
Curious Apps: Large-scale
Detection of Apps Scanning Your

Local Network

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering & Internet Computing

eingereicht von

Paul Theodor Hager, BSc
Matrikelnummer 01426941

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Assistant Prof. Dipl.-Ing. Dr.in techn. Martina Lindorfer, BSc
Mitwirkung: Dipl.-Ing. David Schmidt, BSc

Wien, 2. Dezember 2022
Paul Theodor Hager Martina Lindorfer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Curious Apps: Large-scale
Detection of Apps Scanning Your

Local Network

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Paul Theodor Hager, BSc
Registration Number 01426941

to the Faculty of Informatics

at the TU Wien

Advisor: Assistant Prof. Dipl.-Ing. Dr.in techn. Martina Lindorfer, BSc
Assistance: Dipl.-Ing. David Schmidt, BSc

Vienna, 2nd December, 2022
Paul Theodor Hager Martina Lindorfer

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Paul Theodor Hager, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 2. Dezember 2022
Paul Theodor Hager

v

Acknowledgements

First of all, I would like to thank Dr. Martina Lindorfer and Dipl.-Ing. David Schmidt
for supervising and supporting me while writing this thesis. Also, I would like to thank
my colleagues and friends for the continued discussion on this thesis and their support
by proofreading. A special thanks is going to my parents for making everything possible
in the first place.

vii

Kurzfassung

In unserer vernetzten Welt werden Datenlecks und fragwürdige Profiling-Techniken immer
relevanter: Nicht nur auf Websites, sondern auch auf Smartphones.
Viele verschiedene Datenpunkte werden verwendet, um Nutzerprofile für beispielweise
Werbung zu erstellen. Diese Datenpunkte enthalten oft sensible Informationen und können,
wenn sie nicht sorgfältig verwendet und gespeichert werden, publik werden. In unserer
Arbeit suchen wir nach Android Anwendungen (Apps), die das lokale Netzwerk (LAN)
scannen und diese Datenpunkte möglicherweise für Profiling verwenden.

Wir fassen zusammen, wie Android Apps im LAN nach anderen Geräten suchen können
und, wie diese Techniken in einer Android App implementiert werden können. Auf der
Grundlage dieser Recherche haben wir über 40 handgefertigte Yara-Regeln entwickelt, um
Android-Apps mit LAN-Scan-Fähigkeiten abzustimmen. Basierend auf diesen Yara-Regeln
haben wir ein hybrides Analyse-Framework entwickelt, um Android Apps zu finden, die
LAN-Scans ohne Benutzerinteraktion durchführen. Das von uns vorgeschlagene Analyse-
Framework besteht aus drei Teilen: Zunächst verwenden wir über 40 handgefertigte Yara-
Regeln, um Android Apps vorzufiltern, die Daten/Funktionen im Zusammenhang mit
LAN-Scanning enthalten. Im zweiten Schritt führen wir die vorgefilterten Android Apps
dynamisch auf einem echten Android-Smartphone aus und erfassen den Netzwerkverkehr.
Zuletzt analysieren wir die Netzwerk-Dumps auf LAN-Scan Aktivitäten. Wir haben
unser hybrides Analyse-Framework mit 3 verschiedenen Android-App Datensätzen (Top
1000 General Purpose, 1.259 IoT/Companion-Apps, 117 Malware-Apps) ausgeführt,
insgesamt mit über 2.300 verschiedenen Android Apps. Acht Android Apps führen ohne
Benutzerinteraktion ARP-Scans im LAN durch und 29 Android Apps verschicken SSDP-
Suchanfragen, ebenfalls ohne Benutzerinteraktion. Auf der Grundlage unserer Ergebnisse
erstellen wir Casestudies, um die Ursache der LAN-Scan Aktivitäten zu ergründen. Mit
unserem Ansatz finden wir eine Android-App, bei der Profiling den einzigen ersichtlichen
Grund für das durchgeführte LAN-Scanning darstellt.

ix

Abstract

Privacy leaks and shady fingerprinting techniques are becoming more and more relevant
in our connected world: Not only on websites but also smartphones.
All kinds of different data points are used to create user profiles for fingerprinting
and advertisement. These data points often contain sensitive information and, if not
carefully used and stored, may be leaked. In our work we search for Android applications
(apps) which are scanning the local area network (LAN) and potentially are using these
datapoints for fingerprinting or advertisement.

We summarize how LAN scanning in Android apps can be done technique-wise (what
kind of LAN scanning techniques exist?) and implementation-wise (how can these LAN
scanning techniques be implemented?). Based on this research, we developed over 40
handcrafted Yara rules to match Android apps with LAN scanning capabilities. We use
this Yara ruleset in our hybrid analysis framework to find apps that are LAN scanning
without user interaction. Our proposed framework consists of three parts: First, we
use our Yara ruleset to pre-filter Android apps which contain data/functions related
to LAN scanning. Next, we dynamically run the pre-filtered Android apps on a real
Android smartphone and capture the network traffic. In the last step, we analyze the
network dumps for LAN scanning activities. We run our hybrid analysis framework with
3 different Android app datasets (Top 1,000 General Purpose, 1,259 IoT/companion apps,
117 malware apps), totaling over 2,300 different Android apps. We found 8 Android apps
ARP scanning the LAN and 29 Android apps sending SSDP search requests without user
interaction. Based on our findings we conduct case studies to research why the found
Android apps are doing this. We found at least one Android app where we feel certain
the LAN scanning happens for fingerprinting reasons.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

1 Introduction 1
1.1 Problem Statement and Motivation . 1
1.2 Methodology . 2
1.3 Structure . 3

2 Related Work 5

3 Background 9
3.1 Android Platform . 9
3.2 Network Scanning . 11
3.3 Static Analysis . 15
3.4 Dynamic Analysis . 18

4 Design and Implementation 21
4.1 Overview . 21
4.2 App Pre-Filtering . 21
4.3 Static Analysis . 22
4.4 Dynamic Analysis . 23

5 Results 27
5.1 Yara Ruleset . 27
5.2 App Dataset . 29
5.3 Analysis Results . 30
5.4 Case Studies . 32
5.5 Traffic Characterization . 42
5.6 Discussion of Results . 44

