DISSERTATION

Compilation Techniques for Reducing Energy Consumption
of Embedded Digital Signal Processors

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

ao.Univ.Prof. Dipl.-Ing. Dr.techn. Andreas Krall
Institut fur Computersprachen

Arbeitsbereich fiir Programmiersprachen und Ubersetzerbau

eingereicht an der

Technischen Universitat Wien

Fakultat fir Informatik

von

Dipl.-Ing. Ulrich Hirnschrott
9240416
Halbgasse 26/11
1070 Wien

Wien, im Mai 2005

Kurzfassung

Die Bedeutung von System—on-Chip und System—in-Package Lésungen im Be-
reich eingebetteter Systeme hat wihrend der letzten Jahren stetig zugenommen.
Aufgrund der steigenden Komplexitit eingebetteter Anwendungen und der irre-
guldren Prozessorarchitekturen werden hoch optimierende Ubersetzer benétigt,
um die hohen Anforderungen an Chipgrofle und Leistungsaufnahme zu erfiillen.

Der Energieverbrauch aktueller Prozessoren ist hauptséchlich durch die dyna-
mische Leistungsaufnahme bestimmt. Diese kann durch Minimierung von Spei-
cherzugriffen, Minimierung der Ausfiihrungszyklen und Minimierung der Schalt-
vorgange an Bussen reduziert werden. In dieser Dissertation werden Erweiterun-
gen der Registerzuweisung fiir irreguldre Architekturen vorgestellt, welche die
Auslagerungsbefehle reduzieren. Weiters wird eine Programmoptimierung préa-
sentiert, welche die dynamischen Schaltvorginge am Programmspeicherbus mi-
nimiert. Die vorgestellten Techniken wurden fiir die Architektur des digitalen
Signalprozessors zDSPcore implementiert.

Registerzuweisung bildet die Variablen eines Programms auf die Register eines
Prozessors ab oder lagert diese in den Speicher aus. Die gebrduchlichste Metho-
de ist das Farben eines Konfliktgraphens, welcher durch Analyse der statischen
Lebensdauer von Variablen konstruiert werden kann. Diese Analyse muss die
Besonderheiten einer Architektur beriicksichtigen. Fiir die xDSPcore Architek-
tur sind das ein in Bénke geteilter Registersatz, teilbare Register und bedingte
Ausfiihrung von Befehlen. Die Beitrage dieser Arbeit sind eine Lebensdauerana-
lyse unter Beriicksichtung bedingter Ausfiihrung und geteilter Register, sowie

ein erweitertes Modell des Konfliktgraphens. Beide Techniken sind nétig, um -

einerseits teilweise Uberschneidungen von Variablen, welche durch nicht ortho-
gonale Befehle entstehen kénnen, zu erfassen und um andererseits prizise Le-
bensdauerinformation fiir bedingte Befehle zu erhalten. Zusétzlich wurde eine
auf partitionierter Boolscher quadratischen Programmierung (PBQP) beruhen-
de Registerzuweisung implementiert. Dieser Ansatz modelliert Einschrankungen
auf Programmvariablen und Auslagerungsentscheidungen durch Kostenfunktio-
nen und Matrizen. Ein PBQP Problemléser liefert optimale Registerzuweisungen
und Auslagerungsentscheidungen. Diese Dissertation tragt die nétigen Kosten-
funktionen und Matrizen fiir xDSPcore bei, welche wiederum geteilte Register
und teilweise Uberschneidungen modellieren. Die beiden Lésungsansitze werden
empirisch verglichen.

Zugriffe auf den Programmspeicher tragen wesentlich zum Energieverbrauch
eines Prozessors bei. Dieser kann durch Minimierung der Schaltvorgéinge zwischen
aufeinander folgenden Speicherzugriffen reduziert werden. Die Schaltvorginge
kénnen durch die Hamming Distanz der bindr kodierten Befehlsworte modelliert
werden. Der Beitrag dieser Dissertation ist eine Programmoptimierung, welche
die Befehlsworte von Funktionen so anordnet, dass eine globale Hamming Di-
stanz der Befehlsworte minimal ist. Dies wird durch Permutation der Befehle

innerhalb einzelner Ausfiihrungseinheiten und durch Vertauschen der Operan-
den bei kommutativen Operationen erreicht. Ein préazises Optimierungsmodell
fiir xDSPcore und die damit verbundenen Algorithmen werden vorgestellt. Im
Unterschied zu bekannten Methoden behandeln diese Algorithmen Kanten im
Kontollflussgraphen ohne Heuristiken und kénnen auch mit nicht ausgerichteten
Ausfithrungseinheiten umgehen. '

If-Umwandlung ist eine bekannte Technik, um Sprunganweisungen aus dem
Programm zu eliminieren. Eine Analyse typischer Programme zeigt die Not-
wendigkeit und Wichtigkeit dieser Transformation. In dieser Dissertation wird
eine Implementierung vorgestellt, welche auf eine kleine Teilmenge von Kontroll-
flussmustern limitiert ist. Weiters werden Abschitzungsfunktionen fiir maximale
Ausfiihrungszeit und Programmgréfie vorgestellt, welche wihrend der Transfor-
mation verwendet werden, um potenzielle negative Auswirkungen zu vermeiden.

Befehlsanordnung ist eine Technik, um Parallelitdt auf Befehlsebene auszu-
niitzen. Gebrauchliche vorwirts planende Algorithmen leiden an der oftmals zu
frithen Einordnung von Befehlen und erzeugen dadurch kiinstlich Registerdruck.
Diese Arbeit analysiert das der Anordnung zugrunde liegende Modell des Da-
tenabhéngigkeitsgraphens. Dadurch zeigt sich, dass die Algorithmen adaptiv ge-
staltet werden miissen, um mit den verschiedenartigen Strukturen der Graphen
besser umgehen zu koénnen. Detailverbesserungen an den Anordnungsentschei-
dungen fiir Auslagerungsbefehle werden prasentiert.

Ein wichtiger Aspekt auf Ebene des Systementwurfs ist das Untersuchen des
architekturellen Gestaltungsraumes. Dadurch wird versucht, den Unterschied in
der Effizienz von fest verdrahteten Hardware-Losungen und programmierbaren
Komponenten auszugleichen. In dieser Dissertation wird ein auf Hochsprachen
basierender Ansatz namens DSPzPlore priasentiert. Dieser erlaubt es die Mikroar-
chitektur in manchen Parametern so zu skalieren, dass sie den Anforderungen
der eingebetteten Anwendung exakt entspricht. Zentraler Punkt von DSPxPlore
ist eine Konfigurationsdatei, welche die gesamte Beschreibung der Architektur
enthilt.

II

Abstract

The importance of System—on—Chip and System-in-Package solutions in the do-
main of embedded systems was steadily increasing during the last years. Due to
the rising complexity of embedded applications and irregular processor architec-
tures, highly optimizing compilers are needed to meet the stringent chip area and
power dissipation requirements of such platforms.

The energy consumption of current processors is dominated by the dynamic
power dissipation, which can be reduced largely by minimizing the number of
memory accesses, minimizing execution cycles, and minimizing switching activi-
ties on buses. This thesis contributes improvements on register allocation for an
irregular architecture which reduce memory accesses and execution cycles, and
a post—pass code optimization for minimizing the dynamic switching on the in-
struction memory bus. The techniques presented in this thesis are implemented
in the context of the zDSPcore architecture which will be introduced shortly.

Register allocation maps the program variables to the registers of a processor
or spills them to a memory location. The most common technique is coloring an
interference graph which is constructed through liveness analysis. Liveness ana-
lysis on code for the xDSPcore has to deal with an irregular and banked register
file, and with predicated execution. The contributions of this thesis are a predi-
cated liveness analysis on shared registers and an augmented interference graph.
Both methods are necessary for modeling partial interferences which arise from
non-orthogonal instructions, and for precise liveness information of predicated
code. Additionally, a register allocation approach based on partitioned boolean
quadratic programming (PBQP) is implemented. This approach models archi-
tectural constraints and the problem of spilling decisions by cost functions and
matrices. Register assignments and spilling decisions are calculated by a solver
that delivers optimal results. This thesis contributes the necessary cost functions
for xDSPcore that model shared registers and partial interferences. An empirical
comparison of the graph—coloring and the PBQP-based approach is given.

Code memory accesses during instruction fetch of the processor make a sub-
stantial contribution to power dissipation which can be minimized by reducing
the switching activities between successive fetches. Switching activities are mod-
eled by the Hamming distance of the binary encoded instruction words. This
thesis contributes a post—pass optimization that finds the code arrangement for
a function which yields a globally minimized Hamming distance of all instruc-
tion words. This is done through permuting instructions of the ezecution bundles
and through swapping the operands of commutative operations. A precise op-
timization model for xDSPcore and the associated optimization algorithms are
introduced. In contrast to existing work, the algorithms consider control flow
edges without using heuristics and can operate on non-aligned execution bundles
which can even cross fetch word boundaries.

II1

If-conversion is a known technique for reducing the amount of branching
instructions in assembly code. The necessity and importance of this transfor-
mation is pointed out by analysis of typical algorithms. This thesis presents an
implementation which is limited to a small subset of control flow graph patterns
and contributes estimation functions for worst-case ezecution time and code size.
These functions are applied for guiding the transformation in order to avoid neg-
ative impacts and interferences with other dependent optimizations.

Instruction scheduling is a technique for exploiting instruction level paral-
lelism in code sequences. Top—down list scheduling algorithms suffer from over—
scheduling instructions and thus create artificial register pressure. In this thesis,
an extensive analysis of the underlying problem model, the data dependence graph,
is presented. This analysis shows that scheduling heuristics have to be adapted
to the particular graph-structures. Refinements on root node selection and on
handling spilling instructions are presented.

Design space ezploration based on a high-level language is an approach of
embedded systems design that attempts to close the efficiency gap between ded-
icated hardware circuits and software programmable components. This thesis

- contributes a methodology named DSPzPlore which allows to scale important

micro—architectural features of xDSPcore in order to adapt the processor to the re-
quirements of the embedded application. A unique configuration file contains the
entire architectural description and constitutes the central part of this method-
ology. It is used for setting up the toolchain at run time in order to generate and
simulate machine code for the currently specified architecture.

v

Contents

1 Introduction
1.1 Embedded DSPs
1.2 Compilers
1.3 Power & Energy

2 Towards energy reduction
2.1 Definitions
2.2 Optimization targets
2.2.1 Physical Capacitance
2.2.2 Supply voltage and clock frequency
2.2.3 Switching activity L 0oL
224 Time e

3 Related Work
3.1 Traditional compiler optimizations
3.1.1 Register allocation
3.1.2 If-Conversion & Predicated Execution
3.1.3 Instruction scheduling
3.2 Power— and Energy-Related Aspects
3.2.1 Compiler techniques
3.2.2 Techniques on Operating System and System Design Level
3.2.3 Profiling and Simulation

4 Target architecture
4.1 Design objectives and philosophy
4.2 Example architecture 00

5 Investigated techniques
5.1 Major contributions oL oL
5.1.1 Register allocation
5.1.2 VLIW optimization
5.2 Minor contributions oL
52.1 Ifconversion

5.2.2 Imstruction scheduling
5.2.3 Design Space Exploration
5.3 Summary e e e e

6 Conclusions

List of Figures

1.1
1.2

21

4.1
4.2
4.3

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16
5.17
5.18
5.19
5.20
5.21
5.22
5.23
5.24
5.25

General structure of a compiler
Trend of power dissipation

Architectural switching on a 16 bit register

Design philosophy of xDSPcore
Architecture Overview
Examples for register file accesses

Backend tasks and ordering Lo
Sub~tasks of graph—coloring
Sub-tasks of PBQP register allocation
Interference graph construction
Example assembly code L.
Resulting WIG
Example assembly code with refined liveness sets
Augmented WIG oL
Selecting colors fromgaps
Spilling heuristics in the xDSPcore compiler
The PBQP problem formulation
Control flow and interference graph
Example of Reduction,
RN Reduction
Details of coalescing L.
Ilustration of calling conventions
Maximum reads on data register file.
Spill cost comparisono
Number of spills comparison
Instruction sequence and possible xLIW mapping to code memory
Ilustration of switching heuristic during compilation
Illustration of block alignment
DP algorithm for local VLIW optimization
Calculation of the global Hamming distance
Total recursive enumeration

5.26
5.27
5.28
5.29
5.30
5.31
5.32
5.33
5.34
5.35
5.36
5.37
5.38
5.39
5.40
5.41
5.42
5.43

Illustration of two—point crossover 65

Genetic Evolution L. 66
CFG patterns and transformed hyperblocks 69
An ITEJ pattern using branches or predicated execution 70
If conversion algorithm 72
Occurrenceof patterns 74
Balance of patterns 75
Available resources and sample resource vectors 77
Original scheduling algorithm 79
Original scheduling algorithm 80
Layering of a data dependence graph 81
Histogram of (n,c) pairs 82
Histogram of (m,c) pairs 83
Distribution of class fractions 83
Common successor root nodes 85
Spilling loads selection 85
HW/SW tradeoft 88
Overview of DSPxPlore 90

List of Tables

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15

Colorability test for example graph 37
Register assignment 38
Register assignment for augmented WIG 39
Cost functions for the xDSPcore 44
Cost functions for example 5.7 45
Code transformation for (n-1)-operand instructions 50
Number of parallel execution units 67
Averages of Hamming distance reduction 67
Optimality of genetic evolution 67
ITEJ Evaluation 71
Quantitative results of if-conversion 75
Basic data dependence graph statistics 81
Statistics for MOV, CMP,BR 82
Regression analysisforn, 84
Evaluation of scheduling modification 87

Chapter 1

Introduction

1.1 Embedded Digital Signal Processors

The continuous growth of the embedded systems market in recent years and the
increasing complexity of embedded software are a big challenge: Heterogeneous
hardware and software platforms have to be handled by the system designers,
emerging topics like Ubiquitous Computing demand for new solutions. In parallel,
the energy budget for mobile devices is not growing, whereas upcoming audio,
imaging, and video techniques require highest computing power. In contrast to
this evolution, the product development cycles are getting shorter and shorter.

Decreasing feature size and rising cost pressure lead to highly integrated so-
lutions where a complete system is realized on one die (System—on—Chip, SoC)
or in one package (System-in—Package, SiP). Computing intensive algorithms are
partly mapped to hardware accelerators to meet the power dissipation and chip
area requirements. Embedded Digital Signal Processors (DSP) are used for parts
of the application with lower data rates which have to be kept flexible due to run—
time adaption requirements and changing standards, whereas micro—controllers
and protocol processors are used for control and protocol parts of the application.

The digital signal processors of the application are facing specific require-
ments and can therefore be considered as application specific processors with the
following distinctive properties:

e fixed—point arithmetic

accumulator registers supporting higher precision for internal calculation

multiply-accumulate instructions for filter structures

zero—overhead hardware loop instructions

dual (multi) banked data memory

complex addressing modes like auto-increment and —decrement, modulo-
addressing, bit-reversed addressing, etc.

explicit instruction level parallelism (VLIW)

single instruction, multiple data parallelism (SIMD)

predicated execution

Due to these architectural features, DSPs are considered as compiler-unfrien-
dly, and therefore existing compilers for DSPs do not attain the necessary code
quality in terms of performance and especially code size. Therefore most of
today’s application code for DSPs is still written in assembly code in order to
meet the stringent chip area and performance requirements.

With increasing system complexity and the upcoming of more powerful and
complex DSP core architectures, writing assembly code manually is not longer
feasible. Additionally, assembly code suffers from its lack in portability to other
architectures. Therefore the necessity for having highly optimizing compilers is
given. Further on, the compilation, linking, and simulation tools (the toolchain),
have to integrate smoothly into existing system design flows.

1.2 Compilers

Compilers belong to the fundamentals of computing science. They translate
high—level language programs into executable machine code. Usually a compiler
is divided into two parts: The frontend is responsible for reading a program,
transforming it to an intermediate representation, and performing hardware in-
dependent optimizations. The backend transforms the intermediate representa-
tion to machine code, doing machine specific optimizations. Figure 1.1 shows a
general structure of a compiler for different input languages and different target
machines.

Traditional optimizations done in the frontend of the compiler include dead
code elimination, constant propagation, function inlining, common sub—expression
elimination, strength reduction, induction variable elimination, etc. The major
optimizations in the backend part are instruction selection, instruction scheduling
and register allocation. This thesis discusses design and implementation of back-
end optimizations for a digital signal processor architecture named zDSPcore.
These optimizations are built upon the frontend of the Open Compiler Envi-
ronment (OCE). The OCE was developed by Atair Software GmbH, Vienna,
Austria.

Figure 1.1: General structure of a compiler

1.3 Power & Energy

The traditional focus of compiler optimizations was improving the execution time
of programs. For todays’ embedded processors, code size is of significant impor-
tance as well, because it highly impacts silicon area and therefore production
costs. Prior research has found many approaches and solutions so that these
criteria can be solved to a satisfying extent.

In recent years, power dissipation raised as another dimension in the opti-
mization space. The increased power dissipation causes heavy thermal problems.
Special packaging and cooling techniques had to be developed in order to over-
come those problems and to keep systems reliable. Current desktop processors
seem to have reached the critical point in thermal density. Without cooling
measures, they would not even be operable any more. Only very careful sys-
tem design, mainly seen at laptops and notebooks, allows un—cooled operation.
Figure 1.2, originally published by Intel around 2000, shows the trend of power
dissipation in recent years and further emphasizes the related problems.

This picture illustrates that new ideas are required to overcome the increased
power dissipation of new generation processors. Applications based on embedded
systems do not draw such a drastic picture like the standalone processors of the
desktop world. Nevertheless, it is reasonable to look at such a picture, as it gives
a good indication for the problem.

Organization of this thesis

Chapter 2 introduces the reader to the field of energy consumption of CMOS
technology driven computing, and figures out the optimization opportunities.
Chapter 3 provides an overview of related work. Chapter 4 describes the target

Power Too High

FRocketNozzle\ N
.NuclearReactor . {

ot Plate™
Pentiur®
Processors

:
i
!

Figure 1.2: Trend of power dissipation

architecture which has been considered within this thesis. The main body of
this thesis is covered in Chapter 5, which is divided into two parts: The first
part presents extensions to register allocation for irregular architectures and an
optimization to reduce switching activities on the instruction memory bus. The
second part describes some minor improvements of if conversion and instruction
scheduling, and also introduces a design space exploration methodology. Chapter
6 concludes this thesis and gives an outlook on further work to be conducted in

the future.

Chapter 2

Towards energy reduction

The rising computational requirements of current embedded software and signal
processing algorithms result in raised energy demands. Factors like packaging
costs, chip area, voltage and clock supply are also tightly connected to the terms
power dissipation and energy consumption. This asks for new power and energy
optimizations to be investigated.

Before developing such optimizations, it is necessary to identify the main
contributing factors and to clarify the technical terms. What else has to be
stated here is, that only the contribution of the digital signal processor and its
attached memories is considered within this thesis.

2.1 Definitions

The terms power dissipation and energy consumption have already been stated
several times. The following paragraphs give definitions for both of them, mostly
taken from [7]. However, hardware experts may find some slight inaccuracies,
but the definitions are sufficiently accurate for software optimization models.

Equation (2.1) shows the main three sources of power dissipation in current
CMOS technology.

P, total = F)leakage + P, short + P, dynamic (21)

Pieakage is the power which is dissipated through leakage current that arises
from substrate injection and sub-threshold effects. It is primarily determined by
fabrication technology considerations. Py, comes from the direct—path short
circuit current, which arises when both NMOS and PMOS transistors are si-
multaneously active. Pyynamic comes from charging and discharging of capacitive
loads due to logical changes. From these facts and as stated more precisely in [7],
it becomes apparent that leakage and short circuit current can be handled only
during hardware design and implementation, whereas dynamic switching power

10

widely depends on the software running on the system. Therefore, the dynamic
power has to be considered in more depth.

denamio(t) = % CVd2d fch(t) (22)

Equation (2.2) shows the factors which contribute to the dynamic power dis-
sipation. C' is the switched capacitance, Vg the supply voltage, f. the clock
frequency and D(t) the density of bit transitions (i.e. switching activity in the
current hardware state).

Edynamic = /denamic(t) dt (23)

In general, energy is the product of power and time (E = Pt) as can be
read in physics textbooks. As indicated in Equation (2.2), power dissipation is
a function in time. Therefore, energy consumption has to be calculated through
integration as stated in Equation (2.3).

At first sight, the optimization objectives can be easily deduced from these
equations. Any reduction of either of the factors results in a reduction of power
dissipation and thus reduces the amount of consumed energy. However, the
factors are not completely independent and only careful analysis and integral
optimization techniques will lead to an energy consumption optimized embedded
system.

2.2 Optimization targets

The following sub—sections will discuss how each of the contributing factors can
be tackled and how those are particularly related to each other.

2.2.1 Physical Capacitance

The switched capacitance is mostly determined through the low-level circuit de-
sign and therefore seems to be out of scope for software optimization. Neverthe-
less, the capacitances of the different hardware building blocks range through a
wide spectrum. As an example, external buses connecting memories and ALU
generally have considerably higher capacitances than ALU internal blocks. This
makes memory accesses costly in terms of energy.

From the statements above, it becomes apparent that reducing memory ac-
cesses also leads to a reduction of energy consumption. Traditional compiler
optimizations already focus on optimizing data memory accesses, but mainly
motivated from the perspective of locality in memory hierarchies. Apart from
that, program memory accesses occur more often than data memory accesses and
therefore have to be optimized as well.

11

Additionally, memory accesses can even be optimized on application level
through carefully choosing suitable algorithms (and implementations) amongst
the available alternatives. System engineers are expected to tend towards low
memory throughput and footprint algorithms, which maybe have higher compu-
tational costs, but are ”cheaper” in terms of energy overall. Only careful system
analysis and profiling can deliver the right answers in those matters.

