DISSERTATION

Design of an Asynchronous Processor Based on
Code Alternation Logic —
Exploration of Delay Insensitivity

ausgefiihrt zum Zwecke der Erlangung des akademischen Grades
eines Doktors der technischen Wissenschaften
unter der Leitung von

A.0.UNIV.-PROF. DIPL.-ING. DR. ANDREAS STEININGER

Inst.-Nr. E182/2
Institut fiir Technische Informatik
Embedded Computing Systems Group

eingereicht an der Technischen Universitat Wien
Fakultat fiir Informatik

von

MAG. DIpPL.-ING. WOLFGANG HUBER
Matr.-Nr. 9425221

Edla 9
3261 Steinakirchen/Forst

Wien, im Mai 2005

Acknowledgements

First, I would like to thank Andreas Steininger for his patience and excellent
supervision on this thesis.

The positive working atmosphere at our institute made this work possible. Thanks to
all of my colleagues, especially Martin Delvai for working together the last four years
and Wilfried Elmenreich for the helpful suggestions, even while having lunch.

I also wish to thank my brother Bernhard and Susanne Pind-Rossnagl for faithful
reading and correcting my work.

Many thanks to Traude Sommer, Gottfried Fuchs, Thomas Handl, and Peter Tum-
meltshammer for constructive comments and suggestions.

Last but not least, a big part on the successful completion of this work goes to
Waltraud and Thomas for supporting me during writing this thesis.

Abstract

The synchronous design technique increasingly reaches its limits: More and more func-
tionalities are integrated on one chip causing the chip size to grow, thus effectively
countervailing the reduction of feature size allowed by improved manufacturing tech-
nologies. Higher clock frequency not only requires steeper clock edges, hence increasing
power consumption, but also destroys the fiction of simultaneous events on the whole
chip. This abstraction of simultaneity is an essential basis for how the synchronous
design paradigm solves the fundamental design problems, e.g. the formal incomplete-
ness of the Boolean Logic. Synchronous designs tackle these fundamental problems
in the time domain. However, solutions in the information domain and the so-called
hybrid solution — a conjunction of both methods — are also possible. Code Alternation
Logic (CAL) is a representative of a hybrid solution. Up to a certain abstraction level,
CAL is delay insensitive, however, for the implementation of the basic gates, temporal
restrictions apply.

CAL is based on the utilization of two representations of "HIGH” and ”LOW” in two
different phases @0 and ¢l. The representations are used alternatively, so within a
sequence of data words each bit can uniquely be assigned to the corresponding data
word. These four possible values are either described by a four-value single-rail signal
of type cal_logic, which is utilized for the behavioral description of the design, or
by a two-value dual-rail cal rail logic signal. The latter is used for the hardware
implementation. In contrast to the conventional synchronous design flow, our CAL
design flow comprises two synthesis steps. Furthermore, the designer is supported by
simulation models for different abstraction levels. Altera Apex FPGAs are used as
target technology, thus LUTs are the smallest units which can be addressed.

A main goal of this thesis is to analyze the delay insensitivity of a circuit implemen-
tation with CAL. For this purpose pipeline stages as well as basic gates are transformed
to timed automata and analyzed with the model-checker Uppaal. In this thesis the de-
lay insensitive behavior of pipeline structures and the correctness of the combinational
logic between these stages is proven. Up to this point hardware independent models
of the basic gates are used for constructing these combinational logic functions, which
operate according to the CAL rules. As a next step the implementation of the basic
gates in the target technology is investigated. The limitations with respect to delay
insensitivity are pinpointed and appropriate design constraints are derived.

The impacts of the findings are used to improve the design flow. Furthermore, the
results have allowed us designing our asynchronous processor ASPEAR. The develop-
ment of an improved pipeline concept, the application of pre-compiled basic gates using
Quartus, and the new library providing these gates to the synthesis tools are verified
with the successful implementation of the processor.

Kurzfassung

Die synchrone Hardware-Designmethodik sto8t zunehmend an ihre Grenzen. Immer
mehr Funktionalitdten werden auf einen Chip gepackt, wodurch die Chipfliche trotz
. sinkender TransistorgréBen, die Dank besserer Herstellungstechnologien erreicht wer-
den, steigt. Steigende Taktfrequenz erfordert nicht nur steilere Taktflanken, wodurch
der Leistungsverbrauch negativ beeinflusst wird, sondern zerstort die Fiktion der
Gleichzeitigkeit der Ereignisse am Chip. Diese Abstraktion der Gleichzeitigkeit ist aber
die Grundlage fiir den Einsatz des synchronen Designparadigmas um die fundamentalen
Designprobleme, wie zum Beispiel die formale Unvollstandigkeit der Bool’schen Logik
in den Griff zu bekommen. Der synchrone Ansatz 16st das Problem der Giiltigkeit von
Information vollstéandig im Zeitbereich, weiters wiren aber auch Lésungen im Informa-
tionsbereich, oder auch als Mischung beider Varianten, so genannte hybride Losungen,
moglich. Die beiden letztgenannten sind Vertreter der asynchronen Logik. Als Beispiel
fiir einen hybriden Ansatz sei die in unserer Arbeitsgruppe entwickelte Code Alterna-
tion Logic (CAL) genannt. Bis zu einer gewissen Abstraktionsschicht ist CAL delay
insensitive, die darunter liegende Implementierung der Basisgatter mit Zellen der Ziel-
technologie ist nicht ganz frei von zeitlichen Bedingungen an die Implementierung.

CAL basiert auf der Tatsache, dass "HIGH” und ”LOW’ jeweils in zwei sich abwech-
selnden Phasen 0 und (1 dargestellt werden. Durch die Alternierung der Phasen
kann die Zuordnung der Bits zu Datenwellen garantiert werden. Dargestellt werden
diese vier Zustinde entweder als vierwertige single-rails cal_logic, die in der Verhal-
tensbeschreibung der Designs verwendet werden, oder als jeweils zweiwertige dual-rail
Logik — cal_rail_logic — fiir die Implementierung in Hardware. Der Designflow fiir
CAL umfasst im Gegensatz zum synchronen Design zwei Syntheseschritte. Weiters wird
die Designentwicklung durch Simulationsmodelle auf verschiedenen Abstraktionsstufen
unterstiitzt. Als Zieltechnologie kommen Altera Apex FPGAs mit LUTs als kleinste
Einheiten zum Einsatz.

Um die Eigenschaften in Bezug auf delay insensitivity zu untersuchen, werden Hard-
warestrukturen wie Pipelinestufen oder auch Basisgatter in Timed Automata transfe-
riert, die mit dem Modelchecker Uppaal analysiert werden. Der Nachweis des delay
insensitiven Verhaltens der Pipelinestufen und der Logik zwischen diesen Stufen wird
in dieser Arbeit erbracht. Dieser stiitzt sich auf hardwareunabhéngige Modelle der
Basisgatter, die nach den CAL-spezifischen Regeln operieren. Der néchste Schritt in
dieser Arbeit ist die Untersuchung der Implementierung dieser Basisgatter in der Ziel-
technologie. Der Nachweis ebenso wie die Ermittlung der notwendigen Vorgaben fiir
die Implementierung werden mittels Modelchecker fiir alle im Designflow verwendeten
Basisgatter erbracht.

Die gewonnen Erkenntnisse finden im iiberarbeiteten Designflow zur Implementie-
rung des asynchronen Prozessors ASPEAR Anwendung. Der Funktionsnachweis der
verbesserten Pipelines, der in Quartus vorcompilierten Gatter und der dadurch not-
wendige Einsatz einer neuen Bibliothek wird durch die erfolgreiche Implementierung
des Prozessors erbracht.

Contents

1 Introduction 1
1.1 Motivation e 2
1.2 Contribution and Objectives 4
1.3 Structure of the Thesis 5

2 State of the Art 6
2.1 System Model 8

2.1.1 Terminology 8
2.1.2 DataFlow 9
2.1.3 Timed Data Flow Relation 10
2.2 The Fundamental Design Problem, 10
2.2.1 Formal Incompleteness of Boolean Logic 11
222 SignalDelay 12
223 SignalSkew 12
2.3 StrategicOptions e e 13
231 Time Domain, 13
2.3.2 Information Domain 15
2.3.3 Hybrid Solutions 19
2.4 Design Techniques 21
2.4.1 Synchronous Approach 21
2.4.2 Bundled-Data Approach 23
24.3 Huffman Approach 25
2.4.4 Design Techniques Using Signal Coding — The NCL Example . . 27
2.4.5 'Transition Signaling Approach 29
2.4.6 Handshake Protocols: The Micropipeline Approach 30
2.4.7 High Level Description Approaches 32
2.5 Comparison e e e e e e e e e e 34

3 Code Alternation Logic — CAL 38
3.1 Backgroundof CAL. 39
32 Coding Scheme e 40
33 Control Flow e 42
3.4 Levels of Abstraction, 43

CONTENTS vi

3.4.1 Behavioral Description —callogic 43
3.4.2 Functional Description — cal rail logic 46

3.5 BasicGates 47
351 ANDGate. e 47
3.5.2 Phase Detector 47
3.5.3 @Converter 48
3.54 CALRegister e 49

36 CAL Design-Flow 50
3.7 Simulation Concept e 52
3.8 Summary e e e e e 54
4 Prototyping Environment 55
4.1 The SPEAR Processor 56
4.1.1 Core Architecture 56
4.1.2 Extension Modules 57
4.1.3 Implementation Results 58

4.2 The Hardware Platform 58
421 APEXFPGA Family 59
4.2.2 Limitations 60

5 Delay-Insensitivity of Circuits Built with CAL 62
5.1 The Uppaal Tool Suite 63
5.2 Delay Insensitivity Analysis of CAL-Registers and the Pipeline Structure 65
5.2.1 Schematic Pipeline 65
5.2.2 Pipeline Implementation 69
5.2.3 Pipeline Model with Synchronized Capture Done 73
5.2.4 Pipeline Implementation with Latched Capture Done 74

5.3 The Combinational Functions (f(z)) 78
5.3.1 Circuits built with CAL-Gates 78

54 Summary e e e e e e e e e e e e 81
6 Delay-Insensitivity of CAL Basic Gates 82
6.1 Modeling Altera FPGA Designs 83
6.2 The AND Gate e 88
6.2.1 Synopsys-edif-Version 88
6.2.2 Quartus-only-Version 93

6.3 The ORGate i i e 95
6.4 TheINV Gate. e 97
6.5 N-Signal p-Detector 98
6.5.1 Two Signal p-Detector 98
6.5.2 Four Signal ¢p-Detector 100
6.5.3 Generic N-Rail p-Detector 101

6.6 Latch. e e 102

CONTENTS

6.6.1 One Signal wide Latch
6.6.2 Latch with Enable Logic

6.7 Summary

7 Hardware Implementation: Asynchronous SPEAR

7.1 General Description . .

7.1.1 Design Migration Issues

7.2 Pipeline Improvements

7.2.1 Providing Latches with Different Initialization Values
7.2.2 ”Capture Done Latches” in the Feedback Path
7.3 Adapting the Design-Flow
7.3.1 Pre-compiled Quartus Gates
7.3.2 Additional Target Library CALRAILLIB
7.3.3 Simulation Supporto

7.4 Implementation Results
8 Conclusion

Bibliography

vii

102
104
106

- 107

108
108
109
110
111
112
113
114
114
115

117

122

List of Figures

1.1 Gate vs. Interconnect Delay [107] 3
2.1 Terminology 9
2.2 Circuit Model 9
2.3 Timed Circuit Model L 11
2.4 Fundamental Design Problem 12
2.5 Transition between Consistent Data Words 13
2.6 Fundamental Solutions in the Time Domain 14
2.7 Validity vs. Consistency 17
2.8 Communication Process 18
2.9 Communication Protocols, 19
2.10 Circuit Fragment with Gatesand Delays 19
2.11 Synchronous Design Approach 21
2.12 Bundled-Data Design Approach 24
2.13 Huffman Circuit [85] 25
2.14 Sequence of DATA and NULL Waves 27
2.15 Micropipeline e 31
3.1 Flowof Data Wavesin CAL 40
3.2 Possible Phase Transition 41
3.3 CAL Pipeline Structure 42
3.4 Library Dependencies 43
3.5 Schematic and Truth Table of the AND-gate 48
3.6 Thep-Detector e 48
3.7 Implementation of a p-Converter 49
3.8 Implementation of a CAL Register 49
39 CAL-DesignFlow 51
3.10 Simulation Concept 53
3.11 Post-layout Simulation Example, 54
4.1 SPEAR Architecture 57
4.2 Generic Extension Module Interface 58
4.3 Logic Element Structure [2] 60

viil

LIST OF FIGURES ix

5.1
5.2
5.3
5.4
3.5
5.6
9.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17
6.18

7.1
7.2
7.3

8.1

Uppaal Template Example: P 63
Uppaal Template Example: Two Instances of P: pl and p2 65
Schematic CAL Pipeline Structure 65
Schematic Pipeline 66
Completing the Schematic Pipeline System e e 67
Uppaal Simulator (Schematic Pipeline System) 68
CAL Pipeline Structure 70
Components of Pipeline Implementation 71
Pipeline Implementation 71
Critical Delay Paths of the Basic Pipeline Implementation 73
Pipeline Model with Synchronized Capture Done 74
CAL Register with latched Capture Done 75
CAL Register with latched Capture Done signal 77
Uppaal-Model of an AND-Gate 78
Uppaal-Models 79
Input Generation Function proving the f(z) Model 80
Altera Apex LUT Model T 84
Altera Apex Wire Model oL, 86
Feedback Model 86
Stimuli-Generation Lo 87
AND-LUT Schematic generated by Synopsys 88
Simulation of the AND2-model 91
AND-LUT Schematic 93
OR2-LUT EDIF-Schematic 95
Symmetric OR-Gate 96
INV-LUT Schematic 97
Two Signal ¢-Detector LUT Schematic 98
Four Signal p-Detector LUT Schematic 100
Two Signal wide Instance of a Generic @-Detector 101
Four Signal wide Instance of a Generic p-Detector 102
One Signal wide Latch Cell 102
Stimuli Generation for an one Signal wide Latch Cell 103
One Signal wide Latch Cell with Enable Logic 104
Stimuli Generation for a Latch Cell with Enable Logic 105
Implementation Result of a Four Signal wide Register 112
Improved CAL Design Flow 113
Implementation Results of ASPEAR 115

CAL-Register Delay Summary 119

List of Tables |

2.1 Comparison wrt. the Fundamental Design Problem 34
2.2 Comparison wrt. Area and Energy Efficiency 36
3.1 CAL Coding Scheme 41
3.2 calllogic Coding Scheme 44
3.3 cal_rail logic Coding Scheme and the VHDL Definition 46
3.4 Truth Table of a 2-input ANDin CAL 47
5.1 Results of Uppaal checking the Schematic Pipeline 69
5.2 Results of Uppaal checking the Real Pipeline 72
5.3 Results of Uppaal checking the Pipeline Model with Synchronization . 74
5.4 Results of Uppaal checking the ”Latched Capture Done” Version. . . . 77
5.5 Results of Uppaal checking the f(z) simulation 81
6.1 Gate Delay and the AND-gate without Feedback 90
6.2 LUT Simulation with Feedback (AND-gate) 92
6.3 Gate Delaysof an AND-gate 94
6.4 LUT Simulation with Feedback (AND-gate) 94
6.5 Gate Delaysof an OR-Gate 96
6.6 Gate Delays of an OR-Gate (full-Quartus) with Feedback 97
6.7 Gate Delaysof anInverter 97
6.8 Gate Delays of a Four Rail ¢p-Detector 99
6.9 Gate Delays of a Four Rail p-Detector with Feedback 99
6.10 Gate Delays of a Eight Rail ¢-Detector 100
6.11 Gate Delays of a Eight Rail p-Detector with Feedback 101
6.12 Gate Delays of a 4-Signal Instance of a Generic p-Detector with Feedback102
6.13 Gate Delays of one Signal wide Latch with Feedback 104
6.14 Latch with Enable Cell and Feedback 105

List of Sources

3.4.1 cal_logic VHDL Definition 44
3.4.2 Register Implementation in std_-logicand CAL 45
5.2.1 Uppaal-Query for the Schematic Pipeline 66
5.2.2 Definition of the Schematic Pipeline 67
5.2.3 Uppaal-Query for the First real Pipeline Implementatlon 70
6.1.1 Example of a Quartus Equation-File 83
6.2.1Uppaal-Queries e 89
6.6.1 Uppaal-Query for the Latch Models 103
7.2.1 Register Implementation in CAL 109
7.2.2 Register Cell Implementation in CAL 110
7.2.3 Capture Done Latch Implementation 111
7.3.1 Library Definition of an AND-Gate 114
7.3.2 Result of Synopsys Library Report: CALRAILLIB-Members 115

xi

Chapter 1

Introduction

Asynchronous logic design has been a topic in the scientific community for a long time.
Asynchronous design methods date back to the 1950s and two scientists mainly in-
vestigated by David A. Huffman [51] and David E. Muller [84]. Nevertheless, clocked
circuits dominate the market of digital circuits today, while a small segment is only
reserved for asynchronous chips [117]. The triumphal procession of the synchronous
approach is based on its discretization of time: This facilitates the description of the
circuit behavior — the designer hypothesizes that all operations within the circuit fin-
ish in time in order to be sampled with the next clock edge. Hence, neither glitches,
signal delay, skew nor physical properties, such as driver power or the real duration of
a logical operation have to be considered during functional description. This circum-
stance yielded to shorter design cycles and paved the way for Hardware Description
Languages (HDL’s) such as Verilog [121] and VHDL [62], boosting the productivity
of chip designers again. A big advantage of synchronous designs is that the order in
which the data arrives doesn’t matter. The data can arrive at different times, but the
registers delay capturing until the next active clock. As long as all signals arrive before
this tick, the design will work properly. So the designer must not worry about wire
delays while designing a chip.

In addition, design verification is reduced to checking the delays in the combina-
tional logic functions between the registers [42], which can be automated.

The synchronous design paradigm in conjunction with high level hardware descrip-
tion languages, elaborated tools, and technological advances concerning integration
density has enabled great strides to be taken into the design and performance of com-
puters. In 1965 Gordon Moore predicted that chip density (and performance) doubles
every eighteen months [82]. “In 24 years the number of transistors on processor chips
has increased by a factor of almost 2400, from 2300 on the Intel 4004 in 1971 to 5.5
million on the Pentium Pro in 1995 (doubling roughly every two years)” [27]. Moore’s
observation remains valid until today (2005) and at the International Solid-States
Circuits Conference (ISSCC 2003), Moore has predicted that this trend will proceed in
the next decade [81]. Nowadays, processor cores clocked with several GHz and built out
of more than 400 millions transistors [52][26] are typically for use in personal computers.

CHAPTER 1. INTRODUCTION 2

However, during the last decade there has been a revival in research on asynchro-
nous circuits [95][42]. Clockless chips have long been a subject of research at facilities
such as the California Institute of Technology’s Asynchronous VLSI Group and the
Manchester’s Amulet project [129].[43]

1.1 Motivation

Clocked processors have dominated the industry since the 1960s. The question is now,
what is the motivation behind moving away from a well established and approved
design methodology? With the improvements made in the last decades several already
existing problems concerning the chip design style became increasingly critical and will
be further aggravated by each new technology step. Many problems can be ascribed
to the limitations of the speed of the light!: As soon as the signal propagation delay
becomes a significant part of the clock period — clock frequencies in a range of several
GHz imply clock periods under one nanosecond — circuit designers have to pay a heavy
price to keep up the illusion, so that all components receive the rising edge of the clock
signal at the same time [106].

Another critical issue is concerned with power consumption [18]. The clock signal
always triggers the components, regardless of whether they have to do useful work
or not — increase unnecessarily the energy consumption. The circumstance that the
gates start functioning with the same clock edge leads to a peak in the power distribu-
tion. Furthermore, the miniaturization aggravates this situation by escalating the heat
density inside high performance chips.

In addition, the combination of chips with higher functionality and faster transistors
caused a fundamental change in the relation between gate and wire delay: In today’s
sub-micron designs, wire delays and not gate delays are the dominant factors for circuit
timing (see figure 1.1).

Furthermore, a reliable verification of a circuit can be performed after place &
route only, and so it is performed at a very late point in time in the design process. In
practice, however, timing problems often necessitate changes in the functional design.
In this way the separation of functional design and timing analysis causes unnecessary
long iteration cycles.

The asynchronous approach seems to solve most of the problems in a natural way:
Being event-driven, asynchronous circuits (i) perform operations only when required
and thus reduce the power consumption, (ii) do not require a global time reference,
when disarming the problems concerning clock distribution and signal skew.

As a fetch-ahead to the following chapters, important properties of asynchronous
circuits, which can be advantages in some areas [108], are listed in the following:

1To be more precise electrical signals travel on chips with 2/3 of the speed of light.

CHAPTER 1. INTRODUCTION 3

A delay/ns

1.0
gate delay

wire delay

l T I nl T T >
1.0 0.5 0.25 minimum feature
size / um

Figure 1.1: Gate vs. Interconnect Delay [107]

e Achievement average case performance, [74][73][127][128] :
..operating speed is determined by actual local delays rather than the global
Worst case latency.

e Low power consumption [40](39][89][11]{10]
..consume power only when needed.

e Provision of easy modular composition [83][68][111][8]
. .asynchronous components are combined with simple handshake protocols.

e Avoid clock distribution and clock skew problems
.. because there is no global clock.

e Lower electro magnetic emission and noise [78][93][10]
.. locally triggered registers tend to be active at any point in time.

e Variations in fabrication process parameters, temperature, and supply voltage
are not as crucial as in synchronous designs [88][87][72]
.. because the timing is based on the relationship between the delays instead of
being based on absolute values.

Convinced by the potential of the asynchronous design style our department started
its research activity in this field four years ago. The aim was not to invent a new
method, but to provide an in-deep analysis of one existing design style. We have cho-
sen the four phase logic approach [77][20], due to the fact that it allows us building
completely delay-insensitive circuits on gate level and it does not require a neutral state
between valid data words such as the Null Convention Logic [34]. On account of the
four phase logic alternates the data encoding style within consecutive data words. We
termed this logic CAL (Code Alternation Logic).

To perform our analysis, we have first developed a reference object, namely a synchro-
nous processor core called SPEAR (Scalable Processor for Embedded Applications in

CHAPTER 1. INTRODUCTION 4

Real-time Environments). In the second step we re-designed it using the CAL ap-
proach. This not only opened the way to perform conventional analyses but it also
allows comparing the asynchronous processor with the synchronous one concerning,
e.g., speed, fault-tolerance, testability, etc.

1.2 Contribution and Objectives

Encoding data with alternating phases is the basic principle of CAL. Thus, all compo-
nents in a CAL circuit are able to judge consistency of their input data by themselves.
In addition, it is possible to decide whether a new output has to be generated or not.
Therefore, we claim that CAL is delay insensitive on a high abstraction level. As men-
tioned before, wire delays become more and more important, so a delay insensitive
approach for building circuits is particularly interesting.

However, the class of circuits that are entirely delay insensitive is limited: Circuits
in this class may contain only Muller-C elements, as multiple-input gates with single
output. [45, 70].

The hardware implementation of CAL uses dual-rail gates for constructing the
circuits. Thus, every basic CAL gate used in these circuits has a dual output, which
circumvents the above restrictions and allows the use of basic functions such as AND
and OR. This is, however, a macroscopic view. On a microscopic level these basic
CAL-gates are composed of standard gates from the target technology, for which the
restrictions do apply. This leads to two main aspects to be considered in this thesis:

I The delay insensitivity of CAL on a high level using CAL gates to build the
circuits is to be examined. Pipeline structures with the corresponding handshake
signals shall be investigated and their delay insensitivity property shall be proven.
In this case limitations shall be identified as well. Furthermore, the behavior of
combinational logic functions, which are constructed exclusively from CALgates
shall be explored.

IT The internal structure of the basic gates has to be analyzed. The limitations
mentioned above have to be pinpointed and also appropriate design rules have
to be derived. The aim is to extract the bounds which must be abided by the
implementation of these basic gates such that they behave as expected on the
higher level.

A design flow has to be developed to facilitate a designer to use the potential of
CAL. The flow from the high level of description to the target technology has to be
generated. Furthermore, basic gates for the target library must be constructed that
fulfill the constraints determined for the implementation.

Finally, the impacts which evolve of these findings as well as the functionality of the
design flow and the basic gates shall be demonstrated by implementing an asynchronous
processor core with CAL.

CHAPTER 1. INTRODUCTION S

1.3 Structure of the Thesis

This short introduction is followed by Chapter 2, which identifies the fundamental
problem designing digital circuits. The validity and consistency of data is considered
as well as the possibilities in which the fundamental problem can be tackled. These two
methods, namely the time domain and the information domain, are presented and the
existing asynchronous design methods are classified with regard to the method applied.
The section concludes with a comparison of presented methods. Chapter 3 introduces
the design methodology Code Alternation Logic (CAL). The description of the applied
coding scheme is followed by the description of the control flow. The construction of
pipeline structures with the combinational function between two stages is presented,
as well as the basic gates that are used to construct these function blocks. This is fol-
lowed by an introduction to the CAL design flow and a comparison with the standard
design flow. This chapter is rounded off with the description of the simulation con-
cept. Our prototyping technology and the reference design are the focus of Chapter 4:
The Altera Apex FPGA family is presented as prototyping hardware. Furthermore,
the synchronous processor SPEAR and its implementation details are presented. The
examination of delay insensitivity starts in Chapter 5: We have decided in favor of
a top-down approach in order to analyze the behavior of CAL. In this chapter the
delay insensitive behavior of circuits built with CAL gates is examined. Thus, pipeline
structures and the handshake signals as well as the combinational functions between
the stages are considered. The gates forming the basis for building the combinational
functions are our focal point in Chapter 6. The principe of modeling Altera FPGAs is
the starting point, afterwards the behavior of several basic gates is investigated. The
limitations to delay insensitivity and the resulting restrictions are defined exactly for
every basic gate. The impact of these findings yields to a modification to the design
flow, as illustrated in Chapter 7. Furthermore, the implementation of the asynchronous
processor ASPEAR is described. A conclusion of this work is given in Chapter 8.

CAL has been developed by Professor Andreas Steininger and his PhD students Mar-
tin Delvai and myself. Furthermore, the hardware realization of ASPEAR has been
performed in cooperation by Martin and myself. Due to these facts, there are common
parts in both theses. A. Steininger suggested to split up these common parts to enable
his students to invest more time in the work itself instead of finding new verbalization
for the same content. Thus, Chapter 2 ”State of the Art” has been written by Martin
Delvai and is part of my thesis too. My parts of the collaborate work — Chapter 3
”Code Alternation Logic” and the small Chapter 4 ”Prototyping Environment” — are
also parts of Martin’s thesis[22].

Chapter 2

State of the Art

Martin Delvait

Contents
21 SystemModel 0 0. 8
2.1.1 Terminology 8
212 DataFlow. 9
2.1.3 Timed Data Flow Relation 10
2.2 The Fundamental Design Problem 10
2.2.1 Formal Incompleteness of Boolean Logic 11
222 SignalDelay 12
223 SignalSkew o 12
2.3 StrategicOptions, 13
231 TimeDomain, 13
2.3.2 Information Domain 15
2.3.3 Hybrid Solutions 19
2.4 Design Techniques 21
2.4.1 Synchronous Approach 21
2.4.2 Bundled-Data Approach 23
2.4.3 Huffman Approach, 25
2.44 Design Techniques Using Signal Coding — The NCL Example 27
2.4.5 Transition Signaling Approach 29
2.4.6 Handshake Protocols: The Micropipeline Approach 30
2.4.7 High Level Description Approaches 32
25 CompariSon v v v v v bt e e e e e e e e e e 34

! As outlined in Section 1.3, this is the part of the common work written by Martin Delvai.

6

CHAPTER 2. STATE OF THE ART 7

Circuit design styles can be classified into two major categories, namely synchronous
and asynchronous. The first approach is based on one or more globally distributed pe-
riodic timing signals, called clocks, which sequence the circuit [19]. The asynchronous
design style is an event-driven circuit design technique where, instead of the compo-
nents sharing a common clock and exchanging data on clock edges, data is passed on
as soon as it is available [35].Although the asynchronous design methods have been
studied for many decades, today the clocked circuits dominate the market of digital
circuits. However, the synchronous design style faces some fundamental limits: Prop-
agation of electrical signals on chips is bounded by the speed of light: As the chips get
bigger and the clocks run faster, this physical restriction becomes more and more a
crucial factor in the design process of synchronous chips [75]. Another critical aspect
constitutes the power consumption: In CMOS circuits the dissipated energy is propor-
tional to the switch activity — in synchronous circuits the gate activity is driven by
clock signals, independent from the fact if useful work has to be done or not. Possible
options to solve these problems are clock gating [63], where unused parts of the circuit
are temporally disabled, or to speed down the clock frequency during idle states [53](25].
However, these are compromise solutions which aim to compensate the weak points of
the synchronous design principle and which have to be paid in terms of recovery time

-and circuit overhead.

Being an event-driven method, the asynchronous design style promises to solve the
mentioned difficulties by its nature. Motivated by this circumstance a lot of asyn-
chronous design techniques have been developed [45]. Though all approaches have the
same underlying principle, namely being event driven, their concrete effectuations look
completely different.

Furthermore, many approaches deal with only one particular design aspect. Hence,

implementing a complete chip often requires a combination of methods. This makes it
difficult to classify asynchronous circuits and to compare them with the synchronous
design style.
For completeness we will mention a third design style, namely the Globally-
Asynchronous Locally-Synchronous(GALS) approach. The fundamental idea of this
approach is applied successfully to compose systems on higher abstraction levels,
connect, a printer with a PC, e.g. As more and more components can be integrated
on a single silicon die, this method becomes attractive even for VLSI designs [28][59].
However, this design style can be traced back to the previously mentioned styles and
therefore it will not be considered separately.

All methods and design styles have one point in common: If we take a look from
a more abstract point of view, we could recognize that all methods, including the
synchronous approach, aim to solve the same problem, namely to ensure that all data
is correctly processed by the circuit. We call this problem the fundamental design
problem.
To be able to depict this problem in greater detail, we will first provide a system model
in Section 2.1. Based on this definition we will figure out the fundamental design

CHAPTER 2. STATE OF THE ART 8

problem and deduce its root in Section 2.2. In Section 2.3 we will distinguish between
two basic strategies, which deal with the fundamental design, namely the use of time
or the use of information. With this theoretical background we are able to analyze and
classify characteristic types of design approaches in Section 2.4. This chapter concludes
with a comparison of the presented design styles. e

2.1 System Model

2.1.1 Terminology

Terms such as signal, vectors, bits, e.g., are used in many different fields of applications.
As a consequence these terms are interpreted in a slightly different manner depending
on its context. Due to this common usage a discussion inside our department flared up
about the exact meaning and interpretation of several expressions. Also the literature
could not help to clarify the situation due to the fact that some terms are defined
differently. It is for this reason that we devote a section to define the used terminology.

We call the input of a Boolean logic function an input vector. It is constituted by
a number of signals — one for each input. The Boolean logic function defines a specific
mapping from the input vector to an output signal. This mapping is implemented
by a logic function unit. Often several Boolean logic functions are applied to the
same input vector in parallel, creating several output signals with a common semantic
context (data path elements like adder, e.g.). The term logic function units is used in
a broader sense to describe the implementation of this set of Boolean functions as well.

We call the smallest unit of information conveyed on a signal a bit, and the (consis-
tent) vector of bits conveyed on an input vector a data word. A signal can be physically
represented by one or more rails, whose logic levels define the signal’s logic state. The
two mandatory logic states of a signal are high (HI)” and ”low (LO)”, but states such
as "NULL?”, ”illegal” or ”in transition” are conceivable and sometimes used as well. A
signal-level code relates the logic levels of the rails — viewed as a vector that represents
a signal — to the logic state of the corresponding signal. For the digital rails we consider
that the logic level may either be ”0” or ”1”. In the conventional single-rail encoding a
signal is represented by only one rail whose logic level is directly mapped to the signal
state.

We refer to an input vector as consistent at instant ¢;, if the state of all its signals
belong to the same context at instant ¢;, i.e. if they represent one single valid data
word, and inconsistent otherwise. We also call the involved signals consistent under
this condition. We call a signal walid at instant ¢;, if its state at instant ¢; is the
stable result of a logic operation performed on a consistent input vector, and invalid
otherwise.

CHAPTER 2. STATE OF THE ART 9

. LOGIC
Input vector FUNCTION

output signal

UNIT

signal 1
signal 2
signal 3

signal n

DW .. data word

Figure 2.1: Terminology

2.1.2 Data Flow

From the point of view of information flow every function unit FU is preceded by a
data source SRC that provides the input vector for FU, and followed by a data sink
SNK that further processes the output signal or vector of FU (maybe in context with
the outputs of other function units). Both, data sink SNK and source SRC represent
an abstraction of the remaining circuit and may internally consist of further function
units. We call an output bit b, of FU consumed by the sink SNK at t;, if b, is still
properly considered in the flow of information in SNK, regardless of whether b, is
overwritten by a subsequent bit b, after ¢; or not. Usually, consumption implies the
transfer of the information to some storage element.

TRIGGER TRIGGER

Figure 2.2: Circuit Model

An information flow is termed lossless, if all pertaining bits are properly consumed
at all instances ¢;. Also a signal path Py is called lossless, if the information flow along
Py is lossless. To guarantee losslessness, SRC and SNK have to be appropriately
coordinated.

CHAPTER 2. STATE OF THE ART 10

2.1.3 Timed Data Flow Relation

Considering the temporal relations and delays involved in the data transfer between
SRC and SNK, we have to extend our model by timing issues. Figure 2.3 illustrates
this model. Thus, a source trigger TRGsgrc is employed to determine the instant
tissue fOr a data word DWgge . to be issued by the data source SRC?. As soon as
SRC is ready to accept a trigger, it will react by issuing the requested data word
DWsrc o, which will - after some delay — become visible and consistent at the output
of SRC at instant t;ssye .. The interval between trigger event (trrc src) and actual
visibility of the consistent data word DWgpgc, at the output (fissue.) is named the
issue delay Ajssue. Next, DWgsgc, propagates to the function unit FU where it is
processed. The corresponding result, DWgy ., propagates from the output of FU
to the data sink SNK, passing SNK’s input logic, until it is finally available as a
consistent data word DWgnk , within the sink and hence ready for consumption at
instant tsykrdyz- The interval between tissue and tsykraye is termed as processing
delay Aprocess- At some point in time trre snk,z > tsNKrday,z the sink trigger TRGsnk »
is activated, which will — after some inherent delay — cause DWgnk . to be actually
consumed at instant fconsume,z- We call the interval between tsykrayz and teonsumes
the consumption delay Aionsume and the interval between tsnykirge and teonsumes the
sink trigger delay Asnkirig-

At instant tisguep+1 > teonsume,s it is safe to trigger the next data word DWsgc 441
to be issued by the source. We call the delay until this actually occurs (i.e. the
interval between tconsume,e aNd tissuez+1) the cycle delay Agye.. Notice that DWeyk
does not necessarily become invalid immediately at t;s5ue +1 but only after DWgpge p41
has propagated through FU to SNK. We describe this conservation of the previous
data word by an invalidity delay Anpaiq- Consequently, the system designers have
the opportunity to choose a negative Ay thus increasing throughput by issuing the
next data word DWgsge ;41 already before the current data word DWgyk , has been
consumed. Note that all delays may vary and hence some margins have to be considered
in the timing.