6 Discussion 53

xiii

6.1 Limitations . 53
6.2 Future Work . 54

7 Conclusion 57

A Appendix 59
A.1 Yara Rules . 59
A.2 Hashes . 66

List of Figures 69

List of Tables 71

List of Algorithms 71

Bibliography 73

CHAPTER 1
Introduction

1.1 Problem Statement and Motivation
The scanning of networks has always been an indicator of malicious activities. Many events
in the past, like the famous Mirai botnet,1 which compromised thousands of Internet of
Things (IoT) devices, or the devastating WannaCry attacks [34], a cryptoworm abusing
the EternalBlue vulnerability [32], both scanning for new victims, lead to this judgment.
Attackers use network/device scanning mostly to gather more information for future
operations. MITRE ATT&CK [60, 61],“a globally-accessible knowledge base of adversary
tactics and techniques based on real-world observations” [40], even has its own tactic
for scanning: Reconnaissance - TA0043, with the technique: Active Scanning - T1595.
This is of interest because researchers found that everyday websites, which are normally
considered harmless, are scanning the local network too: They are tracking, scanning
and possibly even attacking the local network [1, 33, 36, 50].
As the usage of smartphones and apps is growing [59] and more apps are added to the
app markets (e.g., Google Play Store [58] and Apple App Store [56]) every day, this
begs the question, if apps on our smartphones are doing the same. Since iOS 14, apps
that want to interact with devices on the local network have to ask for permissions [8].
Recently there were some public discussions about apps that are asking for permissions
to do local network scanning.2 People found out that apps like Signal, PayPal, Spotify
and 1Password are requesting the LAN scanning permission.3 It is not immediately clear
why these apps are doing this. For some apps, such activities might be self-explanatory,
e.g., apps that are communicating with smart devices (e.g., smart TV, smart light bulb),

1https://www.bbc.com/news/technology-42342221, last accessed: 20.10.2022
2“I don’t know what fresh hell this is but abso-fucking-lutey not, Instagram.”, Zack Whittaker,

https://twitter.com/zackwhittaker/status/1461545972711018498, last accessed: 20.10.2022
3“Some of the more interesting ones on my phone.”, damien,

https://twitter.com/_damiend_/status/1461552940213325826, last accessed: 20.10.2022

1

1. Introduction

but not for others. For example, based on public reportings,4 the Among Us!5 iOS app
seems to sniff/scan the local area network (LAN) via Universal Plug and Play (UPnP)
and Simple Service Discovery Protocol (SSDP) without proper permission from the user.
As apps can be used to attack the local network and the IoT devices running there, as
shown by Sivaraman et al. [54], this raises the question: Why are they scanning the local
network?
Therefore we explore local network scanning activities of smartphone apps. Based on the
research of Kuchhal et al. [36], the goal of this thesis is to:

• Survey methods and approaches of LAN scanning from mobile apps.

• Answer the following research questions:

– RQ1: Find apps that conduct local network scanning activities.

– RQ2: Investigate why those apps perform local network scans.

– RQ3: Study if the apps scan without user interaction/consent.

1.2 Methodology
The methodological approach consists of the following parts:

1. Literature and Approach Research:
In the first step we perform a scientific literature research. The literature research
covers the current state of the art and related frameworks, tools and approaches in
the research community. Further, we consider related sources, like blog posts, to
get a better understanding of how a local network scan could be executed. This
step helps us to answer the question how LAN scanning can be done from mobile
apps.

2. Designing a (Large-scale) Hybrid Analysis Testbed:
Based on the findings of the previous step we design a hybrid (e.g., static and
dynamic) analysis testbed for the Android platform. We handcraft a set of Yara
rules that detect LAN scanning capabilities by reversing apps which are known
to have such capabilities (e.g., Fing [39]). Further, we create a dynamic analysis
system to find concrete apps; apps which are conducting LAN scanning activities
without user interaction. The resulting testbed is able to detect Android apps
which are scanning the local network.

4“AmongUs - The Real Imposter, sniffing on the internal network. Apparently #AmongUs on iOS is
sniffing on the Lan devices with uPnP / SSDP Making a Joke out of @Apple’s #App #Privacy #Policy”,
Chilik Tamir, https://twitter.com/_coreDump/status/1369273264674111488, last accessed: 20.10.2022

5https://apps.apple.com/us/app/among-us/id1351168404, last accessed: 20.10.2022

2

1.3. Structure

3. Large-scale Hybrid Analysis of Android Apps:
In this step we execute a large-scale hybrid analysis of a set of Android apps. We
choose the Android platform in favor of the iOS platform because of the wide
spectrum of already established analysis and reversing tools of APK files. This
step helps us in answering the question on how many apps are performing LAN
scanning activities.

4. Empirical Evaluation:
Based on the results of the large-scale analysis and casestudies of a few selected
apps, using both, quantitative and qualitative methods, we evaluate why apps are
scanning the local network and if they do it without user consent.

1.3 Structure
The remaining thesis is structured as follows: Chapter 2 gives a brief summary of related
work and ongoing work in this field of research. In Chapter 3 we discuss the background
and fundamentals needed for this thesis. Chapter 4 shows the details of our approach on
how we answer the research questions and how we implemented it. Further, in Chapter 5
we present our findings and answer the research questions. Following, in Chapter 6 we
discuss some further miscellaneous findings, limitations, and ideas for future work. Lastly,
we summarize and conclude our work in Chapter 7.

3

CHAPTER 2
Related Work

In this chapter we give a brief overview of ongoing research on relevant topics: local
network scanning and attacks, and dynamic, static, and network analysis of mobile apps.

