5/2.3/2 1/2.1/2. 3/2.1/2
lines: O"NU .

2S1/2•1/2,2P3/2.1/2

trajectory does not exactly return to its starting point, signifies the effect
of multiple collisions and radiative decay during further transport. As we
show in the same plot the coherences for different propagation lengths, the
element 0"281 1,2p3 1 (dashed line in figure 7.13) with the shortest dephasing

"2'"2 '2"' '2"

path d211"=100a.u. is least affected whereas 0"3P3 3,3d5 3 (solid line) with a ten
'2"''2" '2"''2"

times longer dephasing path is strongly perturbed. Multiple scattering and
damping manifest themselves in a shift of the circle as well as in a shrinking
radius of the rotation.

After a single rotation (d=d211")the relative coherence approaches the
origin of the complex plane indicating a very fast decrease in coherence while
still performing further revolutions. The relative coherence decays very fast
because the populations as shown in figure 7.3 increase while the off-diagonal
elements perform a circular motion (figure 7.13) that is bounded.

In figure 7.15 we selected those elements of O"~U(d)with a long dephas-
ing length d211"where multiple collisions dominate the build-up of coherence
and decoherence. We selected four elements of O"~U(d)that approach a non-
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Figure 7.14: Evolution of selected elements of the density matrix (T~uof a
Kr35+ ion in transport through amorphous carbon at a velocity ofvp = 47 a.u.
for different propagation lengths in the complex plane. We show the relative
coherence CITu, i.e. the off-diagonal elements (T~uare normalized to the
population ofthe involvedstates ((T~uand (T~uaccording to equation (5.69)).
The propagation length of each coherence has been chosen individually, such
that in (a) it corresponds to the dephasing length shown in table 7.1; (a)
d=d21l". (b) d=2 d21l". (c) d=3 d21l". Solid lines: (TNU . dotted lines:

" 3P3/2,3/2,3ds/2,3/2'
(TNU . dashed lines: (TNU .

3Pl/2,l/2,3d3/2,l/2' 2S1/2,l/2,2P3/2,l/2

vanishing (transient) equilibrium value of the relative coherence ICiil ~ 0.1
within the propagation distances studied. Starting at the origin (figure
7.15(a)) the coherences first evolve along circles of different radii (figure
7.15(b)). Note that in this figure (unlike figure 7.13 and 7.14) we have not
rescaled the propagation path but show the density matrix for the identi-
cal propagation path in each plot ranging from d=3 x 102 a.u. to d=3 X 104•

Therefore some elements with relatively short d2
1l" succeed in almost complet-

ing one circle while others with a long d2
1l" still evolve almost tangentially.

Multiple collisionsand radiative decay completely distort this circular motion
for long propagation paths in figure 7.15(c). The long-time behavior of these
elements of (T~U(d)mimics Brownian motion in the complex plane. Since
these coherences are most sensitive to an accurate theoretical description,
they provide a test for this approach.

It is important to note that the diagonal as well as the off-diagonal el-
ements of (T~uare very sensitive to the competition between gain and loss.
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Figure 7.15: Evolution in the complex plane of selected elements of the den-
sity matrix afJu of a Kr35+ ion in transport through amorphous carbon at a
velocity of vp = 47 a.u. for different propagation lengths. Upper row ((a), (b)
and (c)) shows the off-diagonal elements of the density matrix a{ju while the
lower row ((d), (e) and (f)) displays the relative coherences Cij. Solid lines:
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dot-dashed lines: a~~2,l/2,3d3/2,l/2' In (a-c) we show afs~2.1/2,2Pl/2.1/2 /10.
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Figure 7.16: Comparison of selected coherences of a Kr35+ ion in transport
through amorphous carbon at a velocity of vp = 47 a.u. as a function of
propagation length. We show the absolute magnitude I(I~,NU I of coherences
between sand p states for n=2 and n=3 obtained by a non-unitary QTMC
(solidlines) and by a unitary QTMC simulation (dotted lines) with nmax = 4.

It is the contribution from loss into the complement Q that significantly
changes (I~u in the region where a transient equilibrium persists. The diag-
onal elements of (I~u, the population probabilities, are clearly very different
from a unitary (INas discussed before. Likewise,the off-diagonalelements of
(I~(d) do not reach a transient equilibrium (figure 7.16) in contrast to those
of (I~U(d).

7.4 Comparison with experiment
We conclude this section by presenting a comparison with the experiment
[Ver98]that originally stimulated our investigation. We consider the ratio
between 3pl/2 and 3S1/2 which is sensitive to coherencesthat decay by damp-
ing (compare figure 7.16). The ratio of these populations can be expressed
in terms of the intensity of emitted photons
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Figure 7.17: Relative line emission intensities 13P1/2/13S1/2 resulting from the
transmission of a Kr35+(1s) ion through amorphous carbon at a velocity of
47 a.u. as a function of target thickness. Symbols: experimental data from
ref. [Ver98]; lines: theoretical calculations; dashed line: linear stochastic
Schrödinger equation (LSSE) [Min02a]; dash-dotted line: master equation
approach (MEA) [VerOl];dotted line: unitary QTMC simulation; solid line:
non-unitary QTMC simulation.

by considering the corresponding branching ratios.
There are two important details to be considered. First, the line intensi-

ties measured are integrated over the whole passage of the projectile through
the foil and after exiting it. Therefore spatial information can only be ob-
tained by repeating the measurement using targets of different thicknesses.
Secondly, the contribution to a given Balmer line is not only determined by
the population collisionallyexcited to the initial state of this radiative tran-
sition but also from all higher excited states feeding this state during the
radiative cascade. In order to calculate the cascade contribution from n > 4
states, we extrapolate the quantum n, l, m distributions to higher n levelsus-
ing scaling properties drawn from classical transport theory (CTT)(section
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4.3). We apply the same extrapolation correction to both the unitary and
non-unitary QTMC calculation.

In figure 7.17 we compare the experimental intensity ratio hPl/2/hsl/2 with
results obtained by the non-unitary QTMC calculation. The non-unitary ap-
proach clearly improves the intensity ratio in the regime of multiple collisions
for thicker targets and leads to much better agreement with the experimen-
tal findings than the unitary QTMC method. The non-unitary calculation
agrees with the unitary calculation in the single collision regime and repro-
duces the experimental value in this limit. Overally, the QTMC method
solving the NLSSE reproduces the measurements closest for short interac-
tion times, while all theoretical calculations that account for ionization lead
to the same results for thick targets. Only the unitary QTMC solution, which
does not include ionization, underestimates the experimental data at large
foil thicknesses. Consequently, the discrepancy observed in [Min03a] seems
to be clarified.

7.5 Summary
We described the time evolution of the reduced density matrix of electronic
degrees of freedom of a hydrogenic projectile by means of an open quan-
tum system approach in the application to transport of a Kr35+ ion through
carbon. By describing the problem with the help of the non-unitary Lind-
blad master equation we could resolve a discrepancy with measurements that
emerged in the description by a unitary Lindblad master equation. The good
agreement with experimentally obtained intensity ratios of emitted photons
underlines the need for a non-unitary treatment of this transport problem
and indicates the validity of this approach for such a complex system. We
find good agreement with experiment for all target thicknesses investigated.
In comparison with other theoretical calculations we observe identical results
for long propagation times with the master equation approach [VerDI] and
also with the solution of the linear stochastic Schrödinger equation [Min02a].