2.2 The Fundamental Design Problem

Based on the aforementioned definitions, the fundamental problem of digital logic de-
sign can be subsumed as follows: Ensure a lossless information flow in the system.
Under this fundamental constraint systems are typically optimized for maximum infor-
mation throughput. In order to achieve these aims the designer has to coordinate the
triggers of source and sink appropriately. In context with the timed data flow model
presented above, this implies the following:

e The trigger of the sink T RG syk, must not be activated before tgnk rdy » (€nsure

2As we will see later, this trigger is the essential means for controlling the data flow in the signal
path.

CHAPTER 2. STATE OF THE ART 11

TRG srex , TRGgpexst
\’\ i DWsrex ; : i DWsRe 1
Source _A‘.% / A cycle ! A issue /
: ' DWFU X ' Vtime
Fu{IICt_lon A processing _: ! :
nit —~— ; - ——
- T | Do |
P \’\ . SNKurg |
: Ainvalidig 5 A
Sink L : consumpnon invalidity
' § : time
issue,x SNKrdy,x tconsume,x U issue,x+1

Figure 2.3: Timed Circuit Model

losslessness): tsni trge = tsNKrdyz- Less formally speaking this means that a
new data word may only be captured by the sink after it has become consistent.
To achieve maximum throughput capturing should, however, occur as soon after
tsnkrayz @S possible. As a consequence, every design method must allow a
judgement of consistency of a data word in one way or the other (fundamental
requirement 1). Considering that validity is a prerequisite for consistency, it
must be possible to judge on a signal’s validity as well.

o The trigger of the source TRGgrc, can safely be activated after teonsumer tO
guarantee losslessness, which means that the next data word may be issued only
after the previous has been consumed: tissuez+1 > teonsumez- FOr maximum
throughput it is desirable to place the trigger right after t.onsume« Or even prior
to this instant (negative cycle delay). With respect to the design method this
requires the existence of some kind of information feedback from the sink to the
source (fundamental requirement 2).

Figure 2.4 illustrates these requirements. In practice requirement 2 has turned
out to be relatively easily fulfilled by an appropriate circuit structure (micropipeline,
e.g.), while the assessment of validity and consistency (fundamental requirement 1) is
a notorious problem, which we will analyze more closely in the following sections.

2.2.1 Formal Incompleteness of Boolean Logic

Boolean logic defines functions on a high abstraction level. In essence, a Boolean
function is a time-free mapping (truth table, e.g.) from the signals that form the
input vector to an output signal. The output is reacting continuously to any change
of the input word — there is no such thing as a trigger. This further implies that only
consistent data words are applied to the logic function. In other words Boolean logic

CHAPTER 2. STATE OF THE ART 12

SRC

/

t

]

Ly i

v 7 ™ signal, valid ? !
TRIGGERgp ; h TRIGGERgNK
i v +
input vector consistent 7=+

ORI ——

-- dataconsumed ? emimimimimimimim s s !

Figure 2.4: Fundamental Design Problem

does not provide any means for expressing or considering validity or consistency. Due
to this fact Boolean logic is called ”formally incomplete” in [34]. In fact there is even
no way of expressing temporal relationships within the framework of Boolean logic —
it is postulated that the input vectors are always consistent and the generated output
is free of glitches. Unfortunately, due to signal delay and signal skew, none of these
assumptions are fulfilled in a physical circuit implementation.

In conclusion, Boolean logic does not solve any of the fundamental requirements
and so it does not contribute to solving the fundamental design problem in the first
place. Still, Boolean logic is the established way of describing logic operations. All
design methods have to compensate for this shortcoming in one way or another. In
Section 2.3 we will analyze how different design styles solve this problem. However,
before this action is performed we will analyze the roots of the problem in greater
detail.

2.2.2 Signal Delay

Two constituents of signal delay are commonly distinguished, namely gate delay and
interconnect delay. While gate delay is mainly determined by technology and fan-out,
interconnect delay depends on many parameters that are specific to a given signal path
like drive strength of the sender‘s output, capacitance and resistance of potential switch
elements or vias along the wire, length and physical arrangement of the particular wire,
and capacitance of the connected inputs. In addition, overall signal delay is a function of
the operating conditions (supply voltage, temperature). As a consequence, the time it
takes an output to become valid is non-zero, which is contradictory to the assumptions
made by the Boolean logic.

2.2.3 Signal Skew

Due to the uncertainties with respect to signal delays no pair of signals will exhibit
exactly the same delay. The difference of delays within signals of the same input vector
is called skew. Notice that by definition skew distorts the temporal relations between
signal transitions. As a result, the assumption that the transition from one data word

CHAPTER 2. STATE OF THE ART 13

to the next one will occur at once (as implied by the continuous, untriggered definition
of a Boolean logic function) is unrealistic. The edges on the individual rails will rather
arrive sequentially, causing inconsistent intermediate signals and input vectors that
(temporarily) result in invalid outputs. In this sense the skew disproves the validity
and consistency assumption made by the Boolean logic. Figure 2.5 illustrates this
effect.

DW DW,
i
signal #1 1/ [o,
signal #2 [/ | >, |
signal #3 [R]
signal#n [-]
consistent:———— — consistent time

inconsistent

Figure 2.5: Transition between Consistent Data Words

As mentioned in Section 2.1 a signal may be represented by more than one rail. It is
clear that in this case skew between the rails additionally compromises signal validity.

2.3 Strategic Options

In Section 2.2 we pointed out that it is an essential task of every digital design method
to ensure that only consistent and valid data is consumed by the data sink and that
the source is synchronized to the sink in such a way that no data gets lost. In this
section we will identify two basic domains where this can be performed. Remember,
that it is not required to solve all aspects of the fundamental design problem in one
domain — mixed solutions are also possible.

2.3.1 Time Domain

Having figured out timing issues — namely delay and skew — as one root of the funda-
mental design problem, one consequent solution is to compensate for their undesired
effects directly in the time domain.

Concerning the validity and consistency requirement, we can simply determine all
relevant delays between source trigger T'spc, at instant tissye s and tsnkrdy,z, the point
in time when the data word is known to be ready for being captured at the sink. The
sum of these delays constitutes the minimum time we have to wait after the source

CHAPTER 2. STATE OF THE ART 14

trigger until we can apply safely the sink trigger:

tconsume,z Z tissue,z + Aissue + Aprocess (21)

The determination of Asue and Apygeess involves a careful analysis of the
(implementation-dependent) delays. In the same way we can relate the source trig-
ger to the sink trigger:

tissue,x+l Z tconsume,x + ASNKI,'r'ig (22)

Like above Agnkirig must be determined by means of a delay analysis of a given imple-
mentation. Remember, however, that delays vary, and therefore we cannot determine
exact values, but we have to make conservative estimates to be on the safe side.

Based on this strategy we can use two different approaches to implement the control
of the triggers:

1. The use of coupled timers that — started with one trigger event (source or sink) —
generate the other respective trigger event (sink or source) after the appropriate
amount of time (Tsyg or Tsre)-

2. The use of a global time reference for source and sink from which periodic triggers
for source and sink are derived with an appropriate phase difference, T ppgse-

Coupled timer Global time reference
: TRG TRG
Tsre ; SRC.x SRCx+1
SRC :
: T, .
} SRC Period
! ! TRG i TRG time
TRG TRG : i SNKx 1 SNKx+l

N K’ 3
SNK SRC ! 5 \/\‘
T Phase Tperiod
SNK ; : : ; time

- ' ' tcc':ms,x : U cons,x+1
T 1 1 ;
SNK t issue,x tissue,x+l
TSNK > B issue,local ¥ Aprocessing,local Thhase > max(Biq, 0+ Aprocessing)
Tgpe > 4 SNKtrig,local * #cycle,local { | Treriod >max(8cc et Aprocessing Aconsumptiort Acycle)

Figure 2.6: Fundamental Solutions in the Time Domain

The main difference between those methods is that the coupled timer approach only
needs local delays, which are delays between the actual source-sink pair. In contrast the

CHAPTER 2. STATE OF THE ART 15

global timer has to use the worst case delays of the overall circuit. Another difference is
that the latter uses Aconsumption While the coupled timer has to consider only Agyk irig:
Due to the fact that a timer “starts” a new trigger event only after an incoming trigger
event has occurred, the difference between the point in time where data is ready to
be consumed and the point in time where the trigger is recognized at the destination
side does not matter. These strategies are capable of solving the fundamental design
problem on all levels, since all delays have passed and the circuit is stable at the trigger
instants. In some sense we have thus overcome the formal incompleteness of Boolean
logic by condensing the missing information on validity and consistency into the timer
settings and using dedicated control signals to convey this information between source
and sink. Notice, however, that we have just postulate that the input vector will be
consistent and valid after Ajsge + Aprocess- In fact, we have no means to directly assess
consistency and validity. As a result the determination of delays becomes a crucial
issue. Two essentially contradicting arguments guide the choice of the timing settings:

1. Restrictive assumptions: It is not possible to determine any finite value for the
delay without making assumptions on the implementation. Thus, the higher the
delays the fewer assumptions must be made and the fewer restrictions apply to
the implementation and the safer we can assume our losslessness property.

2. Performance: Obviously an overly conservative delay estimation has a negative
impact on the throughput in terms of data words per second. In order to keep the
resulting performance degradation minimal, a minimal overestimation of delays
should be striven for.

So ultimately the choice of timing settings turns out to imply a tradeoff between
performance and assumptions that have to be made on (and finally be met by) the
implementation. Many models and techniques exist that allow determining delays for a
given circuit topology and technology. However, since delay and skew depend on many
parameters, an ”aggressive” choice of timing settings towards maximum performance
compromises the robustness of the circuit.

2.3.2 Information Domain

Alternatively we can tackle the other root of the problem, namely the formal incom-
pleteness of Boolean logic. Different methods are available to enforce the different
fundamental requirements:

Validity: Recall from Section 2.1 that a signal is termed valid if it is the stable
result of a Boolean function performed on a consistent data word. There are several
possibilities to judge on the validity of a signal:

e Ensuring continuous validity: If we can manage building the logic function
unit in such a way that it produces only valid outputs, judgement of the output

CHAPTER 2. STATE OF THE ART 16

signal’s validity becomes trivial. A function unit of this type must change its
output only in response to a consistent input word®. To this end it must (a)
be able to judge on the consistency of the input word and (b) hold the last
valid output signal during transient phases of inconsistent inputs. This obviously
requires some kind of storage element for each logic function unit.

Even with an input perfectly changing from one consistent state to the other, skew
within the function unit may cause invalid transient spikes at the output signal.
Therefore, special care must be taken for the design of the function unit. This
causes a trade-off with respect to the partitioning of a circuit into function blocks:
A coarse-grained partitioning into few function units saves storage elements, while
a fine-grained partitioning facilitates better control of skew effects.

If the signal is composed of more than one rail, continuous consistency in the
rail domain is a necessary condition for continuous validity in the signal domain.
This can be ensured by the employment of a grey-code on the rail level, e.g. [126]

e Extending the signal code: Another approach to make validity visible is to
establish a more comprehensive alphabet in comparison to the binary Boolean
logic (by using more than one rail per signal, e.g.) and to define a subset of
all expressible codewords, which are considered as ”valid”. In contrast to the
previous approach, direct transition from one valid codeword on the rail-level to
the next is no more mandatory, (invalid) intermediate states are allowed, since
they can be identified. In other words, if a valid codeword has been reached
after a number of single transitions on & of n rails of a signal, there must be no
other valid codeword that can be reached by transitions on the remaining n — k
rails. This allows us to identify unambiguously when a codeword is complete,
irrespective of the order in which the transitions occur. The transition to the
next codeword must include another transition on at least one of the & rails. The
same condition — though in a different formulation — has been presented in [119].

e Current sensing: This method exploits the fact that transient effects in a
circuit are associated with current low. Unfortunately, however, the reverse is
not necessarily true: The lack of dynamic current flow is indeed a reasonable
indication that the inputs are stable (and hence consistent?) and the output
is stable and hence valid. Without any restrictions on the delays, it may well
occur that one slow rail transition arrives after the circuit has been considered
stabilized. Another problem with this method is the lack of an event separating
two successive identical data words, which substantially complicates consistency
judgement. Finally the inclusion of analog circuitry for the current sensors causes
additional technological efforts [48].

3Notice that ensuring continuous validity does not enforce continuous consistency, since the com-
bination of valid signals pertaining to a different context does not yield a consistent data word.

CHAPTER 2. STATE OF THE ART 17

Consistency: Imagine the situation depicted in Figure 2.7: SNK has an input vector
composed by two signals, each of which are valid. This does not necessarily imply that
the input vector is consistent, because the bits on the signal could belong to different
contexts. Notice, that validity does not imply consistency, but consistency requires
validity.

valid
— FU 1 — =
congastent SNK
X °
— FU2 [— \
— valid

Figure 2.7: Validity vs. Consistency

To judge consistency, a circuit must be able to differentiate between two consecutive
bits carried on a signal line, even if they hold the same information. This means that
we have to choose a signal level code which relates information to context. So in order
to be applicable for our purpose, a coding scheme must meet two conditions:
Consistency Condition 1: Ezistence of transitions
There must be at least one signal transition between any two successive code words.
While this naturally happens in transition based coding schemes, it requires special
efforts to ensure a transition between two successive identical data words in state
based coding schemes. A usual solution is to introduce a "neutral” code word (like all
zero, e.g.) between any two data words in a "return to zero” manner.

Consistency Condition 2: Membership to contexts

As can be viewed in Figure 2.3, two data waves (belonging to a different context) will
transiently coexist between SRC and the associated SNK: There is a finite interval when
the new data wave has already been issued and propagates through the FU, but the
previous one is still valid at the SNK’s input. This procedure is properly synchronized
by trigger control. If more data waves were admitted between SRC and SNK we would
loose control of them and in particular not be able to prevent one data wave from
catching up with its predecessor (unless this is ensured by timing assumptions). As
a consequence, if our basic requirement is to be able to distinguish data waves with
different contexts, we normally come along with two disjoint code sets on the rail level,
which allows us to unambiguously assign every bit to one of the two data waves.

Losslessness: As already outlined, the losslessness property requires us to provide
the data source SRC with information when new data can be issued and the data sink
SNK with information on when data can be consumed. The latter can be achieved
by checking consistency and validity of the SNK’s input vector without relying on the

CHAPTER 2. STATE OF THE ART 18

time domain.

The source trigger can only be derived from information explicitly provided by
the data sink such as a control signal acknowledging the consumption of the previous
data word. Since there is only one single bit of information required on this backward
path, there is no potential for skew effects. Nevertheless, the consumption of a data
word can usually not be directly measured, which gives rise to conceptually weak
compromises in this respect.

From a higher level of abstraction we can consider the function unit as part of the
data source/sink and map the lossless requirement of a communication process problem
(see Figure 2.8).

request

acknowledge
Figure 2.8: Communication Process

In fact there is a strong relation between communication channels and delay in-
sensitive circuits [85]. However it is essential to realize that communication channels
solve only a part of the fundamental design problem, namely losslessness. Consistency
and validity cannot be answered by a communication channel alone, other mechanisms
for this purpose are still required. Due to the fact that a lot of literature concerning
communication channels in context with asynchronous logic [120] [131] [110] exists, we
will give only a brief overview on it in this section. A data source and a data sink are
connected over a communication channel. The point where a channel is connected is
called a port. We distinguish between unidirectional and bidirectional channels. For
the following we will consider only unidirectional channels which reflect the natural
of communication in digital circuit. A port can be active, this means that such a
port initializes a communication process, or passive, where the port reacts on incoming
events.

Obviously there must be an agreement between source and sink in which way data
is transmitted over the communication channel — a so-called communication protocol.
Basically we can distinguish between a 2-phase protocol and a 4-phase protocol. In
contrast to the 2-phase protocol, the 4-phase protocol returns back to its “neutral
state” after each communication cycle. (see Figure 2.9)

Furthermore, we have to distinguish between push channel, where the data source is
the active part, and pull channel, where the data source reacts on requests of the data

CHAPTER 2. STATE OF THE ART 19

REQ

ACK ACK

' ' : ' \ ' \
: L ; ' \ : '
' ' ! i’ ! ! ’
' \ ; K e ; !

baa D O XC

a) 4-phase protocol b) 2-phase protocol

Figure 2.9: Communication Protocols

sink. A detailed description of communication mechanism with respect to asynchronous
circuits can be found in [85].

2.3.3 Hybrid Solutions

It is not necessary to solve the fundamental design problem only in one domain. Quite
on the contrary, many design approaches are based on a hybrid solution. Huffman
codes [51] or micropipelines [111], e.g., solve only a part of the fundamental design
problem and only their combination with other methods yields the desired result.

In most cases library cells, such as AND, OR, latches, etc., are implemented by
making local timing assumptions e.g. isochronic fork [70] or fast local feedbacks [34][33],
since it is quite easy to consider timing assumptions within such atomic cells and yield
more efficient implementations in terms of speed and silicon area.

This leads to a further classification of circuits with respect to the assumptions
made about timing [108]. Figure 2.10 shows a circuit fragment comprising three gates,
where the output signal of gate A is connected to the inputs of gate B and C. The
delays inside the gates A4, Ag and Ag, represent the processing delays, while A, A,
and Ag, form the propagation delays of each wire segment.

B
(s
—
C
| SR

Figure 2.10: Circuit Fragment with Gates and Delays

Depending on the assumption made with respect to delays, circuits can be classified
as follows [108]:

CHAPTER 2. STATE OF THE ART 20

Delay-insensitive circuits (DI): We consider a circuit delay-insensitive if its cor-
rect operation depends neither on gate delays nor on wire delays. [70] shows that only
circuits composed by Muller-C-gates and inverters can be delay insensitive using single
output gates. This is a strong restriction, which limits the practical applicability of
such type of circuit. However, this is the only class of circuits, which solves all aspects
of the fundamental design problem exclusively in the information domain.

Quasi-delay-insensitive circuits (QDI): These circuits are delay-sensitive with
the exception of some carefully identified wire forks. Related to Figure 2.10 this would
require that Ay = Agj. In other words, the QDI approach hypothesizes that all
transitions at the end point of (carefully selected) wired forks occur at the same time.
Such forks are called #sochronic forks.

Speed-independent circuits (SI): These circuits operate correctly assuming that
gate delays are bounded but unknown and that the wires are ideally zero delayed.
Hence a SI implementation of the circuit depicted in Figure 2.10 would require that
A = Ay = Az = 0.

Self-timed circuits (ST): Forcing always (Q)DI or SI could result in an overkill
— sometimes a tradeoff between implementation complexity and delay assumptions is
reasonable. In this sense circuits whose correct operation relies on more elaborate
and/or engineering assumptions are called self-timed circuits.

Timed circuits (TI): In this class of circuits all delays, gates and wire delays have
to be taken into account in order to ensure a correct behavior of the circuit. In other
words, such types of circuits solve the fundamental design problem entirely in the time
domain.

Furthermore, different abstraction levels of a circuit implementation have to be con-
sidered. Until now we have dealt with abstract logic function blocks only, disregarding
whether we are considering a simple inverter built from two transistors or a complex
ALU. The distinction between abstraction levels is vital because several design ap-
proaches use speed-independent or quasi-delay-insensitive library cell implementations
(on transistor level) and combine them yielding to a delay-insensitive circuit on gate
level. In this way the timing analysis of arbitrary circuits is restricted to a small num-
ber of (little) library elements and hence has to be performed only one time during
library compilation. This allows us to build circuits, such as an ALU, for which the fun-
damental design problem is entirely solved in the information domain (on this higher
level of abstraction).

CHAPTER 2. STATE OF THE ART 21

2.4 Design Techniques

This section is intended to give an overview about current design techniques with the
aim to illustrate how they solve the fundamental design problem. Obviously not all de-
sign methods developed in the last half century can be covered. Instead, characteristic
representatives of each design approach will be dealt with.

2.4.1 Synchronous Approach

Basic principle: The synchronous approach answers all subproblems concerning the
fundamental design problem in the time domain using a common time reference (see
Figure 2.6). It employs a unique control rail, the clock signal, to indicate validity,
consistency and losslessness at the same time. At every active edge of the clock all
signals have to be consistent and valid by definition and therefore ready to be consumed.
Due to the fact that data sources get the same clock signal as data sinks, the active
clock edge signalizes also the point in time where new data can be issued. In this
way the regulation of the data flow is also strictly based on time and occurs without
feedback (see Figure 2.11). By assuming that all data sources and sinks get a common
global time reference from the clock signal, it is implied that all these components
actually get the active edges at the same point in time. However, since skew and
delay effect also affect the clock signal, this claim is not justified for deep sub-micron
technologies. Quite on the contrary, [75] predicts that in the near future only a small
percentage of the die will be reachable during a single clock cycle. Furthermore, the
clock signal has no immediate relation to consistency/validity of signals or rails and
the clock signal — it is just a strictly periodic and time driven control signal.

SRC SNK

F F
F FU
{ > l- >
1
1

—@\)/

-

N

TClk

Figure 2.11: Synchronous Design Approach

The minimum distance between active clock edges T¢y is derived from Aprocess
and A onsumption- Its calculation is based on worst case assumptions concerning physi-
cal properties, performable operations, applicable data and operation conditions [44].

CHAPTER 2. STATE OF THE ART 22

Acyere and Ajsgye are reflected in hold and setup time of registers. Note, that in the
synchronous approach data is consumed and issued in exactly the same point in time.
Further, it is assumed that both, data sources and sinks, are always ready to perform
their operations on each active clock edge — flipflops have no means to signalize that
they are busy at the moment. :

Efficiency: The synchronous approach is extremely hardware-efficient, since it uses
one single global control signal, which is easy to generate by means of a crystal oscilla-
tor. The highly efficient single-rail encoding can be used to represent all signals. If the
logic state of a signal changes from one data word to the next, a signal transition is
performed; if the state remains the same, no transition is required. Assuming a random
distribution of state patterns on a signal, this yields to an average of 0.5 signal (=rail)
edges per bit, which means that the energy consumption caused by data transitions
is extremely low. Assuming a properly chosen clock frequency, no consideration of
transient effects and consistency issues is required during functional design. :
Through the insertion of so-called pipeline registers the signal path is often structured
into smaller sub-paths. The timing of these smaller sub-paths can be more easily
analyzed and in addition, pipelining yields some performance gains [47].

Problems: So apparently all problems of logic design are solved by the synchronous
approach, and indeed millions of synchronous designs have been working properly and
reliably over the past decades. However, substantial problems have remained unsolved
on the conceptual level, and the current technology trends make these problems more
and more evident:

e The indirect conclusion from time to consistency and validity of signals is the
main conceptual deficiency: Time is easy to measure but not by itself an in-
dication for consistency and validity. In fact, an artificial correlation between
time and consistency and validity is extremely hard to establish and can never
be guaranteed.

e The assumption of stable states during functional design does not eliminate the
need for consideration of transient effects. In fact it only postpones the problem
to an explicit timing analysis that is required later on. This timing analysis is
often much more complicated than the functional design. With the increasing
clock rates and the proceeding miniaturization this problem becomes more and
more stringent.

e With its wide extension and the strong drivers required to keep delay and skew
low, the clock network dissipates a significant share of the power of a chip. In
order to be able to keep the clock skew within 300 picoseconds, the designers
of the DEC Alpha CPU [106] developed a clock driver circuit, which dissipates
over 40% of the power of the entire chip ([19]). Unfortunately, this outweighs the

CHAPTER 2. STATE OF THE ART 23

advantage of low power consumption in the data path. In addition, substantial
heat problems are caused by the fact that switching activities are periodic rather
than demand driven.

e A solution of the delay and skew problems in the timing analysis phase is possible
only if restrictions on the timing behavior are made. This, however, has severe
consequences:

— Considering that interconnect delays already dominate gate delays [104]
realistic timing estimations can only be constructed after the place & route,
i.e. at a very late point in the design process. In practice, however, timing
problems often necessitate changes in the functional design. In this way
the separation of functional design and timing analysis causes unnecessarily
long iteration cycles.

— Any change in the circuit or technology requires a complete revision of the
timing analysis.

— As already mentioned the actual delays of a given implementation still de-
pend on the operating conditions and are affected by type variations. Hence
the delay assumptions made during the timing analysis must be arbitrary
to some extent. While assuming the worst case scenario within the specified
range of operating conditions clearly leads to performance loss in the aver-
age case, there is still a residual risk of exceeding the assumed limits: ”...In
order to achieve a reasonable shield against these variables, the clock period
15 extended by a certain margin. In current practice these margins are often
100% or more in high speed systems.” [19]. Some innovative design meth-
ods [114][92] soften this rationale by adopting the clock rate to the actual
condition. However this requires an additional effort in terms of silicon die
and control mechanisms.

e As a matter of fact no restrictions can be made for asynchronous inputs at
synchronous/real-world borderlines and interfaces to other clock domains. Con-
sequently these signals cannot properly be considered in the timing analysis and
so metastability problems arise [36]. By use of additional synchronizer circuits
metastability can be made sufficiently improbable, but no conceptual remedy to
completely eliminate it has been found so far.

e Synchronous designs have a very problematic behavior with respect to EMC,
since most of the energy is concentrated in one single spectral line.

2.4.2 Bundled-Data Approach

Basic principle: The basic concept of bundled-data [108] is to arrange several
(data-) signals in a group and to use a common control signal, which serves as a trigger

CHAPTER 2. STATE OF THE ART 24

to signalize validity and consistency of these (data-) signals. The control signal is
generated at the same time as the related data signals by the source node and hence to
operate correctly, the data path must be at least as fast as the control path. To ensure
this procedure it may be necessary to insert additional delays, so-called matching delays
in the control signal path. In this sense bundled-data solves consistency and validity
in the time domain. The control signal can only be used as a trigger for data sinks and
therefore the bundled data approach does not provide any means for data flow control.
This requirement has to be fulfilled by other methods or on a higher system level.

Adalawave
SRC FU - SNK
At
l Adatawave< At I

Figure 2.12: Bundled-Data Design Approach

As illustrated in Figure 2.12 consistency and validity are ensured in a similar manner
as in the synchronous approach. This allows asynchronous designers to use standard
(i.e. non hazard-free) implementations of logic function units [55]. The main difference
between the synchronous and the bundled data approach is that the latter requires
only local timing information (see coupled timer in Section 2.3.1) instead of taking
into account the whole circuit to determine the temporal sequence of trigger events.

Efficiency: The most efficient representation of data is to use one single wire per bit
— the higher the number of data bits, which are bundled, the closer the bundled-data.- -
approach moves to this maximal efficiency rate. Apart from the matching delays, which
can be implemented using inverter chains or by duplicating the critical path of the stage
between source/sink, no extra completion detection circuits are required. Assuming a
random distribution of state patterns on a signal and a reasonable number of bundled
signals, the bundled data leads similar to the synchronous approach to an average of 0.5
signal (=rail) edges per bit. Thus, the bundled data approach is highly efficient not only
in terms of silicon area, but also in terms of energy efficiency. Due to this fact, bundled
data was used in several asynchronous design implementations [41]{58][90]{112].

Problems: Although the major difficulty of the synchronous design style, namely
providing a global time reference anywhere in the circuit, is defused by requiring only
local timing information, the bundled data still faces some problems:

e Time is still used to determine consistency and validity of signals. The basic
problem with this indirect conclusion is similar to those in synchronous systems,
even if the locality makes it more manageable.

CHAPTER 2. STATE OF THE ART 25

The matched delays have to be calculated considering worst case scenarios. This
yields to waste of performance.

e Due to the increasing dominance of wire delay over gate delay [49], matching delay
can be determiried reliably only after place&route. Furthermore, a validation of
the final circuit is required, due to the fact that some variations during the
fabrication may affect the (data-) signal path but not its related matching delay
for example.

e Moving to a new technology all delay elements have to be re-calibrated.

¢ Bundled-data is usually used to model data busses. However, means for control-
ling the data flow are not provided.

2.4.3 Huffman Approach

Basic principle: D.A. Huffman [51] can be considered as one of the spiritual parents
of the asynchronous logic design. Huffman developed the so-called fundamental mode
circuits [86]. These circuits are intended to be used for asynchronous state machines.
As depicted in Figure 2.13, Huffman circuits have primary inputs, primary outputs, and
a feedback loop. ‘The fundamental mode requires that only one input signal changes
at a time. The current state is “stored” in the feedback path and thus, delay elements
may be required to prevent state changes from occurring too rapidly. However, the
feedback signals are inputs of the combinational logic as well — hence it is even required
that by passing from one to the next state, only one bit changes. Therefore, the state
encoding scheme has to be carefully chosen [108]. A further requirement of Huffman
circuits is that the combinational logic is glitch-free, which can be achieved through
redundant terms in the KV-map [86]. .

While validity is answered in the information domain (glitch-free functions) and by
the environment (only one bit changes at the input side), consistency is solved by the
delay element in the feedback path. The lossless property has to be guaranteed by the
environment: It is assumed that a new input vector is issued only when the circuit has
reached a stable state.

inputs —» | -
Comb.
outputs

————

|

Figure 2.13: Huffman Circuit [85)

Logic|—"

Delay

CHAPTER 2. STATE OF THE ART 26

There are some enhancements of the Huffman circuit which soften the fundamental
mode requirement. The multiple input changes (MIC) [37][66] extension is based on
the assumption that the input changes happen within some tightly bounded interval of
time, and hence they can be considered to have occurred simultaneously. Stevens [109)
allows input changes at any time as long as they are grouped together in bursts. This
yields to the so-called burst mode circuits. The most general mode of operation is the
unrestricted input change mode (UIC) [115]. The UIC design method demands that
an input does not change twice in a given time period.

Efficiency: Just like the approaches presented previously Huffman circuits use a sin-
gle rail encoding. However, the Huffman approach does not allow glitches, albeit delay
elements are used. The reason is that the delay element is not used to primarily sig-
nalize consistency, but prevents the circuit to become unstable due to the feedback
signal. The demand of being glitch free limits potential optimizations during synthesis
and leads to larger circuits. A lot of work has been done in this field and the inter-
ested reader can find further information about Huffman circuit synthesis approaches
in [16][17] [96][123][130]. The restriction that a new input can occur only when the sys-
tem has settled in a stable state, limits the throughput: A new input must be delayed
at least two times the delay of the combinational logic (in the first step the next state
is calculated, in the second step the output is settled according to the input and the
new state information) and one time the delay of the delay element. Using a one-hot
state encoding simplifies the associated logic but worsens the throughput further:

“... For a one-hot encoding, this means that a new input must be delayed long enough
for three trips through the combinational logic and two trips through the delay element.”

([45] p.71)

Problems: The requirement posed by the fundamental mode but also by its exten-
sions (MIC and UIC) lead to several limitations of the circuit design:

e One big handicap of Huffman circuits is that data paths cannot be implemented —
a data bus carries information, which is arbitrary per definition and hence restric-
tions cannot be applied. This limits the practical applicability of the Huffman
approach to control circuits only.

e The implementation of hazard free circuits requires an additional effort during
system design. An in-deep discussion about Hazard-free two-level logic synthesis
can be found in [85] on page 165 ff.

e Some boolean functions may not change monotonically during a multiple input
change. Such functions are considered to have a functional hazard. Eichelberg [30]
shows that it is impossible to build a hazard-free gate level implementation of a
function, which has function hazards.

CHAPTER 2. STATE OF THE ART 27

o Although glitch-free function units have to be used, delay elements are still re-
quired. The same drawbacks concerning delay elements, as mentioned in the
previous sections, are true for the Huffman circuits.

¢ No means for data flow control are included - it is postulated that data is issued
in a correct manner by the environment. The fact that the points in time where
data can be issued depend not only on a straight forward delay calculation of
function units, but also on the delay calculation of circuits containing loops,
aggravates this weak point.

2.4.4 Design Techniques Using Signal Coding — The NCL Ex-
ample

Basic principle: Many approaches exist, which use signal encoding to ensure validity
of signals and make consistency of signal vectors directly visible [65]. NCL (Null
Convention Logic), which is developed by Theseus Logic was chosen as the representant
of this class of implementation approaches, due to the fact that it is the most mature
one and industrial experiences have been already made [78]. This design approach
extends the Boolean logic by a so-called NULL state [34]. In particular an NCL signal
can assume a DATA state — which is either a valid HI or a valid LO, in NCL called
"TRUE” or ”FALSE”, respectively — or a NULL state. For encoding these three states
the single-rail approach is obviously not sufficient, and a two-rail signal representation
is used instead, with NULL being represented as (0,0), TRUE as (1,0) and FALSE as
(0,1). The NULL state does not convey any information, it serves only as a neutral
state separating two consecutive codewords. Figure 2.14 illustrates this behavior.

inputa — NCL

inputb — Gate output

inputa [NULL | iDATA { NULL | DATA[§ |

inputb [__NULL DATA | i NULLI_{ DATA |
\ N N\ N

output [NULL [DATA [NULL [DATA |]

Figure 2.14: Sequence of DATA and NULL Waves

Feedback ensures that new data (DATA or NULL) can be processed only when
the input vector is consistent. To realize this behavior so-called threshold gates are
used [64]. These gates change their output only when the complete input vector is either
DATA or NULL. This hysteresis provides a synchronization of the wavefronts on the
gate level. In other words consistency and validity checks on signals are implemented
at gate level. With the proposed encoding on signal level, exactly one rail changes
its logic level upon the transition from NULL to DATA and vice versa, regardless of

CHAPTER 2. STATE OF THE ART 28

whether DATA is TRUE or FALSE. Due to the mandatory introduction of the NULL
waves a neutral state (NULL) is assumed on every signal after every single data word,
which enforces the edge required to meet the consistency condition 1 (see Section 2.3.2).
From this neutral state an edge on any of the two rails leads to the TRUE or FALSE
state, which guarantees that the codeword itself is always valid. The NCL approach
does not provide any mechanism to ensure losslessness.

Efficiency: A NULL state between each pair of DATA states regulates the data flow
in onward direction and ensures consistency. From a performance point of view this
convention is very expensive — in fact the maximal achievable throughput is halved by
the NULL wave. However, due to the fact that this approach does not require any delay
elements, the resulting circuit operates as fast as it can, which partially compensates
the drawback of the NULL wave.

In contrast to single-rail encoding styles where the average of 0.5 signal (=rail) edges
per bit can be assumed, NCL requires in any case two edges per bit on the rails.

