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Kurzfassung

Quanteneffekte der Schwerkraft, bereits an sich ein Feld tiefgehender und langan-
dauernder Arbeiten, erfahren seit kurzem weiter verstarktes phanomenologisches Inter-
esse. Dies rihrt von kiirzlich vorgeschlagenen feldtheoretischen Modellen mit grofien
zusatzlichen Dimensionen der Raumzeit her, Grund fiir die Untersuchung der quan-
tisierten Theorie der Schwerkraft in diesem Zusammenhang.

Ein grofles Hindernis fiir die erfolgreiche Quantisierung der Schwerkraft stellt ihre
storungstheoretische Nichtrenormierbarkeit dar. Ein weit verbreiteter Ansatz zur Losung
dieses Problems besteht darin, iiber lokale feldtheoretische Grundlagen hinaus zu gehen,
wie zum Beispiel in der String—Theorie. Ein alternativer Ansatz besteht in der Moglichkeit
der nicht-storungstheoretischen Renormierbarkeit. Diese Moglichkeit wurde erstmals
von Weinberg 1979 aufgezeigt und als asymptotische Sicherheit (asymptotic safety) im
Rahmen der Renormierungsgruppe formuliert. In diesem Verstdndnis entspricht die
nicht-storungstheoretische Renormierbarkeit einer Theorie dem Auftreten eines nicht-
trivialen Fixpunktes ihrer Renormierungsgruppengleichungen.

Solch ein Fixpunkt wurde kiirzlich fiir die vierdimensionale Schwerkraft gefunden.
Dies wurde durch das Verwenden von Methoden der Exakten Renormierungsgruppe
in der Naherung der Einstein—Hilbert Trunkierung moglich. Dieser Fixpunkt findet
sich auch in erweiterten Trunkierungen, woraus sich Anzeichen fiir die asymptotische
Sicherheit der vollen Quantentheorie der Schwerkraft in vier Dimensionen ergeben.

In dieser Dissertation wird nach entsprechenden Fixpunkten in héheren Dimensio-
nen gesucht. Sie werden fiir einen weiten Bereich verschiedener technischer Hilfsgrofen,
sogenannter cutoff-Funktionen, und Eichungen, gefunden. Thre Stabilitatseigenschaften
und universellen Eigenwerte werden untersucht. Die kiinstlichen Abhéangigkeiten der
physikalischen Ergebnisse von den genannten Hilfsgroflen stammt von der verwende-
ten Naherung, in diesem Falle der Einstein—-Hilbert—Trunkierung. Ihre Analyse erlaubt
eine Bewertung der Verlafllichkeit der erlangten Ergebnisse. Aufbauend auf diesen
kiinstlichen Abhéngigkeiten wird eine Methode zur Optimierung der cutoff-Funktionen
vorgeschlagen. Es wird gezeigt, das sie zu erhohter VerlaBlichkeit der Ergebnisse fiihrt.
Sollten die Fixpunkte auch in erweiterten Trunkierungen erhalten bleiben, bedeutet dies
die asymptotische Sicherheit und damit nichtperturbative Renormierbarkeit der Quan-
tentheorie der Schwerkraft in hoheren Dimensionen. Im Laufe dieser Fixpunktstudien
zeigte sich, dafl eine bestimmte cutoff-Funktion zu besonders hoher Verlafilichkeit fiihrt.
Diese optimierte cutoff-Funktion wird im weiteren dazu verwendet, um Losungskurven
der Renormierungsgruppengleichungen zu finden, die den gesamten Phasenraum der
Kopplungen durchlaufen. Die so erhaltenen Phasenraumbilder werden explizit in vier Di-
mensionen diskutiert und klassifiziert. Dadurch lassen sich die universalen Eigenschaften
des gesamten Flusses erschliefflen. Sowohl der Fixpunkt als auch die phdnomenologisch
relevante Losungskurve befinden sich in einem Bereich des Phasenraumes, der zuverlassig
in der Einstein-Hilbert Trunkierung beschrieben wird.

Ein Ausblick auf mogliche phanomenologische Folgen der asymptotischen Sicherheit
der Schwerkraft fiir Modelle mit zusatzlichen Dimensionen der Raumzeit beschlieft diese
Arbeit.



Abstract

Quantum gravity has recently been brought into phenomenological focus by the advent
of field theoretic models with large extra dimensions. This provides a motivation for its
investigation in more than four dimensions in a field theoretic context.

A major obstruction to such a description has been the perturbative non-renormalisability
of gravity. A prevalent resolution to this issue consists in going beyond local field the-
oretic concepts, most prominently in string theory. An alternative solution would be
provided by gravity’s nonperturbative renormalisability. This notion has been formu-
lated in the framework of the renormalisation group as “asymptotic safety” by Weinberg
in 1979. It corresponds to the existence of a non-trivial fixed point in the renormalisation
group equations of a theory.

Such a fixed point has recently been detected for gravity in four dimensions. This
was achieved by using exact renormalisation group methods in a certain approximation,
the Einstein-Hilbert truncation. It was reproduced in more general settings and shows
evidence for the asymptotic safety of the full theory.

In this thesis we search for non-trivial fixed points in higher dimensions. They are
reported for a wide range of regulators, the cutoff functions, and gauges. Their stability
properties and universal eigenvalues are studied. The artificial dependence of physical
results on these auxiliary quantities results from working in the approximation of the
Einstein—Hilbert truncation. We study these dependences to analyse the reliability of
the obtained results. A cutoff optimisation procedure is proposed and demonstrated to
yield increased reliability of the fixed point results. If the fixed point persists within
extended truncations, quantum gravity in extra dimensions is asymptotically safe, i.e.
non-perturbatively renormalisable.

During the fixed point studies one particular cutoff function is seen to lead to par-
ticularly enhanced stability of the flow. This optimised cutoff function is used to find
renormalisation group flows spanning the entire phase space of couplings. These phase
space portraits are discussed and classified for four dimensions explicitly. This allows
to extract the universal features of the flows. The fixed point and physical trajectory
is seen to lie in a sector of phase space with good reliability of the Einstein—Hilbert
truncation.

Phenomenological implications of the asymptotic safety scenario for models with
extra dimensions are indicated.
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Chapter 1

Introduction

In this introduction, we will briefly give some physical motivations for the study of
higher dimensional quantum gravity and outline one key obstacle for the perturbative
description, non-renormalisability, and a possible non-perturbative solution to that issue.
An outline of the further content of this work concludes this introduction.

1.1 Motivation for Quantum Gravity

Nowadays it is common belief that our world is governed by the principles of quantum
mechanics. This belief is founded on nearly a century of confirmation by experiment
throughout physics and chemistry, and by commercial applications omnipresent in every-
day life. All of matter and its interactions is ultimately described by fields obeying
quantum theory. The standard model of particle physics gathers the principles, tools
and (so far) basic constituents allowing the understanding of physical observations until
now.

One force of Nature, however, has not yet received its quantum description. It is
that part of Nature which is most prominent in every-day observation, from the falling
of an apple to the rising of the Sun. It was the first, historically, to be investigated
in what we now call modern science sense, in this sense giving birth to all of natural
science. It seems that, as it was the first, gravity is also intent on being the last purely
classical theory. It can be safely stated that to date no quantum theory of gravity has
entered the textbooks as the universally accepted and experimentally confirmed one.

So far our search for a quantum theory of gravity is purely motivated by theoretical
reasons: in contrast to the beginnings of quantum mechanics, where experiments were
unexplainable with the theories then available, no experiment has yet detected any
gravitational effects necessitating a quantum description. Nor did it seem probable
until recently that such a test could be within reach in the near or intermediate future.
This experimental inaccessibility is caused by the huge value of the energy for which
quantum effects are expected to become important. This scale is given by the Planck
mass, defined as My = \/hc/Gn = 1.22 x 10'® GeV. Reverberations of the Big Bang
seemed the only source of experimental evidence potentially accessible. In section 1.2 a
novel set of models, raising hopes for the experimental accessibility of quantum gravity
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in the nearest future, is described.

The expectation of the quantum Nature of gravity is, however, substantiated be-
yond a simple “rule of majority” [1] (3:1 for quantum) by the many incompatibilities
the junction of an unquantised theory with a quantised one would entail. The possible
violations of Heisenberg’s principle of uncertainty would lead to unsurmountable para-
doxes in that case. It is common belief that a successful union of quantum theory and
gravity would require some notions and principles on one or both sides to be given up.
The previous paragraphs took the point of view that gravity alone had to be adapted
to quantum theory. But the reverse notion is entertained as reasonable.

Many attempts have been made to achieve a reconciliation of gravity with the other,
already quantised theories. The most prominent one is without doubt string theory, but
many other approaches have been investigated. Although much has been accomplished,
none has yet achieved a true breakthrough into the textbooks as the correct one. The
number of people and works investigating this topic is, although certainly finite, barely
countable. For some references, see for instance [1], [2], [3]. In the end, experiment
alone has to decide what description of gravitational phenomena ultimately is correct.

The approach followed in this thesis is that of an exact renormalisation group formu-
lation of gravity. One main topic of this work is to apply it to more than four spacetime
dimensions, a motivation for this being given in the following section.

1.2 Extra Dimensions

It was mentioned above that tests for the quantum nature of gravity seemed to be
restricted to the realm of cosmology. Recently a class of models has been proposed, which
opens the possibility for the detection of direct quantum gravitational effects in realistic
collider experiments. For the most optimistic choices of parameters of these models, the
LHC (due for completion in 2007) could turn into a veritable tool to investigate the basic
structure of spacetime (in this context it has been called a “black-hole machine”[4], [5],
6]).

The new ingredient of these quantum field-theoretic models is the presence of large
dimensions in addition to our observed four. Higher dimensional spacetimes have already
been considered before. In physical models, they date back to the work of Kaluza and
Klein. Most prominently, higher dimensions are inherent in (super)string theory, which
requires ten spacetime dimensions. To reproduce the observed four-dimensional nature
of spacetime, these universal extra dimensions are compactified at sufficiently small
lengths. Hence these extra dimensions are small with respect to typical distances in
particle physics.

Introducing four-dimensional branes [7] allows an increase in the size of extra di-
mensions considerably. A brane is a four-dimensional domain-wall configuration of a
classical scalar field. Other fields, scalars, fermions and gauge bosons [8], can be bound
to the brane by appropriate couplings. They show a four-dimensional behaviour at en-
ergies lower than the typical scale of the branes (brane width, binding energy), which
has to be sufficiently above the energies of particle physics to comply with experimen-
tal constraints. The other dimensions can hence extend to sizes far larger than the
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tested distances on the brane. Gravity must naturally extend into the entire bulk,
since it describes the dynamics of spacetime itself. The experimental constraints on its
higher-dimensional behaviour are weaker than those for the other elementary particles,
confirming Newton’s four-dimensional force law down to the hundred micrometre range
9].

. Branes also emerge naturally in string theory and as solitons in its low energetic
supergravity limit [10]. In that case, the characteristic scale of the brane is set by the
string scale, related to the Planck mass.

Since the origin of the brane can only be resolved at energies at and above the brane
scale, phenomenological field-theoretic models describing physics below this scale are
equally valid for an underlying high energy field or string theory. The fundamental
theory is only resolved at and above this scale.

The first model making use of these features was introduced in 1998 by Arkani-
Hamed, Dvali and Dimopolous (the famous ADD model) [11]. In that setting, the
extra dimensions are flat and compactified to a torus. One non-flat, “warped”, compact
extra dimension was introduced by Randall and Sundrum in 1999 (RSI model) [12], and
shortly afterwards a version with an infinite extra dimension (RSII) [13] but, because of
the warp factor, a finite extra volume. Extra dimensions with infinite volume have also
been considered, starting with [14]. For other models, see for instance [15].

These models have many new, exciting physical consequences. One of the main
motivations for the setup outlined above is that it can provide a natural solution to the
hierarchy problem! [11]. This term refers to the large difference between the mass scale
of the standard model of particle physics, which lies around 115 GeV and is set by the
mass of the scalar Higgs field, and the scale of the unknown, fundamental theory which
seems to lie at the Planck mass. The Higgs mass receives large quantum corrections
which would increase it to the scale of the more fundamental theory expected to set in
at the Planck scale, cf. section 1.1. To keep it as low as, e.g., 115 GeV requires a large
amount of fine tuning of the bare parameters of the theory. One of the most prominent
attempts to solve this problem is supersymmetry.

The key observation for its resolution in models with large extra dimensions is that
gravity extending into dimensions forbidden to the other fields is diluted by the extra
volume available. Its true scale of coupling, denoted by the fundamental Planck mass
M; in d-dimensional bulk space, is related to the observed, effective four-dimensional

scale of gravitational coupling, given by the four-dimensional Planck mass M, ~ 10'°
GeV, in the ADD model, by [11]

(My)? = L% (My)42. (1.1)

L is the size of the flat, compact extra dimensions. This relation is obtained by compar-
ing the actions of four-dimensional gravity and the higher-dimensional one for distances
far larger than L, or, alternatively, the point mass potentials in the two cases for the

YUnnatural differences in scales within one physical theory are referred to as a hierarchy problem.
The article the is usually reserved to the one outlined in the main text. Other well-known issues of this
type compromise the large differences in fermionic masses or, the largest hierarchy yet observed, the
sixty orders of magnitude difference between the Planck mass and the cosmological constant.
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same limit. If L is significantly larger than M, (1.1) yields a large apparent hierarchy
for moderate d. With two flat extra dimensions, My can be as low as a few TeV for L
close to the experimental bounds. Hence, there is no large hierarchy between particle
physics and gravity: the typical scales of both can be brought to the same one or two
orders of magnitude around a TeV.

The arising issue of the freshly introduced hierarchy between L and My is addressed
in the Randall-Sundrum models [12], [13]. There, curvature of the single extra dimension
induces an exponential “warp factor” between My and Mjs. The large hierarchy between
them can hence result from a moderate exponent, avoiding the introduction of large
ratios.

As in four dimensions, the fundamental, high energy theory of gravity is expected to
become important at this “true” Planck scale, My. Accordingly, it may give rise to new
phenomena already at the TeV scale, which will be opened to experimental research
in the very near future. This exciting possibility has sparked off great phenomenolog-
ical interest into models of extra dimensions. Further theoretical developments have
increased interest even more.

For example, for energies approaching My, the fields localised on the brane start to
experience the extra dimensions. The gauge couplings accordingly change their run-
ning behaviour [16] and unification of the standard model gauge couplings is possible
near My [17]. Electroweak symmetry can be broken dynamically if the standard model
gauge fields and third-generation quarks propagate in TeV size extra dimensions [18].
The recently observed accelerated expansion of the Universe, usually attributed to a
cosmological constant of very small value, and hence causing the cosmological constant
(hierarchy) problem, can be explained in models of infinite-size extra dimensions as a
higher-dimensional effect [14].

The arising phenomenology of the proposed models includes astrophysical, cosmo-
logical, and accelerator-physics effects, see for example [15], [19], [6], [139]. Gravity
enters these phenomenological considerations as a classical field theory, since its quan-
tum theory is wanting, as discussed in section 1.1. Although string theory is a possible
candidate for it, the lack of a definite version containing the standard model prevents its
application to these phenomenological studies. Hence, field-theoretic calculations in this
setting are only trusted for relevant energies below M, [20], [136], [139]. High energy
corrections due to gravity are incalculable. But tree-level virtual graviton exchanges at
lower energies, too, necessitate the introduction of an ultraviolet regulator of the order
of My. Real graviton emission shows unbounded growth of cross sections with energy
[20].

It can be concluded that the introduction of models with large extra dimensions
and TeV-range Planck mass have greatly enhanced the phenomenological need for a
field-theoretic description of gravity that would be valid beyond the Planck scale.

However, it must be mentioned that the increased formation of black holes is expected
to dominate for centre-of-mass energies above My [4], [5]. This is widely considered as
a (perhaps even fundamental) veil, hiding the direct signs of trans-Planckian physics
[5]. Nevertheless, even if the high energetic manifestations of the fundamental theory of
spacetime remain hidden, their My effects should still be important.
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1.3 Perturbative Non-Renormalisability

The main obstacle for a field-theoretic formulation of quantum gravity is that gravity is
perturbatively not renormalisable. This means that at each order in perturbation theory
divergences with new analytic and tensorial structures arise. To remove these infinities,
new interactions and couplings have to be introduced at each order. Completing the
perturbative expansion yields an infinite number of interactions and coupling constants.
Since these constants have to be fixed by experiment, the theory looses predictive power.

The perturbative non-renormalisability of gravity had already been suspected by
Heisenberg (1939) from a power counting argument and the negativity of Newton'’s con-
stants mass dimension [21], [22]. The confirmation by explicit quantum field-theoretic
calculations was only possible after the covariant Feynman rules for gravity were found
by Feynman [23] and DeWitt [24] in the 1960’s. The one-loop diagrams of pure grav-
ity and gravity coupled to matter were calculated in the following decade by 't Hooft,
Veltman, Deser, Nieuwenhuizen and others [25], [26], [27], [28]. The divergences in pure
gravity could still be removed. In the presence of matter degrees of freedom, this is no
longer possible. However, pure gravity is also found to be non-renormalisable at the
two-loop level, see Goroff and Sagnotti (1985) [29], [30] and [31].

The long span of time between each of the above results bears witness to the tremen-
dous technical and conceptual effort involved to establish the validity of the initial sus-
picion. Hence, we will restrict ourselves to a short, heuristic power counting argument
[32] to further explicate gravity’s perturbative non-renormalisability.

For an interacting theory with coupling g, the maximal, superficial degree of di-
vergence of the n'® order perturbative contribution G% to the correlator of fields ¢(zx)
at N points z;, Gy := (¢(x1) ... ¢(zn)), can be determined by counting the power of
momenta to be integrated over in the corresponding expression. Since this result is
potentially divergent, the integrals have to be regularised. This is done by the common
upper momentum cutoff A. For an expression to be finite, the limit A — oo has to
be defined. The result of these standard textbook considerations [33], [34] is that the
maximal degree of divergence of the Fourier transform é’,{, of the N-point correlator is
given by

G ~ gt AN (1.2)

Here cy is a number independent of the order n: it depends only on the dimension d of
spacetime and the considered type of amplitude. In the simplest case of a scalar theory
it equals d — N(d — 2)/2. Generally, cy is positive only for a finite number of Gy’s; dg
is the mass dimension of the coupling, d, := [g], and its sign is of critical importance: if
d, is positive, the exponent cy — nd, will be negative for all orders n > max(cy, 0)/d,.
The cutoff can be removed in these cases without yielding any divergences, these G%, are
finite. Hence only a finite number of correlator functions (those for which ¢y > 0) will
receive a finite number of divergent contributions. The divergences of these correlators
can be absorbed by redefining — normalising — a finite number of couplings. Only these
couplings have to enter the theory as free parameters. Such theories are consequently
renormalisable.

For the case d; = 0 (e.g. QED, QCD), div- or convergence of (1.2) is independent of
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the order and depends solely on cy. Since it is positive for a finite number of amplitudes
only, their divergences can be absorbed into a finite number of couplings and these
theories are also perturbatively renormalisable.

The third possible case, d, < 0, is realised for gravity in any spacetime with more
than two dimensions, since the mass dimension of Newton’s constant is [Gy] = 2 — d.
Here, the exponent of the cutoff will grow monotonically with order n. Regardless of cy
it will become positive for sufficiently high n. Hence any correlator G will eventually
receive divergent contributions. This infinity of infinities would necessitate an equal
number of couplings to be renormalised in the limit A — oo, rendering the theory
meaningless in this limit. Any theory with couplings of negative mass dimensions, in
particular gravity, is considered as perturbatively not renormalisable.

A derivation of (1.2) alternative to the standard one is given in appendix 1.3. A
more detailed discussion of some subtleties arising for gravity are discussed, e.g., in
a pedagogical work by Deser [35]. The conclusion of gravity’s power counting non-
renormalisability is not affected by these modifications.

However, the simple power counting estimate neglects the symmetries of the theory
that generically lower the degree of divergence. Whereas for renormalisable theories it
guarantees the success of the full calculation, failure of perturbative renormalisability
does not necessarily follow from power counting non-renormalisability. A good example
for the impact of symmetries provides gravity itself: as mentioned above, general rel-
ativity without matter fields is found to be perturbatively renormalisable at one loop.
Only at two loops do divergent terms not absorbable by the original action appear. It
is, however, highly unlikely for a finite number of symmetries to take care of infinitely
many divergences. So even though they improve the situation at each order, it is very
probable that the power counting estimate will prevail in the end.

1.4 Asymptotic Safety

Even though gravity is perturbatively not renormalisable, it is still an excellent effec-
tive theory at energy scales far below the Planck mass, gravity’s “natural” scale. It
describes Nature exceptionally well at the large scales of the solar system, stars and
apples, down to the experimentally tested submillimetre range. Augmented with the
appropriate matter and energy contents of the Universe, it allows a consistent descrip-
tion of the entire cosmos. At these very large distances (with respect to the Planck
length), the higher-derivative interactions generated by local quantum effects are van-
ishingly small. Effective field theory [36], [37] techniques yield reliable predictions for
non-local quantum effects at these scales; see [38], [39], [40], [41] and references therein.
Such an understanding and treatment is believed to hold up to the scale set by Newton’s
constant, the Planck mass, Mpjana =~ 10'® GeV. Up to this energy Einstein’s equation
should describe gravitational interactions with very high precision.

The properties of a supposed “more fundamental” quantum theory of gravity are
hidden in the parameters of the effective theory, general relativity. It is only at energies
nearing the Planck scale that this fundamental theory can be experimentally resolved.

This way of reasoning reflects precisely the way science ascended the energy ladder
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of matter’s nature — from molecules to atoms to nuclei to nucleons to quarks to ...—
in the last one and a half centuries; however, even the first step is very much higher
for gravity than for matter?. In this sense, gravity is an extremely good effective field
theory [40].

Until experimental evidence pertaining to the next step is procured, no judgement
as to its nature can be made and all consistent possibilities can be, should be and are
investigated. One hope is that already the first step leads to the fundamental theory of
gravity, which holds true for arbitrarily high and ultimately infinite energies being truly
renormalisable.

Most candidates for such a UV completion of gravity, such as string theory, loop
quantum gravity, field theory on non-commutative spacetime, supergravity, composite
gravitons, etc., have in common that they alter some of the concepts of gravity as a
perturbatively treatable local quantum field theory of the metric (or equivalent) de-
grees of freedom. Locality, degrees of freedom of gravitational interaction, procedure
of quantisation or the nature of spacetime itself are often abandoned or modified. In
this thesis we follow a conceptually quite conservative scenario, originally proposed by
Weinberg in 1979 [42]. All of the underlying concepts used in the perturbative and ef-
fective description of gravity are kept unchanged. It is the perturbative treatment that
is generalised to a non-perturbative one. Before introducing the tool used to this end,
the exact renormalisation group, in section 2.1, and applying it to gravity in section
2.2, we give Weinberg’s [42] generalisation of perturbative renormalisability, asymptotic
safety. Having formulated such a notion is paramount to judging whether a possible UV
completion of gravity has been detected.

The first key observation [42] is that the running, energy dependent couplings of
consistent perturbatively renormalisable theories tend to zero in the UV-limit of asymp-
totically high energies. The energy dependence of the couplings is described by the
equations of the renormalisation group (RG) [43], [44]. Accordingly, this vanishing of
the couplings corresponds to the existence of a UV fized point (FP) of the RG equations
of the couplings, their 8-functions, at vanishing couplings. This behaviour is known as
asymptotic freedom, the theory becomes non-interacting, a.k.a. free, for asymptotically
high energies (renormalisation scales). The FP of such a free theory is called a trivial
or Gaussian oned.

The second key observation is that from the RG point of view, there exists no
conceptual difference between Gaussian and non-Gaussian FPs. A theory with such a
non-Gaussian UV FP remains well-defined to arbitrarily high energies. Its FP limit is a
candidate for its UV completion. If the FP is furthermore attractive for a finite number
of (linear combinations of) couplings in the UV, only a finite number of free parameters
remain. The theory can than be considered renormalisable in the general sense; it is
called asymptotically safe [42].

The non-perturbative renormalisability of perturbatively non-renormalisable quan-
tum field theories has been shown for several examples where non-Gaussian UV FPs

2This discrepancy in scales can be seen as one of the manifestations of the hierarchy problem.
3For vanishing couplings, the action is only quadratic in the degrees of freedom. The corresponding
path integral is hence Gaussian.
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according to asymptotic safety were discovered. The asymptotic safety scenario was
applied to gravity in 2 4+ € dimensions in the same work where it was introduced [42].
This allows — via dimensional continuation — to use perturbative calculations near two
dimensions. A non-Gaussian UV FP 4 complying with asymptotic safety is discovered.

Also in 2 + € dimensions, the non-linear o-model was shown to be renormalisable by
Brezin and Zinn-Justin [45]. It was found to possess a non-Gaussian FP, in accordance
with asymptotic safety. In addition to small-¢ expansion, Wilsonian RG methods were
employed.

A third example is provided by the Gross—Neveu model [46]. Its non-perturbative
renormalisability in 2 + € spacetime dimensions is demonstrated in [47] and in 2+ 1 in
[48]. Again, Wilsonian RG methods lead to the detection of a non-Gaussian FP.

In all four instances a small parameter was available, allowing for analytic treatment
different from perturbation theory in the coupling. The importance of Wilsonian RG
techniques for the detection of the FP became apparent in the last three applications.

The rest of this section is dedicated to illustrating the asymptotic safety scenario with
Weinberg’s original derivation. This gives us the opportunity to introduce the concept
of the stability matrix and fix some notation. We will also convince ourselves that
the asymptotic safety scenario indeed allows us to extend the scientific method — to
yield falsifiable predictions for future experiments from past measurements — into the
non-perturbative regime.

Considering some effective field theory, one assumes to know the infinitely many RG
G;-functions describing the renormalisation scale p dependence of the infinitely many
couplings G;. Since the renormalisability of the theory has yet to be established, an
effective field-theoretic description containing all local operators constructable from the
given fields and consistent with demanded symmetries must be the starting point. The
coefficients of these operators are the couplings G;, which carry appropriate mass di-
mension d;. Let us introduce the corresponding dimensionless couplings and 8-functions
by separating out this momentum scale:

gi(p) = p%Gi(p) , Bilg(w) = pdug(p) = (=di+p8,)Gi(p).  (1.3)

The FPs of this system of equations are found by solving the (infinite) system of FP
equations, i.e. demanding the simultaneous vanishing of the (-functions of the dimen-
sionless couplings at the FP values g;:

Big) = 0 Vi. (1.4)

At a FP, the dimensionless coupling constants are scale-independent. This allows well
defined calculations even in the limit g — o0, i.e. to take the UV limit of the theory.
Why do we search for a FP of the dimensionless couplings and not of the original,
dimensionful ones? Ultimately we want to take the limit of infinitely high momenta
or infinitely small wavelengths. In a local theory, all other scales become irrelevant in
this limit. Hence p remains the only dimensionful quantity in the theory in its so-called

4With Newton’s constant at the fixed point GKE, .. ~ € being perturbative in dimension.
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scaling regime®: all quantities have an energy dependence determined by their mass
dimension. Thus it must be the dimensionless couplings, that attain a fixed value, and
not the dimensionful ones, which behave like G*(u) = u% gi in the scaling FP regime.

Having identified one (or more) FP we ask for its relevance to couplings at finite
scales, off their FP values. Since they are scale-dependent, they may approach the FP
for a certain set of initial values. If this is the case, these RG trajectories in coupling
space connect couplings at low, IR scales to well-defined UV values in the FP. Each such
trajectory corresponds to a theory with a well-defined and predictive UV limit. Such
theories are renormalisable in the general sense.