2.2.2 Supply voltage and clock frequency

The quadratic contribution of supply voltage promises large energy savings by
voltage reduction. However, voltage and clock frequency cannot be considered
isolated from each other, because reducing one induces a reduction of the other.

On the hardware level, each of the required voltage levels and clock frequencies
have to be implemented and supported. This can eventually lead to some over-
head which has to be payed. If a multi-voltage supply is already implemented on
the embedded system, then running the core with different voltage levels is pos-
sible with only little hardware overhead. Otherwise, additional hardware blocks
like on~chip DC-to-DC converters or Low Dropout Regulators (LDO) which de-
liver the required voltage levels have to be provided. These additional blocks
itself cause additional power dissipation and especially on—chip LDOs may lead
to thermal problems as well. The energy savings on the core through reducing
its supply voltage may thus be nullified. Therefore this efficient method can only
be applied successfully under careful application and system analysis.

Another problem is the transition between different voltage and frequency
settings. This takes a considerable amount of time, during which the core does not
contribute to the system performance. Additionally, voltage and frequency can
not be reduced arbitrarily. Hard real-time requirements demand task completion
within a strict deadline. Overly aggressive voltage and frequency reduction can
lead to a potential violation of such a deadline.

In spite of those drawbacks, voltage reduction/scaling is an important opti-
mization opportunity for low—power systems. It is most promising, when imple-
mented in a real-time operating system on task level, but can also be taken to a
finer granularity.

2.2.3 Switching activity

Switching activity is caused by charge and discharge of capacitors during changes
between the logical states 1 and 0. In contrast to technology related power saving
modes, switching activity is an issue which can be directly influenced by software
development.

Switching activity is caused by charging and discharging of capacitors due to
changes in logical state (0 — 1, 1 — 0). Therefore it is directly influenced by the
executed code and thus is a major optimization target. Optimizations have to

12

s 1+ /011011000001 1110]r=swn

1 transition

SEt=S51 (011011000001 111 1]

6 transitions

seot=s+ (01101100001 0000 0] r=27e0

time

Figure 2.1: Architectural switching on a 16 bit register

focus on architectural features which are visible to the software layer, for example
registers and memory buses.

Modeling the architectural switching activities is straight—forward. Each ex-
ecution cycle n is divided into two states SP™¢ and SP°**. For each of the archi-
tectural features, internal values in S?™ and SP° are represented through bit
vectors Bpre and Bpoe (B = boby ... by|b; € {0,1}). Calculating the Hamming
distance D(@,b) = #{i|a; # b;} (that means the number of differing bits in @ and
b) of BF"® and BF°* gives the number of bit transitions within this cycle. S
of the next cycle is then assigned to SP° of the current one. Figure 2.1 depicts
a 16 bit register to illustrate architectural switching activity.

The Hamming distance is no exact metric for the absolute amount of energy
that is consumed in an execution cycle. But it delivers an adequate and consis-
tent model for creating objective functions of energy optimizations. Whenever
the Hamming distance of two consecutive states is reduced, less energy will be
consumed.

2.2.4 Time

Reducing task completion time leads to a reduction of energy consumption. The
task completion time depends mostly on the number of execution cycles (com-
putations) a task needs for completion and on the clock frequency of the system.
Thus, a smaller cycle count and a higher clock frequency leads to a shorter task
completion time. Admittedly, this is a rather simple but indeed practical model.

As can be seen from Equation (2.2) and Section 2.2.2, increasing clock fre-
quency is counterproductive in terms of power and therefore compensates the sav-

13

ings from reduced task completion time. Nevertheless, in certain circumstances,
where a processor has several predefined power states, it may be beneficial to run
a task at maximum performance and then switch the processor to a low—power
profile (or turn it off completely). Such techniques are similar to those mentioned
in Section 2.2.2 and will be discussed in Section 3.2.2.

As a rule of thumb, it can be claimed that a run time optimized program
is also energy optimized (with few exceptions {8]). Minimizing the run time of
a task is a traditional domain of compiler optimizations. Lots of source code
analysis and target code synthesis techniques have been explored and are still
under investigation. Most of these techniques focus on minimizing the average
case execution time (ACET). While ACET of DSP algorithms is still an important
quality criterion on code optimizations, worst—case execution time (WCET) and
its analysis becomes an additional and crucial factor in hard real time systems.
Therefore compiler optimizations in the real time domain have to obey additional
objectives:

e WCET minimization
e code predictability

The first one directly affects real-time task scheduling. A reduced WCET results
in larger schedule slacks and thus gives more freedom in voltage scaling. The
second objective mainly targets at the quality of WCET analysis results. If the
execution behavior of machine code is predictable, then the estimates of WCET
have closer confidence margins. Section 5.2.1 and [9] cover these aspects in more
detail.

14

The previous pages have given a short survey on the different topics related to
energy consumption. The most important optimization targets have been iden-
tified and shortly classified regarding at which level the optimizations have to
take place: Physical capacitance is mostly determined through hardware design,
but can be regarded from the software layer in certain aspects. Building blocks
with high capacitances (buses, memory) have a larger potential for energy re-
duction than those with lower capacitance (datapath). Supply voltage and clock
frequency are overall system related topics and can be optimized on operating
system level through woltage scaling. Switching activity depends mostly on the
instructions and instruction sequences that are executed on the processor. It can
be minimized by reordering of instructions and a careful choice of registers and
addresses at compile-time. FEzecution time depends on clock frequency and the
number of execution cycles and thus has to be considered from both real-time
and code optimization aspects.

This diversity of topics gives the opportunity to deal with power and energy
aspects on different software layers. Depending on system domain and context,
appropriate models for optimization guidance have to be deduced. As the title
of this thesis indicates, the main techniques which have been investigated in this
thesis are in the context of an embedded DSP core, the architecture of which will
be briefly summarized in Chapter 4. Section 5.1 focuses on compilation techniques
that reduce execution time, data memory accesses, and switching activities on the
instruction memory bus. A considerable amount of work on compiler supported
application analysis and design space exploration has been carried out and is
described in Section 5.2.3.

Due to this narrow domain, optimization models can be kept relatively sim-
ple. Missing details from system and implementation level make it unnecessary to
include detailed power and energy estimates into the compilation toolchain. Key
figures like code size, execution cycles, bit transitions on memory buses, number
of memory accesses (both data and code) are sufficient and serve as main opti-
mization objectives. Nevertheless, this does not relieve the tools from 'knowing’
how each of these factors impact energy consumption.

15

Chapter 3
Related Work

This chapter is divided into two parts. The first part covers traditional compiler
optimizations which served as starting points for this thesis’ contributions. The
second part discusses work which has been carried out in the closer context of
power and energy topics.

3.1 Traditional compiler optimizations

Compiler research focused largely on techniques for optimizing the execution time
of programs. The next sub—sections will introduce some existing techniques which
are relevant for this thesis.

3.1.1 Register allocation

Register allocation is of vital importance in optimizing compilers. In general,
compilers use an internal program representation which assumes an unlimited
number of available registers. Register allocation maps these so—called symbolic
registers (or live-ranges) to physically available hardware-registers of the tar-
get architecture. Depending on its scope, a classification into local, global, and
inter—procedural register allocation is done. This work focuses on global register
allocation. Details on local and inter—procedural register allocation can be found
in [10] and [11, 12, 13], respectively.

The most common technique for solving register allocation is based on graph-
coloring and was first introduced by Chaitin [14]. Based on global liveness ana-
lysis, an interference graph is built. For each symbolic register, a node is inserted
in the interference graph. Whenever two symbolic registers are live at the same
time, an edge between their representing nodes is inserted. If this graph can be
colored with & colors (k is the number of architectural registers), this coloring
model is a valid register assignment for the symbolic registers. If no such coloring
can be found, some of the symbolic registers have to be spilled to data memory.

16

Spilling means, that after each definition point of the symbolic register, its value
has to be stored to memory, and before every use of the symbolic register, the
value has to be re-loaded from the spill location again.

Coloring the graph can be done through graph simplification. Nodes with a
degree less than k (these are trivial to color) are removed from the graph and
put onto a stack repeatedly. When the empty graph remains, the nodes are
reinserted into the graph in stack order and assigned an available color. When
the simplification leaves a non—empty graph, spilling candidates have to be cho-
sen heuristically and the corresponding spill code has to be inserted. Then the
whole process starts again with building the interference graph, which now is less
constrained and therefore more likely to be colorable.

Briggs [15] improves this coloring scheme by delaying the spill decision to
the reinsert phase. This benefits from the fact, that nodes of significant degree
can be colored when two adjacent nodes have been assigned the same color.
This technique is called optimistic coloring. Further refinements of Briggs are
presented in {16, 17]. A technique called rematerialization is introduced. Briggs
points out that for certain symbolic registers, the value often can be easily re—
computed. Therefore it is beneficial not to spill those values, but rather insert
appropriate instructions for re-computation if necessary. Other improvements
introduced consider closeness of use—points when inserting spill code. Whenever
two use—points of a live-range are close, this live-range is kept in register instead
of being spilled and re-loaded.

A sub-problem of register allocation is coalescing of copy-related symbolic
registers (source and destination operands of copy instructions). Whenever these
registers are assigned the same color, the copy instruction is redundant and can
be eliminated. Chaitin’s allocator performs aggressive coalescing, where every
non—interfering pair of copy-related symbolic registers is coalesced to a single
live-range. This may impair colorability. Therefore Briggs suggested conserva-
tive coalescing, where two registers only are coalesced, if it is guaranteed that
the new live-range is not spilled. George [18] suggests a method called iterated
coalescing, where coalescing and graph simplification is done iteratively. A supe-
rior approach called optimistic coalescing is presented by Park in [19]. Positive
and negative impact of coalescing are elaborated in detail by showing examples
for improvement or degradation of colorability. It is shown that the conservative
approaches of Briggs and George do not benefit from the positive impact. The
optimistic approach therefore performs aggressive coalescing on an optimistic reg-
ister allocator. When a live range zy becomes an actual spill, it is split into two
live ranges x and y again, recovering the original edges of the interference graph.
It might now be possible to color = or y or both, because the degree of the nodes
in the graph is likely to be reduced.

A considerably different approach to register allocation is presented by Chow
[20] and is called priority-based coloring. Different to a Chaitin-style allocator,
this approach assumes live-ranges to reside in memory at first. The register

17

allocator calculates which live-ranges are most profitable when kept in a register.
The order in which live-ranges are assigned registers is determined by a priority
function that is based on the control flow graph and a cost model for memory
loads and stores. This approach does not need an iterative step and therefore
is faster for heavily constrained interference graphs. Several internal assumption
of this approach (like reserving registers for temporal values introduced by the
code generator) make this approach problematic for embedded processors, where
register resources are scarce. The remainder of this work will focus on graph—
coloring techniques, which are superior in this sense.

The graph—coloring approach is best—fitted for RISC machines with a regular
general-purpose register file. For irregular architectures as often seen for embed-
ded processors, some modification are necessary for making graph—coloring work.
Briggs [21] and Smith [22] introduce similar techniques for coloring register pairs.
Register pairs allow to combine two single precision registers two one of double
precision. These two registers must be adjacent and aligned. Briggs solves this
by introducing multi-edges in the interference graph. Smith puts weights on the
nodes. Both approaches model the additional constraints through the colorabil-
ity property of the nodes in the graph. Smith recently published some more
extensions to his work in [23].

Other work which focuses on irregular architectures is done by Runeson [24].
A more complex colorability test, called < p,q >—-test is introduced. This ap-
proach is superior to those of Briggs and Smith as it models a larger range of
irregularities. '

All these approaches for handling irregularities suffer from the fact that it
is necessary to change the fundamental model of the interference graph and its
colorability test.

An approach for optimal register allocation is proposed by Goodwin in [25]
and is based on 0-1 integer programming. An analysis module analyzes the
control flow graph of a function, where register allocation decisions have to be
made. These points are assigned a register allocation action and decision variable.
Actions can be such like define register assignment, keep register assignment, load
from memory, store to memory. A ’1’ in the decision variable indicates that this
action is taken, ’0’ means not taken. The decision variables and associated spill—-
code overhead for each of them are used to formulate a 0-1 integer program, which
is then solved using a standard solver. Kong [26] presents an extension to this
approach which focuses on irregular architectures. Several classes of irregularities
are identified and proper cost models for handling them are introduced.

3.1.2 If-Conversion & Predicated Execution

Predicated erecution is a technique that helps on transforming control dependen-
cies into data dependencies through if conversion. In predicated execution, the
execution of instructions depends on a logical expression called guard. The in-

18

struction is only executed if the run time value of the guard is true. The original
motivation for this transformation is handling (conditional) branches in loop vec-
torization. Branches in general make the execution of instructions d at the branch
target dependent on the execution of the branch b itself. Therefore, instruction d
are called control dependent on b. These control dependencies impose limitations
on loop vectorization and scheduling. For each of those control dependencies, a
logical expression (from branch conditions) is derived and assigned as a guard to
the dependent instruction. Therefore, the control dependence is transformed to
a data dependence and can be handled more easily during loop vectorization and
instruction scheduling.

The fundamentals of predicated code and if-conversion were introduced by
Allen [27]. Park [28] presented a refined transformation with optimal predicate
calculation and assignment. Mahlke [29] points out several short—comings of un-
constrained if—conversion on unbalanced control flow regions and with speculative
execution. A structure called hyperblock, which consists of a set of predicated
blocks and has a single entry but multiple exits, is introduced to overcome these
problems. August [30] points out further inherent problems of if-conversion and
presents a refined version of hyperblock selection. It is based on partial reverse
if-conversion which is used to keep the balance between control-flow and predi-
cation.

Work presented in [31, 32, 33| focus on the impact of predicated code onto
other code analysis techniques like register allocation. Several modifications and
enhancements of existing algorithms are shown.

3.1.3 Instruction scheduling

Scheduling is a technique that reorders instructions so that maximum instruction
level parallelism is exploited and thus execution time is minimized. It is a cru-
cial optimization for pipelined architectures, where data dependencies or resource
constraints between instructions can cause hazards which would lead to pipeline
stalls and performance degradation. For super—scalar architectures, an order of
instructions has to be determined which reduces such stalls. Parallelization of the
instructions will be done implicitly by the hardware. Scheduling for VLIW archi-
tectures needs a more complex approach because it has to be specified explicitly
which instructions are executed in parallel. Nevertheless, both strategies have
to model architectural resources which may cause hardware contention. This is
mostly done by reservation tables or resource vectors.

Scheduling can be done on local scope (basic blocks) or global scope (whole
function). Global techniques offer a better exploitation of instruction level par-
allelism but often suffer from the drawback of enlarged code size due to code du-
plication or compensation code. This is barely acceptable for embedded systems,
where code size of the program significantly influences chip area. The remainder
of this work will focus on local scheduling, more details on global scheduling can

19

be found in [34, 35, 36, 37, 38].

In list scheduling as presented in [39], a directed acyclic graph for the in-
structions of a basic block is constructed. This graph expresses the scheduling
constraints between the instructions. A topological sort of this graph then yields
the schedule. This sort is determined through several heuristics, for example
root nodes with the longest path to the leaves have to be scheduled first. Warren
[40] presents refinements on selecting the next root node to be issued and on
minimizing liveness.

A considerably different approach is software pipelining. In software pipelined
loops, the execution of the next loop iteration is started before the prior one has
completed. This yields a better utilization of functional units during execution
of loops and thus improves performance. Lam [41] showed a basic approach how
to implement software pipelining in compiler optimization by making use of an
iterative approach for scheduling cyclic graphs. A technique called hierarchical re-
duction is introduced, which allows software pipelining in presence of conditional
statements.

Rau [42] presented another algorithm for software pipelining which is called
iterative modulo scheduling (IMS). This algorithm searches for a schedule where
a new loop iteration is initiated after a pre—defined number of cycles, called
initiation interval. IMS begins with a minimum initiation interval, which is
determined by resource— or recurrence—constraints and tries to build a schedule.
If no solution can be found, the initiation interval is increased and the scheduling
process is started again.

Bala [43] presents an efficient method to perform complex resource contention
checks during scheduling, based on finite state automatons. It is more time— and
space efficient than prior techniques which are based on reservation tables.

Liu [44] presents a near-optimal approach to instruction scheduling. The
method is based on totally enumerating possible schedules with pruning the
search space if it can be proved, that no feasible schedule can be found in the
current enumeration candidate.

3.2 Power— and Energy—Related Aspects

In recent years, more and more scientific work has been carried out in the field
of low—power and power—aware software techniques. While there have been some
interesting and fundamental insights, the field is still rather young and sometimes
controversial. A profound knowledge of the underlying hardware technology and
a precise context of the presented techniques is necessary to fully understand
and evaluate the consequences of the presented work. This section only presents
a selection of some of the relevant topics in order to show the diversity and
complexity of matters. It does not cover the particular work in whole depth.

20

3.2.1 Compiler techniques

This sub-section gives an overview of work which is conducted in the closer
context of compiler techniques.

General

Lorenz [45] presents a phase—coupled code generation technique for DSP proces-
sors. The inherent interdependencies of code selection, instruction scheduling
and register allocation are pointed out and a genetic algorithm for solving these
problems concurrently is presented. The fitness function of the genetic algorithm
includes both execution time and energy estimations from a sufficiently accu-
rate model. Evaluation justifies the claim of reducing energy consumption. In
[46], Lorenz refines his work by including loop vectorization and exploiting zero—
overhead hardware loops. A more extensive experimental evaluation is given.

Marwedel [47] provides a general overview and motivation on embedded sys-
tems compilation techniques. Some low—power optimizations are pointed out and
verified through measurements on an ATMEL evaluation board. Some compila-
tion techniques for exploiting DSP characteristics are presented and key metrics
for code quality identified.

Wehmeyer [48] presents an energy—aware compilation framework for an ARM
processor which uses power-models gained from empirical measurements on an
evaluation board. The size of the register file is then considered as a parameter for
compilation and the effects of spilling and register usage are evaluated regarding
performance and energy consumption. The work shows that a good trade—off
between register file size and spilling has to be taken early at design time.

Register allocation

Chang [49] describes a technique for calculating the switching activity of set of
registers shared by different data values. Given a probability density function of
the input values, register assignment is done by minimum cost clique covering
of an compatibility graph. The evaluation proved this algorithm to effectively
reduce switching activity on the register file.

Gebotys [50] focuses on simultaneous memory and register allocation. The
objective is minimization of energy dissipation in onchip and offchip storage com-
ponents. Modeling as network flow and solving the minimum cost problem, an
(energy—)optimal assignment of data variables to registers or memory per basic
block is found.

Work from Zhang [51, 52] targets on the same problem as [49, 50], but extends
it to global scope. The basic blocks of the control flow graph of a function are
topologically ordered with a special handling of branch, merge and loop struc-
tures within the network flow problem. The experimental evaluation, based on

21

static and activity—based energy models, showed that energy consumption can
be reduced compared to a traditional style graph—coloring register allocator.

Scheduling

In [53], Lee exploits special features of a Fujitsu DSP processor in order to reduce
energy consumption. A minimal VLIW scheduling called instruction packing
and operand swapping of a Booth multiplier are implemented and evaluated by
physical measurements. Introducing these optimizations, an energy reduction of
up to 56% was achieved (dependent on the chosen multiplier structure and the
input data).

Tiwari [54] provides an extensive overview on instruction level power modeling
and points out possible software energy optimization techniques. An experimen-
tal evaluation based on physical measurement for three different processors is
given.

Toburen [55] presents a modified list-scheduling algorithm which uses a ma-
chine description model for power estimation. The list scheduler fills cycles with
instructions up to a certain energy threshold. When the threshold is reached,
scheduling proceeds with the next cycle. This technique reduces current spikes
during program execution and virtually has no overhead due to schedule slacks
in the code.

Lee [56] investigates techniques to reduce the power consumption on the in-
struction bus of VLIW architectures. A horizontal scheduling pass reorders the
instructions within one VLIW. A vertical pass moves instructions throughout
different cycles. The overall goal is minimization of the bit transitions on the in-
struction bus. Experiments with 4-way and 8-way VLIW architectures showed
reduction of switching activity by 13.3% and 20.15% on average for horizontal
scheduling, and an extra improvement by 7-10% when also vertical scheduling is
applied.

In [57], Parikh presents several list scheduling algorithms with different node
selection strategies. While the classic approach is purely performance oriented,
an energy oriented top—down, an energy oriented bottom—up, and an energy ori-
ented with look—ahead strategies are introduced for reducing energy consumption.
Further several unified strategies are investigated. The experimental evaluation
only uses a very simple architecture and a modest energy—cost model, applied on
randomly generated DAGs.

Shin [58, 59] presents an optimization for reducing power consumption in
VLIW instruction fetch. The problem is divided into a local (per basic block) and
global (per function) step. Both are modeled as shortest—path problem in a graph.
For solving the global step, some transformations and heuristics are necessary in
order to use the same algorithm. Experiments with a TMS320C6201 from Texas
Instruments show a reduction of the switching activity during instruction fetch
by 34% through local optimization only. Global optimization gave additional

22

2.9% reduction.

Choi [60] introduces an enhanced scheduling algorithm which is based on
a modified control flow and data dependence graph. Energy—costs from inter—
instruction effects are modeled by additionally inserting edges between indepen-
dent nodes. This yields the so—called weighted strongly connected graph, for
which a precedence constrained Hamiltonian path has to be found. Minimum
spanning tree and simulated annealing techniques are applied for solving this
problem. Evaluation is done using the SimpleScalar toolset. Power savings be-
tween 3 and 30% have been observed.