The usage of two rails per bit yields by its nature to larger circuits compared to single
rail implementations. Furthermore, each NCL primitive requires some kind of storage
element, which increases again the price in terms of silicon area. However, Theseus
Logic proposes some tricky hardware solutions, which keep this overhead within rea-
sonable limits [33].

Problems: The NCL approach integrates data and control information in a single ex-
pression. This merger combined with the alternation of DATA and NULL waves makes
validity and consistency directly visible, without making (apparently) any assumption
about timing — this feature has its price:

e Higher effort in terms of gates and interconnect: the dual rail encoding doubles
the number of wires and multiplies the size of logical gates: A gate with two
single-rail inputs has to take in account four possible input combinations, while
a two dual-rail input gate has sixteen possible input combinations.

e The convention that NCL gates start to produce a new output value only when
all inputs are in the NULL/DATA state requires that the gate holds its output
value in between. As a consequence, an NCL gate must contain some kind of
memory element inside. Theseus Logic proposes threshold gates for this purpose.
The functionality of these gates is basically implemented using feedback signals
inside the gate. Although NCL does not require timing assumption on gate level,
to operate properly the feedback signals inside the gates have to be fast enough to
settle the gate before the next input vector change occurs. This is a sustainable
requirement, however, due to the fact that a timing assumption has to be made,
NCL circuits have to be classified as quasi-delay-insensitive circuits rather than
delay-insensitive ones.

CHAPTER 2. STATE OF THE ART 29

e The NULL waves reduce throughput on the one side and energy efficiency on the
other side (see previous paragraph)

e NCL does not provide any means for data flow control. This means NCL has
to be combined with other design techniques such as e.g. Micropipelines. For
this purpose consistency of a signal vector has to be provided explicitly to the
additional design method. This requires a further circuit, so-called Completion
Detection Circuit ({ CMPD).

2.4.5 Transition Signaling Approach

Basic principle: In conventional coding techniques logic states of signals are mapped
to voltage levels of physical rails. In contrast transition signaling [108] uses edges on
rails to convey the information. Transition signaling also employs two-rail coding on
the signal level. A transition on one rail indicates a HI, a transition on the other rail
a LO. From a more abstract point of view transition signaling uses a one-hot encoding
scheme for HI and LO and therefore fulfills the validity property on code level. The
neutral state between consecutive codewords is defined by the absence of transitions
on the rails. In contrast to NCL where the neutral state must be explicitly generated,
transition signaling provides this state automatically and hence a new codeword is
recognized even if it carries the same information as the previous one. In this sense
consistency is integrated directly in the coding style. In [71] it has been shown that
the only single output gates that can be used in conjunction with transition signaling
circuits are Muller-C-Gate and inverter. This limits the usability of this scheme for
real circuits.

Efficiency: Transition signaling can be compared to an NRZ coding style. This
obviously favors the achievable throughput and hence promises higher performance for
circuits using this approach. Albeit transition signaling uses a dual rail encoding, only
one single transition/edge per bit is required. Note that a transition occurs in any
case, even if the same bit information is transmitted consecutively by the same signal.
Thus, data content itself does not influence the number of edges required to convey the
information.

Compared to single rail encoding, the dual-rail approach doubles the number of wires.
However, the main weak point of transition signaling with respect to area efficiency is
the complexity of gates, which have to be able to operate on signal transitions instead
of signal levels.

Problems: Coupling information to events is an extremely elegant method to solve
the fundamental design problem concerning validity and consistency. Nevertheless,
there are some (practical) problems, which inhibit the breakthrough of this design
technique:

CHAPTER 2. STATE OF THE ART 30

e Gates require a high implementation effort due to the fact that they operate on
edges instead of signal levels. Furthermore, the set of allowed gates is limited,
this restricts the practical applicability of this design style.

e The basic principle of digital design is to distinguish between two discrete signal
states/levels, namely LOW and HIGH or 0’ and ’1’. Transition signaling is based
on transitions of signals instead of levels of signals, which means that transition
signaling is event-based instead of state-based. Hence, this approach requires to
completely change the well established and approved way of thinking concerning
digital circuit design. This radical change demands not only new tools but also
a complete re-education of engineers.

e Transition signaling circuits are susceptible to interferences. Each glitch even the
smallest one produces two edges, which are interpreted per definition by a tran-
sition signaling circuit as two valid bits. Muller-C gate implementations as pro-
posed in [111] moderate this problem, since they are more robust against glitches.
In spite of the risk that a small impulse generated by an electrical interference,
e.g., causes a malfunction, is much higher than in other design approaches.

e The fact that transition signaling is event-based makes it extremely difficult to
debug transition signaling circuits. Debug tools cannot directly derive the logical
information carried by signal — instead the event sequence must be journalized
to determine the information, which is currently conveyed by the signal.

2.4.6 Handshake Protocols: The Micropipeline Approach

Basic principle: There are several choices of handshake protocols, which can be
used to control the communication inside a circuit [85](see Section 2.3.2). The mi-
cropipelines introduced by Sutherland [111] in particular use a 2-phase signaling for
the handshake protocol. Basically, micropipelines are means for structuring complex
logic designs in general and data path designs in particular. In contrast to synchronous
pipelines, they employ local handshake signals between any two pipeline stages to in-
terlock the inter-operation between the individual stages so that the speed of data flow
can be adapted to the local situation. They provide an elastic pipeline for the hand-
shake signals that allows buffering requests. In this way the micropipeline approach
provides a straightforward solution for data flow control.
The latches inside the micropipeline have two operation modes:

e Transparent: input data is passed directly to the output.

e Frozen : the latch maintains the value of the output independently of the input
data.

As illustrated in Figure 2.15, the latches have four control signals, by means of which
their behavior can be controlled: Capture(C) and Capture_done(Cd) as well as Pass(P)

CHAPTER 2. STATE OF THE ART 31

:
req(in) Y Y req(out)
(3) o
C Pd Cd t_ G Pd cd '{—
datain}| § : %0 . %0 % data out
—=> > & >l & B &L
ca P ¢ Pa Cd. P C_Pd
(4] (4]
ack(out A A ack(in
o | i

Figure 2.15: Micropipeline

and Pass_done(Pd).

The Pass input sets the register in the transparent mode. After a certain delay the
register achieves this state, which is signalized by the Pass.done signal. Similarly, the
Capture and the Capture_done signals freeze the latch and signalize that the latch is
effectively frozen. The Muller-C gate [111], which acts as AND concatenation of events,
ensures that the latch freezes only when new input data has been passed through
the register. The original micropipeline approach employs delay elements to ensure
consistency. Fundamentally, this corresponds to bundled data circuits between pipe-
latches. However, it is possible to generate the completion signals by combining the
micropipeline with other design approaches.

Efficiency: First of all the micropipeline approach provides a mechanism to control
the dataflow. Like its synchronous counterpart, the micropipeline can be further used
to enhance throughput of circuits. Especially the micropipeline introduced by Suther-
land seems to be particularly suitable for this purpose due to fact that it implements
a 2-phase-handshake protocol. This means that no Return-to-Zero is required, which
shortens the cycle time. However, practical experience shows something quite differ-
ent: Based on this argument the first asynchronous ARM processor Amulet! [129]
was developed using techniques based extensively on Sutherland’s Micropipelines. For
the second processor generation, Amulet2(e) [40], a 4-phase-handshake protocol rather
than a 2-phase-handshake protocol was chosen because it was discovered to be simpler
and more efficient.

Examination of area efficiency is not meaningful when we only speak about communi-
cation protocols. To implement the function unit between pipe stages, micropipelines
have to be combined with an other design style — bundled data was suggested by
Sutherland e.g.. Therefore, the area efficiency depends strongly on the chosen method

‘

CHAPTER 2. STATE OF THE ART 32

for making consistency visible.

Problems: The Micropipeline approach is intended to solve only one part of the fun-
damental design problem, namely the data flow control. Weak points of this approach
are: '

e The original micropipeline introduced by Sutherland provides a bundled data
approach to signalize consistency. This includes all problems mentioned in the
section about bundled data to the micropipeline approach as well. However, the
bundled data design style can be replaced by any other approach, which solves
the consistency problem.

e Apart from the delay element parallel to the data path, two additional delay
elements are required inside the latches: a capture_done delay and a pass_done
delay. This vast use of delay elements cuts down the potential advantage of
asynchronous circuits. '

e Although the 2-phase-signaling used for the handshake protocol promises higher
performance compared to a RTZ protocol, the practice has shown the oppo-
site: The second generation of the AMULET processors was based on a 4-phase-
signaling handshake protocol due to the fact that the 2-phase-signaling in the first
processor generation permitted only a slow and complicated implementation.

2.4.7 High Level Description Approaches

Basic principle: In contrast to all methods discussed so far, High Level Description
Approaches do not explicitly consider the effective hardware implementation of the
circuit, but outsource this aspect to an (automated) synthesis process instead. Hence
the main task of these high level methods is to purvey a description, which fulfills
specific constraints/requirements in order to enable the synthesis tool building correctly
operating circuits. However, the synthesis process on its part has to revert to one of
the “low level” design approaches described previously. Therefore, related to strategic
options high level description methods do not pose a new design technique, they provide
a framework to develop circuits and to formally verify its behavior instead. High level
descriptions fall roughly into 2 categories, namely Graphical methods and Translation
methods.

Graphical methods: Due to the fact that Petri nets [105] are used to describe
concurrent systems, almost all of the graph-based methods are based on this graph
model or on a restricted form of it [57]. Signal Transition Graphs (STG) introduced
by Chu [14] are such a restricted form of a Petri net, which allow only limited options
to select alternative responses of the circuit. Other variants of Petri nets are Interface
nets (I-nets) [80] Machine nets, (M-nets) [103] or Change Diagrams [118]. Timed

CHAPTER 2. STATE OF THE ART 33

Event/Level structure (TEL) is a graphical method, which allows specifying timing
information [99], in order to permit efficient circuit implementations.

Translation methods: Almost all high-level description languages for asynchronous
circuits are based on the use of a language that belongs to the Communicating Se-
quential Processes (CSP) [13] [12] family, rather than to classical hardware description
languages such as VHDL [62] or Verilog [121]. The characteristics of CSP are described
in [85] as follows:

e Concurrent processes
e Sequential and concurrent composition of statements within a process

e Synchronous message passing over point-to-point channels (supported by the
primitives send, receive and — possible — probe)

OCCAM [113][91], LOTOS [132] and CCS [79] are programming languages which
are able to describe parallel processes. Tangram [9], CHP [69] and BALSA [5] are
languages which are specially designed to model (concurrent) asynchronous circuits.

Efficiency: In-general high level descriptions permit shorter development cycles due
to automated processes below the abstraction level of the description. Today, global
optimization techniques for asynchronous logic are difficult to utilize during the trans-
lation process and hence automated synthesis often produces inefficient results [57].
However, it is a matter of time until asynchronous synthesis tools achieve the same
quality as its synchronous counterparts.

Problems: ~There are mainly three problems which can be identified concerning high
level descriptions:

e Although the asynchronous design style has a long history, interest arose only
in the last decade and thus researchers and engineers started to investigate this
discipline. It is clear that existing approaches and tools are not fully developed
yet.

e Only circuits with limited complexity can be modeled. This is especially true
for graphical-based approaches due to their awkwardness in specifying input
choices [57].

e The automated synthesis process hides the information about the implementation
on gate level. Having a well approved and established tool chain this may be a
desired property, but as the asynchronous design techniques are being still in
the fledgling stage this circumstance limits the possibilities to investigate the
implemented circuit and to find out possible improvements.

CHAPTER 2. STATE OF THE ART 34

2.5 Comparison

Due to the fact that different design techniques are intended for different purposes —
Huffman circuits for ASFMs, bundled data for data path modeling e.g. —and because
each design style has a lot of extensions on its part, it is difficult to make a comparison.
Thus we will confront the presented design techniques with respect to basic aspects
and compare them only in a qualitative manner. This should still enable the reader to
judge the presented design techniques and visualize their advantage and drawbacks.

Covered part of the fundamental design problem: The most characteristic
features of a design technique are the aspects of the fundamental design problem it
covers and the domain (time or information) in which the related problems are solved.
Hence in Table 2.1 the presented methods are compared with respect to the domain, in
which they solve consistency, validity and losslessness. The column E (Environment) is
used to express that the design technique does not solve the corresponding subproblem,
but moves the responsibility to the environment. Column I (Information) and T
(Time) are used to express whether the problem is solved in the information or in
the time domain.

Validity | Consistency | Lossless

TII{E| TI|I| E |T|I|E

Sync x [-|-[x1-]- [x]|-1-
Bundled Data x |-1-x{-]-1-/-1x
Huffman - ixl-x |-l x| -]-1x
NCL - ix- - x| -]-1-1x
Trans. Sig. - lx-0 - x| - -]-1x
Microp.) |=|-|&®][-]-1|-]x]|-
High Level Desc. | - |[x |- | - |[x| - |-]-]x

Table 2.1: Comparison wrt. the Fundamental Design Problem

In contrast to all other methods the synchronous approach provides a complete
solution of all subproblems of the fundamental design problem in the time domain. On
the one hand the clock signal guarantees consistency and validity at the instant when
data is taken over and on the other hand it regulates the data flow. The bundled data
approach is intended to soften the problems concerning distribution of a global time
reference ‘by using local timing assumptions only. It makes consistency and validity
“visible”, but leaves data flow control issues unconsidered. Similarly, the Huffman cir-
cuits move the responsibility to provide only “allowed” inputs at the right time to the
environment. In the same way the NCL approach alone does not provide any means
to control the data flow. However, the alternating data waves in combination with the
completion detection signal make this approach particularly suitable to be extended

CHAPTER 2. STATE OF THE ART 35

by a communication protocol, which controls the data flow. Due to the event based
approach and the one-hot-encoding for events, transition signaling also solves consis-
tency and validity in the information domain. Means for controlling the data flow are
not provided. In contrast, the micropipeline is a concrete implementation of a hand-
shake circuit and thus intended for data flow control. Sutherland suggested to combine
the micropipeline with the bundled data approach to build function units inside pipe
stages. Therefore, consistency and validity are solved in the time domain. It is difficult
to classify high level design methods due to the multitude of different techniques cov-
ered by this category. In general, these methods demand some restrictions concerning
input vectors, which have to be abided by the environment. Consistency and validity
are largely solved in the information domain by these methods.

Area and energy efliciency: Other important aspects are the area and energy
efficiency. Basically the number of gates, which are required to implement a given
functionality depends on the used design style. However, specific technologies favor
certain design styles — furthermore, the degree of customization of basic gates has a
crucial impact on the resulting circuit size. So to provide a quantitative expression
not only the design style, but also the used technology (CMOS, NMOS, ...) and the
degree in which basic (library) gates are adapted to a given design approach, has to
be considered. The same is true for power consumption. As a consequence, a quan-
titative analysis permits a comparison of circuits with highly specific implementations
as illustrated in [65]. Instead, this section claims to provide a generic overview and
hence the design styles will be investigated with respect to area and energy efficiency
from a qualitative point of view only. In Table 2.2 the comparison with respect to area
is subdivided in three aspects: (i)wires per bit, which indicates the number of wires
representing a bit. (ii) gate size: this defines the number of boolean basic gates (AND,
OR, INVERTER), which are necessary to build an AND-gate of the analyzed method.
It is clear that specific implementations yield to a much better solution in terms of
transistor count. However, we will use standard logic basic gates as reference points,
to get a suitable comparison. (iii) add. circuits indicate if the design technique requires
additional circuits apart from the implementation of the logical function itself in order
to build working circuits.
Based on the fact that (C)MOS poses the state of the art technology for circuit im-
plementation, the energy efficiency can be roughly drawn back to the number of edges
which occur within a circuit. Hence with respect to energy efficiency, we distinguish
three scenarios: (i) worst case, where it is assumed that the signal toggles in each cycle
from TRUE to FALSE and vice versa. (ii) average case, where a random distribution
of the signal states is assumed, and (iii) best case, where the signal always keeps the
same information.

Synchronous and bundled data approaches have similar characteristics concerning
their area efficiency. The main difference lies in the method to distribute the timing
information: The synchronous style uses a global time reference, which is distributed

CHAPTER 2. STATE OF THE ART 36

Area Energy (transition per bit)

wire/bit | gate size | add. circuits | worst- | average- | best case
Sync 1 1 Clock tree 1 0.5 0
Bundled Data 1 1 Delay elem. 1 0.5 0
Huffman “ 1 1+ Delay elem. 1 0.5 0
NCL 2 8 CMPD circ. 2 2 2
Trans. Sig. 2 ? MullerC gate 1 1 1
Microp. 1 1 Delay elem. 1 0.5 0

Table 2.2: Comparison wrt. Area and Energy Efficiency

over a clock tree, while bundled data uses coupled timers, which can be implemented
using delay elements. The I+ entry in the gate size column of Huffman codes should
indicate that this approach can basically use the same gates as the previous methods,
but an additional effort in terms of gates is required to ensure that the resulting func-
tion unit is glitch free. Using signal coding, the NCL style requires 2 wires to represent
a bit. As a consequence, the size of the basic gates increases exponentially: From the
truth table depicted in [64] it is easy to derive that an NCL-AND gate can be built
using six conventional gates (four AND and two OR gates). To guarantee that the
output keeps its old value having inconsistent inputs two additional gates to memorize
the output value of each wire are required.* Based on the bundled data approach, the
micropipeline also shows its characteristics concerning area efficiency. With respect
to energy efliciency, the first three approaches quoted in Table 2.2 show foreseeable
behavior: If the signal state does not change, no edges occur, if the state changes, each
time then an edge always occurs. The NCL approach instead shows a more surprising
characteristic: in each scenario {(even in the best case!!) two edges occur per bit: Based
on an RTZ scheme, NCL has to transmit each information bit twice — in the first step
the effective information is emitted and to return back to the neutral state the previous
information has to be inverted and sent again. Also the transition signaling approach
does not show any difference concerning the number of edges between the best and
the worst case. The reason therefore is that the information itself is coupled to the
signal edges and hence even if the same information is consecutively transmitted over
the same signal line, one edge per information bit takes place. As expected the mi-
cropipeline shows similar to the area efficiency considerations the same characteristic
as the bundled data approach.

At this point it is important to highlight the distinction between energy efficiency and
power consumption. The first describes the energy which is required to transmit one
single bit. The latter is the energy that a circuit dissipates over time. In general, asyn-

41t is clear that a memory element is much more complex than a simple AND gate for instance.
Due to the fact that an NCL basic gate does require a full memory element, but a solution similar to
a transition gate lasts out in a dynamic logic style, we have equated these memory elements with two
standard gates in Table 2.2.

CHAPTER 2. STATE OF THE ART : 37

chronous circuits operate only when required (=event-driven), a synchronous circuit
is always triggered by a periodic clock signal. Therefore, asynchronous circuits have
a worse energy efficiency than the synchronous ones and they may still consume less
power than their synchronous counterparts.

Chapter 3

Code

Alternation Logic — CAL

Contents
3.1 Backgroundof CAL 39
3.2 CodingSchemet eenas 40
3.3 Control Flowt ieeean 42
3.4 Levels of Abstraction 43
3.4.1 Behavioral Description —callogic 43
3.4.2 Functional Description — calrail logic 46
3.5 BasicGates i i e e e e e e e e 47
351 AND Gate i 47
3.5.2 PhaseDetector L. 47
353 @Converter e 48
354 CALRegister e 49
36 CALDesign-Flow000000.... 50
3.7 Simulation Concept 000, 52
3.8 SUmMMATY v v i e e e e e e e e e e e e e e e e 54

38

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 39

As implied by the name, the major part of this section will consist of the coding
of signals, but CAL provides much more. The system consists of a tool-set to realize
asynchronous circuits which are automatically compiled in several stages. All these
steps are performed with the Synopsys design compiler by the use of synthesis-scripts.
Furthermore, a simulation concept is added to be able to prove the functional descrip-
tion of the circuit as well as to ensure the correctness of the synthesis. This tool-set
allows us designing a 16 Bit processor based on CAL, and putting it successfully into
operation. This chapter will give a detailed step-by-step introduction into CAL.

3.1 Background of CAL

CAL can be classified as a signal coding method, which solves the fundamental design
problem from Section 2.2 in the information domain. Let us recall these terms:

With delay-insensitive circuits a method is provided to design asynchronous circuits
in a way that their behavior is independent of the speed of their components or the
delay on the wires. They are correct by design. A further big advantage of such circuits
is that the circuit can derive information whether the computation has finished or not.
Only the time needed for this computation is used for waiting rather than the worst-
case time.

Signal coding describes a coding system, which is widely used to design self-timed
systems. Design methods using signal coding can be split up into several approaches by
means of how data is encoded. The traditional style — the 4-phase dual-rail' approach
— uses three logic states, which can be formed with the two rails: 71”7, ”0”and ”invalid”.
There is a separate spacer used between every change of the state. This spacer token is
necessary to distinguish whether a new data wave had begun or not. So the throughput
is reduced to the half. '

This disadvantage of needing such spacers is not given by the other popular dual
rail technique — the transition signaling. But this approach has also its drawback: As
shown in Section 2.4.5, the actual state of rails cannot be determined by simply looking
on it: Because an internal state ”00” of both rails could represent a logic ”1”as well as
a ”0”. It depends on the context in which this transition has happened.

So the idea is to combine these two approaches and to try to eliminate the two
drawbacks: On the one hand it should be possible to transport information every cycle,
on the other hand it should be possible to determine the value without considering the
history. We have designed a coding scheme that is based on the alternation of code
sets as shown in detail in the rest of this chapter. There are two similar approaches
from the early nineties: [20] introduces the Level-Encoded 2-Phase Dual-Rail (LEDR)
and [77] the same coding technique Four State Asynchronous Architecture:

Level-Encoded 2-Phase Dual-Rail (LEDR) [20] denotes three different hardware

1In this context, we use the term dual-rail to describe a signal consisting of two rails. The instance
how data is coded is not defined so far.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 40

implementations of the LEDR principle: The first is based on a PLA-structure,
the second on a self-timed Domino logic structure with dynamic storage, and
the third implementation uses series stack of transistors. There is, however, no
design methodology given how to build logic with this gates. Further work in the
LEDR field is done by [101, 100} where four input Phased Logic gates are used as
computational elements. Therewith a net-list of D-Flip-Flops and combinational
logic driven by a single clock can be automatically synthesized.

Four State Asynchronous Architecture This approach uses only multiplexors
and the authors claim that this allows reducing complexity. Furthermore, the
multiplexors have been optimized at the transistor level and have been imple-
mented in 2 um CMOS technology in 1991. This approach is optimized with
respect to speed. Best performance is achieved using dynamic latches because
they are smaller and faster. [76]

As pointed out in Section 2.2 the fundamental design problem leads to the two
fundamental requirements, which are the main parts of the next sections.

3.2 Coding Scheme

The key idea of CAL is to use two disjoint code sets for representing the logic state
of a signal. The additional information denoting which code set is being applied is
called the phase of a signal, 0 and ¢l respectively. The representations are used
alternatively, so within a sequence of data words each bit can uniquely be assigned to
the corresponding data word.

S 1) B S)
' : ; A— CAL

B L@ | o T e T ‘o] e
\ \ \

c C®W o @ [ol]

Figure 3.1: Flow of Data Waves in CAL

Figure 3.1 shows the flow of data waves in CAL: Due to the alternation of ©0 waves
and 1 waves it becomes easy to synchronize signals within a data word even in the
case of arbitrary skew.

Two logic states in two representations lead to the need of four code words, which
can be encoded with at least two rails a and b. Table 3.1 depicts the used state
assignment:

Table 3.1 and Figure 3.2 show the important property of CAL: If data words are
coded in alternate phases ©0 and ¢1, every valid transition from one phase to the other
changes exactly one level of one rail:

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 41

logic state | code ¢0 code ¢l
"LOW” (a,b)=(0,0) | (a,b)=(0,1)
"HIGH” | (a,b)=(1,1) | (a,b)=(1,0)

Table 3.1: CAL Coding Scheme

Figure 3.2: Possible Phase Transition

A logic LOW” in phase ¢0 can only be followed by a "LOW” or a "HIGH” in phase
1. In the first case the level of the rails changes from (0,0) for LOW” in ¢0 to (1,0) for
a "HIGH” in 1. The second transition leads to (0,1) for the representation of "LOW” in
phase 1.

As seen in Table 3.1, CAL uses a dense code which means that every bit combination
is used for describing a valid code word. There is no representation for the state invalid.
Recall that one of the three requirements in the information domain (see Section 2.3.2)
is validity: In the case of CAL continuous validity is ensured. So every gate has to
guarantee a valid output signal. As described above, exactly one transition is needed to
change from one valid code word to another valid one. This fulfills both conditions for
consistency representing the second part of the fundamental requirement: The demand
for the existence of a transition is met due to this fact as well as the membership to
context: If there is ezact one transition between every code word, every transition will
change the context and so the membership can be derived. The impact on CAL by the
fundamental design rules leads to the following important rules which are summarized
here:

I: Data values of each signal must be coded in alternating phases.
II: The calculation is performed when all input signals are in the same phase.

III: In the case that the input signals are in different phases the output has to remain
in its last valid state.

Until now it looks like that CAL solves all problems in the information domain —
in other words it is delay insensitive. In fact CAL is a hybrid solution as described in

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 42

Section 2.3.3. Concerning a design built with CAL-gates — the CAL approach is delay
insensitive. Neither assumptions are made on gate delays nor on wire delays. However,
a closer look at the CAL gates shows that there are timing assumptions, e.g. for local
feedback loops in latches. The resulting constraints for the design can be solved within
the basic gates. The information to build these gates in a correct manner is stored in
specific libraries.

Both, validity and consistency are needed to solve the fundamental requirement 1. The
second one will be the target of the next section.

3.3 Control Flow

The design rules of Section 3.2 must hold for the whole design, so they must be valid
for pipeline structures too. Rule I defines that the code set used in CAL alternates with
every data word. This means that a bit that has been part of a valid code word in ¢0
becomes invalid in 1. Recall the fundamental requirement 2 from Section 2.2, which
states that some kind of feedback is needed. Figure 3.3 shows the pipeline structure
where the feedback is represented in terms of capture_done signals to trigger the source
firing. The sink can derive its trigger condition directly from the data wave: If all bits
of a data word are in ¢0, the data word is consistent and can be consumed. As soon as
several bits change to 1, the 0 bits become obsolete and the data word is inconsistent
until the last bit has changed to 1 as well. Obviously, some kind of synchronization
is required to prevent that a fast 0 bit, e.g., catches up with the preceding 0 data
wave.

This is, however, easy to achieve by the inclusion of a hysteresis in the logic func-
tions: Similar to the approach used in NCL the output of a logic gate in CAL changes
only when the data word at the input is consistent as defined in rule III. In Figure 3.3
a simple linear pipeline is shown: 4

SNK - SRC SNK — SRC SNK — SRC
(]] Q
= - e
oo] ol
data in o data out data iny bt data out data in bt data out
U capture_done U capture_done U

Figure 3.3: CAL Pipeline Structure

To explain the functionality of the pipeline structure the stage in the middle is used.
There are two conditions causing this stage to fire:

1. The upstream logic function f(z) has completed its calculation and so the data
on the input of this stage is ready to be captured. This information can be
retrieved directly from the data word.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 43

2. The downstream stage has already caught the previous wave (the result of g(z))
and so the data of this stage is not needed any longer. The downstream stage
provides this information with the capture_done signal.

Recall Figure-3.1 which shows the flow of data waves in CAL: Due to the alterna-
tion of 0 waves and 1 waves, it becomes easy to synchronize signals within a data
word even in case of arbitrary skew. It can be verified that all three rules defined in
Section 3.2 are fulfilled.

3.4 Levels of Abstraction

It is not very comfortable to design logic circuits using a rail representation as described
in Table 3.1. Furthermore, it is not possible to use existing synthesis tools, because
they are designed for single rail logic used in synchronous designs. This leads to the
need of two different descriptions of CAL: One for the designer and another one for
the tools. Both definitions are written in VHDL in our case, but it is also possible to
transform the representations to Verilog or any other hardware description language.

basic definitions
‘unctional definitions CAL _beh CAL _rail
used for CAL_logic used for CAL _rail_logic

Figure 3.4: Library Dependencies

As shown in Figure 3.4, the library structure is built hierarchically: The CAL
library is the root of all other libraries and provides basic type definitions for all others.
All common definitions for the behavioral and the rail style of CAL are given there.
Furthermore, some basic conversion functions are provided. This library will be used
in every step of the asynchronous design as well as in the testbench. In addition to the
CAL library, the libraries cal_beh and cal_rail contain functionality needed for the
corresponding logic. Both logic systems, cal_logic and cal _rail logic comprise for
example a logic AND. In cal_logic this function has two single rail inputs and one
single rail output, while in cal_rail_logic the same function requires dual-rail signals.
In summary, these two libraries provide functions with the same purpose but with the
logic types needed for the logic system actually used — cal_logic or cal_rail.logic.

3.4.1 Behavioral Description — cal_logic

The definition of cal_logic is the interface for the human designer. A single rail,
multi value code is used to describe the four states of CAL. As shown in Table 3.2,
the different states are specified with lower and uppercase letters ”1”and ”h”. Phase

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 44

logic state | code ¢0 | code 1
7LOW” 1 L
"HIGH” h H

Table 3.2: cal_logic Coding Scheme

0 utilizes the lower case versions ”1”and ”h”, for the logic states "LO”and ”HI”, and
likewise ”L”and ”H”are applied for ¢1.

To provide full simulation and synthesis support for traditional design tools it is
necessary to define several VHDL types and classes. At first, a new data type has to
be declared. In the case of cal_logic the four states have to be defined. Furthermore,
it is not enough to build a four-value type, since a reasonable simulation tool needs
to differentiate more possible values. There has to be a value which sets a signal to
undefined, e.g. at the startup. Moreover, the simulation should be able to handle the
situation when two outputs drive one signal and both of them want to assign a different
value. This definition is very similar to the std_logic data type of the std_logic_1164
standard for the VHDL language [122]. Furthermore, the type is expanded to a vector of
n such signals and so the cal_logic_vector type is created. As shown in Source 3.4.1,
the VHDL definition for the cal_logic type consists of eight characters:

type cal_logic is (’'U?, -- Uninitialized
X7, -- Forcing Unknown
’1’, -- 0 type phil
’h’, -— 1 type phil
’L’, -- 0 type phil
’H’, -- 1 type phitl
AN -— High Impedance
’= -- Don’t care
);

Source 3.4.1: cal_logic VHDL Definition

As described above, the definition and some basic conversion functions, e.g. from
std_logic to cal_logic and vice versa, are part of the cal library. The definition of
the data type is the starting point of the methodology to build logic devices with CAL.
Furthermore, several logic functions have to be designed to support the simulation and
the synthesis of CAL designs. These are special parts for the behavioral description of
designs with CAL and therefore they are part of the cal_beh library.

Boolean functions: In order to build designs various functions have to be defined.
Such functions describe the relationship between the inputs and the output. They
are also used by the synthesis to build, e.g., conditions of if-clauses. Considering
a two-input AND-gate, the function between the two inputs and the output can
be defined only, if the two input signals are in the same phase. So rule I and II

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 45

from Section 3.2 are ensured. Considering the condition in an if-clause again, it
is not possible to use methods which use any kind of history or context. Therefore,
it is not possible to retain the old state with simple functions, because they can
purely derive the new value. Thus it must be ensured that these gates process
only input signals that are in the same phase. This is done by inserting so called
stable-procedures into the VHDL code.

Stable-procedure: In VHDL this procedure is inserted into the behavioral code to
ensure that the VHDL-process continues only if all inputs of this stable-procedure
are in the same phase. Thus, it enforces that rule III is fulfilled. The procedure
is implemented with VHDL ”wait until” statements to suspend the current
process until the condition is met. Notice, that this function is only necessary in
cal_logic.

Register and latches: One of the big differences between cal_logic and usual syn-
chronous designs is the methodology by which storage elements are implemented.
In synchronous designs this is usually done with clock edges. As shown on the left
side in Source 3.4.2, the active clock edge is the point in time where the current
value is accepted and frozen:

p2_reg: cal_reg
generic map (
P2_SM : process (clk, reset) w => 108,
begin reset_value => 01)
if reset = RES_ACT then
Pc <= (others => ’0’); port map (
elsif clk’event and clk = ’1’ then d => PcNxt,
Pc <= PcNxt; q => Pc,
end if;) c_done => c_done,
end process p2_SM; pass => pass,
reset => reset);

Source 3.4.2: Register Implementation in std.logic and CAL

The right side of the source code shows the register implemented in CAL. Both
implementations utilize an input signal (PcNxt), an output signal (PC), a reset
signal, and the value which should be used after the reset. In the synchro-
nous approach others => ’0’ is used to specify the value after reset. CAL
reset_value => 01 is used as a generic map. The big difference is given when
the register stores the data. The big difference between the synchronous ap-
proach and a CAL implementation is the way the register stores the data. While
in synchronous versions the rising clock edge is used, in CAL implementations a
handshake protocol is employed.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 46

Conversion functions: A CAL design should be able to interact with ”"normal”
std_logic circuits as well as with the environment. For this purpose a set of
conversion functions is needed. In the case of cal_logic the transformations are
done by simple translation tables.

The issues above have been described in detail for the behavioral description, be-
cause they constitute the main differences between the synchronous design and the
CAL logic design. The process of transforming a regular synchronous design to CAL
starts with renaming the data types from std_logic to cal_logic, followed by in-
serting the stable-procedure to ensure rule III. Furthermore, the registers must be
converted from the ”if clk’event” style to the instances of the cal-register and the
required acknowledge signals have to be generated. To interact with the environment,
the appropriate conversion functions must be applied.

3.4.2 Functional Description — cal_rail _logic

Table 3.3 shows the cal_rail_logic type consisting of two rails of std_logic type.
The two rails are bound together and have one name.

type cal_rail_logic is

logic state | code 0 | code 1 record
"LOW” (0,0) (0,1) linel : std_logic;
"HIGH” (1,1) (1,0) line0 : std_logic;

end record;

Table 3.3: cal_rail_.logic Coding Scheme and the VHDL Definition

Boolean functions: All logic functions are available as pre-synthesized elements. So
only existing functions are used and the design consists of instances of them. In
cal_rail_logic the functions AND, OR, and INV are defined and all other logic
functions are derived from them. Notice, that here the rules I — III are fulfilled
inherently by the gates because each of them comprises a kind of hysteresis or a
memory element as explained later.

Special gates: For the synthesis of CAL a set of specialized gates is needed. For
example, the p-detector or the components of the cal-register are some of them.
The gates and their functionality are defined and so they are available for the
rest of the design flow.

Conversion functions: The transformation from cal rail logic to std_logic is
quite easy, because rail a in CAL directly represents the signal state in Boolean
logic. Hence, in the inverse case only minor coding effort is required to add the
adequate phase to the conventional Boolean signal.

The implementation of some selected gates is presented in the next chapter.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 47

3.5 Basic Gates

To illustrate how logic functions can be implemehted in CAL we discuss the example
of a 2-input AND in this section. The derivation of the required functions is quite

straightforward, and essentially the same is true for other basic functions such as OR,
NAND, NOR and XOR.