To determine the set of initial conditions of trajectories attracted to the FP, we must
investigate the stability properties of the 8-function system around it. In perturbative
theories with one coupling (e.g. QED, QCD), this is determined by the sign of 93/0g
evaluated at the FP. A negative sign implies that the coupling is attracted toward its
FP value for increasing u, the FP is UV-attractive. This is the case in QCD whereas the
positive sign in QED indicates a UV-repulsive but IR attractive-FP. Only the Gaussian
UV-attractive FP of QCD guarantees the consistent perturbative renormalisability of
the theory.

In case of more than one coupling, the corresponding quantity to be studied is the
stability matriz at the FP:

9 B;

T
The minus sign is convention. In terms of the stability matrix, in the neighbourhood of
the FP the couplings behave to first order as

10,9 (1) = Z%(gi —gl). (1.6)

0 = (1.5)

gt

These linearised equations have the general solutions
g =g+ Vi, (1.7)
n
where V™ and 6, are the eigenvectors and eigenvalues of §;;,

> 65V =0,V". (1.8)

J

The C,, are constants of integration to be fixed, ultimately, by experiment. If the theory
is to have predictive power, the number of these constants must be finite. This reduction
of the constants of integration of an infinite system of linear differential equations to
a finite number is effected by imposing auto-consistency of the solutions in the UV
limit of p: if we demand lim, o, ¢*(1) = g:, the constants C, corresponding to negative

S5Locality of the theory is essential for this to hold. In fundamentally non-local theories such as
field theories on non-commutative spacetime, this argument fails and UV-IR mixing phenomena occur.
Since our aim is to formulate a local quantum field theory of gravity, we are are safe from this per
telum.
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eigenvalues 6, < 0 have to vanish identically. For all non-zero values, the couplings would
otherwise diverge instead of approaching their FP values. Only the C,’s corresponding
to non-negative 6,’s have to be fixed by hand (experiment). If the number of such
eigenvalues is finite, a finite number of experiments suffices to completely define the
theory. This is the non-perturbative version of renormalisability introduced by Weinberg
as asymptotic safety. It is assumed to hold for the rest of the discussion.

The eigenvectors V;* of positive stability matrix eigenvalues 6,,, together with the F'P,
define a hyperplane in the infinite-dimensional “theory space” spanned by all allowed
operators. The dimension of this UV-critical surface is equal to the number D of such
#, > 0. The linearised solutions of the RG trajectories (1.7) hold only infinitesimally
close to the FP. However, the dimension of the hypersurface spanned by those trajecto-
ries, which asymptotically approach the FP, is necessarily equal to D, that of its tangent
plane through the FP.

Asymptotic safety can be restated as the existence of a finite-dimensional UV-critical
surface (which implies the existence of a FP defining this surface) in a given theory space.
All trajectories on this surface correspond to non-perturbatively renormalisable theories,
in a theory space defined in turn by its degrees of freedom and the imposed symmetries.

Note that the above argument can also be applied with reversed signs to the IR limit
u — 0 of the theory, identifying a stable IR FP of the theory, which allows an analysis
of the phase transitions of the full quantum effective action. This will not be further
discussed in the present work.

Let us briefly restate an argument of Weinberg [42] showing how perturbative power-
counting renormalisability is contained in the framework of the general FP analysis.
The B-functions and the stability matrix have the general form

B; = —dig'(u)+ quantum corrections (1.9)
9;; = d;d;; + quantum corrections. (1.10)

In perturbation theory the quantum corrections of (1.10) are just the loop contributions.
For perturbation theory to hold, they must be bounded and small with respect to the
first term. At a perturbative, i.e. Gaussian, FP, all couplings vanish simultaneously.
Hence the loop contributions, which are polynomials in the couplings, vanish too. The
eigenvectors of §;; = d, d;; are orthonormal and parallel to the axes of the couplings. Sta-
bility is solely governed by the mass dimension of the couplings: for d; > 0 the direction
is UV-stable and the corresponding coupling requires fixing by experiment whereas, for
d; < 0, the unstable coupling is forced to its Gaussian FP value zero. These are precisely
the perturbatively relevant and irrelevant couplings. In a perturbatively renormalisable
theory lying on the UV-critical surface, only couplings relevant and marginal at the FP
can occur 5.

From (1.10) one can also construct a heuristic argument for the finiteness of the di-
mensions of the UV-critical surface of theories endowed with a non-Gaussian FP, again

8For marginal couplings d; = 0, stability is purely quantum governed and requires treatment be-
yond linear order. Since our application, quantum gravity, contains only perturbatively relevant and
irrelevant couplings, we omit the discussion that this important case deserves.
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following Weinberg. In this case the quantum corrections in (1.10) do not vanish. For
local theories, d; < d, but not bounded from below. For asymptotic safety to fail, an
infinite number of stability matrix eigenvalues must be positive. This would require the
quantum corrections to infinitely many 6;;’s to cancel d;, which decreases unboundedly,
ultimately diverging. One would have to imagine a quite pathological theory for this to
happen. Hence the UV-critical surface is generically expected to have a finite number
of dimensions. Given the existence of a FP, asymptotic safety can be viewed rather as
the rule than the exception.

An important notion is that of universal quantities. These quantities are independent
of the regularisaion used, i.e. the way p is defined. An important example for such a
universal quantity is that of the eigenvalues of the stability matrix, 8,. The §;, and
accordingly their FP solutions g% and the stability matrix 6;;, depend on the definition
of . The eigenvalues, however, are independent of transformations of the couplings and
hence changes of the flow. This follows straightforwardly from the definition of 6;; and
the properties of the determinant.

1.5 Outline of the Thesis

The main aim of this thesis is to demonstrate that evidence for gravity’s non-perturbative
renormalisability, discussed previously in four dimensions, can be procured in higher
dimensions too. This property is crucial with a view to a reliable description of gravity
at energies above the Planck mass.

Some motivation for the field-theoretic formulation of quantum gravity in higher
dimensions was provided in sections 1.1 and 1.2. In section 1.3 the main obstacle for a
quantum field formulation of gravity, perturbative non-renormalisability, is illustrated
by a short power-counting argument. The notion of non-perturbative renormalisability
is introduced as asymptotic safety a la Weinberg, see section 1.4. It requires the existence
of fixed points of the renormalisation group.

The renormalisation group formulation of gravity used throughout this thesis is pro-
vided by the ezact renormalisation group (ERG). The formulation of an ERG description
of quantum gravity is the main topic of chapter 2. After describing ERG in section 2.1
and defining a cutoff optimisation procedure in section 2.1.1, we repeat the original
application of the ERG to Einstein—Hilbert gravity in section 2.2. Fixed points, indicat-
ing asymptotic freedom, detected so far in this framework are discussed in section 2.3.
The phenomenological, cosmological implications of these previous results are listed in
section 2.4.

Our own results are given in chapters 3, 4 and 5. In chapter 3, the cutoff dependence
of fixed points is studied in dimensions 4 to 10. Previous extra-dimensional FP results
suffered from a large dependence on the implementation of the cutoff. We demonstrate
how these spurious dependences can be removed by our cutoff optimisation scheme in
section 3.1 and show that the physical results obtained in this way are maximally reliable
in section 3.2. These conclusions are further confirmed by comparing different types of
cutoff, see section 3.3.
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In chapter 4 we demonstrate that the spurious dependence on the gauge fixing pa-
rameter present in the approximation we used only has a quantitative impact and is
further reduced by cutoff optimisation. After repeating the FP analysis for now gen-
eral gauge fixing in section 4.1, the gauge dependence of universal quantities is studied
in section 4.3. The large gauge dependence of the dimensionless combinations of cou-
plings for large values of the gauge-fixing parameter is noted, explained, discussed and
interpreted as an indication for a possibly profitable extension of the approximation.
The good independence of the type of cutoff used is presented in section 4.4; it further
strengthens our confidence in the reliability of the obtained results in higher dimensions.

During the analysis of the previous two chapters, one specific cutoff has proved max-
imally reliable in a consistent fashion. This cutoff furthermore allows analytic studies of
the system of equations. In chapter 5 these advantageous properties are used to present
a detailed analysis of the entire four-dimensional phase space. This is preluded by an
analytic study of fixed points in arbitrary dimensions and gauge fixings in section 5.2,
supplementing the numerical findings presented in the previous parts of this thesis. The
explicit numerical solution and analytical discussion of the entire phase space is per-
formed in section 5.3 for one choice of gauge fixing and in section 5.4 for another. A
similar study has been done previously, and we compare its results with our own findings
in section 5.5.

Chapter 6 contains the summary of our results together with indications of their
implications. Furthermore, possible directions for future research are mentioned.

Appendix A gives a more detailed version of the power-counting argument presented
in section 1.3. There, we give a derivation of the superficial degree of divergence alter-
native to the textbook variant. To the best of our knowledge, this argument has not
been presented anywhere else. Appendix B lists the classes of cutoff functions used in
this work. In appendix C the lengthy general flow equations of Einstein—Hilbert ERG
gravity are given.



Chapter 2

Non-perturbative Quantum Gravity

2.1 Exact Renormalisation Group

The instances for asymptotic safety mentioned in section 1.4 already indicated that
Wilsonian RG methods are well suited for the study of theories with non-trivial UV
structure. In the Wilsonian RG [49], [50], [51], [52], the quantum fluctuations of field
modes with euclidean momenta belonging to successive momentum-shells are included
into the coupling constants of a theory. This coarse-graining procedure generates a
Wilsonian flow of the action. The renormalisation scale is given by the euclidean
momentum-radius of the shells.

One formulation of this method particularly apt for non-perturbative applications
[53] is the ezact renormalisation group (ERG). ERG was obtained by Wetterich by
coarse-graining an effective average action [54] as a continuous analog of the discrete
Kadanoff block-spin transformation [55]. It generates an exact flow for the action which
interpolates between an initial, bare action and the full quantum action, which contains
all quantum effects induced by the fluctuations of the degrees of freedom of the theory
at hand. The ERG flow equation can be obtained from the path integral (PI) by
successively integrating out the momentum-modes of the degrees of freedom [56]. This
is effected by introducing a cutoff-term quadratic in the fields into the PI, which acts
as an IR regulator. A comparison of ERG and other Wilsonian RGs, among them
Polchinski’s RG [57], can be found in [58] and [53].

Let us briefly repeat the PI derivation of the ERG flow equation [56] for the simplest
case, a one component, real scalar field ¢. The starting point is some bare microscopic
action Ty, which describes physics at the high energy (small distance) scale A. For
a renormalisable theory one can remove the UV cutoff A — oo and identify the bare
action with the classical one, lima_o I'aA = Sq. Otherwise, 'y can be a microscopic
effective action, given by a local operator expansion with dimensionful coefficients of the
appropriate order of A. It contains all quantum fluctuations from unspecified physics
above A, but those from lower momenta have not yet been included.

ERG describes how to obtain an effective action I'y at finite renormalisation scale
0 <k <A from I'y. For 'y to describe an effective field theory at scale &, all quantum
effects from energies between k& and A have to be included into it. In the PI, this
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corresponds to integrating out all momentum modes of the fields with momenta between
these two scales, whereas those with momenta lower than k& remain unintegrated as
the effective degrees of freedom. This separation of the degrees of freedom into high-
momentum ones to be integrated out and unintegrated low-momentum ones is effected
by adding a term quadratic in the fields to I'y in the (euclidean) PI:

Ca— TatASe, ASci= [ 8- R0, 21)

The momentum cutoff function Ry(gq?) > O serves as an IR cutoff at the scale k. It is
large for ¢> < k? and small for ¢? > k2. More precisely, we impose

Jlm Ru(g) ~ e 0, (2:2)
qz}}chOR,c(q% > 0. (2.3)

The UV cutoff A of the bare action can be included into R by further demanding

lim Ry (¢®) — co. (2.4)
k—A
This allows to formally extend the path integral integration to modes of infinitely high
momenta, since ASy, will reduce the contribution of all modes above A to zero by virtue
of (2.4). In the case of renormalisable theories, condition (2.4) can be implemented
implicitly by Ry(¢?> < k?) ~ k?. Since A is removed in that case, it does not enter
explicitly. This is the case for the topic of this thesis and hence A does not appear in
the perused cutoff functions, cf. appendix B.
The PI of the effective action with the cutoff term and the usual source term j - ¢ =
[ dPqj(—q)¢(q) defines the generating functional Z[j] with a finite IR-cutoff:

Zilj] = / D e Tr-A5k+5¢ (2.5)

From (2.2) it follows that the high momentum modes contribute unsuppressed to the PI,
whereas (2.3) leads to a damping for the low momentum ones with exp(—ASy). Hence,
in Zj, the quantum fluctuations with momenta above k are integrated out, while those
with lower momenta do not contribute, implementing the Wilsonian RG concept.

(2.2) implies limy_,o Zy = Z, the full generating functional containing all quantum
effects. The logarithm of Zj, is the (cutoff) generating functional of the connected Green
functions, W [j]. The effective expectation values @:(q) of the fields are obtained by
varying Wk|[j] after the source

Bu(@) = ($(@) fg’(q[;] , (2.6)
and the (cutoff) two-point function G(q,q’) is given by
Culad) = <UL _ (4 )a(a)) = Bul@)Beld) (2.7)

~ 05(q) 04(q)
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The high momentum modes of @;(q) are essentially identical to the usual mean fields
obtained from the full generating functional Z, whereas the low momentum modes
remain quantum, ¢x(q < k) ~ ¢(q < k).

The (cutoff) generating functional of the one-point-irreducible Green functions I [Bx]
is defined as the Legendre transform of W, with respect to the sources:

Telor] == —Wilj] +7 - o (2.8)

Varying I, twice after the effective fields, multiplying it with (2.7) and using (2.6) yields
the cutoff version of a well-known identify, where §%(z) is the d-dimensional Dirac-delta
62T

functional:
d%q Gi(q,q') — -
] 4 6 ) 50d) 300

After these adaptations of usual definitions to the case with the cutoff, the actual deriva-
tion of the ERG flow equation is straightforward. Let us take the derivative of I'y with
respect to the IR-cutoff k£ for fixed ¢, and trace the k-dependence back to its source

Ri(q®):

=68"(a+4"). (2.9)

(%Fk = —%Wk[j] —3 In Z[j) = Z;;! / D¢ ((%AS,C) e TA85k=T¢
§k<Ask> = (5 [ Pao(-000) g Rl
= 5 [ ®a[6u(-0,0+ Bu(-050)) 5 Fula?). (2.10)
Defining the effective (average) action I'y[@y] as
Lufde] = Teldu) - 5 [ dadl-0B @R, e.11)
and using (2.9) we finally arrive at the ERG equation
-(%Fk - %’H (r?+ Re) - (%Rk . (2.12)

F,(Cz) is the second derivative of the effective action with respect to the fields. The inverse

of the full cutoff propagator, F(z) + Ry, has to be understood through (2.9). In the case
of a one component real scalar field the Trace stands for equating the two momentum
arguments in I'® and integrating over the remaining one, [ d%.

Before turning to generalisations to other fields, we discuss the universal structural
properties of (2.12). It is a one-loop equation for the full non-perturbative propagator
and differential in the cutoff k. Integrating (2.12) with respect to k corresponds to
re-summing the complete loop expansion in the perturbative calculation. By expanding
the denominator in the couplings, one re-obtains perturbation theory [59], [60]. The
nominator renders it local in momenta: due to the properties (2.2) and (2.3) the deriva-
tive O, Ry vanishes for momenta much lower and higher than the cutoff scale k. It acts
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as a kind of smeared-out delta-function. Hence it is necessarily UV-finite, the UV cutoft
A does not enter (2.12) explicitly. As long as k > 0, it remains also IR-finite even for
gap-less theories. Since (2.12) is differential in the cutoff, it can be used to go to higher
as well as lower k. It allows to integrate modes “in” and “out”. (2.12) is an exact equa-
tion, no approximations have entered so far. It generates an ezact flow for the effective
action I'y. This means that the limits £ — 0 and £k — A yield the full effective quantum
and the bare action, respectively:

}:l_'n’é Fk =T y lll—rf/l\ Fk = FA . (213)

That the present scheme fulfils these requirements follows from the properties of the
momentum cutoff function, (2.2) and (2.4). (2.2) implies that AS}, vanishes in the limit
k — 0. All definitions and calculations turn to usual ones without a IR-cutoff and one
obtains the definition of the full effective quantum action I'. On the other hand, (2.4)
makes the classical saddle point approximation of the PI exact in the limit £ — A. This
yields the validity of the second limit (2.13) for ERG.

ERG flows connect the bare action continuously to the full quantum action [60]. This
mapping is independent of the implementation of Ry(g?), which has not been specified
further than by (2.2)—(2.4). For different functions Ry, R}, however, the effective actions
at any intermediate scale 0 < k < A can, and generally will, differ. For different
cutoffs, the trajectories of actions through theory space differ, only their endpoints
must coincide.

The properties of ERG discussed in the previous paragraphs hold independently of
the field content. Its concrete implementation for fields other than the exemplary one
scalar field above requires, however, appropriate adaptations in the application of (2.12).

For more than one degree of freedom — different field types, internal indices, spinor-
or vector components ~ the formal inverse, product and Trace in (2.12) include the
appropriate matrix operations [56]. The cutoff function has to be an appropriate tensor
so that ASy is again scalar with respect to external and internal indices [61]. The
application to gauge theories requires some extra care. It is discussed in section 2.1.2.

ERG has been applied to a wide range of problems. Questions in scalar and fermionic
models [62], [63], [64], [65], [66], [67], spontaneous symmetry breaking [69], [70], [68],
[71], [72], the standard model (or parts or extensions of it) [73] , [75], [74] and thermal
field theory [76], [77] have already been investigated with ERG. Its non-perturbative
nature makes it especially attractive for the study of low-energy QCD and the problem
of confinement, (78], [79]. Due to the intricate relation of statistical physics to quantum
field theory in the Wilsonian RG, ERG has also been employable in this field, cf. the
reviews [80] and [81] and references therein. This short list of references is by no means
comprehensive and only intends to illustrate the versatility of ERG.

2.1.1 Truncation and optimisation

So far no approximations have been made. For any concrete application, however, it
will be inevitable to introduce some approximation scheme. As mentioned above, a
perturbative expansion in the couplings reproduces perturbation theory and the usual
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termination at finite order in the couplings constitutes a perturbative approximation.
The non-perturbative properties of (2.12) are of course lost in this way. Different schemes
are the local potential (in powers of the fields) and derivative (in powers of momenta)
expansions of the effective action [82], [80]. An approximation scheme retaining non-
perturbativity is given by truncation of the effective action: only a finite number of
operators is retained. In terms of theory space, only a finite dimensional subspace
is considered. In general, the trajectories resulting from flows of truncated actions
differ from the projections of the trajectories of the same, full flows onto the truncation
subspace. A good truncation is clearly one for which this deviation is small. Especially
the (projections of the) physical endpoints of the trajectories, the full quantum theory
in the IR and the bare action in the UV, must be correctly reproduced by the truncated
flow if it should constitute a good approximation.

How can one know whether a truncation reliably resembles the full theory? One
method is to include more and operators into the truncation and study the influence of
this extension on the solutions. If at a certain step no relevant modification occurs, one
can terminate the process with some confidence in the results. The method which will be
employed in this work is to study the stability of the flow [83], [84], [85], [86], [87] under
variations of the implementation and type of the cutoff employed. Since the universal
features and quantities of the full theory must be independent of the cutoff, their low
cutoff dependence in some truncation can be interpreted as a sign for its reliability and
physical relevance. The artificial cutoff dependence is caused by having left out relevant
terms in the truncation. It can hence be interpreted as a measure for the reliability of
a given truncation.

This argument can be turned around and used to improve the reliability of a trun-
cation. By minimising the cutoftf dependence, the influence of the left-out terms is
simultaneously reduced, yielding a more stable flow. If the truncated flow is meant to
reproduce the dominant features of the exact theory, its finitely many terms must be
the ones which govern the flow. Respectively, the infinitely many truncated operators
must be sub-dominant. The relative importance of the retained and of the truncated
terms on the flow depends on the cutoff. Hence, the extremum of this dependence is
also one of this partitioning of influence. Assuring that it is a maximum, one has de-
tected the most stable flow for a given truncation. It yields physical quantities with
minimal artificial cutoff dependence. The practical working of these considerations has
been demonstrated already in a variety of cases [82], [85], [88], [89].

Let us illustrate the philosophy of optimisation briefly with an experimental analog.
The full, untruncated action would correspond to the physical system to be studied.
Truncation corresponds to the finite choice of quantities to be measured, and the cutoff
function Ry to the experimental means taken to measure them. Optimisation in this
picture means to design the best measurement processes yielding maximal signal from
the desired quantities. For an optical experiment, for example, this would mean to
adapt the slit or grid spacing to the wavelength one is interested in with the required
accuracy, simultaneously maximising the detected amplitude. This is precisely what
tuning R, achieves: a sharper cutoff function picks up a smaller band of momenta with
“higher resolution” and accordingly “lower amplitude”, while a smoother one achieves
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the contrary. To find the optimal compromise for a set of given operators is the aim of
cutoff optimisation. But even the best measurement does not further the understanding
of a physical system if a quantity sub-relevant to that system has been measured. The
correct choice of truncation still requires a “guess”, educated by available data, previous
understanding and physical intuition.

How can these considerations be implemented quantitatively in truncated exact
flows? The main ingredient of the non-perturbative flow equation (2.12) is the full,
non-perturbative propagator with IR cutoff. Its scalar part is of the general form

k—-2
Tt 2re(2) +w(z, @)’

Gi(2, ¢) (2.14)

where w depends generally on both the fields and the (generalised) momenta! ¢ = z k2.
The dimensionless cutoff function r,(2) is related to the previously introduced one in by
Ri(2) =: k? zri(2). Within a certain truncation only a part wg of w = wq + dw is taken
into account, whereas the truncated-away part dw contains all the neglected terms.

Since the topic of this work is the study of the Einstein—Hilbert truncation of quan-
tum gravity, cf. section 2.2, it will be used presently as a concrete example in the
following. This allows to fix of some notation to be used later. In the Einstein—Hilbert
truncation with cutoffs of type A (see section 2.2.4 and appendix C.1), wy is given by
—2), where ) is the dimensionless cosmological constant, a real number. We will restrict
our notation from hereon to this example, the generalisation to general w is obvious and
straightforward.

In [84] a leading order (LO) cutoff optimisation procedure yielding (LO) maximal
stability of the flow was introduced. This procedure is independent of the concrete
theory, w does not enter. It consists in maximising the minimal value of the cutoff
propagator z(1+ 7). Its contribution to the flow is maximal around its minimum which
we define as

1
Abound = 7 Wi z (1+7(2)). (2.15)

Although this definition holds independently of the actual theory, we have chosen the
notation on the Lh.s. to fit the case at hand. Identifying an optimal cutoff means to
maximise Apound:

m?X )\bound . (216)

This criterion reduces the space of admissible cutoffs by one dimension. In practice
one uses families of cutoff functions, which are parametrised by one parameter, and
identifies their optimal member with (2.16). There is still a plenitude of such optimal
cutoffs for which cutoff optimisation provides no further selection criterion. Furthermore,
(2.16) makes sense only for sets of normalised cutoff functions. The most common
normalisation is (1) = 1. The cutoffs used in this work are normalised in this way,
except where especially mentioned. More details and applications of LO optimisation
can be found in the original literature [84].

!The widely used local potential approximation neglects the z-dependence of w.
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In this work we introduce a next-to-leading-order (NLO) optimisation criterion tak-
ing into account the content of the truncation. For the case studied throughout this
work wo = —2 A, and to identify the NLO optimal cutoff one searches for maximal

max (/\bound - /\) . (217)

This corresponds to maximising the “mass gap” in the truncated propagator for fixed
value of A\. The outcome of this procedure depends on the value of A. In the rest of this
work we will investigate UV FPs, the value of interest is the FP solution A,. Due to
truncation it depends itself artificially on the cutoff. This cutoff dependence enters the
NLO procedure.

The numerical values of the dimensionless couplings can be altered arbitrarily by
rescaling the auxiliary renormalisation scale k. This can in turn be absorbed into a
redefinition of the cutoff function. It is hence preferable to consider a quantity invariant
under such rescalings. As a third optimisation procedure we propose the maximisation
of the normalised next-to-leading-order (NNLO) gap

A
/\bound

max £, &=1- . (2.18)
To abbreviate the notation, we introduce £ for further extensive use. For NNLO optimi-
sation, the normalisation of the cutoff is not required. This has the practical advantage
that one-parameter families of cutoff functions can be compared directly without prior
rescalings to a common normalisation. The value of £ at its maximum, &,,, can be in-
terpreted as a semi-quantitative measure for the maximal NNLO stability of a solution
and hence its “reliability”.

In chapter 3 and 4 we apply all three optimisation procedures in the Einstein-Hilbert
truncation and compare their results. All three criteria yield quantitatively well agreeing
results, although differences grow with space-time dimension. This can be expected from
the perturbative consideration that increasing the dimension also increases the number
of perturbatively relevant (whose mass dimension is lower than the dimension of space-
time) and marginal (whose mass dimension is equal to the dimension of space-time)
operators which have been omitted and the truncation becomes less and less reliable.
Nevertheless all three procedures continue to stabilise the universal properties of the
flow for all investigated numbers of space-time dimensions.

In [86] the cutoff function

PP (z) = G _ 1) o(1 - 2) (2.19)
was introduced. It is a LO optimised cutoff [84]. Indeed it is an optimal cutoff for all
arguments z < 1 simultaneously, since the cutoff propagator 2(1 + r) = ©(1 — 2) is
independent of z < 1. The cutoff (2.19) is thus called the optimised cutoff. It has many
advantageous features discussed and employed in [86], [85], [82], [88] [87], among which
the increased stability of its flows will be underlined by the results of chapters 3 and
4. Hence it is employed in chapter 5 to study the entire flow over all of phase space.
The analytic simplicity of (2.19) plays a pivotal role for the systematic study presented
there.
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2.1.2 Gauge theories and background field method

The application of ERG to local gauge theories requires extra care. The key issue is to
preserve gauge invariance in the presence of the momentum cutoff.

Gauge invariance of the full effective action ['[A] of some gauge field A (all indices
are suppressed in this section) is controlled by the respective Ward identities, see for
instance [37]. In turn, the effective action I';[A] for finite k has to fulfil modified Ward
identities [90], [91]. They contain a contribution from the cutoff term, which vanishes
for k — 0, restoring the original Ward identities for the full effective action. The flow
equation for gauge theories [92] commutes with the modified Ward identities: if they
are fulfilled by the original, bare action I's[A], they are also fulfilled for all & [90], [91],
guaranteeing the validity of the normal Ward identities for the full effective action. Note
that T'x[A], which obeys the modified Ward identities, may contain gauge-non-invariant
terms for £ > 0 and must revert to physical gauge invariance only for £ = 0. Control
over these terms is also possible in practical applications, i.e. approximation schemes,
see, e.g.,[93], [94]. Nevertheless, physical gauge invariance throughout the flow would
be of great conceptual and practical value. One possibility to ensure the validity of the
normal Ward identities is provided in the background field approach [91], [95)].

In the background field formalism [96], the quantum field A is split into a fixed
background field A and dynamical degrees of freedom a. Only the latter are integrated
over in the PI. Accordingly, also the effective, classical, mean fields decompose as A =
A + @, where @ is the expectation value of a in the presence of the background field.
The gauge transformation acts on a only. It encodes the physics of gauge invariance
for the quantum effects of the theory. To fix this gauge freedom, a gauge condition,
conveniently linear in a but depending on A through background covariant derivatives
[95], is used. Ghosts are introduced with respect to this gauge fixing. The sources couple
to a (and the ghosts) only.

The key point of the background field formalism is that the background depen-
dent, full effective action ['[A, A] is invariant under a simultaneous background gauge
transformation of A and a homogeneous, tensorial transformation of @ [96] (some issues
concerning the gauge invariance of the S-matrix have been discussed in [97]). By identi-
fying the effective field A with the background field A, i.e. @ = 0, the original, physical
gauge invariance is recovered from this & priori auxiliary transformation. Hence, gauge
invariance is guaranteed for the usual full effective action [[A] := ['[A, A = A] too, if
I'[A, A] fulfils the Ward identities for the physical gauge transformations of the quantum
fields.