Local Network Scanning And Attacks. Kuchhal et al. [36] performed a large-scale
empirical investigation if and how popular websites are scanning their users’ local networks.
The authors used the Tranco top 100,000 domains as well as additional 145,000 known
malicious sites for their research. In both groups, they found multiple (>100) sites
which are scanning the local network. They identified that 40% of the top 100,000 sites
were scanning their users’ local network for host profiling, purportedly for fraud and
bot detection. Additional causes were: native application communication and developer
errors. The authors did not uncover explicit user tracking. Malicious websites were not
found to attack the local network but rather, the authors inferred that the malicious
sites scanning the local network are compromised or cloned phishing websites and that
the scanning results from the corresponding original site. Further, they found that many
tested sites scanned their users’ local networks based on their operating system: they
found significantly more local scanning activity for the Windows operating system. Their
work establishes basic empirical knowledge on the scanning of localhost and LAN hosts
from real-world websites. Our work looks at local network scanning originating from
smartphone apps instead of websites. We expect more LAN scanning to originate from
mobile devices compared to websites, as there are more legitimate use cases for it (e.g.,
companion apps for IoT devices).
Sivaraman et al. [54] demonstrated in their paper how the local network could be attacked
via forged smartphone apps. Without knowledge of the user such apps would scan the
network for vulnerable IoT devices, report them to an external entity, modify the firewall
to allow external calls and, ultimately, attack the IoT device. The authors show that
home routers are poorly protected against such attacks and the need of increased security
for IoT devices. In this thesis, we try to detect such malicious apps.

5

2. Related Work

Farrah et al. [25] show in their paper how various zero conf protocols can be attacked
with man in the middle (MitM) attacks. Zero conf protocols (e.g., multicast DNS
(MDNS) or DNS-based Service Discovery (DNS-SD)) are used to provide a plug and play
method to setup internal networks. The authors ran over 300 experiments to test their
implementations and to demonstrate the feasibility and the severity of MITM attacks
on zeroconf protocols. Further, they provided Zeek code for detecting these attacks in
network traffic. Our work covers the abuse of SSDP (see Section 3.2.1), a zero conf
protocol, for LAN scanning purposes.
Acar et al. [1] presented two web-based attacks against local IoT devices that any
malicious website or third-party script could perform. In their attack scenario, a victim
visits the attackers website, which contains malicious code to communicate with local IoT
devices via HTTP. They showed that the malicious code can circumvent the same-origin
policy by exploiting error messages on the HTML5 MediaError interface or by carrying
out DNS rebinding attacks. Further, the authors concluded that attackers could gather
sensitive information from devices, track and profile the owners to serve ads, or control
IoT devices. Some potential countermeasures were proposed as well. Our work looks
into how prevalent local network scanning attacks/activities are in smartphone apps.
Static Analysis. Zhao et al. [71] contributed an automatic approach to detect hid-
den behaviors in mobile apps via input validation tracking. Their static approach,
INPUTSCOPE, detects the execution context of the input validation and also the content
involved in the validation. This enables them to expose secrets of interest. The authors
tested their tool with over 150,000 apps and found 12,706 apps to have backdoor secrets
(e.g., master password) and 4,028 apps to have blacklist secrets (e.g., censorship keywords).
Our work shows an automatic approach to find potential LAN scanning apps.
Wu et al. [68] presented an open-port analysis pipeline. They developed a crowdsourcing
app and a server-side analytic engine to continuously monitor open ports on smartphones.
The authors published the app on Google Play for 10 months and collected over 40 million
port monitoring records from 3,293 users in 136 countries worldwide. With this approach,
the authors were able to observe 925 open ports in popular apps and 725 open ports in
built-in system apps. For further analysis, the authors developed a static analysis tool:
OPTool. They developed their tool specifically for the open-port diagnosis and uses a
backward slicing graph (BSG) to simultaneously track multiple parameters. Out of 1,027
apps that are known to have open ports, OPTool flagged 671 apps with potential Java
open-port constructions and 98 apps with native open-port constructions. The remaining
apps are opening ports via dynamic code loading or are heavily obfuscated which renders
them impossible to find for the OPTool. We use a static approach to pre-filter Android
apps for LAN scanning activities.
Brengel et al. [18] proposed Yarix, a method to efficiently find files matching arbitrary
Yara rules. For scaling purposes, Yarix creates an inverted n-gram index that maps
fixed-length byte sequences to files in which they appear. To match the indexed files
with Yara rules, Yarix transforms these Yara rules into index lookups to find a set of
potentially matching files. Afterward, the Yara rules are applied to the found files to find

6

hard matches. This approach speeds up the matching on big file datasets: The authors
tested their approach on 32M malware samples with 1,404 Yara rules and found that the
index requires just 74% of the disk space required for the actual files. Also, they show
that their querying system is five orders of magnitude faster than using the standard
sequential YARA tool. In our work we use Yara to find potential LAN scanning apps.
Dynamic Analysis and Network Analysis. As we use dynamic and network ap-
proaches, we give a brief overview of those topics as well: Wen et al. [66] proposed
CANHUNTER, an automatic system for reverse engineering CAN bus commands using
just car companion mobile apps. Their system uses backward slicing and dynamic forced
execution, and semantic recovery using UI component correlation and function argument
association to uncover CAN bus commands. The authors tested CANHUNTER on 236 car
companion apps for the Android and iOS platform, showing CANHUNTER can uncover
182,619 unique CAN bus commands of 360 car models of 21 car manufacturers. Further,
they recovered the semantics of 86.1 % of those CAN bus commands and validated over
70 % for syntactics and semantics through public resources, cross validation, as well
as real car tests. In our work, we use static approaches to find local network scanning
activities in smartphone apps.
Further, Ren et al. [48] presented a system that improves visibility and control of
personally identifiable information (PII) leaks in network traffic of mobile devices: ReCon.
ReCon reveals PII leaks and gives users control over them without requiring any special
privileges or custom mobile operating systems. The proposed system uses machine
learning to reveal potential PII leaks by monitoring network traffic. By visualizations
the system empowers the user with the ability to control these leaks via blocking or
substitution of found PII. The authors evaluated ReCon’s effectiveness with experiments
using leaks from the 100 most popular iOS, Android, and Windows Phone apps and via
an institutional review board (IRB) approved user study with 92 participants.
Leveraged by their previous work, Ren et al. [47] provided the first longitudinal study of
the privacy impact of using popular Android apps and their updated versions over time.
They found the following trends regarding the sharing of PII with other parties: overall
privacy tends to worsen across app versions, the types of gathered PII change across
versions, HTTPS adoption is slow for apps, third parties not only track users pervasively,
but also gather sufficient information to know what apps a user interacts with, when
they do so, and where they are located when they do. The authors published a online
tool to help users to make informed decisions whether to update an app given a set of
changes in a new version. Further, they recommend the usage of ReCon [48], Lumen [44]
and AntMonitor [38] to block unwanted privacy leaks from newer app versions. Instead
of network monitoring, our work uses a static analysis approach to find local network
scanning activities from smartphone apps.
Pradeep et al. [43] collected 424 Android browser apps from various different apps stores
and analyzed these apps for personally identifiable information (PII) leaks. They build
a novel, open sourced testbed for controlled, repeatable experiments on real webpages
that allows to detect browsers modificating webpages and browser exfiltrating PII. Their

7

2. Related Work

results show that a wide range of privacy-enhancing (e.g., blocking known user-tracking
services) but also privacy-harming behavior: 32% of the browsers leak at least one type
of PII and 81 browsers are sharing the browser history, for 37 of which the authors were
not able to find a feature which would require such behavior. The authors argue that 13
of these 37 apps, send unique user identifiers alongside the browser history and thus can
be classified as apps that are tracking its users. This behavior is harmful to the users
privacy as their browsing history can be linked back. Our works uses a similar testbed to
find LAN scanning Android apps.