3.5.1 AND Gate
Table 3.4 shows the truth table on signal level:

E1l

Z h | 1 | H | L
h h 1 hold | hold

E2 |1 1 1 hold | hold
H | hold | hold | H L -

L |{ hold | hold | L L

Table 3.4: Truth Table of a 2-input AND in CAL

For inputs that are within the same phase the respective AND function is simply
applied and the output is represented in the same phase. For inputs in different phases
the last valid output is retained ("hold”). On rail level this truth table has to be
expanded to two rails per signal, yielding one separate truth table for each rail of the
output, Z, and Z;, each with four input rails as shown in Figure 3.5:

The resulting circuit for one AND-gate consists of two RS-FF’s — one for each rail
(a and b) of the output signal Z. Furthermore, for each of the RS-FF’s logic functions
are used to-derive the correct set and reset action. This results in the need of four
4-input and 1-output functional blocks for set and reset: R,, S,, Ry, and Sp.

The initial hardware implementation requires six logic elements (LEs) for one CAL-
AND-gate. In comparison with a standard AND the gate count increases significantly,
but it should be considered, that we are mapping the design to a standard FPGA
library that has not been specifically optimized for CAL.

3.5.2 Phase Detector

Considering that there are two possible phases for each signal which is used to associate
a bit to a data word, there is the need to detect the phase of a signal. This is very
simple for a single signal: Both rails have to be combined with an XOR and the result
is the phase — 0 for the phase ¢0 and 1 for 1. As shown in Figure 3.6(b) this scheme
can be expanded to an n-bit wide bus: The rails of each single signal are combined with
an XOR-gate and the n results are tied together with an and-gate (”all-ones detector”)
and an or-gate (”all-zero”detector). The RS-Flip-Flop ensures that the output only

CHAPTER 3. CODE ALTERNATION LOGIC - CAL

El Ela Sa ~ -
Elb Sa={(AB |
0 s
q
RSF]
R
Ra=f(AB
i
—
— A B
Ra
zb
P
sb
Sb=f(AB} [s
s d
RSF|
R
=f
E2 g, Rb={(A.
g 323 Rb

Ela

E2.a
E2.b

[
&

%]
&

Rb

00

00

11

00

11

11

01

10

01

10

01

10

01

10

[=T -1

HOLD
HOLD
HOLD
HOLD
HOLD
HOLD
HOLD

HOLD

— o (=1

— o o o < (=1 < o (=] (=T - - (=1 o o

- o0 o o o o o O o © =

Figure 3.5: Schematic and Truth Table of the AND-gate

—_ (=] (=1 (=T =] (=] (=] (= < — <> [=- T -]

- (=] (=T =] (=3 (=3 (= (=] (=] (=T =] (=] (=T

48

changes if all inputs are in the same phase as demanded by rule III. This circuit acts
as a multi-input Muller-C gate.

data in

@ —— @—value

(a) Symbol

data in(15..0}
L

(b) Implementation

Figure 3.6: The ¢-Detector

Notice that the ¢-detector can also be used for completion detection, because the
value at the output changes only if all input values are in the same phase. This is
necessary, e.g., for register implementation used in pipeline structures.

3.5.3 @-Converter

Sometimes it is necessary to convert the phase of a signal. Remember the pipeline
of Figure 3.3 and consider the case that the signals from the first and second stage

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 49

are both inputs of the same gate. So the values should be used although they are in
different phases. In this case a (p-converter is used to convert the phase of one of the
signals so that they can be combined. Fortunately, the implementation is very simple
(see Figure 3.7:

data in - mmmmo-- P data out

|
. e
cal_rail_logic1 1 cal_rail_logic
1

Figure 3.7: Implementation of a p-Converter

Due to the fact, that only one bit changes by the transition from one phase to the
other, the delay of this one inversion cannot cause an invalid output as a result of skew.
If rail a changes due to the phase change, the result will be delayed. When rail b
changes there is no impact on the circuit caused by the p-converter.

3.5.4 CAL Register

The implementation of the registers used in the pipeline structure introduced in Sec-
tion 3.3 is now discussed in detail. In Figure 3.8 the proposed implementation of such
a register is shown. The chosen implementation represents a hybrid solution (see Sec-
tion 2.3.3) to solve the fundamental design problem. As described further the solutions
in high abstraction levels are done in the information domain and on this level there
are no requirements on the design in terms of delay and skew. The claimed timing
assumption on gate level must be met inside one register. If we can guarantee these
requirements on this local area, the registers can be used without paying attention on
their timing.

Figure 3.8: Implementation of a CAL Register

An explanation of the basic function of a register in a pipeline is given in Section 3.3.
Remember that the latches get transparent if (i) the phase at the input differs from

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 50

the phase at the output and (ii) the phase of the downstream stage is equal to the
phase stored in the latches (i.e. visible at the output). Condition (i) can be checked
by comparing the outputs of the p-detector, both at the input (®;,) and at the output
(Pout). Condition (ii) implies that the pass signal from the downstream stage equals
the output of (®,;:). The Latches will lock if the phase on the output is equal with
that on the input (®;;, = Pout). The reset signal is used to initialize the latches with
a predefined state.

There is one important detail. The capture done signal is generated by a latch
with an inverse en input. This ensures that the c-done signal is not passed on to the
upstream stage before the latches have actually stored their values. This works under
the following timing assumptions:

e All latches must have the same gate delay. This can be ensured by taking all
latches from the same library, so that they are built equally.

e The en-signal for the latches inside the registers must hold the isochronic fork
assumption, this can be achieved by a well known routing process.

Further discussions on this topic will be given in Chapter 5.

3.6 CAL Design-Flow

So far we have described the basic gates. However, now we need a methodology to
build hardware from a description of the design. Similar to the synchronous case
there should be a behavioral description as a starting point. If the description meets
the specification, it acts as the input of a tool chain which generates the associated
hardware.

Therefore, as outlined in Section 3.4.2 we have defined a type to describe each signal
with a single-rail 4-value data type called cal_logic. The basic boolean functions for
this type are kept in a library. Thus, the simulation of the design on behavioral level
is supported. At this state the design is described with cal _rail_logic. Recall that
the data type used in this description consists of two rails of conventional 2-value
std_logic signals. The required steps for generating a design in std_logic vectors on
which standard place & route tools can be applied are described in Figure 3.9.

The difference between the conventional design flow and the approach used with
CAL logic is clearly visible: Both approaches start with a behavioral description and
the result of each of them is a description understood by the place & route tool. This
final description is forced to use only gates of the target library, e.g. Altera APEX (see
Section 4.2.1) in our case. After performing this last step the design can be downloaded
to the FPGA.

In the conventional case the VHDL-code is elaborated and transformed into an inter-
mediate language used by the synthesis tool. This functional description is the starting
point for the synthesis during which the design is finally mapped to gates of the target

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 51

Conventional Design Flow CAL Design Flow
Behavioral Behavioral
Description (VHDL) Description (VHDL)
Elaborate Elaborate
STD_LOGIC to Symbolic Gates| CAL 1o CAL Gates
R i
Functional Functional
Description Description
! —
e N CAL
Synthesis/Replace Library
L CAL Gates to CAL-rail ___
CAL-rail Functional e
Description R
v * Apex
Apex R - techn,
teckm. Synthesis] [Synthesis: \Library /
Library Symbolic Gates to TARGET Lib _ CAL-rail to TARGET Lib D
S
] ¥ Py
Prelayout (STD_LOGIC Prelayout (STD_LOGIC rail
Description Description Nlbrery

Figure 3.9: CAL-Design Flow

library. In our case this is the APEX-library. As a result we get the pre-layout represen-
tation of our design. This file is used for simulation on the one hand and as input for
Quartus to perform place & route and the download to the FPGA on the other hand.

The result of the elaboration step performed in the CAL design flow is the func-
tional description where the design is built with CAL gates. The functionality of the
CAL gates is described in a special library (CAL-beh) to facilitate the simulation,
which is described in detail in Section 3.7. For the synthesis another library is needed,
which provides synthetic operators in order to build design specific gates. One of this
operators is used to build a ¢-detector with a width enforced by the design. So with
the first synthesis the design is transformed from the four-value cal_logic-description
to the dual-rail cal_rail logic. As described above this representation uses pairs
of std-logic signals and the functionality of the gates is provided by the cal rail-
library. This representation is used for simulation purposes as well as input for the
second synthesis, which is very similar to the synthesis in the synchronous case. The
APEX technology library is used as target library which results in a design constructed
with APEX-gates.

It is important to note that the design flow allows us changing the actual type of
pipeline register used for synthesis quite easily, because the functionality is added by
the appropriate library. This led us to experiment with several implementation options
that all turned out to have their particular benefits and drawbacks. A discussion of
these different options will be the focus of Section 7.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 52

3.7 Simulation Concept

In this section the simulation of a CAL design is discussed. At the beginning the four
simulation steps are defined as follows (confer Figure 3.9):

behavioral simulation That means it is a simulation with cal_logic signals and
any timing information of the resulting hardware. The input is the source code
of the designer without any synthesis applied.

functional simulation The first synthesis has already transformed the cal_logic
code into the cal_rail_logic format. However, no timing information has been
added in this step.

pre-layout simulation The second synthesis has mapped the circuit to the target
library — in our case the Altera APEX library. The logical function units are
constructed with gates of the target library and so the number of gates and their
standard delay is known and used for the simulation. However, place & route
has not been performed. Therefore, for the delay of the wire default values have
to be used.

post-layout simulation This representation contains the whole timing information
of the design. Every gate as well as each wire delay is known and used for
simulation. This leads to a high complexity of the simulation and consequently
to a very long simulation duration.

The motivation for a sophisticated simulation method is clear and it is based on
the design flow: The data types of the signals change with every step towards the
real hardware. Nevertheless, it should be possible to use the same testbench for all
four simulation levels. As described earlier in this chapter the starting point of the
designs is the behavioral style — in our case cal_logic. The signals in the design as
well as the ports are cal_logic. By the next step these types are transformed to
cal_rail.logic. Therefore, the ports are also translated and the signals — using the
same names as before — are now composed of cal _rail_logic.

The two rails are combined with the specific type to one record. After place &
route the design consists of std_logic signals and so the ports are converted once
again. Furthermore, the number of ports doubles with the last step and so each signal
becomes a vector of two std_logic rails. In the same way the width of each vector
doubles.

Although with each step the level of detail and therefore the refinement of delay
increases, these three formats still represent the same design with the same functional-
ity. The testbench is also written by the designer and therefore the cal_logic style is
used. As shown in Figure 3.10(a) it is straightforward to perform the first simulation —
the behavioral simulation — because the types of the ports match with the signal types
of the testbench.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL 53

—~ N | inl: cal_logic:
in2: cal_logic;
inl: cal_logic: out: cal_logic:
in2: cal_logic: ~ ~
out: cal_logic: P_inl |——P_inl
=0 ,conv,_‘m P_inl: cal_rail_logic; P_ouconv P_out
. P_inl: cal_rail_logic; —
P_inl P inl: cal_logic: P_out |:‘J> L__‘J> P_out: cal_rail_logic; ’::> |—__|‘>
P_inl: cal_logic; (N
conv
:(> P_out: cal_logic; (:> pin2 | —P_in2
P_in2 CAL _rail-Architecture
CAL-Architecture
DUT _rail
DUT
. J
DUT
| TCS[anCh) | Testbench)

(a) Behavioral Simulation (b) Functional Simulation

Figure 3.10: Simulation Concept

The next simulation steps cannot be performed so easily. In these cases the types
of the ports of the device under test (DUT) are not equal to those of the testbench.
Conversion functions have to be inserted to connect the DUT to the signals of the
testbench. As shown in Figure 3.10(b) this is done automatically by our tool: To be
able to simulate a design a configuration is used anyway to select and combine the
architecture for a specific entity. A new architecture DUT is automatically created in
which the original design DUT _rail is instanced. The architecture itself consists of just
this instance and the appropriate conversion functions. While the designer has to write
the testbench and the first configuration as in the synchronous case, the CAL specific
parts are generated automatically.

In Figure 3.11 a post-layout simulation example is depicted that shows the value
of the program counter and the output of a ROM:

In the first two lines the pass and capture_done signals are shown, followed by the
address and the instruction. In this example only the lowest four bits are displayed.
In line three and four the signals are shown in cal_logic style as they can be seen
at every level of simulation. This is followed by the signals without being mapped
to cal_logic. Every vector consists of eight std_logic signals, those of address are
shown in detail. As depicted in Figure 3.11, it is very difficult to derive the value of
the busses from the std_logic description: The address is incremented by one every
step and the instruction remains zero.

This strategy has finally allowed us reaching the intended goal mentioned at the
beginning of this chapter — one testbench for all simulations. The same procedures
can be used to automate the verification process: The behavioral simulation must be
checked by the designer manually whether the specification is met or not. If the required
functionality is fulfilled, the remaining simulation steps are performed automatically by
the tools and the results can be crosschecked with those from the behavioral simulation.

CHAPTER 3. CODE ALTERNATION LOGIC - CAL o4

pass_pc_D

¢_done_pc_d {
B> addr_cal R A R B i R I e | ULLHL L ‘] T, ', R, R I ‘UoCHL L L ;?I', " 1
B> instr_cal R L . R T T R A S l T, E A R N EI]
V addr_std 01010101 ﬁ 00000011 l 01011001 ﬂ 00001111 I 01100101 |00 I

— instraddr_pc_d_rail(7)

— instraddr_pc_d_rail(6) ‘

— instraddr_pc_d_rail(5) ‘

— instraddr_pc_d_rail(4) | ! l_

— instraddr_pc_d_rail(3) ‘ ‘

— instraddr_pc_d_rail(2) f L
—- instraddr_pc_d_rail(1) ! ;
IO | -

— instraddr_pc_d_rail(0)

B rom_std 01010101 : 00000000 ﬂ 01010101 | 00000000 l 01010101 IOO:’

Figure 3.11: Post-layout Simulation Example

3.8 Summary

CAL is a design technique using signal coding. A dense code is utilized where two
representations of each logic value "LOW” and "HIGH” — one for ¢0 and one for ¢l -
are given. Our approach is similar to NCL with some important advantages: There is
no need for the so-called spacer or NULL-waves in CAL which doubles the throughput
compared with NCL. Furthermore, the energy overhead in terms of transitions per bit
is low: Exactly one rail transition per bit is required.

CAL is classified as hybrid solution to manage the fundamental design problem. A
design built purely with CAL-gates is delay insensitive and so validity and consistency
are needed to tackle the problem in the information domain. For the basic gates
internal delay assumptions are made, yielding to design constraints. This is the part
of the fundamental design problem solved in the time domain. The implementation of
basic gates is demonstrated on appropriate candidates: The internal structure of an
AND-gate as well as of a complex CAL register is described in detail.

The human interface to build CAL circuits — cal_logic — and the coding style on
gate level — cal_rail_logic — are introduced. Furthermore, the methodology and the
used libraries for the CAL design flow demonstrate the automated way from the design
written by the engineer to the download file for a particular target architecture. This
and the simulation concept show the practical applicability of our CAL approach.

Chapter 4

Prototyping Environment

Contents
41 The SPEAR Processor 0o uunn. 56
4.1.1 Core Architecture 56
4.1.2 Extension Modules 57
4.1.3 Implementation Results 58
4.2 The Hardware Platform 58
42.1 APEXFPGAFamily 59
422 Limitations e 60

%)

CHAPTER 4. PROTOTYPING ENVIRONMENT 56

In this chapter the environment for the evaluation is presented: The synchronous
reference design is shown, which is the starting point of our asynchronous implementa-
tion. The motivation to build a processor ourselves was the possibility to have a deep
knowledge of design details, because it is very hard to derive the internal function-
ality from a standard microprocessor — like an ARM. Furthermore, the dependencies
between the control signal among pipeline stages are very hard to explore, which is,
however, one of the key points of our design. To avoid such troubles we decided to
build our own processor - SPEAR.

The target platform for the design is an FPGA evaluation board. In the following a
look at the underlying concepts of SPEAR and the evaluation boards is given and the
advantages and drawbacks of the FPGA implementation are discussed.

4.1 The SPEAR Processor

4.1.1 Core Architecture

SPEAR is the acronym for ”Scalable Processor for Embedded Applications in Real-
time environments” [21] and the main goal of several design decisions [24] was to build
a processor which has a well known temporal behavior [23]. The processor executes
every instruction in exactly one cycle and also all instructions are one word wide.
The SPEAR design has been developed to provide moderate computational power and
represents a RISC architecture, which executes instructions through a three-stage-deep
pipeline. The instruction set comprises 80 instructions, further a compiler suite [54]
comprising the GCC [97] and the LCC has been developed supporting this instruction
set. Most of these instructions are implemented as conditional instructions [98], which
means that an instruction is executed or replaced by a NOP depending on the condition
flag. A preceding test instruction sets this flag once and it is valid until the next test
instruction. For example, a move instruction with condition false is executed when the
result of the test instruction is false.

Instruction and data memory are both 4 kB in size, but it is possible to add up
to 128 kB of external instruction memory and 127 kB of additional data memory.
The uppermost 1 kB of the data memory is reserved for memory mapping of the
extension modules. These modules (see Section 4.1.2) are used to customize SPEAR
to the needs of the environmental interaction. As a result of the memory mapping, no
dedicated instructions for extension module access are needed — common load/store
instructions are used — which satisfies the RISC [47] philosophy of our design approach.
The register file holds 32 registers which are split up into 26 general purpose and 6
special function registers, three of them are used to construct stacks efficiently using
frame pointer operations. The remaining three special function registers are used to
save the return address in case of an interrupt or subroutine call. SPEAR supports 32
exceptions, 16 of them are hardware exceptions — interrupts — and 16 can be activated
by software, we call them traps. The entries of the exception vector table hold the

CHAPTER 4. PROTOTYPING ENVIRONMENT 57

corresponding jump addresses to the interrupt/exception service routines for each
interrupt or exception. The SPEAR ALU performs all provided arithmetic and logical
functions, but it is also responsible for offset calculation on jumps. Furthermore, the
ALU is used to pass through data from the exception vector table or register file.
Figure 4.1 shows a block diagram of the SPEAR. processor.

fetch decode exe/writeback
l awl] I ol |
Q |
P 2 P O 1y

- vy

] »{ Extended » Data
Register » Memory

) —1 File >
=l] N Boot-
Elron ol 3
= RE 2
8 2 2

&n Instr. =Ty
g ;4) P Decoder [&)
] []
o) InSlr. Q. [<%
Q% ‘| Memory = =

» Except.
¢ 4 p»| Vector
Table

Figure 4.1: SPEAR Architecture

The SPEAR pipeline is structured into an instruction fetch (FE), an instruction
decode (DE) and a combined execute/write-back (EX/WB) stage. In the fetch cycle,
the instruction memory is accessed and one instruction opcode is passed to the decode
stage. During the decode cycle the control signals for the memories and the ALU
are generated, furthermore the operands of the actual instruction are retrieved from
the register file. The execute/write-back stage performs the intended operation of the
instruction and writes the resulting value to the appropriate memory location. When
an extension module access (EXT) happens, it is also executed during the EX/WB
cycle.

4.1.2 Extension Modules

As mentioned above, extension modules are used to fit the processor for different ap-
plications. For reasons of simplicity and lucidity, the integration of and the access to
the extension modules should be normalized. Thus, a generic interface for all exten-
sion modules has been defined [50]. All extension modules are mapped to a unique
location at the uppermost region of the data memory. The modules are accessed via
eight registers using simple load and store instructions, as from the processor’s point
of view the extension modules are simply memory locations. A block diagram of the

CHAPTER 4. PROTOTYPING ENVIRONMENT 58

generic extension module interface is shown in Figure 4.2. The first two registers are
the status and config register of the module. The status register tells the processor
the current state of the extension module. Among other things it shows if an interrupt
has been activated, an error has occurred, or if the extension module is still busy. The
config register is used to specify parameters for the operations of the module. Next
to a soft-reset bit, which is used to deactivate the extension module, an interrupt ac-
knowledge bit exists to reset the interrupt status. The remaining six registers Data 0
— Data 5 are available for module specific issues.

Interface
Address »|| Status
WR-Data : :) g::lf g
Processor [RD-Data ! [un emvironmens
Core WR/nRD Data 2 o
Interrupt Req 1];::: g
BaseAddr > '

Figure 4.2: Generic Extension Module Interface

There is a special extension module - the processor control unit which has to
be used in every design. It comprises functional blocks which are essential for the
processor, e. g. the processor status word.

4.1.3 Implementation Results

Some implementation details are given here to finish the description of the synchronous
reference design: Our processor SPEAR utilizes 1,794 logic elements of the APEX20KC
FPGA (see 4.2.1). This is about 15 % of the total number of logic elements. Further,
the on-board data and instruction memories as well as the register file use more than
70,000 memory bits - which is about 47 % of the number available. Finally, SPEAR
runs with a maximum clock frequency of 46 MHz on this FPGA.

4.2 The Hardware Platform

The target technology for the synthesis and the following place & route steps are
FPGAs!'. The decision to build hardware on FPGAs instead of using full- or semi-
custom ASIC-chips is based on the fact, that it is much faster and much cheaper to
develop a prototype. The SPEAR processor as well as the asynchronous designs should

We use the term FPGA for off-the-shelf components. However, there are some approaches
for bundled-data systems STACC[94], PGA-STC[67] and one for general purpose architectures —
Montage([46].

CHAPTER 4. PROTOTYPING ENVIRONMENT 59

be tested as a physical implementation to prove the functionality, e.g. by displaying
several buses on a logic analyzer. Modern FPGAs are nowadays quite fast and big
enough to contain a processor design. Unfortunately, the use of FPGAs does not only
cause advantages: The performance of a processor built with FPGA basic gates is not
as high as‘it could be with an ASIC design, but designs should be proof-of-concept and
therefore the performance is not the key achievement.

Our prototyping board called megAPEX[32] is built by El Camino[31] and it is
equipped with an FPGA out of the APEX Family, which is described in detail in the
following section.

4.2.1 APEX FPGA Family

An FPGA is an integrated circuit that consists of an array or a regular pattern of logic
cells. The logic cells can be configured to represent a limited set of functions. These
individual cells are connected by a matrix of programmable switches. The developer’s
design is implemented by specifying the logic function for each cell and selectively
closing switches in the interconnect matrix. The array of logic cells and the interconnect
matrix are taken from a set of basic building blocks for logic circuits. These basic blocks
are combined to achieve the intended behavior of more complex designs.

The logic cell architecture varies between different device families. In general, each
logic cell combines a few binary inputs (typically between 3 and 10) to one or two
outputs according to a boolean logic function specified in the programmed design. In
most FPGA families, there exists the possibility of registering the combinational output
of the cell, so that clocked logic (like counters or state-machines) can be implemented
easily. The combinational logic of the cell can be physically implemented as a small
look-up table (LUT) or as a set of multiplexors and gates.

The APEX family represents highly integrated FPGA devices which are manu-
factured in 0.22 pm to 0.15 um processes. APEX devices are available in ranges
from 30,000 to over 1.5 million gates. The APEX architecture consists of so-called
MegaLABs[2]: These function blocks can be connected with each other as well as to
I/O Pins. LUT-based logic provides optimized performance for data-path and register-
intensive designs, whereas product-term-based logic is optimized for combinational
paths, such as state machines. Embedded system blocks (ESB)[2] can implement a
variety of memory functions, including first-in-first-out (FIFO) buffers, ROM or dual-
port RAM functions. The ESBs support memory block sizes of 128x16, 256x8, 512x4,
1024x2 and 2048x1, but can be cascaded to implement larger sizes. The MegalLAB
structure comprises a set of logic array blocks (LABs), one ESB, and a MegalLAB in-
terconnect, which routes signals within the MegaLLAB structure. The amount of LABs
inside each MegaLAB depends on the specific APEX device, and can range from 10 to
24 LABs. Signal interconnections between MegalLABs and 1/O pins are provided by
the FastTrack Interconnect, a set of fast column and row channels (additionally LABs
at the edge of MegaLABs can be driven by I/O pins via the local interconnect).

Each LAB consists of 10 logic elements (LE) and the associated local interconnect.

CHAPTER 4. PROTOTYPING ENVIRONMENT 60

Signals are transferred between LEs in the same or adjacent LABs, ESBs or IOEs via
high-speed local interconnects. The LAB-wide control signals can be generated from
the LAB’s local interconnect, global signals, or dedicated clock pins.

The logic element (LE), the smallest addressable logic unit in the APEX architecture,
is very compact and provides efficient logic usage. Figure 4.3 shows a block diagram
of an LE. Each logic element contains a four-input LUT, which is a function generator
that is able to implement any function of four input variables. Furthermore, carry and
cascade chains as well as a programmable register for D-, T-, JK-flip-flop and a shift
register implementation are part of each LE. LEs can drive the local interconnect, the
MegaLAB interconnect, and the FastTrack interconnect structures.

RuISIer Bguss

LA wider LAB.widsy

Synchronous Synzhroous ynied
Load Clne / meoyster Smect

Camyln Cascade In | | 7 Orerammang

vy !
diteal —Jp] - -
Look. L) N 1o Fad Irack hileszonnec).
dtn? —f];i.lcp Camy | | Caszinde l Synchrowuss PRM - Hegal AR Inkercunneat,
dista3 F LT Chidn Chain [_ Lead & Qesy I v of Local Inferconne:)

datal lcge =l W
& Pk
To bag Imck Intesconnect,
sl AL nferconnex,
of Lecad Infemonnect
labelr! —gm Asynelionous
labzhZ —e] Clove Pyt
Chip iide g Loadlogiz
Reoed
Ckick &
Chork iz wible
Sezhxct
bibek1 —
babelks —d
babekenyl —
ledxlbera? —

Sy Out Y ¥ CamadeDul
Figure 4.3: Logic Element Structure [2]

For our experiments we use 20KC1000 devices, that feature the 0.15 um process
and all-layer-copper interconnect. This FPGA is equipped with 38.400 Logic Elements
- it is comparable to 1,000,000 typical gates. Further information can be found at [2].

4.2.2 Limitations
FPGAs are designed and optimized for synchronous designs and this clearly has an

impact for the implementation of purely asynchronous circuits. Our experience with
APEX devices lead to the following points:

Wire delay: As mentioned in the introduction the wire delay becomes more and more

CHAPTER 4. PROTOTYPING ENVIRONMENT 61

important in the chip design. In ASICs this drawback can be tackled by opti-
mizing the routing. In FPGAs, however, this is not possible, because the wires
are built during the manufacture of the FPGA and only the interconnects are
programmed by the design. This leads to longer wires and thus to a larger delay.
It can be seen that the wire delay limits the performance in synchronous FPGA
designs. The design of the super-scalar variant of the SPEAR namely LANCE
shows this effect [38].

Logic elements (LEs): As shown in the section above, Altera FPGAs are composed
of LEs. Four input signals can be combined to one output. This does not meet
our requirements: In a CAL design each gate has a dual-rail output and in the
case of feedbacks it has more than four inputs. If more than four inputs for one
output are required, additional LEs have to be utilized and so the design grows
very fast.

Synchronous register: Every LE is equipped with an edge-triggered register, which
reflects the optimization for synchronous designs. In the case of CAL, however,
they are useless.

RS-flipflops: In basic gates (see 3.5) an RS-flipflop is used as a memory cell to hold
the old state of the output. Unfortunately, the APEX FPGA does not offer an
RS-flipflop as a component in an LE. It must be built with an LE and an external
feedback. This external feedback can lead to problematic race conditions with
other signals.

Place & route tools: The tools for place & route as well as the timing analysis
tools are also optimized for the use with synchronous designs. They are built
to optimize the register to register delay. This leads to very long execution times
for the tools as well as to not optimized results for asynchronous designs.

In summary, FPGAs are principally not intended and not well suited for asynchro-
nous logic designs. Asynchronous designs implemented in FPGAs have many disad-
vantages compared to synchronous FPGA designs on the one hand and asynchronous
ASICs on the other. However, we found the reconfigurability of the FPGA platform
worth the price and as shown later, we have built an asynchronous version of SPEAR
on an FPGA.

Chapter 5

Delay-Insensitivity of Circuits Built
with CAL

Contents

5.1 TheUppaal Tool Suite 63

5.2 Delay Insensitivity Analysis of CAL-Registers and the
Pipeline Structure 000000 65
5.2.1 Schematic Pipeline L. 65
5.2.2 Pipeline Implementation 69
5.2.3 Pipeline Model with Synchronized Capture Done 73
5.2.4 Pipeline Implementation with Latched Capture Done 74
5.3 The Combinational Functions (f(z)) 78
5.3.1 Circuits built with CAL-Gates 78
5.4 Summary v v v vttt e e e e e e e e e e e e e e 81

62

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 63

In context with Chapter 6, this chapter treats the delay insensitive properties of
circuits built with CAL. This is performed by analyzing the structure of the circuits
as well as by analyzing the hardware implementation.

Simulations can be used to detect problems within the design, but it is very hard
to argue that there are no further deficiencies with delays or anything similar to it. To
obtain more complete and meaningful results the verifications should be done with a
model checker using an appropriate model of the hardware implementation. We have
chosen the Uppaal system[116], which uses timed automata to describe the systems
processed by the checker. '

The results derived by methods of formal verification and their correctness depend
on the underlying models. So one of the main parts in this section will be the con-
firmation of the used model. Therefore, the problem is decomposed into small and
manageable pieces and the models, which are used for these small subsystems are
motivated. The focus of this chapter is a high level investigation of CAL: Registers
and the combinational logic functions between those registers are analyzed under the
assumption that they are built with CAL basic gates. These gates are examined in
Chapter 6.

5.1 The Uppaal Tool Suite

Uppaal is a tool suite for automatic verification of safety and bounded liveness proper-
ties of real-time systems modeled as networks of timed automata[4]. Uppaal has been
developed by the Department of Computer Systems, Uppsala University, Sweden and
the Basic Research in Computer Science, Aalborg University. In this section a brief
introduction on the usage and the basic types of Uppaal is given.

The template shown in Figure 5.1 is used to explain the parts used by Uppaal.
Templates and processes are used to build the Uppaal system where these processes are
processed concurrently. A process is an instantiated template, whereat the parameters
are defined. However, if a template has no parameter, it can be used directly and no
instantiation is necessary. The template in Figure 5.1 shows four so-called locations
(start, stepl, step2, and last) which are connected by transitions.

sync1?

Figure 5.1: Uppaal Template Example: P

Location stepl is equipped with an invariant (c<=4), which is a progress condition.
The system is not allowed to stay in the state more than four time units, so that

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 64

the transition has to be taken. If no enabled transition is available, a deadlock oc-
curs. Invariants are used to ensure progress. A location has optionally the following
properties:

Initial A location with this property denotes the starting location of a process. Every
template must have exactly one location with this property. The initial location
is marked with an additional circle as depicted by location start in Figure 5.1

Urgent An urgent location is equivalent to a location with incoming edges resetting a
designated clock ¢ and labeled with the invariant ¢ <= 0. Time may not progress
in an urgent state, but interleaving with normal states is allowed. Normal states
are those which have neither the urgent nor the committed property set.

Committed A committed location (e.g. last in Figure 5.1) is more restrictive than
the urgent location: Consider a system comprising several processes. In all states
where a committed location is active, the only possible transition is the one
that fires the edge outgoing from this location. No delay is allowed and so the
committed location must be left in one of the successor states (in our example
there is only one).

Transitions can have expressions which must be true (so-called guards) to be enabled.
In Figure 5.1 such a guard (c>=2) can be viewed at the transition from stepl to step2.
Furthermore, some activities can be performed if a transition is taken. For example,
such an assignment (c:=0) is shown at the transition from location start to stepl.
Binary synchronization channels sync1 and sync2 are utilized to synchronize two edges.
Consequently, these features can be summarized as follows [6]:

Guard A guard is an expression which must be satisfied to enable a transition.

Synchronization A binary synchronization is a pair consisting of sync! and sync?.
One transition sync? must be enabled so that sync! can fire. These transitions
are taken concurrently.

Assignment An assignment label is a comma separated list of expressions with side-
effects.

A template can be instanced several times, e.g. our sample template shown in Fig-
ure 5.1 can be applied twice with p1:=P(do1,do2); p2:=P(do2,dol); with changed
synchronizers as parameters to synchronize each other (see Figure 5.1).

The interested reader can find additional information and the underlaying concepts in
[60, 7, 61, 15, 6).

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 65

do2? do1?
c:=0
step1 o2 step2 ., last start
@ c:=0 S @ c:=0

Figure 5.2: Uppaal Template Example: Two Instances of P: pl and p2

5.2 Delay Insensitivity Analysis of CAL-Registers
and the Pipeline Structure

5.2.1 Schematic Pipeline

As a starting point for modeling the schematic pipeline structure from Section 3.3
is recalled (see Figure 5.3). This simple structure of a pipeline is used to show the
transformation to a timed automaton in detail.

SNK | SRC SNK «, |SRC SNK w | SRC
Q O Q
N N Rl
50 f(x) B0 an =
datain 8 data out data in| 8 data out data il 8 data out
il 2 ﬁl
U capture_done U capture_done U

Figure 5.3: Schematic CAL Pipeline Structure

We want to prove whether the principle function of a pipeline is delay insensitive or
if delay assumptions must be made. Recall the three rules of Chapter 3.2: Rule I claims
that there is an alternation of phases between two data waves. In our model we have
to build start and end-models which stimulate the pipeline with the needed control
signal. These models define alternating input phases. If the pipeline mixed up the
phases, there would be a deadlock, because the steering modules at the beginning and
at the end of the pipeline will point out any minor error. Further, the correct function
of the pipeline can be checked by observing a register while it is transparent. The
latches in a register become transparent, if the phase of the input equals the expected
phase of the new input phase. Thus, while the latches are transparent, this phase must
not change. In this simple model of the pipeline we have not defined an intermediate
state where some inputs are in phase ©0 and some in 1, so Rule II+III are fulfilled
automatically. Source 5.2.1 shows these claims translated to Uppaal-queries!. The
second one is an example for a query checking one pipeline register, e.g. pl is used:

lyD is formed as A[] with ASCII-codes.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 66

A[] not deadlock
A[] pl.data_trans imply not pl.p_data_in != pl.value

Source 5.2.1: Uppaal-Query for the Schematic Pipeline

To use these queries the pipeline must be represented in a model, which can be
used by Uppaal. As a first approach the representation of the signal is reduced to the
phase of the information. To show the sequences of a pipeline it makes no difference
whether the logic value of a signal is HIGH” or "LOW”’. However, it makes the model
simpler and more clear. Figure 5.4(a) shows the model of the CAL register:

closed

p_data_in != p_data_out, cdone:=p_data_in phi0

pass == p_data_out
. data_trans p_data_in==0 p_data_in==

value:=p_data_in
p_data_out:=p_data_in

p_data_out:=0 p_data_out:=1
transpa'rent phi
(a) Pipe Register Template pipereg (b) Combinational Logic Tem-
plate £ x

Figure 5.4: Schematic Pipeline

The functionality is described in three states: The register can be closed,
transparent and in data_trans, which is utilized to describe that the data have
reached the output. Guards use comparison expressions to ensure a fact (e.g.
p-data_in != p_data_out in Figure 5.4) in contrast to assignments, which assign val-
ues (value:=p_data_in).