This property can be extended to hold for I';[4, A] in the ERG approach: by using
appropriate cutoff functions for a and the ghosts, which are quadratic in the dynamical
fields and contain A through background covariant derivatives serving as discriminators
between low- and high-momentum modes, the cutoff-terms can be made invariant under
the background field transformation of all fields. Hence, ['y[A, A] is also invariant under
this background transformation. This is of great practical value since truncations can
be restricted to terms according with this invariance. For the above to hold, T[4, A]
must obey the modified Ward identities for the physical gauge transformations of the
quantum fields [93], [98].
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A second set of background Ward identities can be generated by considering an
auxiliary background gauge transformation acting only on A [95]. The cutoff functions
lead to a contribution to these background Ward identities equal in size to that to the
physical ones, but with opposite sign. Hence, the combined action of the two gauge
transformations on I';[A4, A] leads to homogeneous identities without explicit cutoff-
terms. These identities also commute with the flow [95]. As a consequence, ['x[A] :=
T'k[A, A] is invariant under the physical gauge transformation and fulfils the usual Ward
identities. Physical gauge invariance can thus be recovered for finite k. That of I" follows
explicitly [99].

However, the flow is only exact for ['y[A, A]: identifying the fields A = A in the flow
leads to extra contributions on the r.h.s. of the flow equation, since the full propagator
is obtained by deriving I'x[A, A] twice with respect to A, not A. To remain exact, the
full background dependence has to be tracked throughout the flow [100]. Cf. [97] for a
related issue in the perturbative approach.

2.2 Einstein—Hilbert Quantum Gravity

ERG was made accessible to euclidean quantum gravity in 1996 by Reuter, [101]. In
the present section we repeat the essential steps of the derivation of the flow equations
for the Einstein—Hilbert truncation, albeit in shortened form. The original calculations
were performed in harmonic gauge. In [102], [103] they were extended to general gauge
fixings.

The non-perturbative nature of ERG and the presence of the IR cutoff are welcome
features when treating gravity. Use of background field methods allows for an effective
action invariant under general coordinate transformations. We restrict ourselves to the
Einstein—Hilbert truncation, which contains the two invariant operators corresponding
to Newton’s constant and the cosmological constant. This choice is motivated both from
the experimental situation as well as from the theoretical consideration that they are
the invariant operators of lowest mass-dimension. To extract the 8-functions for these
two couplings, a weak-curvature projection of the flow is employed.

The major steps in finding the flow equations of Einstein—Hilbert gravity for har-
monic gauge are summarised in sections 2.2.1 to 2.2.4, following [101] closely. The
general gauge case is shortly discussed in section 2.2.5, repeating the achievements of
[103].

In this work, the results of [101] are used throughout chapter 3, those of [103] in
chapters 4 and 5.

2.2.1 Background field gauge fixing

Background field methods are employed for the ERG formulation of quantum gravity.
They guarantee the physical gauge invariance of the full effective action, restraining
the choice of truncation to invariant operators. Furthermore, they allow for the simple
implementation of the cutoff term and convenient structure of the cutoff functions, cf.
section 2.1.2.
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The full metric v, is split into a fixed, unphysical, auxiliary background metric gy,
and the quantum fluctuations h,,

Y = Guv + h;w . (220)

Indices are lowered and raised by the background metric from now on. Barred quantities
are defined with respect to the background metric. In analogy to (2.5), the cutoff
generating functional of the connected Green functions is

exp (W[t o, 3%; Gu]) :=
/’Dh,“,’DC“DC_'“exp( — S[g + h] — Sgtlh; ) — Sanlh, C, C; g] — ASk[h, C, C; g
— Ssource[h, C, Cst,0,5:3]) . (2.21)

The various terms and arguments are explained in the following.

The classical action S depends on the full metric 7y, only. It will be kept general until
section 2.2.2. In accordance with the principle of general relativity, S must be invariant
under local coordinate transformations. Hence the Lie derivatives of the full metric with
respect to some vector field v* can be interpreted as the local gauge transformations
leaving the classical action invariant:

0w = Lo Yuw = V0 Yo + OV’ Yo + 00 Yy, - (2.22)

In the background field formalism, see, e.g., [92], [91] and section 2.1.2, the physical
gauge transformation acts on the quantum fields h,,, leaving the background metric

unchanged:
60w =0 , Shu =LV, (2.23)

It carries the physical information on the local symmetries of the theory. This gauge
freedom is fixed by S, (augmented by Sgn). Under the background gauge transforma-
tion, all tensors, including the background metric, transform under general coordinate
transformations according to their rank. This will guarantee the gauge invariance of
the full effective action, a major advantages of the background field formalism [94], as
explained in section 2.1.2.

Gauge fixing of the physical gauge transformation is cared for by Sy, which contains
the gauge fixing function F,(g, h),

1
Sulh; 9] = o~ / d*z /55" F, F,, (2.24)

where « is the gauge-fizing parameter. B
The action of the Fadeev—Popov ghosts C* and anti-ghosts C* is determined via the
Fadeev-Popov determinant as for vectorial Yang-Mills theories, see, e.g., [37], it reads

OF, _
3h,,)‘ EC(gpA + hp/\) ) (2-25)

Sen[h,C,C; 3] = -k} /ddx C.g"

where k~! = /327Gy, with Gy the bare Newton’s constant.
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For the harmonic gauge condition
_ 1 _
F,=V2k <6;)g””D,, - 5glﬂ*D,,) Po (2.26)
the ghost action is

Sen[h, C,C; 3] = —\/i/dda:\/ﬁ C, (g“”g"*DA ((Gpw + hpw) Do + (Gow + ho) D,)
~ 37§Dy (o + how) Dp) cv. (2.27)

F,, and hence Sy, vanishes identically for g,, = g.,. The case a = 1 in (2.24) is the
harmonic gauge, the analog in gravity to Feynman gauge for vectorial gauge theories.

The cutoff term ASj has to be quadratic in the dynamical fields. The cutoff func-
tions have to transform as tensors of the appropriate rank under the background gauge
transformation [95]. Their arguments (replacing ¢? of the scalar case) are chosen as the
background field Laplacians, which are seen below to yield a convenient form of the
cutoff propagator:

2

ASkl[h, C,C; 3] = %/ddx VG B RE[— D27
+V2 / d*z /5 C, Ry [-D*|C*. (2.28)

The eigenvalues of the covariant background Laplacian, D? = g’“’DuD,,, separate the
low- and the high-energy modes. The cutoff functions have to fulfil the conditions
(2.2)-(2.4). For some one-parameter families of cutoff-functions used in this work, see
appendix B.

The source term

Ssourcelh, C, Cit,0,5;9) = — / d'z /g (t’“’hw +5,C* + a“é“) (2.29)

contains the sources t*”, &,,, o* for the metric variations, the ghosts and the antighosts.

Given the functional W) at fixed &, the effective or classical fields BZV,@’: ,fl’j (for
readability’s sake, the index k will be left out for the effective fields from now on) are
given by the variation of the generating functional with respect to the sources

; 1 6W, 1 W, . 1 6W,

= —— b= ___ = ==
W= JGo & T 506, T JGoon

The effective action [x[h, &, &; 3] is defined as for scalar case (2.11) as the Legendre
transform of Wy [t, 0, 7; g]:

(2.30)

Tklh, &, & 5] .= —Wil[t, 0,5;8) — ASk[h, &, & 5] + / d*z/G (8" Ry + 5,84 + 0#E,) .
(2.31)
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Introducing the classical metric as
Juv ‘= <7uu> = Guv + i_l;w ) (232)

the arguments of the effective action are reordered, T'x[g, 7, &, €.

The derivation of the ERG flow equation proceeds like in (2.10). The cutoff terms for
the metric and the ghosts give rise to two terms in the flow equation, where an opposite
sign is due to the fermionic nature of the ghosts:

_ 1 _ -1
ak Fk[g) ga §a g] = E‘Tr ((K/ 2F§Cz,£)]g + R;cl) ' ak (RZ)>
1 1@ o\ c

Here we reverted to the representation space independent Trace-notation, which contains
the trace over indices and integrals over position or momentum. In this Trace, the
differential operator —D? has yet to be evaluated through the sum of its eigenvalues.

The inverse of the second derivatives of the effective action with respect to the fields
is to be understood through their relation with the two point functions

1 52Wk[t’0)5;g]

(tt) —
G;wp«\(m’ y) = \/m 3(y) StHv §trA (2.34)
> 1 82Wilt, o, 5; g
G (g y) = TR (2.35)
g Va(@)y/aly)  do*da,
04y — 2) _ (tt) ) a
—\/.6(7(5#(55 = /dd.’L'\/gG“Up)‘(y,.’L') (Fk,gg + K/QRZ')'D/\ ﬂ) (236)
5d Y—2). = ~(05 v
%5“ — / 2\ /GG (y, 7) (F,(f,i-ﬂ 2Rf)p . (2.37)

The effective action and the flow equation (2.33) have the general structural properties
discussed for the scalar case. For properly defined cutoff functions, the r.h.s. of (2.33) is
both UV and IR finite. By taking the limit limy_.o [k[g, g, 0, 0] and then equating back-
ground and classical metric consistently, the full effective quantum action is recovered.
On the other hand, for £ — A the bare effective action reads

FA[gag’gag] = S[g] + ng[g - gag] + Sgh[g - g,&,g; g] . (238)

It is essential that these two steps — flow evolution and background identification — do
not commute, see section 2.1.2. The corresponding issue is also of importance in the
perturbative approach, [97].

One further remark, concerning the conformal factor problem, has to be made at
this place. Although the occurrence of scalar conformal modes with negative kinetic
terms renders the euclidean PI divergent, the flow equation (2.33) remains finite and
allows for well defined calculations.
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2.2.2 Einstein—Hilbert truncation

So far, no approximations have been made. A first restriction consists in making the
following Ansatz:

T'elg,9.€,€ = Tilg] + Tlg, 5] + Sklg — ;9] + Senlo — 3,6,&:3). (2:39)
The gauge fixing and ghost terms keep their classical operator structure, the suffix k is
meant to express that the bare couplings G appearing in Sy is replaced by the running
coupling Gy, (factors of G in the ghost action cancel each other out). The two flowing
terms are defined as
Tk[g] := T[g,§ = 9,0,0]. (2.40)
Consequently, [x[g, 3] = 0. (2.39) has to fulfil (2.38) in the limit k — A, yielding

lim Tplg) = Slg] , lim Palg —g;5] = 0. (2.41)

The second approximation consists in setting f‘k[g, g] = 0. A similar truncation turned
out to work well for Yang-Mills theories [92], [104]. In this approximation, the flow
equation (2.33) fails to remain exact, even in the absence of further truncations [100].
Furthermore, the corresponding modified Ward identities [101] are violated, cf. section
2.1.2 and [101]. In turn, this truncation fulfils homogeneous identities, i.e. the violation
of the modified ones is given by the cutoff-induced, inhomogeneous term of the modified
Ward identity. For the explicit form of the modified Ward identities, we refer to the
original work [101], since they will not be used in the present work.

The final step is to specify the operators and couplings building up Tyx. In the
Einstein-Hilbert truncation, the effective action contains the same operators as the
euclidean, classical Einstein—Hilbert action:

. GJGN / d*z/7 (R(g) — 2X) . (2.42)

The Ricci scalar R is obtained by contracting the indices of the curvature tensor R,,s.
given in terms of the Christoffel symbols I, :

R = g"™R. = ¢"¢" Roo,

Sen = —

ore,. —ore, N N
= g/“/gptfgpa ( ax’:’/ — a—a:l:; + Fﬁurga - Pﬂyr‘lﬁw) y (2.43)
9 (09u, 09y, Oguu
re = Z— - . )
H 2 (830“ o0 T B (2.44)

The two couplings are Newton’s constant Gy and the cosmological constant X. Varying
Sgn after the metric yields the Einstein equations with a cosmological term. In the
effective action, the coupling constants are replaced by the respective scale dependent
quantities Gg, A\¢. In Einstein-Hilbert truncation, the effective action reads

1 d kY 1 d = — k rk
— %) + v
167rGk/da:\/g(b?,(g) k)+2a/dx\/§g Fi F,

= OF*
~ VG | d'C,g" o Lolan +hp) . (2:45)
p.

Fk[g)g>§a€] = -
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The suffixes k to the gauge fixing conditions F' indicate that they contain each a factor
G’,:l/ ?. In the case of the ghost action this cancels Gy in the pref-actor.

2.2.3 Background identification

'y given by (2.45) is now inserted into the flow equation (2.33). After evaluating the
rhs. (ie. determining F§c2)), metric consistency g,, = g, is demanded and the ghosts
are exorcised £ = £ = 0. The Lh.s of the flow equation then takes the form

OGr 2 )

1 - -
k

Since only Ff) enters the r.h.s., it suffices to determine the part of the effective action
quadratic in Bu,,, 'Y, since all higher orders vanish upon background-identification. The
classical ghost action is already purely quadratic in the ghosts.

In the next step, the r.h.s. is projected onto the operators appearing on the lLh.s.,
V9 R(g) and /g. This is necessary to obtain explicit expressions for the S-functions of
the couplings appearing on the Lh.s., ;G and Oy A. The r.h.s of the flow equation is
thus expanded in R around zero curvature, the zeroth and first term yielding the sought
for B-functions. These steps are performed explicitly in section 2.2.4.

The background metric remained unfixed so far. To obtain the needed first order
in R, it is possible to fix g,, to the technically most advantageous choice permitting to
extract /g, /g R (flat background, g,, = 7,,, for example, would not permit to extract
the curvature). We assume henceforth the background space-time to be a mazimally
symmetric space. The curvature and Ricci tensor in terms of dimension d and a scalar
curvature R are

1 o o _
Ryvpr = qd=1) (GupGvr — GurnGup) R . Ru =

duwR. (2.47)

ST

In the full theory, physical results are independent of the choice of the auxiliary back-
ground field. Truncation may induce an artificial dependence.

2.2.4 Harmonic gauge

Using the harmonic gauge condition (2.26) and working in harmonic gauge o = 1 and
maximally symmetric space (2.47), the quadratic part of the action can be written as

/ 2+/G Ry {~KPPAD? 4 UMY o

- \/§/dd$\/§§_M[,‘ £, (2.48)

- 1
qu = —
Fk [g’gaé-)g] - 167er
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with the metric dependent tensors

1
K;u/p)\ Z (gupgu/\ + gp.)\gup . guugp)\) ’
1 d—4 - - | d(d—3)+2 - <
uvpA ~gght [ —— —gg | —————R -2\ (249
U 199 ( 7 R+2/\k>+4gg ( dd-1) R k) (2.49)
1 d(d—3)+6 - -
~g*Mg? | ——<—R -2\
My = 84 (D*+R). (2.50)

The metric is decomposed into a traceless, izﬁ = 0, and a trace part ¢:

. - 1
hu = hy + Egﬂ,,cﬁ. (2.51)

This decomposition is only sufficient in harmonic gauge. For general a, the non-diagonal
terms like D*h,, appear in (2.48)’s equivalence. This necessitates a more involved field
decomposition to prepare the field for the heat-kernel evaluation of —D? [102], [103].
We will discuss that case briefly in section 2.2.5.

With this metric decomposition, the quadratic part of the effective action takes the
form

. _ 1 1r- _ _ .
qu A — d = YR hHv
Ta'lh, ,,8,€,€] onC, / d*zv/5 [h,w( D? — 2) + CrR)
d—2

- =79 (=D? - 20, + CsR) ¢ +2v2(167Gy,)C, (—D* + Cv R) C“] , (2.52)

where the tensorial, vectorial and scalar coefficients are

d(d—3) +4 1 _d-4
a1 o= Cs=——. (2.53)

Cr=
The three types of fields in (2.52) do not mix to second order. Hence the r.h.s of the
flow equation (2.33) splits into three separate parts if the cutoff functions are chosen
appropriately. Their tensorial structure is fixed by the fields they are meant to regularise,
while their normalisation is chosen so that each kinetic term —D? is augmented by the
IR cutoff +k2. The scalar cutoff function R(—D?/k?) is still unspecified:

= v = v 1 = eV —
(RU=D* /K™ = (RE(=D*/K)"" + —RI(-D*/K)g*g”,  (254)
> e G 1— ~V. 1— ~V 1— V= N
(RL(-D?*/k%)* P - -G—IZ <§g“”g A4 Eg“’\g P Eg“ g”’\) RY(—D?/k?) ,(2.55)
R{(-D*/k) = —SE 2R prie), (2.56)
Gr 2d
RE(—-D*/k*) = V2R)(-D%*/k?). ‘ (2.57)

This tensorial structure of the cutoffs is determined by the field decomposition. This, in
turn, is established by restraining the gauge fixing to the harmonic gauge, & = 1. The
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cutoffs in (2.54) are hence appropriate to this choice of gauge fixing. They are called
cutoffs of type A, since they were introduced historically prior to those of type B, which
pertain to the general case of arbitrary gauge fixing, discussed in section 2.2.5.

Inserting the second derivative of (2.52) and the cutoffs (2.54) into (2.33) and setting
O =9w, &= £ =0, the flow equation reads

(d=1)(d+2) ;8 RY-D*/K?) - RY(~D*/K)2; In Gy
2 —D? + RY(—D?/k?) — 2 X, + CrR
| Lo, 8 RY(=D*/K?) — RY-D*/k*)d; InG

2 —D? + RY(—D?/k?) — 2 ) + CsR
O RY(—D?/k?)
—D? + R)(—-D?/k%) + CyR "

1
Ol'k[g] = 3

—dTr

(2.58)

The functional traces Tr over the functionals of the covariant Laplacian —D? still re-
main to be evaluated. The traces over the tensor indices have already been performed
and yield the corresponding coefficients. These coefficients (d — 1)(d +2)/2,1,d in front
of these functional traces stem from evaluating the tensor products between the denomi-
nators and nominators and are equal to the number of independent traceless symmetric,
scalar and vector field components.

The functional traces are evaluated by using the heat kernel expansion [105]:

Trle-isD’] = (L>d/2 / d'z/g (1 - %SR + O(R2)> | (2.59)

47s

A trace over a function W (—D?) can be expressed through its Fourier transform

Tr[W(-D?] = /oo dsW (s) Tr[e *P"]

—oQ

= (—47ri)‘d/2</dss'd/2W(s)> X (/ddwx/ﬁ) (2.60)
— (—4ﬂi)_d/zé(/ds sl'd/2W(s)) X (/ddx\/ﬁf%) +O(R?)

In the present case, the functions W are the three expressions under the traces in (2.58).
They contain the scalar curvature in the denominator. To finally extract the 3-functions
of the couplings, the denominators are expanded to first order in R. This allows us to
collect all terms proportional to [d%c./g and [d%z,/gR on the r.h.s. of the flow
equation. By comparing the coefficients of these operators on both hands of (2.33),
one finally arrives at the 3-functions of Gi, \,. We re-express them for dimensionless
quantities, which are defined from the dimensionful ones:

t:=In(k/ko), z:=s/k*, RYs/k*) =:k¥zr(2), ogr(2):=k%*2Gk, Me:=k 2,
(2.61)
ko is an arbitrary unit of momentum.



2.2 Einstein—Hilbert Quantum Gravity 29

For these dimensionless couplings, the resulting b-functions describing their depen-
dence on the RG-scale are

Bigr = [d—2+nn(k)]gk, (2.62)
M = A(Ai;d) +nn(k)Ax(Ag; d), (2.63)
with the anomalous dimension

1 — giBy(Ag; d)
The functions A;, A, By, B, are given explicitly in appendix C.1. The anomalous di-
mension is defined as 1 := 9;G%/G}, and receives its name because the factor /Gy /G
is found to multiply each graviton (canonically normalised) field A, in the background-
expanded EH action. It can be identified with the multiplicative, scale dependent field
normalisation constant, denoted as Z} := Gn/Gy. Hence n = —9;1n ZP, the standard
definition of the anomalous dimension of a field. Z} equals unity at some reference scale,
where the bare Newton’s constant G equals the running one Gj.

2.2.5 Transverse-traceless decomposition of the metric

The case of general gauge fixing « requires some modifications to the above derivation.
As mentioned in section 2.2.4, the term of I'y quadratic in l_zu,, does only take its form
(2.48) for o = 1. Otherwise, terms like (Dh)? appear. Since only scalar operators —D?
allow the application of (2.59), the quadratic term has to be brought into such form by
an adequate field decomposition, which differs from the previous one (2.51).

The decomposition of the metric fluctuations into transverse traceless, longitudinal
and trace parts [106] used in [103] achieves this diagonalisation. The metric is decom-
posed as

b = BT, + Dy, + Do, + (DuD,, - é-glw D2) G+ égw D% (2.65)
where the traceless transverse tensor h,,
¢ are subject to the conditions

g*hl, =0, DRI, =0, D', =0, ¢=g"hu. (2.66)

This decomposition is valid for complete, closed Riemann spaces and can be extended to
open, asymptotically flat spaces if the fields fulfil certain asymptotic conditions [106]. In
[103] the flow equation of the action functional in these fields is re-derived. Proper cutoffs
are introduced, which bear the correct tensorial structure and differ accordingly from
the cutoffs of type A (2.54). They are called cutoffs of type B. Due to the larger number
of fields, the derivation of the flow equation and the application to the Einstein—Hilbert
truncation is more involved than in the harmonic gauge case.

The main steps are conceptually identically to the case of cutoffs type A. The re-
sulting B-functions for gx and A, are structurally identical to (2.62). They are given
explicitly in appendix C.2. The gauge fixing parameter o enters these flow equations.
These flow equations will henceforth also be referred to as “type B”, extending the
naming of the tensorial structure of the cutoffs to the resulting g-functions.

the transverse vector £, and the scalars ¢ and
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2.3 Fixed Point of Gravity in four Dimensions

The flow equations for Newton’s constant and the cosmological constant obtained with
the ERG allow the discussion of the scale dependence of these quantities. A question of
paramount interest is that of the existence of FPs in the present truncation. Such a FP
would be a first indication of the asymptotic safety of gravity, i.e. its non-perturbative
renormalisability, cf. section 1.4. The dimensionful couplings behave necessarily as A =
kZ )., Gp = k*%g, at a FP of the dimensionless ones. Near a FP, Newton’s constant
decreases with energy, it shows anti-screening behaviour. Whereas the dimensionless
gravitational coupling is asymptotically safe, the dimensionfull one is asymptotically
free.

For harmonic gauge and cutoffs of type A, such a FP was found [107] for 2 < d < 4 for
an exponential cutoff. At dimensions near two, it reproduced the findings of Weinberg in
the 2+ ¢ expansion. This FP is seen to continue smoothly to four space-time dimensions
(higher ones were not studied in [107]). For generic gauge fixings and a class of cutoff
functions, the FP was found with cutoffs of type B in [103] and further discussed in [108].
They were detected with all used cutoff functions for up to six space-time dimensions.
For higher dimensions, the FP shows strong cutoff dependence, disappearing for some
of the used function. In [134], FPs have been studied analytically in general dimensions
with the optimised cutoff function in one gauge.

By investigating the stability matrix at the F'P, it is seen that both directions of the
EH truncation are UV-stable. The numerical values of the stability matrix eigenvalues
are rather independent of the cutoff function and the gauge fixing at and below four
dimensions, but display increasingly varying results for dimensions higher than four.

For four or less dimensions, all results agreed remarkably well with each other at a
quantitative level. The loss of reliability in higher dimensions was interpreted as indi-
cating the non-adequacy of the Einstein-Hilbert truncation for dimensions higher than
four. It is one of the main topics of thesis to clarify this point. It is shown in chapters
3 and 4 that the qualitative and quantitative cutoff and gauge fixing dependence of the
higher dimensional results can be reduced to the percent level with cutoff optimisation.

Further results fuelling the hope for gravity’s asymptotic safety are procured from
extended truncations.

In [109], [110] and [111] the scalar R? term was included into the truncation. A FP
is reported and discussed explicitly in 2+ ¢ and four dimensions. Its projection onto the
Einstein-Hilbert truncation coincides with the previous, lower truncation results to high
accuracy. All three directions are UV attractive in four dimensions. In 2+ ¢ dimensions,
the third, new coupling-direction is repulsive, in accordance with perturbative expecta-
tions. This indicates explicitly that at least for dimensions close to two, the UV critical
surface may be finite dimensional.

Phenomenologically very relevant is the inclusion of matter. This is investigated in
[112], [113] and [114]. In [112] a scalar fields with non-minimal coupling to curvature was
added to the Einstein—-Hilbert action. The addition of a similar scalar with arbitrary
potential was found in [114] to leave the UV FP of pure Einstein—Hilbert gravity nearly
unchanged, whereas these couplings vanish at the FP. The case of minimally coupled
general matter of different spin was investigated in [113] and [114]. The existence of the
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non-Gaussian FP depends in that case on the number and type of fields added (similar
to the case of asymptotic freedom for QCD). However, a wide range of these parameters
(including those of the standard model) allow the existence of the FP.

Non-local truncations including functions of the volume of space-time, V = [ d%z./g,
were considered in [115], [116]. FP searches have not yet been fully conducted in these
truncations, since they are mainly intended as large-scale effective models [117], [118].

Further signs for a non-Gaussian FP have been detected independently in a lattice
approach to quantum gravity by Hamber et al. [119], [120], [121], [122] and in dimen-
sionally reduced theories [123].

It can be concluded from the results described above that asymptotic safety is a viable
scenario for gravity. The first one or two steps (=truncations) toward asymptotic safety
have been made quite successfully. If the FP should continue to persist reliably in
higher truncations, the non-perturbative renormalisability of gravity as a local field
theory becomes more and more probable.

2.4 Applications

We conclude this recapitulation of quantum gravity in the framework of ERG with some
of the phenomenological implications investigated so far.

The full effective action limy_,o 'y contains the full physics of a theory. However,
the effective action can also be used for non-zero cutoffs k. Including an external lowest
momentum scale p? into the effective action of a theory, the flow generally stops at
k? ~ p?, providing a physical cutoff, limy_o Tx(p) = T,(p) (p is short for 1/p2). Using the
effective action I, to calculate processes with typical energies p, all quantum effects are
contained at tree-level. Although no external scale has been included in Einstein—Hilbert
gravity, previous experience makes the validity of the above mechanism very likely in
this case, cf. [124]. For momenta in the scaling FP regime this cutoff-identification must
be true, since only one scale remains in this regime.

As mentioned at the end of section 2.2.4, the quantity 1 (2.64) can be interpreted as
the anomalous dimension of the gravitons, i.e. the metric perturbations around a (flat)
background. Employing the cutoff-identification k& — p, the scalar part of the Fourier
transformed graviton propagator in the FP regime is given by [103]

=, _ _ FP
Ga(p) ™ & Zf_,p* o (pP)772 5 pt (2.67)

This propagator is valid for calculations performed in the far UV-regime of gravity.

Whereas it is straightforward to identify an euclidean momentum scale k£ with an-
other euclidean momentum p, the situation is less clear when trying to extract phe-
nomenological implications of euclidean ERG results for our Riemannian universe. To
do this, it is paramount to define a consistent, physically motivated cutoff-identification
procedure connecting space-time quantities like conformal time, distance, or curvature
to the renormalisation scale, i.e. to fix appropriate functions {z,, ¢, R, ...}(k) proper to
a certain question.



2.4 Applications 32

In the far UV and in the presence of only one physical dimensionful quantity, cutoff
identification is straightforward. Introducing a length [,[l]] = —1, it can be identi-
fied with k as [ := c¢/k, where c is, in natural units, some positive number of order
one. Solving the effective Einstein equation (the e.o.m. 6I'x/dg,,) assuming maximal
symmetry of space (2.47), one finds that R = 4);. In the FP-regime and using the
cutoff-identification [ = ¢/k, the curvature radius is 7;2 = R = 4\.c*/~? and, since both
A« and c are of order one, r. = [. Interpreting [ as the spacial resolution with which
space-time is looked upon, the resulting picture is that of space-time being stronger and
stronger curved the closer one looks at it2[111]. Once in the FP regime, the relation
between 7. and ! stays independent of further decrease in [. Space-time behaves in a
self-similar, fractal way [111].