Yun [61] shows a modified iterative modulo scheduling approach, which both
optimizes step—power and peak—power of VLIW architectures. This is reached by
generating a balanced parallel schedule without sacrificing the performance. Ex-
periments on a SPARC-based VLIW testbed showed, that the balancing reduces
the number of cycles which dissipate more than 70% of the maximum power of an
8-way machine from 58% to 8%. The standard deviation of power distribution
is reduced from 0.31 to 0.08.

3.2.2 Techniques on Operating System and System De-
sign Level

The following paragraphs emphasize the importance of system considerations in
the low—-power domain and present topics on various distinct levels.

In [62], Benini provides a brief overview on system techniques to be applied
for power optimization. Each technique is accompanied by a concise explanation
and an extensive list of pointers.

In [63, 64], the authors present a technique to optimize switching activity on a
multiplexed DRAM address bus, called Pyramid code. An extensive overview on
several bus coding techniques and on DRAM technology is given. The switching
problem is formulated as finding a Eulerian path in a so called RC—graph. The
implementation shows a reduction of the switching activity by 50% in case of
sequential accesses.

Peymandoust [65] presents a low—power technique that works on specification
level by using algebraic transformations. Algorithmic parts with high computa-
tional costs, for example calculating a cosine, are replaced by simpler and suffi-
ciently accurate calculations. The presented tool SymSoft was used to optimize
an MP3 decoder. Besides an increased performance it was possible to decrease
energy consumption.

As already stated in Chapter 2, the quadratic contribution of supply voltage
to power dissipation offers a great potential for reducing energy consumption
by wvoltage scaling. This term subsumes optimization techniques which focus
on assigning different supply voltage levels to tasks and sub-tasks in order to
minimize energy consumption. Voltage assignments have to be carried out in

23

such a way, that real-time constraints of the tasks are still fulfilled when running
at reduced voltage levels (and thus at a lower clock frequency).

Ishihara [66] and Okuma [67] present static voltage scaling techniques for dy-
namically variable voltage processors. Given a set of real-time parameters of
a task and the available clock and voltage specifications, an integer linear pro-
gramming (ILP) formulation of the scheduling problem gives ideal static voltage
assignments in order to minimize energy consumption.

Hsu [68] presents a compiler—directed voltage scaling technique which takes
into account the speed gap between processor and memory. Regions with po-
tential energy savings are identified and the appropriate slow—down instructions
inserted. Experiments with SimpleScalar and the SPECfp95 showed energy sav-
ings of 4-23% at a performance penalty of 1-2%.

Shin [69] points put some weaknesses in inter—task voltage scaling techniques
and present an intra—task based solution. Based on worst—case execution time
analysis, the variations in task execution time due to different control paths are
gathered. Each basic block of the task is then assigned a proper speed so that
timing constraints are fulfilled and energy consumption is minimized. Remaining
task slack time is also exploited and used for further voltage reduction.

Saputra [70] shows how to apply compiler loop optimizations to static voltage
scaling. Whenever the number of cycles needed for execution of a program is
reduced, the required frequency can be reduced and therefore also the supply
voltage (with quadratic relation to power dissipation). The absolute execution
time keeps the same. Additionally, an approach of dynamic voltage scaling within
the execution of one task is presented. It makes use of integer linear programming
and assigns voltage levels to the loop nests encountered in the code.

3.2.3 Profiling and Simulation

Low—power design also needs substantial support on simulation level. Different
approaches have already been presented, where the range of accuracy spans from
architectural level to finer granularity.

Brooks [71] presents a tool for power analysis on the architectural level. It
allows sufficiently fast power estimation early in the design process with an ac-
curacy nearly similar to lower—level tools.

Ye [72] introduces an add—on to the SimpleScalar framework for doing cycle—
accurate energy estimation and bases on transitive—sensitive energy models. En-
ergy estimates for the processor datapath, memory, and on—chip buses are deliv-
ered.

Some other work in [73, 74, 75] also focus on energy estimation and profiling
but will not be further discussed.

24

Chapter 4

Target architecture
xDSPcore

This thesis has been carried out in the domain of programmable embedded digital
signal processors. Generally, the presented techniques can be applied to virtually
any of current DSP architectures. In order to approach the topics on a conceptual
level, a prototype being currently developed at Infineon Technologies Austria
has been chosen as target architecture. This chapter will briefly introduce the
xDSPcore architecture, a more elaborate presentation can be found in [76].

4.1 Design objectives and philosophy

Designing an architecture from scratch is of course a longsome, complicated but
indeed interesting matter. It was mainly motivated by the deficiencies of currently
available solutions and often driven by the enthusiasm and curiosity of the team
members only.

One of the key ideas in xDSPcore is scalability. The demands on an embedded
digital signal processor come from different directions. As already pointed out,
there are stringent requirements from the perspective of hardware, which demand
a great flexibility in implementation. From the perspective of programmers, the
processor has to be programmable in high-level languages, which means that
its architecture should be compiler—friendly. And last but not least, algorithms
may demand special functionality to be implemented efficiently. All these factors
have to be considered already during the design phase of an architecture. This
philosophy is briefly depicted by Figure 4.1, a broader discussion can again be
found in [76]. xDSPcore is therefore not one architecture. It is a family of
architectures with a similar top—level design, but different in certain scalability
factors. These factors will be discussed later in Section 5.2.3. The next section
introduces the top—level design of xDSPcore based on one architectural instance
which served as a reference during carrying out this thesis.

25

software
requirements

hardware
requirements

algorithmic
requirements

Figure 4.1: Design philosophy of xDSPcore

4.2 Example architecture

The xDSPcore is based on a modified, dual Harvard load-store architecture [77,
78]. Figure 4.2 shows a top—level overview of the architecture.

xDSPcore uses a variable-length VLIW programming model. In general,
VLIW suffers from poor code density. This problem is solved by introducing
a code compression technique called xLIW [79]. xLIW is based on a wvariable
length ezecution set (VLES), which enables a decoupling of fetch and execution
bundles. Compared to VLES, xLIW permits a reduction of the size of the pro-
gram memory port (and therefore reduces the wiring effort) without limiting the
architecture’s peak performance. The program memory port size is 4 instruction
words whereas an xLIW instruction can use up to 10 instruction words. An in-
struction buffer overcomes the possible bandwidth mismatch resulting from the
reduced size of the program memory port [80]. The align unit, closely related to
the instruction buffer, is responsible for re-building the execution sets from the
fetch bundles.

Two independent data buses connect the xDSPcore data path to the data
memory. The data memory is split into two banks, x— and y—memory. Two
concurrent memory accesses in one execution cycle can be performed only if
these do not refer to the same bank. Otherwise, a memory stalling occurs and
the accesses are serialized by the hardware. This happens transparently to the
software.

For load-store architectures, the register file is a central part of the data path.

26

address

program memo
inst0 inst1 inst2 inst3
inst4 inst5 | inst6 | inst?
instB | inst9 [inst10 | insttd
inst13 | inst14 | inst15

[Caeur] Crez] || 0
N

Register Files

<~ align unit
[Cins2] [Cinst3]
(s][st | [ns®_]

[CosT |[To/sT |[CMP_j[_CMP_J[PSEQ |
decoder ports

Instruction Buffer

Figure 4.2: Architecture Overview

Separate instructions are used for moving data between a register file and data
memory (MOV instruction class); all arithmetic and control-flow instructions
(CMP and BR instruction classes respectively) only use register operands from
the register file.

The register file of xDSPcore is split into three parts: data register file, address
register file including modifier registers and a separate branch file (which is not
fully visible to the instruction set). The structure of the register file is orthogonal.
There are no restrictions on the usage of registers for special instructions.

The data register file supports three types of register sizes. 40 bit accumulator
registers (Ax) constitute the base registers. The 32 least significant bit of an
accumulator can be accessed as a long register (Lx). A long register can be split
and accessed as two 16 bit short registers (Dx).

Address registers (Rx) are 20 bit wide. Each one has a 12 bit modifier register
(Mx) attached, which is used for modulo- and bit-reversed addressing modes.

The branch file contains status information of the core architecture. It holds
static information about the register content (e.g. sign and zero flag for each
register of the data register file) and dynamic information updated by the data
flow (e.g. overflow flags or flags indicating loop status). The separate branch file
is implemented in order to relax the number of read/write ports associated with
the register files, which are already stressed by the orthogonality requirements
[81].

27

xDSPcore offers a fully predicated instruction set [82]. Predication is register
based (not on special flags) and offers much flexibility in building complex condi-
tional expressions. (’true’, ’false’, and 'dont care’; conjunction, disjunction, loop
status, etc ...). More details on predicates will be given in Section 5.2.1.

The RISC-like pipeline of xDSPcore is split into three phases: fetch, decode
and ezecute. Each of the phases can be split into several clock cycles, which
results in higher clock frequencies. The reference architecture has a five stage
pipeline:

1. IF ...instruction fetch
IA ...instruction align
ID ...instruction decode

EX1 ...execute stage 1 (for simple ALU instructions)

o W N

EX2 ...execute stage 2 (for memory accesses and multiplications instruc-
tions)

However, splitting the instruction fetch into several clock cycles increases the
number of branch delays. Spending several clock cycles on the execution phase
increases load—use and define—use dependencies. Compensation methods for the
arising drawbacks (bypasses, branch prediction) are available [83, 84, 85, 86, 87]
but increase core complexity and silicon area.

Accesses to the register file occur in the pipeline stages where values are
actually used or computed. In this way, register pressure is reduced and software
pipelining can be implemented without the need for rotating register files and
modulo variable renaming. Figure 4.3 shows examples for the timings of register
file accesses of MOV and CMP instructions. read rx denotes the pipeline edge
where MOV instruction read the memory address from the address register file.
update rz denotes when the updated address (in case of auto-modifying MOV
instructions) is written back to the address register. read dz shows the pipeline
edge, where the data to be stored by a MOV instruction is read from the register
file, whereas write dr shows the edge where a loaded value is written to the
register file. Finally, write mem is the edge where a stored value is written into
the memory. The upper read op of CM P instruction denotes the pipeline edge
where simple ALU operations and multiplications read the source operands. Its
corresponding write dest is the edge where the result of simple ALU operations is
written to the register file. The lower read op denotes the edge where a multiply-
accumulate instruction reads the accumulator. Finally, the lower write dest is the
edge where all multiplication instructions write the result to the register file.

The size of the native instruction word of the reference implementation is 20
bit. An instruction word contains three bits used to indicate operation class and
containing alignment information. The remaining bits are used for instruction

28

read rx update rx write dx

Load/Store l i l

read dx write mem

read op write dest

ALU/MAC l $

read op write dest

Figure 4.3: Examples for register file accesses

coding. An additional parallel word is available for coding long immediate values
or offsets, thus resulting in a 40 bit instruction word (in short this coding is called
20/40-bit coding). Other codings might be 16/32, or 12/24/36.

29

Chapter 5

Investigated techniques

This chapter presents the contributions of this thesis. The presented techniques
have been implemented in an optimizing compiler backend for the xDSPcore
architecture. Figure 5.1 gives a brief overview of the backend tasks and the chosen
order of optimization. The individual passes and the motivation for this particular
phase-ordering are explained in further detail in the rest of this chapter.

Assembly code notation

The assembly code examples in the next sections will follow the rules given sub-
sequently:

An instruction is built from a mnemonic and a list of operands. Source
operands appear first, the destination operand is at the last position. For example
add DO,D1,D2 adds the registers DO and D1 and writes the result to register D2.

Each instruction can be assigned a predicate, which is placed before the
mnemonic and surrounded by parentheses. The instruction is then executed con-
ditionally, depending on the run time value of the predicate (for example (D0>0)
add D1,D2,D3 executes an addition of D1 and D2 to D3 only if the value of DO
is greater than 0).

An execution bundle is made up from multiple instructions written on one line
and separated by a double-pipe (]|) symbol. All these instructions are executed
in the same execution cycle. The bundle

add D0,D1,D2 || sub DO,D1,D3

performs an addition and a subtraction of DO and D1. The results are written to
D2 and D3 respectively.

30

Bundles which contain predicated instructions have to be flagged by a corre-
sponding pe* ! instruction, depending on the set of predicates. The bundle

(D0>0) add D1,D2,D3 || (DO<=0) sub D1,D2,D3 || pe

is an example for a simple predicated bundle, where either an addition or a
subtraction of D1 and D2 is performed (depending on the value of DO0).

Branch instructions in the examples will have two delay slots. These de-
lay slots have to be made explicit by either inserting instructions which can be
executed before the branch takes place or by appending no-ops.

——

code selection

coalescing

if conversion

coalescing

scheduling spill code insertion

— rw

branch optimization

VLIW optimization

>

Figure 5.1: Backend tasks and ordering

1pe,pel,peal,pexl: these offer different possibilities for predication, including conjunction and
disjunction of up to three simple predicates

31

5.1 Major contributions

This section presents two optimizations: (1) register allocation techniques for
irregular architectures, which are necessary to reduce the data memory accesses
due to spilling, and (2) a post—pass code optimization method which reduces the
switching activities on the instruction memory bus.

5.1.1 Register allocation

Section 3.1.1 already gave a short introduction to the field of global register
allocation, covering the graph—coloring approach and its descendants. In this
section, the topics relevant to xDSPcore will be presented in more detail. This
includes basics like liveness analysis for predicated code or modeling architectural
constraints like shared registers. Additionally, an optimal register allocator based
on a PBQP approach is implemented. Figure 5.2 gives a detailed overview of
the sub—tasks for a graph—coloring register allocator. The PBQP-based register
allocator looks quite similar and is depicted in Figure 5.3.

Peculiarities

A register allocator for the xDSPcore architecture has to consider some architec-
tural peculiarities which are only partly covered in related work. Disregarding
these peculiarities leads to an overly constrained interference graph. This yields
conservative colorings and thus results in inefficient spilling code. Both an over-
head in code size through the additional spilling instructions (static overhead)
and an increase in data memory accesses (dynamic overhead) will occur.

Predicated liveness and interference The most fundamental difference to
traditional register allocation techniques arises from predicated code. Liveness
analysis as commonly formulated does not deliver correct results, and construc-
tion of the interference graph may lead to overly constrained nodes. An extended
formulation of these algorithms is needed in order to achieve a proper modeling
of the constraints on symbolic registers.

Liveness analysis is a backward data—flow problem. It is solved by iteratively
applying data flow equations (5.1) for all instructions ¢ until reaching a fixed—
point in the liveness sets (see [88]).

IN; = USE; U (OUT; \ DEF,)
OUT; = U IN, (5.1)

s€Suce;

USE; is the set of variables used by instruction ¢, DEF; the set of variables
defined by ¢, IN; the set of live—in variables at instruction ¢, and finally OUT;
the live—out set at i. Succ; is the set of all direct successors of instruction 7 in the

32

Lir code

coalescing
&
scheduling

|

scheduled Lir code

!

Liveness analysis

interference graph
construction

v

graph-coloring register aliocation

spilling heuristic
determination

graph simplification

color selection
(actual spilling decision)

no spilling

commit coloring
to Lir code

spilling necessary

spill candidate analysis
&
code insertion

v

post optimization

roflback

Figure 5.2: Sub-tasks of graph—coloring

=

/ scheduled Lir code]

coalescing
&
scheduling

v

v

Liveness analysis

interference graph
construction

v

PBAQP register allocation

creation of PBQP instance

or adding spill candidates

if PBQP not solved

fallback to graph-coloring

if PBQP solved &
spilling necessary

if PBQP solved &

trom interference graph spill candidate analysis
&
PBQP solvi code insertion
solving
A
retranslation to registers

no spilling

roliback
commit coloring

to LIr code

v

post optimization

Figure 5.3: Sub-tasks of PBQP register allocation

34

control flow graph of the function. The IN; and OUT,; liveness sets are initialized
to empty sets before the analysis starts.

While the general idea is still applicable to predicated code, the set represen-
tation and operators have to be adapted in order to include predication of the
instructions. Set members are a 2-tuple of a predicate id and a symbolic regis-
ter. The set operators \ (difference) and U (union) are defined as drafted by the
examples in Equation (5.2).

{(id1,regl)} \ {(id2,regl)} = {(idl A —id2,regl)}
{(id1,regl)} U {(id2,regl)} = {(id1V id2,regl)}

A predicate registry and the special predicates T (always true) and L (always
false) are introduced in order to fully implement a predicated liveness analysis.
The predicate registry is a database that keeps track of the points of predicate
definitions. Those predicate definitions are realized as dummy instructions with
only the predicate identifier in their DEF-sets. These dummy instructions are
created during if-conversion (described in Section 5.2.1) and hold information
about the predicate—defining conditional expression (from the eliminated condi-
tional branch). The predicate registry allows to do simple ”reasoning” about
logical relations between different predicate identifiers. Due to the simple model
of if-conversion which only introduces mutually exclusive simple predicates, the
predicate registry only needs a simple implementation of boolean algebra. Predi-
cate minimization by the Quine—McCluskey algorithm helps at reducing the over-
head from introducing complex predicates from Equation (5.2). The predicate
registry is used during construction of the interference graph. In general, edges
between all members of the DEF[n] and OUT[n] sets are inserted in the graph.
In presence of predicated code, this only has to be done if both predicates are pos-
sibly true at the same time. After liveness analysis is completed, the interference
graph can be constructed according to the algorithm given in Figure 5.4.

(5.2)

Weighted interference graph with partial interferences Chapter 4 pre-
sented the layout of the register file for the xDSPcore architecture. The register
file is banked (data and address registers), and the data registers are split into
individually addressable sub—parts (shared registers).

Bank restrictions are handled completely at instruction selection. Each sym-
bolic register is annotated with a type tag that encodes the bank to which it
has to be assigned later. The instructions themselves can take operands of the
correct bank only. No interference edges between live-ranges of different banks
have to be added, and the colorability test for a node in the interference graph
is performed for each bank individually. The interference graph itself is there-
fore split into two disjoint sub—graphs, one for the address and one for the data
register bank. During the select phase of the register allocator, the bank tag of
the live-range is used to restrict color selection to the particular subset. In other

35

procedure buildInterferenceGraph(function F)
begin
interference_graph ifg = new interference_graph();
forall instructions i € F do
forall d € DEF(i) do
forall o € OUT(i) do
if ((d#0) A - (i is copy o—d) A
F.registry.maybe_both_true(d.predicate,o.predicate))
then
ifg.addEdge(d.liverange,o.liverange)
endif
endfor
endfor
endfor
F.setInterferenceGraph(ifg);
end

Figure 5.4: Interference graph construction

words, live-ranges from one bank interfere implicitly with the registers of the
other bank.

The shared data registers need a different modeling in the interference graph.
Generally, the graph encodes restrictions on symbolic registers that arise from
control and data flow in the program (liveness and interference). This only works
well for regular general purpose register files, where no architectural restrictions
on registers exist. In irregular architectures, those architectural restrictions have
to be incorporated as well. The approach in the xDSPcore backend is similar to
the proposal presented by Smith in [22, 23], a weighted interference graph.

In such a graph, the edges encode the restrictions from data flow. Addition-
ally, architectural restrictions are represented by node weights. For example an
A-register has double the weight (2) of a D-register (1). One crucial factor is the
colorability-test of a node. The original approach of Chaitin uses the degree of -
a node to test if this node is colorable or not. In the weighted interference graph
this is more complicated, because the weights of the adjacent nodes have to be
considered as well. Equation (5.3) shows how the weighted degree of a node in
the WIG is determined.

= Wj
dn= D [H]xun, (5.3)
i € adj(n)
where adj(n) is the adjacency list of the node n, w, the weight of n. If d,, is less
than the number of architectural registers (of corresponding weight) multiplied
by their weight, the node is of insignificant degree and can be colored.

36

Idao (global_A),d72 | Idao (global_B),d74 ; DEF={d72,d74}, OUT={d72,d74}

nop ; DEF=(}, OUT={d72.d74}

mul d72,d74,375 ; DEF={a75}, OUT={d72,d74,a75}
add d72,d74,d76 ; DEF={d76}, OUT={d74,d76,a75,d72}
stao A7515,0,(global_C) || stao d72,(global_R) : DEF={}, ouT={d74.476}

stao d74,(global_S) || stao d76,(global_T) ; DEF={}, ouT={(}

Figure 5.5: Example assembly code

d74
(w=1)

(w=1) (w=1)

ars
(w=2)

Figure 5.6: Resulting WIG

Figure 5.5 gives a short sequence of assembly code, annotated with the results
from liveness analysis. The notation An,,; in the example from Figure 5.5 means,
that only the bits u to | of register An are used as operand in the corresponding
instruction.

The graph yielded from Example 5.5 is shown in Figure 5.6. When inserting
nodes for shared registers (like for example A75;50), it is necessary to use the
corresponding base register (a75). The base register imposes the strongest con-
straint on colorability, and the simplification phase of the graph—coloring register
allocator then has to judge colorability of these base registers. When assigning
a color to the base register during re—construction of the interference graph, the
shared registers are implicitly assigned a color as well. Applying Equation (5.3)
to the nodes of the graph in Figure 5.6 gives results as shown in Table 5.1.

From the resulting values, it can be argued that this code needs at least three

Table 5.1: Colorability test for example graph

37

node | register

d72 D4
d74 D3
a7d A0
d76 D2

Table 5.2: Register assignment

accumulators to be colored without spilling. Simplification removes the nodes in
the order d72, d74, d76, and a75. Then the nodes are re-inserted and assigned
an available color. a75 is assigned the first available accumulator A0, d76 con-
flicts with a75 and therefore has to be assigned to a shared register of another
accumulator (D2). d74 conflicts with both a75 and d76 and is assigned register
D3. Finally, d72 conflicts with all other registers and has to be assigned a shared
register from an additional accumulator (D4). The register assignment is again
shown in Table 5.2. Although this is better than without any modeling of shared
registers (potentially needing four accumulators), this is still not optimal. The
interference graph does not yet model partial interferences like those arising at
the add instruction of the example. In fact, d76 interferes with A75,5¢, which is
only the lower part of the accumulator a75. Therefore, the edges of the interfer-
ence graph are augmented with information, which parts of the adjacent nodes
interfere.