The pipe register starts in the state closed and the guard of the first transition
models the rules from Section 3.3: The latches become transparent if (i) the phase at
the input differs from the phase at the output and (ii) the phase of the downstream
stage is the same as the phase stored. If the transition is taken, the phase on the input
of the register is stored in variable value. The model resides in state transparent and
after an arbitrary amount of time the value of the input is transferred to output; this is
described by p_data_out:= p_data_in and the model is now in the state data_trans.
The last action performed by the register is set to capture done.

The combinational logic (f(z), g(z)) is modeled by a template shown in Fig-
ure 5.4(b). It starts in state phi0? and the guard p.data_in==1 ensures that after
all signals of f(z) are consistent in phase 0 the output of f(z) changes to zero (rep-
resenting ¢0).

2The model is symmetric, hence we might as well assume phi1 as the starting point.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 67

There are two things missing in order to be able to simulate the system: The
beginning and the end of the pipeline must be controlled in the appropriate way. New
data-waves have to be provided when the pipeline is ready — this is done by the start
logic shown in Figure 5.5(a).

phi0 phi0
cdone==0 cdone== p_data_in== p_data_in==0
p_data_out:=1 p_data_out:=0 pass:=1 pass:=0
phil phil
(a) Start logic (b) End Logic

Figure 5.5: Completing the Schematic Pipeline System

Further, the data supplied by the last pipeline stage must be consumed in such a
way that the pipeline is enabled to proceed with the next wave (see Figure 5.5(b)).
To illustrate the design entry in this thesis, the definition of the system is shown in
Source 5.2.2.

global definitions:
const REG 3;
int[0,1] passend,cdone[REG+1], data_in[REG+1], data_out [REG+1];
process assignments:
ps:=pipestart(data_in[1],cdone[1]);
pl:=pipereg(data_in[1],data_out[1],cdone[1],cdone[2]);
f_x1:=f_x(data_out([1],data_in[2]);
p2:=pipereg(data_in[2],data_out[2],cdone[2],cdonel3]);
f_x2:=f_x(data_out[2],data_in([3]);
p3:=pipereg(data_in[3],data_out[3],cdone[3],passend);
pe:=pipeend(data_out [3],passend);
system definition:
system ps,pl,f_x1,p2,f_x2,p3,pe;

Source 5.2.2: Definition of the Schematic Pipeline

In addition to the templates shown above, three sections must be defined in Uppaal:

global definitions As implied by the name variables and constants visible to all
templates can be defined in this section.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 63

process assignments There are two possibilities for using a template. First, it can
be a model without parameters and so it is used once as it is defined. Otherwise,
templates can be provided with parameters, so it is possible to adapt them. In
our case it makes sense to define a pipeline register once and then instance it
several times. As shown in Source 5.2.2 the pipeline registers p1, p2 and p3 are
processes of pipereg with the used data signals as parameters.

system definition Finally, using the system directive, Uppaal is told which tem-
plates or instances to use for simulation.

The whole model as defined above can be seen in Figure 5.6. This figure illustrates the
simulation mode of Uppaal.

| 4o Satintappt e penk - - S - el
_Elo Jerplstes Viow Queries Optins Heb

DaB@ Aaa BQwo

{ System Edtor | Smustor Vorifier
i Drag out) Oragot |,

. Variables Py
Enabled Transtions : [4d t_xt
= 3 e 3 . dotad
: e o3

NN oo, (1] e dot_GAAE g odonel 1 mtata_nit]
ornmitje=T @w#ﬂ-ﬂ :;;x;_ég]_‘_ ;:;’:4)?!'1}'/ \\ datn o =) e x4
3 ’ s Tta_trxes

{
N
coatr=1 data i) =0 vobe wctares infti % dats il =G des 2} =t
< N/ dta_caitpadte it @

oot ol i
et

b2 53 = E
rx2 -

dosed dosed
)

Mot][Rosat]

Siretion Trece

S - eeiomef 75 acoia_n(Z} — anqg-m:_d’.’]
ST VAN rsarfvensaam || sairemagy/

: 7y s jians { { [Dysas sans
(o, transperent, phiD, ciosed, phD, cic vatue conts jofS dets jr(31=0 s irar=t o soets JlE % o

(G : a2 mts WZ b’ dus a3lns (3
b oF

{pri, cata jrans, phd, closed, phiD, i troriSaret —— oot

i X
0 3
62 . o

o1, deta trons, oot ronsparcrt, phk : active
22 3 cxn g3y Y, dtn_ o3

(phi1, data_trans, phit, deta_trans, phid) 3y
5(923) t] passerst =1 \)/pma-o

3

(phit, data_jrons, phit, ciosed, phio, cio:
e

(o, datn trans, phit clossd, phi, i :
3) ps p1 1_x1 p2 x2 3 pe

R

.

“ton, slosod, g2, coset pH broope g [
< = E i

(s, dotn Jrons, phit, closed, phin, troe : C‘j
o1 i) dosed
: phit

l fransparent!

s S

sow " Famt 3 X . - - s

Figure 5.6: Uppaal Simulator (Schematic Pipeline System)

On the left side all enabled transitions for the next step as well as the trace of the
simulation can be viewed. The main screen displays the configured processes where the
currently used locations are marked with a red point (They are marked with ”active”
in Figure 5.6). Also, while running the simulation every active transition is colored.
Finally, the bottom of the screen displays the transition sequence of the past simulation
steps.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 69

The queries® defined in Source 5.2.1 have been checked with the verifier of Uppaal
and the results are summarized in Table 5.1:

[Nr.] Query | Uppaal result]
1 | E<> pe.phil - - is satisfied.
2 | E<> pe.phi0 is satisfied.
3 | Af] not deadlock is satisfied.
4 | A[] pl.data_trans imply not pl.p.data.in != pl.value | is satisfied.
5 | A[] p2.data_trans imply not p2.p_data_in = p2.value | is satisfied.
6 | A[] p3.data_trans imply not p3.p_data_in != p3.value | is satisfied.

Table 5.1: Results of Uppaal checking the Schematic Pipeline

Query 14-2: The output of the last pipeline stage can reach phase 1 or ¢0 respec-
tively. This is just a functionality test to see whether the pipeline functions or
not. The model of our pipeline works as shown by the result is satisfied.

Query 3: Start and end model of the linear pipeline enforce alternating data phases.
As mentioned at the beginning of this section, an erroneous behavior will lead to
a deadlock of the system. Uppaal has formally proven that there is no possibility
of a deadlock.

Query 4 to 6: CAL-registers let exactly one wave pass while they are transparent.
This can be shown for all three registers used in this system. This is a necessary
condition for the correct CAL-functionality.

The results confirm that Rule II is held. As aforementioned, the main task of this
simple example concerning the schematic pipeline structure is a brief introduction into
the usage of Uppaal.

5.2.2 Pipeline Implementation

Now the first real implementation of a pipeline is under examination. The model
consists of all parts of a real hardware implementation, but the data signal is simplified
as described later. Figure 5.7 shows the proposed pipeline implementation.

The three rules of Section 3.2 are applied to the pipeline model. Rule I claims
alternating phases of the data waves. As considered in the model above, this is once
again checked with the deadlock property. Rule II requires that only valid signals are
processed and in combination with rule III it requires that the output must remain in
the current state if the phases of the inputs differ. In the case of our CAL-registers
this means that the register must be closed, if the input signals are not in the same
phase, the output will remain in the old state automatically.

336 is formed as E<> with ASCII-codes.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 70

Figure 5.7: CAL Pipeline Structure

Therefore, the model used above is no longer suitable. There are more details
that have to be considered in a realistic approach. The first important modification
concerns the representation of the combinational logic — called f(z). In the model
used in Section 5.2.1 the data signal could only be in phase ©0 or 1. However, we
have to take a closer look at the switching behavior from one complete data wave to
the next one concerning signals with more than one bit. The procedure differs from
that described above: Consider a bus with N signals and all of them are in phase 0
(”0” in the Uppaal model). To proceed to the next data-wave every member must
switch to phase 1 (”1”), but this will not be performed at the same point in time for
all members. Therefore, there will be some signals still remaining in phase ”0” and
others will already have switched to ”1”. This is not a problem in principle (recall
Section 3.2). However, the circuit may only process data signals which are in the same
phase. This must also be true for a CAL-register. This behavior of the pipeline is
checked with the rules shown in Source 5.2.3. In particular this new aspect is verified
by the second query:

A[] not deadlock
A[] fi_x.mixedphi imply not p2.transparent
A[] p2.data_trans imply not(data_in[2] != p2.value)

Source 5.2.3: Uppaal-Query for the First real Pipeline Implementation

The model from Figure 5.4(b) is modified. A third state denoted as mixed_phi is added
to cover this case (see Figure 5.8(a)).

Furthermore, the start part of the pipeline is expanded with this mixed_phi state (see
Figure 5.8(b)). Some additional function blocks have to be modeled to describe a
pipeline as shown in Figure 5.7. First, the functionality of a y-detector is transformed
to an Uppaal model (see Figure 5.9(a)). The upper part of the model describes the
activities that are performed if the inputs are in ¢0. The transition from mixedphi
to phiO is enabled, if the input data.in has zero value. The part of the model to set
the output of the -detector is divided into two locations. Thus, after the input of

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 71

phi0 phi0
data_in==0 ‘ data_in==1 cdone==0 data_out:=0
. data_out:=2,
data_out:=0 data_out:=2 delay:=
_ (O) mixedphi phio_phi1 () () phi1_phio
data_in== data_in==0 data_out:=1 cdone==1
data_out:=1 data_out:=2 data_out:=2,
. delay:=0
phil phil
(a) modified f(z) (b) modified Start Model

Figure 5.8: Components of Pipeline Implementation

the y-detector is zero, the output will eventually (i.e. after some delay) go to zero.
Afterwards, the automaton remains in location phiO_out, until the input differs from
zero. Now the transition back to the mixedphi location is enabled. The lower part of
the model is able to perform the same task for 1.

The outputs of the ¢-detectors located at the input and the output of a CAL
register are used to calculate the enable-signal in the so-called enable logic, shown in
Figure 5.9(b). In addition, the pass signal from the downstream stage is used for this
calculation using the rules for a pipeline register given in Section 3.5.4. The globally
defined enable variable is utilized to control the modified latch shown in Figure 5.9(c).
In contrast to the model used before, the control logic is sourced out to the enable
logic.

closed

data inez0 closed_reg enable==false
. . phiin != phiout && @ enable==
hiout == data_out:=
. phiout == pass true data_in
data_in== enable:=true enable:=false ata_
ph" - open_r .‘ data_trans egﬁao:tgégait:_in,
: phiin==phiout transparent =

(a) ¢-Detector (b) Enable Logic (c) Pipeline Latch
Figure 5.9: Pipeline Implementation

The queries defined in Source 5.2.3 are now applied to the model comprising two
pipeline stages and a start and end logic using the templates defined above. The results
of these verification runs are shown in Table 5.2:

Query 1-3: The output of the last pipeline stage can reach phase 1. Further, pipeline
stage 2 is able to switch to transparent mode and f(z) can also switch to 1.
This functionality tests whether the pipeline is able to progress or not.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 72

| Nr. | Query | Uppaal result |
1 | E<> pepl is satisfied.
2 | E<> p2.data_trans is satisfied.
3 | E<> fl x.phil is satisfied.
4 | A[] not deadlock is NOT satisfied.
5 | A[] fl_z.mizedphi imply not p2.transparent is NOT satisfied.
6 | A/] ps.phiO_phil imply not p1.transparent 1s NOT satisfied.
7 | A[] p2.data_trans imply not(data-in[2] != p2.value) | is NOT satisfied.
8 | A/] p1.data_trans imply not(data_inf[1] = pl.value) | is NOT satisfied.

Table 5.2: Results of Uppaal checking the Real Pipeline

Query 4: Start and end model of the linear pipeline enforce alternating data phases.
The Uppaal runs, however, show that the system does not guarantee this behav-
ior.

Query 5 to 8: Exactly one wave should be able to pass while one latch is transparent.
Unfortunately, this is not guaranteed in this implementation?. This deficiency
can be shown for both registers considered in this implementation.

To identify the problems recall Figure 5.7. Through the observation of values calculated
by the (-detector at the output and the pass signal of stage two, we may conclude
that input has been captured by stage two. This is, however, not a safe conclusion
with respect to delay insensitivity. In particular, the output of the (-detector at the
output of a stage forks (a) to initiate capturing for the considered stage one and (b)
to switch the upstream pipeline register to transparent. If the capture path is slower,
the pipeline will not work.

In order to improve the situation let us have a closer look at the fork mentioned
above and the respective delays in the two concurrent paths (Figure 5.10):

1. Path A (plotted slash-dotted in Figure 5.10) : Capturing at stage two:

thh = twlg + 5enable + tw22 (51)

2. Path B: Switching stage one to transparent:

t2 = twll + 5register + 5[‘(:1:) + tw31 (52)

Since we want stage two to finish capturing before stage one passes the next data
word, the condition for a correct control flow is

t1 < ta. (53)

4This is illustrated by the italic font in Table 5.2.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 73

Figure 5.10: Critical Delay Paths of the Basic Pipeline Implementation

Let us check, under which condition this is true. To be on the safe side we assume the
all delays with zero cannot be influenced on the current stage. This leads to

bwiz + enable + twa, < Tw1; + tws,. (5.4)

The only delays remaining on the right side in equation 5.4 are wire delays. Usually,
we can assume that wire delays within a CAL register are closely matched and smaller
than depeste- Thus, the condition denepe < 0 forces inevitably the pipeline to fail. The
solution is clear: We must eliminate denqape from this equation. For the implementation
this means moving the fork into the circuit.

5.2.3 Pipeline Model with Synchronized Capture Done

This section does not propose a hardware implementation. As a possible solution to the
method mentioned above, the synchronization of capture done in order to move the fork
should be proven in theory. It is tested here, whether this theoretical implementation
would satisfy the CAL-rules or not. So the queries shown in Source 5.2.3 are again
used in this example. Most of the templates built in Section 5.2.2 are reused here.
Figure 5.11(b) depicts one template, which has to be defined newly. In interaction with
the modified latch (see Figure 5.11(a)) it synchronizes the capture done transmission
to the upstream stage.

Starting point is a closed register and an open synchronization unit. When the
enable-unit switches the latch to transparent, the synchronizer close_cd takes the
capture done template to the closed location. The next register functionality is not
changed any more, but with the closing transition of the latch, the synchronizer model
transits to the open location. Now the transition updating the cdone variable is enabled
and will be taken eventually.

In contrast to the results shown in Table 5.2 the synchronization of capture done leads
now to the desired behavior.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 74

closed

enable==false closed ‘
open_cd[id]!
o)
enable==true open_cd[id]? close_cd[id]?
close_cdfid]!

open
data_out:=data_in, @
value:=data_in ‘

transparent cdone(id]):=phiout[id]

(a) modified Latch (b) Capture Done Synchronization

Figure 5.11: Pipeline Model with Synchronized Capture Done

| Nr. | Query | Uppaal result |
4 | A[] not deadlock is satisfied.
5 | A[] flx.mixedphi imply not p2.transparent is satisfied.
6 | A[] ps.phi0_phil imply not pl.transparent is satisfied.
7 | A[] p2.data_trans imply not(data_in[2] != p2.value) is satisfied.
8 | A[] pl.data_trans imply not(data-in[1] != pl.value) is satisfied.

Table 5.3: Results of Uppaal checking the Pipeline Model with Synchronization

Query 4: Start and end model of the linear pipeline enforce alternating data phases.
Uppaal has proven that in this system a deadlock is not possible, which ensures
compliance with CAL-Rule 1.

Query 5 and 6: Observance of CAL-Rule 1II is shown. Due to the simple task of a
latch — passing the input to the output while being transparent — Rule III is also
ensured.

Query 7 and 8: It is guaranteed that exactly one wave passes the latch while it is
transparent. This behavior is shown for both registers used in the system.

The next task is now to find an appropriate hardware implementation for the proposed
method.

5.2.4 Pipeline Implementation with Latched Capture Done

The previous section proposes a synchronization of the capture done signal. One pos-
sible implementation is to latch this signal with the inverse enable signal. When the
data-latches are transparent, data.in will be transferred to data_out. In this case
the ”capture-done”-latch is closed. After the (-detector ®,,; has indicated that the
new phase is consistent, its output will not be signalled directly to the upstream stage,
before the enable logic has decided to close the data-latches and so the gate of the
data latches is disabled. At this point the inverse gate of the capture-done latch will

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 75

be enabled and the new phase is transmitted. Figure 5.12 shows the proposed imple-
mentation.

i SRR
ll L
ll b~y Ll
| Lachoel)] | .
L}
.

N et . |
i Vo2 Vo2 ! !
daain | ¢ -: ! data out ; dataout

4 Latchcell ! H '
H see ' ! !
: Q‘“ @U‘ :somu : Qm :
L e L : g
e , ' '
b ')
1 Ll)
] ')
l L}
ll L}
pass E | pass

, :
L} L}
' ,
c—done | ' »i !
e Ywe L. '

(a) Opening the Data-Latches (b) Closing the Data-Latches

Figure 5.12: CAL Register with latched Capture Done

Taking a closer look at the timing while opening and closing the data-latches:
Figure 5.12(a) shows the concurrent paths while opening the latches. The fork is
situated at the output of the enable logic and the critical merging point is the input of
the capture done latch. The path ¢,, directly to the latch is marked with the slashed-
dotted line and it is only made of the wire delay (5.5). The other path t,, comprises
the gate delay of the latches, the p-detector ®,,; and three wire delays connect them
(5.6):

to, = twa (5.5)
t02 = two2 + 6latCh + two3 + 6¢‘out + t’wo4 (56)

The correct functionality is guaranteed when the capture done latch is closed before
the new phase may arrive at the input of this latch, so it must be ensured that ¢,, < t,,
leads to the equation:

twol < twoZ + 5latch + twos + 5<I>ou: + two4 (5-7)

Figure 5.12(b) depicts the two relevant paths for closing the data latches. The fork
is located at the output of the enable logic, in contrast to the opening situation the
critical point merging the two concurrent paths is now located at the input of a data
latch. Notice, the latch cell used for these considerations is one which completes the
new data word. The slashed-dotted line depicts path ¢., concerning the capture done
latch. The delay of the upstream units is summarized in dypstream- The path comprises

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 76

the gate delay of the capture done latch, the delay of the upstream unit as mentioned
before and three additional wire delays. These delays are summarized in (5.8). In this
case path t., to the input of the data latch is very simple and consists of one wire delay

(5.9).

tcl = twcl + (slatch + twcg + 5upstream + twcs ¢
tey, = tuw, (5.9)

To ensure proper functionality, the data latches must have been closed before new data
arrive on their inputs. Thus, ¢;, must be smaller than t.,, which leads to (5.10):

twes < bwe F+ Olatch + tuwey T Oupstream + twes (5.10)

Using (5.7) and (5.10) we want to develop a rule for a correctly functioning CAL
register without any restrictions to the surrounding logic. Therefore, we pessimistically
assume Oypsiraem = 0, so that only effects inside of the CAL register will influence the
result. In general the width of the utilized signals are unknown and so we also have
to eliminate the delay of ds,,, in (5.7). Furthermore, we set all wire delays on the
right side to zero. This leads to the sufficient condition that a register will be delay
insensitive to its environment, namely if

twol < 5latch (511)
and twes < Olateh (5.12)

These findings shall be proven by Uppaal models. Therefore, the models are ex-
tended in a way that the upper bounds for the wire delays ¢,,, and ¢, , as well as
the lower bound for the latch delay 0,4, are ensured. To stay comparable with the
preceding section, the queries to test the model are reused from Source 5.2.3. As shown
in Figure 5.13 three additional templates have been designed for each CAL register.
Furthermore, the templates for the latches and the enable logic have been modified:

Figure 5.13(a) models the fork at the output of the latch enable unit. If the out-
put of this unit has been changed, the synchronizer senlogic is activated. Thus, the
automaton is activated and the committed properties of the locations force the au-
tomaton to proceed its work immediately, in order to activate both wire models shown
in Figure 5.13(b) and 5.13(c). Due to this, the delay is set to zero and an invariant on
the location ensures that it will be retained at most t,,,,, respectively ¢,,,, which are
modeled both with W_.MAX at this point. Afterwards, the two delayed versions of the
enable signal are forwarded to the latch and the capture done latch. The enhancement
of the enable logic is illustrated in Figure 5.13(d). Every transition modifying the orig-
inal enable signal is extended with a synchronizer in order to activate the fork model.
Last but not least, the model of the latch is extended with a guard to ensure that the
output will not be updated before d;4cp, (MIN_LAT) has elapsed.

Table 5.4 depicts the results of the Uppaal runs:

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 77

swire_lat[1]? swire_cdone{1]?

O se"'°gi°m swire_lat[1 O w_delay[1]:=0 @ w_delay[1 + regs):=0
w_delay[1]<=W_MAX w_delay[1 + regs]<=W_MAX
swire_cdone[1}: en_latch[1] := en[1] en_cdone[1] := not en[1]
(a) Fork Model {b) Latch Wire ~ (c) Capture Done Latch Wire
closed

en_latch[1]==false
O- w

en_latch[1]==true and | data_trans
closed_reg en_latch[1)== data_out[1]!'=data_in[1]

true p_delay[1]:=0
phiin[1] 1=phiout(1] && (O)

phiout[1] == cdone[2] en[1]:=false p_delay[1]:=0
senlogic[1]! senlogic[1]!
en[1]):=true

open_reg ‘ data_trans transparent data_out{1):=data_in[1],
phiin[1]==phiout[1] value:=data_in{1]

(d) Enable Logic (e) Pipeline Latch

p_delay[1] >MIN_LAT

Figure 5.13: CAL Register with latched Capture Done signal

1| E<> pe.pl is satisfied.
2 | E<> p2.data_trans is satisfied.
3 | E<> f1 x.phil is satisfied.
4 | A[] p2.data_trans and fl x.mixedphi imply data_out[2] | is satisfied.
== p2.value
5 | A[] not deadlock is satisfied.
6 | A[] f1 x.mixedphi imply not p2.transparent is satisfied.
7 | A} ps.phi0_phil imply not pl.transparent is satisfied.

Table 5.4: Results of Uppaal checking the ”Latched Capture Done” Version

Query 1 to 3: To ensure that the model is still working after the insertion of synchro-
nizers, the principle function tests are shown again. These results are positive.

Query 4: Using Uppaal it has been proven that in this system a deadlock is not
possible, which ensures compliance with CAL-Rule I.

Query 5 and 6: Furthermore, CAL-Rule II is obeyed. Due to the functionality of a
latch Rule III is also ensured.

We have shown that two conditions must be guaranteed when building a CAL
register: The wire delay from the enable logic to the data latch cell as well as the delay
from the enable logic to the capture done latch must be smaller than the minimal latch
delay. Such CAL registers can be designed and constructed once and afterwards these
basic gates can be instantiated.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 78

Notice that with these provisions no assumptions on the surrounding logic are
necessary. Thus, built once in a careful defined way, CAL registers can be used without
restrictions.

5.3 The Combinational Functions (f(z))

The section above has proven that it is possible to build delay insensitive circuits. This
model supposes that the logic between the registers follows the rules for CAL-Logic
— defined in Section 3.3. Now, the next step is to show that circuits built with CAL
gates only follow these rules.

Remember the design-flow described in Section 3.6: After the functional description
a design is built only with elements of the CAL-Library. Furthermore, the subsequent
replace and synthesis steps transform the design to a cal.rail description. In this
section we assume that the basic gates which are used here work as specified. Thus,
we only have to study the interaction between these gates. The gates themselves and
the timing behavior will be our focal point of Section 6.

5.3.1 Circuits built with CAL-Gates

In our approach every combinational function is built using and, or and inversion
gates during the first synthesis. So a model for these three functions has to be built
for formal verification. The transformation to an Uppaal model is described with the
AND-Gate in detail. Models for an OR and an INV-gate are built in a similar way. Recall
the schematic and the truth table of the AND-gate given in Section 3.5.1: If both input
rails are in the same phase, the circuit will perform the requested action. Otherwise
the gate will remain in its state. This behavior is modeled as portrayed in Figure 5.14:

inAl and !inAQ and !inB1 and inBO or
phip inAl and inAO and inB1 and !inBO or
outl:=1,out0:=1 _/~\ linAl and inAQ and !inB1 and inBO

inA1l and !/inAO and
inB1 and !inBO

outl:=0,0ut0:=0

inA1 and inAQ and
inB1 and inBO

outl:=0, out0:=1

L

inAl and inAO and !inB1 and !inBO or
!inAl and !inAQ and inB1 and inB0 or
linAl and !inA0 and !inB1 and !inBO

outl:=1, out0:=0

Figure 5.14: Uppaal-Model of an AND-Gate

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 79

There are two states phiO and phil. In each of them the output of the gate can hold
the logic value "HIGH” or "LOW”. All valid transitions are derived from the truth-table
depicted in Figure 3.5. Transitions are given from phiO to phil, but there are none
from phiO to phiO and vice versa. It depends on the input values, whether the next
output will be "HIGH” or "LOW”. There is an intermediate state where the model can
stay without any duration restrictions. Afterwards, the corresponding output values
are assigned. The automaton resides now in the opposite phase where it is able to
remain even if the inputs change. After changing the inputs the automaton eventually
will take the enabled transition which leaves this state. The intermediate state is an
appropriate method to model arbitrary delays between the case that the inputs have
changed and the activity where the output changes. The model of an OR-gate is very
similar and is shown in Figure 5.15(a).

inAl and !inAQ and !inB1 and inBO or
inAl and inAO and inB1 and !inBO or
inAl and !inAQ and inB1 and !inBO

)

= - phi0
outl:=1,out0:=1 ay

!inAl and inAQ and

t1:=0,0ut0:=0
o ou !inB1 and inBO

inAl and !inAO or

lowphi0 lowphil
d !inAl and inAQ

outl:=!inAl,

) hiphil out0:=!inAQ

e

inAl and inAO and outl:=0, out0:=1
inB1 and inBO o inA1 and inAO or outl:=linAl,
w =t
inAl and inAO and !inBl and tinB0or 2 o linA1 and !inAO outd:=tinA0
1inA1 and !inAQ and inB1 and inBO or o : >
tinA1 and 'inAO and !inB1 and !inBO Phil
(a) OR-gate (b) INV-Gate

Figure 5.15: Uppaal-Models

There is no need for a storage element to build an inverter in CAL. So the model
of an INV-gate differs from those of the AND/OR ones. It can be easily seen in Table 3.1
that inverting the logic value and remaining in the phase is performed by inverting
both rails of the signal. This is done by the automaton shown in Figure 5.15(b).
However, the intermediate states are utilized to model the delay between the input
and the corresponding output.

In the following paragraphs we will show that any combination of these gates follows
the rules defined in Section 3.2. Therefore, a system describing a possible f(z) using all
types of basic gates is used. Fulfilling Rule II the output may only change if all inputs
are in the same phase. This is done by query two and three portrayed in Table 5.5.
In addition, to meet rule I4+III the output should only be altered once, afterwards it
should keep its value. If such an unwanted event occurs, it is detected by query four
and five.

To test these cases, all possible input patterns have to be created, which is done by
the automaton given in Figure 5.16. Without loss of generality, input rails signal A in

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 80

this automaton are altered before those of input B. After leaving the reset state the
model starts generating inputs for the f(z) simulation.

out_changed_phi0
reset 76—0and Z1=0 200ld!=Z0 or zlold!=Z1

@ o e
2001d:=Z0.z1old:=Z1 z0old:=Z0, zlold:=Z1

z0old!=70 or zlold!=Z1
z0old:=Z0, z1old:=Z1

out_changed_phil

Figure 5.16: Input Generation Function proving the f(z) Model

There are two important nodes — out_changed_phiO and out _changed_phil — where
the output of the logic should be stable. Furthermore, two Boolean Variables — Z0old
and Z1old — are used in this automaton to store the old value of the outputs. The
principle is very simple: After reset the output of the f(x) simulation will be in 0.
This state can remain with one of the four possible transitions. According to Rule I,
all others are forbidden. First, one of the two rails of input A is altered. Afterwards,
input B will be changed in the same way. After both changes, the automaton can
stay in the states arbitrarily long. The transition to one of the out_changed_phi[0]1]
states is enabled not until one of the outputs has changed the value. This transition
updates the variables storing the old values.

Table 5.5 shows the queries which are checked with Uppaal. The first one tr1es to
detect, whether the system can get caught in a deadlock or not. Furthermore, queries
two and three prove if there is any activity on the outputs after only one input rail
has changed. The last two queries ensure that there is no activity on the output after
the output has changed once. This ensures that no glitch will occur. So the problem
is described as follows: The automaton could reach the states out_changed phi0 and
out_changed_phil when one rail of the output has been altered. There must not be a
change on an output rail when the automaton has reached one of those states.

The results of the model checker are given in the third column.

Query Nr. 1: There is no deadlock in the system. Altering one rail of each input will
eventually lead to an activity of an output.

Query Nr. 2 & 3: The result of Uppaal approves that the output will never change
if only one input is updated.

Query Nr. 4 & 5: There is no activity on an output when it has been altered once.

CHAPTER 5. DELAY-INSENSITIVITY OF CIRCUITS BUILT WITH CAL 81

| Nr. | Query | Uppaal result |
1 | A[] not deadlock is satisfied.

2 | E<> (pdnit.il or p-nit.i2 or p.init.i3 or p.init.i4) | is NOT satisfied.
and (p-init.z0old !'= Z0 and p_nit.zlold != Z1)
3 | E<> (p-nit.i5 or p-init.i6 or p_init.i7 or p.init.i8) | is NOT satisfied.
and (p-init.z0old != Z0 and p-init.zlold != Z1)
4 | E<> p.nit.out_changed _phi0 and (p.init.z0old != | is NOT satisfied.
Z0 and p-init.zlold != Z1)
5 | E<> p_init.out_changed phil and (p.nit.z0old != | is NOT satisfied.
Z0 and p.init.zlold != Z1)

Table 5.5: Results of Uppaal checking the f(z) simulation

So the important conclusion of this proof is: Correctly changing the input of a logic
function f(z) will lead to exactly one transition on one of the two output rails. So it
is shown that an f(z) logic will follow the CAL rules given in Section 3.2.

5.4 Summary

After a brief introduction to Uppaal, the functionality of a schematic pipeline has
been used to demonstrate the procedure, of the usage of Uppaal models while proving
our claims. The compliance of the principle pipeline with the CAL rules defined in
Section 3.2 is shown as well. A gradual refinement of the pipeline model, however, has
shown deficiencies with respect to delay insensitivity. Synchronizing capture done has
turned out as a crux. The approach latching capture done with the inverted enable
signal is proposed as a solution. However, two conditions must be considered in the
implementation of the pipeline registers. When using a CAL register that conforms to
these conditions as a basic gate there are no restrictions for building CAL circuits. At
this level of abstraction CAL is delay insensitive. In the following section the focus
will be on the behavior of the basic gates.

Furthermore, it has been shown that combinational functions f(z) fulfill the rules for
CAL circuits. Thus, no restrictions have to be applied.

Chapter 6

Delay-Insensitivity of CAL Basic
Gates

Contents
6.1 Modeling Altera FPGA Designs 83
6.2 The AND Gate., 88
6.2.1 Synopsys-edif-Version 88
6.2.2 Quartus-only-Version 93
6.3 TheOR Gate i ittt eneen. 95
6.4 TheINV Gatet iieeeeen. 97
6.5 IQI-Signal p-Detector 0 oo 58
6.5.1 Two Signal p-Detector 98
6.5.2 Four Signal p-Detector, 100
6.5.3 Generic N-Rail p-Detector 101
6.6 Latchttt iieenenneenn 102
6.6.1 OneSignalwideLatch 102
6.6.2 Latch with Enable Logic 104
6.7 SUMMATY . . .« ¢t v v vt ittt et ittt et e e e e e e 106

82

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 83

We have shown in Section 5 that pipeline and f(z) logic functions behave properly
if gates fulfill certain rules. The purpose of this section is to point out that gates
fulfill these rules, if pipe and f(z) behave properly. Till now the evaluation of delay
insensitivity of CAL implementations is target independent. So there are no decisions
made in respect of the final hardware platform. Furthermore, all of the basic gates are
considered as “black-boxes“. But now a detailed look into these boxes is necessary and
therefore a precise implementation is required to investigate their behavior.

First, the proposed model of an Altera FPGA is discussed. This model is used for
further examinations.

6.1 Modeling Altera FPGA Designs

As mentioned in Section 4.2.1 the target technology used for the first implementations
is an Altera FPGA. Altera offers a manufacture-specific tool called Quartus(3]. In
our design flow we use Quartus for performing place & route only, but it is possible to
perform the whole design process with this Altera specific program.

During the compile and place & route procedure, Quartus generates a multitude
of log-files. One of them is the so-called equations file [3] (see a partial equations file
in Source 6.1.1).

--A1L61 is Z.1inel”0 at LC5_14_Z1 --operation mode is normal
A1L61 = A1LO1 & A1L8 & (A1L61 # !A1L7);

--A1L5 is 111718 at LC6_15_Z1 —-operation mode is normal
A1L5 = !'A.1ine0 & A.linel & B.linel & !B.1line0;

--A.linei is A.linel at Pin_106 --operation mode is input
A.linel = INPUTQ);

--Z.linel is Z.linel at Pin_84 --operation mode is output
Z.linel = OUTPUT(A1L61);

--Z.line0 is Z.line0O at Pin_89 --operation mode is output
Z.1ineO = OUTPUT(A1L41);

Source 6.1.1: Example of a Quartus Equation-File

Every line describes the logical function of one LUT: The output of the LUT is
the variable on the left side of the equation. On the right side, the up to four inputs
and the Boolean operation are given. Details about the operators can be found in [3].
Furthermore, the equation file defines each input and output of the compiled circuit.
The inputs are only characterized by the use of the function INPUT(). Every output
needs the assignment of a result of the final LUT of the mathematical operation. So
the names of the LUTs are mapped to the environment and vice versa.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 84

As mentioned above, the equations are generated automatically, to be more precise,
Quartus writes two versions of the equations to a file: First by the fitting step and
second by mapping the design. The equations are defined during the fitting step,
after the mapping is performed only the position of the LUTs on the FPGA is added.
We use only the equation itself, so for our purpose it makes no difference, which of
these two files is used.

The equation of a design is the starting point to build an Uppaal-model of the
circuit. However, this a very error-prone operation. To overcome these problems the
models are generated automatically by awk[1, 102] scripts. The whole system used by
the Uppaalsimulator is described by XML-files. The conversion tools transform the
information crucial to the design from the equation file to the XML-file, which can be
used by the model checker.