Another situation where “naive” cutoff-identification seems plausible is earliest time
cosmology. Interpreting k as proportional to the inverse of the conformal time T,
Robertson—-Walker cosmology (with classical matter) was studied in [125]. The cos-
mological scale factor a(T) is found to be a(T) = T in the FP-regime and the cosmo-
logical particle horizon is absent, solving the causality problem otherwise requiring an
additional inflationary phase. In a spatially flat universe, the (normalised) energy densi-
ties of matter and the cosmological constant are equal to each other and one half in the
Planck era. Furthermore, the UV graviton propagator (2.67) is argued to give rise to the
observed flat spectrum of primordial gravitational perturbations [103]. Similar results
are obtained with more involved scale setting procedures [124], [126]. The evolution of
cosmological perturbations in the present setting was studied in [127].

To deal with more general situations in the presence of other, external scales, a
consistent cutoff identification procedure has to be defined. General prescriptions have
been proposed in [124] and [126]. They partly confirm results obtained earlier with
situation specific identifications, underlining the importance of choosing the “right”
prescription.

Black holes have been examined in the present setting in [128], [129]. The intriguing
picture which arises (for appropriate cutoff identification) is that for a certain critical
black hole mass, which is of the order of the Planck mass, the event horizon vanishes.
Accordingly, Hawking evaporation stops and leaves a cold remnant of order Planck mass.

Although the Einstein-Hilbert truncation seems to work surprisingly well in the FP-
regime, it breaks down for large, O(1), positive values of Ag, cf. the discussion in [108]
and sections 2.1.1, 5.1.1, 5.5.3 of this work in particular. As shown previously [108]
and in chapter 5, all trajectories leading to positive cosmological (and gravitational)
constant are affected by this breakdown at some large scale. From the ERG point of
view such a breakdown signals that operators becoming important at these scales have
been neglected. It can hence be expected that new effects not described by standard
general relativity come into play at large scales. This is already witnessed in the present
truncation by the onsetting of strong quantum effects before the actual breakdown.
These observations become especially intriguing when estimating the present day size
of A;. Identifying the cutoff with the largest available scale set by Hubble’s constant

20f course phrases like “looking on space-time” are rather meaningless and only serve to illustrate
the intuitive picture.
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and using the best experimental fit for Ay one finds that Ay ~ O(1) on cosmological
scales. But for these values Einstein—Hilbert gravity is expected to be insufficient.
These questions were studied in [130], where furthermore a connection between the
extreme weakness of quantum effects over a wide range of scales to the smallness of the
cosmological constant was observed. A slight running of Newton’s constant at galactic
scales may explain the observed anomalies in galactic rotation curves usually attributed
to the presence of dark matter [131]. The cosmological consequences of the existence of
a hypothetical IR FP were investigated in [132], [133]. Especially the equality of matter
and dark energy density in a FP regime is very intriguing when compared to present
data. In [115], [116], non-local truncations were constructed to further investigate the
IR in particular. It was argued that they could, in principle, provide an explanation for
the extreme smallness of the observed cosmological constant.



Chapter 3

Fixed Points in Higher Dimensions

The FP of Einstein—Hilbert quantum gravity found previously are stable in dimensions
2+ ¢ to 4 (cf. section 2.3). The conjecture that non-perturbative RG modified gen-
eral relativity could provide a sufficient description of gravity even for energies beyond
the Planck scale is supported by these results. Unfortunately, a direct experimental
confirmation or falsification of the implications of these results seems not prospective,
comparing the energies of this and next generations accelerators to the Planck mass.

On the other hand, one of the reasons why models with large extra dimensions
have recently received considerable interest is the potential experimental accessibility
of quantum gravity in the near future, cf. section 1.2. The application of ERG to
quantum gravity in higher dimensions than four would allow to make predictions within
this setting. Of decisive importance for the reliability of this description of quantum
gravity for energies higher than the Planck mass (which could, in these models, be as
low as a few TeV) is its renormalisability. In the asymptotic safety scenario this is
equivalent to the existence of a FP.

In Einstein—Hilbert truncation, such FPs have been found also in higher dimensions.
However, their existence and properties depended increasingly on the implementation
of the cutoff, so that it remained unclear how far these findings could be trusted, see
the recapitulation in section 2.3. From a perturbative point of view, it could be sus-
pected that the Einstein—Hilbert truncation becomes less and less reliable for capturing
the essential physics in an increasing number of dimensions: the higher the dimension,
the more perturbatively relevant (with mass-dimension lower to the dimension of space-
time) and marginal (with mass-dimension equal to that of space-time) operators exist
for a given theory, cf. appendix 1.3. It is reasonable to assume that these perturba-
tively relevant and marginal operators will play a role non-perturbatively, too. Hence
their truncation will endanger its validity, seemingly witnessed by the loss of reliability
observed in {103], [108].

In this chapter, we demonstrate that Einstein—-Hilbert ERG gravity possesses reliable
FPs also in higher dimension. Indeed, FP in generic dimensions have been found ana-
lytically in [134] for the optimised cutoff function and a certain choice of gauge-fixing.
Reliability is found to decrease with increasing dimension, but no qualitative breakdown
is observed. This allows the interpretation that although an increasing number of op-
erators comes into play with increasing number of dimensions, they do not induce a
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qualitative change and Einstein—Hilbert truncation remains a valid approximation even
in higher dimensions. Such a scenario of no qualitative change is also motivated by
the fate of the fixed point in lower dimensions: it exists continuously and smoothly in
dimension, starting from its trivial origin in two dimensions. In the sense of the mass
dimension of Newton’s constant, two dimensions can be considered “natural” for grav-
ity, all others being equally “unnatural”. In this light, it seems rather “natural” for the
non-Gaussian FP to continue its existence into higher dimensions, as confirmed by the
results below. This receives support from the fact that including the (perturbatively
marginal) operator R? in four dimensions did not alter the situation with respect to the
lower Einstein—Hilbert truncation.

3.1 Fixed Point Search and Cutoff Optimisation

In this section, we search for FPs of quantum gravity in four and more dimensions. We
work in the Einstein-Hilbert truncation and harmonic gauge, using cutoffs of type A.
The FP-values of the couplings, henceforth denoted as A,, g., are attained when their
flow stops, i.e. Ba(As, g) = 0, By(As, gx) = 0. By dropping the suffix £ we comply with
the essential attribute of a FP, its scale independence.

We find them for generic space-time dimensions and cutoffs. This confirms and
extends results presented in [101], [103], [108]. In the full, untruncated theory, universal
quantities at the FP would be independent of the cutoff used. In turn, by truncation
an artificial cutoff-dependence is induced. We study this cutoff-dependence. The A-
boundary marking the breakdown of the truncation [101], [108] is found for generic
cutoffs and dimensions. The optimisation procedure laid out in section 2.1.1 is applied
to the FP-values of A with respect to this boundary.

As an example, we choose the modified exponential cutoff function (B.1). We calcu-
late (g., \«) for a (sufficiently) dense set of values of the cutoff parameter b for space-time
dimensions d 4 to 10. The resulting curves /\S,d)(b) are displayed in fig. (3.1(a)) together
with the stability boundary Apound, (2.15). FPs are found for all dimensions d for an
interval in the cutoff parameter bound to the left by the intersection of Aid)(b) with
Abound(b). The qualitative behaviour of /\,(kd)(b) is the same for all dimensions. The
value of b where )\S,d)(b) runs into the boundary increases with dimension. All values
/\,(kd)(b) are positive, for all d and all (allowed) cutoffs. A local minimum of A&d)(b) can
be discerned in all dimensions. It is rather weak for d > 5. The curves /\S,d)(b) move
upward with increasing dimension. This trend decelerates, hinting at the existence of
an asymptotic value limg_, o )\,(.‘d)(b) < 00. The higher the dimension, the closer to the
boundary M?(b) is for each b. This behaviour is expected for the dimensional reasons
given above. For large b, all curves approach each other. Whether they converge to a
single value A,(b — o0) independent of dimension remains to be investigated. On the
other hand, there is an intermediate b-region of maximal distance to the boundary.

As argued in section 2.1.1, it is this distance which controls the stability of the solution.
For the reasons given there, we choose the ratio of this difference over Apoung, &, as the
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Figure 3.1: FP results for the modified exponential cutoff (a) FP values of the dimen-
sionless cosmological constant, A,, for 4 to 10 dimensions. In red the stability boundary
Abound- (b) Normalised stability control parameter £ := 1 — A,/Apound. The maxima of
£(b) are highlighted as red dots.

control parameter. We expect to minimise the residual cutoff sensitivity of physical
quantities by maximising £ with respect to b. £(b) is displayed for the present cutoff in
fig. (3.1(b)). A local maximum is found for all dimensions, allowing the optimisation of
the cutoff. The maxima of £ are henceforth denoted as &,,, their loci as bynyro- They
are given in table 3.1(a), together with those of the other two control parameters, Apound
and Apound — A+, called bro and byro, cf. section 2.1.1. The corresponding values of
Abound in table 3.1(b) show how the difference between the three optimisation schemes
increases with dimension: Apound at bynro remains within 10% of the LO-optimal value
1 for dimensions up to 7. The values at byro, albeit decreasing, stay within 10% of 1
up to dimension 10.

Since Apound depends only on the cutoff, byo is the same for all physical theories
and, of course, dimensions. In contrast, byro and bynro contain information from the
theory at hand.

This throws some light on the issue of the apparent non-existence of the FP beyond
6 dimensions for the modified exponential b = 1 cutoff discussed in [108]: using the
same (low) value of b (e.g. 2, 10, ...) for all dimensions, one inevitably moves away
from the optimised cutoff and eventually hits the stability boundary, beyond which no
FP can be found. This quite severe qualitative change vanishes if we go to higher b and
hence move away sufficiently from the boundary. Adapting the cutoff to the dimension
provides a way out of this loss of FP for higher dimensions. Although the optimised
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Table 3.1: (a) Loci of the maxima of Apound, Abound — A« and £ denoted as bo, bnro and
banLo- (b) Values of Apouna for cutoff-parameters byo, bnro and bnnro-

(a) (b)

dfl bo| bnwo| bnnLo  Abound | LO | NLO | NNLO
413922 4964 | 7.629 d=4 11| 0.995 0.970
51 39221 5632 9.244 5 11 0.989 0.957
6|l 3.922 [ 6.588 | 12.270 6 11| 0.980 0.935
71 3.922 | 7.890 | 16.901 7 11| 0.968 0.912
81 3.922 | 9.676 | 23.842 8 11 0.953 0.888
9| 3.922 | 12.169 | 34.288 9 11 0.936 0.864
10 i 3.922 | 15.729 | 50.130 10 11 0.917 0.842

quality measured by &, decreases with increasing dimension, this loss is of an expected
quantitative nature and does not introduce any new qualitative features. Optimised
cutoffs permit the retrieval of FP in arbitrary extra dimensions.

We repeated the above analysis for the exponential (B.3), the generalised optimised
(B.4) and the modified cutoff functions (B.6). The qualitative picture is identical to
the one laid out above. Fixed points are found for all dimensions for a range of cutoft-
parameters bound to the left by the intersection A9 A Abound- The three control param-
eters Apounds Abound — A« and & have local maxima in all cases.

For the generalised optimised cutoff function all three maxima coincide at the value
of the cutoff parameter b = 1. Optimising the generalised optimised cutoff yields the
optimised cutoff (2.19) for all three (LO, NLO, NNLO) criteria.

The quantitative comparison of the three cutoffs is postponed to section 3.3.

3.2 Universality

We now turn to universal quantities. In the full, untruncated theory they would be
insensitive to the implementation of the cutoff. In turn, truncation introduces an ar-
tificial cutoff-dependence. The extent of this sensitivity can be used to estimate the
reliability of the employed truncation. Subsets of cutoff space leading to minimal cutoff-
dependence can be interpreted as being “best suited” to the truncation at hand. Our
expectation is that these sets are found around the optimised cutoffs of the previous
section.

To verify this claim we investigate the cutoff-dependence of two such quantities. The
first are the eigenvalues of the stability matrix at the non-Gaussian FP. They determine
the nature of the FP. All FPs are found to be UV-attractive in both directions. This is
the case for all dimensions and admissible cutoffs investigated. This confirms the results
of [101], [103] and [108] and extends them to higher dimensions. The findings of [134]
are reproduced wih different cutoff functions and gauge-fixing.

The second quantity is the dimensionless combination of the couplings at the FP,
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T:= A X gf/ (4=2) 1t is the extra dimensional generalisation of A\, X g,, for which it has
been argued already in [135] that it constitutes the essential coupling of pure gravity
with cosmological constant. This product features certain scaling-invariances and was
found to be very insensitive to the cutoff in four dimensions [103]. Likewise 7 displays
comparable stability in higher dimensions.

Our expectations concerning cutoff optimisation are confirmed. It indeed marks out
a region of reduced cutoff dependence of the investigated universal quantities.

Again we restrict the detailed discussion of this section to the modified exponential
cutoff. Similar results are obtained for the exponential (B.3), the modified (B.6) and the
generalised optimised one (B.4). The quantitative comparison is postponed to section
3.3.

Remember that g, and A, are not universal quantities themselves. Their values can be
shifted by redefinitions of unphysical quantities. The action is invariant under rescaling
the field degrees of freedom by some factor a. This results in a rescaling of g, and A, by
a=%2 and a. Further, any redefinition of the — auxiliary ~ momentum scale k leads to a
similar rescaling of the FP-solutions g, A,. Any quantity displaying universal attributes
must be invariant under such reparametrisations, whereas g,, A, are not.

This non-universality is reflected in the LO and NLO optimisation procedures: Apound
scales like A, with respect to field- or k-rescalings. Comparing LO and NLO optimised
stability across different types of cutoffs may turn out problematic since they could
imply differently scaled k from the beginning. On the other hand, £ remains rescaling-
invariant. It can be considered as a universal measure for the stability of the flow. It
provides an unambiguous measure for the quality of a FP. Thence comparison between
different types of cutoffs are meaningful even without fixing the cutoff functions to the
same normalisations. It will be undertaken in detail in section 3.3.

3.2.1 Eigenvalues of the stability matrix

The first universal quantity under investigation are the eigenvalues of the stability ma-
trix at the FP. They are universal critical exponents of the theory and determine its
behaviour near the fixed point, cf. section 1.4. Since there are two couplings in the
present theory, there are two eigenvalues of the 2 x 2 stability matrix.

These eigenvalues are complex conjugated for all considered dimensions and generic
cutoffs. The real part is referred to as §' and the (absolute value of the) imaginary
part as §”. The sign of § determines UV-attraction (IR-repulsion) (+) or -repulsion
(-attraction) (-). The imaginary part §” describes how the trajectories rotate around
the FP as they approach or leave it. In this sense the UV-FP can be understood as a
degenerate limit cycle.

¢', 0" and the modulus |8] = /(6")? + (8")? are displayed in fig. (3.2(a)), fig. (3.2(b))
and fig. (3.2(c)) for the modified exponential cutoff function.

¢’ is positive for all dimensions. The FP remains UV attractive for d € [4,10].
This confirms and extends previous results [103], [110]. The red dots depict the values
at bunLo. The fact that these values are very close to the local minima of ¢ and
|0] is taken as a first example for the success of cutoff-optimisation. The outcome of
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the optimisation of the quality-control parameter £ nearly coincides with the result of
applying a minimal sensitivity criterion to §' alone.

8" looses its local minimum for dimension 7 and higher, but bynpo still lies in a
region of minimal gradient. Cutoff-dependence over the whole interval increases with
dimension. This accords with decreasing reliability measured by £.

The numerical values of &,6” and |6| at bro,bnro and bunpo are given in tables
3.2(a), 3.2(b) and 3.2(c). The three control maxima lie to the left of b corresponding
to minimal cutoff dependence of #',6” and || separately. The differences between these
three values are much smaller than the overall variation over the whole b-interval. The
relative difference lies in the few-percent range. The difference between the NLO and
NNLO results is even smaller. bnro and bynio are closer to the local b-minima of ¢
and |6| (inflection point of §”) than byo. This confirms our conjecture that including
information pertaining to the theory at hand improves the gain in reliability cutoff
optimisation yields.

One could view this remaining variance in the optimised values as an estimate for
the order of magnitude of the “error-bar”. The bottom qualitative conclusion of this
consideration is that @’ is safely positive in all dimensions, the FPs retain their UV-
attractiveness.

Repeating these calculations for the exponential (B.3), the generalised optimised
(B.4) and the modified cutoff (B.6) yields quantitatively similar results. Due to technical
reasons we were able to push their cutoff parameters closer to the boundary. For these
cutoffs one has £ — 0 and observes the breakdown of the truncation expected from
our optimisation considerations. This is signalled by the divergence of #',6”. Another
qualitative change occurs for very high values of the cutoff parameters. For some high
b, > bynLo the complex conjugated eigenvalues pass to two real ones. The values of
b, decrease with increasing dimension. Again, for the quantitative results we refer to
section 3.3.

3.2.2 Universal dimensionless combination of couplings

We turn now to the second universal quantity, 7 = A, x gf/ (d-2) , the generalisation of
the product A*g* from 4 to general dimensions. It has been argued already in [103] that
this product constitutes an observable quantity in four dimensions, cf. also [135] for its
interpretation as an essential coupling.

The argument presented in [103] readily applies to the generalised case: Since 7 can
also be written as the dimensionless combination of the dimensionfull couplings in the
FP limit, 7 = limg_0o( Ak X Gz/ (d_z)), it inherits their universality.

Alternatively, it is straightforward to check that 7 is invariant under rescaling of g*
and \*, either due to field- or k-redefinitions [135].

If containing universal meaning, it should be robust to variations of the cutoff. Indeed
we find it to be very stable in all dimensions and cutoffs investigated.

The curves 7(®(b) are displayed in fig. (3.2(d)) for the case of the modified expo-
nential cutoff function. The strong cutoff-independence found in [103] is reproduced in
higher dimensions. The corresponding plots for the other two cutoffs are similar, again
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Figure 3.2: Universal quantities for the modified exponential cutoff. The red dots
indicate the results of NNLO-optimised cutoffs. (a) ¢, (b) ", (c) 6], (d) 7.
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Table 3.2: Values of the universal quantities (a) ¢, (b) ", (c) |0] and (d) 7 for the
modified exponential cutoff optimised to LO, NLO and NNLO in various dimensions.

(a) (b)

¢ LO| NLO|NNLO 97 LO| NLO|NNLO
d=4 || 1.494| 1499 1.510 d=4 || 3.291| 3.226| 3.144
5| 2.842| 2.812| 2.802 5| 5718 | 5528 | 5.369
6| 4.812| 4.647| 4.583 6| 8.143| 7.727| 7.461
7| 7.346| 6.867| 6.712 710595 | 9.842 | 9.456
8 | 10.500 | 9.419| 9.143 8 || 13.070 | 11.875 | 11.370
9 || 14.445 | 12.279 | 11.861 9 || 15.521 | 13.816 | 13.203
10 || 19.424 | 15.435 | 14.869 10 || 17.817 | 15.645 | 14.943
(c) d)

0] LO| NLO | NNLO 7] LO [ NLO | NNLO
d=4 || 3.614 | 3.226| 3.488 d=4 [[0.125 | 0.128 | 0.132
5| 6.385| 6.202| 6.056 5| 0430 | 0.445 | 0.461
6| 9458 | 9.017| 8.756 6| 0.860 | 0.899 | 0.933
7 || 12.892 | 12.001 | 11.596 7| 1.369 | 1.445 | 1.502
8 || 16.770 | 15.157 | 14.590 8| 1.935 | 2.060 | 2.142
9 || 21.203 | 18.484 | 17.748 9| 2.541 | 2.728 | 2.834
10 || 26.358 | 21.978 | 21.080 10 || 3.179 | 3.441 | 3.568

see section 3.3.

This time bynpo does not lie near a local extremum but rather on the onset of the
plateau of minimal cutoff sensitivity. The relative variability of 7 near this optimised
cutoff is typically as small as that of ¢, as can be seen by comparing 7 (b0), 7% (bxro)
and 79 (bynro) in table 3.2(d).

The relative difference [T(d)(bNNLo) - T(d)(bLo)] /7@ (bynpo) increases slightly with
dimension. One observes a clustering of 7(bnLo) and 7(bynpo) opposed to 7(bro). This
becomes more pronounced with increasing dimension. This is to be expected since bynro
and bypo lie further up the plateau than b;g.

In table 3.3(a) the values of the UV-FP couplings for the £-optimised modified ex-
ponential cutoff are displayed together with the corresponding values of 7. Although g,
increases strongly with dimension, 7 experiences only a relatively mild increase. This is
~ due to the decreasing exponential 2/(d — 2) with which g, enters 7.

Modified exponential cutoff with alternative normalisation

By choosing a different normalisation of the cutoff function (i.e. different from r(1) =1
for all values of b) one can alter the magnitude of the FP couplings. 7 however remains
unaffected by this. This can be seen in the example of a modified exponential cutoff with
non-universal normalisation, see (B.2). It is normalised to r&t (1) = b/(e —1). This b-
dependence of the normalisation does not allow for a LO or NLO optimisation procedure.
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Table 3.3: UV FP couplings and respective values of 7 at bynpo for two different nor-
malisations of the modified exponential cutoff in various dimensions. (a) Canonical
normalisation 7(1) = 1 used throughout the rest of this work. (b) Alternative normali-
sation (B.2).

(a) (b)

NNLO A g« 7 NNLO A G« T
d=4 || 0.414 0.319 | 0.132 d=4 | 0.893 | 0.148 | 0.132

5 {| 0.500 0.886 | 0.461 5 || 1.163 | 0.250 | 0.461

6 || 0.533 3.059 | 0.933 6 || 1.379 | 0.458 | 0.933

7 || 0.548 12.464 | 1.502 7 || 1.580 | 0.882 | 1.502

8 || 0.553 58.018 | 2.142 8 || 1.777 | 1.750 | 2.142

9 || 0.554 | 302.033 | 2.834 9 || 1.975 | 3.536 | 2.834

10 || 0.553 | 1730.650 | 3.568 10 || 2.176 | 7.223 | 3.568

The rescaling of the (auxiliary) momentum scale & — k In~2 (1+b) transfers this cutoff
to the canonically normalised 7,5 The FP couplings and Ayoung Obtained from rf,ﬁfnp

are hence related to those from 7meqp by this factor, A% = In(1 4 b) Ameap , 9222, =

InZ-9/ 2(1 4 b) Omezp- §-optimisation is accordingly unaffected by using this alternative
normalisation instead of the canonical one. bynLo is the same for both cases. As
discussed above, 7 is invariant with respect to such rescalings and hence stays the same
too.

These features are displayed in table 3.3(b): ., g. differ from those in table 3.3(a)
precisely by the respective powers of In(1 + bynpo), whereas 7 is the same for all nor-
malisations.

3.3 Cutoff Independence

In the previous sections we have discussed the cutoff dependence of the UV FP properties
within the family of modified exponential cutoff functions. As mentioned above, we
repeated this procedure for other one-parameter families of cutoff functions. In addition
to the modified exponential (B.1) we used the exponential (B.3), the modified (B.6)
and the generalised optimised (B.4) (whose optimisation yields the optimised) cutoff as
given in [84]. A synopsis of the respective cutoff functions appears in tab.3.4 together
with the values of byp at which their respective Apouna’s assume their maximal value
of 11. This range of cutoff functions allows for a comparison of the -optimised results
obtained by the use of the various cutoff functions. This constitutes an important test
for the optimisation procedure: it must yield the same physical results for all cutoffs.
Any difference between optimised cutoffs can be ascribed as an minimal error to the
results.

This extends the studies of [103], [108] to other cutoff functions and higher dimen-
sions.

In tab. 3.4 we also included an entry for the power-like cutoff which will be only needed in chapter 4.
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Table 3.4: Cutoff functions and the parameter values bro.

Cutoff bLo
Tmexp(2) <T+13—_1 3.9215
Texp(2) PP 1.4427
Tgo(2) b(% -1)0(1 - z)l 1

z — Zb -
Tmod (2) (24—L+ e 1) 1.92255
Tpow (2) zb 2

Table 3.5: Comparison of &, for modified exponential, exponential, modified and opti-
mised cutoff.

&n || mexp | exp | mod opt
d=4 || 0.573 | 0.572 | 0.582 | 0.614
5 0.477 | 0.479 | 0.490 | 0.525

6 || 0.430 | 0.435 | 0.445 | 0.482

7 0.399 | 0.408 { 0.416 | 0.454

8| 0.377 | 0.388 | 0.396 | 0.433

9| 0.359 | 0.373 | 0.379 | 0.416
10 || 0.343 | 0.359 | 0.365 | 0.401

The UV FPs are found in all investigated cases and share the same qualitative
features. No signs of artificial dependence of the qualitative features on the cutoff
functions could be discovered.

One of the advantages of using £ is that it can straightforwardly be compared for
different cutoffs irrespective of their normalisation. We take its maxima &,, as a basis to
compare the optimised stability of the flows at the FP for the various cutoffs. The in-
formation gleaned thereby can be used as a bias in the interpretation of the reliability of
the results obtained through the respective cutoff functions. The maximum values of &,
&m, for the different cutoff functions are shown in tab.3.5. These values are close to each
other. Hence the three cutoffs can be considered as approximately equally trustworthy,
although the optimised cutoff yields &,, about 7-10 % higher than the other two cutoffs
in all dimensions. Thus it could be preferable. All cutoffs exhibit the same expected
monotonous decrease with dimension.

In tab.3.6(a)-3.6(c) we compare ¢,0"” and |6| at bynLo between the four cutoffs. To
facilitate this comparison, we define mean values &',,0%,10]|, as the halfsums of the
largest and the lowest value of the respective quantities obtained from the four cutoff
functions. An error-bar can be a assigned by taking the half-difference. The resulting
relative error is in the 1-5 % range. It is of the same size as the relative difference
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between the quantities at bypo and bynpo within each cutoff function, cf. tab.3.2(a)-
3.2(c). However, generally it is far smaller then the relative difference between values
at bro and bynLo, especially for higher dimensions.

The choice of the stability optimisation procedure — LO, NLO or NNLO - influences
the results for the optimised universal quantities at least as strongly as the choice of the
cutoff function subjected to this optimisation. This underlines the importance of the
choice of the optimisation procedure.

So far, we have studied the universal behaviour of 7 with the modified exponential
cutoff function. -Proceeding to other functions provides new insights into the extent of
7’s universality.

The exponential, modified and optimised cutoff reproduce the universal behaviour
found for the case of the modified exponential to a high degree. The curves 7(9)(b) of
all three cutoffs are similar. They share the high stability found for the case of the
modified cutoff function. Though, the exponential, modified and generalised optimised
cutoff functions have weak maxima on top of the plateaus. It can be safely excluded
that 7’s stability is a mere artifact of the choice of the cutoff function.

The four sets of 7% (bynro) coincide with higher precision than the full 7(9(b), see
tab. 3.6(d). This means that changing the cutoff parameter b within one cutoff function
induces a larger change in 7(% than switching between different cutoff functions with
optimised parameter values bxnpo-

The mean value and its error is defined as for 8 as half the sum and half the difference
of the largest and the smallest of the four optimised values. The typical spread across
the schemes is of the same width as the one between values at bynrLo and bnpo of one
cutoff function separately. By making use of cutoff-optimisation, cutoff sensitivity has
been reduced to the one per cent level.

In this chapter, we have searched for FPs in the Einstein—Hilbert truncation of gravity
in higher dimensions (4 to 10). This was done with four different one-parameter sets
of cutoff functions. For each set NNLO cutoff optimisation singled out one optimised
cutoff. Universal quantities at the FP coincided with good accuracy for all four optimised
cutoffs. This evidences the non-artificiality of the FPs.