We find that inclusion of loss processes via the non-unitary formulation
leads to a modification of coherences and not just to a change of excited-state
populations. Artificial pile-up of probability at high n is prevented as well
as the overestimate of populations of states with large angular momentum.

We discussed the build-up of transient coherences in excitation. By means
of a simple model we could identify characteristic features of the time evolu-
tion of coherences. While the fast dephasing of inter-shell coherences is be-
yond the scope of application of this description, dephasing of fine-structure
split coherences could be discussed in contrast to damping of Lamb-shift split
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and near-degenerate superpositions.
One conceptual short-coming of the formulation up to this point is the

lack of a capture channel. While insignificant for the experimental data
studied in this chapter, its inclusion is essential for further applications. In
the next chapter we discuss the extension of the present method to account
also for probability flux into the considered subsystem (i.e. electron capture).
We apply it to the transport of initially bare projectiles where transient
coherences are populated by electron capture.



Chapter 8

Open quantum system with a
source

8.1 Introduction
In chapter 5 we have extended the strictly unitary Lindblad formalism and
its quantum trajectory Monte Carlo solution by allowing for probability flux
to flow into an unobserved complement. We have applied this method to
a system, where the loss of probability (ionization of the electron) plays
an essential role (chapter 7). In this chapter we go one step further and
extend the non-unitary Lindblad formalism to additional source terms (such
as electron capture) feeding probability flux into the observed system. This
extension allows to apply the open quantum system approach to problems
that exchange probability with the environment in both directions: loss and
gam.

In section 8.2 we describe the modifications of the non-unitary Lindblad
master equation including a probability source assigned to electron capture.
To highlight various aspects of this approach and to show its validity we
perform two numerical tests with a hydrogenic ion subject to radiative de-
cay with a Hilbert space decomposed into a feeding part, a subspace and a
complement (section 8.3). As an application we will describe a system where
the initial state is formed by electron capture in chapter 9.

8.2 Source term in Lindblad master equation
We would like to use the Lindblad master equation (LME) to describe the
time evolution of the density matrix of an open quantum system (OQS) that
exchanges probability with the environment. In chapter 5.4 we have modified

120
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the LME in such a way that it can account for probability flow out of the
OQS. This became important for the transport of ions at longer propagation
times where ionization started playing a role while capture could still be
neglected. Ionization dominates over capture in fast projectiles, because
capture cross sections fall off very fast with increasing projectile velocity.
For transport of slower ions electron capture significantly contributes to the
electronic population of the projectile. In order to be able to describe such
systems within the OQS approach we have to modify the underlying LME and
find the corresponding quantum trajectory Monte Carlo (QTMC) solution.
For this purpose we include a source term in the master equation such that
it describes the time evolution of the reduced density matrix under electron
capture. While the extension of the unitary LME with a sink term led to
modifications of the decay operators, the inclusion of a source has profound
consequences on the Monte Carlo solution.

We start with the LME that describes the time evolution of the reduced
density matrix CJ(t) of the subspace P

dCJ( t)
dt -i [Hs, CJ(t)] - ~ [rll'll', CJ(t)] + + ~ L Sll'(k)CJ(t)Sll't(k)

k

1 [ ll'Q ]-2 r ,CJ(t) +

{£CJ(t)} (8.1)

with transitions within the subspace described by rll'll' and transitions leading
to probability flux outwards into the complement Q described by rll'Q. To
simplify the following discussion we abbreviate all terms in LME with a sink
by {£CJ(t)}.

The presence of a source of probability flux has two fundamental con-
sequences on the dynamics of the OQS. The first is obvious, as a source
creates probability within the considered subspace and thus populates CJ(t).
We denote a source term representing a constant gain of probability as a rate
F entering the LME. The gain is constant because the reservoir is consid-
ered as an infinitely large vendor. Quantifying the gain process in terms of
state-to-state cross sections C per particle in the reservoir F is given by

(8.2)

where the current of particles per unit time is expressed as a product of the
number density of the target nA and the projectile velocity in the rest frame
of the target vp' F represents a rate in units of inverse time. i and j denote
states within the subspace P.
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Figure 8.1: Schematic drawing of the argon charge states affected by elec-
tron capture and ionization. The corresponding components entering the
Lindblad master equation are indicated.

The second consequence of a constant source is actually a loss term in the
LME. This is at first glance particularly surprising, but becomes clear when
we consider that the Hilbert space lliIs we deal with is a one-electron space.
A two-electron state is not contained within lliIs. Therefore the capture of a
second electron leads to a loss of probability in a one-electron Hilbert space.
This loss is proportional to the probability of occupation of the one-electron
state, which is determined by the trace over a-(t), and by the probability for
a second electron capture. In the particular case that the source is equally
effective in populating the one-electron and the two-electron state, we can
write this rate as -F Tr[a-(t)]. With these ingredients we can extend the
LME in (8.1) by

da-( t)---;jt = {La-(t)} + F(l - Tr[a-(t)]) . (8.3)

Since Tr[a-(t)] ::; 1 the outgoing flux can never be larger than the incoming
flow of probability. Consequently, the effectiveness of the source is reduced.
The amount of reduction depends on the probability that has already flowed
in. Since we approximate the driving force, i.e. electron capture, with the
same rate for these two processes, the combination of them leads to populat-
ing a-(t) according to Fij. In the case the source and sink would affect a-ij(t)
differently, we would see redistribution of states in a-ij(t).

Taking the example of transport of an initially bare argon projectile we
can assign the terms to the following processes (see figure 8.1). The sim-
ulated subspace JP> represents bound states of Arl7+. Ionization described
by rn>1Qi in the LME in (8.1) corresponds to Arl7+ --7 Ar18+. F describes
the electron capture channel transforming the Ar18+ ion into Arl7+. The
last term (FTr[a-(t)) describes additional capture, thus the process Arl7+ --7

Arl6+. In our simulation we explicitly describe the hydrogenic Hilbert space,
i.e. Arl7+. Ionization as well as second capture transfer the prob ability out
of the described Hilbert space. While recapture of ionized electrons is very
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unlikely, single ionization of Ar16+ would again contribute to Arl7+. Since we
do not explicitly treat the helium like Ar16+ we cannot account for Arl6+ -t

Arl7+ as well.
We approximately estimate capture cross sections for the second capture

by the cross sections for the first capture. This approximation is reasonable
due to the similar charge states (18/17"-'1+0.06) and due to the lack of a
direct calculation of the corresponding cross sections.

Nonlinear stochastic Schrödinger equation

Before introducing the solution of the LME with a source (8.3) we consider
the equation of motion of a quantum trajectory. It is governed by the nonlin-
ear stochastic Schrödinger equation (NLSSE). The NLSSE solving the LME
with a sink in (8.1) was determined as

which we abbreviate by {M} IW7J) in the further discussion.
Intuitively a source of probability is expected to add probability accord-

ing to the rate F. While F is a two dimensional matrix, the wave vector
is one-dimensional. To construct the source term for the NLSSE we first
diagonalize C and reassemble it by means of the normalized eigenvectors X
and eigenvalues ev

Cnm = L VevkXnk x X~ky'evk = L IXn(k)) (Xm(k)1 eVk . (8.5)
k k

The NLSSE solving the LME with a source (8.3) can be constructed as

Id\l17J(t)) = {M} Iw7J) +L dN[,7J(t) IX(k))
k

(8.6)

with the Ito differential dN[,7J(t) being one in an infinitesimally short time
interval and otherwise zero. dN[,7J(t) is one when a capture process occurs
and a capture wave vector IX(k)) is assigned to IW7J). This procedure is
fundamentally different from scattering where probabilities are redistributed.
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To determine dN[,T/(t) we calculate the differential change of the reduced
density matrix as

daT/(t) _ IdwT/(t)) (dwT/(t) I
= {M} IwT/(t))(wT/(t)1 {M}t + L dN[,T/(t) IX(k)) (X(k')1 dN["T/(t)

kk'

For the ensemble da(t) = L:T/ IdwT/(t)) (dwT/(t) I of a large number oftrajecto-
ries Tl we find that the Ito differential is, on the average, determined by

dN['T/(t)dN["T/(t) = dN['T/(t)6kk' = 6kk'dt nA Vp eVk (1 - Tr[a(t)]) (8.7)

leading to

da(t) = {La(t)} dt + nA vp (1 - Tr[a(t)])dt L IX(k)) eVk (X(k)l, (8.8)
k

where we can identify C according to (8.5) and simplify to

da(t) = {La(t)} dt + nA vp (1 - Tr[a(t)])dt C
{La(t)} dt + F (1 - Tr[a(t)])dt. (8.9)

This is exactly the LME we wanted to solve.