In order to get this information, liveness analysis has to be done based on
register leaves. These leaves correspond to the smallest indivisible and separately
addressable parts of a base register. For example, the register A0 can exist
”standalone” or can also act as the two leaves D0 and D1. This depends on which
instructions access this register or parts of it. In the example, referencing A75;5¢
in the stao instruction causes the register a75 to be handled as an accumulator
consisting of two register leaves which are handled separately in the liveness sets.

With this improvement, liveness analysis of the example yields the refined
results as depicted in Figure 5.7. Interference graph construction now still adds
edges (a75,d72) and (a75,d74) which arise at the mul instruction. When han-
dling the add, the edge (d76,a75) is inserted but augmented with the partial
interference information. The augmented graph is depicted in Figure 5.8. Color-
ing this graph works different than before. The nodes are removed in order d76,
d72, d74, and a75. a75 is assigned to A0, d74 and d72 both conflict with a75 and
are assigned registers D2 and D3. d76 conflicts with d72, d74, and the lower part
of a75. Therefore it is possible to assign it to register D1. This coloring is again
shown in Table 5.3. Only two accumulators are needed now.

38

Idao (global_A),d72 || Idao (global_B),d74 ; DEF={d72.d74}, OUT={d72.d74}

nop
mul d72,d74,a75
add d72,d74,d76

; DEF={}, OUT={d72,d74}
; DEF={a75}, OUT={d72,d74,A7515,0}
: DEF={d76}, OUT={d74,d76,A7515,0,d72}

stao A7515,0,(global_C) || stao d72,(global_-R) : DEF={}. OUT={d74.d76}
stao d74,(global_S) || stao d76,(global_T) : DEF={}, OUT={}

Figure 5.7 Example assembly code with refined liveness sets

(w=1)

d74
(w=1)

a76
(wal}

[15.0)
(w=2)

Figure 5.8: Augmented WIG

node | register

d72 D2
d74 D3
a75 A0
d76 D1

Table 5.3: Register assignment for augmented WIG

39

selecting D4 blocks L2

legend: actioe

selecting D9 uses gap at L4
and does not impair L2

D11 D10

D13 D12

D15 D14 v
hardware registers select order

Figure 5.9: Selecting colors from gaps

Selecting colors

Selecting colors from the available set is done during the last phase of the graph—
coloring register allocation. Every time a node n is re-inserted in the graph, the
set of active registers A is determined (that are those registers that are assigned
to adjacent nodes of n). With H the set of all hardware registers, an unused
register from the set C = H \ A is assigned to the re-inserted node n. If C is the
empty set, n becomes an actual spill and is put onto a list of spilling candidates
for later treatment.

The optimistic coloring approach benefits from the fact that some of the
adjacent nodes probably are assigned the same color. Therefore, also significant
nodes can be colored in many cases. For regular register files, the order of color
selection from the set C is not overly important. For register files with shared
registers, color selection has to be done more carefully.

During the select phase, it can occur that the set A has some gaps between
active registers. When selecting colors for a D-register with a ’first—available’
strategy, these gaps are not necessarily used, but instead a new base register gets
occupied. That may impose stronger constraints on any node that is colored
later. When first looking for gaps in the active register set, these are re-used and
filled, and therefore a larger set of available base registers remains. Figure 5.9
briefly depicts an example.

40

Spilling heuristics

Generally, k—coloring a graph is done by graph simplification through repeatedly
removing nodes with insignificant degree. In situations where only nodes with
significant degree are left in the graph, one node has to be chosen for removal.
Afterwards, simplification recovers again.

Choosing the node is done by a heuristic function that considers several met-
rics of the node. In general, it is most likely to remove a node with high degree
because this brings most benefit for colorability. On the other hand, spilling costs
have to be kept low and therefore a node with few definition and use points has
to be favored. These metrics are conflicting and there is no best combined metric
function.

As already suggested by Briggs in [17], a best—of-N coloring scheme should
be performed in order to reduce the so—called heuristic noise. A lot of other
works focused on finding better and more appropriate spilling heuristics. In the
xDSPcore compiler, a total of 12 heuristic functions is implemented. Equations
(5.4) show the implemented heuristics, where p is the calculated spill priority for
node n, ¢ the spilling costs for the node, d the degree of n as defined in Equation
(5.3), and a the area of the live range of n. Spilling costs are determined through
a weighted sum of all use and definition points of the live range. The area of n is
the sum of the numbers of live—-variables at all instructions where n is live—out.

Best—of-N coloring does graph-simplification and color selection for each of
the N heuristic functions and calculates the respective spill costs from the actual
spills. Any time a heuristic decision has to be taken, the node with smallest value
p from the current heuristic function is selected. The heuristic function which
causes least overall spill costs is chosen, and the actual spills from this particular
select phase are passed over to the spill code inserter. If any heuristic succeeds at
finding an allocation without spilling, the whole process is done and the register
assignment of the interference graph is committed to the low—level intermediate
representation of the code.

Early experiments have shown, that 4 of those spilling heuristics are predomi-
nant and significantly used more often than the others. These are heuristics from
Equations (5.4a), (5.4d), (5.4f), and (5.41), which have been made ’default’ for
compilation.

Optimal register allocation

The algorithm used for optimal register allocation is based on a Partitioned
Boolean Quadratic Problem (PBQP). The PBQP approach is a unified approach
for register allocation that can model a wide range of peculiarities. In addition
coalescing is an integral part of the register assignment which is necessary for
achieving good allocations.

The PBQP approach uses cost functions for register assignment decisions.

41

p=c (5.4a)
1
1
p= -a- (540)
c
c
p=- (5.4¢)
p=cxd (5.4f)
p=cx*a (5.4g)
c
P=a (5.4h)
c ,
c .
p= 2 (5.4j)
&
p=_— (5.4k)
3
c
P=a (5.41)

Figure 5.10: Spilling heuristics in the xDSPcore compiler

42

The cost functions have to fulfill two tasks: (1) cost functions that express math-
ematically the model of spilling costs of the architecture, and (2) cost functions
that describe interference constraints, coalescing benefits, and constraints which
stem from the CPU architecture. Basically, there are two classes of cost func-
tions. One class of cost functions model the costs and constraints involved for
one symbolic register, and the second class of cost functions model the costs and
constraints of two dependent symbolic registers.

Table 5.4 lists the cost functions for the xDSPcore architecture. Spilling is
modeled by a cost function for one symbolic register. The parameter ¢ gives the
costs for spilling and parameter a determines the allocation of symbolic register
s. A symbolic register is either spilled (that means a is equal to sp) or a register is
assigned to it (that means a € {Ry, Ry, ... }). Depending on this decision differ-
ent costs are involved. The architecture features four register classes (A,L,D,R)
which can be modeled by cg(a), where class(s) is the set of registers of correspond-
ing type which can be assigned to s. Registers which are disabled for a symbolic
register have oo costs and therefore are excluded for register assignments. An
interference of two symbolic registers s; and s, is given by ig,s,(a;,a2). Either
both allocations have different register assignments (a; # as) or one of the regis-
ters is spilled (a; = sp). Again, 0o costs will be raised if for both symbolic register
the same CPU register is allocated. The shared register interference constraint is
given in equation for dg, g,(a1,a2). This constraint is necessary since two short
registers share the same memory of one long register in the architecture. Coa-
lescing costs of two symbolic registers are given by p(sbz s,(a1,az). If both register
assignments of s, and s, are identical, a coalescing benefit is obtained expressed
as a negative number —b. Table 5.5 shows cost functions for the example of
Figure 5.7 (for a small register file consisting of two accumulators only).

The cost functions are used for constructing cost matrices and cost vectors for
the NP-hard PBQP problem (see Figure 5.11). The problem instance is solved by
a dynamic programming approach. After problem solving, the solution has to be
re-translated. This is done either by committing of the register assignments to
the low-level intermediate representation (when all are assigned), or by putting
the spill candidates on the list for later treatment.

The PBQP problem can be solved by dynamic programming as proposed
in [89). In each step of the algorithm a vector Z; is eliminated until the objective
function f becomes trivial, i.e. the first part of the sum 3, j<n i Cij - 56;""
vanishes. Then, the solution of remaining vectors in the objective function is
determined. Reduced vectors can be computed by reconstructing the original
objective function. Unfortunately, not all reductions can be applied in polynomial
time. Therefore, a recursive enumeration is necessary for obtaining the optimal
solution. Basically, there are three reductions: reduction RI for nodes of only
one cost matrix, reduction RII for nodes of two cost matrices, and reduction RN
for nodes with arbitrary number of cost matrices. Reductions RI and RII can be
solved in polynomial time — reduction RN needs exponential time. Figure 5.13

43

Spilling:

() c, if a = sp
ss'(a) = .
0, otherwise

Class Constraint:

0, if a € class(s) U {sp},
cs(a)={ lass(s) U {sp}

o0, otherwise
Interference:

. 0, ifa;#axVa,=spVay=sp
is1s(@, 02) = 00, otherwise

Shared Register(Interference)

oo, if a; € shared(as)
0, otherwise

d31 Sz(ala 0,2) = {

Coalescing:

®) (a1, a) = =b, ifay=ayNa; # sp
Ps,s,(1, G2 0, otherwise

Table 5.4: Cost functions for the xDSPcore

e f = =T > =T
mlnf_[Z Z; - Cyj - & +[qxl]
1<i<n

1<i<j<n
subject to: Vi€ 1...n: & -17 =1

Vag,a € A: Cij(k,)) = Y fs.s,(ar, a1)

fs;s;€Fs;s;

Var € A: (k)= > fs.(ar)

s,€Fs,

Figure 5.11: The PBQP problem formulation

44

s (a) cs(a)
d72 | d74 | a75 | d76 || d72 | d74 | a75 | d76
A0l O 0 0 0 o | o0 0 00
Al 0 0 0 0 o | o 0 00
Loy O 0 0 0 o0 [0o | o0 | >
L1 0 0 0 0 x| oo | oo |
Doj O 0 0 0 0 0 | c© 0
Di1|| O 0 0 0 0 0 | o© 0
D2{ O 0 0 0 0 0 | o© 0
D3| O 0 0 0 0 0 | o© 0
sp|l 4 4 2 2 0 0 0 0
isd723d74 D0 D1 D2 D3 Ssp isd725a75 A0 Al Sp
DOjoo O 0 0 0 DO|joo 0 O
DiI{] 0 oo 0 0 0O Di|{oo 0 0
D2| 0 0 oo 0 0 D2| 0 oo 0
D3{0 0 0 o 0 D3| 0 oo O
sp] 0 0 O O0 O spi{ 0 0 O
iS4m846 | PO D1 D2 D3 sp iS4ra8a7s | A0 Al sp
DO| oo O 0 0 0 DOl 0 0
DI| 0 oo 0 0 0 Di|loo 0 O
D2| 0 0 oo 0 0 D20 o 0
D3| 0 0 0 oo 0 D3| 0 o 0
sp| O 0 0 0 o sp| O 0 0
'S 474Sare DO D1 D2 D3 sp U8 476Sars A0 Al sp
D0O| oo O 0O 0 0 D0Ofoo 0 O
DI| 0 oo 0 0 O Di| 0 0 O
D2| 0 0 oo 0 O D2| 0 oo O
D3| 0 0 0 oo O D3| 0 0 O
sp| O 0 0 0 0 spl 0 0 O
Table 5.5: Cost functions for example 5.7

45

Figure 5.12: Control flow and interference graph

X RII(x) RII(y) RI(i)
— a_>a

- - —-_>-
1 a 1 V a 1
y y
Figure 5.13: Example of Reduction

depicts the reduction steps for the interference graph in Figure 5.12. An edge
between two nodes represents a cost function and a node a vector Z. The example
does not impose RN reductions and can be solved in polynomial time.

The RN reduction for the optimal solution is given in Figure 5.14. The first
loop enumerates all possible solutions of vector x. For a given solution the costs
are determined. If it is smaller than the current minimum the solutions of the
remaining vectors are saved. The reduction of the vector can split the PBQP
graph in several independent sub-graphs (scc). The performance of the algorithm
can be substantially improved by solving the independent sub-graphs on their
own. For reducing the number of RN nodes it is a good heuristic to select the
vector with the highest number of cost matrices.

Coalescing

High-level optimization based on static single assignment (SSA) form produce
a considerable amount of copy instructions in the low-level code (arising from
¢-terms). Low-level code transformations and techniques as shown in the next
sections introduce additional copy instructions as well. Coalescing eliminates
such copy instructions by merging the related operands into one single operand.
The operands can be merged if they do not interfere. As shown in Section 3.1.1,
there are different strategies for merging the copy-related nodes (aggressive, con-
servative, optimastic).

46

procedure ReduceN(z)

begin
min := 00;
for i:=1 to |C;| do
h:= 53:(7'),

for all y € adj(z) do
Ey = é"y + ny(l, :);
end
remove ;
for all scc € G do
solve scc;
h := h+cost(scc);
endfor
if h < min then
save solutions
endif
reconstruct node z
endfor
restore min. solution
end

Figure 5.14: RN Reduction

47

In the traditional approach of register allocation, coalescing is implemented
as an intrinsic sub-task. For the xDSPcore backend, where register allocation
is done after instruction scheduling, this would be too late. The presence of
the (unnecessary and therefore volatile) copy instruction at scheduling—time has
strong impacts on the resulting schedule. The physical resources for the copy
instructions had to be allocated, potentially creating conflicts with other non-
volatile instructions. These may be artificially delayed and thus result in extended
schedules. Furthermore, pruning the copy instructions leaves back holes in the
schedules, resulting in bad resource utilization.

For these reasons, coalescing is implemented as a stand-alone optimization
pass for sequential code. This also allows to perform coalescing at any place prior
to scheduling. Later sections on if-conversion (5.2.1) and instruction scheduling
(5.2.2) will introduce estimation functions for the schedule length. For the ap-
propriateness of these estimations, it is necessary to apply coalescing even before
if-conversion.

In order not to impair colorability through over—coalescing of symbolic regis-
ters, only conservative strategies are applied in these early optimization phases.
Both George’s and Briggs’ strategies are implemented and can be user-selected.
George’s strategy coalesces two registers a and b to a register ab if for every
neighbor ¢ of a either ¢ already interferes with b or the degree of t is < K (where
K is the number of available registers). Briggs’ strategy coalesces two registers a
and b to a register ab if ab has fewer than K neighbors with a degree > K.

The actual coalescing in the register allocation loop is performed depending
on the current register allocation approach. Figure 5.15 gives the details on
coalescing for both register allocation strategies.

For graph—coloring, both aggressive and conservative strategies can be ap-
plied, depending on current compiler setup. An interference graph for the se-
quential code has to be built for doing the actual coalescing decisions.

Coalescing in case of PBQP register allocation works differently and needs an
invocation of register allocation for the sequential code. The register assignments
and spilling decisions made in this pass are discarded and only the coalescing
decisions are considered for performing the actual coalescing. The second PBQP
invocation (now on scheduled code) then only has to consider register assignments
or spilling decisions. No further coalescing decisions have to be taken now.

48

doConservativeBriggs, doConservativeGeorge: boolean flags which specify the
coalescing strategy (user—specified)

procedure coalesceGraphColoring(function F)
begin
interference_graph ifg=F .getInterferenceGraph();
forall (copy € F.getCopylnstructions()) do
sym_reg source=copy.getSourceReg();
sym_reg destination=copy.getDestReg();
if (- ifg.doInterfere(source,destination) A
(doConservativeBriggs A ifg.isSaveByBriggs(source,destination)
V doConservativeGeorge A ifg.isSaveByGeorge(source,destination)
V (- doConservativeBriggs A - doConservativeGeorge))
) then
F.coalesce(source,destination);
F .remove(copy);
endif
endfor
end

procedure coalescePBQP (function F)
begin
interference_graph ifg=F.getInterferenceGraph();
doPBQPRegister Allocation(ifg);
forall (copy € F.getCopylnstructions()) do
sym.reg source=copy.getSourceReg();
sym.reg destination=copy.getDestReg();
color source_color=ifg.get AssignedColor(source);
color dest_color=ifg.get AssignedColor(destination);
if (source_color = dest_color) then
F.coalesce(source,destination);
F.remove(copy);
endif
endfor
ifg.revokeColoring();
end

Figure 5.15: Details of coalescing

49

n—-operand (n-1)-operand | assembly example
d := unary(s) d:=s mov s,d
d := unary(d) abs d
d := binary(sl, s2) d:=sl mov s1,d
d := binary(d, s2) 1slr s2,d
d := ternary(sl,s2,s3) | d .= sl mov s1,d
d := ternary(d, s2, s3) | mac s2,s3,d

Table 5.6: Code transformation for (n-1)-operand instructions

Handling of special instructions

The xDSPcore instruction set includes instructions that have to be treated in a
special way. Those instructions can be classified in:

e one-operand unary instructions (e.g. abs Dx ...absolute value, d = |s|)

e two—operand binary instructions (e.g. 1lslr Dx,Dx ...logical shift left by
register, d = sl << s2)

e three—operand ternary instructions (e.g. mac Dx,Dx,Ax ...multiply—accu-
mulate, d = sl + s2 * s3)

These instructions have an implicit source operand (which corresponds to the
destination) and thus a slight code transformation for proper handling of those
instructions is needed. Table 5.6 shows the necessary code transformations, with
d meaning ’destination operand’ and s, s1,52,s3 meaning ’source operand(s)’.

As the examples in the table show, the problem of (n-1)-operand instructions
can be handled by inserting additional copy instructions. Those additional copy
instructions place an additional burden onto register coalescing.

Handling of calling conventions and pre—colored nodes

In general, calling conventions are a set of rules that clarify the responsibilities of
preserving values over sub-routine boundaries. There are two basic categories of
registers: (1) caller-saved registers, and (2) callee-saved registers. Caller—saved
registers have to be saved by the calling routine (the caller) if they contain values
that are still live after the sub-routine call. Callee—saved registers have to be
saved by the called function (the callee) if it uses any of those registers. Therefore,
the caller can rely on those registers having the same values after the callee has
returned than they had before. Additionally, calling conventions specify which
registers are used for parameter and result passing, and which register is used as
the stack (or frame) pointer. Unused argument registers are used as additional
caller—saved registers, the stack pointer is callee-saved. Calling conventions can
be properly implemented by introducing special pre—colored nodes.

50

Argument registers Argument registers are involved twice: (1) for the incom-
ing parameters of the current function, and (2) for passing outgoing arguments
to a called sub-routine.

The parameters of the current function are realized as local variables and
are represented by a symbolic register. In order to receive the correct value at
function entry, special copy instructions from the parameters’ entry locations (the
argument registers) to the parameters’ function locations (the symbolic registers)
are inserted in the LIr code. The source operands of those copy instructions are
pre—colored to the particular argument registers.

At function calls, the arguments are evaluated into symbolic registers, and
again copy operations from the arguments’ locations to the corresponding regis-
ters for parameter passing are inserted. That means, that the destination of the
copy instruction is pre—colored to the particular register.

The result of the function call (if any) is handled the same way as parame-
ters. It is copied from its return location (the pre—colored return register) to the
function location (a symbolic register).

Caller-saved registers Saving and restoring caller-saved registers is done by
using the regular spilling mechanism. Each sub-routine call is annotated with
a define-set of all caller—saved registers. Thus, if any symbolic register is live
across a call, it interferes with all caller—saved registers and therefore either has
to be assigned a callee-saved register or spilled to memory. The spilling heuristics
will decide, which of the symbolic registers that are live across the call will be
assigned a register or spilled.

Callee—saved registers Saving and restoring callee—saved registers is handled
after register allocation has finished. Whenever a function uses a callee—saved
register for any of its symbolic registers, appropriate store and load instructions
are inserted at function entry and exit.

Figure 5.16 depicts the responsibilities and actions for a proper implementation
of calling conventions. Additional copy instructions are introduced and have to
be treated during register coalescing.

Coalescing a symbolic register s and a pre—colored register p can only be done
if s does not interfere with any other register that is equally pre—colored as p. This
situation can occur at symbolic registers that are live across a sub-routine call.
Coalescing such registers with a pre—colored one (and thus implicitly pre—coloring
it) violates the interference constraint at the call and thus results in an improper
implementation of calling conventions. Without coalescing, the symbolic register
can be either assigned a callee—saved register or spilled at the sub-routine call.

51

]

*) save caller-saved registers
*) evaluate arguments

*) copy arguments to
argument registers

callee
(defines all caller-saved)

*) copy resutt from
result register

*) restore caller-saved registers

f

*) copy parameters from
entry location

*) save caﬂeg-éa_véd registers

*) restore callee-saved registers
*) copy result to result register

Figure 5.16: Illustration of calling conventions

52

Termination

The register allocation loop has no clear termination condition ? and in early
implementations, cascading spills due to misplaced spill code have led to a virtual
endless loop.

Nevertheless, termination can be proved (rather informally) by the following
considerations: It is necessary (1) to identify situations with maximum register
pressure, (2) to check if those situations are locally colorable, and (3) to find a
spill code placement for such situations to make them also globally colorable.