The cutoff independence of the four-dimensional FP is shared by its higher-dimensional
extensions. This confirms the expectation that the FP-structure is universal in all di-
mensions higher than two. It may hence be surmised that the robustness of the Einstein—
Hilbert FP under extension of the truncation established in four dimensions transfers
to higher ones too. If this holds true, the Einstein—Hilbert truncation may provide a
quantitatively reliable description of quantum gravity also in higher dimensions.

The results of this chapter were obtained with cutoffs of type A, implying harmonic
gauge-fixing, a = 1. The extension of these investigations to general gauges is the topic
of the next chapter.
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Table 3.6: Comparison of the NNLO optimised values of the observables (a) ¢, (b) 6",
(c) 16| and (d) 7 for the four cutoff functions and their mean values (barred) and errors

(cf. main text).

(a)

¢ | mexp exp | mod opt ¢,
d=4| 1.510| 1.534 | 1.506 | 1.475 || 1.505 % 0.029
5| 2.802| 2.833| 2.770 | 2.687 | 2.760 + 0.073
6| 4.583  4.597 | 4.496 | 4.332 || 4.465 £+ 0.133
7| 6.712| 6.679 | 6.540 | 6.271 6.492 £+ 0.220
8| 9.143 | 9.029 | 8.855| 8.459 | 8.801 £ 0.342
9| 11.861 | 11.632 | 11.424 | 10.881 || 11.371 £ 0.490
10 || 14.869 | 14.485 | 14.240 | 13.534 || 14.202 £+ 0.667
(b)
6" || mexp exp mod opt 0%
d=4| 3.144| 3.133| 3.095| 3.043 | 3.094 + 0.050
5] 5369 ) 5.325| 5269 | 5.154 || 5.262 £ 0.107
6| 7.461| 7.370 | 7.313| 7.142 || 7.301 £ 0.159
71 9456 | 9.315| 9.259 | 9.054 || 9.255 £ 0.201
8 || 11.370 | 11.185 | 11.143 | 10.916 || 11.143+ 0.227
9 || 13.203 | 12.987 | 12.965 | 12.737 || 12.970+ 0.233
10 || 14.943 | 14.718 | 14.716 | 14.516 || 14.730+ 0.214
(c)
6] | mexp exp | mod opt 16] 4
d=4| 3.488 | 3.488 | 3.442 | 3.382 | 3.435 £ 0.053
5| 6.056 | 6.032 | 5.953 | 5.813 || 5.934 £+ 0.122
6 || 8.756| 8.686 | 8.584 | 8.353 || 8.554 + 0.201
7 || 11.596 | 11.462 | 11.336 | 11.014 || 11.305+ 0.291
8 || 14.590 | 14.375 | 14.233 | 13.811 || 14.200+ 0.390
9|l 17.748 | 17.435 | 17.280 | 16.752 || 17.250+ 0.498
10 || 21.080 | 20.651 | 20.477 | 19.847 || 20.464% 0.617
(d)
T | mexp| exp| mod| opt Ta
d=4 | 0.132 | 0.134 | 0.135 { 0.137 || 0.135 + 0.002
5 || 0.461 | 0.468 | 0.469 | 0.478 || 0.469 + 0.008
6 || 0.933 | 0.946 | 0.946 | 0.963 | 0.948 £ 0.015
7 1.502 | 1.521 | 1.521 | 1.544 || 1.523 &+ 0.021
8 || 2.142 | 2.165 | 2.162 | 2.192 || 2.167 £ 0.025
9 || 2.834 | 2.858 | 2.853 | 2.888 || 2.861 + 0.027
10 || 3.568 | 3.591 | 3.585 | 3.623 || 3.596 + 0.028




Chapter 4

Gauge Independence of Fixed
Points in Higher Dimensions

In the previous chapter cutoff independent UV FP results in higher dimensions were
obtained from the most stable flows identified by a stability optimisation procedure.

But spurious cutoff dependence is not the only artifact potentially induced by trun-
cation: the modified Ward identities are violated by this approximation, cf. section
2.2.2. This induces a dependence of physical quantities on the gauge fixing parameter.
To establish the physicality of the results obtained in chapter 3, it is important to study
this dependence, which must be small and under control for reliable ones. This con-
stitutes a non-trivial test for the reliability of the used truncation: the artificial gauge
fixing dependence manifests in the truncated flow in a structurally different way than
the artificial cutoff dependence. Low gauge fixing dependence of the most stable flows
is hence strong evidence for the physical relevance of the used truncation. Furthermore,
deeper insights into the structure of the theory, notably potential deficits of the used
approximations, may be gleaned from such investigations.

This issue is studied for Einstein—Hilbert gravity in extra dimensions in this chapter.
FP are found for all choices of gauge fixing. Cutoff optimisation is performed for 4 to
10 dimensions, different gauge fixings for the harmonic gauge condition and four sets
of cutoff functions. The stability matrix eigenvalues show small dependences on gauge
fixing. Large gauge fixing dependence of the FP couplings for o > 1 is interpreted
as a signal for the need of an extension of the truncation into the gauge fixing sector.
Einstein—Hilbert truncation is argued to be quantitatively most reliable for 0 < o < 1.
In this regime, all observables display excellent gauge independence.

The good quantitative gauge fixing independence of cutoff optimised results demon-
strated in this chapter further strengthens confidence in the physical significance in more
than four dimensions of FPs obtained in the Einstein-Hilbert truncation of ERG.

4.1 Fixed Points

In this section we repeat the FP search and optimisation procedure introduced in sec-
tion 2.1.1 and applied to the case of harmonic gauge in section 3.1 for general gauges,
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using cutoffs of type B. We find non-Gaussian UV FPs in all investigated space-time
dimensions for generic cutoffs and all choices of gauge fixing. This confirms and extends
results presented in [101], [103], [108).

The A\-boundary, marking the loss of stability of the flow, is encountered for generic
cutoffs and dimensions. The optimisation procedure laid out in section 2.1.1 is applied
to the FP values of A with respect to this boundary.

Concerning the artificial gauge fixing dependence, we argue on technical grounds and
find explicitly that for large @ both A, and g. become inversely proportional to .

For o > 1 we have to redefine the stability boundary with respect to type A (i.e.
a = 1). This follows from the construction of the optimisation procedures in section
2.1.1 and can be seen explicitly in the definition of the threshold functions (C.1) and
their arguments in the flow equations, cf. appendix C.2: for o < 1 the terms ®(—2\)
encounter the zero in the denominator for smaller values of A than ®(—2aA), whereas
for a > 1 the situation is reversed. Hence we re-define

1
a<l: Abound = 5 (1§1>1(r)1 z(1+ T(z))) ,

a>1:  Apound = % (rzn>1(r)1 z(1+ T(z))) : (4.1)
As an explicit example we consider the one parameter family of modified exponential
cutoff functions (B.1). The same analysis has been repeated for three other families, the
exponential (B.3), power-like (B.5) and modified (B.6) cutoff functions. The comparison
of their results together with those of the optimised cutoff (B.4) and those of chapter 3
is performed in section 4.4.

FPs were searched for in integer dimensions 4 to 10 and a set of values of the gauge
fixing constant a € {0, 1,1, 3,2,10,100, 1000} for a (sufficiently) dense set of members
of the four cutoff function families, parametrised by b.

The results of this search confirm and extend those of [103] and are very similar
to those of cutoff type A: FPs below the stability boundary A, < Apouna are found in
all dimensions and all choices of gauge fixing for a left bound interval of b. For low
dimensions — 4 to 5 or 6, depending on the gauge fixing — no constraint on the cutoff
arises from Apound. The value of b where A, runs into the boundary increases with the
number of dimensions.

The FP values A, are displayed in fig. 4.1 for 4 and in fig. 4.2 for 10 dimensions
as functions of the cutoff parameter b and gauge fixing a. A short look at fig. 4.1
and 4.2 discloses a basic difference between the intervals o < 1 and > 1: in the first
interval, A, is rather independent of o for both dimensions (and the non-displayed ones
5 -9 too). A difference of less than 4% for 4 dimensions, which monotonously decreases
with dimension to less than 2% for d = 10, is found for fixed cutoff parameter . On
the other hand, taking a closer look at a constant b section in fig. 4.3(a) we read off
A« = const. X a1 for large « in the second interval. The transition between these two
behaviours is fast, the 1/a scaling is quite accurate for & > 2. The FP value of the
dimensionless Newton’s constant, g., shows the same behaviour, see fig. 4.3(b).
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Figure 4.1: FP values of the dimensionless cosmological constant, A,, for the modi-
fied exponential cutoff in 4 dimensions. The red curve denotes the intersection of the
Abound (@, b)-plane with the confining box of the plot.



4.1 Fixed Points 49

logpa

3

Figure 4.2: FP values of the dimensionless cosmological constant, A,, for the modified

exponential cutoff in 10 dimensions. The red curve denotes the intersection of the
Abound (@, b)-plane with the confining box of the plot.
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Figure 4.3: Double logarithmic plots of the couplings at the FP, (a) A, and (b) g., as
functions of the gauge fixing parameter « for the modified exponential cutoff with b = 10
in dimensions 4 to 10.
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This behaviour can be understood from the flow equations in appendix C.2. Since
all solutions lie below the stability boundary for @ > 1 : Ay, < Apound(b, @) = C(b) &
holds, where C(b) depends only on the cutoff (and dimension) but not on «. Threshold
functions with two different arguments, (—2\) and (—2a\) occur in the flow equations.
For ), below the boundary, the first one goes to zero for sufficiently large values of «,
the respective functions become asymptotically independent of A. The precise meaning
of “sufficiently large” is best read off from the exact solutions: o > 2. The first FP
condition, = 2 — d, hence reads ¢3/2(—2a)\*) = consty ¢§/2(—2a)\*). In this case, all

solutions behave like A** = constqa~!. Inserting this solution into the second FP
condition, 8y = 0, one reads off the solutions g, = constq A\, = constga™!.

In [103] it is argued that a = 0 is a FP of the gauge fixing and thus constitutes the
“physical” gauge, cf. [93], [94] for Yang-Mills theory. According to this argument, the
first-order gauge fixing dependence of the FP couplings could be viewed as irrelevant.
It is furthermore quite reassuring that the technically advantageous case of @ = 1 does
not suffer from this effect and reproduces the FP of o = 0 accurately. In hindsight, this
confirms the physical relevance of the historically prior cutoffs of type A.

On the other hand, the exact theory would show no gauge fixing dependence at all.
Note that the strong dependence of A, and g, on a does not necessarily imply that
the Einstein—Hilbert truncation is unreliable for ¢ > 1. Remember that A, and g, are
not universal quantities themselves. They can be changed arbitrarily by redefining the
auxiliary cutoff scale k or by rescaling the fields. Universal quantities, like eigenvalues
of the stability matrix, or S-matrices, are invariant under such transformations.

To reach a definite conclusion on the potential artificiality of gauges a > 1, we
have to study the gauge dependence of observables or universal quantities, foremost the
stability matrix eigenvalues. We also expect that € will yield a measure of the reliability
of solutions in the interval o > 1.

4.2 Cutoff Optimisation

We turn now to the stability control parameter &, cf. (2.18). As argued in section
2.1.1, it provides a measure for the stability and reliability of the FP solution. This
has been confirmed by our findings for type A in chapter 3, where the maximisation of
& lead to a reduction in the cutoff dependence of universal quantities. For the present
case of general gauge fixing, we expect furthermore that the cutoff optimisation leads
to reduced gauge fixing dependence of the universal quantities.

The first question to be posed for the present case of general gauge fixing is, whether
extremization of £ is possible for all values of the gauge fixing parameter. The answer is
affirmative. A maximum in b is found for all dimensions and gauge fixings, see fig. 4.4
and fig. 4.5 for 4 and 10 dimensions.

Concerning the dependence on «, two qualitative features are noted: first, for fixed
cutoft parameter b and sufficiently large «, £ becomes independent of «. This follows
from the definition of A\poung, (4.1), and the a~! behaviour of A, discussed above.

Second, £ decreases systematically from the low-a to the high-a interval, while it
stays independent of o within each interval separately. This is true for all dimensions
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Figure 4.4: Stability control quantity £ in 4 dimensions. The maxima. of £ in b for fixed
« are displayed as a red curve.
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Figure 4.5: Stability control quantity € in 10 dimensions. The maxima of £ in b for fixed
o are as a red curve. £ goes to zero where A, runs into the stability boundary.
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Figure 4.6: Maxima of ¢ for different gauge fixings o and the modified exponential cutoff
function.

and all fixed values of b.

In fig. 4.6 we display the values of the maxima of £ and &, for all dimensions and
gauge fixings under consideration. &,, decreases by about 30% from @ < 1 to a > 1
too. Otherwise, £, remains quite constant within each interval separately. Interpreting
¢ as a measure for stability of the flow and reliability of the cutoff, one concludes that
they are higher for the interval ¢ < 1 than for its complement. This agrees with the
interpretation of & = 0 as the physical gauge, although an indistinct maximum is reached
in the vicinity of a = 1 for all dimensions except 4, where it is attained at o = 0. This
elevation is, however, too small to warrant any clear preference of @ = 1 over a = 0 for
d>4.

£ is universal in the sense that every redefinition of A rescales Apoung in the same way
and £ hence stays invariant. It is worthwhile to note that the qualitative leading order
difference in the non-universal FP couplings between the low- and the high-a interval
corresponds only to a quantitative 30% effect in this universal stability control parame-
ter. This outcome is not obvious from the onset nor from the qualitative difference found
for A, and g, for low and high « in particular. Following our understanding of £ as a
measure for the reliability of the results, those from large a should be considered less
reliable than those from small gauge fixings. This observation is further substantiated
by the results for universal quantities discussed below.

The loci of &,,, bunLo, are given in table 4.1 for some values of a and various dimen-
sions. As long as « remains low or high, bynLo is insensitive to it. The difference in
bxnLo between a < 1 and a > 1 depends on the dimension: while for dimensions 4 and
5 bynro is higher for low gauge fixings than for high ones, this relation is reversed for
dimensions 6 and above.
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Table 4.1: Loci of &, bunro, for the modified exponential cutoff function.

bNNLQ a=0 1 2 10 1000
d=4|13.429 |14.207 | 10.440 | 7.518 | 7.165
5 11.343 | 11.373 | 10.892 | 10.191 | 10.002
6 |[ 13.975 | 13.942 | 14.324 | 14.620 | 14.801
71} 18.681 | 18.544 1 19.998 | 21.567 | 22.156
8 || 25.918 | 25.621 | 28.833 | 32.415 | 33.755
9
0

36.860 | 36.310 | 42.547 | 49.558 | 52.306
53.458 | 52.509 | 63.979 | 76.899 | 82.414

4.3 Universality

In the full theory, the universal quantities are insensitive to the choice of the cutoff
function and the gauge fixing. Truncation introduces an artificial cutoff and gauge
fixing dependence. By optimising the cutoff with respect to stability of the flow, regions
in cutoff space were identified which exhibit reduced cutoff dependence.

If cutoff optimisation corresponds to choosing the most reliable projection of the full
theory (infinite dimensional in theory space) onto the (finite dimensional) truncation
subspace, it would be expected that the optimised universal quantities show reduced
gauge dependence too. To verify this claim, we investigate again the cutoff-dependence
of the eigenvalues of the stability matrix at the FPs and the potential universal quantity
T.

As for type A, € is positive in all cases, all FPs are UV-attractive for both couplings.
This is the case for all dimensions, gauge fixings and admissible cutoffs investigated,
and confirms previous results [101], [103], [108] as well as those presented in chapter 3,
extending them to higher dimensions and a wider range of gauge fixings.

Our expectations concerning cutoff optimisation are confirmed: it leads indeed to
reduced gauge dependence of the stability matrix eigenvalues.

Concerning 7, a more complicated picture arises. Although 7 is remarkably insen-
sitive to the choice of the cutoff and the gauge fixing for a < 1, it acquires a strong «
dependence in dimensions higher then 4.

Again, we restrict the detailed discussion of this section to the modified exponential
cutoff function. Similar results are obtained for the exponential, power-like, modified
and optimised one. The quantitative comparison is performed in section 4.4.

4.3.1 Gauge dependence of stability matrix eigenvalues

To furnish a concrete example we now discuss the full & and b dependence of the stability
matrix eigenvalues for one specific space-time dimension, d = 10.

¢’ and 6", as well as the modulus |f] = 1/(8')? + ("), in 10 dimensions are displayed
in fig. (4.7), fig. (4.8) and fig. (4.9) for 10 space-time dimensions and the modified
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exponential cutoff function. The values for the optimised cutoffs at fixed « are displayed
by the red lines. The qualitative features displayed for 10 dimensions are also present in
the other dimensions, but they are less pronounced. The planes in fig. (4.7) to fig. (4.9)
become monotonously flatter with decreasing number of dimensions: cutoft and gauge
fixing dependence increase with the number of with dimensions. In this sense, d = 10
constitutes the “worst example” investigated.

First, one notes a step in all three quantities along the line @ = 1. This happens in
all dimensions and accords with the differences in A, , g, and £ for low and high gauge
fixing. For the stability matrix, the typical height of the step (for fixed b) is of the same
order as for £, amounting to a relative difference of about 30%.

Within each of the two intervals & < 1 and a > 1, the cutoff dependence is mild over
a wide range of b-values, although it is higher for the a > 1 interval than its complement
in all dimensions. Cutoff optimisation picked out a sequence of values of ' and |f| which
lie very close to the bottom of the valley of minimal cutoff dependence. For 8”, which
is monotonously falling in b, the optimised results lie near to those of minimal, though
non-extremal, cutoff dependence. The same happens in the other dimensions, although
it depends on dimension and gauge fixing whether a clear extremum exists —as in d = 10
and all a for €, |6] — or not (cf. 8”). See chapter 3 for the analogous discussion for type
A.

This is a success of cutoff-optimisation: the b-minima of these universal quantities
were identified without referring to these quantities themselves. Furthermore, the step
between the @ < 1 and a > 1 intervals is of reduced height for the optimised cutoffs
compared to generic cutoffs.

A (semi-) qualitative changes occurs for small values of b close to the stability bound-
ary and for very large ones: 8" vanishes and the eigenvalues become real. They are both
positive, both directions in the A — g plane remain UV-attractive. The difference be-
tween this case and the generic one is that trajectories approach the fixed point straight
on without spiralling. The FP is UV-attractive for both directions in all studied cases.

Again, this phenomenon extends to some of the other dimensions. The lower of the
two values of b, where this transition happens, decreases rapidly with dimension toward
the minimally allowed one, where £ goes to zero. The available data-point density is
insufficient to resolve this effect for dimensions lower than 9. Whether the transition
actually takes place for d < 8 hence remains unclear. One should remark that also in 9
and 10 space-time dimensions these (-values lie so close to the stability boundary that
the reliability (as measured by &) of this finding is very low. This is also illustrated by
the very large b-dependence of ' and |6| very close to the stability boundary.

Also the high b-value, above which " vanishes, increases with dimension and de-
creases with gauge fixing. Since the maximal cutoff parameter investigated is 10! and
we did not investigate the sharp cutoff, which is the b6 — oo limit of the modified expo-
nential one, we cannot comment whether the transition from complex to real eigenvalues
holds for all dimensions and gauge fixings. Since complex eigenvalues are reported for
the sharp cutoff of type A in 4 dimensions [108], we suspect that this is not the case.

We conclude that even for these non-generic cases of poor reliability (i.e. low £) the
FP remains UV-attractive, a feature which proves to be very resilient. All of the above
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Figure 4.7: log b-log a plot of # in 10 dimensions for the modified exponential cutoff, in
red the values for the NNLO optimised cutoff.
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Figure 4.8: log b-log a plot of ” in 10 dimensions for the modified exponential cutoff, in
red the values for the NNLO optimised cutoff.
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Figure 4.9: logb-log a plot of |#| in 10 dimensions for the modified
in red the values for the NNLO optimised cutoff.

exponential cutoff,
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Table 4.2: (a) Mean values &',8” over a € {0,,1,1,32,2,10,100, 1000} and (b) reduced

1993 4y 9

1,1} for optimised modified exponential

mean values &, 6" over the reduced set a € {0, %)

cutoffs.
(a) (b)
d 0 8" d g 6"
4 1.769 4 0.280 | 3.443 + 1.031 4 || 1.882 + 0.167 | 2.507 £ 0.094
5) 3.191 £ 0.399 | 5.712 + 1.044 5 2.944 £+ 0.152 | 4.829 £ 0.161
6| 5.216 £ 0.785 | 7.831 £ 1.067 6| 4.607 £0.176 | 6.995 + 0.231
7 7.624 £ 1.189 | 9.842 £ 1.070 7 6.664 £+ 0.230 | 9.053 * 0.281
8 || 10.370 &+ 1.623 | 11.752 4+ 1.038 8 9.046 £+ 0.299 | 11.022 + 0.308
9 || 13.486 £ 2.133 | 13.555 + 0.969 9|l 11.729 + 0.376 | 12.903 £ 0.317
10 || 16.930 £ 2.677 | 15.260 + 0.881 10 || 14.710 + 0.457 | 14.686 + 0.307

confirms and extends previous results [103], [108], [134].

4.3.2 Optimised cutoff values of stability matrix eigenvalues

After having discussed the entire accessible b — a plane, we focus now on the results for
optimised cutoffs. They are shown in fig. 4.10(a) to fig. 4.10(c).

The difference between low (o < 1) and high gauge fixing parameters is clearly
visible. The gauge fixing dependence of the cutoff optimised results is very low within
each interval and mild in between (in the 25 - 30 % range). Except for ¢ in d = 4, the
minima in « lie in the vicinity of & = 1. This accords perfectly with the picture gained
from the analysis of &, see section 4.2.

Note also that for each « the difference 8y o(a, d+1) — 0y o(@, d) increases with
d whereas 03 y.o(a,d + 1) — Oy nrole, d) decreases. The value of |@|nvro(e,d + 1) —
|0|nvro(e, d) approximately stays constant. This rotation of the complex eigenvalues
toward the real axis extends the findings for type A to general gauge fixings. It fits to
the fact that the size of the b-interval for which complex eigenvalues are found decreases
with dimension.

To facilitate the comparison of the NNLO optimised results for the modified cutoff
to others, we use again mean values and corresponding errors. This should be viewed
as a rough estimate for the “error-bar” of the results.

The mean values of the cutoff optimised quantities # and #” are defined as half the
sums between the respective biggest and the smallest value over . The error-bar is
introduced as half the difference between them. The resulting numbers are given in
table 4.2(a). The relative error of ' stays approximately constant for all dimensions,
whereas the absolute error of 8” even decreases slightly. The major contribution to these
error bars comes from the difference between low- and high-a results.

One could take the point of view that results for &« > 1 should be excluded from
these condensed results. This could be argued both on the ground that @ = 0 is the
“correct” gauge fixing and that the (albeit non-universal) FP couplings are qualitatively
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Figure 4.10: Universal quantities (a) &', (b) 8", (c) |0| and (d) 7(bratio) ¥ Ma.x[l,a]d—f-z
(cf.main text) for NNLO-optimised modified exponential cutoff and different dimensions
and gauge fixings.
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Figure 4.11: Double logarithmic plot of 7 for dimensions 4 to 10 and the modified
exponential cutoff function with parameter b = 10.

different for o > 1 from those at a = 0. Furthermore, the maximal quality achievable
for fixed «, as measured by &,,, is systematically lower for the high-« interval than for
the low-a one. On this ground, we define the reduced mean values §, §” as the half-
sum of OynLo > finLo for @ = 0 and @ = 1. These modified mean values are given in
table 4.2(b). They are systematically lower than the full mean values, except for ¢’ in 4
dimensions. The corresponding errors are lower by a factor of 2 to 6. The relative error
is now reduced down to the few percent range.

4.3.3 Gauge dependence of dimensionless combination of cou-
plings

We turn now to the second quantity, 7 = A, X gf/ (d_2), introduced in section 3.2 as the

generalisation of the product A,g, from 4 to general dimensions.

If permitting for an interpretation as a universal quantity, it should be robust to
variations of the cutoff. Indeed it was found to be very stable under variations of b in
4 to 10 dimensions and for all investigated cutoffs. For fixed gauge fixing «, 7 shows
cutoff sensitivity similar to that of cutoffs of type A. We will not repeat the discussion
of the cutoff dependence performed in section 3.2.2 for o = 0.

Presently, we concentrate on the gauge fixing dependence of 7. To constitute a
physical quantity in the present theory, it should be independent of the choice of gauge
fixing. For o < 1, the gauge fixing independence of A, and g, carries through to 7. But,
as can be surmised immediately from the behaviour of A, and g,, this fails to be the
case for @ > 1: asymptotic a~! scaling of the fixed point couplings leads to

a>1:7~a @7, (4.2)

This is displayed explicitly in the double-logarithmic plot in fig. 4.11. This result can
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be interpreted in three different ways.

(i) One possible interpretation is to discard 7 as a candidate for a universal quantity,
since it exhibits strong gauge fixing dependence. Against this speaks the excellent degree
of gauge fixing independence in the low-« interval.

(ii) With a look to both the understanding of @ = 0 as the physical choice and
inferior quality (cf. section 4.2) for a > 1, one could regard the interval of high values of
the gauge fixing as plagued by artificial @ dependence and hence disregard any results
obtained from it. The first-order o dependence of 7 lies then outside the applicability of
the truncation. Only an extended truncation could open « > 1 for reliable calculations.

(iii) An intermediate stance would be to grant T physical status for o < 1 only.
Consequently, one would have to view Einstein—Hilbert gravity with o > 1 as a theory
distinct from the same truncation for @ < 1. Whether it possesses a physical interpreta-
tion or simply indicates the need to extend the truncation remains open. An argument
for this point of view is that the difference in optimised quality &, and universal 8 for
low and high « is only quantitative. Furthermore, after taking out the asymptotic «
behaviour, 7 x Max(1, oz]Fg‘2 shows very little residual gauge fixing dependence, see fig.
4.10(d) for the values for optimised cutoff. Values of cutoff optimised 7 rescaled in this
way within the intervals o < 1 or > 1 are strongly correlated: relative internal differ-
ences are between 5 to 20 % and decrease with dimension. But even between the two
intervals the difference of rescaled values of 7 is only a factor of two for d = 4, decreasing
with dimension to 50% in 10 dimensions.

4.4 Cutoff Independence

In the previous sections we have discussed cutoff and gauge fixing dependence of the
UV FP properties obtained via the modified exponential cutoff function. Cutoff opti-
misation was repeated with the exponential (B.3), power-like (B.5) and modified (B.6)
cutoff functions. In this section we compare the optimised results from these three, the
modified exponential and the optimised cutoff (2.19) with each other and the results of
chapter 3.

The respective cutoff functions are listed in table 3.4 together with the values of the
cutoff parameter bro at which the respective Apoung’s are maximal.

This broad range of cutoff functions allows for a twofold analysis: first, we compare
the NNLO-optimised results obtained by the use of the various cutoff functions within
either type A or B. This constitutes an important test for the optimisation procedure:
it must yield the same physical results for all cutoffs. Any difference between optimised
cutoffs can be ascribed as a minimal error to the results.

Second, comparing results found for cutoffs of type A with those of type B gives a
quantitative measure of the impact of the different decompositions of field space under-
lying the two types. In the full, untruncated theory this would make no difference. But
in the present, truncated case, this distinction serves as a profound test for the reliability
of the cutoff optimised truncation. These investigations extend those of [103], [108] to
other cutoff functions and higher dimensions.



4.4 Cutoff Independence 64

Table 4.3: Legend for fig. (4.12) - fig. (4.13(d)).

cutoff colour | symbol
power-like green | filled circle
modified exp. | black | circle
exponential red square
modified blue | triangle
optimised rosé diamond

The results displayed below exhibit stability to all of the above variations in all in-
vestigated space-time dimensions. The UV FP arise in all investigated cases and share
the same qualitative features. No signs of significant, qualitatively relevant artificial-
ity could be discovered. Einstein—Hilbert truncation, enhanced by cutoftf optimisation,
passes these tests very well.