Reardon et al. [45] searched for Android apps that circumvent the Android permission sys-
tem. They ran hundreds of thousands of Android apps in their instrumented environment
and monitored their runtime and network behavior. The authors looked for evidence of
side and covert channels being used to access data that the respective Android app had
no permission to access. Upon finding such apps, the authors reversed the apps to see
how the apps accessed the unauthorized data. Further, they used software fingerprint to
measure the prevalence of the found techniques among other apps. Using the mentioned
analysis the authors found several side and covert channels to access sensitive data (e.g.,
geolocation) which are actively used by many popular apps. Reardon et al. do not cover
apps which are LAN scanning as, in contrast to iOS (see Section 3.1.1), there is no
permission needed to access the LAN.

8

CHAPTER 3
Background

In this chapter we discuss the background and fundamentals needed for this thesis: We
give a brief overview of the Android platform, discuss possible network scanning attacks
and how they could be implemented on the Android platform, and summarize static and
dynamic analysis approaches.

3.1 Android Platform
Android is the most used mobile operating system [57]. It is based on the Linux kernel
and is developed as open-source, mostly by Google.1 A driving factor for the success of
the Android mobile operating system is that it is very easy to develop and share/sell
Android apps - applications running on the Android platform. Developers can publish
their apps via the Google Play Store, from where users can install them. Apps are
mostly written in Java or Kotlin, if performance is critical, C/C++ can be used as
well and are packaged as “Android Package”, or short APK, with the file extension
“.APK”. APK files are essential ZIP files containing all the necessary files the operating
system needs to execute the app. The Java/Koltin code is compiled into Dex bytecode,
which is then executed by the Dalvik Virtual Machine (“just-in-time”) on an Android
smartphone. Since Android 5.0, the Android Runtime (ART) replaces the Dalvik VM
and uses the Dex bytecode to further compile (“ahead-of-time” at installation) it into
native instructions. Both runtimes are compatible [52]. To make Dex bytecode more
human readable, Smali [35] was developed. Smali/baksmali is an assembler/disassembler
for the Dex bytecode and is able to approximate the Dex bytecode to the initial source
code of the app.
Android uses Linux user-based protection to isolate apps from each other - the Application
Sandbox [4]. Each app gets a unique user ID (UID) and is executed in its own process.

1https://www.android.com/, last accessed: 20.10.2022

9

3. Background

Thereby apps can not access files and memory from other apps and are also restricted
in accessing system resources (e.g., camera, GPS), see Figure 3.1. As the Application
Sandbox is implemented in the kernel, everything above the kernel level runs sandboxed.
This allows developers to choose their tooling/programming language as they like, tough
Java and Kotlin are advised. Java and Koltin are executed in the Dalvik virtual machine.

3.1.1 Android Permissions
Some Android system APIs (e.g., GPS location, network state and access) are protected
via “Android Permissions”. Android uses a permission system to protect access to sensitive
data and/or sensitive actions. The Android platform knows two groups of permissions:
install-time permissions and runtime permissions (also known as dangerous permissions).
Pre Android 6.0 there was only the install-time permission system in place. This meant
that by installing an app, all the permissions declared in the Android manifest file were
granted. To provide a more secure and understandable system, Android 6.0 added the
runtime permission system: Runtime permissions give your app the ability to access
more restricted/sensitive data and/or actions. See Figure 3.1 for an overview of the
Android app-isolation architecture. APIs are only accessible via the operating system
and if an app wants to use an restricted API, it has to define the needed capabilities in
the “AndroidManifest.xml” file (contained in the .APK file). This file contains all the
capabilities of an app. On triggering such an (“dangerous”) API via an app the user gets
prompted to deny or allow this API access/permission. Once granted, the user is not
prompted again to deny or allow specific permissions. For example, if an app would like
to use the GPS location of its host smartphone, it needs to define permissions as seen
in Listing 3.1 in the “AndroidManifest.xml” file. Therefore apps now have to ask the
user during runtime for these specific/sensitive permissions to be granted. For example,
consider an app that wants to listen to some kind of IP multicast protocol (e.g., SSDP 3.2.1)
and thus has to enter the Wi-Fi multicast mode (to receive multicast packets). Such
an app has to declare the android.permission.CHANGE_WIFI_MULTICAST_STATE
(install-time) permission in its Android manifest file, see Listing 3.1 for an example. Now
assume that the mentioned app also wants to access the user’s calendar. This means
that it also has to declare the android.permission.READ_CALENDAR permission in its
Android manifest file. But in this case, the READ_CALENDAR permission is considered
as a “dangerous” permission, as it potentially contains very sensitive data, and thus is
treated as runtime permission and the users are asked during execution if they want
to grant this permission. In Android 10 the runtime permission system was further
enhanced by giving the user the ability to not only allow or disallow some permission
during runtime but also to grant permission only while the app is in use. Further, already
granted runtime permissions can now be changed in the Android settings [6, 7, 43].

iOS Permissions

Apple iOS has a similar permission system as Android. Compared to the Android
permission system however, Apple iOS 14 added new “local network privacy controls” [8]

10

3.2. Network Scanning

1 <manifest...>
2 <uses-permission android:name="android.permission.CHANGE_WIFI_STATE"

/>
3 <uses-permission android:name="android.permission.