The Boolean operation of every LUT is transferred to an automaton, as shown in
Figure 6.1. We need a model which allows us to simulate various timing behavior of
one LUT. Therefore, two constants are defined to specify the minimal - d.yr,,,, — and
maximal - 0 yr,,,. — LUT delay: MIN_GATE and MAX_GATE. Furthermore, we should be
able to model the behavior of the environment to derive the possible restrictions. So
the minimal delay between a transition on the output and the next input wave — (d;4)
— can be defined (called MIN_INIT as Uppaal constant). In a first approach we assume
that the feedback delay is zero, but in further investigations it should be possible to
define a non-zero feedback delay 9 feedback-

not (!A.Ine0 and A.lIne1 not ('A.Ine0 and A.Ine1
and B.Ine1 and !B.Ine0) and B.Ine1 and !B.Ine0)
A.IneO and A.lne1 and W - W’
inst_zero B.Inet and !B.Ine cA1L5<=! CA1LS>= MIN_GATE zer t
CA1L5 <= SA1L5? MAX_GATE\/ SA1L5_in! ero_ou
MAX_GATE go_zero A1L5:=0

not (!A.Ine0 and A.Ine1

and B.lnet and !B.Ine0
1A.Ine0 and A.Ine1

cA1L5>= MIN_GATE and B.Ine1 and !B.Ine0
sA1L5_in! A1L5:=0 SsA1L5? CA1LS5:=0
SA1L5? O tart

CAIL5 <=MAX_GATE

CA1L5>= MIN_GATE not (!A.Ine0 and A.ne1

sA1LS5_in! A1LS5:=1 and B.Ine1 and !B.Ine0)
IAIne0 and A Ine1 and SA1L5? CcA1LS:=0
B.Inet and !B.Ine0

. not (!A.Ine0 and A.Ine1
inst_one| and B.Ine1 and !B.Ine0)
cA1L5 <=)

cA1L5 <=

Oo_one
800N A1LE>= MIN_GATE~~One_out

sA1L5? MAX_GATE sA1L5_in!
MAX_GAT @ ‘@ A1L5:=1
!A.Ine0 and A.lne1 and 1A.Ine0 and A.Inet1 and
B.ine1 and !B.ine0 B.Ine1 and IB.IneQ

Figure 6.1: Altera Apex LUT Model

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 85

Every automaton describing a LUT consists of five so-called Locations and transi-
tions between them. The upper part is used for assigning a "LOW” to the output of the
LUT, the lower part for assigning a "HIGH”. Recall Source 6.1.1, where the equation
for LUT A1LS5 is given as A1L5 = !'A0 & Al & B1 & !BO. This Boolean operand is
transferred to the term ”!'A0 and Al and Bl and !BO” which can be found several™
times in Figure 6.1: First, one can find it as the "guard” of the transition from start
to go_one. The reason is intuitive: If the equation is true, the output should become
"HIGH”, so the reversion is also valid: If this equation is not fulfilled, the output should
go to "LOW”. This fact is modeled by the transition from start to go_zero with the
negated Boolean operation. These two transitions describe the main functionality of
the LUT. So the state to assign the derived output value is subdivided into two loca-
tions. For both values there exist corresponding go_[zero|one] states and with the
transition from these states to the final ones the output is assigned. So there can pass
some time between the decision to put the output to "HIGH” and the action where the
output is assigned.

Every automaton has its own clock[7, 6] for modeling temporal behavior. It is
used to measure the time, which has passed since the last action and the value of
this clock is compared to the minimal (éryr,,,,) and maximal (dry7,,,.) LUT delay:
MAX_GATE and MIN_GATE. The clock is cleared every time the automaton enters the
start location. The automaton is allowed to stay in the start state, as well as in
both of the go_[zero|one] states while the clock is less or equal to MAX_GATE. This
is ensured by so-called Uppaal invariants(6]. The minimal delay (0. yr,,,,) is ensured
by the guard of the transition from the go_[zero|one] location to the final states
[zerolone] _out: The clock value must be greater than MIN_GATE. It is important to
note that the automaton is allowed to stay an arbitrary amount of time only in the
[zero|one] _out states.

This leads to a case which has to be considered separately: The automaton must
be permitted to stay as long as necessary, but it must react to changes on the inputs
eventually. Synchronizers[6] are used to abut the automaton if one of the inputs has
been changed. Every LUT model has one corresponding synchronizer. In Figure 6.1 it
is named sA1L5, which brings the automaton into the start location. Further, altering
the output must be broadcasted to all others which use the same value. This is done by
activating the output synchronizer related to this LUT named sA1L5_in in Figure 6.1.

Uppaal synchronizers have one major drawback: A single synchronizer activated
with sync!, is able to start ezactly one enabled transition waiting with sync?. This
has an impact on the whole model: It must be possible that one activity on an input
triggers more than one LUT model. This problem is solved with synchronizer chains
as shown in Figure 6.2. This leads to another requirement: The possibility to run
the synchronizer on each location should be accomplished, otherwise the chain would
be stopped which leads to a deadlock of the system. In Figure 6.1 a transition with
sA1L57 can be found in every location, e.g. there is a transition with source and sink
in location start:

The principle of such a chain is simple: It remains in the ready state until the

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 86

ready a0 in? S‘;‘: SAILS! j“\“u‘ssmul! SYnAILIL,)) S}E'Q’”sAlLS! S}IKULBSAILO]! synAlLO1
<) 2O 2\ <) o) S
ready synZo

. start
SAILS5_in? sZ0!
-©

Figure 6.2: Altera Apex Wire Model

synchronizer couple is activated with one output. This occurs when the output is
altered. Now the model should trigger all others locations where the only modified
output is used as an input. Therefore, all corresponding synchronizers are chained
together. So it becomes clear that the length can vary, as shown in Figure 6.2. The
”committed” property ensures that the chain is processed completely. Afterwards, the
input values altered before will be handled by the LUT models. The upper automaton
in Figure 6.2 shows the chain of input A0, which is used in LUT A1L5, A1L11, ... A1LO1.
Remember Figure 6.1 where the value of A1L5 is changed; this triggers the second part
of Figure 6.2. Here just one LUT uses the output for further calculations.

The model is able to handle propagation delays of a LUT and the wire delay between
diverse LUTs. These delays are combined and modeled at once with the MAX_GATE and
MIN_GATE constants. However, there is no possibility to describe the feedback delay of
an output of a LUT back to one of its own inputs. Therefore, the wire-model shown
above is replaced by one which has a feedback delay (9 feedback) — D-WIRE:

intermed
x>=D_WIRE
20_in:=20 szo!
start assigned
x<=D_WIRE (O 2o
x:=0

sZ0_in?
x:=0

Figure 6.3: Feedback Model

The automaton sets on working in the start location. However, entering the state
will cause a reset of the internal clock x. The time is measured while the automaton
remains in this state. Two rules guarantee that the input value Z0 will be assigned to
the output value — ZO_in after the defined delay D_WIRE: The guard of the transition
leaving the start location is enabled when the clock x is greater or equal than D_WIRE.
Further, the invariant of the start location allows the automaton to stay while the
clock x is less or equal than the defined value. Exactly at the predefined delay the

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 87

output will get the value of the input and the automaton transits to the assigned
state. Changing the input will cause an activity of the synchronizer sZ0_in, which
brings the automaton back to the start location. Also, the clock x will be put back to
Z€ero.

Finally, a model to generate the inputs for the gates is needed. This is performed
by an automaton as shown in Figure 6.4:

run Z20==1 and Z1== out_changed_phi0
roset andx >MAX_GATE ~ 2001d1=20 or z1old1=Z1

.A0'=1 O z0old:=20,z10ld:=Z1 z0old:=Z0,z10ld:=Z1,x:=0
Al:=1,

- o . . -
BO:=1, y>MIN_INIT | x>MIN_INIT| x>MIN_INIT| x>MIN_INIT sBi_in! | sBO_in! |sB1in! | sBO_int

B1:=1, SAO_in! SAO_in! sA1_in! sA1_in! B1:=!B1 B0:=!BO B1:=1B1 B0:=B0

A0:=1A0, A0:=1A0,| A1:=IA1] A1:=IA1,

x:=0 x:=0 x:=0 =0) C O
CS Cb Cb Cb g&:xgﬁﬁgmgxpwm_mw aMIN_INIT x>MIN_INIT

sAQ_in! sA1_in! sA1_in!
BO:=IBO| B1:=1B1| BO:=!1BO| B1:=1B1 A0:=IA0, | AO:=IA0, | A1:=IA1, | AT:=iAY,
sBO_int | sB1.in! | sBO_int| sB1_inl x:=0 x:=0 x:=0 x:=0

WZO or z1old!=W
z0old:=20,z10ld:=Z1,x:=0

out_changed_phi1

x:=0

Figure 6.4: Stimuli-Generation

At the beginning all inputs are initialized and the global clock x is set to zero. There
are two locations where the output of the gate under investigation should not change its
value: out_changed phiO and out_changed phil. In these locations the automaton
should remain as long as the clock is less than the minimal input idle time (&;4.)

MIN_INIT. Afterwards, one of the input rails is altered and the automaton resides in - -

one of the intermediate states. Eventually, the transition to the next common location
is taken which is left after one of the output rails changes. This enables the transition
to out_changed_phil or out_changed_phiO. The variables containing the former value
of the outputs (Z0old and Z1old) are altered and the system is now in a stable state
with outputs in phase 1. The procedure from @1 to ¢0 is similar.

So there are several constants influencing the behavior of the Uppaal-model:

OLUTnim » MIN_GATE: this constant defines the minimal delay for every LUT in the system
to assign the new output value.

OLUTnaz» MAX_GATE Similar to the point above, the maximal gate delay can be set with
this constant. In conjunction with the minimal gate delay a range (As,,) can
be defined in which the outputs of all LUTs will definitely reach their new value.
Both delays comprise the LUT delay as well as the wire delay between the LUTs.

0iqie; MIN_INIT is the minimal delay between the transition of the output and the next
change of an input. So this is the time where the model can stabilize its state.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 88

However, in practice this delay depends on the environment.

O feedback » D-WIRE describes the exact delay of a feedback wire from the output of a
LUT to the input of this LUT. This constant is necessary to build storage loops,
e.g. for RS-latches. However, .y, and dry7,... are used to define a range of
possible output transitions concerning the wire and LUT delays. 0feedback is 2
fixed value used to define the additional feedback delay.

Using these four constants many variations of the following models are generated and
investigated.

6.2 The AND Gate

The schematic and the truth table of the AND-gate given in Section 3.5.1. In this
section its hardware implementation is described. As a first approach our ”standard”
CAL-design flow (cf. Section 3.6) is used and the results are examined. The description
of the functionality written in VHDL is processed by the Synopsys design-analyzer.
The resulting hardware is exported as an edif[29, 56] netlist. Moreover, Quartus is
able to read this format and so the place & route step can be performed. Additionally,
Quartus produces the download file as well as the equation file.

6.2.1 Synopsys-edif-Version

The schematic of the result of synthesis and place & route can be viewed in Figure 6.5.
It depicts the LUT structure of the four inputs (A0, A1, BO, and B1) and the two outputs
Z0 and Z1.

& 71
B1
B2LI B2L1
C3L1
A0
Al A(())
BO B
Bl —* 1 C3L1
A0
Al
BO EI1L3
Bl
A0 E1L1 20
Al EIL3
BO EM4p—— 1 ElL4 ElL1
Bl ——

Figure 6.5: AND-LUT Schematic generated by Synopsys

However, the functionality is implemented by five LUT’s. Recall the functional
description given in Section 3.5.1: Two RS-latches with the corresponding logic to

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 89

compute the set and reset signals of both RS-latches are needed. LUT E1L1 and
B2L1 form such an RS-latch with feedback wires. There are two LUTs generating the
inputs for the RS-latch for Z0, but there is only one for Z1. So parts of the set or reset
logic are merged within LUT C3L1.

The structure and the equation of every LUT is transferred to an Uppaal-model
using the parts described in Section 6.1. Using these models several examinations are
conducted.

The first model that has been used consists of five LUT automata and a wire-
automaton for each connection between the LUTs. In a first approach the impact
of LUT delays is checked. So the feedback is only built with a wire-automaton, i.e.
there is no special treatment of these lines. The MIN_INIT constant is used to simulate
the behavior of the environment. These assumptions can be enough to meet external
restrictions, which lead to a functioning circuit. However, these conjectures can be too
weak and the result will be an incorrect gate.

The goal of these investigations is to answer the question whether or not this imple-
mentation is delay insensitive. Furthermore, it is important to derive the constraints
which have to be fulfilled to guarantee a DI circuit. Valid CAL designs imply an im-
portant property: There is only one transition on one of the two rails in one data wave.
Using this, an event can be used to perform some kind of completion detection. This
leads to a rule for gates based on CAL: Whenever a rail changes its value, it must be
the final update of the values of both rails. So there must not be a transition when one
of the rails has modified the state. However, it is irrelevant whether the modification
was correct or not. Further, remember Figure 6.4: The stimuli generation progresses
after one output has been altered. So if there is more than one output change, the
automaton will continue working, but the output is not in a correct phase. This leads
to a deadlock of the model, because the phases of the inputs will never agree again.
The disprove of these effects is done with the Uppaal-queries shown in Source 6.2.1:

A[] not deadlock %
E<> p_stimuli.out_changed_phiO and (Z1 != p_stimuli.zlold or Z0 != p_stimuli.z0old)},
E<> p_stimuli.out_changed_phil and (Z1 != p_stimuli.zlold or Z0 != p_stimuli.z0old)%

Source 6.2.1: Uppaal-Queries

The first query is intuitive: Is it possible to have no deadlock? The others check if
there is a possibility that an output could be altered after it has been altered once. If
the implementation with an assumed delay configuration is DI, the first query should
be satisfied, the others should not!.

Every line in Table 6.1 shows the results of these three queries using the parame-
terized model for the AND gate. First, only the influence of the gate and wire delays
is tested. The wire delay is combined with the LUT delay of the following instance.

However, every query given in the form Ya — b can be transformed to -3a — —b

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 90

JAV S Uppaal-results

Nr. | 0uTmin | OLUTmas | Gidie || V DOt deadlock | 3 @0-change | 3 pl-change
1 10 100 20 || NOT satisfied | satisfied satisfied

2 10 100 95 || NOT satisfied | satisfied satisfied

3 30 100 200 || satisfied satisfied satisfied

4 50 100 200 || satisfied satisfied satisfied

5 50 100 51 NOT satisfied | satisfied satisfied

6 60 100 0 || satisfied NOT satisfied | NOT satisfied
7 90 100 20 || satisfied NOT satisfied | NOT satisfied

Table 6.1: Gate Delay and the AND-gate without Feedback

With these Uppaal models some very interesting facts can be observed: The first
two runs fail because the difference between the minimal and the maximal LUT is too
great. Recall Figure 6.5 and assume that E1L3 and E1L4 calculate "set” and "reset”
for the RS-latch E1L1. However, in our example Synopsys did not partition the logic
exactly in those three parts. A closer look at the equations of the LUTs discovers that
by a combination of E1L3 and E1L4 the output of ZO is driven to "HIGH”. Changing
the inputs from one phase to the next will cause two activities on the inputs; each
input signal will change exactly one rail. So it is possible that one of the inputs has
already changed its value, but the second has not. The set and reset logic are now not
clearly defined. In the case that the inputs are not in the same phase there should be
no action on the output. So there must not be an active signal neither on set nor on
reset. After the second input has reached its new value, set and reset are recomputed
and the output is driven to needed state.

But if the duration of this calculation differs too much, there will be a hazard. E.g.,
the output is "HIGH” and the time for the computation of set is twice as the time the
process for reset requires. In this case the output is high and the calculation of the
set signal is started, but would not be needed in this case. In addition, the other rail
of the output changes very fast and so the whole logic may advance, but the set logic
is still computing the next value. So the next inputs can arrive, where the reset logic
has to drive the output to ”LOW” and in this example it can be performed very fast. If
the reset-logic is more than twice as fast as the set-logic, the output will be driven to
"LOW” before the set activity of the preceding step has come to an end. Unfortunately,
now a hazard may occur: The output will be driven to "LOW”, the whole circuit may
advance again, but now the set logic changes this output to one once again. However,
this looks like the next correct code word and this may cause a new phase.

The simulation of an AND gate (see Figure 6.6) is used to confirm these investiga-
tions. It depicts the transition from a "HIGH” in phase ¢0 to "HIGH” in phase ¢1 and
the result of the AND-operation. The last five waves in this figure show the outputs
of the LUTs in the FPGA. Furthermore, the output of LUT E1L1 and B2L1 form the
output signal Z of the gate and as the result of an AND-operation the output is also

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 91

"HIGH” in both phases. However, Figure 6.6 shows a working scenario, because the
given implementation of the FPGA with the small delays leads to a working circuit.
The results using other delay values are presented later in this section.

0ps 209 ns 30.0 ns;

.3 G | B 10]
NO T
Al

B 1 X 10 |
B[0] L
Bl

2 SE— 0 X0 !
Z[0] — _ ;
Z1)
B2L1
c3L1 M
E1L1]
E1L3 ~ - 1
ElL4 \

Figure 6.6: Simulation of the AND2-model

As mentioned above the output has to switch from "HIGH” in phase ¢0 to @1 — so
output Z0 is driven from one to zero and Z1 should remain one. As shown in Figure 6.5,
LUT E1L3, E1L4 and finally E1L3 are used to compute ZO. The computation of E1L1,
E1L4 runs in parallel, unfortunately these two LUTSs are not the initial set- and reset-
function blocks. In our case — driving the output to "HIGH” — set should be "HIGH”
and reset should be LOW” and as figured out above, both inputs of E1L3 are "HIGH”.
The synthesis has melt the set, reset and RS-latch function blocks and divides it on
three LUTs. So changing one of them leads to an update of an output.

The second problem occurs due to the two unbalanced paths: If d;4, is less than
dLUT,, the feedback of LUT B2L1 generates an error. Since 0 feedpack iS assumed with
zero, the time from changing the input of LUT B2L1 to the point in time where the new
output.of B2L1 is on the input again includes also d.yT,,,,. One possibility to overcome
the problem described above is to delay the changes of the input. This is done with
the stimuli delay MIN_INIT in the used model. In Table 6.1 the parameters and results
of these trials are listed (line three to five) and the different effects are shown. Model
number five simulates the case that d,4. is greater than Ay, .. Also in this case there
is a possibility the outputs may change after they have changed once. In contrast, the
time between input variances is much greater in the cases shown in line three and four.
However, in both cases the minimal value to get a delay insensitive behavior of the
stimuli delay — derived with further models — is shown.

This long period avoids the deadlock case, but the outputs are still out of specifica-
tion. The last two cases are feasible: No deadlock occurs and the output changes only
once and remains in this state.

The result of the tests shown in Table 6.1 can be summarized as follows. However,
there were much more experiments, but only the significant cases are listed in Table 6.1:

A15LUT < 5LUTmin (61)

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 92

In other words: If the LUTs are built equally — the difference of the delay is nearly
zero, there are no restrictions on the inputs. It is important to note that the feedback
delay is assumed as zero.

This leads to the next analysis where the delay of the feedback wire is modeled
as shown in Figure 6.3. The stimuli delay is defined as specified above, only the wire
delay is under examination. Table 6.2 shows the result of these Uppaal-runs.

AV S Uppaal-results

NI.| OLUTpin | OLUT mas | Oidie | O eedback | V DOt deadlock |3 p0-change |3 pl-change
1 10 100 |100 20 NOT satisfied |satisfied satisfied

2 100 100 0 0 NOT satisfied |satisfied satisfied

3 100 100 0 10 NOT satisfied |satisfied satisfied

4 90 100 {100 1 NOT satisfied |satisfied satisfied

5 90 100 | 20 21 NOT satisfied |satisfied satisfied

6 90 100 { 20 20 satisfied NOT satisfied [NOT satisfied
7 90 100 | 20 11 satisfied NOT satisfied [NOT satisfied
8 90 100 | 20 9 NOT satisfied |satisfied satisfied

9 90 100 | 20 95 NOT satisfied |satisfied satisfied

Table 6.2: LUT Simulation with Feedback (AND-gate)

The asymmetric construction of the gate combined with the logic construction —
set and reset are not exactly built as separate LUTs — leads to a problematic behavior.
First, the result of query one confirms the finding of the previous analysis: As,,,, may
not be greater than dry7,,,, . Otherwise, the circuit will not work properly. Query two
and three investigate a close defined case. Both delays are equal (A, = 0), so every
LUT has to assign the output after this delay. Furthermore, ;4. is set to zero, because
it should not be necessary to have any restrictions on the inputs. Unfortunately, both
models are not free of deadlocks. Neither a feedback delay of zero nor ten leads to a
satisfying model. The rest of the simulation runs are performed with the delay setup of
drut,, = 90 and dru7,,., = 100, so As, . is quite small. Recall Table 6.1 where this
delay configuration in conjunction with ;4. of 20 leads to a stable system. However,
the addition of feedback changes the behavior fundamentally: If a wire delay is greater
than the minimal gate delay, it leads to an unstable behavior. Anyhow, this is quite
intuitive. By reducing the feedback delay it does not lead to a functioning model. As
recently as the wire delay is smaller than the stimuli delay the circuit is working as
specified. But when the wire delay is smaller than the difference of the LUT-delays, the
behavior becomes unstable again. This outcome poses a great dilemma. Summarizing
the results:

5‘idle Z AJLUT (62)

(6.3)

The conjunction of both results is unsatisfying. On the one hand A;, ., should
be as short as possible to minimize the input restrictions. On the other hand the

5feedback 2 AéLUT

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 93

feedback delay must be shorter than the minimal delay, but has to be greater than this
difference.

The problem is the construction of output Z1: Synopsys optimizes the circuit and
so the set, reset and RS-latch-parts are melt together. This problem can be solved
with special design rules as discussed in the following section.

6.2.2 Quartus-only-Version

In contrast to the previous approach, constraints are used to influence the synthesis.
The goal is to build symmetric logic blocks; this means to prevent the tools to combine
functionality and to keep distinct set and reset logic blocks. As shown in Figure 6.7,
it is possible to build such a symmetric structure. However, two additional LUTs are
needed.

Al BILI

A0 A0 BILI 70
Al Al B1L4
BO BO BIL3 BI1L7 BIL8

B1 Bl [— BIL8

Al BIL4

A0 BIL3

Al puel BIL4 piLs Z1

B1 ’— BIL9

Al BIL7

Figure 6.7: AND-LUT Schematic

A closer look at the equations-file makes sure that LUT B1L8 and B1L8 are really
only RS-latches. They have no other functionality, which avoids the problems described
above.

The queries from Source 6.2.1 are used here once more to prove the DI capabilities.
The results of the experiments with a zero-delay feedback of the RS-latch are shown
in Table 6.3. They describe a different behavior than the first implementation of the
AND-gate, although the same variations are used with these models:

The results describe the following behavior: Only the first example does not work
as specified: In this example the difference between minimal and maximal delay is
great and the corresponding time between the two data waves is too small. So there
is the possibility to proceed with the next wave, while one part of the current wave

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES

94

D ur Uppaal-results

NI. | 0LUTmin | OLUTsas | Oidte || V DOt deadlock | 3 @0-change | 3 pl-change
1 10 100 20 || NOT satisfied | satisfied satisfied

2 10 100 95 || satisfied NOT satisfied | NOT satisfied
3 30 100 200 || satisfied NOT satisfied | NOT satisfied
4 50 100 200 || satisfied NOT satisfied | NOT satisfied
5 50 100 51 || satisfied NOT satisfied | NOT satisfied
6 60 100 0 satisfied NOT satisfied | NOT satisfied
7 90 100 20 || satisfied NOT satisfied | NOT satisfied

Table 6.3: Gate Delays of an AND-gate

is still computed. After completion of this held up computation, the update of an
output is performed in the wrong context. Instead of confirming a state, an once
altered output is updated for a second time and therefore set to a wrong value. All
other implementations work as expected. A difference between the delay of the LUTs
smaller than the minimal delay will cause no restrictions on the input timing. If the gate
delays vary to a greater extent than the minimal one, the time between the completion
of one wave and the first update of one input rail must be greater than the value of
the delay-difference (see Query Nr. 1 and 2 in Table 6.3).

The next step is to take a closer look on the influences of the feedback. Here queries
and delay configuration of the edif-example are used once again. However, the results
of the Uppaal runs are much more satisfying.

AV F- Uppaal-results

NI.| 0LUTs, | OLUTmes | Oidle | Ofeedback || ¥ nOt deadlock |3 ¢0-change [3 pl-change
1 10 100 | 100 20 satisfied NOT satisfied [NOT satisfied
2 100 100 0 0 satisfied NOT satisfied |[NOT satisfied
3 100 100 0 10 satisfied NOT satisfied [NOT satisfied
4 90 100 |100 1 satisfied NOT satisfied | NOT satisfied
5 90 100 | 20 110 |[satisfied NOT satisfied [NOT satisfied
6 90 100 | 20 20 satisfied NOT satisfied [NOT satisfied
7 90 100 | 20 111 || NOT satisfied |satisfied satisfied

Table 6.4: LUT Simulation with Feedback (AND-gate)

First, the influence of a great difference of the LUT delays is investigated (Results
see Table 6.4). If 6,4 is long enough there will be a stable system. In contrast the
next two queries check the case where the minimal and maximal LUT delay are equal
and so d;g. = 0. It makes no difference if d feegpack is zero or has any other small value
— the system behaves as required by the CAL-specification. It is important to note
that these two cases require no restriction concerning the input delays. The remaining
four queries check the influence of 6 feedpack in conjunction with d;4.. Query four shows

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 95

that the wire delay may be smaller than the difference between the LUT delays A;, .
The outcomes of query five to seven can be summarized as follows: The minimal LUT
delay in addition with the stimuli delay must be smaller than the wire delay to have a
correct functionality. So the wire delay must be at least as long as the minimal LUT
delay: o

didie = DsLyr (6.4)

O feedback < OLUTim + Oidie (6.5)
Rules to build a delay insensitive AND-GATE with LUTSs
e The resulting hardware must have a symmetric structure.

® SruTnin = Dépyr — OLUTmin

o As,ur L O0LUTmin = Oidte =0

® Ofcedback < OLUTim + Oidle

6.3 The OR Gate

The first implementation of an OR-gate is done in the same way as described in Sec-
tion 6.2.1. So it is not really surprising that the result is similar. As shown in Figure 6.8,
the logic blocks for Z1 are melt and the OR-gate is built by means of five LUTs.

& Z1
B1
B2LI D2L1
D2L1
A0
Al .38
BO
Bl —e 1 B2L1
A0
Al
BO D3L3
Bl
A0 D:;II:ZIS 20
Al D
BO D3IA——] D3La D3L1
B1 E—

Figure 6.8: OR2-LUT EDIF-Schematic

This structure leads to the same problems as described in the previous section.

The results of the simulation performed on the model without feedback are the same
compared with the AND-gate. Furthermore, the solution to overcome these problems
is to perform synthesis and place & route with constraints. The resulting hardware of
this approach is shown in Figure 6.9 and also displays a symmetric schematic.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 96

ADs ur Uppaal-results

Nr. | 00Ut | OLUTmes | Oidie || V not deadlock | 3 p0-change | 3 pl-change
1 10 100 20 || NOT satisfied | satisfied satisfied

2 10 100 95 || NOT satisfied | satisfied satisfied

3 30 100 200 || satisfied satisfied " | satisfied

4 50 100 200 || satisfied satisfied satisfied

5 50 100 51 || NOT satisfied | satisfied satisfied

6 60 100 0 | satisfied NOT satisfied | NOT satisfied
7 90 100 20 || satisfied NOT satisfied | NOT satisfied

Table 6.5: Gate Delays of an OR-Gate

Al BIL1

AQ AO BiL1

Al Al 71
BO o B3 B3 BILS

Al B1LS B1L5

BI1L6 Z0
BIL7 BIL7

Al BIL6

Figure 6.9: Symmetric OR-Gate

The time-behavior of an OR-gate is investigated with the rules defined in
Source 6.2.1. The results of the test are equal to the results of the AND-gate, so
here only the results concerning feedback are presented in Table 6.6:

Therefore, the rules to build a working OR-gate are the same as those for an AND-gate:

e The resulting hardware must be symmetric.

b 6LUTmin 2 A6LUT - 5LUTmin

® Nspyr S OLUTmim = Oigte =0

® dfeedback < OLUT, iy, + Oidie

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES

AV S Uppaal-results

NI | OLUTin | OLUTmas | Gidie | O eedback | V nOt deadlock |3 ¢0-change |3 pl-change
1 10 100 {100 20 satisfied NOT satisfied [NOT satisfied
2 100 100 0 0 satisfied NOT satisfied |NOT satisfied
3 100 100 0| 10 satisfied NOT satisfied [NOT satisfied
4 90 100 100 1 satisfied NOT satisfied [NOT satisfied
5 90 100 |100 20 satisfied NOT satisfied |[NOT satisfied
6 90 100 | 20 20 satisfied NOT satisfied |NOT satisfied
7 90 100 | 20| 111 || NOT satisfied |satisfied satisfied

Table 6.6: Gate Delays of an OR-Gate (full-Quartus) with Feedback

6.4 The INV Gate

As mentioned in Section 3.4.2, the inversion gate is very easy to build. Both input lines
have to be inverted to get the CAL-inverter. Figure 6.10 shows the result of synthesis
and place & route:

A0 A0

C3L1

Al Al

B2L1 Zl

Figure 6.10: INV-LUT Schematic

A LUT is used in both rails and thus a single inverter is rather expensive. However,
in many cases Quartus will merge this inverter with surrounding logic elements. The
result of Uppaal models of a stand-alone inverter is given in Table 6.7 and looks quite
dull:

Dsur Uppaal-results

Nr. | 0LUTin | OLUTmas | Gidte || V not deadlock | 3 p0-change | 3 pl-change

1 10 100 20 || satisfied NOT satisfied | NOT satisfied
2 10 100 95 || satisfied NOT satisfied | NOT satisfied
3 30 100 200 || satisfied NOT satisfied | NOT satisfied
4 50 100 200 || satisfied NOT satisfied | NOT satisfied
5 50 100 51 | satisfied NOT satisfied | NOT satisfied
6 60 100 0 satisfied NOT satisfied | NOT satisfied
7 0 100 0 satisfied NOT satisfied | NOT satisfied

Table 6.7: Gate Delays of an Inverter

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 98

As anticipated, every timing pattern used above leads to a working inverter. Fur-
thermore, no timing assumptions have to be made and the inverter will work with
any delay constellation of the used LUTs and wires. So there are no complications if
INV-gates are merged into surrounding elements.

6.5 N-Signal p-Detector

Recall the function of an ¢-detector as described in Section 3.5.2: Starting with an n-
bit wide signal, the result of the computation is the phase of this bus. A very important
rule is that the output is only changed if all signals are in the same phase. However,
in a design various yp-detectors are used and so a diversity of width of such ¢-detectors
is applied. Here a digression to the design flow is necessary. The behavioral CAL
description is able to handle changing bus widths easily. Using VHDL, these buses
are defined with a particular width and the according (-detector is defined with a
variable input-width in the library. The adaption is done automatically. Unfortunately,
adjustment of hardware, as described with cal_rail_logic is not as simple. Special
VHDL constructs, e.g. generics and generate, are used to build the needed -
detectors on demand during the synthesis. Synopsys is able to build them, but the
optimization using Quartus pre-compiled blocks as described above is not applicable
easily. First, two automatically generated ¢-detectors are described, followed by a
generic solution for n-bit wide yp-detectors.

6.5.1 Two Signal p-Detector

The first circuit under investigation is the two signal wide y-detector. Due to its nature
it is the smallest that makes sense to build. The two signals use four rails A0 — A3 to
represent the inputs. Figure 6.11 shows results of synthesis and place & route. After
synthesis and place & route, the inputs are not automatically separated on signal level,
e.g represented as A[0].a and A[0].b, A[1].a and A[1].b. Instead, the inputs are
merged to one bus.

Al BiL1 -2
BILI
AO-A3 ciL
A2
A3 CIL1

Figure 6.11: Two Signal p-Detector LUT Schematic

The design is tested with two Uppaal model types. The first model uses ideal
RS-latches. This is done by modeling the feedback delay with zero. In Table 6.9 the
finding of the Uppaal runs using models without feedback are listed.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES

99

Dspur Uppaal-results

Nr. | 6LuTmin | OLUTmas | Oidie || V not deadlock | 3 ¢0-change | 3 pl-change

1 10 100 20 || satisfied NOT satisfied | NOT satisfied
2 10 100 95 || satisfied NOT satisfied | NOT satisfied
3 30 100 200 || satisfied NOT satisfied | NOT satisfied
4 50 100 200 || satisfied NOT satisfied | NOT satisfied
5 50 100 51 || satisfied NOT satisfied | NOT satisfied
6 60 100 0 satisfied NOT satisfied | NOT satisfied
7 90 - 100 20 || satisfied NOT satisfied | NOT satisfied

Table 6.8: Gate Delays of a Four Rail ¢-Detector

The assumption of a zero-delay feedback leads to a well-working circuit as shown
in Table 6.8. However, the fiction of an ideal RS-latch is abandoned using the more
realistic models containing feedback and the outcomes of these computations show a.
different situation (see Table 6.9):

AV - Uppaal-results

NI 0LUTpin | OLU T mas | Oidie | Ofecdback | V Ot deadlock |3 ¢0-change |3 pl-change
1 10 100 [100f 20 satisfied NOT satisfied |[NOT satisfied
2 100 100 0 0 satisfied NOT satisfied |[NOT satisfied
3 100 100 0 10 NOT satisfied |satisfied satisfied

4 90 100 {100 1 satisfied NOT satisfied [NOT satisfied
5 90 100 | 20| 105 |[NOT satisfied |satisfied satisfied

6 0 100 | 20 20 satisfied NOT satisfied [NOT satisfied
7 90 100 | 20 95 NOT satisfied |satisfied satisfied

Table 6.9: Gate Delays of a Four Rail ¢-Detector with Feedback

Query one and two succeed because 84 is greater (or equal) than dfeegpocr- In
contrast, configuration three fails, because the feedback delay is greater than é;4.. The
reason for this behavior is based on the asymmetric treatment of inputs. In contrast
to inputs AO and A1, which are inputs of the RS-latch constructing LUT B1L1, A2 and
A3 are preprocessed. The result of this XOR-gate is delayed to a minimal extent with
OLUT,,,» Whereby the other two inputs are not held up. This determines the design
restrictions (6.6), which is mainly driven by the value of d;q. As it can be seen, As, .
has no influence on whether the circuit works or not. The relation of ;5. and dfeeapack
determines the behavior of these models.The design rule can be summarized as:

6idle Z] feedback (6 6)

The correct functionality depends on the idle time of the inputs and thus on de-
sign constraints, because dfeedrack Will always be greater than zero. Nevertheless, this
situation can be improved using construction methods proposed in Section 6.5.3.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 100

6.5.2 Four Signal ¢p-Detector
The Synopsys generated eight rail p-detector is shown in Figure 6.12.

BI1L1

BIL1
BIL2
BIL3
BILS

BiL2 out

B1L3

A0-A7

A0
Al

C3L1

BILS

B1L4

C3L1

Figure 6.12: Four Signal ¢-Detector LUT Schematic

LUT B1L3 implements the needed RS-latch, the remaining LUTSs build the XOR-
combination and the ”all-ones” and ”all-zero” detections as described in Section 3.5.2.
Even so, in contrast to the schematic, Synopsys has doubled the XOR-gates and merged
them with AND and OR computations. For example, B1L1 and B1L2 are the pairwise
XOR-conjunction of all inputs combined with an OR-function. To complete the ”all-
zero” detection, the results of both LUTs are combined by the LUT acting as RS-latch.
Unfortunately, five instead of the given four inputs would be required to do the same
job for the ”all-ones” detector. This problem is solved by the additional LUT B1L5,
but this leads to an asymmetric design again.