4.4.1 Comparison of optimised qualities

One of the advantages of using the universal quality control quantity & is that it can be
straightforwardly compared for different cutoffs and gauge fixings. We take its maxima
&m as a basis to compare the optimised qualities of the various cutoffs. The information
gleaned thereby can be used as a bias in the interpretation of the reliability of the results
obtained through the respective cutoff functions.

We repeated the cutoff optimisation for the four plus one cutoff functions of type
B for general gauge fixings. The first observation is that optimisation of the stability
was possible for all four cutoffs, for all considered dimensions and values of a. The
resulting values &, together with those for the optimised cutoff are displayed exemplary
for dimensions 4 and 10 in table 4.12. Those of dimensions 5 to 9 interpolate between
them like those of the modified exponential cutoff in fig. 4.6. The colour-symbolic legend
for this and the following figures of the present section is given in table 4.3.

The characteristic features discovered for type A and the modified exponential type
B cutoff (black circles) are reproduced for the other cutoffs. Especially the pertinence
of the difference between low (< 1) and high (> 1) gauge fixing parameters supports its
interpretation of stemming directly from the structure of the flow. For all five cutoffs
&mn stays rather constant for low and high o’s separately, but decreases from the first to
the latter interval. It decreases monotonously with dimension for all gauge fixings. As
observed already for type A, the optimised cutoff leads by a 3-10% margin. Exponential,
modified exponential and modified cutoffs are of equal quality.

The monomial power-like cutoff function displays lower values of &, than the other
four ones for a > 1 or higher dimensions. We are lead to expect lessened reliability of
results obtained with the power-like cutoff. This furnishes a “bad example” to check
the relevance of the biases based on &,. One expects an increased spread in physical
results calculated with this cutoff and those obtained via the other cutoff functions.

Comparing &,,’s from type A with those of type B, we note the accordance of the
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Figure 4.12: &, for 4 and 10 dimensions and five different cutoff functions. The full
legend is given in tab.4.3.

former with a < 1 of the latter. Although the quality appears to be consistently better
for all cutoffs of low o type B than for type A at dimension 4, this difference vanishes
when going to higher dimensions. For d = 10 it becomes indiscernible. Judging from
&n alone, we find type A and low-a type B cutoffs to be equally trustworthy, whereas
type B for a > 1 appears inferior in quality. Equipped with these biases, we turn now
to 6 and 7.

4.4.2 Comparison of cutoff optimised 6—values

NNLO-optimised ¢,8"” and |6| are displayed in fig. 4.13(a) to fig. 4.13(c). Dimensions
4, 6 and 10 were chosen as examples. The results for dimensions 5, 7, 8, and 9 obtained
for the four new cutoff functions interpolate between the displayed ones. Qualitatively,
they behave as those yielded by the modified exponential cutoff, cf. fig. 4.10(a) to fig.
4.10(c).

The accordance of the four new sets of curves with the already discussed ones be-
longing to the modified exponential cutoff is striking. All features discovered with that
cutoff function are reproduced by the other four functions. Furthermore, our identifica-
tion via &, of the monomial power-like cutoff as the rotten apple receives confirmation:
whereas the results of the other 4 optimised cutoffs coincide accurately, those obtained
with the power-like cutoff function (represented by the green curve with the filled circles)
are outliers for practically all dimensions and gauge fixings that were studied. Conse-
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quently, the power-like cutoff is excluded from the determination of the mean values
and according errors.

But if we trust our stability considerations so far as to apply this cut, another
exclusion is inevitable. Following the arguments presented in section 4.3.2, we restrict
the averaging to gauge fixings @ = 0, 3,1. One further argument for this restriction is
that the type A results belong to the low « interval and should be compared to those
from B belonging to the same set. Consequently, we define the mean values 8, % and
|§| g as half the sums of the suprema and infima of the respective quantities on the
product space A x R with % := {a: 0,2,1} and R := {r : r&P pmexp popt pmod} The
error-bars are given by half the differences. These values are presented in table 4.4(a)
to 4.4(c) together with a repetition of those of type A.

The error-bars of quantities for general gauge fixings are bigger than those obtained
for harmonic gauge only. This is because of varying « in addition to varying the cutoff
functions. Relavtive to the mean values, they range from 11% for 8;(d = 4) to 3.6 %
for 8% (d = 10). Generally, they decrease with dimension. The relative errors of 8% are
smaller than those of 5.

The accordance of type A mean values with type B ones increases with dimension.
g', lies within one error bar of 8 from 5 dimensions onward, with a less than two error-
bars difference at d = 4. The error-bars of §” and || overlap for d > 6 ! and d > 4. It
seems justified to speak of identical results from type A and B, within the given errors.

Cutoff optimisation has suppressed the differences in the universal eigenvalues ob-
tained in a wide set of calculational schemes to the few percent level. For different field
decompositions (type A and B), gauge fixings and cutoff functions it consistently leads
to coinciding results within this level of accuracy.

4.4.3 Comparison of cutoff optimised 7—values

In section 4.3.3 we studied 7 using the modified exponential cutoff function. Utilizing
the other functions confirms the degree of its cutoff independence.

The rescaled values of 7 are displayed for the five optimised cutoffs of type B in
fig. 4.13(d) for d = 4,6,10. The results for the other dimensions interpolate between
them. With the exception of the power-like cutoff, the data points coincide to the degree
of graphical indistinguishableness. The relative outlier status of the power-like cutoff
values of 7 confirms the previous observations.

Therefore, we exclude it from the determination of the mean value. Also only o <1
is taken into consideration since 7 is not a meaningful quantity in the complement, at
least not in the present truncation. Consequently, the mean values 7 are defined over
the same set A x R as those of the 8’s.

The main contribution to its error-bar comes from the residual a-dependence which
exceeds the spread induced by the different cutoff functions. The relative error decreases
from 12% in 4 dimensions to 3 % in 10. It is displayed together with the one mean values
of type A, 74, in table 4.4(d). This error exceeds that of 74, which is around 1%, by
half a magnitude. Nevertheless, the two means lie within one error bar (of 75) of each

1With less than 3 error-bars difference for d = 4 and less than 2 for d = 5.
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Table 4.4: Comparison of the mean values and errors of the universal quantities (a) ¢’,
(b) 6", (c) 0| and (d) 7 of type A and type B (suffixes A and B). See the main text for
the defenition of these mean values.

(a)

(b)

d 7, 7, d A ar
4| 1505 £ 0.020 | 1.899 £0.210 4 | 3.094 £ 0.050 | 2.461 £ 0.230
51 2.760 + 0.073 | 2.923 £+ 0.184 51 5.262 £+ 0.107 | 4.767 £ 0.223
6 || 4.465 £0.133 | 4523 £0.260 6| 7.301 + 0.159 | 6.871 + 0.355
71 6.492 £ 0.220 | 6.496 £+ 0.398 7 9.255 + 0.201 | 8.880 £ 0.453
8 | 8.801 +0.342 | 8768 £0.577 8 | 11.1434 0.227 | 10.815+ 0.515
9| 11.371+ 0.490 | 11.314 £+ 0.791 9 || 12.970+ 0.233 | 12.680+ 0.539

10 {| 14.2024+ 0.667 | 14.129 + 1.039 10 || 14.7304+ 0.214 | 14.471+ 0.522

(c) (d)
d 0L o, _d 7 7
4 3.435 £ 0.053 | 3.114 £+ 0.260 4 | 0.135 £ 0.002 | 0.131 + 0.016
5 5934 £ 0122 | 5580 £ 0.283 5[ 0.469 + 0.008 | 0.487 + 0.042
6 | 8.554 £ 0.201 | 8.226 + 0.440 6 || 0.948 £ 0.015 | 0.978 £ 0.068
7| 11.3054 0.291 | 11.003+ 0.601 71 1.523 £ 0.021 | 1.560 + 0.087
8 || 14.200+ 0.390 | 13.923+ 0.763 8 || 2.167 & 0.025 | 2.208 £ 0.101
9 || 17.2504 0.498 | 16.9954 0.920 9 || 2.861 % 0.028 | 2.905 + 0.1103
10 || 20.464+ 0.617 | 20.2294 1.099 10 || 3.596 4 0.028 | 3.641 £ 0.115
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other for all dimensions. This concordance exceeds that found for the eigenvalues of the
stability matrix.

Restricted to a < 1, the quantity 7 exhibits cutoff and gauge fixing independence at
an even higher level than the eigenvalues of the stability matrix.

Concerning 7 for @ > 1, one sees from fig. 4.13(d) that cutoff independence is as
good as for the low « case. This may be taken as a sign for the not entire artificiality
of this case. What kind of information could be encoded in this “partially universal
behavior”, i.e. with respect to the cutoff only, remains open for investigation. Perhaps
it provides hints for the direction into which the truncation has to be extended to gain
full gauge fixing independence.

In this chapter the gauge independence of FPs in higher dimensions was demon-
strated for five different cutoff functions. NNLO-optimisation was applied to these cut-
offs. The observable quantities calculated for these different, optimised cutoffs agreed
with each other to within a few percent for each gauge fixing. For all cutoffs and dimen-
sions, a difference for all results obtained with gauge fixing smaller than unity and larger
than unity was observed. This difference did not change the qualitative properties of
the FP. Based on the maxima of the NNLO-parameter, it was argued that the smaller
values of the gauge fixing parameters lead to more reliable results. This argument was
counter-checked by noting that it lead consistently to lower expected reliability for a
certain cutoff already known to be of lower stability than the other cutoff functions that
were employed. By applying these cuts to the available data, a narrow band of most
reliable numerical results could be identified.

As an additional result, we note that &,,, the maximum of the NNLO-parameter, is
highest for the optimised cutoff function in all dimensions and gauge fixings. Since this
maximum corresponds to the most stable flows, as demonstrated in the two previous
chapters, it follows that this cutoff functions yields the most reliable results. This
confirmes previous results and arguments [86], [88], [53], and will be employed in the
next chapter.



Chapter 5

Flows of Quantum Gravity

In the previous chapters, FPs of the ERG of gravity in the Einstein—-Hilbert trunca-
tion were studied. Physically this means the study of the far UV-regime, where all
intermediate scales have decoupled. The only remaining dimensionful quantity is the
renormalisation scale. Furthermore, all renormalisable theories, which lie on the same
UV-critical surface (cf. section 1.4), have their common bare limit in the FP, sharing
its universal properties. At asymptotically high energies they are oblivious to their fate
at low energies, in the IR, where they can and will describe different physical systems.

To investigate quantum effects of gravity at energies below the high UV, e.g. near the
Planck scale where they are expected to set in, the full solution of the RG equations have
to be considered. Furthermore, in order to establish the renormalisability of a theory
describing specific low-energy physics, its flow-evolution (RG trajectory) into the UV has
to be followed. Doing this for a dense set of starting points in the space of couplings yields
a complete phase space portrait. Phase space, because various qualitatively different
types of RG behaviour do occur, one already mentioned being renormalisability or its
lack. Such a complete portrait further allows to classify theories according to their
qualitatively different IR behaviour, allowing to investigate quantum gravitational effects
at finite energies in a systematic way.

In the present chapter, we turn to such investigations of entire coupling phase space
within the Einstein—Hilbert truncation. To make an analytic analysis possible, we em-
ploy the optimised cutoff (2.19), which yields explicit flow equations. It was noted in
chapters 3 and 4 that the optimised cutoff exhibits consistently superior stability prop-
erties. These favourable properties motivate its choice for the present task. We discuss
general properties of the system of flow equations in an analytic way before turning to
explicit full phase space portraits in four dimensions and two different gauge fixings.
These analytic equations have been used in [134] for an analytic FP-study in general
dimensions for one choice of gauge fixing.

We provide a detailed classification of trajectories in the entire phase space. A
similar study has been performed with the sharp cutoff function [108] for parts of phase
space. The three-way comparison of the portrait and classification given there and our
results provides a first handle on the cutoff and gauge independence of features of the
entire flow, in the same spirit as the FP analysis of chapters 3 and 4.

A crucial question in the four-dimensional context is whether the one trajectory
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realised in Nature lies on the UV-critical surface belonging to the found FP, i.e. whether
thiseFP of quantum gravity discovered in the present setting bears any relevance to
our physical world. The answer is affirmative [108], [130], [131] in the Einstein-Hilbert
truncation (projection) and further strengthened by the results presented in this chapter.
It is also shown that the physical trajectory lies in a part of phase space described in
the present approximation with good stability, allowing to draw reliable conclusions to
the quantum evolution of gravity.

5.1 Analytic Flow Equations

In the present chapter we use an alternative definition of the dimensionless coupling g,
whereas A remains the same:

A= /R, (5.1)

g = k4G _ Gu(4m)'E
' ((477)%_1F[% + 2]) S Tl2+4]

(5.2)

Here ), Gy are the dimensionful cosmological constant and Newton’s constant and g
coincides with the usual definition used in the other chapters. Including the factor of
(4#)%‘1 T[2+ %] in the definition of g eliminates it from the flow equations, de-cluttering
our analytic expressions considerably (see for comparison appendix C.2 for the full flow
equations for the usual dimensionless couplings). For the same reason the index k has
been suppressed too.

Using the optimised cutoff (2.19), [86], the S-functions for these dimensionless cou-
plings are

OA =B = (=2+n)A+ (a1 —nas)g, (5.3)
Og:=p0; = (d—2+n)g, (5.4)

where the anomalous dimension 7 is given by

_ gbl(’\)
Nn=———>F>
1 4+ gby(N)
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and the coefficient functions read

dd—1)(d+2) d(d+2)

a(\) 20— 2N Tagy ~ 2d(d+2),
d(d— 1) d
2N = 3o T 1= zan’
by — (A2 —4d®+7d-8)  d(d+2)(d — 2~ 11d - 12)
N = T T — oy 12(d - 1)(1 - 23)
2+ 2)% el d-1) , 61(“121(365)6) Ll h@ reav1),
b — P-4l +7d-8  (d+2)(d° - 2d - 11d-12)
2(A) d- D127 12(d - 1)(1 -2V
2(ad® —20d —d—-1) (d+2)(d*—6) (5.6)
T d(1-2a0)? 6d(1 — 2aA) |

These explicit results, which have been used in [134], were obtained by inserting the
optimised cutoff (2.19) into the threshold functions, yielding

» _ 1
- N 1
W) = Ty Ter (58)

In the limit &« — oo and appropriate redefinitions of the couplings, the analytic flow
equations have already been given and discussed in [134]. The ones presented here hold
for general a.

A fundamental property of the flow equations of Einstein-Hilbert gravity, which is
independent of the choice of cutoff is the vanishing of 8, for ¢ = 0. This has the
consequence that the two halves of phase space g 2 0 are disjunct for solutions of the
RG-equations, the trajectories, which can never cross from one half to the other one.

5.1.1 Boundaries

A typical truncation artifact is the presence of poles in the threshold functions. For
certain values of the couplings, denominators of the integrands are zero. This can be
understood as a breakdown of stability of the truncation: the terms from the operators
considered in the truncation cancel each other. In the full theory the (infinitely many)
terms not present in the truncation would now determine the value of the threshold
functions. Without extending the truncation it is not possible to estimate the correct
value of the threshold function at and near the stability boundary. Even if the contri-
bution of these neglected terms is otherwise perturbatively small, they will dominate
the flow at the stability boundary in an uncontrolled manner, rendering it unstable. See
section 2.1.1 for more detailed discussion.

In the present case, the stability boundaries are located at Apouna = 1/2, 1/2a,
cf. (5.6). An interesting feature of the flow equations for the optimised cutoff is that
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they remain well defined on the stability boundaries. All diverging contributions to the
anomalous dimensions and the S8-functions cancel:
limn=limn=2+d" (5.9)

1
A—3 A=3a

This result holds for all values of d and a. The (-functions at the stability boundaries
are given by:

)1\1_)1'1'% ﬂg = )\lin;ia /Bg =2dg, (510)
d gd(d®—23d*+ 63d3 + 43d*> — 154d + 360)

1 =+ : 5.11

R & —4d? +7d -8 (5:11)
d  gd36+42d + 38ad + 10d* — d* — 12ad®

i = — = : 5.12

,\En;%ﬁ)‘ 2a+ 6 ad? —2ad —d—1 ( )

(5.11) diverges for 2.478 real dimensions and (5.12) ford =1+ 2= +4/1+ 2 4+ L.

In the case of the sharp cutoff function [108], the stability boundaries are the same.
However, in that case the divergences do not cancel and lead to the breakdown of the
flow at the boundaries. On the other hand, the solutions of the RG equations for the
optimised cutoff etend across the boundaries. However, the question remains whether
the flow can be trusted at all near the boundary, since the vanishing of the denominator
in the threshold functions still signals the missing of terms relevant at least close to the
boundary. For the rest of this work, we assume as a working hypothesis that, as long as
the flow equations remain finite, they can be taken at face value.

In addition to the stability boundary, which is generic in truncated ERG, a second
potential source of breakdown of the flow is present in the the 3 functions in the Einstein-
Hilbert truncation: the non-perturbative expression for the anomalous dimension, (5.5),
contains the possibility of a real first order pole at §g"(\) = 1/D5()) for general cutoffs
and g7(A\) = —1/ba()) for the optimised cutoff. This non-perturbative form of the
anomalous dimension arises from taking into account the running of the coupling on
the r.h.s. of the flow equation. This would not be the case in a perturbative treatment.
However, it is this non-perturbative denominator which leads to the mutual cancellations
of the stability boundary poles discussed in the previous paragraph.

Turning to the general properties of g"(\), we note that it is zero at and only at a
stability boundary, i.e. ¢"(1/2) = ¢g"(1/2a) = 0. Since n vanishes identically for g = 0,
it is discontinuous at these points. We will return to this issue in section 5.3.8. The
number of real poles of g”(\) depends on the dimension and the gauge fixing as displayed
for 4, 6 and 10 dimensions in fig. 5.1(a).

Beside marking the (potential) breakdown of the flow, g"” determines the global
properties of the flow: as n has a first-order pole at g"()\), it changes sign across this
line. The other sign changes of n occur at g = 0 and b;(A) = 0. The solutions of the
second condition depend on the dimension and the gauge fixing, cf. fig.5.1(b). Since
1 = 2+d at the stability boundary, any curve between the two branches of the boundary
in phase space has to cross an even number of divergence or zero lines of 7.
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Figure 5.1: Loci of the (a) poles of g7(A) and (b) zeros of 7 for 4, 6 and 10 dimensions
and all gauge fixings. In red the stability boundary.
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We illustrate these general considerations in detail in section 5.3 with the explicit
example d = 4, o = 0. In that case we can read off the global properties of 1 from

figs.5.1(a), 5.1(a): there is only one finite stability boundary at A = 1/2, no zero of n

except on the A-axis and g7 has two poles at %. Knowing 7(1/2,g) = 6 one can

determine the sign of 7 in the whole phase space.

Again, in the case of the sharp cutoff discussed in [108], the situation is somewhat
different: the lines of diverging 7 are situated at a constant negative value of g and
at A = 1. However, only the divergence at g7 < 0 stems from the vanishing of the
non-perturbative denominator of 7. At the stability boundary the anomalous dimension
suffers from the breakdown of the flow, as do the other terms.

For one modified exponential cutoff, which was also discussed in [108], a positive g
branch of §" exists for A < Apoung, Similar to the present case.

As suggested by the discussion of the stability boundary we have to ask whether the
divergence of 7 really constitutes a breakdown of the flow in the case of the optimised
cutoff. This time the answer is affirmative: both 8, and 3, are linear in 7. They too
have a first-order pole at g?(\). The only possible exception to this is for 3y the zero
measure set of intersection points between g7 and the solution of A = ay(\)g where it
remains finite.

The RG-trajectories terminate at g7(\). This marks a non-perturbative breakdown
of the Einstein-Hilbert truncation.

5.1.2 Association across boundaries

The fact that both S-functions depend linearly on 7 gives rise to an interesting feature
of the RG trajectories. The slope of the trajectories g(¢()\)) at g"(\) is given by the

ratio

By ___ 9"

By A—axg"
It is finite and continuous across g”. Trajectories terminating at the same point (A, g"(\))
but approaching it from opposite sides appear as one continuous and differentiable curve
g()), see for example fig. 5.5. We call two such trajectories associates. They are related
to each other by terminating in the same point of ¢7. This relation is called association
and is associative. A set of associates is called a society. If a trajectory has no associates
(if both its UV and IR limit exist), it is called complete. A society consisting of complete
trajectories is also called complete.

Two different points of view concerning the interpretation of this procedure seem
possible:

(i) Since Einstein-Hilbert truncation breaks down at g”, the inclusion of new op-
erators is inevitable to capture the essence of quantum gravity correctly. These new
operators start to dominate the flow as one approaches ¢g”7 and may continue to do so
beyond it. Nothing can be known about the general qualitative behaviour of the flow
near or beyond ¢”7 within the present truncation. The association of trajectories is ir-

relevant since the one on the wrong side of ¢”7 does not pertain to the full theory at
all.

(5.13)
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(ii) Alternatively it may be the case that the terms necessary to remedy 7’s divergence
are relevant only in the vicinity of ¢g7. They might alter the flows only locally but
leave them qualitatively unchanged in the phase space regions where Einstein-Hilbert
truncation works. Qualitative statements, especially about the IR asymptotic behaviour,
made in this truncation may reflect properties of the full theory. Continuing flows across
g" by associating them allows us to discuss UV and IR complete phase portraits which
capture the qualitative global features of the full theory.

An open issue in (i) is how to identify the “correct” side of g": except for the stability
boundary, which could be used to argue that A > Min[%, %] is not correctly described
in the present truncation, there is no evidence as to which is the “right” or the “wrong”
side of ¢g”7 from the point of view of the flow equations. Both sides are equally well
described.

Only the second point of view allows further discussion within the present truncation.
It will be used as a working hypothesis at some points of the further discussion.

Associating two flows is not the same as continuing one flow across ¢7 in a very
important respect: like 7, both (-functions change sign at this line. A trajectory ter-
minating into ¢”7 from one side with decreasing logarithmic RG scale ¢ is associated to
one doing the same from the other side. The two trajectories cannot define one com-
prehensive trajectory piecewise, since the couplings would not be unique functions of ¢
anymore. This reversal of the direction of the flow at g7 prohibits the interpretation of
associated trajectories as pieces of full, IR and UV complete ones.

5.2 Non-Gaussian Fixed Points

Before turning to concrete examples of the whole phase space, we study the properties
of the FP solutions of the system of analytic flow equations. In contrast to the other
cutoffs used in chapters 3 and 4, the analytic form of the optimised cutoff flow equations
permits a rigorous counting and qualification of solutions. For the case a — oo, even
the FP solutions are analytic [134]. Such explicit information is important to verify
that one has not missed out on a solution of potential physical interest in numerical
studies, such as those performed in chapter 3 and 4. Except for cutoff independence
(which is per definition not studied in the present chapter), such a physical FP solution
has to fulfil several conditions: (i) it must yield positive g,, since g cannot change sign
(since by vanishes for g = 0) and Newton’s constant is measured to be positive, (ii) the
solution must be real, and (iii) fulfilment of (i) and (ii) must not depend on gauge fixing,
as should the stability properties at the FP. These conditions will suffice to single out
exactly one solution as physical. It is precisely the FP studied in chapters 3 and 4 with
the optimised cutoff and four other cutoff functions. In this sense, the present section
serves as an a posteriori reason for the physicality of the subject of chapters 3 and 4.
The two-by-two system Gg(As, g«) = 0N Br(As, g«) = 0 is easily reduced to a (gener-
ically) fifth-order polynomial equation in A by solving b, = 0 for g, which is linear in
g. For the special choices a = 0, 1, 0o, this reduces to a third order polynomial which
admits explicit analytic solutions for all dimensions. Hence the number of solutions
is reduced from five to three in these cases. Since we discuss the phase space of the
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special cases @ = 0,1 in 4 dimensions below, we must ascertain that these choices do
not exclude FPs of potential physical relevance.

For general a and d, the fifth-order polynomial, whose roots are the FP solutions
A, 18 given by

{d(d — ) —d— 4)}
8 55

1
— - - 4d — —d® + —4d* + =4
+>\{ 4ad(d — 2)(d*> - d - 4)+d—1+4 34d 3d 6d tg }

1
+>\2{4a2d(d )(d—2)(d+1) + 16+ 64d — 242 + g8 — 1o

3 3
39 50 , 2
—a | — — 148d — 20d? + 36d° - 4 5
a{d_1+8 8d — 20d? + 3 =d +3d]}

16 118 101 26 1
322__2__d2 d3__4 ~ 5
+/\{a[d_1 72d 3 3 3d+3al]
8

4 4
— 5o [72+228d + 26d° + 21d° + 2d* — °] — 16 — 24d — 7’ - ~d*}

9 1. 4, 1
+)\4{4a2 [12+18d+ 30d2+d3+ d4]+8a [32+72d+f’3§d2 3d3+§d4—§d5}}

+ )\5{ - 13—6a2(d+ 2)(d® + 6d + 12)} =0. (5.14)

The coefficients of the polynom in A are real for real values of o and d. Hence the five
roots A\, 2 = 1,...5, are either real or complex conjugated. Constructing the continuous
functions, \¢(a, d), we can discuss the roots as entities with fixed labels over their entires
domains o € Ry x (d > 2).

Only one root, Al, is real in its entirety. It is positive, as is the corresponding value
g, over its domain. As a function of « it is rather constant over 0 < o < 1 and
behaves as 1/« for @ > 1. This behaviour is found for generic cutoff functions for the
FP discussed in chapter 4 and was discussed in section 4.1. The corresponding stability
matrix eigenvalues are positive or complex conjugated with a positive real part. They
show only quantitative dependence on a. We identify this UV FP as physical. It is
the one discussed with different cutoffs in chapters 3 and 4. The roots A2 and A3 are
complex conjugated for d < 8'. For 8 < d they develop two real negative branches for
an interval 0 < a < ag. o grows monotonously with dimension and goes to co for
14 < d.

A4 and A2 do not exist for a = 0,1. For a — 0 they tend to +oo. In all dimensions
they are real positive for some interval 0 < a < ;. For d = 4 one finds a; = 0.654523.
They are complex conjugated for a; < « in this dimension. In all other dimensions
they re-enter the real plane at some as > 1. The general structure of FP solutions is
illustrated by the two examples d = 4 and 10 in fig. 5.2(a) and 5.2(b).

The corresponding stability matrix eigenvalues of A2, ..., A3, show strong gauge fixing
dependence even on the qualitative level, i.e. transitions from one to two attractive
directions.

1For this discussion we consider integer dimensions only.
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Figure 5.2: Real branches 1-5 of FP solutions A, in (a) 4 and (b) 10 dimensions.

We conclude that all but the first root display strong signs of being artifacts. It
seems not only forgivable but rather recommendable to use such gauge fixings where
they do not enter the real plane or are absent. This is the case for the two examples
a = 0,1 explicitly studied in sections 5.3 and 5.4. Furthermore, these considerations
serve as an a posteriori justification for studying only one FP solution in chapters 3 and
4, which is shown here to be the only physical one.

5.3 Flow Analysis for Four Dimensions and o =0

It is illuminating to illustrate the general discussion above with a concrete example. Its
choice is dictated by several considerations: four dimensions are the choice corresponding
to the real world, at least at large distances. a = 0 was argued to be a FP for the gauge
fixing parameter [103]. This was demonstrated in explicit examples [94] Furthermore, as
argued in section 5.2, for this choice of gauge fixing only one non-trivial real FP solution
exists, while the other, artificial ones, do not influence the real flow system.