CHANGE_WIFI_MULTICAST_STATE" />
4 </manifest>

Listing 3.1: Android Manifest declaring permissions for changing WiFi state and to
enable multicast mode.

Android API
(Cam, Location, Wifi, ..)

Permission-System

Sandbox
Private Memory
Private Storage

App A App B

Sandbox
Private Memory
Private Storage

Figure 3.1: Architecture of Android app isolation.

- a permission the user has to give an app during runtime if the app wants to access the
local network. The Android system is missing such permission and we think it is needed.

3.2 Network Scanning

Network scanning (network reconnaissance) techniques are used to gain information about
networks and their respective devices. This information includes the count of active
devices, open services per device, OS information per device, device/service versions,
and some more. An adversary may use this information to attack or, more interesting
for the scope of this work, track and fingerprint a network or devices connected to a
network [17, 36, 51]. In this thesis, we are only interested in network scanning techniques
and methods related to LAN environments or localhost.

3.2.1 Scanning Methods

The purpose of this section is to summarize known (active host and port) scanning
techniques and methods:

11

3. Background

Client Server

SYN

SYN + ACK

ACK

Figure 3.2: TCP Three-Way Handshake.

Internet Control Message Protocol (ICMP). The ICMP Ping scan [17, 51] is one
of the simplest scanning methods which identifies active hosts in the network. It sends a
ICMP ECHO request to a given IP and waits for a ICMP ECHO reply. This technique
works with all major operating systems and an attacker could use it to quickly scan
networks for active hosts.

Transmission Control Protocol (TCP). Some could argue that, based on the fact
that many application layer protocols (e.g., HTTP, SSH, SMPT) are using the TCP
protocol on top of the Internet Protocol (IP), TCP is one of the most used protocols.
TCP provides ordered and reliable data transmission/streaming between client and
server applications. To establish a connection between client and server the TCP 3-Way
Handshake (see Figure 3.2) is used: First, the client sends a TCP packet with the SYN
flag set. The server responds with a SYN+ACK TCP packet and the client responds with
a TCP ACK packet. After these three packets, data can be transmitted. There are two
usual active host/port scanning methods (besides trying to start a normal connection)
based on the TCP protocol: TCP SYN scan and TCP SYN/ACK scan.

TCP SYN [17, 51] scan works by sending a TCP SYN packet (“abusing” the TCP 3-way
handshake) to a given host-port combination. If the host is up and the used port is open,
it replies with TCP SYN-ACK, otherwise, a TCP RST response is sent.

The TCP SYN/ACK [17, 51] scan works by sending a TCP SYN/ACK packet. If the
host/port combination is up, it responds by sending a TCP RST packet.

Further TCP scanning techniques include:

IDLE Scan. [17, 51] This method needs another device on the network (“zombie”) which
an attacker could use for initiating the connections in place of the actual scanning host.
This technique abuses the IPID field and involves IP spoofing to instrument the “zombie”
host.

12

3.2. Network Scanning

The XMAS Scan [17, 51] technique uses the PSH, URG and FIN flags of the TCP
header. A closed port responds with a RST packet, open ports do not respond. It is
called “XMAS Scan” because in Wireshark2 such a packet looks like a XMAS-tree.

FIN Scan and NULL Scan [17, 51] are similar to the XMAS scan: The FIN scan only
uses the FIN flag and the NULL scan does not set any flag.

User Datagram Protocol (UDP). UDP is, again on top of the IP protocol, one of
the most used protocols, as many different application layer protocols are build on it (e.g.,
DNS) UDP does not provide ordered or reliable data transmission/streaming, rather
UDP works like “fire & forget” and thus is much faster than TCP. A basic UDP scan
does not need any special flags; it involves a normal UDP connection. Based on the UDP
protocol [17, 51] there are various scanning techniques, e.g. SSDP/UPnP scanning, see
Section 3.2.1.

Simple Service Discovery Protocol (SSDP). The SSDP networking protocol is a
component of the Universal Plug and Play (UPnP) protocol, which allows devices to
behave in a “plug and play”-manner. SSDP is used for advertisement and discovery of
services in the network and is based on the UDP protocol on top of which HTTP requests
are sent. UPnP devices listen on the standard multicast address (IP: 239.255.255.250,
UDP Port: 1900) and respond on SSDP discovery (HTTP method “M-SEARCH”)
messages.3 An attacker can use the Simple Service Discovery Protocol (SSDP) to identify
UPnP hosts on LAN-level. Compared to other scanning methods, SSDP scanning involves
only one packet to be sent (to a special multicast IP address), which makes this method
rather attractive. This allows scanning the LAN for UPnP devices [23, 29].

Address Resolution Protocol (ARP). ARP can be used to scan hosts on LAN-
level [51]. ARP is used to translate IP addresses to MAC addresses and is needed for
communication in LAN networks. It works by broadcasting an ARP packet with the
meaning: “If your IP is a.b.c.d, please send me your MAC”. If there is an active host with
IP a.b.c.d in the network, it responds to this request. This primitive allows scanning a
full network.

3.2.2 Implementation Methods
We found three different main opportunities to implement the methods and techniques
described in Section 3.2.1:

Dalvik VM or Android Runtime.
The probably most common way, is to use the default Android app tools: Java/Koltin
that gets compiled into the Android app. For example, the open source Android app

2https://www.wireshark.org/, last accessed: 20.10.2022
3“AmongUs - The Real Imposter, sniffing on your internal network. Apparently #AmongUs on iOS

is sniffing on your Lan devices with uPnP / SSDP Making a Joke out of @Apple’s #App #Privacy
#Policy”, Chilik Tamir, https://twitter.com/_coreDump/status/1369273264674111488, last accessed:
20.10.2022

13

3. Background

1 public void m7962d(int i, int i2, int i3) {
2 boolean contains;
3 for (int i4 = 0; i4 < i3 && m7964b(); i4++) {
4 int i5 = (i2 * i3) + i + i4;
5 boolean z = true;
6 Ip4Address ip4Address = new Ip4Address(new byte[]{(byte) ((i5 >>

24) & 255), (byte) ((i5 >> 16) & 255), (byte) ((i5 >> 8) &
255), (byte) (i5 & 255)});

7 synchronized (this.f21128f) {
8 contains = this.f21127e.contains(ip4Address);
9 }

10 if (!contains) {
11 synchronized (this.f21128f) {
12 if (!ip4Address.equals(this.f21124b.m7231c()) && !

ip4Address.equals(this.f21124b.m7232b())) {
13 z = false;
14 }
15 }
16 if (!z) {
17 try {
18 if (ip4Address.m7237p().isReachable(

AGCServerException.f19186OK)) {
19 synchronized (this.f21128f) {
20 this.f21127e.add(ip4Address);
21 }
22 }
23 } catch (IOException unused) {
24 }
25 }
26 }
27 }
28 }

Listing 3.2: Code of Fing Android app which is responsible for LAN Scanning.