AV, Uppaal-results

NI. | 0LUTmin | OLUTmas | Oidte || V ot deadlock | 3 p0-change [3 pl-change

1 10 100 20 | satisfied NOT satisfied | NOT satisfied
2 30 100 200 || satisfied NOT satisfied | NOT satisfied
3 50 100 200 || satisfied NOT satisfied | NOT satisfied
4 50 100 51 || satisfied NOT satisfied | NOT satisfied
5 60 100 0 satisfied NOT satisfied | NOT satisfied
6 90 100 20 | satisfied NOT satisfied | NOT satisfied

Table 6.10: Gate Delays of a Eight Rail ¢-Detector

There are no timing restrictions, because as shown in Figure 6.12 every input value
is processed at least by one LUT before the output of these LUTs are connected to the
input of the latch-building LUT.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES

101

Ds yr Uppaal-results
NI | 6LUT i | OLUT s | idie | fecdvack || V not deadlock |3 p0-change |3 pl-change
1 10 100 {100 20 satisfied NOT satisfied |[NOT satisfied
2 100 100 0 0 satisfied NOT satisfied [NOT satisfied
3 100 100 0 10 satisfied NOT satisfied |[NOT satisfied
4 90 100 {100 1 satisfied NOT satisfied [NOT satisfied
5 90 100 | 20 105 | satisfied NOT satisfied INOT satisfied
6 90 100 | 20 20 satisfied NOT satisfied |NOT satisfied
7 90 100 | 20 95 satisfied NOT satisfied [NOT satisfied
Table 6.11: Gate Delays of a Eight Rail ¢-Detector with Feedback
6.5.3 Generic N-Rail p-Detector

In this section an implementation rule is presented that holds regardless of the width
of the input bus. Recall the LUT-schematic in Figure 6.11 where the main problem is
the asymmetric processing of the input signals. As shown in the Uppaal result, this
leads to a faulty behavior. Therefore, we propose the implementation as shown in
Figure 6.13:

A0
Al ciL2
— BIL1
A0-A3 Cil2 gL out
CILI1
A2 —
A3 CILI

Figure 6.13: Two Signal wide Instance of a Generic yp-Detector

In contrast to Figure 6.11, inputs of two corresponding rails — former parts of one
signal — are processed separately and in parallel to each other. So the difficulties
described in Section 6.5.1 do not occur.

The principle for the generation of an n-signal wide ¢-detector can be viewed in
Figure 6.14. Every signal is handled by a separate XOR-gate. However, two input lines
of each LUT are wasted.

Demonstrating the functionality, the results of an eight rail ¢-detector are shown
in Table 6.12.

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES

CiL1

CiL2 gy

CI1L3

ClL4

102

CIL1

A0
Al CIL1
A2
A3 CiL2
AO-A7
Ad
A5 CIL3
A6
A7 CIL4

CiL2 gj13

CIL3

CIlL4

BIL3

BIL10
BILI pjLi0

out

Figure 6.14: Four Signal wide Instance of a Generic yp-Detector

AV S Uppaal-results

NI.| 0LUT i | OLUT ez | Oidie | O feedback ||V nOt deadlock |3 ¢0-change |3 pl-change

1 10 100 {100 20 satisfied NOT satisfied |NOT satisfied
2 100 100 0 0 satisfied NOT satisfied | NOT satisfied
3 100 100 0 10 satisfied NOT satisfied | NOT satisfied
4 90 100 |100 1 satisfied . NOT satisfied | NOT satisfied
5 90 100 | 20 105 ||satisfied NOT satisfied | NOT satisfied
6 90 100 | 20 20 satisfied NOT satisfied |NOT satisfied
7 90 100 | 20 95 satisfied NOT satisfied |NOT satisfied

Table 6.12: Gate Delays of a 4-Signal Instance of a Generic w-Detector with Feedback

6.6

Latch

6.6.1 One Signal wide Latch

Figure 6.15 depicts the compilation result of a one signal wide latch. The structure is

quite simple. A latch for each rail is built using one LUT.

D[0-1]

L

AlL31

reset

AlL31

Q[0-1]

gatel

gatel

resetl

L

AlLS1

DI A1L51

gatel

resetl

Figure 6.15: One Signal wide Latch Cell

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 103

Every input of the used LUT is used — one for the new input D[i], (i € {0, 1}), the
gatel and reset1 values and the last for the feedback constructing the latch. However,
as a result of the design-flow the names for reset and gate have a ”1” suffixed. In
contrast to the models investigated so far, a latch has two types of inputs — the data
signal and control rails. So the Uppaal-models have to be adapted to fulfill these new
requirements. Therefore, a new parameter d.oniror (MIN_ST) is introduced to control the
timing behavior of the control signals. d;4. is applied for delaying the data signal. The
new stimuli generation template used with Uppaal is shown in Figure 6.16

reset N
@ =5*MAX_GATE x>MIN_ST output_changed
x:=0, x:=0,ins=0 sgate1_in!
reset1=1 gate1:=0,
Qlold:=Q1, Q0==D0 and Q1==D1
x>MIN_INIT and ins QOold:=Q0, x:=0

sDO_in! ins:=0
DO:=IDo x>MIN_ST
ins:=1 .

sgate1_in! gate_open

gate1:=1

Figure 6.16: Stimuli Generation for an one Signal wide Latch Cell

Starting at the reset location, the reset will be cleared after a period of five dry7,.,. -
The initial wait is required so that the system reaches the stable location, which is also
the starting point of the operation loop. With the transition to this location the clock
x is reset and so time measurements can be activated. The transitions positioned as a
leaf with source and sink in location stable are used to alter one of the inputs after the
minimal delay 6;4. has elapsed. After .oniror is passed the transition to gate_open is
enabled, the assignments activate the gate, and the latch is now transparent. The model
is now in the gate opened location. Now the system generates its new values. When
those values are present to the output, the transition to output passed is enabled.
Now the sequence closing the latch by deactivating the gate might be performed. The
time dqontrot must have elapsed before changing the gate rail, indicating to close the
latch.

We test, if the latch is really closed and stores the value. This can be done with
the query shown in Source 6.6.1 which means that the output of the latch must not
change its value after gate is deactivated.

E<> p_stimuli_latch.stable and
(Q0 !'= p_stimuli_latch.QOold or Q1 !'= p_stimuli_latch.Qlold)

Source 6.6.1: Uppaal-Query for the Latch Models

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 104

Several runs have been performed and just the significant ones are shown in Ta-
ble 6.13. It is important to note that the result satisfied means that there is a
possibility that the output changes in the stable state. So this is a negative result for
the latch test.

NI | 000Tmin | OLUTmes | 9idie | Ocontrol | Ofecdback || 3 output-change |

1 60 100 150 0 90 satisfied
2 60 100 150 10 0 NOT satisfied
3 60 100 150 10 10 NOT satisfied
4 60 100 150 10 70 satisfied
5 60 100 50 0 0 NOT satisfied
6 10 100 0 19 20 satisfied
7 10 100 0 20 20 NOT satisfied

Table 6.13: Gate Delays of one Signal wide Latch with Feedback

Recall Figure 6.15 to point out the problems: If the rail gate changes too early,
the feedback-rails will not be able to update the input of the LUT. So the precedent
output value is used for the calculation and the output is changed to the old value.
The result can be outlined as:

] feedback < 5control (67)

Nevertheless, delaying the control signal gate with d.oniror @utomatically holds up
the inputs at the same value. The inputs can change immediately after the gate signal
closes the latch.

6.6.2 Latch with Enable Logic

The next step is to merge one latch cell with the corresponding enable-logic as shown
in Figure 6.17. The gate rail for the latch is now derived by the enable-logic. So a
gate is replaced by capture, capture_done and pass as inputs to the entire latch cell
(see Section 3.5.4).

D[0-1] ‘— BIL7 0-1
D1 BIL7 Qo1
DIL1

capture_done reset

pass capture_done

capture pass DIL1

capture

BIL5
g(l)Ll BILS

reset reset

Figure 6.17: One Signal wide Latch Cell with Enable Logic

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 105

However, this requires the modification of the stimuli generation logic, as depicted
in Figure 6.18: Starting with the model shown in Figure 6.16, a transition is added to

reset »
x>=5*MAX_GATE x>MIN_ST output_changed
@ x:=0, O x:=0 scapture_done_in!
res=1, capture_done:=capture, Q0==D0 and Q1==D1
pass=1 x:=0 x:=0,
Q1lold:=Q1,

x>MIN_INIT and ins== stable QOold:=Q0,
in! ins:=0,st:=0

SD%?S!IS&), x>MIN_ST and ins== ' Sate. open
ins:=1 scapture_in!

x>MIN_INIT and ins=0 capture:=lcapture
sD1_in! x>MIN_ST and st==0 x>MIN_ST and st==
D1:=!D1, spass_in! spass_in!
ins:=1 pass:=!pass, pass:=!pass,st=1

st=1
Figure 6.18: Stimuli Generation for a Latch Cell with Enable Logic

the stable location as well as to the gate_open location. This transition models the
pass rail from the downstream register. It should be able to activate the pass-signal
before the inputs are altered. This can be realized in location stable, or later. The
transition leaving stable does not modify gate directly but controls the capture rail.
In a real design this would be done by a (-detector. In the same way, the transition
from output_changed to stable alters not gate but capture_done.

Query 6.6.1 is used for the experiments and results that are shown in Table 6.14
(NOT satisfying the Uppaal-query means a working circuit):

o I Nr. | 6LUT,,,,-,, | (S‘LUTmaz | 6idle l 5control | dfeedback ” 3 Output'Cha‘nge |

1 60 100 100 0 0 NOT satisfied

2 60 100 150 0 10 NOT satisfied

3 60 100 150 0 70 satisfied

4 40 100 100 0 41 satisfied

5 40 100 100 1 41 NOT satisfied
81 80 100 200 0 0 NOT satisfied
84 80 100 200 0 90 satisfied
88 80 100 200 10 90 NOT satisfied
29 60 100 200 90 0 NOT satisfied

Table 6.14: Latch with Enable Cell and Feedback

It can be seen that 4,4, must be greater than d.y7,,,.. In Figure 6.16 this claim can
be viewed in detail. LUT D1L1 forms the enable logic and thus the new value for the
gate rail — close the latch — required by the following LUTs must have been computed
before one of the inputs changes. When this computation has completed, the inputs

CHAPTER 6. DELAY-INSENSITIVITY OF CAL BASIC GATES 106

can change immediately. Furthermore, the delay of D1L1 gives the feedback time to
update the value on the input of the LUTSs. If the feedback delay 0 feedback is less than
the minimal gate delay é.yr,,,,, there are no restrictions to the control signals. If this
does not occur, then d.oniror is needed to ensure a working circuit. Summarizing the
results : : .

5LUTmm + 6control (68)
OLUTmas (6.9)

d feedback S
didte >

6.7 Summary

In this chapter we have outlined construction conditions and requirements for the
environment to guarantee a delay insensitive behavior.

We have shown that the AND and OR gate can be used without restrictions to the
environment in a CAL-circuit, if the construction ensures that the difference between
the minimal and maximal gate delay of a LUT (A,) is less or equal than the minimal
gate delay (dLyr,..,). In general, the delay of a LUT on an FPGA does not vary in
a wide range. If the LUTs can be placed at close quarters, wire delays connecting
these LUTs will be in a close range and so the requirement will be fulfilled. Working
Quartus, this can be enforced using so-called ”lock-regions” where parts of a design
can be placed and the composition is fixed and used several times. Furthermore, the
INV-gate operates delay insensitive without any restrictions.

It has been shown that the main problem when constructing delay insensitive basic
gates is an asymmetric structure of the gates. This can be especially seen in the -
detector section where regulation of the structure leads to the desired behavior. This
leads to a generic construction scheme for delay insensitive implementations of n signal
wide ¢-detectors. '

Concerning CAL-latches, it is important to note that the delays of the control
signals (capture, pass and capture_done) in relation to the feedback delay 6 feedpack
are critical. If the control signal meets its requirements elaboration in Section 6.6.2,
input signals are not constrained.

All of these findings are based on the assumption that the gates are used in a
pipeline as well as the handshake structure are fulfilling the CAL-rules. However, in
Section 5 we have shown that the pipeline and f(z) logic structure works correctly, if
the basic gates fulfill their requirements.

This looks like a circular argument, but it is solved at the startup using the reset.
With a reset, the pipes as well as the gates are set to a well-defined starting state where
all CAL-rules defined in Section 3.2 are fulfilled?.

2The setup and startup of pipelines is discussed in [22].

Chapter 7

Hardware Implementation:
Asynchronous SPEAR

Contents
7.1 General Description 108
7.1.1 Design Migration Issues 108
7.2 PipelineImprovements 109
7.2.1 Providing Latches with Different Initialization Values 110
7.2.2 7Capture Done Latches” in the Feedback Path 111
7.3 Adapting the Design-Flow 112
7.3.1 Pre-compiled Quartus Gates 113
7.3.2 Additional Target Library CALRAILLIB. 114
7.3.3 Simulation Support, 114
7.4 Implementation Results 115

107

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOQUS SPEAR 108

7.1 General Description

The conversion of the synchronous SPEAR into an asynchronous design shall serve
as a proof-of-concept for the CAL design technique as well as for the implementation
constraints required for design of delay insensitive pipelines and basic gates outlined
in Chapter 5 and 6. The resulting asynchronous processor represents an important
platform for many types of experimental assessments.

7.1.1 Design Migration Issues

Starting point for our implementation is the synchronous processor SPEAR described in
Chapter 4. The VHDL-sources describing SPEAR are reused to build its asynchronous
counterpart ASPEAR. However, several modifications to the sources have been applied
to construct a functioning asynchronous processor. Major changes concerning the
coding style and the design entry have been applied to the following parts of the
processor:

Data Types: In the design entry every signal data type has been changed from
std.logic to cal_logic. Furthermore, logic operations that use constants like
>0’ have been adapted. There are functions to assist these modifications, e.g.
the function isnull (), which is also defined for the cal_logic data type.

Inputs and Outputs: Inputs must be phase-aligned before being further processed,
which is done with std_logic to cal_logic conversion functions. This process
is similar to registered inputs in synchronous designs. The environment has no
need for the phase. Here purely the value of the signal is relevant. Thus, the
phase information is removed at the outputs.

Register and Pipeline: Traditional registers with clock’event cannot be used be-
cause of the absence of a clock. Every register must be transformed into hand-
shake constructs. There is one big difference to the use of a global clock: The
clock is the same throughout the whole clock domain. Thus, a unit does not need
to know the logic units which provide the data. In our CAL approach data source
and sink must be recognizable to establish a proper handshake. This information

has to be added in order to transform a design from the synchronous style to
CAL.

Memory: Synchronous memories cannot be used in CAL. However, it is not possible
to use a memory with twice the capacity in order to connect the cal rail_logic
vectors instead of the original std_logic vector. The addresses in both phases,
0 and ¢1, should access the same data word. Doubling the memory generates
two memory cells for each phase and so separated values can be stored. The
proposed solution is to remove the phase information from the address, search
the value in a standard memory and rebuild the phase afterwards. However, this

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOUS SPEAR 109

is a bundled data approach, and delay elements have to be used to produce the
new phase an the correct time. This proposed solution, which is used to design
our processor is described in [22].

7.2 Pipeline Improveﬁients

Recall the CAL pipeline example shown in Figure 3.4.2: Instead of using the
clock’event clause, a component of a CAL-register is instantiated. The required
width of this register as well as the initialization value after reset are both assigned as
a generic. The different methods for building these registers, by defining the archi-
tecture, are the focus of this section. First of all, the entity of a cal_reg encapsulates
all implementation details. From the designer’s point of view it makes no difference,
whether the functionality of the cal_reg component is provided by a Quartus pre-
compiled gate or an architecture is used to build it — in any case the designer can
simply instantiate it. This encapsulation makes it easy to change the architecture and
compare different implementations.

First, a number of latches must be implemented in the register according to the
bus width. This is elegantly performed in the architecture with a for i in range
generate directive as shown in Source 7.2.1:

latches: for i in d’range generate
init00: if reset_value = 00 generate

latch_cell_proc_reset_00(gate => gate, reset => reset, D => d4d(i),
Q => next_out(i));
end generate init0O0;
initO1: if reset_value = 01 generate
latch_cell_proc_reset_01(gate => gate, reset => reset, D => d4(i),
Q => next_out(i));
end generate initO1;
init10: if reset_value = 10 generate
latch_cell_proc_reset_10(gate => gate, reset => reset, D => d(i),
Q => next_out(i));
end generate initl10;
initll: if reset_value = 11 generate
latch_cell_proc_reset_l11(gate => gate, reset => reset, D => d(i),

Q => next_out(i));
end generate initll;
end generate latches;

Source 7.2.1: Register Implementation in CAL

The for clause generates d’range instances of a procedure and connects them to
the common reset and gate signal. Which procedure is selected depends on the desired

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOQUS SPEAR 110

initialization value after reset. This is discussed in 7.2.1. Furthermore, a ¢-detector
with the required width is generated and instanced.

7.2.1 Providing Latches with Different Initialization Values

In synchronous designs the initialization value after reset is defined with the if
(reset=ACT) clause in the design process. An appropriate method is also needed
for CAL designs. Since in CAL are four different values and as shown in [22] a simple
initialization value is generally not sufficient, there must be a possibility to initialize a
register with one of the four values. An obvious solution is adding a signal with the
desired initial value. However, this has an unintended side-effect in our implementa-
tion with Apex LUT’s: To build one latch we already need all four inputs of a LUT:
One for the input data value, the gate, the reset, and finally the feedback. The initial
reset value would be the fifth input and so every latch would demand two LUT's to be
constructed instead of one. This is a waste of resources, further it makes the timing
behavior much more difficult to handle.

Our solution is based on the fact that the initial value is defined at design time
and will not be altered afterwards. The solution is clear: We designed four different
latch types — one for each possible start value. During the creation of the register the
appropriate latch is selected in order to provide the desired initial value. This can be
viewed in Source 7.2.1: The body of the for. . .generate contains for if-clauses where
the appropriate latch for the given reset_value is selected. As mentioned above, in
this step a procedure is mapped into the design. One of these procedures is shown in
Source 7.2.2 and will be described in detail later on.

procedure latch_cell_proc_reset_11 (signal gate, reset : in cal_ctrl;
signal D: in cal_logic; signal Q : out cal_logic) is
begin
-- pragma map_to_entity LATCH_CELL_RESET_11
-- synopsys synthesis_off
if reset = RESETACT then
Q <= ’h’;
elsif gate = CAL_LATCH_ENABLE then
Q <= D after 10 ms;
end if;
-- synopsys synthesis_on
end;

Source 7.2.2: Register Cell Implementation in CAL

The procedure shown above provides "HIGH” in phase @0 ("h”) as start value and
describes the behavior of this latch for the simulation: The output is set to ”h” in
the case of reset, otherwise the output Q is set to the value of the input D, if the
gate is enabled. This assignment is delayed for 10 ns for simulation purposes. To

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOUS SPEAR 111

use pre-compiled gates this code is enclosed with the synopsys synthesis_off and
synopsys synthesis_on paradigms. This forces Synopsys to pass the code without
synthesis. Furthermore, with the pragma map_to_entity LATCH_CELL RESET 11 di-
rective Synopsys is instructed to use the entity LATCH_.CELL _RESET_11, instead of the
functionality of the code. Thus, a pre-compiled component can be selected and there
is no need to synthesize the code of the procedure. As shown in Section 7.3.1, these
four latch implementations are part of the library CALRAILLIB.

7.2.2 7Capture Done Latches” in the Feedback Path

One major finding of Chapter 6 is the demand of latching the capture done signal.
Thus, the insertion of the reverse latches in the pipeline feedback path is performed
automatically while generating the register. Source 7.2.3 illustrates this step:

cdone_latchQO: if reset_value = 00 or reset_value = 11 generate
latch_cell_proc_reset_00(gate => inv_gate, reset => reset, D => c_done_cal,
Q => c_done_cal_next);
end generate cdone_latchO;
cdone_latchl: if reset_value = 01 or reset_value = 10 generate
latch_cell proc_reset_l1(gate => inv_gate, reset => reset, D => c_done_cal,
Q => c_done_cal_next);
end generate cdone_latchil;

Source 7.2.3: Capture Done Latch Implementation

There are two instantiations shown in Figure 7.2.3, however, only one of them is
really used during the generation step. It depends on the initialization value after
reset to find out which of the latches will be built. The reason for this conditioned
instantiation is the need to match the output value of the register with the capture done
signal. If the initial output of register is in phase 0 (the first instance in Source 7.2.3),
capture done must be 0 too. Respectively, if the register starts with outputs in 1,
capture done is set to ¢l.

An implementation example using a four signal wide register with initial value
"HIGH” in phase ¢1 is depicted in Figure 7.1%:

On the CAL level there are four latches used to store the values of the bus D. Notice,
this bus is four signals (of type cal_logic) wide, therefore the actual hardware consists
of eight rails and eight latches. In the middle of Figure 7.1, the two (-detectors are
shown: One of them is connected to the input, the other one is used to determine the
phase of the output. The output of these ¢-detectors, as well as the pass signal are
used by the enable logic to calculate the gate signal. This control signal is directly

1Due to the fact that Figure 7.1 is a Synopsys screenshot, there is no possibility to influence the
layout. Unfortunately, one latch has been moved to the inputs on the left side.

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOQOUS SPEAR 112

Fanor oo
[T @ L1923 54/f1_det_ap 633/pnidet_4/AC3: 0>

log jc-8
fi.det_196/1i_det_194/¢: gpy oo 623 hidet_4/AC1B23:4>
2: > L] —
d<3 E>D EATCHJCELL _REPET_B1L [paal TCH_ENABLEJCELINV LATCHJYCELL_REPET_11
— ‘- “+ . v —Dc_dune
a<a> [DAT § TYVZIEFTYS 'Y7TT) PSR TEY TSP R 1Y
logjc-p
$ ti.det_194/7:_dut_1947{i _odat_op_633/phlidet_t/ACIRB23:4>
pass' >
9> LATCHICELL _REPET_B1
B—] % g<3:@8>
<> LATEH JCELL _REPET_21
L] -
Q<1
acz> LATCH JCELL _REPET_ €1
L] -
2>
resetl >

Figure 7.1: Implementation Result of a Four Signal wide Register

used by the four latches and further in its inverted form by the latch controlling the
capture done signal.

7.3 Adapting the Design-Flow

The findings from Chapter 5 and 6 have impacts on the CAL design flow. Thus,
the design flow presented in Section 3.6 is adapted to fulfill the new requirements.
Figure 7.2 depicts the improved CAL design flow.

The beginning of the improved design flow is equal to the ”normal” CAL design
flow. The first synthesis to transform cal_logic gates to cal_rail _logic is performed
as in the normal design flow. However, the improved design flow uses an additional
library during the second synthesis. The CALRAILLIB is used as an additional target
library (see Section 7.3.2) to introduce the symmetric gates as desired in Chapter 6.
The resulting design descriptions comprise not only cells from the APEX library, but
also gates from CALRAILLIB. Therefore, it is necessary to add simulation models of
the pre-compiled Quartus gates to be able to perform the pre-layout simulation (see
Section 7.3.3). Furthermore, the gates described in this library must be provided to the
place & route step using Quartus (procomp. basic gates) in Figure 7.3). The result
of Quartus is similar to all three design flows and is shown in Figure 7.2: The logic
design is represented by a downloadable file for programming the FPGA. Furthermore,
a simulation model is produced, which only consists of gates provided by the target

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOUS SPEAR 113

: : CAL Design Flow
Conventional Design Flow g
normal improved
Behavioral Behavioral
Description (VHDL) Description (VHDL)
)
(Elaborate) Elaborate
SJD_LOGIC(O Symbolic Gatej CAL to CAL Gates
i ¥
Functional Functional
Description Description
-
Synthesis/Replace]/ i
CAL Gates to CAL-rail
— T
v ¥
. CAL-rail Functional CAL-rail Functional
> | Descrjption Description -
@ Synthesis [Synthesis: Ji i Synthesis: @
: Symbolic Gates to TARGET Lib CAL-rail 1o TARGET Lib CAL-rail to TARGET Lib
¥ v ¥
Pre-layout (sTp_LoGIC) Pre—layout (STD_LOGIC) Pre-layout (STD_LOGIC)
Description Description Description
— i 1 3 -
Quartus Quartus: J Quartus: }/ Quartus: precomp.
Apex Place & Route Place & Route Place & Route Basic
Gates . Gates
Figure 7.2: Improved CAL Design Flow
gate-level library, the so-called VITAL?[124, 125]-library.
7.3.1 Pre-compiled Quartus Gates
() One of the main outcomes of Chapter 6 is the need for symmetric basic gates. The

proposed solution is to once compile these gates in Quartus carefully considering all
| constraints and then using them as pre-compiled gates in CAL-designs.
‘ The proposed basic gates and register components are compiled with Quartus from
scratch using the behavioral description available in VHDL-sources. Pre-compiled gates
are implemented for the following entities:

e Basic Gates: AND, OR, and INV gates

e Register Components: Latches (four types with the four possible initialization

values), latch enable cell

o Conversion Functions: TO_CAL_LOGIC_CELL

2VHDL Initiative Towards ASIC Libraries

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOUS SPEAR 114

The resulting hardware is transferred to a verilog Quartus mapping(.vqm) file
and can be used in subsequent designs. In Figure 7.3 the box on the left side marks
the usage of a pre-compiled AND-gate.

7.3.2 Additional Target Library CALRAILLIB

The library CALRAILLIB is used to provide Synopsys with the names and the types
of the gates which are implemented as pre-compiled Quartus gates. Using this infor-
mation Synopsys is able to regard these components as parts of the target library.
Thus, no further activities occur and instances of these gates are placed in the design.
Source 7.3.1 lists the definition of the library element of an AND-gate.

cell(AN2) { bus(Z) {

area : 2; bus_type : bus2;

bus (A){ direction : output;
bus_type : bus2; timing() {
direction : input;
capacitance : 1; related bus_pins : "A";
} }

bus (B){ timing() {
bus_type : bus2;
direction : input; related_bus_pins : "B";
capacitance : 1; }
} }

Source 7.3.1: Library Definition of an AND-Gate

However, these gates are only used to force Synopsys to utilize the pre-compiled
gates in the design. Therefore, the area value is set to a very small value in order to
pretend to Synopsys that these gates are very small and economical to use.

Source 7.3.2 shows the result of performing the report_1ib command in Synopsys:

The attribute b denotes that these cells are only black boxes. Thus, they are used
as place holders and the required functionality is provided by the pre-compiled gates.

7.3.3 Simulation Support

As mentioned in Section 7.3, the pre-layout description of the design contains only
instantiations of APEX-cells (e.g. LUTSs) and pre-compiled cells. The simulation model
of the APEX-cells is provided by a library shipped with Quartus. This information is
also required for our pre-compiled gates.

During the synthesis and place & route steps, Quartus generates appropriate VHDL
models for the resulting hardware. Furthermore, a standard delay description file (.sdf)
is produced, which contains the adequate timing information for the VHDL model.

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOUS SPEAR 115

Cell Attributes
AN2 b
Iv b

LATCH_CELL_RESET_init_value0 b
LATCH_CELL_RESET_init_valuel b
LATCH_CELL_RESET_init_valuelO b
LATCH_CELL_RESET_init_valuell b

LATCH_ENABLE_CELL b
OR2 b
TO_CAL_LOGIC_CELL b

Source 7.3.2: Result of Synopsys Library Report: CALRAILLIB-Members

This information is collected for all pre-compiled gates and stored in a library, which
can be used without difficulty as additional target gate library.

Nevertheless, fundament of this new library is the APEX-cell library mentioned
above. All new gates defined in the new library are composed of elements of the
APEX-cell library, which makes it easy to change the target technology.

7.4 Implementation Results

Figure 7.3 displays the final report performing the place & route step with Quartus.
The target technology for the implementation of the asynchronous SPEAR is the APEX
EP20K1000C FPGA.

@@ Quartus 1l - C:M0SC AH/hubeilpanda newliblaspear_v;l_l'ail - aspear_vi_vail - [aspear_v1_rait Compik\tioh Repoit] ;.J'QJ@
@Bc:amam fssignments Processing Toos Window e : RS-
DSH B sBR|>~ | 23T B> Trn|hini®)|
zixd E‘f] (aroimnamt A [Frow Summary
13 Design Uniks Aj R ;
Flow Status Successfl - Wed Dec 01 0327:40 2004
Revision Name _v1_tat
Topievel Entity Name aspear_v1_rad
2 bouk bocsier.ce (EDFF enty) Fordy
q Device EP20K1000CBE52C7
46x
e e o) Totallogic elements 20,303 / 340054 X)
cal_doram_32x16_f_block2 (EDIF entity) Total pins 456/ 488(BX)
cal_dpram_32x16_vector_ram (EDIF entity) Total memory bits 870727 27680{20X)
6} cal_reg_wi08_reset_valuel (EDIF entity) Tota PLis 0/4(0%)
cal_reg_w16_reset_vake! (EDIF entity) :
* T cal_reg_wa2_reset_vahueO (EDIF entity)] &

_@Hmmllm]d’omuml 3

1\ Processog A Spem /
For Help, press F1

1,00 =N T S R

Figure 7.3: Implementation Results of ASPEAR

CHAPTER 7. HARDWARE IMPLEMENTATION: ASYNCHRONOUS SPEAR 116

The proposed implementation utilizes about 20,900 logic elements, which is eleven
times more than its synchronous counterpart, described in Section 4.1.3. In addition,
the processor executes the instructions comparable to a synchronous SPEAR running
with 2.5 MHz. Both benchmark data are not really outstanding, however, it is a first
successful approach implementing SPEAR with the asynchronous CAL-methodology
and many optimizations are still possible.

Chapter 8

Conclusion

In this thesis an introduction into Code Alternation Logic (CAL) has been given. A
dense code has been utilized where two representations of the logic values ”"LOW” and
»HIGH” - one for phase ¢0 and one for phase ¢1 — are defined. Furthermore, the human
interface to build CAL circuits — cal_logic — as well as the coding style on gate level -
cal_rail logic — have been introduced. The methodology and the required libraries
for the CAL design flow demonstrate the automated flow from the design written by
the engineer to the final download file for an ApexFPGA, which is used as a prototyping
environment in our case. The CAL approach is similar to NCL with some essential
advantages: There is no need for the so-called spacer or NULL-waves in CAL, which
doubles the throughput compared with NCL. Furthermore, exactly one rail transition
per bit is required, which reduces the energy overhead in terms of transitions per bit.

On a high level visible to the designer, CAL claims to be delay insensitive. It was
a central aim of this thesis to investigate, whether this claim is actually valid. This
investigation was performed by means of formal verification, in particular with the
model-checker Uppaal. Three rules have been identified, which must be obeyed to
ensure a properly working circuit. These rules have been translated into corresponding
queries, which have been reassessed with Uppaal. In our analysis we decided in favor
of a top-down approach in order to analyze the timing behavior of CAL. Pipeline
structures with combinational functions, as well as the basic gates were transferred
into Uppaal models in order to check our queries. The findings in theory can be
summarized as follows:

e The schematic CAL pipeline is used to test the handshake sequence with queries.
We have formally proven that this model of a pipeline fulfills the CAL rules
without restrictions.

e A gradual refinement of the pipeline model, however, has shown deficiencies with
respect to delay insensitivity. Synchronizing the capture done signal has turned
out as a possible solution and this fact is assured by Uppaal results using a
theoretical model.

117

CHAPTER 8. CONCLUSION 118

e Furthermore, it has been verified that combinational functions f(z) that only use
basic gates fulfill the rules for CAL circuits. We have shown that there are no
restrictions for building CAL circuits utilizing only basic gates.

e The basic gates internal delay assumptions are made, yielding to design con-
straints. These constraints solve parts of the fundamental design problem in the
time domain.

We have derived and verified with Uppaal models the following condition that
must be ensured by an FPGA-implementation of AND and OR gates: The imple-
mentation must guarantee that the difference between the minimal and maximal
gate delay of one LUT (A, ,,) is less or equal to the minimal gate delay (d.u7,,,,)-

A5LUT < 6LUTmm

Inversion (INV) gates operate delay insensitive without any restrictions, due to
their simple layout.

e The analysis of the CAL latches within the CAL registers pointed out that the
delays of control signals (capture, pass and capture._done) in relation to the
feedback delay 6 feeapack are critical. The results concerning a single latch-cell can
be outlined as:

4] feedback S 6control

The only restriction on the latch is that the feedback delay (8 eedback) is smaller
than the interval between a transition on the output and the first resulting change
of one of the control signals (indicated by &contror). Especially, there are no addi-
tional constraints on the input signals for this latch. Furthermore, details of the
enable logic have been added to the model and this leads to following findings:

O feedback < OLUT s (FOcontrol)

5idle Z 5LUTma:z:

e All of these findings are based on the assumption that the gates, which are used
in a pipeline and handshake structure, fulfil the CAL rules. However, the basic
gates rely on the correct behavior of the pipelines and the combinational logic.
This looks like a circular argument, but it can be solved at the startup using
the reset. During a reset all pipes, as well as the gates are set in a well-defined
starting state where all CAL rules defined in Section 3.2 are fulfilled®.

In summary, CAL can be classified as a hybrid solution to manage the fundamental
design problem. On a high abstraction level CAL designs are considered, which are
solely built with CAL basic gates. The fundamental design problem is tackled in the

1The startup issues of pipelines are discussed in [22].