QTMC solution

After having introduced the NLSSE in (8.6) we would like to find a QTMC
solution. For this purpose we decompose a(t) into single trajectories

a(t) =L IwT/(t))(wT/(t)1 ,
T/

(8.10)

where the time evolution of a wave vector is determined by the time evolution
operator U as

(8.11)
Initially, the projectile is bare (10)) so that the wave vector IWT/(t)) gets pop-
ulated only in the capture event when an eigenvector IX(k)) is assigned. We
denote the time of this capture event by to. Then IWT/(t)) evolves according
to the LME without a source (8.4). The second capture is accounted for in
the reduced capture rate in (8.3). The corresponding time evolution operator
is denoted by U(H)' For a specific capture time to and an eigenvector k we
can describe a quantum trajectory by

(8.12)



(8.13)
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Taking into account all eigenvectors IX(k)) and all capture times to we
have

it dNF'TI(t )
IWTI(t)) =L dto U(jn(t - to)IX(k)) ~ 0,

kOto
where we have transformed the integration over the Ito differential into an
integration over the capture time to. The reduced density matrix is then
given by

a(t) L L it dto U(jn(t - to)IX(k))(X(k')IU~)(t - to)
TI kk' 0

dN!:,TI(t )dN!:,TI(t )
x k 0 k' 0 (8.14)

dto '

summing over an ensemble of stochastic realizations and taking the expec-
tation value of the Ito differential. Consequently, we do not sample the
stochastic variable of the source (dN {'TI (to)) but integrate over time to. The
advantage is that fewer stochastic realizations TJ are necessary in order to
obtain a converged result.

After rearranging summations and integration we obtain

a(t) = it dto nAvp(l - Tr[a(to)])

XL L U(jn(t - to)IX(k))eVk(X(k)IU~)(t - to). (8.15)
TI k

The bottom line corresponds to the solution of the LME without a source
(8.1) with C as initial condition. We denote it by a(H)(t). With this simpli-
fication the solution of the LME with a source (8.3) becomes

a(t) = it dto nAvp(l - Tr[a(to)]) a(H)(t - to) , (8.16)

where aCH) is determined by

a(H)(t) = L eVk L U(jn(t)IX(k))(X(k)IU~)(t)
k TI

L eVk a(H)(k, t) . (8.17)
k

The trace of a(t) (8.16) becomes

Tr[a(t)] = it dto nAvp(l - Tr[a(to)]) Tr[a(H)(t - to)] , (8.18)
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which is an implicit equation for Tr[a(t)] that can be solved only numerically.
In summary, we have modified the Lindblad master equation such that

it can account for electron capture. For this purpose we have introduced a
source term that is directly related to the state-to-state capture cross sections.
We have developed a QTMC solution for this modified Lindblad master equa-
tion. This solution is based on the solution of a reduced problem, namely
the time evolution of a density matrix initially populated by a capture event
and then propagated according to a LME without a source.

8.3 Application to radiative cascade
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Figure 8.2: Schematic picture of the radiative cascade of a hydrogenic argon
ion initially in the 4p3/2,1/2state. (a): full system; (b): reduced system
considering decay of the initial state as a source; (c): comparison of absolute
magnitude of relative coherence between 3S1/2,1/2and 3d3/2,1/2as a function
of propagation time: line: exact results; symbols: results of LME with source
for the reduced system.
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We first apply the newly developed method to a system where an exact
solution is available against which we can test our numerical results. For
this purpose we consider the cascade of a hydrogenic argon ion initially in an
excited state radiatively decaying into the ground state. We focus on the case
where the initial state is not included in the simulated subspace. The cascade
electron therefore represents a gain of probability and the time evolution of
the reduced density matrix of the subspace can be described by the LME
including a source term (8.3). The source term F is determined by radiative
transitions from the initial state. In contrast, for a Hilbert space Hs which
spans over the initial and all states of the radiative decay cascade the time
evolution is fully contained in the simulation and thus can be described by
the unitary Lindblad master equation. The full system (figure 8.2(a)) serves
as a test for the accuracy of the numerical results obtained for the reduced
system. In section 8.3.1 we first analyze a system with a gain of probability
and in section 8.3.2 we proceed to a system described by gain and loss.

8.3.1 Radiative cascade as source
For a first numerical test we reduce the size of the Hilbert space such that it
contains only the final states of the radiative decay of the initial state but not
the initial state itself (figure 8.2(b)). The transitions from the initial state
have to be considered as gain into the reduced Hilbert space Hs. The source
term F entering the LME (8.3) is constructed by the transition operators
sg) b) describing radiative decay (see equation (3.31)) for the polarization
directions :1 = x, y, and z as

xyz

Fijasc =Ls~)t b) sj~ (:1)
J

(8.19)

(8.20)

with the initial state a = 4P3/2,1/2' Note that unlike the calculation for
the decay operator r~;)= l:v E

J
st)tb) S~~)b) the two inner indices are

not equal. Equation (8.19) describes flux into the diagonal elements of the
density matrix as well as build-up of coherences in the off-diagonal elements
of Ficrc.

This model system does not feature a loss channel. Consequently the
trace of a(H)(t) is constant Tr[a(H)(t)] = Tr[FcasC] simplifying the integral
equation (8.18) to

Tr[a(t)] = Tr[FcasC] (t -it dto Tr[a(to)])

The time evolution of the density matrix is calculated according to (8.16).



CHAPTER 8. OPEN QUANTUM SYSTEM WITH A SOURCE 128

To test our approach we compare the absolute magnitude of relative co-
herence between 3s and 3d (figure 8.2(c))that is built-up by direct radiative
transition from the initial4p state. The good agreement between the reduced
and the full calculation verifies the validity of the method. The described
feeding in the Lindblad formalism can also correctly reproduce the time evo-
lution of the off-diagonal elements of the reduced density matrix.

8.3.2 Radiative cascade as source and sink
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Figure 8.3: Outline of radiative cascade of a hydrogenic argon ion initially in
the 5d3/2,l/2 state. Solid lines: gain of probability; long dashed lines: internal
radiative transitions within the subspace ]pl; short dashed lines: loss to the
complement Q.