Ning(“Network-Scanner for Android”) [30] uses this approach: The isReachable()
function from the InetAddress class [5] is used4 to (ping) scan all IP addresses from
the network. Fing [39], the closed source version, does the same. See Listing 3.2 for the
decompiled code: The for-loop in line 3 assembles the IP addresses. For each created IP
address an, Ip4Address Object is instantiated in line 6 and is used in line 18 to check
if the IP is reachable.

Native C/C++
This method involves writing the scanning functionality with C/C++. Android provides
the Native Development Kit [3] (NDK) which allows the usage of C/C++ in Android
apps. Upon compilation, the C/C++ code gets compiled to a native library which

4https://github.com/csicar/Ning/blob/master/app/src/main/java/de/csicar/ning/scanner/PingScanner.kt#L26,
last accessed: 20.10.2022

14

3.3. Static Analysis

then can be used through the Java Native Interface (JNI) in your Java/Kotlin code.
This allows writing the scanning functionality in C/C++ and use it as a library within
Java/Kotlin. C/C++ might be used for obfuscating/hiding functionality.

High Level
The scanning functionality can also be implemented in a high-level manner, e.g., inter-
preters and similar. An example for this would be JavaScript which gets executed in a
browser/webview. We found an app which is written in Apache Cordova [21] where the
scanning functionality is implemented in JavaScript, see our case study in Section 5.4.3.

3.2.3 Detection Possibilities

For the scope of this work we decided to detect ARP scanning, as this detection covers
various different (all volume-based and IP protocol-based) scanning methods. We take
advantage of a “convenient” side-effect of the ARP protocol: If a device inside a LAN
network wants to connect (for the first time) to another device (e.g., to a printer), it (the
network card to be precise) first has to send a ARP broadcast packet to get the MAC
address. The same applies if a device scans the network with any IP based protocol
(TCP, UDP, ICMP, ...). For every IP the scanning device wants to check, it has to send
a ARP broadcast packet first. This behavior can easily be seen in traffic dumps. By
detecting such behavior we catch practically all volume-based and IP protocol-based
scanning.
Further, we decided to also detect broadcast-based scanning, like SSDP. These methods
are rather easy to detect as it involves finding a single network packet with the respective
characteristics.
ARP scanning can be detected by counting the ARP query packets from a single Host
for multiple different IP addresses. SSDP scanning can be detected by looking for UDP
packets with Dst-Port 1900 and Dst-IP 239.255.255.250 and with a HTTP payload
containing the HTTP M-SEARCH * method.

3.3 Static Analysis

In the following section we discuss static analysis approaches and tools which are important
for the scope of this work. Static Analysis means examining Android apps without
executing them, e.g., just by decompiling and looking at source code or Dex code. First,
we discuss a pattern matching approach (Yara) and Apktool and JD-GUI, tools to
unpack/decompile APK files. Further, we describe data flow analysis and give a brief
summary of tools using this approach.

3.3.1 Static Analysis Approaches

The following approaches are important for our work:

15

3. Background

1 rule example : some_tag {
2 meta:
3 example_text = "This is just an example"
4 example_number = 3
5 example_bool = true
6 strings:
7 $a = "foobar" // string
8 $b = {66 6f 6f 62 61 72} // hex bytes
9 $c = /foobar/ // regex

10 condition:
11 $a or $b or $c
12 }

Listing 3.3: Yara Rule Example.

Yara

Yara [63], the “The pattern matching swiss knife”, is a tool which can be used for
identification and classification tasks. Originally Yara was designed for quick malware
classification but more use cases have emerged over time. It uses “rules” that are applied
to data (file or memory) and tell you if a rule “matches”. See Listing 3.3 for an example
Yara rule.

Rules consist of three main parts: meta, strings and the condition. In the “meta” section
additional information (e.g., a description of the rule) about the rule are stored. The
“strings” section lets you define patterns. Those patterns can be in the form of normal
strings, hex-bytes or regular expressions. In the last part, “condition”, the condition
for the rule to match, are defined. The rule above, named “example”, would trigger if
the given file/memory contains either “foobar”, the hex-bytes “66 6f 6f 62 61 72” or the
regular expression “foobar”.
We use Yara to filter a subset of interesting apps from the initial set. Then we use the
filtered subset in the next analysis step. In Section 4.2 we discuss the approach in detail.

Apktool

Apktool [67] is a tool for reverse engineering Android APK files. It allows to unpack
Android APKs files and tries to disassemble dex files into Smali code. Further, Apktool
is able to repack unpacked and modified Android apps. For the scope of this work, we
need the unpack/disassemble features that are helpful for writing Yara rules.

JD-GUI

JD-GUI [24] is able to decompile the Smali bytecode back into Java and was used in
combination with Apktool, to unpack/disassemble Android apps and to create Yara rules.

16

3.3. Static Analysis

3.3.2 Data Flow Analysis
Data flow analysis tries to compute the different paths on which data “flows” through the
application. One special version of data flow analysis is “taint analysis”. Taint analysis
“taints” (e.g., marks) interesting data or variables and tracks their flow path through an
application [53]. Code parts that return or generate interesting data are called “sources”
and code parts that consume interesting data are called “sinks” [53]. This type of analysis
is of interest for us, because it does not need to run the actual mobile apps and thus is
rather suitable for a large-scale analysis.