Maximum register pressure can be constructed through a schedule where
the maximum of register reads or writes is performed at one pipeline edge, as-
suming that all the operands are pairwise different. In general, the number of
source operands is greater than the number of destination operands, therefore
it is sufficient to focus on register reads. Due to the banked register file and
the pipelined execution of instructions, it is necessary to consider read matrices
R= (R4 7) with the components r, for reads of address registers in stage n
and d,, for reads of data registers in stage n. Each instruction of the instruction
set is assigned such a read matrix. Using instructions with component wise max-
imums, a code sequence with maximum register reads can be constructed. For
the current instruction set of xDSPcore and the current setup of functional units
(2xMOV,2xCMP,1xBR), this yields the following sequence for the data registers:

st R1,(M) | st R2,(M)
mac R3,R4,R5 || mac R6,R7,R8 || jmpr RO
st st IF AL o] EX1 EX2
mac || mac || jmpr IF AL D EX1 EX2

v
read A1,A2,R3,A4,R6,R7,RI

v
read R5,R8

Figure 5.17: Maximum reads on data register file

The maximum of register reads at any pipeline edge is therefore less than or
equal to 7, so this sequence is guaranteed to be locally colorable with the given
register file (8 accumulators in the data register file). The same can be shown for
the address registers.

2Termination relies on the heuristic behavior, that iteratively inserting spill code makes the
code colorable at some point. In general, this is not guaranteed.

53

Making such a sequence globally colorable depends on liveness of other vari-
ables which are not directly involved and the liveness of the input values. Vari-
ables which are live-trough (that means, they are both live-in and live—out but
neither in one of the def or use sets of the code sequence) can be spilled. This
makes them disappear from the local register sets, reducing register pressure.

The destination operands then have to be assigned to registers which are not
already used for the input operands. Register of input operands which are not
live—out can be used as well. If this set of registers cannot hold the destination
operands, some of the input operands have to be spilled as well. This makes
them disappear from the live-out set and thus the register can be re-used for the
destination.

From these considerations, it becomes apparent that the register allocation
loop terminates if the spilling instructions are placed appropriately (and thus
successfully reduce register pressure). Section 5.2.2 and Figure 5.41 will give
some explanations on scheduling spilling instructions.

Complexity

Register allocation in general is known to be an NP—complete problem. Nev-
ertheless, there are some heuristic approaches which can be applied and often
deliver an optimal solution.

For the graph—coloring approach, optimality is reached when no spilling de-
cisions have to be drawn. If spilling is necessary, the heuristic functions which
select the live range to be spilled have to fulfill two conflicting goals (improve
colorability by minimal spilling costs) and thus optimality cannot be guaranteed
any more. Only a good approximation can be achieved but the run time behav-
ior is nearly linear (in the size of symbolic registers and number of edges in the
interference graph).

On the other hand, the PBQP approach finds a spill cost optimal solution
in each iteration of the register allocation loop. Optimality can be guaranteed
by applying special reductions to the PBQP problem. If only type RI and RII
are applied, the optimal solution is found polynomial time. Reductions of type
RN introduce exponential run time behavior and thus may not be accomplished
in reasonable time (but often do). This makes the actual complexity of the
algorithm sensitive to the structure of the interference graph.

Both strategies use the interference graph as a vehicle for the complete register
allocation process. Building the interference graph itself is already a costly pro-
cess, as it involves (an iterative) liveness analysis of the code, and has a quadratic
component (in the def and out sets of each instruction). Especially for graph—
coloring, building the interference graph dominates the run time of the actual
coloring.

54

Spill Cost

Number of Spills

Il optimal
Il graph-coloring

4R3BO 8RO 16R30

Figure 5.18: Spill cost

mil |
RO 8R20 I16R20

comparison

300

250

g
T

150

g

50

B optimal
M graph-coloring

4R3O 8RO 16R/30

4

I -
R2

(¢} 8RO 16 (o]

Figure 5.19: Number of spills comparison

95

Evaluation

Both register allocation approaches have been compared regarding static spilling
costs. Several architectural models have been implemented. The number of
base registers was set to 4,8, and 16 respectively. Additionally, code for three-
operand mode and code for only two—operand mode, needing additional copy
instructions and therefore coalescing decisions, was generated. The spilling costs
and the number of spilled live-ranges of the particular register allocator for all
benchmarks have been accumulated. Figure 5.18 shows the comparison of spilling
costs in numbers of executed spilling instructions. Figure 5.19 shows the number
of spilled live-ranges.

From these figures, it can be seen that the PBQP-based register allocator out—
performs the extended graph—coloring approach. Spilling instructions are further
reduced. This is essential for reducing energy consumption of the executed code.

56

5.1.2 VLIW optimization

Motivation

As shown in Section 2, communication on core buses is a main contributor to the
total energy consumption of a processor. Since instruction fetching is inherent
in today’s processor architectures and instruction buses of VLIW architectures
can become wide, there is a great potential in reducing the energy needs of
the processor by reducing energy consumption during instruction fetch. The
approach in xDSPcore is two—fold:

1. during execution of hardware loops, instruction memory accesses are re-
duced by stalling instruction fetch (after all instructions of the loop body
have been fetched to the instruction buffer),

2. switching activities on the instruction memory bus are reduced by software
optimization.

The optimization presented here refines VLIW operations in such a way, that
fetching a function’s instruction words from code memory causes as little dynamic
switching as possible. This goal can be reached by minimizing the Hamming
distance of consecutively fetched words.

Basics

Figure 5.20 shows an example of how an instruction sequence (upper part) is
mapped into code memory (lower part). Each clock cycle, one complete line of
code memory (i.e. a fetch word) is loaded into the instruction buffer. Due to the
xLIW code compression and the instruction buffer, an erecution bundle (depicted
by the dashed lines) may start and end at any offset within the fetch word, even
crossing fetch word boundaries. The order of instructions within one bundle is
arbitrary, dispatching of instructions to the correct functional unit is solely done
by the aligner unit. Optimization of the instruction-to-code-memory mapping
can be done through the following refinement possibilities:

e permuting the operations of one execution bundle,
e operand swapping of commutative operations.

It has to be noted, that this optimization works as a post—pass optimization
that does not impact performance nor code size of the application. For exploiting
the full power of this technique, an implementation within the linker would be
best. Only at this point in the compilation workflow, the complete binary coding
information is available. However, implementing the optimization in the compiler
is possible when applying a heuristic. For any two instruction words where several
coding bits are not yet known, for example offset bits of branch instructions (’0’),

57

i || 13

@21 || 22 || 424

i31 || 432 || ta3 || %34
ta1 || 742 || a3

(¢zy means instruction ¢ is executed in cycle = at functional unit y)

‘_—___——_—ﬁr____'——-___
Fooill i13 IL i21 122
o s s RS - =
123 i31 132 i33
L — _ _ JiL - Jd_ - - -1 - _ _ _ I
- -_-_—1l——_———_._____—'-—|
134 _;l 141 142 i43 |

Figure 5.20: Instruction sequence and possible xLIW mapping to code memory

Fwi 11000010001111001001 11000010001111001001 11000010001100110000 11000010001100001111

Fw2 11000010001111001001 1100aaaaaaaaaaaaaaaa 11000011110000000000 11000010001100011000

D=0 D=8 D=9 D=4

Figure 5.21: Illustration of switching heuristic during compilation

or absolute addresses of loads (’a’), it is assumed that half of the affected bits
cause a bit transition. The example in Figure 5.21 depicts this heuristic. The
first instruction pair of fetch words FW'1 and FW 2 contains identical instructions
and has Hamming distance 0. The second instruction word pair has one fixed
instruction word. The second instruction word has 16 'a’ bits, the remaining bits
are identical to the corresponding bits of the first word. This yields the heuristic
Hamming distance 8. The third instruction word pair has ’o’ bits in each of the
words, affecting 8 bit positions. The remaining 12 bit positions are different at
5 positions, yielding a heuristic Hamming distance of 9. Finally, the last pair
contains two fixed instruction words with a Hamming distance of 4. The overall
Hamming distance for FW1 and FW?2 used in later optimization results in 21.

58

Problem model

Calculating the Hamming distances of successive fetch words is straight—forward
for linear program flow but is limited to the scope of basic blocks. A global
approach for a whole function has to take inter—basicblock effects into account.
Equation (5.5) shows the objective function for modeling the so—called ’global’
Hamming distance for instruction fetch of a whole function F'.

Distl, = > fo <Dz‘st;’,"t +) Pos* Dz‘stgfjs> (5.5)
beB SES)

B is the set of F’s basic blocks, f, the execution frequency of block b, Disti™
the internal Hamming distance of block b (see below), S, the successor blocks
of b, pp—s the probability of branching from b to s, and Distf®, the so—called
external Hamming distance of block b to block s. Execution frequencies and
branch probabilities are estimated by the following heuristic functions:

fo =10 : (5.6)

with [the loop nesting level of b, and
(1
[Sel
0.9 for the back—edge of a conventional loop,

for non-loop branches,

Po—s = { 0.1 for the end-loop edge of a conventional loop, (5.7)
0 for the back—edge of a hardware loop,

k% for the end-loop edge of a hardware loop.
The internal Hamming distance of a block b is calculated as follows:

A’?‘ch'd_1
Disti™ = Z Dist (FWord, FWord:,,) (5.8)
i=1

where N }} ord 15 the number of fetch words in block b, and
Dist (FWord;, FWord.,,) the Hamming distance of the ith and (i + 1)th fetch
words of block b.

Calculating the external Hamming distance of a block to its successors works
mostly analogous. There is only a difference if the first or last execution bundles
of a basic block are not aligned. This has to be taken into account correctly.
Figure 5.22 depicts an example. For edge I — T, the Hamming distance of fetch
words 3 and 6 has to be calculated, For I — E 3 and 4, for T — J 9 and 10, and
for E — J 6 and 9.

99

© 00 N U s W N =

T
10_—_-1____|-___|_-__]
J 11 _1-_ __I____."____
ol L
Figure 5.22: Ilustration of block alignment
Algorithm

Due to the structure of the objective function, the optimization is done in two
steps. The first step computes a set of locally optimal operation arrangements
for each basic block. The second step then selects those local solutions that yield
the minimal global Hamming distance under consideration of inter—basic block
effects (as defined in Equation (5.5)).

Local Optimization With the xLIW programming model, the instructions of
one execution bundle are not bound to one fetch word. In other words, when
choosing one particular permutation, an instruction might be placed into a dif-
ferent fetch word than it would have been placed with another permutation.
Solutions from previous work [56, 59] are restricted to aligned bundles that do
not cross fetch word boundaries. Therefore those algorithms (bi-partite graph
matching, shortest path) do not work for the xDSPcore architecture. Instead
of graph methods, an enumerative approach with dynamic programming was
implemented.

In principle, all possible arrangements (permutations and operand swapping)
of each of the execution bundles in the basic block have to be enumerated to find
the arrangement which results in the minimal internal Hamming distance. This
enumeration yields an exponential run time complexity, but this can be reduced
by a dynamic programming approach. The dynamic program makes use of the
circumstance, that only the first and the last fetch words of the blocks are needed
for the global expansion step. So only such combinations have to be considered,
that differ in their resulting first and last fetch words. All other combinations

60

can be eliminated in each step of the dynamic program. This reduces run time
complexity to a virtually linear behavior 3, so that the algorithm is reasonably fast
for typical code. It also still yields the optimal result, because all of the locally
optimal solutions ¢ are generated and later on used in the global expansion. The
pseudo code in Figure 5.23 gives the details of the dynamic program.

Global Expansion Global expansion picks one particular local optimum for
each block in order to minimize the global Hamming distance as defined in Equa-
tion (5.5). Two different strategies were implemented. The first one is a total
recursive enumeration of all possible combinations of local optima, whereas the
second strategy implements a genetic evolution for the global expansion step. Cal-
culating the global Hamming distance as defined in Equation (5.5) is performed
as shown in the pseudo—code of Figure 5.24.

Total Recursive Enumeration This strategy originally served as a refer-
ence implementation that always finds the optimal solution of the global expan-
sion. It loops through all the basic blocks and their corresponding local optima
recursively. Every time the last block of the function is reached, the global Ham-
ming distance is evaluated according to Equation (5.5). If it is smaller than the
currently known best solution, then the solution is memorized, otherwise it is dis-
carded. This is continued until all combinations are checked. The pseudo code
in Figure 5.25 gives the details. It is apparent that this exponential algorithm
soon reaches its limits. Nevertheless, the limited problem structure ° allows to
enumerate almost all of the benchmark programs in reasonable time.

Genetic Evolution The search space for the global expansion is non-linear
because of the presence of loops in the control flow graph. Therefore it is not
straight—forward to find and implement a ’cheap’ but complete algorithm. In
recent years of compiler research, evolutionary approaches get more accepted.
Therefore a genetic evolution for the global expansion set was modeled.

An individual of the population represents one possible combination of par-
ticular local optima. For each basic block the local index of the chosen optimum
is stored in a string of integers (indexed by basic block indices). Two—point
crossover between two individuals is done by interchanging parts of two strings
and is performed during reproduction of a generation. The points for this opera-
tion are chosen randomly. Figure 5.26 depicts one crossover operation. Mutation

3linear in the number of bundles, but with some high constant factor which arises from the
number of arrangements in first and last fetch word

4all combinations of different first and last fetch words (”borders”)

5There are only a few different local optima because the parallelism of the basic block tails is
often very limited. Additionally, the number of basic blocks in a function is also within modest
bounds.

61

t_bundle: a set of Instructions

t_dp_state: the current state of the dynamic program, i.e. the particular arrangements
of the currently contained bundles.

t_container: a container for {_dp_states.

GenArrangementsOf(t-bundle): returns the set of all possible instruction arrangements
of one bundle (considering permutations and operand swapping)

concat(t_dp_state first,t_dp_state second): concatenates two states of the dynamic pro-
gram and returns the resulting state, i.e. the bundle(s) in ’second’ are appended to the
bundle(s) in ’first’ '
t_container.findEqualState To(t_dp_state other): tries to find a state in the container,
that equals ’other’. Two states are considered equal, if both contain identical instruc-
tion arrangements in their first and last fetch words.

HammingDist(t_dp_state): evaluates the internal block Hamming distance of the cur-
rently contained bundles according to Equation (5.8).

procedure generateLocalSolutions(t-block basic_block)
begin
t_bundle first_bundle=basic_block.getBundle(1);
t_container initial_states = GenArrangementsOf(first_bundle)
for (index=2 to basic_block.getNumberOfBundles()) do
t_container next_states = new t_container();
t_bundle next_bundle=basic_block.getBundle(index);
t_container P = GenArrangementsOf(next_bundle);
forall s € initial states do
forall p € P do
t_dp_state newstate=concat(s,p);
t_dp_state existingstate=next_states.findEqualStateTo(newstate);
if (-3 existingstate) then
next_states.add(newstate);
elseif (HammingDist(newstate) <HammingDist(existingstate)) then
next_states.replaceStateBy (existingstate,newstate);
else
delete newstate;
endif
endfor
endfor
delete initial_states;
initial_states=next_states;
endfor
basic_block.setLocalSolutions(initial_states);
end

Figure 5.23: DP algorithm for local VLIW optimization

62

getExtHD(t_function f, int solutionf[, t_block p, t_block s):
calculates the external Hamming distance of blocks 'p’ and ’s’ under the specified
operation arrangements from ’solution’.

function getGlobalHammingDist(t_function f, int solution[]):int
begin
t_control_flow_graph cfg = f.getControlFlowGraph();
int num_blocks = f.getNumberOfBlocks();
int result = 0;
for (index = 1 to num_blocks) do
t_block block = f.getBlock(index);
t_container local_optima=f.getLocalSolutions(block);
int block_solution = solution[index];
result += local_optima.getInternalHammingDistFor(block_solution);
for (t_block succ € cfg.getSuccessorsOf(block)) do
int succ_solution = solution[f.getIndexOf(succ)];
result += getExtHD(f,solution,block,succ);
endfor
endfor
return result;
end

Figure 5.24: Calculation of the global Hamming distance

63

procedure
TRE(t_function f, int blockindex, int current[], int best[], int bestval)
begin
if (blockindex > f.getNumberOfBlocks()) then
int hd=getGlobalHammingDist(f,current);
if (hd<bestval) then
copyArray (best,current);
bestval=hd;
endif
else
-t_block block = function.getBlock(blockindex);
t_container local_optima=function.getLocalSolutions(block);
for int index=1 to local_optima.getNumberOfSolutions() do
current|blockindex]=index;
TRE(f,blockindex+1,current,best,bestval);
endfor
endif
end

procedure GlobalExpansion TRE(t_function f)
begin
int num_blocks = f.getNumberOfBlocks();
int current] = new int{num_blocks];
int best[] = new int[num_blocks];
int bestval = MAX_INT;
TRE({,1,current,best,bestval);
f.setGlobalSolution(best);
end

Figure 5.25: Total recursive enumeration

64

Figure 5.26: Illustration of two—point crossover

is done by changing one of the indices to another valid index and is done for a
fixed ratio of randomly chosen genes. The global Hamming distance as defined
in Equation (5.5) serves as fitness function. In order to achieve minimization,
individuals with smaller fitness values are chosen for reproduction. The size of
the population depends linearly on the number of possible incarnations, but is
bound to a maximum of 1000 (in case of more than 1.000.000 possibilities). The
first population is generated randomly, but includes an individual made of all
the absolute local optima. Parents for the new generation are selected randomly
within the fittest 50% of the population. The individual with best fitness survives
unchanged (cloned reproduction) in order to guarantee a continuous evolution. If
evolution stagnates © for a pre-defined number of generations, the current solu-
tion is considered as global optimum and evolution is stopped. The pseudo code
in Figure 5.27 shows details of the genetic evolution.

Empirical Evaluation

For static evaluation of the improvements achieved by this refinement strategy,
five different architectures are modeled. The maximum size for an execution
bundle varies from 3 to 6 operations respectively. Table 5.7 shows these five
architectural models, using the notation of instruction classes as introduced in
Chapter 4.

Static evaluation covered a total of 239 functions and was done for all different
architecture models. An enhanced full rate coder application contributes 95 func-
tions, 16 functions are taken from the DSP kernels of the DSPstone benchmark
suite, the rest of the benchmarks are various vector operations, digital filters,
algorithms like Quicksort, Bubblesort, MD5, compress, etc.

The baseline for optimization was obtained through an evaluation of each

Sfitness does not increase

65

t_individual an array of integers, the elements of the array encode the index of
the local optima for a basic block

t_population: a set of t_individuals, sorted by their global Hamming distances.
generateRandomPopulationFor(t_function f): generates a randomized set of indi-
viduals, evaluates and stores the global Hamming distance for each of them and
inserts the individuals into the resulting t_population.
t_population.getFittestIndividual(): get the individual with the smallest global
Hamming distance.

t_individual. getGlobHD(): returns the previously evaluated global Hamming dis-
tance of this individual. '

t_population.selectParents(): select a random set of parents from the first half of
the population.

t_population.reproduce(): perform a sexual reproduction of the parents with a
two—point crossover until the original population size is reached.
t_population.doMutation(): mutates 0.1% of the genes.

t_population. extinct(): deletes the population and its individuals.

procedure GlobalExpansionGen(t_function f, int threshold)
t_population G = generateRandomPopulationFor(f);
int currentHD = G.getFittestIndividual().getGlobHD();
int stagnation_count = 0;
forever
t_population P = G.selectParents();
t_population C = P.reproduce();
if (C.getFittestIndividual().getGlobHD() < currentHD) then
currentHD=C.getFittestIndividual().getGlobHD();
stagnation_count=0;
else
stagnation_count+=1;
if (stagnation_count > threshold) then
break;
endif
endif
C.doMutation();
G.extinct();
G =¢;
endfor
f.setGlobalSolution(G.getFittestIndividual());
end

Figure 5.27: Genetic Evolution

66

MOV [CMP | BR
VLIW; 1 1 | 1
VLIW,, | 1 2 |1
VLIW,. | 2 1 |1
VLIW; 2 2 |1
VLIW, 2 3 |1

Table 5.7: Number of parallel execution units

Model LOC | GEN | TRE
VLIWs; [61%| 7.7% | 78 %
VLIW,, | 61%| 7.8% | 7.9%
VLIWsm | 7.3 % | 100 % | 10.3 %
VLIW; | 76%|104 % | 108 %
VLIWs [83%|11.1%|11.5%

Table 5.8: Averages of Hamming distance reduction

function’s unoptimized global Hamming distance. In the next step, the local
optimization algorithm was applied. For each basic block, the overall minimum
out of the set of optima was selected. The global Hamming distance for those
blocks has been evaluated and yields a only locally optimized Hamming distance.
Based on local optimization, the genetic evolution was applied for global opti-
mization. Finally, a total recursive enumeration for solving the global problem
was performed for all functions with less than a million different combinations of
local optima.

Table 5.8 presents the geometric means of reduction of the global Hamming
distance for all models. The improvements in are all relative to the unoptimized
global Hamming distance. Table 5.9 shows a comparison of non-optimal and
optimal solutions reached by genetic evolution.

no. of solutions
Model sub—optimal | optimal
VLIW3 63 160
VLIW4c 68 144
VLIW4m 66 126
VLIW5 64 117
VLIWG6 52 125

Table 5.9: Optimality of genetic evolution

67

5.2 Minor contributions

This section describes minor improvements on if conversion and instruction schedul-
ing, and also presents a design space exploration methodology for embedded pro-
Cessors.

If conversion and instruction scheduling as described here do not primarily
focus on optimizing energy consumption. Nevertheless, improvements in code
efficiency in general reduce energy consumption and are therefore necessary to
bring down the energy consumption baseline from which dedicated optimizations
can start from.

Design space exploration is a method for embedded systems design and thus
operates at one level above compiler optimization. The intention here is tailoring
an embedded processor exactly to the needs of an application. Again, this is
a method for improving efficiency of software and hardware and thus helps at
reducing the energy consumption of the system.