CHAPTER 8. CONCLUSION 119

information domain. Therefore, validity and consistency of the data are guaranteed.
As our formal verification has proven, a delay insensitive behavior at this abstraction
level is indeed ensured. The CAL basic gates themselves manage the fundamental
design problem in the time domain. Implementation constraints that are necessary to
guarantee a behavior that is compliant with the CAL design rules have been identified.
The practical applications of the findings can be described as follows:

e As mentioned above, the implementation of an AND/OR gate must guarantee
that the gate delay of every LUT is less or equal to the minimal gate delay
(As,yr < OruT,,.). However, in general the delay of a LUT on an FPGA does
not vary in a wide range. With Quartus this can be enforced using so-called ”lock-
regions”, where parts of a design can be placed manually and the composition is
fixed and used several times. Accordingly, we have provided suitable pre-compiled
library elements for our CAL design flow.

e To synchronize the capture done signal, we have proposed latching this signal with
the inverted enable signal as the hardware solution. However, this introduces two
additional conditions for the implementation of registers:

two < 6latch and twc < (slatch

The wire delay from the enable logic to the data latch cell (t,,) as well as the
delay from the enable logic to the capture done latch cell (¢,,) must each be
smaller than the minimal latch delay (dj4:ch). In Figure 8.1 the relevant delays
for constructing a latch are shown:

8feedback

>€:L”TT§ -
NSl
o | b

t
Wo
UT

(YY)

th

Figure 8.1: CAL-Register Delay Summary

The constraints to build a latch must also be considered. Thus, all latches work
properly, if all three delays (6 feddback; tw,, and t,,) are less than the delay of one

CHAPTER 8 CONCLUSION 120

LUT. Furthermore, d;4. defines the time between the transition of the output and
the first alteration of the input. Due to the fact that the enable control logic, the
capture done latch, and a ¢-detector are in the path of the capture done signal,
it is ensured that &;q. > dLuT,...- We propose to build these CAL registers once

considering the above conditions and then provide them as basic gates.

e It has been shown that the main problem for constructing delay insensitive basic
gates is the asymmetric structure of these gates. This can be observed for the
(-detector, where a regulation of the structure enabled us to obtain the desired
properties. This leads to a generic construction scheme for delay insensitive
implementations of n-signal wide (-detectors.

The successful implementation of the asynchronous ASPEAR counterpart to our
SPEAR-processor demonstrates the applicability of our CAL approach as well as the
correctness of the ALTERA Apex FPGA implementation of the basic gates.

Further prospects

In this work we have performed a complete and detailed analysis of the delay insensitive
behavior of CAL-based circuits and identified the crucial issues. Still, a lot of interesting
ideas remain that could not be pursued within the scope of this thesis. Among these
are:

Extension of the CAL library: The basic gates are the target of the first synthesis.
Thus, this synthesis constructs the whole design only using these gates. Although,
every logic design can be built out of AND, OR, and INV gates, the result might
not be really satisfying. On the one hand, it is useful to create gates performing
other basic logic operations, e.g. XOR or NAND, which can be further utilized
by the synthesis tool to gather better results. On the other hand, basic gates
optimized for more than two inputs may also increase the synthesis result. There
are many supposable extensions, e.g. four input AND-/OR-gates or special two
output gates to support the requirements of building ¢-detectors.

Optimization with respect to area as well as to power: Our implementation
in an FPGA is a proof of concept and so there is a great potential for opti-
mizations. As mentioned before in this thesis, Apex FPGAs are optimized for
synchronous designs, e.g. registered outputs of a LUT are not useable in our
CAL-approach. Therefore, an ASIC implementation of our basic gates will
enhance the performance and will decrease the performance gap between the
synchronous SPEAR and the asynchronous ASPEAR.

ASIC Implementation: We have shown the delay insensitive behavior on a high ab-
straction level. Furthermore, the constraints to build the basic gates have been
derived in the previous sections. Some of the implementation related arguments

CHAPTER 8. CONCLUSION 121

concerning the delay assumptions have been focused on the FPGA implementa-
tion that is based on LUTs. Although, the basic findings will still be held in an
ASIC implementation. The rules for the basic cell design will have to be adapted.

Theoretical and practical findings elaborated in this thesis serve as a basis for further
investigations in the domain of delay insensitive, asynchronous designs using the code
alternation logic approach.

Biblziography

(1]

2]

(3]

[4]

7]

(8]

[9]

[10]

Alfred V. Aho, Brian W. Kernighan, and Peter J. Weinberger. The AWK Programming
Language. Addison-Wesley, Reading, MA, USA, 1988.

Apex 20kc programmable logic device data sheet.
http://www.altera.com/literature]ds/ds_apex20kc.pdf, February 2004.

Altera, 101 Innovation Drive, San Jose, CA. Quartus II Version 5.0 Handbook, 2005.
//http://www.altera.com/Titerature/hH/qts/quartusii_handbook.pdf.

Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126:183-235, 1994/4/25.

A. Bardsley and D. Edwards. Compiling the language Balsa to delay-insensitive hard-
ware. In C. D. Kloos and E. Cerny, editors, Hardware Description Languages and their
Applications (CHDL), pages 89-91, April 1997.

Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tutorial on UPPAAL. In Marco
Bernardo and Flavio Corradini, editors, Formal Methods for the Design of Real-Time
Systems: 4th International School on Formal Methods for the Design of Computer,
Communication, and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages
200-236. Springer—Verlag, September 2004.

Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi.
UPPAAL — a Tool Suite for Automatic Verification of Real-Time Systems. In Proc. of
Workshop on Verification and Control of Hybrid Systems III, number 1066 in Lecture
Notes in Computer Science, pages 232-243. Springer—Verlag, October 1995.

C. H. (Kees) van Berkel, Cees Niessen, Martin Rem, and Ronald W. J. J. Saeijs. VLSI
programming and silicon compilation. In Proc. International Conf. Computer Design
(ICCD), pages 150-166, Rye Brook, New York, 1988. IEEE Computer Society Press.

Kees van Berkel. Handshake Circuits: an Asynchronous Architecture for VLSI Pro-
gramming, volume 5 of International Series on Parallel Computation. Cambridge Uni-
versity Press, 1993.

Kees van Berkel, Ronan Burgess, Joep Kessels, Ad Peeters, Marly Roncken, and Frits
Schalij. Asynchronous circuits for low power: A DCC error corrector. IEEE Design €
Test of Computers, 11(2):22-32, Summer 1994.

122

http://www.altera.com/literature/
http://Ihttp://www.altera.com/literature/hb

BIBLIOGRAPHY 123

[11]

12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

(22]

[23]

Kees van Berkel and Martin Rem. VLSI programming of asynchronous circuits for
low power. In Graham Birtwistle and Al Davis, editors, Asynchronous Digital Circuit
Design, Workshops in Computing, pages 152-210. Springer-Verlag, 1995.

J.A. Brzozowski and S. Singh. Definite asynchronous sequential circuits. IEEE Trans-
actions on Computers, C-17(1):18-26, January 1968.

Janusz A. Brzozowski and Carl-Johan H. Seger. Asynchronous Circuits. Springer-
Verlag, 1995.

Tam-Anh Chu. Synthesis of self-timed VLSI circuits from graph-theoretic specifications.
In Proc. International Conf. Computer Design (ICCD), pages 220-223. IEEE Computer
Society Press, 1987.

Alexandre David, Oliver Moller, and Wang Yi. Formal verification of UML statecharts
with real-time extensions. In Ralf-Detler Kutsche and Herbert Weber, editors, Proceed-
ings of FASE 2002, number 2306 in Lecture Notes in Computer Science, pages 218-232.
Springer—Verlag, 2002. '

Ilana David, Ran Ginosar, and Michael Yoeli. An efficient implementation of boolean
functions as self-timed circuits. IEEE Transactions on Computers, 41(1):2-11, January
1992.

Ilana David, Ran Ginosar, and Michael Yoeli. Implementing sequential machines as
self-timed circuits. IEEE Transactions on Computers, 41(1):12-17, January 1992.

A. Davis and S. M. Nowick. An introduction to asynchronous circuit design. Technical
Report UUCS-97-013, University of Utah, Department of Computer Science, 1997.

Al Davis and Steven M. Nowick. An introduction to asynchronous circuit design. Tech-
nical Report UUCS-97-013, Dept. of Computer Science, University of Utah, September
1997.

Mark Dean, Ted Williams, and David Dill. Efficient self-timing with level-encoded 2-
phase dual-rail (LEDR). In Carlo H. Séquin, editor, Advanced Research in VLSI, pages
55-70. MIT Press, 1991.

Martin Delvai. Handbuch fiir SPEAR (Scalable Processor for Embedded Applications
in Real-Time Environments). Research Report 70/2002, Technische Universitdt Wien,
Institut fiir Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2002.

Martin Delvai. Design of an Asynchronous Processor Based on Code Alternation Logic
- Treatment of Non-Linear Data Paths. PhD thesis, Technische Universitdt Wien,
Institut fiir Technische Informatik, Treitlstr. 3/3/182-1, 1040 Vienna, Austria, 2005.

Martin Delvai, Wolfgang Huber, Peter Puschner, and Andreas Steininger. Processor
Support for Temporal Predictability - The SPEAR Design Example. In Proc. 15th
Euromicro International Conference on Real-Time Systems, Porto, Portugal, 2003.

BIBLIOGRAPHY 124

[24] Martin Delvai, Wolfgang Huber, Babak Rahbaran, and Andreas Steininger. SPEAR
- Design-Entscheidungen fiir den ”Scalable Processor for Embedded Applications in
Real-Time Environments”. In Proc. Austrochip 2001, Vienna, Austria, 2001.

[25] AMD Advanced Micro Devices. rww amd coml

[26] AMD Advanced Micro Devices. Amd PowerNow Technology.
http: [fwww.amd.com/us-enj]assets/content_type/DownloadableAssets/Power Now2.pdf,
2002.

[27) Webmaster Dictionary. Moore’s law.
http://www.webster-dictionary.org/definition/Moore’s%20Law.

[28] R. Dobkin, R. Ginosar, and C. P. Sotiriou. Data synchronization issues in GALS SoCs.
In Proc. International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 170-179. IEEE Computer Society Press, April 2004.

[29] Paul Stanford (ed.). Electronic design interchange format version 2 0 0, ansi/eia-548-
1988, recommended standard eia-548, March 1988.

[30] E.B. Eichelberger. Hazard detection in combinational and sequential switching circuits.
IBM Journal of Research and Development, 9:90-99, March 1965.

[31] The El Camino Homepage. http:/[www.elca.de]

[32] Digilab megAPEX manual - apex 20k high-end prototyping system.
http://www_.elca.de/Downloads/Manua] Digilab megAPEX.pdf, January 2003.

[33] Karl M. Fant and Scott A. Brandt. Null convention logic system. US patent Nr.
5,305,463, April 1994.

[34] Karl M. Fant and Scott A. Brandt. Null convention logic: A complete and consis-
tent logic for asynchronous digital circuit synthesis. In Proc. International Conference
on Application Specific Systems, Architectures and Processors, pages 261-273, August
1996.

[35] Farlex. The free dictionary.
pttp:/ /www.intel.com/products/processor/index.htm

[36] C. Foley. Characterizing metastability. In Advanced Research in Asynchronous Circuits
and Systems, pages 175 — 184, March 1996.

[37] A.D. Friedman and P. R. Menon. Synthesis of asynchronous sequential circuits with
multiple-input changes. IEEE Transactions on Computers, C-17(6):559-566, June 1968.

[38] Gottfried Fuchs. A superscalar 16 bit microcontroller for real-time applications. Mas-
ter’s thesis, Technische Universitdt Wien, 2003.

[39] S. B. Furber, P. Day, J. D. Garside, N. C. Paver, S. Temple, and J. V. Woods. The
design and evaluation of an asynchronous microprocessor. In Proc. International Conf.
Computer Design (ICCD). IEEE Computer Society Press, October 1994.

http://www.amd.com.
http://jwww.amd.comjus-enj
http://jwww.elca.de.
http://www.elca.de/Downloads/Manual
http://www.intel.com/products/processor/index.htm.

BIBLIOGRAPHY 125

[40]

[41)

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

(51]

[52]
[53]

[54]

S. B. Furber, J. D. Garside, S. Temple, J. Liu, P. Day, and N. C. Paver. AMULET2e:
An asynchronous embedded controller. In Proc. International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pages 290-299. IEEE Computer So-
ciety Press, April 1997.

Stephen B. Furber, James D. Garside, Peter Riocreux, Steven Temple, Paul Day, Jian-
wei Liu, and Nigel C. Paver. AMULETZ2e: An asynchronous embedded controller.
Proceedings of the IEEE, 87(2):243-256, February 1999.

Jim Garside. The Asynchronous Logic Homepage.
http://www.cs.man.ac.uk/amulet/async/]

David Geer. Is it time for clockless chips? IEEE Computer, 38(3):18-21, 2005.

Mark R. Greenstreet and Brian de Alwis. How to achieve worst-case performance. In
Proc. International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 206-216. IEEE Computer Society Press, March 2001.

Scott Hauck. Asynchronous design methodologies: An overview. Proceedings of the
IEEE, 83(1):69-93, January 1995.

Scott Hauck, Steven Burns, Geatano Borriello, and Carl Ebeling. An FPGA for im-
plementing asynchronous circuits. IEEE Design & Test of Computers, 11(3):60-69,
1994.

John L. Hennessy and David A. Patterson. Computer Organization and Design. Morgan
Kaufmann Publisher, Inc., 1994.

M. Hevery. Asynchronous circuit completion detection by current sensing. In Twelfth
Annual IEEE International ASIC/SOC Conference, pages 322-326, 1999.

Zhijun Huang and M. D. Ercegovac. Effect of wire delay on the design of prefix adders in
deep-submicron technology. In Conference on Signals, Systems and Computers, 2000,
October 2000.

Wolfgang Huber. Spezifikation der Schnittstelle zwischen Extension-Modulen und
SPEAR. Technical report, Institute of Computer Engineering , VLSI - Design, Vi-
enna, 2001.

D. A. Huffman. The synthesis of sequential switching circuits. Journal of the Franklin
Institute, March/April 1954.

Intel. www.infel.com]

Intel. Mobile intel pentium iii processors featuring intel speedstep technology.
http: /fwww.intel.com/mobile/resources/downloads/pdf/P3H fn.pdf, 2001.

Martin Jankela, Wolfgang Pulffitsch, and Wolfgang Huber. Towards a rapid prototyping
framework for architecture exploration in embedded systems. In Proc. Workshop on
Intelligent Solutions in Embedded Systems, pages 117-128, Graz, Austria, June 2004.

http://wvw.cs.man.ac.uk/amulet/async/.
http://www.intel.com.
http://jwww.intel.com/mobile/resourcesjdownloads/pdfjP3P

BIBLIOGRAPHY 126

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

(64]

(65]

[66]

[67]

Mark B. Josephs, Steven M. Nowick, and C. H. (Kees) van Berkel. Modeling and design
of asynchronous circuits. Proceedings of the IEEE, 87(2):234-242, February 1999.

H. J. Kahn and R. F. Goldman. The electronic design interchange format EDIF:
present and future. In DAC ’92: Proceedings of the 29th ACM/IEEE conference on
Design automation, pages 666—671, Los Alamitos, CA, USA, 1992. IEEE Computer
Society Press.

Yun Y. Kenneth. Recent advances in asynchronous design methodologies. In Asia
and South Pacific Design Automation Conference 1999 (ASP-DAC’99), pages 253-259,
January 1999.

Joep Kessels and Paul Marston. Designing asynchronous standby circuits for a low-
power pager. Proceedings of the IEEE, 87(2):257-267, February 1999.

Milos Krsti¢ and Eckhard Grass. New GALS technique for datapath architectures. In
Jorge Juan Chico and Enrico Macii, editors, Power and Timing Modeling, Optimization
and Simulation (PATMOS), volume 2799 of Lecture Notes in Computer Science, pages
161-170, September 2003.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Compositional and Symbolic Model-
Checking of Real-Time Systems. In Proc. of the 16th IEEE Real-Time Systems Sym-
posium, pages 76-87. IEEE Computer Society Press, December 1995.

Kim G. Larsen, Paul Pettersson, and Wang Yi. Model-Checking for Real-Time Systems.
In Proc. of Fundamentals of Computation Theory, number 965 in Lecture Notes in
Computer Science, pages 62-88, August 1995.

Steven S. Leung and Michael A. Shanblatt. ASIC System Design with VHDL: A Par-
adigm. Kluwer Academic Publishers, 1990.

Hai Li, S. Bhunia, Y. Chen, T. N. Vijaykumar, and K. Roy. Deterministic clock
gating for microprocessor power reduction. In The Ninth International Symposium on
High-Performance Computer Architecture, 2003, HPCA-9 2003, pages 113— 122. IEEE
Computer Society Press, February 2003.

Michiel Ligthart, Karl Fant, Ross Smith, Alexander Taubin, and Alex Kondratyev.
Asynchronous design using commercial HDL synthesis tools. In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 114—
125. IEEE Computer Society Press, April 2000.

D. W. Lloyd and J. D. Garside. A practical comparison of asynchronous design styles.
In Proc. International Symposium on Advanced Research in Asynchronous Circuits and
Systems, pages 36-45. IEEE Computer Society Press, March 2001.

G. Magé. Realization methods for asynchronous sequential circuits. IEEE Transactions
on Computers, C-20(3):290-297, March 1971.

K. Maheswaran. Implementing self-timed circuits in field programmable gate arrays.
Master’s thesis, University of California, Davis, 1994.

BIBLIOGRAPHY : 127

(68]

[69]

[70]

[71]

[72]

73]

[74]

[75]

[76]

[77]

(78]

[79]

[80]

[81]

(82]

Alain J. Martin. Compiling communicating processes into delay-insensitive VLSI cir-
cuits. Distributed Computing, 1(4):226-234, 1986.

Alain J. Martin. Formal program transformations for VLSI circuit synthesis. In Eds-
ger W. Dijkstra, editor, Formal Development of Programs and Proofs, UT Year of
Programming Series, pages 59-80. Addison-Wesley, 1989.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
William J. Dally, editor, Advanced Research in VLSI, pages 263-278. MIT Press, 1990.

Alain J. Martin. The limitations to delay-insensitivity in asynchronous circuits. In
Proceedings of the sizth MIT conference on Advanced research in VLSI, pages 263-278.
MIT Press, 1990.

Alain J. Martin, Steven M. Burns, T. K. Lee, Drazen Borkovic, and Pieter J. Hazewin-
dus. The first asynchronous microprocessor: the test results. Computer Architecture
News, 17(4):95-110, June 1989.

Alain J. Martin, Andrew Lines, Rajit Manohar, Mika Nystrom, Paul Pénzes, Robert
Southworth, and Uri Cummings. The design of an asynchronous MIPS R3000 micro-
processor. In Advanced Research in VLSI, pages 164-181, September 1997.

Alain J. Martin, Mika Nystrom, Paul Pénzes, and Catherine Wong. Speed and en-
ergy performance of an asynchronous MIPS R3000 microprocessor. Technical Report
CSTR:2001.012, California Institute of Technology, 2001.

Doug Matzke. Will physical scalability sabotage performance gains? IEEE Computer,
30(9):37-39, 1997.

Anthony J. McAuley. Dynamic asynchronous logic for high-speed CMOS systems.
IEEE Journal of Solid-State Circuits, 27(3):382-388, March 1992.

Anthony J. McAuley. Four state asynchronous architectures. IEEE Transactions on
Computers, 41(2):129-142, February 1992.

John McCardle and Dr. David Chester. Measuring an asynchronous processor’s power
and noise. In Synopsys Users Group Boston, 2001.

Robin Milner. Communication and Concurrency. Prentice-Hall, 1989.

Charles E. Molnar, Ting-Pien Fang, and Frederick U. Rosenberger. Synthesis of delay-
insensitive modules. In Henry Fuchs, editor, 1985 Chapel Hill Conference on Very Large
Scale Integration, pages 67-86. Computer Science Press, 1985.

G.E. Moore. No exponential is forever: but ”forever”can be delayed! [semiconductor
industry]. In Solid-State Circuits Conference, 2003, volume 1, pages 20-23, 2003.

Gordon E. Moore. The experts look ahead: Cramming more components onto inte-
grated circuits. Electronics, 38(8), 1965.

BIBLIOGRAPHY 128

[83]

[84]

[85]
(86]

[87]

[88]

(89]

(90]

[91]

[92]

[93]

[94]

[95]

[96]

David E. Muller. Asynchronous logics and application to information processing. In
Symposium on the Application of Switching Theory to Space Technology, pages 289-297.
Stanford University Press, 1962.

David E. Muller and W. S. Bartky. A theory of asynchronous circuits. In Proceedings
of an International Symposium on the Theory of Switching, pages 204-243. Harvard
University Press, April 1959.

Chris Myers. Asynchronous Circuit Design. John Wiley & Sons, 2001.

Chris J. Myers, Wendy Belluomini, Kip Killpack, Eric Mercer, Eric Peskin, and Hao
Zheng. Timed circuits: A new paradigm for high-speed design. In Proc. of Asia and
South Pacific Design Automation Conference, pages 335-340, February 2001.

Christian Dalsgaard Nielsen, Jgrgen Staunstrup, and Simon Jones. A delay-insensitive
neural network engine. In Will R. Moore, editor, Proceedings of the Workshop on VLSI
for Neural Networks, pages 367-376, September 1991.

L. S. Nielsen, C. Niessen, J. Sparsg, and C. H. van Berkel. Low-power operation using
self-timed and adaptive scaling of the supply voltage. IEEE Transactions on VLSI
Systems, 2(4):391-397, December 1994.

L. S. Nielsen and J. Sparsg. An 85uW asynchronous filter-bank for a digital hearing
aid. In International Solid State Circuits Conference, February 1998.

Lars S. Nielsen and Jens Sparsg. Designing asynchronous circuits for low-power: An
IFIR filter bank for a digital hearing aid. Proceedings of the IEEE, 87(2):268-281,
February 1999.

M. Olivieri. Translating occam constructs into delay-insensitive circuits: a trace theory-
based proof. Technical Report CPSI92-1, Dept. of Biophys. and Electronic Eng., Univ.
of Genoa, Italy, 1992.

M. Olivieri. Design of synchronous and asynchronous variable-latency pipelined multi-
pliers. IEEE Transactions on VLSI Systems, 9(2), May 2001.

N. C. Paver, P. Day, C. Farnsworth, D. L. Jackson, W. A. Lien, and J. Liu. A low-
power, low-noise configurable self-timed DSP. In Proc. International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pages 32-42, 1998.

R. E. Payne. Self-timed FPGA systems. In W. Moore and W. Luk, editors, Fifth
International workshop on Field Programmable Logic and Applications, volume 975 of
Lecture Notes in Computer Science, pages 21-35, 1995.

Ad Peeters. The ‘Asynchronous’ Bibliography (BIBTEX) database file async.bib.
http://www.win.tue.nl/async-bib/doc/async.bib] Corresponding e-mail address:
async-bib@win.tue.nl.

Christian Piguet. Logic synthesis of race-free asynchronous CMOS circuits. IEEFE
Journal of Solid-State Circuits, 26(3):371-380, March 1991.

http://www.win.tue.nl/async-bib/doc/async.bib.

BIBLIOGRAPHY 129

[97]

(98]

[99]

[100]

[101)

[102]

(103]

[104]

[105]

[106]

[107]

[108]

[109]
[110)

[111)

Wolfgang Puffitsch and Wolfgang Huber. Porting the GNU Compiler Collection to
the SPEAR microprocessor. Research Report 24/2004, Technische Universitit Wien,
Institut fiir Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

P. Puschner and A. Burns. Writing temporally predictable code. In Proceedings of the
7th International Workshop on Object-Oriented Real-Time Dependable Systems, San
Diego, California, USA, January 2002.

C. Ramchandani. Analysis of asynchronous concurrent systems by timed Petri nets.
Technical Report Project MAC Tech. Rep. 120, Massachusetts Inst. of Tech., February
1974.

R.B. Reese and S.B. Sikandar-Gani. Control versus compute power within a LEDR-style
self-timed multiplier with bypass path. In Circuits and Systems, 2002. MWSCAS-2002.
The 2002 45th Midwest Symposium on, volume 2, pages 11-302-11-305, 2002.

Robert B. Reese, Mitch A. Thornton, and Cherrice Traver. Arithmetic logic circuits
using self-timed bit level dataflow and early evaluation. In Proc. International Conf.
Computer Design (ICCD), pages 18-23, November 2001.

Arnold Robbins. Effective AWK Programming. Specialized Systems Consultants, P.O.
Box 55549, Seattle, WA 98155, 1996.

Charles L. Seitz. Asynchronous machines exhibiting concurrency, 1970. Record of the
Project MAC Concurrent Parallel Computation.

International SEMATECH. International technology roadmap for semiconductors, 2003
edition.
Etp://public.itrs.net/Files /2003 TRS /Home2003.htm] 2003.

N. Shintel and M. Yoeli. Synthesis of modular networks from Petri-net specifications.
Technical Report 743, Dept. Comp. Science, Technion, Haifa, Israel, 1992.

R. L. Sites. Alpha Architecture Reference Manual. Digital Equipment Corporation,
1992.

Michael John Sebastian Smith. Application-specific integrated circuits. Addison-Wesley
Longman Publishing Co., Inc., 1997.

Jens Sparsg and Steve Furber, editors. Principles of Asynchronous Circuit Design: A
Systems Perspective. Kluwer Academic Publishers, 2001.

K. Stevens. Private communication, September 2000.

Marco Storto and Roberto Saletti. Time-multiplexed dual-rail protocol for low-power
delay-insensitive asynchronous communication. In Anne-Marie Trullemans-Anckaert
and Jens Sparsg, editors, Power and Timing Modeling, Optimization and Simulation
(PATMOS), pages 127-136, October 1998.

Ivan E. Sutherland. Micropipelines. Communications of the ACM, 32(6):720-738, June
1989.

http://public.itrs.net/Files/2003ITRS/Home2003.htm,

BIBLIOGRAPHY 130

[112]

[113]

[114)

[115]

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]
[127]

Hiroaki Terada, Souichi Miyata, and Makoto Iwata. DDMP’s: Self-timed super-
pipelined data-driven multimedia processors. Proceedings of the IEEE, 87(2):282-296,
February 1999.

G. K. Theodoropoulos, G. K. Tsakogiannis, and J. V. Woods. Occam: an asynchronous
hardware description language? In Proceedings of the 28rd EUROMICRO Conference:
New Frontiers of Information Technology, pages 249-256, September 1997.

Augustus K. Uht. Going beyond worst-case specs with teatime. IEEE Computer,
37(3):51-56, 2004.

Stephen H. Unger. Asynchronous sequential switching circuits with unrestricted input
changes. IEEE Transactions on Computers, 20(12):1437-1444, December 1971.

The UrPAAL2k Homepage. htip://www.uppaal.com]

Hans van Gageldonk, Kees van Berkel, Ad Peeters, Daniel Baumann, Daniel Gloor,
and Gerhard Stegmann. An asynchronous low-power 80c51 microcontroller. In 4th

International Symposium on Advanced Research in Asynchronous Circuits and Systems
(ASYNC ’98), 1998.

Victor I. Varshavsky, editor. Self-Timed Control of Concurrent Processes: The Design
of Aperiodic Logical Circuits in Computers and Discrete Systems. Kluwer Academic
Publishers, Dordrecht, The Netherlands, 1990.

Tom Verhoeff. Delay-insensitive codes—an overview. Distributed Computing, 3(1):1-8,
1988.

Tom Verhoeff. Characterizations of delay-insensitive communication protocols. Com-
puting Science Notes 89/06, Dept. of Math. and C.S., Eindhoven Univ. of Technology,
May 1989.

IEEE Standards Navigation Bar IEEE Std 1364-1995 IEEE Standard Hardware De-
scription Language Based on the Verilog Hardware Description Language.

IEEE standard multivalue logic system for VHDL model interoperability
(std_logic_1164). 1993. IEEE Std 1164-1993.

P. Vingron. Coherent design of asynchronous circuits. IEE Proceedings, Computers
and Digital Techniques, 130(6):190-202, 1983.

IEEE standard for VITAL Application-Specific Integrated Circuit (ASIC) modeling
specification. 1996. IEEE Std 1076.4-1995.

IEEE standard for VITAL ASIC (application specific integrated circuit) modeling spec-
ification. 2001. IEEE Std 1076.4-2000.

Wikipedia. The free encyclopedia. http://en.wikipedia.org/ wiki/ Gray_coding]

Ted Williams, Niteen Patkar, and Gene Shen. SPARC64: A 64-b 64-active-
instruction out-of-order-execution MCM processor. IEEE Journal of Solid-State Cir-
cuits, 30(11):1215-1226, November 1995.

http://www.uppaal.com.
http://en.wikipedia.org/wiki/Gray_coding.

BIBLIOGRAPHY 131

[128] Ted E. Williams and Mark A. Horowitz. A zero-overhead self-timed 160ns 54b CMOS
divider. IEEE Journal of Solid-State Circuits, 26(11):1651-1661, November 1991.

[129] J. V. Woods, P. Day, S. B. Furber, J. D. Garside, N. C. Paver, and S. Temple. Amulet1:
A micropipelined arm. In IEEE Computer Conference, pages 476-485, 1994.

[130] Sheng-Fu Wu and P. David Fisher. Automating the design of asynchronous sequential
logic circuits. IEEE Journal of Solid-State Circuits, 26(3):364-370, March 1991.

[131] F. Xia, A. Yakovlev, D. Shang, A. Bystrov, A. Koelmans, and D. J. Kinniment. Asyn-
chronous communication mechanisms using self-timed circuits. In Proc. International

Symposium on Advanced Research in Asynchronous Circuits and Systems, pages 150-
159. IEEE Computer Society Press, April 2000.

[132] Michael Yoeli. Examples of LOTOS-based verification of asynchronous circuits. Tech-
nical Report CS-2001-08, Dept. Comp. Science, Technion, Haifa, Israel, 2001.

List of Publications

1]

[2]

3]

[7]

8]

Wolfgang Huber. Simulation einer SCSI-Festplatte unter Linux. Master’s thesis,
Technische Universitdt Wien, Institut fiir Technische Informatik, Treitlstr. 3/2/182-2,
1040 Vienna, Austria, October 2000.

Martin Delvai, Wolfgang Huber, Babak Rahbaran, and Andreas Steininger. SPEAR
- Design-Entscheidungen fiir den ”Scalable Processor for Embedded Applications in
Real-Time Environments”. In Proc. Austrochip 2001, Vienna, Austria, 2001.

Martin Delvai, Ulrike Eisenmann, and Wolfgang Huber. Modular construction sys-
tem for embedded real-time applications. In Austrochip Proceedings, pages 103-109,
Vienna, October 2002.

Wolfgang Huber. Peripherieanbindung an SPEAR Extension Modules. Research Re-
port 71/2002, Technische Universitdt Wien, Institut fiir Technische Informatik, Tre-
itlstr. 1-3/182-1, 1040 Vienna, Austria, 2002.

Wolfgang Huber, Martin Delvai, Peter Puschner, and Andreas Steininger. Processor
support for temporal predictability — the SPEAR design example. In Proc. 15th
Euromicro International Conference on Real-Time Systems, July 2003.

Martin Delvai, Andreas Steininger, and Wolfgang Huber. Solving the fundamental
problem of digital design — a systematic review of design methods. Research Report
88/2004, Technische Universitdt Wien, Institut fiir Technische Informatik, Treitlstr.
1-3/182-1, 1040 Vienna, Austria, 2004.

Karl Hendling, Thomas Losert, Wolfgang Huber, and Martin Jandl. Interference Min-
imizing Bandwidth Guaranteed On-Line Routing Algorithm for Traffic Engineering.
In Proceedings of the 12th IEEE International Conference on Networks (ICON 2004),
volume 2, pages 497-503, Singapore, Singapore, November 16-19, 2004. ISBN 0-7803-
8783-X.

Wolfgang Huber, Andreas Steininger, and Martin Delvai. Delay insensitive asychro-
nous pipeline implementation for code alternation logic. Research Report 85/2004,
Technische Universitat Wien, Institut fiir Technische Informatik, Treitlstr. 1-3/182-1,
1040 Vienna, Austria, 2004. .

[9]

[10]

[11]

[12]

[13]

[14]

Martin Jankela, Wolfgang Puffitsch, and Wolfgang Huber. Towards a rapid proto-
typing framework. Workshop on Intelligent Solutions in Embedded Systems - WISES
2004, June 2004.

Thomas Losert, Wolfgang Huber, Karl Hendling, and Martin Jandl. An Extensible
Transport Framework for CORBA with Emphasis on Real-Time Capabilities. In Pro-
ceedings of the IEEE International Conference on Computational Cybernetics (ICCC
2004), pages 155-161, Vienna, Austria, August 30, — September 1, 2004. ISBN 3-
902463-01-5.

Wolfgang Puffitsch and Wolfgang Huber. Porting the GNU Compiler Collection to
the SPEAR Microprocessor. Research Report 24/2004, Technische Universitat Wien,
Institut fiir Technische Informatik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

Andreas Steininger, Martin Delvai, and Wolfgang Huber. Code Alternation Logic
(CAL): A novel efficient design approach for delay-insensitive asynchronous circuits.
Research Report 87/2004, Technische Universitdt Wien, Institut fiir Technische Infor-
matik, Treitlstr. 1-3/182-1, 1040 Vienna, Austria, 2004.

Karl Hendling, Thomas Losert, Wolfgang Huber, and Martin Jandl. An Intelligent
Interference Minimizing Routing Algorithm for Bandwidth Guaranteed Flows. In
Wilfried Elmenreich, Tenreiro J. Machado, and Imre J. Rudas, editors, Intelligent
Systems at the Service of Mankind, volume 2. UBooks, Augsburg, Germany, accepted.

Thomas Losert, Wolfgang Huber, Karl Hendling, and Martin Jandl. Utilizing CORBA
for Hard Real-Time Systems. In Wilfried Elmenreich, Tenreiro J. Machado, and
Imre J. Rudas, editors, Intelligent Systems at the Service of Mankind, volume 2.
UBooks, Augsburg, Germany, accepted.

Curriculum Vitae

Wolfgang Huber

Edla 9
3261 Steinakirchen/Forst

Personal Data

Date of Birth: September 15th, 1974
‘ Place of Birth: Wr. Neustadt
Citizenship: Austria,
‘ Education

1980 - 1985 Volksschule (elementary school)
Randegg

1985 — 1988 Mittelschule (secondary school)
Randegg

1988 - 1993 HTBLuVA St. Polten

Fachrichtung Elektronik/Informatik
(polytechnic - Electrical Engineering Department)
St. Polten

1993 - 2000 Technische Universitat Wien — Informatik

(Vienna University of Technology — Informatics)
Academic degree: Diplomingenieur
(comparable to Master of Science)

2001 - 2005 Technische Universitat Wien — Informatikmanagement

. (Vienna University of Technology —
Computer Science Management)
Academic degree: Mag.rer.soc.oec
(comparable to Master of Social and Economic Sciences)
since February 2001 PhD Studies at the Vienna University of Technology

Working Experience

7/1993 - 2/1994 Military Service

St. Polten (Austria)
1994 - 2001 Educator at Koplingheim St. Pélten
1995 - 1998 Software Development

KCC -Krammer Computer Consulting
Scheibbs (Austria)

2001 - 2005 Research & Teaching assistant at TU Vienna
Embedded Computing Systems Group