In a second numerical test we consider the Lindblad master equation
describing also loss of probability. The model system we analyze is an excited
hydrogenic argon ion initially in the 5d3/2,l/2 state as shown in figure 8.3.
We decompose the Hilbert space into three parts. (i) The first part contains
the initial state and serves as a source of probability. (ii) The simulated
subspace ]pl spans over the final states of direct radiative transitions from the
initial state, i.e. all states within the shells n=2-4. (iii) The complement
Q not explicitly described is the ground state (Is). By this subdivision the
radiative cascade enters the LME in three .differentways. Decay of the initial
state is described by the source term pease as defined in equation (8.19) with
a = 5d3/2,1/2. Transitions within the subspace ]pl are accounted for by the
transition operator sP leading to the decay operator rPP• Decay into the
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Is ground state is described by rlPQ in the LME. The time evolution of
the density matrix is obtained as described in the previous section. The
trace is determined by equation (8.20), while the individual elements are
calculated according to (8.16). In combination with an exact calculation
this system represents an ideal test for the generalized non-unitary LME.
The exact results are obtained when IPspans over all states affected by the
cascade including the initial state.

Figure 8.4: Absolute magnitude of coherencebetween 4P3/2,mjand 4f5/2,mj for
mj=-1/2, 1/2 and 3/2 of argon populated by radiative decay from 5d3/2,1/2.
Solid lines: exact calculation; symbols: calculation according to the modified
Lindblad master equation (8.3) for the system displayed in figure 8.3; dashed
lines: exponential increase according to 1 - exp(-Fij8SCt).

To demonstrate the validity of the solution of the modified Lindblad mas-
ter equation we consider the coherence between 4p and 4f. In figure 8.4 the
coherence 4p3/2-4f5/2is depicted for different values of mj' For short times
the coherence increases exponentially according to 1- exp(-Fij8SCt) with the
corresponding gain rate Fi} as indicated in figure 8.4. For longer times
transitions within the subspace IP and also loss to Q significantly modify
the results as observed by the deviation from the simple exponential growth.
The agreement between the exact calculation and the solution of the reduced
system (figure 8.3) is given not only on the short time scale but also in the
limit of long propagation times.
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This first application of the LME with a source term shows that the
solution (8.16) provides an accurate description of the time evolution of the
reduced density matrix. For the radiative cascade we had the opportunity to
compare with an exact solution. In the application to ion-solid transport we
will have no exact results at hand to compare with. Therefore a verification
of the method itself and its numerical implementation is a first step towards
more complex problems.

8.4 Summary
In our aim to develop an open quantum system approach applicable to trans-
port problems we have introduced a source term in the Lindblad master equa-
tion. This extension opens up a wide field of applications since most realistic
open quantum systems do not exchange only energy with the environment
but also probability flux. After having investigated the flow of flux out of the
system in the first part of this thesis we now closed the cycle by considering
also probability flux into the system.

After describing the modifications of the Lindblad master equation we
have provided a solution by a Monte Carlo method. We have shown that
this solution can be constructed by means of solutions of another problem.
This is time evolution of the initial conditions determined by the source term
and subsequently described by the non-unitary Lindblad master equation
without a source.

As a first application we considered the radiative cascade from an excited
state as feeding of deeply bound states. In comparison with an exact solution
we could demonstrate the accuracy of our method. In the next chapter we will
apply this method to the transport of excited states populated by electron
capture.
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Chapter 9

Application to Ar18+ transport

9.1 Introduction
In the previous chapter we have introduced the solution of an open quantum
system with a source by means of the QTMC method. As an application
we will describe in this chapter a system where the initial state is formed by
electron capture while further system-reservoir interaction drives transitions
within the system also leading to probability flux outwards. We focus on
coherences produced by electron capture.

This study is motivated by recent measurements on excited state popula-
tions formed by electron capture in ion-solid transport. The experiment we
compare with has been performed with the same setup as the experiments
described in chapter 7 (for details see [Ver98, Lam97, FouOO]or figure 2.4
for a schematic picture). The collision system is a bare argon ion in trans-
port through carbon at an energy of 13.6 MeVjamu that corresponds to a
projectile velocity of vp = 23 a.u .. The target thickness was varied between
2 and 200 J-tgj cm2 corresponding to a propagation length from approx. 200
to 2 X 104 a.u. For this collision system the MFP for electron capture is ap-
proximately 4 x 104 a.u. which is longer than the thickest targets considered.
Rence single collision conditions are fulfilled for the capture process for all
propagation lengths.

The measured ratio between fine structure states 2p1/2 and 2P3/2

RI = I(2p1/2 ~ 181/2)
I(2p3/2 ~ 181/2)

(9.1)

shows a significant solid state effect (figure 9.1). To exclude solid state effects
also measurements with a CR4 gas target instead of the solid carbon foil were
performed. Calculations within the master equation approach (see section

131
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Figure 9.1: Ratio RI between 2Pl/2 and 2P3/2 as a function of foil thickness
during transport of an Arl7+ ion through carbon (vp= 23 a.u.) initially in
the Ar18+ state. Symbols: experimental results for solid targets; dotted line:
experimental results for gaseous CH4 target as reference line; solid line: full
MEA calculation; dashed line: MEA calculation neglecting the wake field.

•
5.5.1) using CDW capture cross sections (section 3.4.2) can not fully repro-
duce these experimental findings. Results obtained by the same simulation
with the wake field turned off showalmost no solid state effect. The sensi-
tivity to the wake field indicates a sensitivity to coherences during transport.

To resolve this issue we perform a simulation of this transport problem
by means of the open quantum system approach developed in this thesis.
In order to account for the build-up of excited states populations by elec-
tron capture we employ the non-unitary Lindblad master equation with a
source term as described in chapter 8.2, where the source of probability is
represented by electron capture.

In section 3.4 we have provided an overview over the available methods.
We have found different capture cross sections resulting from different theo-
retical models. The comparison with measurements allows to test theoretical
predictions for the electron capture process.
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Figure 9.2: Evolution of relative shell populations of Arl7+ as a function of
propagation length during transport of an initially bare argon ion through
an amorphous carbon foi1.The simulated shell populations are normalized to
the overall charge state probability of Arl7+.

9.2 Numerical simulation
At the entrance of the foil the initial state is a bare Ar18+ projectile while
electron capture in the target populates the hydrogenic projectile states. In
figure 8.1 we sketched the main processes changing the charge state. Elec-
tron capture also populates helium-like Ar16+ states. In our simulation we
represent deeply bound one-electron projectile states with llmax=4. There-
fore transitions to Ar16+ represent an effective loss of probability. The time
evolution of the reduced density matrix is described by the Lindblad master
equation (8.3). The electron capture cross sections enter the source term Fij

in (8.3) according to equation (8.2) where Cij corresponds to the capture
density matrix elements. We approximate second electron capture cross sec-
tions by the one-electron capture cross sections in order to include the source
term in the Lindblad master equation as denoted in (8.3). The other terms
in (8.3) accounting for core scattering, electron-electron interaction and ra-
diative decay are equivalent to the ones used in chapter 7 for the transport
of a krypton ion. Ionization is accounted for as well.

In section 8.2 we have presented a solution of (8.3). The method we
proposed is to first solve the Lindblad master equation without a source
(8.1) for an initial reduced density matrix given by the same cross sections
that also enter the source term, i.e. agn(Q) = Cij. In a second step we
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obtain (Jij(t) as the solution of the Lindblad master equation with a source
by solving numerically the integral in equation (8.16). As initial conditions
we consider the electron capture density matrix resulting from the LTDSE
calculation (section 3.4.3). Since these results are available only for n~3
we take for n=4 values calculated by CDW (section 3.4.2). If not stated
otherwise, we use this composed capture density matrix.