5.2.1 If conversion
Motivation

Today’s algorithms in signal processing (e.g. video codecs) contain a significant
amount of not linear code (control code) in inner loops. These control code sec-
tions yield complex control flow graphs with many branch instructions. In VLIW
architectures, branch instructions suffer from branch delay slots which impair
performance when not filled with useful instructions. Further, complex control
flow graphs complicate WCET analysis resulting in imprecise and over—estimated
upper bounds for the worst—case execution time. With the single—path program-
ming paradigm [9, 90], both drawbacks can be tackled at once. This paradigm can
be supported substantially by the compiler through if-conversion. The single—
path programming paradigm builds upon a code transformation that removes
data—dependent branch instructions from the code. This yields a program which
is fully temporally predictable, because it always executes on one single execution
path.

Details

If conversion is a compiler optimization that translates control dependencies into
data dependencies by using predicated execution (Section 3.1.2). While the orig-
inal approach transforms the complete body of an innermost natural loop to one
block, the implementation within the xDSPcore compiler backend is restricted to
smaller control flow graph patterns. These patterns result from if statements or
conditional operators in the source program.

Figure 5.28 shows the set of patterns which are included in the transforma-
tion, and how each of these patterns is transformed. This approach is similar

68

ITEJ-Pattern ITE-Pattem

J
ITJ-Pattern IT-Pattern
r
=:> 0] £
J
IEJ-Pattern IE-Pattem

Figure 5.28: CFG patterns and transformed hyperblocks

69

eval C

(C) t1 || (-C) f1 | pe
()2 || (-C) 12 || pe
j1

j2

eval C
branchif C, true
nop
nop
false:
f1
2
branch join
nop

F I HFFHRFRFRFRRHREIE

Figure 5.29: An ITEJ pattern using branches or predicated execution

to the concept of the hyperblock([29]), except for still having a single exit. The
notation +7 in the hyperblocks stands for the set of instructions of block T
which are now assigned a predicate, built from the conditional expression of the
trailing branch in I. In contrast, -F denotes the instructions from block E which
are assigned the negated conditional expression of the branch. Through these
predicates, the instructions of +7T and -E are no longer control dependent and
thus can be moved into the block I’, which consists of the instructions of I with-
out the trailing conditional branch. In general, the ITJ (IT) and the IEJ (IE)
patterns are isomorphic. Nevertheless, different predicates have to be assigned
to the conditional block, therefore these patterns are kept separated for an easier
implementation of the transformation.

Example The example in Figure 5.29 shows assembly code for an it—-then—else—
join—pattern. The left side implements the if-pattern by using branches, the right
side with predicated instructions.

A ’visual’ evaluation already shows the effectiveness of this transformation.
Detailed evaluation as shown in Table 5.10 has to consider code size, cycles when
taken, and cycles when not taken. The results from this simple example are
promising, but an un—constrained transformation may sometimes be too aggres-
sive. Out—of-balance patterns or excessively large 'T’ and 'E’ blocks may impair

70

ITEJ by branch | by predicate
code size 13 9
cycles taken 8 5
cycles not taken 11 5

Table 5.10: ITEJ Evaluation

the performance of the final assembly code: (1) Additional register pressure arises
from the predicate expression, which has to be available at all instructions of 'T’
and 'E’. (2) The additional predicates cause code size overhead. (3) Worst—case
execution time may be increased due to resource contention from large T’ and
'E’ blocks. Therefore, the transformation has to be guided by proper estimation
functions which will be introduced subsequently.

Algorithm The implementation of if-conversion is split into two phases. The
first phase traverses the control flow graph and collects the candidate patterns for
later transformation. Candidates where the "T” or the ’E’ block already contain
an instruction of the BR class are discarded because the predicate instructions
to be added are executed on the branch unit of the xXDSPcore datapath. The
second phase then transforms the remaining patterns. For each of the patterns,
cycle count and code size estimation functions can be applied which judge if the
transformation is performed or revoked. After each transformation, the control
flow graph has to be updated. Figure 5.30 shows pseudo—code for the whole
transformation.

While collecting the patterns and doing the actual transformation is straight
forward, estimating the impact of the transformation in an early compilation
phase (before instruction scheduling) is more complex. The next paragraphs will
give explanations on the related topics.

Cycles The number of execution cycles for a code sequence I is determined
either through the critical path of the data dependence graph (DDG) (see Section
5.2.2) or through the accumulated resource utilization of these instructions di-
vided by the available resources per cycle. The maximum of both numbers gives
a lower bound for the execution cycles. This estimation function is called ey
further on. Equation (5.9) shows how e, is calculated.

71

procedure dolfConversion(t-function f, boolean do_constrained)
t_cfg cfg=f.getControlFlowGraph();
t_patterns patterns=collectIfPatterns(cfg);
forall (p € patterns) do
int cycles_before=estimateCycles(p);
t_pattern p’=doTransformation(p);
int cycles_after=estimateCycles(p’);
if (do_constrained A cycles_after > cycles_before) then
f.revokeTransform(p);
else
f.commitTransform(p’);
endif
cfg.update();
endfor
end

Figure 5.30: If conversion algorithm

ecye(I) = maz(eadg(I), eres(I))
eadg(I) = ...critical path of DDG for instructions I
eres(I) =maz(|] eres(1,) (5.9)
ceC
e IA
eall,0) = #{ili€eIniec}
c per cycle

C is the set of instruction classes { MOV, CM P, BR}, the sharp symbol means
'number of elements’, and ’c per cycle’ is the number of instructions of the par-
ticular class that can be executed in one execution cycle.

With this estimation function, the cycle count before transformation is ap-
proximated as shown in Equation (5.10) and memorized. In order to get the
worst—case estimation, the maximum of either "T” or 'E’ is taken into account.
Utilizing the same estimation function, the cycle count is again approximated
for the transformed code sequence as shown in Equation (5.11). Depending on
the current pattern and the resulting hyperblock, the corresponding right hand
side of Equation (5.11) is used. These equations also reflect the fact, that the
code is fully predictable now and that execution time analysis will give precise
results. If the transformed code sequence yields an increased cycle estimation,
the transformation can be revoked and the original code containing branches is
restored.

Cydesuntransfarmed = ecyc(I) + max(ecyc(T)y ecyc(E)) + ecyc(J) (510)

72

(ecye(ITEJ) for the ITEJ pattern
ecyc(ITJ) for the ITJ pattern
CYCleStrans ormed = J ecyc(IEJ) for the IEJ pattern (5.11)
ecyc(ITE) + eqye(J) for the ITE pattern
ecyc(IT) + ecye(J) for the IT pattern
L eeye(IE) + ecye(J) for the IE pattern

Code size The overall code size of the pattern depends on several factors.
A decrease comes from removing the branches and their possibly empty branch
delay slots. The exact number depends on basic block order, type of pattern and
number of architectural branch delay slots. In the example above, two branch
instructions and four 'no-ops’ in branch delay slots can be removed. An increase
of code size occurs through the additionally needed predicate instructions in the
execution bundles of the hyperblock. In the example above, two predicate in-
structions are necessary. This gives the overall reduction of code size by four
instructions. From this it becomes apparent, that with larger patterns a consid-
erable increase in code size may occur.

Nevertheless, sometimes it makes sense to permit transformation even if one
of the constraints is violated. If code predictability and precise execution time
analysis is required, then transforming patterns which potentially increase the
number of execution cycles may be allowed. For small loop kernels where code
size is negligible, it may be better to do the transformation and to accept the
slight increase in code size. In the following, an extensive empirical evaluation of
some applications is given.

Evaluation Evaluation has been done in two parts. The first part covers a
qualitative analysis of typical applications in order to show the need for such an
optimization. The second part covers quantitative data which show the impact
of if—-conversion on code size and execution cycles.

Qualitative evaluation is done by counting the occurrence of the particular
patterns of Figure 5.28 within the benchmarks applications (see Figure 5.31). It
turns out that two of the six patterns are dominating, namely IEJ and ITEJ.
The remaining patterns occurred as well, but almost one magnitude less. From
this, some quantitative impact from doing the transformation is expected.

_#m)
FT) + #(E) «
Another qualitative figure which gives more insight into the structure of the

patterns is the pattern balance (see Equation (5.12), where the sharp (#) symbol

B (5.12)

73

! |

ITE) m IEJ

T

Figure 5.31: Occurrence of patterns

means 'number of instructions’). A balance of 0 indicates an empty T block, a
balance of 1 indicates an empty F block. If the balance is 0.5 both T and F
blocks have same size. A distribution of these balances is shown in Figure 5.32.

As expected, the dominating balance is 0. The balances of the ITEJ and ITE
patterns are almost evenly distributed in a range between [0.1,0.8], with two little
peeks at 0.5 and 0.72.

Quantitative evaluations are made by compiling (and simulating) the bench-
marks several times with different if—conversion settings. The baseline is given
when no transformation at all is applied. The next setup is an unconstrained
transformation, where all patterns are transformed. The last setup is a trans-
formation where cycle estimations are applied to the patterns. Patterns which
potentially cause larger cycle counts are not transformed. Table 5.11 summarizes
the results. The first row of each application shows the code size (in instruction
words), the second row shows the execution cycles.

In general, a decrease of code size and execution cycles can be achieved. Only
the DCT (discrete cosine transform) kernels show a slight increase of code size.
What else can be seen, is that the cycle constrained transformation delivers al-
most identical results as the unconstrained one. Only g721 and Serpent show
another behavior. In both cases code size is slightly bigger than in the un-
constrained version, but in both cases the number of execution cycles has been
decreased. On the one hand, this indicates that the estimation function works
properly, otherwise different behavior would be seen. On the other hand, the
transformation increases instruction level parallelism. This results from removing
branches (and branch delay slots) from the code which yields a larger scope (the
hyperblock) for instruction scheduling. Data independent instructions from all
included blocks can be scheduled and executed concurrently and thus resource
utilization is increased. Additionally, removing branch instructions makes the
code more predictable through better approaching the single path paradigm. This
yields tighter bounds of WCET analysis and thus may influence task scheduling
or system design decisions.

74

s —11
100
g —053g
10E , . , 6 :
wem_ﬁgﬂmm,mmﬂtmhiwm@mlw
Balance of patterns
Figure 5.32: Balance of patterns
benchmark [no if-conversion | unconstrained | cycle constrained |
ADPCM (codesize) 419 379 (.9.6%) 379 (-9.6%)
ADPCM (cycles) 1246494 | 915599 (-26.5%) | 915599 (-26.5%)
Blowfish (codesize) 392 389 (-0.8%) 389 (-0.8%)
Blowfish (cycles) 1451252 | 1314593 (-9.5%) | 1314593 (-9.5%)
CMAC (codesize) 3663 3622 (-1.2%) 3622 (-1.2%)
CMAC (cycles) 1570582 | 1515424 (-3.6%) | 1515424 (-3.6%)
g721 (codesize) 2042 1980 (-3.1%) 1998 (-2.2%)
g721 (cycles) 19092960 | 18567846 (-2.8%) | 18373751 (-3.8%)
ghs (codesize) 2699 2620 (-3%) 2620 (-3%)
ghs (cycles) 8836 7281 (-17.6%) 7281 (-17.6%)
DCT 32 (codesize) 633 698 (+2%) 698 (+2%)
DCT 32 (cycles) 4349 | 3875 (-10.9%) | 3875 (-10.9%)
DCT 8x8 (codesize) 474 496 (+4.6%) 496 (+4.6%)
DCT 8x8 (cycles) 114851 | 111049 (-3.4%) 111049 (-3.4%)
Rijndael (codesize) 4218 4101 (-2.8%) 4101 (-2.8%)
Rijndael (cycles) 244354 241349 (-1.3%) 241349 (-1.3%)
Serpent (codesize) 5963 5735 (-3.9%) 5741 (-3.8%)
Serpent (cycles) 2316423 | 1788365 (-22.8%) | 1749994 (-24.5%)

Table 5.11: Quantitative results of if-conversion

75

5.2.2 Instruction scheduling

Section 3.1.3 briefly surveyed instruction scheduling and the fundamental tech-
niques. The concept of list scheduling based on a data dependence graph was
shortly explained. Some differences between scheduling for super-scalar and
VLIW architectures have been pointed out. This section will present the imple-
mentation of a local instruction scheduler for the xDSPcore architecture, based
on the scheduler presented in [91].

Original implementation

The original scheduler was written at a time when register allocation was not
completed and no evaluation environment (benchmark applications and simula-
tor) has been available. Main focus was achieving minimal schedule length, which
was accomplished by a list scheduler with limited backtracking. In the following,
a short description of this algorithm is given.

The first step is building a data dependence graph from the list of instructions
in the basic block. True-, anti—, output—, and "negative” control dependencies
(for pushing instructions in the branch delay slots) are analyzed and encoded
in the graph. A true dependency occurs between an instruction that defines an
operand and the instruction which uses this operand (RAW, read after write).
An anti-dependency is the opposite of a true dependency and occurs between
an instruction that reads an operand and a later instruction that (re)defines
the same operand (WAR, write after read). An output dependence occurs be-
tween two instructions that write to the same destination (WAW, write after
write). Finally, control dependencies occur the execution of an instruction de-
pends on the execution of another prior instruction. Control dependencies are
inserted for all instruction of the BR class. Instructions that are causally before
the BR instruction have an control dependency edge to this one with a nega-
tive delay (—num_branch_delays). This allows exploitation of branch delay slots
by moving the branch before data independent instructions. Successor instruc-
tions of the branch instructions have a control dependency edge with a delay of
num_branch_delays + 1. The maximum path length of an instruction to the sink
node of the graph is used as a scheduling priority for this instruction. Edges
in the graph are annotated with a value which encodes the minimal distance of
an instruction to the succeeding one. Each instruction holds a resource vector
which encodes hardware constraints. In conjunction with an available resources
vector (for one bundle), hardware contention checks can be performed as shown
in Equation (5.13).

Y m<A (5.13)
i€B

B is the bundle which is checked, 7; the resource vector of instruction 7, and

76

oA N DN NN

A=
1 0 0 0 0
0 1 1 1 0
'Fldao = 0 y FC add = 0 3 Fasr = L ’ deac = 0 3 Fbrc = 0 3.
of'"@ 0 0 2 0
0 1 0 0 4
0 0 0 0 1

ldao ...load absolute offset, (C) add ...predicated addition, asr ...arithmetic shift right, dmac ...dual

multiply-accumulate, brc . ..branch conditional

Figure 5.33: Available resources and sample resource vectors

A the available resources per bundle. Resource vectors consist of six components:

MOV
CMP
SHIFT
MULT
PRED
BR

7=

MOV, CMP, and BR correspond to the basic parallel functional units. SHIFT
and MULT are used to model restrictions on shift and multiplication instructions,
and PRED is used for proper resource contention checking of the branch unit
in case of predicated instructions. The available resources A for the reference
architecture and some resource vectors for different instructions are depicted in
Figure 5.33.

The execution bundles are then built step—by—step. In each step, a new empty
bundle is created and appended to the current schedule. Then, a root node of
the data dependence graph is selected and put in the schedule. This is done by
recursively moving the instruction from the current bundle towards its earliest
cycle as far as possible. If none of the bundles in this scheduling window can
take the instruction due to resource contention, this candidate is discarded and
left in the graph. If a slot is found, the instruction is removed from the graph.
Selecting nodes and placing them into the schedule is repeated until no more
nodes can be removed in this scheduling step. By applying back-tracking, those

7

nodes from the graph which yield the highest accumulated scheduling priority are
finally selected and put into the schedule (selections which combine equivalent
predicates are favored in order to reduce code size overhead from predicated
instructions). Then the algorithm advances to the next step and repeats this
process until all nodes of the graph are removed. Figures 5.34 and 5.35 show
pseudo code for this algorithm.

The upward code-motion in this strategy exploits instruction level parallelism
(ILP) in the code sequence to its maximum. Potential resource contention con-
flicts of later instructions are avoided, and also branch delay slots are filled with
instructions. Nevertheless, this strategy has some drawbacks which will be out-
lined in the following.

Drawbacks The major drawback of this scheduling strategy is artificial register
pressure. Due to the upward code-motion scheme, it often happens that low—
priority root nodes are placed very early in the schedule. The corresponding
consuming instruction is placed late because of data dependencies, and therefore
a long live-range which potentially conflicts with many others is created. Placing
the root node in a later cycle of the scheduling window does not extend the
schedule, but reduces register pressure.

This situation is already adverse for the regular instruction sequence, but it
gets almost pathological when spilling instructions are involved. The intention
of spilling is reducing register pressure. Unfortunately, the spill loads are root
nodes in the data dependence graph and thus suffer from the situation explained
above. Register pressure is not reduced at all and then leads to cascading spills.

Another problem of this strategy is the creation of unbalanced schedules.
Regions with maximum instruction level parallelism (ILP) alternate with regions
of weak ILP. As elaborated by Yun in [61], this leads to increased step— and
peak—power dissipation. A more even distribution of the instructions over the
schedule (without elongation) overcomes this problem. Additionally, design space
parameters like the required parallel functional units are also mainly influenced
by the quality of the scheduling algorithm.

Problem analysis

The drawbacks outlined above appeared un-predictable. Therefore an extensive
analysis of the fundamental problem was done. The data dependence graphs
of the benchmark applications were investigated for quantitative and structural
information. This should help at drawing conclusions how to modify the existing
algorithm or design a new one that does not show such behavior.

The first and obviously most important figure (besides number of instructions)
is the critical path length of the data dependence graph. It gives a lower bound
for the minimal schedule length. The ratio p = 2 (n is the number of instructions,
c the critical path length) is a metric for the average instruction level parallelism.

78

procedure scheduleBlock(t_block basic_block)
begin
t_.ddg ddg=createDDG(basic_block.getInstructionList());
t_schedule schedule=new t_schedule();
integer cycle_count=1;
while (- ddg.isEmpty()) do
t-bundle bundle=new t_bundle(cycle.count++);
schedule.append(bundle);
t_nodes current=new t_nodes();
t_nodes best=new t_nodes();
ddg.resetHandledFlags();
findBestScheduleSet(ddg,bundle,current,best);
forall (t.node n € best) do
putInSchedule(bundle,n,ddg);
endfor
endwhile
block.setSchedule(schedule);
end
procedure findBestScheduleSet(
t.ddg ddg, t_bundle bundle, t_nodes current, t_-nodes best)
begin
forall (t_node root € ddg.getRootNodes()) do
if (— root.isHandled() A canTakelnstruction(bundle,root)) then
putInSchedule(bundle,root,ddg);
current.add(root);
if (getPriority(current) > getPriority(best)) then
copy(best,current);
endif
findBestScheduleSet(ddg,bundle,current,best);
current.remove(root);
removeFromSchedule(bundle,root,ddg);
root.markAsHandled();
endif
endfor
end
function getPriority(t_nodes nodes):integer
begin
integer result=0;
forall (t_node n € nodes) do result += n.getPriority(); endfor
return result;
end

Figure 5.34: Original scheduling algorithm

79

function canTakelnstruction(t-bundle bundle, t_-node node):boolean
begin
if (bundle.getCycleNumber() > node.getEarliestCycle()) then
if (canTakelnstruction(bundle.getPreviousBundle(),node)) then
return true;
else
if (bundle.hasFreeSlotFor(node)) then
return true;
endif
endif
endif
return false;
end
function putInSchedule(t_bundle bundle, t_-node node, t-ddg ddg):boolean
begin
if (bundle.getCycleNumber() > node.getEarliestCycle()) then
if (putInSchedule(bundle.getPreviousBundle(),node,ddg)) then
return true;
else
if (bundle.hasFreeSlotFor(node)) then
bundle.add(node);
ddg.remove(node);
ddg.updateEarliestCycle(node,bundle.getCycleNumber());
return true;
endif
endif
endif
return false;
end
procedure removeFromSchedule(t_bundle bundle, t_node node, t-ddg ddg)
begin
if (node € bundie) then
bundle.remove(node);
ddg.reinsert(node);
else
removeFromSchedule(bundle.getPreviousBundle(),node,ddg);
endif
end

Figure 5.35: Original scheduling algorithm

80

layer 4

NS layer 3

CO
©

tayer 1

RIS
o

Figure 5.36: Layering of a data dependence graph

min | max T 3 o
n 1 147 | 6.51 | 4.49 | 8.54
c 1 78 | 5.21 | 2.90 | 5.28
p 1033 6 1.33 | 0.61 | 0.77
m 1 11 212 | 1.14 | 1.44
a 1 268 | 12.88 | 11.37 | 21.15
u || 0.18 1 0.63 | 0.18 | 0.22

Table 5.12: Basic data dependence graph statistics

Dividing the graph in layers of equal path lengths gives feedback on the mazrimum
instruction level parallelism m (defined by the layer with most instructions).
Figure 5.36 shows an example of how layering a data dependence graph is done.
The example assumes all edges having latency 1.

The individual components of the accumulated resource vectors show the
demand for either memory (MOV), computational (CMP), or branch (BR)
resources in the code sequences. Finally, the ratio between n and the spanning
area a = m * ¢ indicate average resource utilization u = 7 of the layered graph.

The benchmark applications deliver a large set of over 1600 graphs, covering
a wide variety. Only condensed data which give most insight are presented.
Table 5.12 gives minimum, maximum, averages, statistical spread and standard
deviation for the key figures explained above. A large dynamic range for n,c and a
can be observed. Individual graphs have up to 147 instructions and critical paths
of up to 78 cycles. The average ILP of the graphs ranges up to 6 instructions
per cycle, and the maximum even reaches 11. The maximum square area of

81

- Em
| rD Occurences of (n,c)l . “ o EE]%
: T
) S Y R S L T —
= B & G B QEEEER 0 o
E B 0EEE o)
s B E B EGEOEEELDD
£ B E B G GEEDEE G
iy @ B O B BDDNDE GO
2 o) & B EEEODD
K BB B EEE OO
) B REE: @
l E E
1 1 1 L 1 i 1 1 | 1 1
1 10

n ... number of instructions

Figure 5.37: Histogram of (n,c) pairs

an individual graph is 268 instructions x cycles. In contrast, the minimum of
resource utilization is at only 18%.