Existing Frameworks

ValueScope and LeakScope [53, 72]. LeakScope is a static analysis tool build on top of
dexlib2 [35] and Soot [62] by Zuo et al. [72]. The authors build the tool to automatically
detect data leakage vulnerabilities in Android apps that are using cloud APIs. It uses
predefined sinks (e.g., methods that use Cloud APIs) to detect points of interest. To
reconstruct possible inputs for predefined sinks, LeakScope transforms the Android Dex
bytecode into a Call-Graph (CG) with Soot. Based on the CG a data dependency
graph (DDG) is built: program instructions are represented as nodes and if there are
“definition-usage” dependencies between two nodes, edges are added. Now the predefined
sinks are searched in the DDG and, if found, it reconstructs all computation steps which
are involved in reaching the sink. Simulating all computation steps results in possible
input values for the sink in question. LeakScope is only able to reconstruct string values
(e.g., API keys) [53, 72].

The shortcoming of only being able to reconstruct strings was tackled by Schmidt [53]:
ValueScope. They extended the reconstruction to the following types: Integer, Strings,
InetAddress, InetSocketAddress, URI, URL, okhttp3.HttpUrl and even arrays. Another
shortcoming was fixed: To avoid running into an endless loop LeakScope does not
analyze cyclic code-blocks, which leads to missing coverage. ValueScope solves this
by marking already analyzed code-blocks and only analyzing unmarked code-blocks.
Further improvements include: adding separate timeouts for the backtracking and the
forward computation, and build related improvements like using Gradle5 as build tool
and dependency cleanup [53].

For the sake of completeness three other static analysis approaches are discussed as well:
FlowDroid [14], BackDroid [69] and Amandroid (also known as Argus) [65].

FlowDroid [14]. FlowDroid is a static taint analysis for Android apps that is context,
field, object, and flow-sensitive and considers the Android application lifecycle, callbacks,
and UI widgets. It is built on top of Soot [62] and Dexpler [15] and uses “Jimple” an
intermediate representation of the Android Dalvik bytecode. Jimple is designed for
performant static code analysis and is based on a typed three-address intermediate
representation. It further provides only a handful of operations that makes it easier to

5https://gradle.org/, last accessed: 20.10.2022

17

3. Background

analyze [62]. For data flow tracking (e.g., taint-analysis), FlowDroid uses the IFDS [49]
framework. The general idea of IFDS (inter-procedural, finite, distributive, subset) is that
dataflow-analysis problems can be solved precisely in polynomial time by transforming
them into a special kind of graph-reachability problem [49]. The authors of FlowDroid
show, via a set of experiments, the superior precision and recall of FlowDroid compared
to the commercial tools AppScan Source and Fortify SCA [14].

BackDroid [69]. BackDroid is developed by Wu et al. [69] and is able to skip code which
is irrelevant for the static analysis and only look at relevant code paths. The authors
propose a technique called “on-the-fly bytecode search”. This technique enables searching
for the caller of a sink (backtracking) just in time and thus only relevant code paths are
analyzed. Skipping irrelevant code paths results in better performance, as show by the
authors im comparison with Amandroid/Argus: 3,178 popular apps were analyzed for
crypto and SSL misconfigurations. BackDroid was 37 times faster while preserving close
or even better detection rates.

Argus-SAF/Amandroid [65]. Argus-SAF (also known as Amandroid) is similar to Flow-
Droid with the main difference being Amandroid/Argus is able to track inter-component
communication (ICC) extensively [53, 65].

3.4 Dynamic Analysis
In this section we discuss dynamic analysis approaches and tools needed in the scope
of this work. Dynamic Analysis involves running Android apps and uses data which is
gained from app execution. In this work we use a real Android smartphone to execute
apps and the following approaches.

3.4.1 Android Debug Bridge (ADB)
The Android Debug Bridge (ADB) [26] is a command-line tool which allows to communi-
cate and control an Android smartphone and its Android apps. ADB provides various
useful commands, e.g., to install new apps on an Android phone or to debug apps already
running. It involves three components (see Figure 3.3):

• Client - Command-line tool itself which sends commands to the server.

• Server - ADB server which is responsible for the communication (mostly USB or
TCP) with the adb deamon running on the smartphone or emulator

• Daemon (adbd) - Daemon which runs on the Android smartphone and executes the
given commands.

We use ADB to install, uninstall apps and to run commands, like stopping apps and
running “Monkey” (see Section 3.4.2).

18

3.4. Dynamic Analysis

Host

Client (Terminal)

Server

Android
Phone

adbd - daemon

Emulator

USB

Figure 3.3: Components of the Android Debug Bridge (ADB).

3.4.2 Monkey
Monkey [28] runs on the device or emulator and is able to provide pseudo-random streams
of user events (e.g., clicks, touches). Most often it is used for (stress-)testing apps. In
our case, we use it to start the apps.

19

CHAPTER 4
Design and Implementation

In this chapter, we discuss the implementation of our analysis framework to detect and
find LAN scanning apps.

4.1 Overview
As shown in Figure 4.1, our approach is split into three parts: In the first part we use
Yara to pre-filter the initial set of apps for interesting ones. The second part takes the
resulting set and uses a dynamic analysis approach to find apps that are scanning the
LAN. In the last step we evaluate the found apps that the following questions in mind:

• RQ1: How many apps are scanning the local network?

• RQ2: Why is the app scanning the local network?

• RQ3: Did the user consent to this behavior?

4.2 App Pre-Filtering
As static data flow and dynamic analysis are rather resource intensive, we choose Yara
to pre-filter our initial set of apps. This is done as follows: First, we unpack all apps
with the Apktool. We use the following command to unpack apps:
apktool d -f -o <app>.out <app.apk>
In combination with the main ruleset (see Appendix A.1.1), we use the resulting files
(except the files in the “res” folder, which mostly contains design/layout related files)
as input for Yara. Then we string-concatenat all matching Yara rules and use them as
input for Yara again. For the second Yara execution, we use the “meta-ruleset”: With
“meta-rules” (see Appendix A.1.2) we can match apps on the rules matched in the first

21

4. Design and Implementation

Initial Set of Apps

App Pre-Filtering Dynamic Analysis

LAN Scanning Apps

Evaluation

Figure 4.1: Overview of our hybrid (static and dynamic) analysis framework.

1 for a in apps:
2 matches = []
3 metamatches = []
4 for f in apktool(a):
5 for r in rules:
6 if Yara(f,r):
7 matches.append(r)
8 for r in metarules:
9 if Yara(matches.toString(), r):

10 metamatches.append(r)
11 output(a)
12 output(matches)
13 output(metamatches)

Listing 4.1: Highlevel pseudocode pre-filtering with Yara.