We investigate different aspects of the transition of (Jij (t) from a capture
density matrix to a dynamical equilibrium determined by transport. First
we discuss mixing of angular momentum and then focus on the build-up
of coherences and decoherence by dephasing and damping. The relative
shell populations are effectively modified by transport as shown in figure
9.2. In the single capture regime, or equivalently short propagation lengths,
the relative populations are directly related to the cross sections in figure
3.5 where capture into n=2 is most dominant. In further transport excited
states populations get either ionized or they radiatively decay into the ground
state. Therefore the relative weight of P(n=l) is increasing while P(n>l)
gets depleted during transport. The relation between P(n=2), P(n=3) and
P(n=4) remains almost constant (figure 9.2). At the longest propagation
length considered (3x104 a.u.) an equilibrium seems to be established where
the amount of captured probability distribution compensates mixing effects
during transport. The long time limit is characterized by three components:
feeding by capture, collisional excitation of the ground state and mixing by
transport.

Considering relative populations within one shell (figure 9.3) we can in-
vestigate transport effects in more detail. According to figure 3.4, capture
cross sections are largest for p-states and rapidly decrease for higher angular
momenta. This general tendency is independent of the method applied to
calculate the cross sections. On the other hand, transport tends to populate
higher angular momentum states as is clearly seen in figure 9.3 at large prop-
agation paths. This is due to the fact that collisions tend to align the angular
momentum with the quantization axis, i.e. ml ---+1, while the wake potential
is responsible for I-mixing by preserving mi. Only the combination of both
effects can be responsible for accessing all magnitudes and orientations of an-
gular momenta [ReiOO].For the present collision system, the consequence is
that in the limit of long propagation times the relative intra-shell probabilities
are distributed proportionally to the magnitude of the angular momentum.
In figure 9.3 we can observe a radical change of relative populations from
single capture to equilibrium via a transient phase of dramatic mixing up to
propagation lengths of d~2000 a.u ..
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9.2.1 Transient coherence

•

The reduced density matrix is populated by electron capture. Consequently
coherences are the result of a steady build-up by the capture process. The
analysis within the simple model of section 7.3.1 applies also to coherences
populated by capture. In this case the gain term G represents the direct
feeding by capture G = F. The damping rate rij determines the damping
length to ddamp ~300 a.u. within the approximation of equation (7.25). In
table 9.1 we list the dephasing lengths d27rfor intra-shell coherences. In
contrast to a krypton projectile with a velocity of 47 a.u. (section 7) for this
collision system d27ris quite long. Only the fine structure in n=2 provides a
dephasing length below 1000 a.u..

In figure 9.4 we depict coherences in n=2. Fine structure coherences first
decay via dephasing (see also figure 7.11(a). The minima of the oscillations
are at the positions of integer multiples of d27rin agreement with the predicted
values in table 9.1. The simple model fails to predict the behavior for longer
propagation paths. The Lamb shift coherence between 2S1/2and 2P1/2 is
effectively damped. The comparison with figure 7.11(a) indicates a damping
length of 1000 a.u. within the simple model. The fact that all coherences
shown in figure 9.4 do not completely decay but remain at a constant value



CHAPTER 9. APPLICATION TO AR18+ TRANSPORT 137

I n=2 ~
2p3/2 856 828
2pl/2 2.5x104

I n=3 ~
3d5/2 2156 2103 8504 8471
3d3/2 2893 2798 2x106

3p3/2 2889 2795
3pl/2 8.5x104

Table 9.1: Dephasing length in a.u. for an Arl7+ ion with a speed of 23 a.u.
during the time T;'ß = 27r/ IWaß I for intra-shell coherences between hydrogenic
eigenstates with the unperturbed Hamiltonian specified in (5.65).

indicates the build-up by an additional mechanism. This is the dynamical
mixing of excited states in further transport.

To conclude, coherences are built-up linearly according to the capture
density matrix until decoherence sets in establishing a dynamical equilibrium
at long propagation lengths. The region of increasing coherences, i.e. for
d<1000 a.u., coincides with the region of dynamical mixing of populations
and angular momentum diffusion.

9.3 Relativistic effects in electron capture
Up to this point we considered observables degenerate with respect to the
electron spin. In order to test for relativistic effects we have to consider
spin dependent observables. An excellent choice is to investigate the ratio
of populations within a fine structure split manifold of a certain state. As
we will see in section 9.3.1 this ratio has a fixed value in any non-relativistic
theory and deviations can be attributed to spin dependent, i.e. relativistic,
effects.

9.3.1 Predictions by non-relativistic theories
Most of the methods for obtaining electron capture cross sections discussed
in this thesis neglect relativistic effects. The usage of these methods for the
collision system considered here is justified by the relatively small projectile
velocity of 23 a.u. (ß = vp/ c = 0.17) and the low nuclear charge of the
target atom. Therefore these approaches neglect the electron spin. When
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we transform a capture density matrix from a basis without spin into a basis
with spin using Clebsch-Gordan coefficients [Coh77] and equally weight the
two spin states we obtain for

R = _P_(2_P_1/2_)
P(2P3/2)

(9.2)

a value of exactly 1/2. This is due to the multiplicity of the degeneracy with
respect to the projection of the total angular momentum j on the quantiza-
tion axis. To be more specific, for j=1/2 mj can take the two values -1/2
and 1/2, while for j=3/2 four values of mj are possible. This assumes a sta-
tistical distribution of orbital and total angular momentum orientation and
transforms cross sections from the nI-basis to the nlj-basis as

. 1 2j + 1
a(n, l,)) ="2 2l + 1 a(n, l). (9.3)

Immediately after the charge transfer when the projectile is closest to the
target atom all remaining electrons initially attached to the target atom are
ionized. The residual carbon nucleus with the charge ZT effectively modifies
the captured electronic state as it departs from the collision region. An
electric field enters the Hamiltonian as field strength times dipole operator.
For n=2 an electric field mixes the s with the p states. The mixing strength
between these states is thus determined as

Z
Mij = r2~) (ilzlj). (9.4)

The magnitude ofthe s-p dipole is 0.16 a.u. and for the 2S1/2-2p1/2subset it is
0.096 a.u .. In figure 9.5 we plot the values of M for different target-projectile
distances. We depict four positions of the projectile. In figure 9.5 (a) the
projectile is still close to the target and thus M is very large. For distances
shorter than 2 a.u. we find M > WFS, where WFS is the energy spacing due
to fine structure corrections. For M much larger than WFSthe degeneracy
in energy space of all states in n=2 results in complete mixing with respect
to the angular momentum I neglecting the electron spin. The 2s-2p-mixing
does not modify the ratio R (9.2).

At a distance from 2 to 10 a.u. the mixing strength M is weaker than
WFSbut still stronger than WLS(WLS:Lamb shift). Under these conditions
the degeneracy with respect to the spin is lifted and the Coulomb field of
the remanent target ion effectively mixes the 2S1/2with the 2P1/2 state (see
figure 9.5(b) and 9.5(c)). At large distances, i.e. for weaker field strengths,
M« WLSand thus too small to contribute (figure 9.5(d)). Therefore, the
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(a) (b) (c) (d)

target

~~= p;ecill:
r=2 r=1O

M« C1)LS

2s1/2
t 2Pl/2

12s- 2p mixing I I no mixing I

Figure 9.5: Post collision interaction for fine structure components in n=2
of Arl7+ with vp=23 a.u. as a function of target-projectile distance r. (a)
mixing strength M (9.4) larger than fine structure splitting WFS leading to
2s-2p-mixing; (b) at a distance r=2 M =WFS and mixing of the subset 2S1/2-
2P1/2starts; (c) at a distance r=lO M=WLS and 2S1/2-2p1/2-mixingweakens;
(d) for longer distances mixing is not effective.

only region where the ratio R is effectivelymodified is between 2 and 10 a.u.
of distance. The projectile passes through this region in a time interval of
1/3 a.u .. In view of the long beat period 27r/WLS ~ 103 a.u. this interaction
time is too short to produce a considerable effect.