Figure 5.37 depicts a histogram of (n,c)-occurrences for the range (1,1) to
(35,25). From this, a relatively strong correlation between n and ¢ can be de-
duced, but also a considerable spread of critical paths for fixed length sequences
is observed. Figure 5.38 gives a similar histogram of (m, c)-occurrences for the
range (1,1) to (11,30). From this it can be seen that the structures of the graphs
are spread over a large spectrum. On the one hand, there are wide graphs with
short critical paths, on the other hand also narrow graphs with long critical paths
are present. This impacts the choice of the scheduling strategy.

" MOV | CMP | BR
p 2067 (21%) | 6567 (66%) | 1369 (14%)
mazx 73 73 10
T 1.26 4 0.83
z, 15 % 62 % 23 %

Table 5.13: Statistics for MOV, CMP, BR

82

critical path of graph

C..

30

20|

10§

|
[
... B
O
(1] B O
_ o
1 3
2 B 2 5 p O
1 1 2
oG ale
rn IO o 7 [[B]vorrreseesssnenmes s s s s
17 27 [7] [3]
D 4 B @ O 0
) 2 m ol B
- 5B H @ @
35 9 Ki B
4 7] 3]] E]
145 [42] 3] 9]
«© 0 21 [10] (3] B B
& (o] 1]
! 2 3 4 5 6 7 3 10 11
m ... max ILP of graph
Figure 5.38: Histogram of (m,c) pairs
Class distribution
100.00%
90.00%
80.00%
., 70.00%
[=4
£ 60.00% Tan
& 50.00% W MoV
[1cme

40.00%
30.00%
20.00%
10.00%

0.00%

Figure 5.39: Distribution of class fractions

83

|| regr.slope | correlation

c 0.55 0.86
CMP 0.58 0.89
MOV 0.4 0.79
BR 0.02 0.22

Table 5.14: Regression analysis for n

Figure 5.39 shows the fractions of different instruction classes on an individual
graph basis. It can be observed that C M P instructions are clearly predominant.
An identical picture can be seen in Table 5.13. Here, the total number, maximum,
averages, and average of percentages for MOV, CMP, and BR instructions are
compared.

Finally, Table 5.14 shows the linear regression and the correlation between
n and MOV, CMP, BR, c, respectively. A strong correlation between n and
¢, n and CMP, but also n and MOV can be observed. The number of branch
instructions does not correlate much with the length of the instruction sequence.

Refinements

Analyzing the data dependence graphs and the internal decision process of the
scheduling algorithm showed, that in most of the problematic cases a relatively
wide graph was to be scheduled. These are not constrained by critical path, but
rather through resource contention. Therefore, using the path length and the
backtracking mechanism for guiding scheduling decisions leads to the drawbacks
mentioned earlier. Instead of this breadth—first-like strategy, a rather depth—first
exploitation of the dependence graph would be better. Nevertheless, for narrow
graphs the breadth—first strategy is better, so a mixed strategy which does self-
adaptation has to be found.

Primary focus of the refinements was reducing register pressure and improving
the placement of spilling instructions (especially the loads). The basic scheme of
the algorithm is the same as before, but more attention is paid on which nodes
are selected in each scheduling step.

Root nodes are classified into such nodes with common direct successors,
and such nodes without. Figure 5.40 shows an example for common successor
root nodes, with R1, R2, and R3 having common successors, and R4 and R5
without common successors. In a first intermediate step, only nodes from the
common successor sub—set are considered and selected for scheduling. If such
nodes can be moved upwards, then it is likely that the common successor can
also be scheduled in the same step. This keeps the distance between producer and
consumer instruction smaller (and thus reduces register pressure). In the example
above, scheduling and moving up R1, R2 and R3 allows immediate scheduling

84

Figure 5.41: Spilling loads selection

of S1 and 52, thus consuming all values produced by the selected root nodes.
In contrast, selecting R4 and RS, produces values which have to be consumed
by four successor instructions. Those are less likely to be scheduled, which thus
extends the live ranges of the values and increases register pressure.

For the second intermediate step, a resource vector based cycle estimation of
the remaining instructions in the data dependence graph is done. If the maxi-
mum scheduling priority of the remaining root nodes is greater than half of this
estimation, a rather narrow graph is indicated. This graph is mostly constrained
from its critical path, therefore instructions from the current candidate set are
further selected. Otherwise, the graph is constrained from resource contention
and scheduling proceeds to the next bundle immediately. By doing this, instruc-
tions that are not necessarily on the critical path, but already in the root node
set are held back until they get on the critical path.

Load instructions of a spilled live-range are scheduled by doing a one—step
look—ahead. If the successor instruction (the use of the spilled live-range) has no
further predecessors, the load is considered as a candidate for scheduling. If the
load finally gets scheduled, the scheduling priority of the successor is increased in
order to assure that it is selected in the next scheduling step. Figure 5.41 depicts
examples for blocked and non—blocked spill-loads.

85

The refinements on the algorithm have been made ad-hoc and are still far
from optimal. The intention was to get a better idea how a mixed strategy has
to look like and what kind of ”decision guides” can be applied to obtain optimal
schedules. Optimal schedules should have the following properties:

e minimal length

minimal local register pressure

balanced ILP

minimal overhead from predicated instructions

e exploiting branch delay slots

Through the refinements explained above, the original scheduling algorithm
was brought closer to these rationales, but there is still some lack in algorithm de-
sign. Balancing has not yet been tackled enough and for some cases, a look—ahead
is applied in order to draw better decisions. Nevertheless, some improvements
could be achieved through only slight modifications. This fact indicates the sen-
sitivity of the overall code quality to the particular scheduling strategy. Table
5.15 shows a comparison of the original and the refined scheduling strategy. Some
benchmarks give the same results in both strategies, some are improved, but un-
fortunately some were also worsened. A slight overall cycle improvement of less
than 1% was achieved.

86

benchmark | original refined
ADPCM (codesize) 379 377 (-0.6%)
ADPCM (cycles) 915599 | 889954 (-2.9%)
Blowfish (codesize) 389 389 (£0%)
Blowfish (cycles) 1314593 | 1314593 (+0%)
CMAC (codesize) 3621 3624 (+0.1%)
CMAC (cycles) 1512614 | 1499817 (-0.9%)
g721 (codesize) 1980 1982 (+0.1%)
g721 (cycles) 18567846 | 18548244 (-0.2%)
ghs (codesize) 2619 2620 (+0%)
ghs (cycles) 7271 7271 (£0%)
DCT 32 (codesize) 706 707 (+0.1%)
DCT 32 (cycles) 3804 3868 (-0.7%)
DCT 8x8 (codesize) 496 494 (-0.5%)
DCT 8x8 (cycles) 111049 109754 (-1.2%)
Rijndael (codesize) 4101 4101 (+£0%)
Rijndael (cycles) 241349 241369 (£0%)
Serpent (codesize) 5733 5743 (+0.1%)
Serpent (cycles) 1749997 | 1746191 (-0.3%)
Total (codesize) 20024 20037 (+0%)
Total (cycles) 24424212 | 24361061 (-0.3%)

Table 5.15: Evaluation of scheduling modification

87

flexibility
/
power diss.

Source: T.Noll, RWTH Aachen

development cost

Figure 5.42: HW/SW tradeoff

5.2.3 Design Space Exploration

One of the major decisions during design of an embedded system is a balanced
hardware/software partitioning. Implementation in dedicated hardware gives
great efficiency in terms of chip area, execution time, and power dissipation.
On the other hand these solutions are lacking in flexibility. This causes long
turn—around time for variants of the same product or for adaptations due to
changes in standards. Software solutions based on high level languages increase
the flexibility and simplify customer specific adaption of an application. On the
contrary, these solutions often lack in efficiency in terms of chip area and power
dissipation. Therefore an efficient solution is based somewhere in the middle,
having those parts flexible, which can help to modify the product to changing
requirements and implement the remaining parts in dedicated logic. Figure 5.42
shows a qualitative picture of this tradeoff.

Design space exploration is an attempt to close the gap between hardware
and software solutions. The idea is "tailoring” a hardware platform that meets
the requirements of the application. This is done by analyzing the application
on high—level language and specification level and quantifying its demands. The
analysis data then are used for guiding system design decisions, whether parts

88

can be implemented efficiently in software (and how the processor architecture
has to look like), or which parts have to be implemented directly in hardware.

The remaining part of this section focuses on the design space exploration for
sub-tasks of applications which are implemented on a software programmable em-
bedded digital signal processor. Scalability factors will be identified and discussed
regarding their implications on application software and on hardware design.

Existing concepts like LISA [92] or ArchC [93] are based on automatic gener-
ation of an application specific architecture from a behavioral description. The
inherent problem of these approaches is that automatic generation of optimizing
compilers for such architectures is not yet solved to a satisfying extent. A broader
discussion of these approaches and their drawbacks is found in [5, 76).

The approach of the xDSPcore attempts to solve the problem of design space
exploration by considering compiler requirements already in architectural and
micro—architectural design (Figure 4.1). A RISC-like architecture makes the
implementation of an optimizing compiler feasible. Instead of exploring the design
space on a low behavioral level, several important scalability factors on a higher
level have been elaborated and investigated for suitability and feasibility. This
high—level approach limits the design space to a manageable dimension, but still
allows efficient description of hardware components and optimal code generation
for each of the architectural instances.

The design space exploration methodology for the xDSPcore architecture is
called DSPzPlore and was introduced in [3]. Central point of this methodology
is an architecture configuration file. This file contains a complete description
of the instruction set architecture, a high—level description of architectural fea-
tures, documentation aspects, and also software and firmware aspects like calling
conventions, startup code, and interrupt handler information. The toolchain
(compiler, linker, simulator) is designed in such a way that it does automatic
adaption to the changes in this configuration file. Application analysis is then
done by compiling the source code and simulating the program in a cycle-true
simulator. Static and dynamic information of the program is provided and has
to be analyzed by the system designer. Decisions on architectural modifications
have to be drawn and upstreamed to the configuration file. Then a new analysis
cycle can start again. When an optimal configuration is found, the exploration
loop can stop and hardware description and documentation can be generated ac-
cording to the current configuration). Figure 5.43 briefly depicts the DSPxPlore
work flow. A detailed explanation of the configuration file is presented in [94].

Design space

The xDSPcore architecture was designed to be scalable in several parameters.
While the direct effects of modifying a parameter can be captured very easily,
there are often indirect effects caused by inter—dependencies with other param-
eters. These interdependencies and side—effects make the n—dimensional design

89

‘

‘Hardware

\ / assembly
files

_ Configuration -

modify configuration

Executable and
Support Files

Instruction Set |

" | Statistics
i (static)_

Statistics
(static)

imulatot <

Statistics

1{dynamic)

Analyzes System

(mainly visual)

Figure 5.43: Overview of DSPxPlore

90

space non—-uniform and non-linear, which itself makes design space exploration
complicated. An approach for guiding design space exploration using Pareto
curves was presented by Agosta in [95].

In DSPxPlore, architectural refinements are made semi—automatic under guid-
ance of the system engineer who is assisted by the analysis data. The following
parameters of xDSPcore can be varied within some reasonable limits:

register file size

number of functional units

pipeline dépth

instruction buffer size

depth of hardware loop stack
e binary instruction encoding

The following paragraphs will explain each of these parameters and their impli-
cations in detail.

Register file size In RISC architectures, the register file has a central role. It
has to provide space for program variables needed during a computation (local
variables, temporaries). If it is too small for a particular task, these variables
have to be spilled to memory. Therefore a large register file is preferable from the
view of the application program. On the other hand, enlarging the register file
results in increasing chip area, increasing power dissipation within the register
file, and limiting the reachable clock frequency. Further, the binary encoding of
instructions needs more bit for addressing a larger number of registers. These
factors push for smaller register files. Therefore a reasonable tradeoff between
providing many registers and dealing with spilling overhead has to be found.

Number of functional units The number of parallel functional units defines
the peak performance of the architecture. Depending on average and maximum
instruction level parallelism of the application and on the characteristics of the
code (memory—centric or computation—centric), a suitable number of functional
units has to be found. For the application code it would be best to have as
many functional units as the maximum ILP demands. On the other hand, nu-
merous functional units increase hardware complexity and chip area. Due to the
gap between maximum and average ILP, usage of these resources is weak and a
reasonable tradeoff has to be made.

91

Pipeline depth Increasing the pipeline depth is a method for increasing the
maximum clock frequency of a processor, but strongly impacts application soft-
ware. One problem arises from the delayed branches in VLIW architectures. An
increased number of pipeline stages before the branch stage increases the num-
ber.of branch delay slots as well. Additional stages in the execution phase of
the pipeline relax timing constraints on the memory and register file ports, but
lengthen the latencies of data dependent instructions. Depending on application
code characteristics, the performance increase through a higher clock frequency
may then be nullified or even lead to performance degradation.

Instruction buffer size The instruction buffer has a central role during exe-
cution of loops. The instructions of a loop body are loaded into the buffer during
the first loop iteration. For the remaining iterations, fetching is stalled and no
further accesses to the instruction memory occur. Obviously, this can be done
only when the entire loop body fits into the instruction buffer. Otherwise fetch-
ing is done as in regular sequential execution. A program benefits most, if the
buffer is big enough for all loop bodies, but overly large buffers increase chip area
and circuit complexity. This increases power dissipation of the core components
which might nullify the savings from reducing the instruction memory accesses.

Hardware loop stack Status information of zero—overhead hardware loops is
stored in a special hardware loop stack. Providing an arbitrary level of nested
hardware loops is preferable from the perspective of the application program, but
each additional level causes overhead. Chip area is increased due to the additional
storage requirements. Stack handling has to be implemented in hardware and
demands additional circuitry for each level. This results in additional chip area
and increased power dissipation during hardware loop handling. Further, the
entire loop stack status has to be saved to memory during interrupt handling.
This causes additional cycles in the interrupt service routines and extends task
switching time of real-time operating systems.

Binary instruction encoding The binary encoding of the instruction set has
great impact on code size. It depends on various parameters like number of
different instructions, number and types of registers to be addressed, occurrence
of different immediate operands, and number of functional units. Besides those
factors, some requirements from the low-level hardware implementation of the
instruction decoder and from the xLIW programming model have to be met.

In general, small native instruction words have to be favored, but reducing
the word width forces a larger sub—set of the instructions to be encoded via long
words. If an application requires many instructions out of this sub—set, the code
size reduction from the smaller native word is nullified through the increased
usage of long words.

92

5.3 Summary & Additional optimizations

The previous sections have covered the main building blocks of the xDSPcore
compiler backend (if-conversion, instruction scheduling, register allocation). A
post—pass optimization method for optimizing switching on the instruction bus
was presented as well.

One interesting point is splitting register allocation and coalescing. The main
motivation for this is the interdependence with instruction scheduling. Any in-
struction from the code sequence before register allocation has to be put into
a valid slot of the schedule. When some of the instructions are removed after
register allocation, the schedule then might be sub—optimal. Remaining instruc-
tions which are scheduled later due to resource contention or data dependencies
with the removed ones possibly can be moved upwards, yielding a better overall
schedule.

Additionally, the importance of the different optimizations is somewhat differ-
ent in super—scalar or VLIW architectures. For super—scalar architectures, most
effort has been spent on register allocation, while instruction scheduling was con-
sidered as minor important (but indeed as important). In VLIW architectures,
it is necessary to focus on scheduling first, but then also apply good register al-
location. When the schedule is bad, register allocation will yield bad results as
well.

Besides those major optimizations, some other peep—hole optimizations have
been implemented. The first is a post—instruction selection optimization which
eliminates superfluous branches. These arise at basic blocks where control-flow
falls through to the linear successor in the block list. Due to the control-flow
graph modification during if-conversion, this optimization had to be delayed to
a post—if-conversion phase of the backend.

Another important optimization is the generation of auto-modifying memory
accesses (increment or decrement of address before or after the access). This
optimization searches for pairs of instructions which operate on the same address
register within a basic block. If such pairs of (access,modification) are found they
are combined into one single instruction.

The limited scope of if-conversion cannot handle all (conditional) branches
in a function. Some branches still remain, and maybe have empty branch delay
slots. A post—pass optimization which moves data—independent instructions of
the branch target into the empty delay slots has been implemented. Finally, the
remaining branches with empty delay slots can make use of so—called non-delayed
branches. The delay slots for those branches do not have to be encoded explicitly,
but are hidden by the hardware. Thus, there is no gain in performance, but the
code size is reduced a little further.

93

Chapter 6

Conclusions

Power dissipation and energy consumption are of vital interest in embedded sys-
tems. Low power design techniques are necessary on all levels of the design
process. Due to the rising amount of software programmable components in
System—on—Chip and System-in—Package solutions, the demand on low power
software techniques even gets more important. On compiler level, optimizations
focus on reducing execution time, memory accesses, and switching activities on
memory buses. Especially for embedded digital signal processors, design space
exploration is needed for closing the efficiency gap to dedicated hardwired cir-
cuits, while still providing flexibility in application.

This thesis contributes extensions of register allocation for irregular architec-
tures and a code optimization for reducing switching activities on the instruction
memory bus. Minor contributions are made on if conversion, instruction schedul-
ing, and on design space exploration.

Global register allocation is performed in order to find a good mapping of
the program variables to the processor registers. This mapping has to be carried
out in such a way, that register resource utilization is saturated and that mem-
ory accesses due to spilling of variables are minimized. Any overhead in spilling
causes additional and thus avoidable energy consumption due to the costly mem-
ory accesses. The common approach of graph coloring is well suited for regular
architectures with a large general purpose register file. Applying this method
on irregular architectures needs several extensions. For the xDSPcore architec-
ture, register allocation has to deal with a banked register file (address and data
register bank) and shared registers. Un—orthogonal instructions cause special in-
terference constraints on program variables, and liveness analysis has to consider
the guarded execution model.

This thesis presents solutions for these irregularities by contributing a predicate
enhanced liveness analysis, a split interference graph for the banked register file,
and partial interference information on symbolic registers. Predicated liveness
analysis for register leaves is based on modified set operators of conventional
liveness analysis and on a predicate registry which keeps track of predicate se-

94

mantics and does predicate simplification by the Quine-McCluskey algorithm.
Bank restrictions are handled during instruction selection. Symbolic registers
are annotated with a bank information tag, which is used during register allo-
cation to select registers of the correct bank. Shared registers are modeled by a
weighted interference graph, where a node weight encodes the required register
file resources of a symbolic register. Additionally, the edges in this interference
graph are augmented with a partial interference information field. This allows
modeling of precise interference constraints for un—orthogonal instructions.

A considerably different approach is a partitioned boolean quadratic problem
based optimal register allocator. Cost functions and matrices are used to model
interference and architectural constraints as well as spilling costs. A PBQP prob-
lem solver then delivers spilling decisions and register assignments. The thesis
contributes cost functions and matrices for the xDSPcore architecture, and a so-
lution to the phase ordering and phase coupling problem of instruction scheduling
with register allocation and coalescing. A comparison of the graph—coloring and
the PBQP-based approach show the superiority of the PBQP-based approach in
the achieved code quality.

Instruction fetch in VLIW architectures is a major factor of power dissipa-
tion. This thesis contributes an optimization to reduce the switching activities
on the instruction memory bus. Measures for optimization are (1) permutation
of the instructions within single execution bundles, and (2) swapping the source
operands of commutative operations. To take full advantage of the xLIW pro-
gramming model, the solution has to be able to cope with unaligned ezecution
bundles which even may cross fetch word boundaries. In contrast to existing graph
based optimization approaches, the optimization algorithms contributed in this
thesis can fulfill those demands.

The optimization is based upon an objective function that models a global
Hamming distance of all fetch words of a function. A hybrid algorithm of dynamic
programming and genetic evolution is applied. The dynamic programming part
solves a local sub—problem at scopes of basic blocks, while the genetic part selects
those local solutions which yield the overall minimum of the global Hamming
distance. Local solutions include all optimal solutions which have different fetch
word borders and thus do not restrict the solution space.

If conversion is an important transformation for control code dominated pro-
grams. On VLIW architectures, these programs suffer from the inherent problem
of unused branch delay slots. Through if conversion, branch instructions and
therefore the delay slots can be removed. This yields larger scheduling scopes
and effectively reduces execution time of the programs. This thesis contributes
estimation functions for execution time and for code size. Applying these estima-
tions avoids the potential negative impact of if conversion on code quality.

Exploiting instruction level parallelism is a crucial task in VLIW architectures.
Instruction scheduling techniques based on a data dependence graph and the
list scheduling algorithm are known to be good methods for exploiting the full

95

range of parallelism. Nevertheless, the used heuristics cause some problems like
excessive register pressure or unbalanced resource utilization. This thesis presents
an extensive problem analysis which serves as a basis for some refinements on
scheduling decisions. These refinements result in reducing register pressure while
still achieving the same amount of parallelism.

A high-level language based design space exploration methodology called
DSPzxPlore has been presented in this thesis. It is built upon a processor architec-
ture with several scalable micro—architectural features. A unique configuration
file contains a complete description of an architectural instance and is crucial for
having a consistent and inter-operable toolchain. After design space exploration
is completed, hardware description, documentation, and files containing firmware
and operating system stubs are generated.

96

Bibliography

[1]

[2]

3]

[4]

[5]

[6]

[7]

[8]

(9]

Ulrich Hirnschrott, Andreas Krall, and Bernhard Scholz. Graph Coloring
vs. Optimal Register Allocation for Optimizing Compilers. In JMLC, pages
202-213, 2003.