The explicit expressions for the anomalous dimension and the 3 functions of the two
dimensionless couplings are in this case:

10022 — 132X + 81
1 —2X\)2 + g(20A2 — 12X\ — 17/3)’
. (1 —2X)% — g(30A? — 54X + 27)
(1—20)2+ g(2002 — 12X — 17/3)”’
A(1 = 2X)2 + g2(40A% + 450X — 371) + g(70X% — 30A% + 137X — 6)

b= 2 (1 —2X)2 + g(20A2 — 12X — 17/3) (5.17)

e (5.15)

By (5.16)
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In the rest of this section we investigate the properties of the numerical solutions of
this system of flow equations, the RG trajectories. We exploit their relatively simple
analytic form for our analysis.

5.3.1 Fixed points

FP dominate the behaviour of the RG trajectories in their basin of attraction and
determinate their UV or IR limit. For d = 4 and a = 0 the FP condition B4(\,, g.) =
0N Bx(As, g«) = 0 has two real solutions, corresponding to a trivial Gaussian (G) and a
non-Gaussian (NG) FP:

=0, g¢=0; (5.18)
ANG —0.164 , ¢N¢=0.0118=§N% =0.893 (5.19)

The eigenvalues 6 of the stability matrix 6;; = —00;/0j
stability properties of the FP:

ivje 5 J = A, g determine the

¢ = (-2,2) (5.20)
NG = 2.034+142.691. (5.21)

The Gaussian FP is IR-attractive for g and repulsive for A (this can be seen from the
directions of the eigenvectors of the stability matrix) and the non-Gaussian one is UV-
attractive for both couplings.

5.3.2 Anomalous dimension

Before presenting the full phase portrait we turn to the properties of n in this concrete
case. As mentioned in section 5.1.1, the anomalous dimension vanishes only for g = 0.
It diverges with a pole of first order on the line

AN —4x+1
O 4120 —2002°

gn(A) = (5.22)

This curve has a double zero at A = 1/2, a minimum at 1/2, a maximum 13/6 and two
first order poles at 1/30(9 & 4v/21). Its asymptotes are limy_14 g7 = —4/20.

The phase space is split into six trajectory-disjunct sectors by g”7 and g = 0. They
are labelled a to f, as shown in fig. 5.3. The sign of n can be determined in each of
them by starting from the known positive value n(1/2, g) = 6, cf. (5.9). Since A = 1/2
lies in sectors b and e and 7 changes sign across g7 and g = 0, it has negative sign in
the other four sectors. The results of these considerations are visualised in fig.5.3.

5.3.3 Phase Portrait

After having set the necessary stage we display the solutions to the flow equations in
fig. 5.4 and 5.5. Fig. 5.4 shows the whole of phase space with compactified coordinates
z/(1 + |z|), whereas fig. 5.5 provides a close-up of the region around the two FPs.
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Figure 5.3: The six disjunct parts of phase space a — f and the respective sign of 7 in
them. 7 vanishes on the A\-axis and diverges on ¢" (in red). The axis are rescaled as

z/(1+ |z|).

The plotted trajectories have been chosen to illustrate their association across the pole
of . The arrows indicate the IR-direction of the flow, they point into the direction
of decreasing RG scale t. ¢7 is displayed in red. The separatrix, which connects the
Gaussian and the non-Gaussian FP (red dots) is displayed in green, as is its continuation
for negative g, which runs into the Gaussian FP only.

5.3.4 Global and local classifications

Because of the explicit form of the flow equations, an analytic understanding of the prop-
erties of the phase portrait and a comprehensive classification of trajectories according
to their UV and IR behaviour is possible. This is the aim of the next two sections before
presenting and discussing the classified phase portrait in section 5.3.7. In the present
section, however, we discuss the global classification scheme, which is made possible
by the association of trajectories, extending a local scheme enforced otherwise by the
termination of the trajectories at g".

Local classification is performed in each of the six sectors separately. Possible end-
points of trajectories are FPs and asymptotic values for which the limit ¢ — +o00 exists,
and termination points on g7. well as g".

To extend local to global classification, we make use of association. A society of
trajectories ends per constructionem either at a FP or at an asymptotic value. Global
classes (of societies) are defined by their distinct limits. Note that this does not neces-
sarily imply the existence of both limits ¢ — 400 and t — —oo for a society, since it
may consist of an even number of associates, in which case there are two UV or IR lim-
its. This illustrates again the impossibility to interpret a society as a piecewise defined
trajectory.

A straightforward refinement of global classification is to label each associate with its
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Figure 5.4: Phase portrait of RG trajectories for d = 4, o = 0. The thick red line
is the 1 divergence line ¢, in green the separatrix which connects the Gaussian and
non-Gaussian FP (red dots) and the trajectory which approaches the Gaussian FP from

the lower half-plane. The arrows point along the IR direction of the flow. Note that the
axes are rescaled as z/(1 + |z|).
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Figure 5.5: Close up of phase space around the FPs (red dots). In green the separatrix
which connects the Gaussian and non-Gaussian FP and the trajectory which approaches
the Gaussian FP from the lower half-plane. The arrows point along the IR direction of
the flow.
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supporting sector in addition to its society name. We call this scheme global classification
of trajectories, the corresponding classes global classes of trajectories. The set of global
trajectory classes contains the set of local classes as a subset. Since global classification of
trajectories provides the most detailed ordering scheme. The phase portrait is classified
according to it below.

5.3.5 Asymptotes

In this section an analytic understanding of the nine asymptotes approached by the
trajectories is obtained from an analysis of the analytic flow equations (5.16), (5.17).

The asymptotic values of the couplings can be either finite or infinite. Thus there
can be three qualitatively different cases:

(i) Both couplings are finite on a FP. The Gaussian FP and the non-Gaussian one
have already been discussed in section 5.3.1.

(ii) One coupling assumes a finite value and the other one goes to infinity. This can
only be the case on a fixed line where one of the two S-functions vanishes. The FPs are
intersections of such fixed lines. For d = 4, a = 0 the fixed lines are given by the curves

Bg=0: g=0, (5.23)
6(4X\% — 4\ + 1)
g —
9°(N) = Tgone —32an — 277 (5.24)
P+ +
Br=0: g\ = —1—-—\/1’_2, (5.25)

Ps
p1 = 36— 137X\ + 180A% — 420)%,

Py = 1296 + 43560\ — 246767\% + 38757613
—88680A% — 174240)\° + 17660018,
p3 = —4452 + 5400\ + 480)2.

The non-trivial fixed line of §; has a double zero at A = 1/2, a minimum at 1/2 and a
maximum at 49/18. Its asymptotes are limy_ 1o g9(A) = 2/15.
The structure of the fixed line g* is more complicated: p, is negative on the open

interval (—1.32455, —0.025821), no real solutions exist there. Although ps; has two real

_ 225465465
40

zeros at /\g?% = so have the nominators of the two branches, g} at /\go) and g*

at /\50). Hence only one of the two branches has a pole at each zero of the denominator.

The special lines g*, g9 and g" are displayed in fig .5.6(a) and 5.6(b) with the graphical
representation given in table 5.1.

The asymptotes and poles of the fixed lines are candidates for asymptotic attractors
of trajectories. Eight such candidates, (c0,0), (—00,0), (00,2), (=00, 2) for B, = 0
and (A§°’, +00), (/\50), —00), ()\go), +00), ()\go), —00) for By = 0, have been found above.
Whether they are candidates for UV or IR-limits is determined by the sign of the non-
vanishing S-function: if that sign is equal to the that of the diverging coupling, it is
a possible UV attractor, if opposite, an IR one. Accordingly, (o0, 0), (—00,0), (oo, %),

(—o0, 2), (A§°), +00) and (,\§°’, —o0) are candidates for IR asymptotes, (/\go), +00) and
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name | properties | graphics
g7 | Inl— o0
g B=0 | ------
g9 By =0 _

Table 5.1: Names, definition and graphical representation of special lines.

()\go), —o0) for UV ones. As a last step, we have to analyse the stability of these fixed
limits. It is given by the signs of the derivatives of the vanishing S-functions after their
couplings in the respective fixed limits:

. 8,89 : 613!1
B, Byl >0 i g le=g <0
. OB . OB
Jm By e >0 lm S8 e <0,
. 0B . 0B
g—l-lvr-iloo 8_)\|’\=’\50) >0 , QEIEIOO 5}‘|,\=/\§O) <0. (526)

Positive sign implies IR (UV) stability (instability), negative sign the opposite. For a
candidate to be an actual attractor, it must be UV or IR-stable for both S-functions.
This is the case for three of the candidates: (Fo0,0) and (,\§°), +00) are IR-stable fixed
limits, and (AY), —co) is a UV-stable one.

(iii) If both couplings diverge, we have to ask whether this is stable limits for both
couplings either in the IR or the UV. This is determined by the sign of the S-functions
for the limits A — tooNg — Foo. If the signs of the A-functions are equal (opposite) of
that of the limit of the respective coupling, the coupling approaches this limit in the UV
(IR). An inconsistency would mean that no trajectory is attracted toward this limit, it
is not attractive. The two limits (0o, 00) and (—oo, —00) are consistently IR-attractive.
For the other two cases, the limits A — 00N g — Foo do not commute. The resolution
to this problem is provided by the fixed line g*: it diverges asymptotically as g* ~ —IA.
Since By vanishes on its fixed line, the value of its limit in both couplings depends on
whether g diverges stronger or weaker than ¢*. If |g| < Z|)|, the limits (Foo, Foo)
are IR-attractive, for |g| 2 %|/\| they are IR-repulsive. All stable asymptotic values are
summarised in table 5.2.

5.3.6 Special trajectories and global classification

The six unstable limits (o0, 2), (A, 00), (A, —00) and limy_,+00(X, FTI)) are each
approached by one and only one trajectory. These special trajectories act as asymptotic
separatrices, they separate flows converging to the two attractive limits lying next to
each repulsive one. We use the asymptotic separatrices for the classification of the flows
according to their asymptotic behaviour. Since their asymptotic values were determined
analytically, this classification is analytical and comprehensive.

The notion of the separatrix is extended to include its associates for ¢ < 0. It
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asymptotic attractive
NG —-FP uv
N ——y Uv
(400, +00) IR

limyLoo(A, g = —1N) IR
imy_o(X, g S —3N) IR

(-0, —0) IR
(+00, 0) IR
(—o0, 0) IR

A9 4o0) IR

Table 5.2: Attractive fixed limits and FP for d = 4,a = 0.

seperates the trajectories with positive and negative cosmological constant weak coupling
limits, see [108].

The discontinuous point (3,0) (see the discussion in section 5.3.8) gives rise to an-
other special trajectory, the quasi-separatriz. It runs into the discontinuity in the IR-
limit.

The line of divergent anomalous dimension, g7, gives rise to another type of special
trajectories. Trajectories tangent to g” go through the points which are solutions of the

equation
99"(A) _ By(A\ g"(V)
A Brgn(N)
Each of the three real solutions to this equations is a tangent of one of the three branches
of g*. The three special trajectories defined by these points are UV and IR-complete.
They delimit classes of complete trajectories from incomplete ones, which terminate at
g". Hence we call them marginally asymptotic trajectories.

The special trajectories define special societies via association across g”. The societies
of special trajectories classify phase space globally. For local classification, only the
original special trajectories are relevant.

All together, there are six special trajectories (societies) in the g > 0 half-plane and
six in the g < 0 one. How many global classes of trajectories are there in total? To
answer this topological question, we have to know “both ends” of the special societies,
i.e. the two existing parametric limits of each society containing a special trajectory. To
this end, the numerical solutions for all trajectories of the special societies have to be
used. They lead to the conclusion that all special trajectories for ¢ > 0 are associated
to trajectories running into the non-Gaussian FP (or do so themselves in the case of
the separatrix and the marginal asymptotic). To determine the number of global classes
between the special societies, we use Euler’s formula,

(5.27)

2-29—b=V-—E+F, (5.28)

where ¢,b, V, E, F are the genus (number of holes) and the number of boundaries, ver-
texes, edges and faces on the considered manifold. In the case of the half-plane without
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name properties classes | graphics
sep.g > 0 | IR: GFP; UV: NG 1-2
sep.g <0 IR: GFP 8-10 | ——

q-sep. IR: (3,-0) 8-9 | ——
marg.as.1 tangent g7, 2-3 | —-—
marg.as.2 tangent gy, 12-13 | —-—
marg.as.3 tangent g;; 11-12| —- -
as.sep.gl IR:g—»%,)\—»oo 1-6 ----
assep.g2 |IR:ig— 2, X > —o0 | 3-4 .- -
as.sep Al | IR: limy—yoo(A, —3A) [ 10-11| —--—
as.sep A2 | IR: imy,_o(X\, —3A) | 4-5 | —--—
as.sep A3 IR: (,\§°), —00) 7-13 | —--—
as.sep A4 UV: (A, +00) 5-6 | —--—

Table 5.3: The abbreviated names, defining properties and graphical representation of
the special trajectories and societies for d = 4,a = 0. In the third column, the two
global classes separated by the respective special society are given.

defects, g = 0,b = 1. The non-Gaussian FP is a vertex for the six edges, given by the
special societies. Hence the number of faces is 6, which is the number of global classes
of societies for ¢ > 0. For the lower half-plane, all special societies end either at the
A-axis (the boundary) or diverge. In this case there is no vertex and the number of faces
(global classes of societies) is 7.

In order to complete the global classification, the special societies and hence the
classes delimited by them have to be labelled according to some scheme. This is conve-
niently done by, e.g., going around each half-plane in a clockwise direction and ordering
the societies according to the sequence in which their endpoints are encountered. Special
care has to be given to degenerate limits of trajectories, but a definite order exists due
the definiteness of the flow in the whole plane, except for the discontinuity (1/2,0).

The global classes of societies are labelled 1-6 in the upper and 7-13 in the lower
half-plane. How they are delimited by the special societies is presented in the third
column of table 5.3. The legend for the graphical representation of the special societies
together with the defining analytic properties of the name-giving special trajectory is
also given in table 5.3 .

5.3.7 Full classification

To complete the global classification of the trajectories, we have to know the supporting
sectors of the special societies. To answer this question, the full numerical solutions
of the special trajectories and their associates have to be determined. In fact, this
knowledge has already been used in the previous section. The global classification of all
trajectories follows from that of their delimiting special trajectories.

The resulting global classes are listed in table 5.4. The labels of the global trajectory
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classes in the first column consist of the arabic numerals of the global society class the
trajectory belongs to, as introduced in the previous section, and the lower case latin
letter of the supporting sector of the individual trajectories. In the second column, the
line type used for the graphical representation of the class in the phase space portraits fig.
5.6(a) and fig. 5.6(b) is displayed. The columns labelled UV and IR give the endpoints
of the trajectories for its highest and lowest value of . In the cases where { — o0
exists, these are either the non-Gaussian FP (NGF P) or one of the asymptotic values
discussed in section 5.3.5. If the trajectories of this class terminate at g7 the branch of
this boundary is further specified by labelling it according to the sectors it separates.

Fig. 5.6(a) and fig. 5.6(b) are the fully classified versions of the phase portraits fig.
5.4 and fig. 5.5. The legend for the different types of lines can be found in table 5.1
for the (red) special lines, table 5.3 for the (green) special societies and table 5.4 for the
various classes of trajectories. The FPs are denoted as red points. The arrows point into
the direction of decreasing RG parameter t. The full phase space portrait fig. 5.6(a)
uses compactified coordinates ﬁél_ﬂ’ Ifm.

In section 5.3.4 it was argued that global classification of trajectories is yields more
categories than local classification. Table 5.5 contains the local classes of trajectories.
They are labelled by the lower case letter of the respective sector followed by a roman
numeral counting classes for each sector independently. The column labelled “global”
lists the global classes contained in the local one. Many local classes consist of several
global ones. For local classification they are indiscernible, inheriting their distinctions
from associates in other sectors. The third and fourth column give again the endpoints

of the local trajectories.

5.3.8 Discontinuity

The point (3, 0) necessitates a separate discussion. All special lines (g = 0), g%, ¢", g*
intersect in it. The values of B, 3, at it depend on how they approach it. This is
obvious for the special lines themselves, on which the respective 3-functions take on
their defining values.

From the point of view of the trajectories, this discontinuity is only problematic for
class 8e, which is focused into it, cf. fig. (5.6(b)). All other classes are repelled from it.
This can be seen from the sign of the S-functions around (3, 0): for all parts of phase
space, except the wedge filled by class 8e, at least one direction of the flow points away
from the discontinuity. The numerical solutions confirm this argument.

However, the ultimate fate of 8e trajectories still remains an open issue. Does the
discontinuity represent a FP for the direction of approach of trajectories 8e, i.e. do
B, By approach zero along such a trajectory or not? The alternative to FP-behaviour
would be that (%,0) is a focal point for trajectories 8e: all of them run into it and
are merged into one trajectory. Such a trajectory would run trivially along the \-axis,
g = 0, A = const./k>.

We have to stress that even if the discontinuity represents an IR FP for class 8e it
is not a phenomenologically relevant candidate for the hypothetical IR FP discussed in
the literature: the physical trajectory, see section 5.5.3, does not belong to class 8e since
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traj. | graphics uv IR
la | ——— | NGFP g
b | —— e Jab
le | ——— 9. (+00, +0)
% | —— | NGFP | (~o0,+0)
3a,| --- | NGFP a
3b | ... ga QZb
3as ce a7 (=00, +0)
day | —-—-— NGFP an
. 9ab 9ab
dag | —-—-— ga (—OO, +OO)
5a; | ——— | NGFP g
5b | —— Gab Yab
Saz | ——— | g | () +o0)
6a ce NGFP am
6b | ----.- gl?c 92&
6c ces 9., (+00, +00)
d | ——— g (—00, —00)
Te |— —-— g (—o0, —0)
8f | ——— o (+00, —00)
8 | — —-— s 7(3,—-0)?
9f | — o (+00, —00)
Qe | ..-.-. ggf (+OO, _0)
10f | — o (400, —00)
10e | -+---. g;lf (—oo, _0)
1l | — —— 9o (=00, —-0)
1f | == 9y Ges
lleg | «---- D —0) 9
12 |- —— AP —50) | (=00, —0)
13e; | - -- g;le (—o0, —0)
13d| - -- 9e 9de
13e2 - (’\g0)7 —OO) g:i'e

Table 5.4: Global classes of trajectories. The classification is discussed in the main text.
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Figure 5.6: Phase space portrait of the globally classified trajectories for d = 4,a = 0.

(a) Entire phase space with rescaled axis z — 2

(b) Close up around the FPs.
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| local. | global | UV IR
ol % NGFP | (oo, +0)
all 3as g (—o0,+0)
alll 4a, qr (—00, +00)
alV 5a; ar (A _o0)
aV |1la,3a,,4a,,5a;,6a| NGFP gl
bl 15, 6b T a0,
bII 3b, 4b, 5b g q",
cl le 9. (+00, +0)
cll 6¢c gp, (400, +00)
dI 7d g (=00, —00)
a1 134 g g
el 13¢e, A —c0) gn.
ell 1leq (A —0) ot
ell] 12e A\ —00) | (=00, ~0)
elV 7e,13e; g (—o0, —0)
eV 10e, 11¢e; 9ot (—o0, —0)
eVI 9e 9os (+00, —0)
eVII 8e ot ?7(1,—0)?
fI 8f, gfa 10f ggf (+OO) _OO)
fII 11f ng ggf

Table 5.5: Dictionary between local and global classification of trajectories for d =

4, a0 =0.
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Newton’s constant is positive. Furthermore, since the present truncation breaks down
at ¢", the discontinuity lies outside the present approximation.

5.4 Phase Portrait for Four Dimensions and Har-
monic Gauge

The dependence of the flow equations on the gauge fixing parameter « and on the
employed cutoff is an artifact of the truncation. Before we can turn to a physical
interpretation of the phase space portrait, we have to determine to what degree it
depends on the cutoff and on the gauge fixing. The comparison to portraits from other
cutoffs given in [108] is performed in section 5.5. In the present section we provide
the classified portraits for the optimised cutoff type B in four dimensions and a = 1.
This allows for an estimate of the gauge fixing dependence of the whole phase space.
In section 5.5 we extract features of the flow which hold true for general values of the
gauge fixing parameter.

5.4.1 Fixed points and special lines

For d = 4 and a = 1 the B-functions and the anomalous dimension are given by

75
B = —(2+509)\ — 459 + 7g"’

57+ %g 4 g2 163\ — (4921 4 25g) g

5.29
(1=2)\)2+g(—2 +3)) ’ (5.29)
105 — 212X + 2002
= 29—-¢° , 5.30
B I =202+ g(-Z +3)) (5.30)
105 — 212X + 200\?
= - . 5.31
1 Ta=2)+g(-Z+3N (5.31)
The anomalous dimension diverges on the line

1 (1—2))2

—=0:9"A) = 5—. (5.32)
n 3\

It has a double zero at A = 1/2 and a first order pole at 2, cf. fig. 5.1(a). It behaves
asymptotically like ——)\ This constitutes a first global dlfference to the a = 0 case
of the previous sectlons where g¢" displayed two poles and approached finite values
asymptotically. This time we identify only five disjunct sectors. To facilitate later
comparison, we omit sector d as the “missing sector”.

The FP condition 8y = 0N B; = 0 has one real, non-trivial solution corresponding
to a non-Gaussian UV FP in addition to the Gaussian one:

A =0.171503 , g, = 0.00929975 = §, = 0.701185 (5.33)
6 =168911 + 42.48567. (5.34)
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Figure 5.7: The five disjunct parts of phase space a, b, c, e, f and the respective sign of
n in them. 7 vanishes on the A-axis and diverges on ¢” (in red). The axis are rescaled
to /(1 + |z]).

The fixed lines, at which only one (-function vanishes, are given by

+
pr=0: ) = 2EVE, (5.35)
B 41, 7., 3
qa = 3 12,\+2,\ 503,
g = 1296 + 64296 — 34665512 + 55182013,
—278508)\* — 50400)° + 360000)¢,
gs = —4674+572),
(1 —2))2
=0: g9\ = . .

P ¢ =33 1093 + 1000 (5.36)

6

¢?(\) has a double zero and a minimum at A = } and one saddle point at A = 0. Its
asymptotic values for A\ — +oo are 1/25. g}(\) vanishes at A = 1/2 and g*()\) at
A = 0. For g*()\), a further zero of the nominator cancels the zero of the denominator
at AO = 27 5o that only the branch g*(A)- has a first order pole there. In the
interval (—1.459, —0.0183), ¢2 is negative and both branches are complex. Whereas

lim,+00 g*(A)+ = —35, the other branch diverges asymptotically like — 22,

5.4.2 Asymptotic behaviour

The possible asymptotic behaviour of trajectories is determined by the properties of the
ten potential limits (0o, 00), (00, —00), (=00, 00), (=00, —00), (0,0), (—00, 0}, (0o, ),
(—00, %), (A®, 00), (A®, —c0) and the two FPs.
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| asymptotic | attractive |

NGFP uv
(A0 —00) uv
limy_,_oo(A, g 2 —22)?) uv
(+00, +00) IR
limyneo(X, =A< g2 —3A) IR
limy——oo(X g 2 —2A) IR
(400, 0; IR
(=00, 0 IR

(0,0) repulsive

(00, %) repulsive

(—o00, 5) repulsive

limy_oo(X, g < —12T§%>\2) repulsive

limy—_oo(A, 9 S —2522) repulsive

(A9 | o0) repulsive

Table 5.6: Stability properties of the FP and fixed limits for d =4, a = 1.

The lines of vanishing £, and diverging n lead to a differentiation of the double
asymptotic limits (+00, —00), (—00,+00), (—00, —00) into seven cases. The proper-
ties of these limits depend on whether they are approached from above or from below
these lines. In the case of g* the distinction is between attractive and repulsive be-
haviour with an asymptotic separatrix delimiting the two possibilities. Because of g”
we encounter a novel situation for (—oo,+00) and (+00, —0c0): if the limit is per se
attractive (which is the case for both limits), g7 separates asymptotically UV and IR-
attractive behaviour. This is due to the simultaneous change of sign in both S-functions
across g7. No separating trajectory can be defined in this case since it would have to ap-
proach g" asymptotically. Accordingly, all trajectories in this limit’s basin of attraction
must approach it either in the UV or IR. To determine which case is realised, one has to
compare the slope of the trajectories at ¢", which is given by limg_ ¢ 8,/8,, cf. section
5.1.1, to that of g” itself. The result of these considerations is that all trajectories in
the basin eventually cross g" toward the IR-attractive side of g”.

The respective UV side is, strictly speaking, an “empty attractor”. Since it does not
generate any influence on the flows in addition to that of g7 itself, we have excluded
it from table 5.6 where all the asymptotes and their properties are given. The other
results in table 5.6 were obtained by repeating the analysis detailed in section 5.3.5 for
the present case. The stable limits show up in the phase space portraits as attractors of
certain global classes of trajectories.

On the other hand, the unstable limits are approached by one and only one special
trajectory each, the separatrix and the asymptotic separatrices. As in the previous
example a = 0, we further introduce the marginally asymptotic trajectories tangent to
g" and the quasi-separatrix running into the discontinuity (3,0).
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5.4.3 Classification of trajectories

There are two special trajectories less in the present example than in the case o = 0: in
the upper half-plane (g > 0), there is one 8, = 0 asymptotic separatrix less and in the
lower half-plane there is one marginally asymptotic trajectory less than for oo = 0. The
topological structure (one vertex in the upper, none in the lower half-plane) is the same
as in the previous example. Therefore the total number of global classes of societies is
decreased by one in each half of phase space.

For g < 0 the absence of g entails that of class 13. Class 12 incorporates now
all trajectories running left of the marginal asymptotic tangent to g;'f from the UV
asymptotic (A®, —oc0) to the IR one (—oo, —0). We will come back to this important
example of how societies, cut to pieces by g” in one gauge, may reproduce the behaviour
of complete trajectories in another gauge in section 5.5.

In the upper half-plane, class 5 vanishes completely since the asymptotic (,\§°), 00)
does not exist for & = 1. Furthermore, the asymptotic separatrix approaching (—oo, 1/25)
is complete, i.e. contrary to a = 0 it does not run into g”7. Hence class 3 as defined for
o = 0 is absent. We define a class 3’ instead, which shares the asymptotic behaviour of
class 4 but consists of complete trajectories.

The complete global classification of trajectories is given in table 5.7. The complete,
classified and rescaled phase space portrait is given fig. 5.8(a). A close up around the
Gaussian and the non-Gaussian FP is provided in fig. 5.8(b).

5.5 Comparison of Portraits

We turn now to the comparison of the two phase space portraits with each other and a
third one obtained with a sharp cutoff of type A in [108]. It is of special interest which
global features are independent of the gauge fixing and the choice of cutoff function and
which depend on it. The latter class can be identified as artificial. For phenomenological
application of the Einstein—Hilbert flow equations, it is important to ascertain that the
physical trajectory realised in Nature lies in a part of phase space reliably described in
that approximation. Furthermore, we want to test whether the association procedure,
introduced in section 5.1.2 and used subsequently in the classification nomenclature, is
reflected by universal features of the flow.