To conclude, the prediction of non-relativistic approaches for electron
capture (section 2.1) yields a ratio R=1/2 for the capture density matrix.
The above estimate of the post collision interaction predicts a vanishingly
short effectivemixing time for the fine structure component thus confirming
the scenario.

9.3.2 Comparison with experiment
The comparison of this prediction for RI (equation (9.1)) with measure-
ments in figure 9.6 reveals a difference. While the predicted value is 0.5 we



CHAPTER 9. APPLICATION TO ARI8+ TRANSPORT 140

••I , j ..
QTMC

10 100
Foil thickness [Ilg/cm?]

Propagation length [a.u.]

103

Experiment:
solid target /iIiri;/ -".,.,._._._~~_._._.

..~ / ~~~~:. ~~ .~~ .
,/-,,-

- ....____ MEA without wake---------------------
0.45

1

102

0.70
t::!
'"~

N
- 0.65t::!r::;
N

.?;- 0.60.....
5.s 0.55
S
] 0.50
~

Figure 9.6: Ratio RI between 2Pl/2 and 2P3/2 as a function of foil thickness
during transport of an Arl7+ ion through carbon (vp= 23 a.u.) initially in
the Ar18+ state. Symbols: experimental results for solid targets; dotted line:
experimental results for gaseous CH4 target as reference line; dash-dotted
line: full MEA calculation; dashed line: MEA calculation neglecting wake
field; solid line: QTMC calculation.

observe 0.54 in the single collision limit. This 8 % discrepancy is significant,
i.e. exceeds the experimental uncertainty. Since the non-relativistic electron
capture calculations for the ratio RI deviate from the measurements in the
single capture limit this discrepancy persists during transport.

Evaluating equation 3.49 for the considered collision system with the
program of [Ich93] gives cross sections with the ratio R=0.52 [Eic05] (see
table 3.3). This indicates that there is indeed a relativistic effect, however
this effect is too small to explain the experimental ratio. To mimic the
relativistic effect of mixing we can modify the capture density matrix (1LTDSE

in the spin-basis such that the ratio R is enhanced. This is achieved by
shuffling probability from 2S1/2 to 2Pl/2 in the same way as described by
equation 9.4 until the ratio R has the value 0.52. This scheme is indicated
in the inset of figure 9.7.

Figure 9.7 shows results of a simulation with this modified capture density
matrix. The first observation is that although we used a density matrix
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Figure 9.7: Ratio RI between the 2Pl/2 and 2P3/2 as a function of foil thick-
ness during transport of an Arl7+ ion through carbon (vp= 23 a.u.). Symbols:
experimental results for solid and gaseous CH4 targets; solid line: QTMC re-
sult using aLTDSE; dotted line: modified aLTDSE as indicated in the inset
to R=0.565 such that in the simulation we find RI=0.54 in the single colli-
sion regime (thin foil); dashed line: setting R=0.52 in aLTDSE according to
relativistic calculations.

with R=0.52 the ratio of emitted photon intensities RI is only 0.51. The
reason is the additional contribution by cascade electrons that has to be
taken into account when comparing with measurements. With increasing
propagation length the difference to a simulation with the unaltered aLTDSE

almost disappears. This reveals that the relativistic effect predicted by the
relativistic eikonal theory (section 3.4.4) is relevant in the single collision
regime but gets washed out very quickly in dynamical mixing.

In figure 9.7 we also show results of a third simulation where we have
changed the ratio R in aLTDSE such that in the single capture limit RI re-
sembles the gaseous value of RI=0.54. In order to achieve this effect a shift
of R=0.565 is necessary. In view of the arguments made in section 9.3.1
this high ratio is particularly surprising. We point out that this shift is not
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Figure 9.8: Ratio between the fine-structure split states 2Pl/2 and 2P3/2 as
a nmction of foil thickness determined by Lyman-a 1 and Lyman-a2 photon
intensities emitted during transport of a Arl7+ ion through carbon (vp= 23
a.u.). Results for n=2 (a), n=3 (b), and n=4 (c) for different wake potential
used in the full simulation within the QTMC method using (TLTDSE. Solid
lines: wake Vb calculated by boost operator (3.37); dashed lines: approximate
wake according to Ponce [Roz99] (3.35); dotted lines: simulation neglecting
wake potential; symbols: experimental results available for n=2 for solid and
gaseous targets.
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based on any physical effect and serves only as an estimate of the strength
of a possible mixing effect following equation 9.4. In comparison with the
experimental findings we observe that up to a propagation length of d",,3000
a.u. measured values for RI can be explained by the calculation while for
thicker targets further differences emerge.

The conclusions we can draw from the investigations shown in figure 9.7
are that the available cross sections do not fully comply with the measured
ratio. Nevertheless, besides the 8 percent difference in the initial condition,
the simulation follows the experimental data with an almost constant shift
over three orders of magnitude of propagation length. This observation indi-
cates that all other relevant aspects of the transport problem are contained
within the simulation.

To underline this scenario we investigate the sensitivity of this observable
as a function of the initial conditions and in dependence of transport effects.
Since the 2p1/2 to 2p3/2 ratio is highly sensitive to the wake mixing of 2S1/2
with 2p1/2 we first discuss results obtained with different approximations of
the wake effect and then proceed to the interdependence of RIon the method
used to calculate capture cross sections.

A simulation omitting the wake potential lead to an almost constant RI
while simulations accounting for the mixing by the wake result in an increased
value of RI with increasing propagation length. After propagation through
",,3000 a. u. an equilibrium is reached. The asymptotic value deviates again
from measurements by the same amount. The ratio RI is sensitive to the
field strength of the wake as we can observe in the comparison of the two
approximations for the wake field compared in figure 9.8. The effect is most
significant for n=2 and rapidly decrease for n=3 and n=4 as depicted in
figure 9.8 (b) and (c), respectively.

In the calculations shown in figure 9.8 we used the LTDSE results for
electron capture. In the next figure (figure 9.9) we depict results obtained by
simulations using also other non-relativistic calculations to obtain electron
capture cross sections. While results using crC™C compare worse with mea-
surements for thick foils, simulations using crCDW reproduce the experimental
ratio RI in the asymptotic limit well. For higher shells differences between
the three calculations shown in figure 9.9 decrease.