Ulrich Hirnschrott and Andreas Krall. VLIW Operation Refinement for Re-
ducing Energy Consumption. In Proceedings of the International Symposium
on System-On-Chip (SOC) 2008, November 2003.

Christian Panis, Ulrich Hirnschrott, Gunther Laure, Wolfgang Lazian, and
Jari Nurmi. DSPxPlore: Design Space Exploration Methodology for an
Embedded DSP Core. In SAC ’04: Proceedings of the 2004 ACM symposium
on Applied computing, pages 876-883. ACM Press, 2004.

Christian Panis, Ulrich Hirnschrott, Andreas Krall, Gunther Laure, Wolf-
gang Lazian, and Jari Nurmi. FSEL - Selective Predicated Execution for a
Configurable DSP Core. In ISVLSI, pages 317-320, 2004.

Andreas Krall, Ulrich Hirnschrott, Christian Panis, and Ivan Pryanishnikov.
xDSPcore: A Compiler-Based Configurable Digital Signal Processor. IEEE
Micro, 24(4):67-78, July/August 2004.

Christian Panis, Ulrich Hirnschrott, Andreas Krall, Stefan Farfeleder, Gun-
ther Laure, Wolfgang Lazian, and Jari Nurmi. A Scalable DSP Core for SoC

Applications. In Proceedings of the International Symposium on System-On-
Chip (SOC) 2004, November 2004.

A. Chandrakasan, S. Sheng, and R. Brodersen. Low—Power CMOS Digital
Design, 1992.

Stefan Steinke, Riidiger Schwarz, Lars Wehmeyer, and Peter Marwedel. Low
Power Code Generation for a RISC Processor by Register Pipelining. Tech-
nical Report 754, University of Dortmund, Dortmund, March 2001.

Raimund Kirner. Eztending Optimising Compilation to Support Worst-Case
Ezecution Time Analysis. PhD thesis, Technische Universitdt Wien, Treitl-
str. 3/3/182-1, 1040 Vienna, Austria, May 2003.

97

[10]

[11]

12

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Martin Farach and Vincenzo Liberatore. On Local Register Allocation. In
Proceedings of the ninth annual ACM-SIAM symposium on Discrete algo-
rithms, pages 564-573. Society for Industrial and Applied Mathematics,
1998.

David W. Wall. Global Register Allocation at Link Time. In Proceedings
of the 1986 SIGPLAN symposium on Compiler contruction, pages 264-275.
ACM Press, 1986.

Fred C. Chow. Minimizing Register Usage Penalty at Procedure Calls. In
Proceedings of the SIGPLAN °88 Conference on Programming Language De-
sign and Implementation, pages 85-94, Atlanta, Georgia, USA, June 1988.

Steven M. Kurlander and Charles N. Fischer. Minimum Cost Interprocedural
Register Allocation. In ACM, editor, Conference record of POPL ’96, 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages: papers presented at the Symposium: St. Petersburg Beach, Florida,
21-24 January 1996, pages 230-241, New York, NY, USA, 1996. ACM Press.

G. J. Chaitin. Register Allocation and Spilling via Graph Coloring. In
SIGPLAN ’82 Symposium on Compiler Construction, pages 98-105, 1982.

P. Briggs, K. D. Cooper, K. Kennedy, and L. Torczon. Coloring Heuristics
for Register Allocation. In Proceedings of the SIGPLAN ’89 Conference on
Programming Language Design and Implementation, pages 275-284, 1989.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Rematerialization. In
Proceedings of the 5th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation, pages 311-321, 1992.

Preston Briggs, Keith D. Cooper, and Linda Torczon. Improvements to
Graph Coloring Register Allocation. ACM Transactions on Programming
Languages and Systems, 16(3):428-455, May 1994.

Lal George and Andrew W. Appel. Iterated Register Coalescing. ACM
Transactions on Programming Languages and Systems, 18(3):300-324, May
1996.

Jinpyo Park and Soo-Mook Moon. Optimistic Register Coalescing. ACM
Trans. Program. Lang. Syst., 26(4):735-765, 2004.

Frederick Chow and John Hennessy. Register Allocation by Priority-based
Coloring. In Proceedings of the SIGPLAN 84 Symposium on Compiler Con-
struction, pages 222-232. ACM, 1984.

98

[21] Preston Briggs, Keith D. Cooper, and Linda Torczon. Coloring Register
Pairs. ACM Letters on Programming Languages and Systems, 1(1):3-13,
March 1992.

[22] Michael D. Smith and Glenn Holloway. Graph-Coloring Register Allocation
for Irregular Architectures. Technical report, Harvard University, 2000.

[23] Michael D. Smith, Norman Ramsey, and Glenn Holloway. A Generalized Al-
gorithm for Graph—Coloring Register Allocation. In PLDI ’04: Proceedings
of the ACM SIGPLAN 2004 conference on Programming language design
and implementation, pages 277-288. ACM Press, 2004.

[24] Johan Runeson and Sven-Olof Nystrom. Retargetable graph-coloring register
allocation for irregular architectures. In SCOPES, pages 240-254, 2003.

[25] David W. Goodwin and Kent D. Wilken. Optimal and Near—Optimal Global
Register Allocations using 0/1 Integer Programming. Softw. Pract. Ezper.,
26(8):929-965, 1996.

[26] Timothy Kong and Kent D. Wilken. Precise register allocation for irregular
architectures. In Proceedings of the 31st annual ACM/IEEE international
symposium on Microarchitecture, pages 297-307. IEEE Computer Society
Press, 1998.

[27] J. R. Allen, K. Kennedy, C. Porterfield, and J. Warren. Conversion of Control
Dependence to Data Dependence. In Conference Record of the Tenth Annual
ACM Symposium on Principles of Programming Languages, pages 177-189.
ACM, January 1983.

[28] Joseph C. H. Park and Michael S. Schlansker. On Predicated Execution.
Technical Report HPL-91-58, Hewlett Packard Laboratories, May 1991.

[29] Scott A. Mahlke, David C. Lin, William Y. Chen, Richard E. Hank, and
Roger A. Bringmann. Effective Compiler Support for Predicated Execu-
tion Using the Hyperblock. In 25th Annual International Symposium on
Microarchitecture (MICRO-25), pages 45-54, 1992.

[30] David I. August, Wen mei W. Hwu, and Scott A. Mahlke. A Framework for
Balancing Control Flow and Predication. In Proceedings of the 30th annual

ACM/IEEE international symposium on Microarchitecture, pages 92-103.
IEEE Computer Society, 1997.

[31] Alexandre E. Eichenberger and Edward S. Davidson. Register Allocation
for Predicated Code. In Proceedings of the 28th Annual International Sym-
posium on Microarchitecture, pages 180-191, Ann Arbor, Michigan, Novem-
ber 29-December 1 1995. IEEE Computer Society TC-MICRO and ACM
SIGMICRO.

99

[32]

[33]

[34]

[35]

[36]

37]

[38]

[39]

[40]

[41]

David M. Gillies, Dz-ching Roy Ju, Richard Johnson, and Michael
Schlansker. Global Predicate Analysis and its Application to Register Al-
location. In Proceedings of the 29th Annual International Symposium on
Microarchitecture, pages 114-125, Paris, December 2-4 1996. IEEE Com-
puter Society TC-MICRO and ACM SIGMICRO.

Richard Johnson and Michael Schlansker. Analysis Techniques for Predi-
cated Code. In Proceedings of the 29th Annual International Symposium on
Microarchitecture, pages 100-113, Paris, December 2-4 1996. IEEE Com-
puter Society TC-MICRO and ACM SIGMICRO.

Joseph A. Fisher. Trace scheduling: A technique for global microcode com-
paction. IEEE Trans. Computers, 30(7):478-490, 1981.

David Bernstein and Michael Rodeh. Global Instruction Scheduling for Su-
perscalar Machines. In PLDI ’91: Proceedings of the ACM SIGPLAN 1991

conference on Programming language design and implementation, pages 241-
255. ACM Press, 1991.

Pohua P. Chang, Scott A. Mahlke, William Y. Chen, Nancy J. Warter, and
Wen mei W. Hwu. IMPACT: An Architectural Framework for Multiple—
Instruction—Issue Processors. In ISCA ’91: Proceedings of the 18th annual

international symposium on Computer architecture, pages 266-275. ACM
Press, 1991.

Scott A. Mahlke, William Y. Chen, Wen mei W. Hwu, B. Ramakrishna Rau,
and Michael S. Schlansker. Sentinel Scheduling for VLIW and Superscalar
Processors. In ASPLOS-V: Proceedings of the fifth international conference

on Architectural support for programming languages and operating systems,
pages 238-247. ACM Press, 1992.

David Gregg. Compilation Techniques for Instruction Level Parallelism in
the Presence of Loops and Branches. PhD thesis, Technische Universitat
Wien, 2001.

Philip B. Gibbons and Steven S. Muchnick. Efficient Instruction Scheduling
for a Pipelined Architecture. In Proceedings of the 1986 SIGPLAN sympo-
stum on Compiler contruction, pages 11-16. ACM Press, 1986.

H. S. Warren, Jr. Instruction Scheduling for the IBM RISC System/6000
Processor. IBM J. Res. Dev., 34(1):85-92, 1990.

M. Lam. Software Pipelining: An Effective Scheduling Technique for VLIW
Machines. In Proceedings of the ACM SIGPLAN 1988 conference on Pro-
gramming Language design and Implementation, pages 318-328. ACM Press,
1988.

100

42]

[43]

[44]

[45]

[46]

[47]

[48]

(49]

[50]

B. Ramakrishna Rau. Iterative Modulo Scheduling: An Algorithm For Soft-
ware Pipelining Loops. In Proceedings of the 27th annual international sym-
posium on Microarchitecture, pages 63-74. ACM Press, 1994.

Vasanth Bala and Norman Rubin. Efficient Instruction Scheduling Using
Finite State Automata. In Proceedings of the 28th Annual International
Symposium on Microarchitecture, pages 46-56. IEEE, November 1995.

Jack Liu and Fred Chow. A Near-Optimal Instruction Scheduler for a
Tightly Constrained, Variable Instruction Set Embedded Processor. In Pro-
ceedings of the international conference on Compilers, architecture, and syn-
thesis for embedded systems, pages 9-18. ACM Press, 2002.

Markus Lorenz, Rainer Leupers, Peter Marwedel, Thorsten Drager, and Ger-
hard P. Fettweis. Low-Energy DSP Code Generation Using a Genetic Algo-
rithm. In ICCD, Austin, September 2001.

Markus Lorenz, Lars Wehmeyer, and Thorsten Dréager. Energy Aware Com-
pilation for DSPs with SIMD Instructions. In Proceedings of the joint confer-
ence on Languages, compilers and tools for embedded systems, pages 94-101.
ACM Press, 2002.

Peter Marwedel, Stefan Steinke, and Lars Wehmeyer. Compilation Tech-
niques for Energy-, Code—size-, and Run—time—efficient Embedded Software.
Technical report, University of Dortmund, 2001.

L. Wehmeyer, M.K. Jain, S. Steinke, P. Marwedel, and M. Balakrishnan.
Analysis of the Influence of Register File Size on Energy Consumption, Code
Size and Execution Time. In IEEE TCAD, volume 20 of 11, November 2001.

Jui-Ming Chang and Massoud Pedram. Register Allocation and Binding for
Low Power. In Proceedings of the 32nd ACM/IEEE conference on Design
automation conference, pages 29-35. ACM Press, June 12-16 1995.

Catherine H. Gebotys. Low Energy Memory and Register Allocation us-
ing Network Flow. In Proceedings of the 34th annual conference on Design
automation conference, pages 435-440. ACM Press, 1997.

[51] Yumin Zhang, Xiaobo (Sharon) Hu, and Danny Z. Chen. Global Register

Allocation for Minimizing Energy Consumption. In Proceedings 1999 inter-

national symposium on Low power electronics and design, pages 100-102.
ACM Press, 1999.

[52] Yumin Zhang, Xiaobo (Sharon) Hu, and Danny Z. Chen. Efficient Global

Register Allocation for Minimizing Energy Consumption. ACM SIGPLAN
Notices, 37(4):42-53, 2002.

101

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

Mike Tien-Chien Lee, Vivek Tiwari, Sharad Malik, and Masahiro Fujita.
Power Analysis and Low—power Scheduling Techniques for Embedded DSP
Software. In Proceedings of the eighth international symposium on System
synthesis, pages 110-115. ACM Press, 1995.

Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. In-
struction Level Power Analysis and Optimization of Software. Journal of
VLSI Signal Processing, pages 1-18, 1996.

Mark C. Toburen, Thomas M. Conte, and Matt Reilly. Instruction Schedul-
ing for Low Power Dissipation in High Performance Processors. In Proceed-
ings of the Power Driven Micro-architecture Workshop at ISCA’98. ACM,
June 1998.

Chingren Lee, Jenq Kuen Lee, and TingTing Hwang. Compiler Optimiza-
tion on Instruction Scheduling for Low Power. In Proceedings of the 13th

conference on International Symposium on System Synthesis, pages 55—60.
ACM Press, 2000.

A. Parikh, Mahmut T. Kandemir, N. Vijaykrishnan, and Mary Jane Irwin.
Instruction Scheduling Based on Energy and Performance Constraints. In
Annual Workshop on VLSI (WVLSI’00). IEEE, 2000.

Dongkun Shin and Jihong Kim. An Operation Rearrangement Technique
for Low-Power VLIW Instruction Fetch. In Proceedings of Workshop on
Complexity- Effective Design, June 2000.

Dongkun Shin, Jihong Kim, and Naehyuck Chang. An Operation Rear-
rangement Technique for Power Optimization in VLIW Instruction Fetch.

In Proceedings of Design, Automation and Test in Furope, Date’01, pages
809-817. ACM, March 2001.

Kyu won Choi and Abhijit Chatterjee. Efficient Instruction-level Optimiza-
tion Methodology for Low-power Embedded Systems. In Proceedings of the
international symposium on Systems synthesis, pages 147-152. ACM Press,
2001.

Han-Saem Yun and Jihong Kim. Power-aware Modulo Scheduling for High—
performance VLIW Processors. In Proceedings of the 2001 international
symposium on Low power electronics and design, pages 40-45. ACM Press,
2001.

Luca Benini and Giovanni De Micheli. System-level Power Optimization:
Techniques and Tools. In Proceedings 1999 international symposium on Low
power electronics and design, pages 288-293. ACM Press, 1999.

102

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

Wei-Chung Cheng and Massoud Pedram. Power-optimal Encoding for
DRAM Address Bus (poster session). In Proceedings of the 2000 interna-
tional symposium on Low power electronics and design, pages 250-252. ACM
Press, 2000.

Wei-Chung Cheng and Massoud Pedram. Low Power Techniques for Address
Encoding and Memory Allocation. In Proceedings of the conference on Asia
South Pacific Design Automation Conference, pages 245-250. ACM Press,
2001.

Armita Peymandoust, Tajana Simunic, and Giovanni De Micheli. Low Power
Embedded Software Optimization using Symbolic Algebra. In Proceedings
of the Design Automation and Test in Europe, pages 1052-1058, 2002.

Tohru Ishihara and Hiroto Yasuura. Voltage Scheduling Problem for Dy-
namically Variable Voltage Processors. In Proceedings of the International
Symposium on Low Power Electronics and Design (ISLPED-98), pages 197—
202, New York, August 10-12 1998. ACM Press.

Takanori Okuma, Tohru Ishihara, and Hiroto Yasuura. Software Energy
Reduction Techniques for Variable Voltage Processors. Design and Test of
Computers, 18(2):31-41, March-April 2001.

Chung-Hsing Hsu, Ulrich Kremer, and Michael Hsiao. Compiler—Directed
Dynamic Voltage/Frequency Scheduling for Energy Reduction in Micropro-
cessors. In International Symposium on Low Power Electronics and Design
(ISPLED’01), August 2001.

Dongkun Shin, Jihong Kim, and Seongsoo Lee. Intra—Task Voltage Schedul-
ing for Low—Energy, Hard Real-Time Applications. Design and Test of
Computers, 18(2):20-30, March-April 2001.

H. Saputra, M. Kandemir, N. Vijaykrishnan, M.J. Irwin, and J.S. Hu.
Energy—Conscious Compilation Based On Voltage Scaling. In LCTES
SCOPES 2002, 2002.

David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A Frame-
work for Architectural-level Power Analysis and Optimizations. In Proceed-

ings of the 27th annual international symposium on Computer architecture,
pages 83-94. ACM Press, 2000.

W. Ye., N. Vijaykrishnan, Mahmut T. Kandemir, and Mary Jane Irwin.
The Design and Use of SimplePower: A Cycle-Accurate Energy Estimation
Tool. In Proceedings of the 37th Conference on Design Automation (DAC-
00), pages 340-345, NY, 2000. ACM/IEEE.

103

[73] H. S. Kim, N. Vijaykrishnan, M. Kandemir, and M. J. Irwin. A Framework
for Energy Estimation of VLIW Architectures. In IEEE International Con-
ference on Computer Design: VLSI in Computers & Processors (ICCD °01),
pages 4045, Washington - Brussels - Tokyo, September 2001. IEEE.

[74] Sheayun Lee, Andreas Ermedahl, Sang Lyul Min, and Naehyuck Chang. An
Accurate Instruction—Level Energy Consumption Model for Embedded RISC
Processors. In Seongsoo Hong and Santosh Pande, editors, LCTES’01 Work-
shop on Languages, Compilers and Tools for Embedded Systems, Snowbird,
June 2001. ACM.

[75] Amit Sinha and Anantha P. Chandrakasan. JouleTrack - A Web Based
Tool for Software Energy Profiling. In Proceedings of the 38th Conference
on Design Automation (DAC-01), pages 220-225, NY, June 18-22 2001.
ACM/IEEE.

[76] Christian Panis. Scalable DSP Core Architecture Addressing Compiler Re-
quirements. PhD thesis, Tampere Univerity of Technology, 2004.

[77] J.L.Hennessy and D.A. Patterson. Computer Architecture. A Quantitative
Approach. Morgan Kaufmann Publishers, 1996.

[78] A. Shoham P. Lapsley J. Bier and E.A. Lee. DSP Processor Fundamentals,
Architectures and Features. IEEE Press, 1997.

[79] Christian Panis, Raimund Leitner, and Herbert Griinbacher. xLIW - A
Scalable Long Instruction Word. In ISCAS 2003, Bangkok, Thailand, 2003.

[80] Christian Panis, Michael Bramberger, Herbert Griinbacher, and Jari Nurmi.
A Scalable Instruction Buffer for a Configurable DSP Core. In ESSCIRC,
Estoril, Portugal, 2003.

[81] Christian Panis, Gunther Laure, Wolfgang Lazian, Herbert Griinbacher, and
Jari Nurmi. A Branch File for a Configurable DSP core. In VLSI-03, Las
Vegas, Nevada, USA, 2003.

[82] Scott A. Mahlke, Richard E. Hank, James E. McCormack, David 1. Au-
gust, and Wen mei W. Hwu. A Comparison of Full and Partial Predi-
cated Execution Support for ILP Processors. In Proc. of the 22nd Annual
International Symposium on Computer Architecture (22nd ISCA’95) ACM
SIGARCH Computer Architecture News, pages 138-149, Santa Margherita,
Italy, June 1995.

[83] D. Sima, T. Fountain, and P. Kacsuk. Advanced Computer Architectures: A
Design Space Approach. Addison Wesley Publishing Company, 1997.

104

(84] J.E. Smith. A Study of Branch Prediction Strategies. In Proceedings 8th
ISCA, 1981.

[85] J.K.F Lee and A.J. Smith. Branch Prediction Strategies and Branch Target
Buffer Design. Computer, 17(1):6-22, 1984.

[86] T.-Y. Yeh and Y.N Patt. Alternative Implementations of Two-Level adap-
tive Branch Predictions. In Proceedings 19th ISCA, 1992.

[87] D.N. Pnevmatikos and G.S. Soshi. Guarded Execution and Branch Predic-
tion in Dynamic ILP Processors. In Proceedings 21st ISCA, 1994.

[88] Andrew W. Appel. Modern Compiler Implementation in Java. Cambridge
University Press, Cambridge, UK, 1998.

[89] Bernhard Scholz and Erik Eckstein. Register Allocation for Irregular Archi-
tectures. In Proceedings of the joint conference on Languages, compilers and
tools for embedded systems, pages 139-148. ACM Press, 2002.

[90] Christian Trodhandl and Peter Puschner. Support of the Single-Path
Paradigm and Elimination of Side-Effects in Single-Path Code. Techni-
cal report, Vienna University of Technology, Real-Time Systems Group,
December 2003.

[91] Karl Vogler. A DSP C-Compiler. Master’s thesis, Vienna University of
Technology, Vienna, January 2002.

[92] Stefan Pees, Andreas Hoffmann, Vojin Zivojnovic, and Heinrich Meyr.
LISA - Machine Description Language for Cycle-Accurate Models of Pro-
grammable DSP Architectures. In Proceedings of the 36th Design Automa-
tion Conference (DAC’ 99), pages 933-938, New York, June 1999. Associa-
tion for Computing Machinery.

[93] mww-archc.-org

[94] Gunther Laure and Wolfgang Lazian. A Configurable Component Based
Framework for Simulating Digital Signal Processors. Master’s thesis, TU
Graz, 2005.

[95] Giovanni Agosta, Gianluca Palermo, and Cristina Silvano. Multi-objective
Co—exploration of Source Code Transformations and Design Space Archi-
tectures for Low—power Embedded Systems. In SAC ’04: Proceedings of
the 2004 ACM symposium on Applied computing, pages 891-896, New York,
NY, USA, 2004. ACM Press.

105

http://www.archc.org.