5.5.1 Gauge dependence of portraits

We commence with a comparison of the two phase portraits of section 5.3 and 5.4.
As already noted in section 5.4.3, the simpler structure of #’s line of divergence for
o = 1 induces differences with respect to o = 0. However, these differences can only
lead to differences between local classifications of trajectories, since the global types of
asymptotic behaviour are not governed by ¢”7 but by the fixed lines of the couplings,
g, g9. Hence these changes affect only the splitting of societies into associates. An
exception are the global classes separated by marginally asymptotic trajectories, which
are defined with respect to g".
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traj. | graphics uv IR
la | ——— | NG-FP ao
10 - gl?c ga
lc - - - gl:’c (+OO’ +0)
2a —— | NG-FP | (—o0,+0)
3a NG - FP | (—o0,400)
da; | ——-— NG - FP ar
b | = 9ab Gab
day | — - —-— i (=00, +00)
6a NG -FP [
6b | ... a q
6c Ibe (+00, +00)
Te |— —-— (—00, —0) | (=00, —0)
8f | ——— | & | (+oo,~c0)
8 |—+—-— 9o ?(3,—-0)?
9f - QZf (+OO’ —OO)
Qe | -----. ng (400, —0)
10f | —— ggf (+00, —00)
10¢ | ++---- ng (=00, —0)
1le; | ——— 9o (—00, —0)
1f == ggf ggf
lleg | ++v--- ()\(0)’ —0o0) ggf
12¢ | —-—-— (MO, —c0) | (—o00,-0)

Table 5.7: Global classes of trajectories for the case d = 4, o = 1, their labels, graphical
representation and UV and IR endpoints.
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This can be turned into an argument for the interpretation (ii) of association, given
in section 5.1.2: the breakdown of the flow is not gauge independent, since ¢”7 depends
partly on a. But gauge dependent features should be considered as artifacts. Hence the
breakdown of the truncation could itself be partly an artifact of the truncation.

This is underlined by the consequences of the absence of sector d for « = 1. For
negative g, the absence of its boundary g} leads to the completeness of 7e-trajectories,
as opposed to the splitting of societies of class 7 into associates of classes 7d and 7e for
a = 0. Furthermore, the complete class 12e contains all trajectories of the incomplete
class 13 of & = 0 (which is hence absent for o = 1), since g, is absent for & = 1. Classes
12 and 13 have common UV and IR limits also for a = 0, their separation was induced
by the presence of g].. All trajectories of UV and IR behaviour according to classes 7
and 12 are complete for o = 1. Interpreting the gauge dependence of the presence of g,
as signalling its artificiality, one could opt for its removal and accordingly regard @ = 1
as the more physical case in this respect.

On the other hand, the other branches g, gs, and g,. do not display such severe
gauge dependence. Even though g;’f and g, show qualitatively different asymptotic
behaviour, this affects the trajectories only at the local level. This is a reassuring
observation, since the physical trajectory realised in our universe (see section 5.5.3) lies
in this part of phase space. One local difference in gauge is, however, worth noting:
whereas the only complete class for a = 0 is class 2a, which connects the non-Gaussian
UV FP with the asymptotic weak coupling limit (—oo, +0), for & = 1 the incomplete
class 3 of @ = 0 (contained in class 2 for @ = 1) is replaced by the new, complete class 3,
which has a strong coupling IR limit (—oo, +00). Again, this can be interpreted as a sign
that association across boundaries, though certainly unphysical locally, may nevertheless
yield globally meaningful statements, in this case that there exist renormalisable theories
with strong coupling behaviour at large scales.

Differences in the global structure of the phase portraits are determined by the limits
of the zero lines of the couplings: the pole of g* at negative )\50) found for a = 0 is absent
in the case a = 1. Accordingly, the global class 5 does not exist for & = 1. Following the
principle that all gauge dependent qualitative features should be discarded as artifacts,
we surmise this to be the case for the limit ()\&0) , +00). Interestingly, its pendant at /\go)
exists in both gauges. All other global characteristics are reproduces in both gauges.
Especially the gauge universality of the four strong coupling limits in the four corners
of phase space should be noted.

5.5.2 Cutoff dependence of portraits

So far we compared the two phase space portraits obtained in sections 5.3 and 5.4 with
the optimised cutoff for two different gauges, searching for gauge independent features. A
property must be cutoff independent to qualify as potentially universal. Hence portraits
and classifications obtained from different cutoff functions have to be compared. Even if
we trust the optimised cutoff most, the reproduction of certain features by other cutoffs
would greatly enhance their trustworthiness. "

Such an analogous phase space portraying and classification has been performed in
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[108] for a sharp cutoff [80] of type A. The sharp cutoff is defined as
r™(z) =2'a0(1 - 2), (5.37)

where the limit @ — oo has to be taken after insertion of (5.37) into the threshold
functions (C.1). The threshold functions then take the form

w 1 1 1
dn(w)™ = Plnlp—1(1 +w)r!?

, Pw)*=0 for p>1 (5.38)

P (w) = ———In(l+w) + ¢ , B(w)®

forp=1
F['I’L] orp )

B 1

- I'[1+n)]
where c, is a free parameter eventually fixed by demanding ¢2(0)*® to equal the value of
the threshold function for the modified exponential cutoff (B.1) with vanishing argument.
The sharp cutoff yields analytic flow equations whose numerical solutions can studied.
However, it is known to have worse stability than the smooth or the optimised cutoffs
[83], and its singular nature may lead to spurious divergences.

In this case, the stability boundary lies at A = 1/2 too. The (-functions display
a genuine divergence at this boundary and flows cannot be continued across it. The
n-divergence curve lies at g”7 = const. < 0. The phase space portraits to be compared
to our results are given in fig. 12 to 15 of [108], and the corresponding classification is
performed in table III, ibidem. The sharp cutoff does not allow to investigate the region
A > 1/2 (cf. the In(1 + w) term in (5.38), in particular), so the comparison of portraits
has to be restricted to its complement. For the present purpose of comparison, we treat
the stability boundary on the same ground as the n-boundary.

Trajectories were classified in [108] in a local way. The nomenclature used there
consists of roman numerals labelling the “Types” of trajectories, followed by an “a” if
the trajectories lie in the upper half plane and a “b” for the lower one. The possible
asymptotic limits are two weak coupling (—oo, £0) and one strong coupling (—o0, +00)
ones. Note that our rescaled g is smaller by a factor 476 = 75 than the canonical one
used in [108]. This is of course irrelevant for qualitative comparisons of the structures
of phase portraits, but must be taken into account when comparing numerical values.

In order to get a first impression of the extent of cutoff dependence, we compare
this “sharp” a = 1 portrait with the “optimised” a = 1 one generated and discussed in
section 5.3. For negative gravitational coupling, both the local (n-boundary) and global
(asymptotic limits) structure is rather different in the two cases. Since only one limit,
(—o0, —0) is present in the sharp cutoff case, no complete trajectories or societies exist.
Near the origin and the discontinuity (1/2,—0) the local similarity of trajectories 10e
and Type Ib and 8e and Type IIIb is remarkable. This behaviour seems to constitute a
universal, gauge and cutoff independent feature. Since the discontinuity lies exactly on
the stability boundary for the sharp cutoff, no new insights into it are obtained.

For positive g, the identical topological structure of sector a (to which we have
to restrict this comparison) renders the portraits more similar. Both portraits have
the same asymptotic limits and, accordingly, the same global classes. A mapping of
classifications is given in table 5.8. (The seemingly missing Type Ila trajectory is the
separatrix in [108].) The threefold degeneracy of Type IIla with respect to the global
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optimised || la |2a| 3d’ | 4a; [4ay| 6a
sharp Illag|Ia|IVa|Illa|Va|llla

Table 5.8: Dictionary between the classification of the o = 1 optimised cutoff portrait
with the one obtained with oo = 1 and the sharp cutoff [108] in sector a.

trajectory classification illustrates again the finer resolution of the latter scheme A purely
local classification of trajectories would have given identical results for the two cutoffs.
That both cutoffs give a qualitatively identical phase space portrait (at least in sector a)
is very remarkable and further strengthens trust in the sector around the non-Gaussian
FP.

Comparison of the a = 0, optimised cutoff portrait with the sharp cutoff &« = 1 one
confirms the previous findings. One finds both the differences, seen when comparing
the two portraits generated for different gauges and identical cutoff and those seen in
the comparison of the portraits for different cutoffs in harmonic gauge. In this sense,
variation of cutoff functions and variation of gauge fixing have an orthogonal impact on
the flow.

5.5.3 The physical trajectory in Einstein—Hilbert gravity

Only one RG trajectory of gravity can be realised in Nature. Assuming space-time
to be macroscopically four-dimensional (as opposed to the alternatives presented in
the RSII [12] or infinite-volume extra-dimensions models [14]), it is approximated best
in the Einstein—-Hilbert truncation by one of the trajectories in the four-dimensional
phase-space portraits presented in the previous sections. Experiments tell us that this
approximation is very good at all directly investigated scales, since no deviations from
general relativity have been detected so far.

How can we determine which of these trajectories describes the scale dependence of
the two coupling constants? This question has been discussed in depth in [130]. Given a
set of flow equations, a trajectory is fixed by initial values of the couplings at an initial
renormalisation scale. Newton’s constant is accurately measured at scales ranging from
a fraction of a millimetre to astrophysical scales. Assuming naive cutoff identification
(which is well-justified because space-time is nearly flat on these scales) and fixing the
initial scale at one metre, the dimensionless Newton’s constant is found to be very tiny,
g(lm) =~ 10~"°. However, the value of the cosmological constant is not measurable
at these scales, neither in the laboratory nor at galactic scales. All that can be said
with certainty is that it is much smaller than the corresponding mass-scales, since it
would otherwise dominate already at these scales. Note that we cannot make use of
its best-fit value in, e.g., the ACDM concordance model, since there is no independent
determination of Gj at cosmological scales. At these scales, the cosmological constant
is of the order of the Hubble scale, A\(Hy) ~ HZ, where Hy is the Hubble constant.
Hence the dimensionless cosmological constant is of order unity, A\(Hp) = +O(1). For
the present purpose, the estimate |A(1m)| < 1 is sufficient.

These two estimates yield an initial point of the physical trajectory in the upper half-
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plane (¢ > 0) and very close to the origin. Hence, the physical trajectory can belong
either to class 1la or 2a. The possibility of it belonging to 2a can be excluded on the
ground that no trajectory of class 2a fulfils the two conditions Ax, < 1 and A, = O(1)
for ky < k. Accordingly, the physical trajectory must belong to class la, as concluded
previously in [130] from slightly different arguments.

It shares the positive features of its class: (i) it has a well defined UV-limit in the
non-Gaussian FP, (ii) sector a for A > 0 is found to be universally described by different
gauges and cutoffs in this section. On the other hand, it also suffers the breakdown
of the truncation at g7,. Since g is bound to stay very small, this breakdown occurs
for A = 1/2. Unfortunately, this lies in the range where the cosmological constant
becomes cosmologically relevant. To solve this issue, either the methods used in deriving
the flow equations (e.g., the weak-curvature expansion, cf. section 2.2.4, is a point
worth of improvement in this context) or the truncation have to be modified. The
second possibility implies the interesting consequence that the Einstein-theory of gravity,
general relativity, is modified at cosmological scales. This would be of relevance to a
hypothetical IR fixed point of gravity discussed in the literature [133], [131], [132], [126].
A third, albeit speculative, resolution could be based upon the association procedure
introduced in this work: since the physical trajectory remains very close to the A-axis,
its associate of class 1b has to span a very short A-interval between g7, and g;. The
UV-starting point of the third associate of class 1c receives only a very small set-off with
respect to the IR-termination of the original physical trajectory. From the point of view
of association, it could be conjectured that the physical trajectory is IR-completed by
its 1c associate, leading to constant Newton and cosmological constant in the IR.

With the advent of models with extra dimensions of infinite size, [12], [14], IR com-
plete trajectories of potential phenomenological relevance can also be discussed in higher
dimensions. This will be done elsewhere.

In this chapter we have analysed the flow equations of Einstein—Hilbert gravity with
the optimised cutoff (2.19). Their explicit form allowed a detailed analytical, general
analysis and the construction of phase space portraits spanning the entire coupling space.
For this cutoff, the stability boundary does not yield divergent flows, it can be crossed
safely. The structure of non-perturbative divergences of the anomalous dimensions,
however, proved important for the structure of the portraits. A procedure for connecting
trajectories across these divergences was proposed. It was argued and illustrated by
explicit examples that this procedure may indeed capture the qualitative behaviour of
the exact flow. The explicit phase portraits were constructed for the two gauges a =0, 1
in four space-time dimensions. Detailed classification was given in order to extract the
universal, i.e. gauge and cutoff independent, features in a comparison of these two
portraits with each other and a third one previously published [108], which used the
sharp cutoff function. The excellent concurrence of all three portraits in the physically
relevant sector serves to underpin the reliability of the Einstein—Hilbert truncation.



Chapter 6

Conclusions and Outlook

6.1 Summary of Results

In this thesis non-Gaussian UV-attractive FPs of the RG equations of quantum gravity
were studied in higher dimensions (section 3 and 4). According to the scenario of
asymptotic safety, such a FP implies the non-perturbative renormalisability of the theory
(section 1.4). These FPs are found in this work in all investigated dimensions 4 to 10
in the approximation of the Einstein—Hilbert truncation. If the UV FPs also exist in
extended truncations, as is indicated by previous results in four dimensions (section
2.3), gravity is non-perturbatively renormalisable in higher dimensions. In that case, all
physical quantities show scaling behaviour according to their canonical dimension in the
far UV, FP-regime: Newton’s constant, e.g., becomes asymptotically free. Previously
discussed phenomenological implications in four dimensions are reviewed in section 2.4.
Indications for those in the context of field-theoretic models with extra dimensions
(section 1.2), which provide one of the main motivations for our investigations, are
presented below in section 6.2.

What prevented previous investigations of higher-dimensional FPs to reach a defini-
tive conclusion so far, was the cutoff dependence of the FPs existence and properties,
which is caused by truncation. This spuriousness is overcome in this work by employ-
ing a stability optimisation criterion for the ERG flow (section 2.1.1). It singles out
a subset of cutoff functions yielding the most stable flows. For these cutoffs, the UV
FP exists independently of the type of cutoff function used. Universal quantities at the
FP, foremost the eigenvalues of the stability matrix, coincide at the percent level for all
functions (section 3).

A second, non-trivial test of the reliability of the obtained FP results, is their gauge
fixing independence. Truncation induces a spurious sensitivity of universal quantities on
the gauge fixing. In section 4 it is shown that the stability criterion leads to a reduction
of this artificial dependence. The universal properties of the FP show quantitatively
good independence of the choice of gauge fixing in all studied dimensions.

Throughout the FP studies, one optimised cutoff function leads to most stable flows
at the FP. Since it also yields analytic flow equations, it is used in section 5 to investigate
the entire phase space of solutions to the flow equations. After a general discussion
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of the properties of the system of flow-equations, explicit phase space portraits are
constructed and studied in four dimensions. This allows to ascertain that the physical
trajectory (section 5.5.3) realised at large scales in Nature is connected to the UV FP,
i.e. that four-dimensional gravity has a reliable, UV complete description in the present
approximation.

6.2 Implications for the Phenomenology of Extra
Dimensions

In order to illustrate the kind of implications for the phenomenology of models with
large extra dimensions to be expected from an ERG description of high energy quantum
effects in gravity, we shortly reconsider some quantitative results of these models in the
light of the results presented here. These musings must be regarded as mere indications
at the kind of changes induced by this approach to quantum gravity, at best of semi-
qualitative relevance. Detailed investigations of these effects are certainly the topic of
further work in the near future.

When giving the phenomenological motivation for field-theoretic approaches of quan-
tum gravity in extra dimensions in section 1.2, we mentioned three processes explicitly:
(i) production of gravitons [20], (ii) virtual graviton exchange mediated interaction [20],
[136] and (iii) black hole production [4], [5]. Other effects have also been investigated,;
see for example [137], [138], [19], [15], [6], [139]. Let us briefly sketch in what manner the
processes (i), (ii) and (iii) could get modified by the FP behaviour of the gravitational
coupling above the fundamental, extra-dimensional Planck-mass, M. To this end we
use naive cutoff identification (see section 2.4) k = /s, where s is the centre-of-mass
energy of the process squared.

(i) Cross sections for the production of gravitons A in leptonic collisions, Il —s h X
with X being a photon or Z-boson, have the general scaling behaviour [20]:

()~ + (%) . (6.1)

The centre-of-mass energy occurs with positive exponent for dimensions higher than four.
The corresponding cross section grows unbounded with energy. In the ERG description
of quantum gravity, the value of the gravitational coupling depends on the typical energy
of the process considered. For relevant energies sufficiently far above the Planck scale, it
will be governed by the RG FP also in extra dimensions. The fundamental Planck mass
shows a scaling behaviour, My = m2k in this UV regime, where m? is a dimensionless

constant following from g,. Using the cutoff identification k¥ — /s, the RG-improved
graviton emission cross section is given by

1 2—d
Olimn x (8 > My) ~ 3 (mff) ' (6.2)

in the FP regime. For these arbitrarily high energies, it decreases with s. A similar
modification is likely to hold for hadronic processes too. Indeed this is a tautology of
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being in the scaling, FP regime: energy /s remains the only dimensionful scale. Hence
cross sections, which have mass dimension —2, must behave as s~}. Dimensional analysis
allows for no other possibility. It is nevertheless illuminating to illustrate this tautology
with the slightly more explicit argument above.

(ii) The UV divergences encountered in virtual graviton exchange already at treelevel
[20] essentially result from the fact that momentum conservation at the vertice is required
only for directions parallel to the brane. The remaining directions gr give the UV-
divergent contributions. The momentum-space scattering amplitude due to graviton
exchange is given at treelevel [20] by

AmT— /Add“‘ = (6.3)
~ M:ii_Z qu—q%. .

The factor 7 depends on the four-dimensional energy-momentum tensors of the scat-
tering particles. The second part yields the divergent contribution, necessitating its
regularisation, denoted by A. Let us consider the far UV, relevant to the UV-divergence
only, where we RG-improve My = mjgr as in the FP regime. This is assumed to hold
true above some scale k, which can be determined from the full flow. The contributions
to A from momenta below & are finite. The RG-improved UV contribution AR¢ UV can
be estimated for s < k as

© e (M) D[P sl
ARGV T / gi-tqp a2 _(qj;))m ~ =T Sq(my)*™ / dgr a7 "
k (s —a7) k ar

— TSy (m) / dor g7° < 00, (6.4)
k

where Sy is the appropriate surface of the unit-sphere resulting from the respective
angular integrations. In contrast to (6.3), (6.4) is UV-finite, as must be the case for the
RG-improved effective theory with finite UV limit. The effective, physical UV cutoff k
is not a free parameter: it can be read off from the solution of the flow equations as the
scale where teh FP behaviour sets in.

(iii) A geometrical argument for the cross section of black hole production [4] and
identifying its mass with the centre-of-mass energy available [4] yields the expression

1 <\/—S-)2/(d—3)-

2
OBHIS) =TTy ~ —= | —
1(s) B M2\ My

(6.5)
where rgy is the Schwarzschild radius determined by My and the mass of the black
hole, v/s. In this example, there are two choices for naive cutoff identification: either
k ~ 1/rgy or k ~ /s. For trans-Planckian /s > My(k = 0), the first possibility would
leave M, constant. This corresponds to the view that black hole formation at trans-
Planckian energies is a classical process and will screen all trans-Planckian quantum
effects. The second choice implies again ¢ ~ s~1, the scaling FP result. This ambiguity
in the interpretation reminds us that cutoff identification plays an important role in the
application of RG results.
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The above examples are, as stated above, only meant to give a first flavour of the kind
of phenomenology possible with ERG-improved gravity endowed with a FP. Detailed
studies, especially of the energy range around the fundamental Planck mass, would
certainly prove very interesting. Unfortunately, this is beyond the scope of this thesis.
We hope to return to this point elsewhere soon.

6.3 Directions for Future Research

The number of directions into which research opens from the present state of knowledge
is very large. In this section we would like to indicate some of the most obvious ones.

That collider-phenomenological questions of models of large extra dimensions could
now be tackled in a UV-complete way, at least in principle, has been illustrated in the
previous section. This was meant to indicate how the questions raised in our motivation
for ERG gravitational studies in extra dimensions in section 1.2 can be successfully
addressed.

The most obvious step to accumulate further evidence for the asymptotic freedom of
gravity in more than four dimensions is to repeat the analysis presented in this work for
the higher truncations already available. This includes the R2-truncation of [111], non-
local truncations [115] and the inclusion of matter [113], [112]. The absence of qualitative
differences between the four- and higher-dimensional behaviour demonstrated in this
work for the Einstein—Hilbert truncation suggests that the same is likely to occur also
for these higher truncations.

The strong dependence of the FP couplings on the gauge-fixing parameter « for large
values, discussed in sections 4.1 and 4.3.3, suggests a yet uninvestigated extension of
truncation in the gauge-fixing sector. For example, it may be hoped that these large «
effects can be removed by renormalising the ghost fields too.

In obtaining the B-functions of the couplings by projecting the r.h.s. of the flow equa-
tion onto the lLh.s., a certain background (maximally symmetric space) was assumed,
see section 2.2.4. Furthermore, this projection was done around zero curvature. Using
different backgrounds and developing the operator expansion around non-zero curvature
would allow a further non-trivial test of the universality of the previous results.

Keeping an external scale like the mean curvature in the flow would furthermore give
a physical cutoff identification prescription. This would be important for obtaining un-
ambiguous results for phenomenological applications in strongly curved space-times, see
section 2.4. The impact of such strong curvature projections on the stability boundary,
with all ensuing consequences, is an open and important issue.

The perhaps most ambitious class of extended truncations is the inclusion of inter-
acting matter. Since this case is the one realised in Nature, a confirmation of the FP
results in such a setting would greatly increase the physical significance of the previous
results. Coupling QED and quantum gravity would allow us to investigate the quantum
version of the classical mutual regularisation of divergences [35].

We can conclude this thesis by stating that much has been achieved, but far more
awaits investigation. The field of non-perturbative RG studies of gravity is young yet.
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The surprising successes, most prominently the indications for the asymptotic safety of
gravity as a quantum field theory, certainly warrant further investigations. A word of
caution is of course appropriate: so far only first steps on the way to renormalisable
quantum gravity have been taken. If the asymptotic safety of gravity has been fully
established, the resulting theory constitutes one possible UV-complete description, al-
beit a very simple one, getting by with the metric degrees of freedoms already present
in low-energy general relativity. It might well be the case that another, more involved
theory is the actual high-energy completion of gravity. In the end, only experiment can
decide which description of Nature is the correct one. It can, however, be considered
rather encouraging that a consistent framework for concrete, falsifiable predictions is at
hand at all, especially in the field of quantum gravity.



Appendix A

Power Counting
Non-Renormalisability

In this appendix an alternative, compact derivation of the power counting formula (1.2),
which gives the maximal degree of UV-divergence at some order in perturbation theory,
is giving. We do this for the case of one coupling g with finite mass dimension d;. The
generalisation to more than one coupling is straightforward.

Any contribution G7%; at fixed perturbative order n to the full N-point correlation
function Gy must share its mass dimension, since Gy = ) - ; G%. Its Fourier transform
is of the general form

N - g (H/ dd(]z) mz,pzan) (A].)

with generic masses m;, external momenta p; and loop momenta ¢;. Since the r.h.s.
of (A.1) is potentially UV-divergent, it is regulated by a common momentum cutoff
A. The precise form of f is determined by the Feynman rules of the theory but is not
further specified. Following the usual power counting argument, we approximate f by
a product of monomials in the moduli of the (euclidean) loop momenta, neglecting all
external scales (and all IR-issues):

~ const. g H (/ dgi(g:) ) = const.g"A% . (A.2)

For power counting to be applicable, it is essential that this approximation is possible!.
The usual power counting analysis would now proceed to determine the relations

between the integers I, n;, n, d and IV, making use of diagrammatic, topological con-

siderations, which will eventually yield the superficial degree of divergence A.

These intricacies can be shortcut by noting that the mass dimensions must be the
same on the Lh.s. and r.h.s of (A.2). On the Lh.s., the mass dimension is a fixed number:
[G%] = [Gn] := cw, already introduced in (1.2). Hence, the superficial divergence must
be A = ¢y — ndy, which gives (1.2).

!This is not always the case: field theories on non-commutative space-times show UV-IR mixing,
power-counting in its usual form is hence not applicable, cf. e.g. [140], [141], [142], [143]



Appendix B

Cutoff Functions

In this work five different cutoff functions are employed, see also [84].
The modified exponential cutoff is defined for 0 < b as

Tmexp(2) 1= (l)—{——lb)z—ni , (B.1)
the modified exponential cutoff with alternative normalisation for 0 < b as
it o(2) = (B.2)
the exponential cutoff for 1 < b as
1
Texp(2) 1= PRl (B.3)
the generalised optimised cutoff for 0 < b as
rae(z) = b ~ 1)1~ 2), (B4
the power-like cutoff for 1 < b as
Tpow(2) = 27 (B.5)
and the modified cutoff for 1 < b as
Tmix(2) 1= (2(z+(b‘1)zb) /b 1)—1 : (B.6)

The cutoffs fulfil the necessary conditions lim,_¢(27) > 0 and limy/,_¢(27) — 0, which
follow from (2.2) and (2.3). The modified exponential, modified and generalised op-
timised cutoffs are mass-like for all allowed values of b, i.elim, ,o(27) < co . The
exponential and the power-like cutoffs are mass like only for b = 1, otherwise they are
divergent, i.e. lim,_o(z7) — oo0.

For b — oo all cutoff functions approach the sharp cutoff (5.37). They are parametrised
in such a way that the higher b is, the narrower and steeper is the slope between the flat
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behaviour in the IR and UV. Accordingly, the range of momenta contributing to the
threshold functions, which is determined by 9,r(z), is narrower for the “harder” cutoffs
with a high value of b. The smoother cutoffs with lower b are called “soft” ones, a wider
range of momentum modes contributes at each infinitesimal step in the flow. The values
of b for which C attains its optimised values of 2 are given in table 3.4. The respective
optimised cutoffs are moderately hard.



Appendix C

Flow Equations of Gravity

C.1 Cutoffs Type A

In this appendix the abreviating functions used in (2.63) and (2.64) are provided. The

scalar threshold functions are defined as (cf. {101])

1 & —227'(2)
P —_ n—1
P (w) / dzz (z(l () )
. _ 2r(2)
P = dzz"
) = T / R r(z)) T+’
for n > 0. The functions themselves are given by
Ad) = =22+ 2 (01(@)BL,(~2)) + as(d)®L,(0)
1A : (47r)d/2—1 1 /2 3 d/2 )
N al(d) :
1
Bi(xd) = W(al(d)Qd/Q_l(—2)\) + ag(d)35(—2))
+a5(d) 241 (0) + as (d)3,(0))
1 . .
By(\:d) = —W(al(d)@}im_l(—”\)+a2(d)¢3/2(—2/\)),

where the coefficients are defined as

a1(d) :=d(d+1), as(d):=—-6d(d—1), a3(d):=-4d, a4(d):=-24.
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C.2 Cutoff Type B

For cutoffs of type B (general gauge fixing, see section 2.2.5 and [103]), the abbreviating
functions read

g
Cih g, d) = _2A+Wm(d(d—1)@;/2(—2A)+2d<1>;/2(—2ax)
~4d @};5(0)) , (C.7)
d(d—1) - .
Cuhgiand) = A= o (Rl 00 + adl(-2a0), (©8)
4 1 1 .
Di(A;a,d) = W(35d’2 5~ T | @ (-2
+e3(d)@/a(—22) + co(d) g a—y (—200) + ca(d, )7 5(—200)
—~263(d)®} 51 (0) + €5(d) 23 (0) ), (C9)
2 < -
Do(ha,d) = _W(cl(d)%ﬁ,_l(—»)+c2(d)<p;/2_1(—2ax)
~ ~ 304,01 3042
+ eald)Ba(=28) + cald, ) Fp(—20) + T2 1——2a)\) (C.10)

The coefficients appearing above are

& — 2d% — 11d — 12 2 —6
a(d) = 12d — 12 - ald) = =g
d*—4d> +7d -8 ad(d—2)—d—1
o) =~ LA gy 2D AL
2d + 2
a(d) = — == (C.11)

and the scalar threshold functions are given in (C.1).
The anomalous dimension is given in this case by

gxD1(A; o, d)

k)= . C.12
(k) 1 — giDa(A; ¢, d) (C.12)

The corresponding flow equations of g and A, for cutoffs of type B are
Ogr = [d—2+nn(k)]gk, (C.13)

Oxe = Ci(Me, gk, d) + 1y (K)Co( M, gi; 2, d) (C.14)
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