Summarizing, the dependence of the ratio on the propagation length is
reproduced by the QTMC result indicating that the discrepancy is produced
rather in capture initial condition than in transport. A relativistic calcu-
lation of the electron capture within the eikonal approximation shows that
relativistic dynamics can partly account for the shift of RI. However, at least
a ratio of R=0.565 in the electron capture density matrix is necessary in order
to explain the data leaving the explanation of this effect partly unresolved.
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Figure 9.9: Ratio between the fine-structure states 2Pl/2 and 2P3/2 as a
function of foil thickness determined by Lyman-al and Lyman-a2 photon
intensities emitted during transport of a Arl7+ ion through carbon (vp= 23
a.u.). Results for n=2 (a), n=3 (b), and n=4 (c) for different capture density
matrices used in the full simulation within the QTMC method. Symbols:
experimental results; solid line: LTDSE; dashed line: CDW; dotted line:
CTMC.
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Figure 9.10: Experimental photon intensities as a function of foil thickness
emitted by an Arl7+ projectile initially in the Ar18+ state in transmission
through an amorphous carbon foilwith a velocity ofvp= 23 a.u.. Closedsym-
bols: experimental data obtained with the detector setup measuring photons
emitted "far" after the foil;open symbols: data obtained by a recent detector
setup optimized to measure photons emitted "near" the exit of the foiL (a):
populations in n=2 from 2p-+1s and the two-photon decay 2s-+1s; (b): np
populations for n=3 and n=4 obtained from Lyman transitions np-+Is.

9.4 Comparison of populations
The fine structure states discussed in the last section could be resolved for
n=2. As is shown in figure 2.5 for higher shells (n>2) the fine structure
resolution in the photon spectrum is lost. The integrated peak intensity
is closely related to the excited state population of the initial state of this
transition. For example the 2p population can be traced by the 2p-+Is
LymaIla transition. The population per ion is deduced from the measured
photon intensities as I(np) = I(np -+ Is) In a first measurement [Lam97]
the acceptance area of the detectors was chosen such that it covereda longer
distance after the target. The advantage of this choice is that. states with
longer lifetimes could be observed as well. On the other hand the difficult
determination of detector efficienciesfor photons emitted by states with short
lifetimes introduces a systematic uncertainty to the results. In the following
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Figure 9.11: Populations obtained from absolute photon intensities emitted
by an Arl7+ ion during transport through an amorphous carbon foil (vp= 23
a.u.) as a function of foil thickness for n=1,2 (a) and n=3,4 (b). Symbols:
experimental findings from detecting "far" photons; lines: results from full
simulation within the QTMC method using different capture density matrices
as input: solid lines: LTDSE; dotted lines: CDW; dashed: CTMC.

we refer to this first data set as "far". The recent data was obtained with a
setup optimized for fast decaying states in the region near the target. It will
be labeled as "near". In figure 9.10 we compare these two results for Lyman
photon intensities from n=2 to n=4. It turned out that due to the uncertainty
on detector efficiency for the "far" measurements of shortlived states the
measurements of the "far" photons are slightly above the measurements of
"near" photons, that are more accurate. Photons emitted by the metastable
2s state are measured with an extra detector.

To investigate the sensitivity of the populations to the initial conditions
created by electron capture we have performed three otherwise identical simu-
lations except using different capture density matrices obtained by the three
different methods described in section 2.1. The comparison with the first
measurements appear to suggest that cross sections obtained by CTMC
(aC™C) explain the data far better than the other methods (figure 9.11).
This conclusion was very surprising because the LTDSE method is expected
to be by far the most accurate solution available of the three body problem.
Nevertheless, at a closer look the simulation using aC™C could not explain
all aspects of the measurements. It does not account for the thin foil mea-
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surement of the 2p intensity as we see in the comparison (figure 9.11) and
differences emerge for thick targets for 3p and 4p intensities as well. At-
tempts were made to resolve this issue and to improve the calculation but
no attempt yielded a significant modification of the result. Meanwhile a new
experiment was setup optimized to measure photons emitted from short-lived
states. These results are discussed below.

9.4.1 Dependence on capture density matrix

I 10 100
Foil thickness [J.1g/cm2

]

I 10 100
Foil thickness [J.1g/cm2

]

Figure 9.12: Populations obtained from absolute photon intensities emitted
by an Arl7+ ion during transport through an amorphous carbon foil (vp= 23
a.u.) as a function of foil thickness for n=1,2 (a) and n=3,4 (b). Symbols:
experimental findingsj lines: results from full simulation within the QTMC
method using different capture density matrices as input: solid lines: LTDSEj
dotted lines: CDWj dashed: CTMC.

The dependence of the emitted photon intensities on the electron capture
density matrix is shown in figure 9.12. For thin foils the results reflect the
initial capture cross sections shown in figure 3.4. Cross sections calculated
by CTMC are higher and disagree with the experimental finding for 3p and
4p intensities. While being within the experimental resolution for 2s and 2p
in the single collision regime, a discrepancy in transport is found.

Calculations with CDW (aCDW) and LTDSE (aLTDSE) cross sections can
explain the experimental findings in all regions of interaction confirming the
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precision of capture cross sections in the single capture regime, the descrip-
tion of the dynamical intermediate region and the asymptotic value. When
looking closer we observe that (JLTDSE reproduce the measurements slightly
better than those obtained by CDW. When comparing the cross sections in
section 3.4.5 we saw that while capture into 2s is equally effective, discrep-
ancies for p cross section exist. Cross sections for electron capture into p
states are smaller when calculated by CDW than those obtained by LTDSE.
This small difference remains also during transport. As mentioned in section
3.4.3, capture cross sections were obtained with the LTDSE method for n~3.
For n=4 we have taken the results from CDW. Therefore the photon inten-
sities for 4p are equal for short propagation paths in figure 9.12 (b) while a
deviation emerges during transport.

9.4.2 Effect of wake field
The strength of the wake field determines the strength of the wake mixing of
states. In figure 9.13 we investigate the effect of the wake field on the pop-
ulations normalized with respect to the corresponding shell population. For
this purpose we have performed three simulations differing only in the wake
potential entering the system Hamiltonian. First we use the approximation
by Ponce [Roz99] described by equation (3.35). Second we employ matrix
elements obtained by evaluating the transition matrix elements of the wake
potential in equation (3.37). The resulting field strength is a little bit smaller
than the one used by Ponce. In the third simulation we have omitted the
wake field completely.

Without a wake potential the mixing of states is the results of multiple
collisions and radiative decay only. The mixing causes angular momentum
diffusion towards higher angular momenta. The presence of an electric field
amplifies this mixing for those states that are coupled by this field. Ap-
proximating the wake potential by a linear slope this means coupling dipole
allowed transitions while the full wake potential leads also to higher order
couplings. For n=2 the population of 2p is increased with increasing wake
field strength at the expense of electron probability in 2s. Considering the
photon intensities including contributions from cascade electrons this effect
gets weaker but still can be observed as shown in figure 9.14 (a). The photon
intensities emitted by 2s are more sensitive to the strength of the wake field
mostly via the cascade contribution from the decay of 3p---+2s.

For n=3 the effect of the wake field on the p-populations is contrary to
that for n=2. To be more specific, angular momentum diffusion leads to
a strong increase of the state with the highest angular momentum. In the
second shell the p state has this role while in the third shell it is the d state.



CHAPTER 9. APPLICATION TO ARI8+ TRANSPORT 149

1
Foil thickness [~glcm2]

10 100

0.4

0.6

0.8

0.2

0.6 0.6-.
M

~
'"-'~ 0.4--.-5
~

0.2

0.8

-.
N
II
S
~--.-cf
'"-'~

0.2

0.0 0.0
102 103 104

Propagationlength[a.u.]

Figure 9.13: Evolution of relative populations of Arl7+ as a function of prop-
agation length during transport of an initially bare argon ion through amor-
phous carbon. Populations are presented as a function of principal quantum
number n and the angular momentum I and are normalized to overall prob-
ability in corresponding shell: (a) P(n=2,1) for n=2; (b) P(n=3,1) for n=3.
Different wake potentials within the full QTMC calculation using (TLTDSE.

Solid lines: wake calculated by boost operator (3.37); dotted lines: approxi-
mation by Ponce [Roz99](3.35); dashed lines: omitting wake.
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Therefore the 3d population is increased with increasing field strength at the
cost of 3s and 3p populations (see figure 9.13 (b)). For n=4 the picture is
similar: population of 4p is decreasing with increasing field strength. This
effect can be also observed in the photon intensities emitted from 3p and 4p.

Experiment: 2p D, 2s 0
QTMC'V- V - - V----• b ' P , 0

4p

I 10 100
Foil thickness [J.!glcm2

]

I 10 100
Foil thickness [J.!glcm2

]

Figure 9.14: Populations obtained from absolute photon intensities emitted
by an Arl7+ ion during transport through an amorphous carbon foil (vp=
23 a.u.) as a function of foil thickness for n=2 (a) and n=3,4 (b). Sym-
bols: experimental results; lines: QTMC results using LTDSE for capture
and considering different wake potentials during transport: solid lines: wake
Vb calculated by boost operator according to equation (3.37); dotted lines:
wake Vp according to approximation by Ponce [Roz99] (see equation (3.35));
dashed lines: simulation neglecting wake potential (V0=0).

Simulations with the two models used to describe the wake potential give
identical results in the asymptotic region of long propagation paths. Dif-
ference in the populations can be observed in the intermediate region with
respect to propagation length d. There mixing due to collisions and the wake
field is most effective. For d::::::1000a.u. =10 f..lg/cm2 the difference is largest
in populations and also in photon intensities. The comparison with measure-
ments clearly indicates that the mixing by the wake plays an important role
and that the two different models described in this work are accurate enough
to explain the data. We are not able to decide which approach is more ap-
propriate because of the uncertainty in the initial conditions and because the
difference in photon intensities is smaller than the experimental resolution.
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9.4.3 Comparison with alternative approaches
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Figure 9.15: Populations obtained from absolute photon intensities emitted
by an Arl7+ ion during transport through an amorphous carbon foil (vp= 23
a.u.) as a function of foil thickness for n=2 (a) and n=3,4 (b). Symbols:
experimental results; solid lines: QTMC results using LTDSE for capture;
dashed lines: CTMC calculation using CDW for capture; dotted lines: MEA
calculation using LTDSE for capture into n:::;3 and CDW for capture into
n>3.

Results obtained by alternative approaches are compared with measure-
ments of absolute populations in figure 9.15. We performed a calculation
with the MEA (section 5.5.1)[VerOl] with the capture density matrix that
we used within the QTMC calculation. This is we use for n:::;LTDSE cross
sections and results obtained by CDW otherwise. The MEA populations in
figure 9.15 explain the data for thin foils while it overestimates the popula-
tions for longer propagation times. These differences in comparison of the
QTMC solution seem to emerge in the dynamical mixing region starting at
about 10 J-Lg/cm2indicating the consequence of the different treatment of the
dynamics. Photon intensities deduced from a classical calculation that was
discussed in section 4.3 are also shown for comparison in figure 9.15. The
largest difference can be observed for the 3p and 4p intensities.

Unlike the in the QTMC method both alternative methods, MEA and
CTMC, use collisional cross sections obtained in quasi-free electron approx-
imation. The different description of the dynamics is decisive for the results
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in the dynamical region. Overall, QTMC results explain the date more ac-
curately than the other approaches.

9.5 Summary
We have presented an application of the newly developed open quantum sys-
tem approach that allows to account for probability flux into the system as
well as out of the system. The application we selected is the transport of
an initially bare ion through a carbon foil. We investigated the solid state
effect in populations created by electron capture. Due to the complexity
of the three-body dynamics calculations of cross sections for populations as
well as for coherences are still a challenging task. The resulting cross sec-
tions calculated by the non-relativistic quantum mechanical calculations are
very similar. These are the CDW-PCI method and a recently implemented
solution of the TDSE on a lattice. While these theories cannot account for
the small relativistic effect observed in the fine structure manifold of 2p they
could particularly explain measured populations of 2s and of p-states for
n:S;4.

The overall good agreement between theory and experiment demonstrates
the accuracy of the calculation and underlines the validity of the chosen ap-
proach. The agreement in the single capture regime indicates the degree of
precision of the non-relativistic quantum mechanical calculations (CDWand
LTDSE) of electron capture cross section. The good agreement for interme-
diate propagation lengths confirm the dynamical mixing scenario. The fact
that the calculation also renders the measured values in the asymptotic limit
of very long interaction times demonstrates the accuracy of the calculated
dynamical equilibrium between electron capture, dynamical mixing and ion-
ization. For long propagation time the recent method explains measurements
closed than alternative approaches.
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Chapter 10

Summary and conclusions

In this thesis we have presented an open quantum system approach for ion-
solid transport that is open with respect to energy as well as with respect to
probability flux. The solution of the underlying quantum master equation
by means of a quantum trajectory Monte Carlo method allows to address
the problem of the passage of a hydrogenic ion through a solid including
ionization and electron capture. For this purpose we extended the standard
Lindblad formalism by overcoming the restrictions imposed by unitarity. We
focused on two applications: the passage of a hydrogenic Kr35+(ls) and a bare
Ar1S+ ion through carbon foils. In the transport of a Kr35+ ion the attached
electron is initially in the ground state and we can follow the dynamics in the
subspace of deeply bound states including the loss channel. For the second
application an initially bare argon projectile was used and the dynamics
was followed in the framework of the combination of electron capture and
ionization.

We discussed the role of different collision mechanisms and their signa-
ture in the spectra of emitted convoy electrons within classical transport
theory and their role in the production of coherence within the present open
quantum system approach. In our analysis we focused on the creation and
destruction of transient coherences as a result of the dynamical mixing by
electron-core and electron-electron collisions, radiative decay, wake field and
electron capture. While for krypton (ls) violent core collisions are the major
driving force for the population of coherent superpositions of excited states,
in the argon transport we can observe a gradual shift from first creating co-
herences by electron capture to excitation from lower lying states in later
stages.

For the krypton transport we could resolve discrepancies of a previous
unitary calculation with measurements confirming the accuracy of the recent
non-unitary method. In the second application we studied the role of elec-

153



CHAPTER 10. SUMMARY AND CONCLUSIONS 154

•

tron capture during transport. We compared different methods for calculat-
ing electron capture cross sections and found good agreement with measured
nI populations for non-relativistic quantum mechanical descriptions of the
capture channel. Capture cross sections calculated within a classical frame-
work could not be confirmed by experiment. Furthermore we found that a
description of capture by a solution of the time dependent Schrödinger equa-
tion on a lattice compares best with measurements. The agreement with
measured populations is good over three orders of magnitude of propagation
length confirming the accuracy of capture cross sections in the single collision
regime, i.e. for the thinnest targets. The dynamical scenario for intermediate
propagation lengths was confirmed as well as the accurate balance between
ionization and capture for large interaction times. The experimentally re-
solved relativistic effect in the 2p fine structure manifold could only partly
be explained in the framework of the relativistic eikonal approximation for
electron capture.

In general, the presented open quantum system approach provides an
improved explanation of the measurements compared to previous classical
and quantum transport theories. Finally we would like to point out that
the Lindblad equation and its Monte Carlo solution are universal and can
be adapted to describe the coherent dynamics of a wide range of atomic
systems that are strongly perturbed by their environment. The generalization
presented in this thesis overcomes the restriction of the Lindblad master
equation to unitary evolution making it an attractive alternative for a large
number of problems .
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