Yara execution. This allows to easily match apps by various conditions based on their
initial main ruleset matches. Listing 4.1 shows high level pseudocode for the pre-filtering
with Yara:

We define the main Yara ruleset to match apps that we associated with LAN scanning,
see Section 3.2.3. The Yara rules were handcrafted by analyzing apps which are known
to have LAN scanning abilities, e.g., Fing [39] and Ning [30]. For example the rule
in Listing 4.2 matches apps that are using the isReachable() function from the
InetAddress class [5].

We show the full Yara ruleset in Appendix A.1.1 and discuss it in Section 5.1.

4.3 Static Analysis
Initially we planned to use a full static analysis approach without dynamic analysis, as
using a dynamic approach can be rather complex and time consuming. We tried to use
data flow analysis to detect “sinks” using data that is related to LAN scanning (e.g., IP
addresses in LAN range 10.0.0.0/8). To evaluate for static (data flow) analysis we tried
to use the following tools, but we sequentially found them to be impractical.

22

4.4. Dynamic Analysis

1 rule PING_InetAddress_isReachable {
2 meta:
3 description = "Detects isReachable() function call often used for

ping scanning"
4 strings:
5 $x1 = "Ljava/net/Inet4Address;->isReachable(" ascii
6 $x2 = "Ljava/net/InetAddress;->isReachable(" ascii
7 condition:
8 1 of ($x*)
9 }

Listing 4.2: Yara rule matching Java isReachable (Ping) API functions.

• Flowdroid/LeakScope/ValueScope (Soot-based) and Androguard:
Have the same issue: Both are not able to “track” dataflow through threads. See
Listing 4.3 for an example of code from the popular LAN network scanning app
“Fing”1 causing problems with analysis: Line 9, where the LAN scanning code is
called, is wrapped insided a Java thread. The mentioned framework/tools were
only able to track the flow to the calling of the thread, resulting in a “cut” of the
data flow. Based on the Android/Java architecture, e.g., network operations are
not allowed in the main thread,2 we assume that almost all LAN scanning is done
inside its own thread. Thus these frameworks/tools (without added functionality)
are not suited for our purpose.

• Argus-SAF/Amandroid:
We were not able to get Argus-SAF running properly and based on the commits
on GitHub [55], we consider it unmaintained.

4.4 Dynamic Analysis
As we found the data flow analysis approaches impractical for our research, we decided
to use a dynamic approach. We choose a similar approach to Kuchhal et al. [36], except
we tested for Android apps and not websites. However, with this approach, we can not
find LAN scanning activities that are triggered by user-interaction. Yet, we think that
this approache catches the most interesting apps: Apps that are triggering LAN scanning
activities at app startup and without user-interactions (except starting the app). This
is of interest because such Android apps might try to hide their tracking/fingerprinting
behavior from the user.

1https://play.google.com/store/apps/details?id=com.overlook.android.fing, last accessed: 20.10.2022
2https://stackoverflow.com/a/6343299, last accessed: 20.10.2022

23

4. Design and Implementation

1 public void f() {
2 synchronized (this.f14630f) {
3 if (this.f14627c == 1) {
4 Log.d("fing:inet-finder", "Starting INET address finder

...");
5 this.f14627c = 2;
6 Thread thread = new Thread(new Runnable() { // from class

: com.overlook.android.fing.engine.j.f.a
7 @Override // java.lang.Runnable
8 public final void run() {
9 c.c(c.this);

10 }
11 });
12 this.f14628d = thread;
13 thread.start();
14 }
15 }
16 }

Listing 4.3: Java code with threads causing problems in tracking the call flow/graph of
the app.

The dynamic analysis involves the following steps: First, we connect the used Android
smartphone to the testing WIFI where we can dump the network traffic via Tcpdump.3
Sequential, for every Android app we start a network dump, install the app via ADB, and
its main entrypoint (activity) via Monkey. Similar to the work of Kuchhal et al. [36], we
just start the app and wait 60 seconds for the app to do its scanning activities. If the app
is providing such functionality, we execute/trigger one broadcast and one service each,
after these initial 60 seconds. We wait additional 30 seconds for executed broadcasts and
services, which sums up to a maximum of 120 seconds. Except from starting the app
and the triggering of broadcasts and services (if provided by the app) we do not trigger
any additional interactions with the app. This means that any network scanning activity
conducted by the respective app is triggered only via the mentioned started activities,
broadcasts or services mentioned above.
We also used Monkey for user simulation by instructing it, after starting the app, to
trigger 100 random touch events. We used the command from Listing 4.4 for Monkey.
10 random apps from the GP dataset and 10 random apps from the IoT dataset were
used in this experiment. However, we found no additional scanning activity compared
to running without the Monkey user simulation. Smart user simulations are part of our
future work, see 6.1.
Finally, we kill and uninstall the app and stop the network dump. We execute all of
the mentioned executed commands (e.g., installing an app using ADB) using the bash

3https://www.tcpdump.org/, last accessed: 20.10.2022

24

4.4. Dynamic Analysis

1 adb shell monkey --throttle 250 -c android.intent.category.LAUNCHER -s
666 --pct-touch 100 -p <package-name> 100

Listing 4.4: Monkey command line flags used to simulation touch events.

Table 4.1: Timeouts of ADB commands.

ADB Command Duration (sec)
Install 120
Start 10
Triggering Service/Broadcast 120
Stopping App 10
Uninstall 120

Ethernet

ISP-Router

USB
Wifi

Raspberry Pi

Android Phone

Figure 4.2: Architecture of the dynamic analysis testbed.

“timeout” function, see Table 4.1. If an ADB command runs into a timeout, we stop the
dynamic analysis, to limit the execution time.

Figure 4.2 shows the architecture of the testbed. We choose a Raspberry PI4 as the
machine executing the ADB commands and dumping the network traffic. To setup the
WiFi network on the Raspberry PI we used raspap5 which provides a nice and easy way
to setup WiFi networks. We hook the Android smartphone, a OnePlus 6T with 8GB
RAM running Android 11 with OxygenOS 11.1.2.2, via USB to receive ADB commands
and connect it via WIFI to dump the network traffic.

For the analysis of the traffic dump we wrote a tool using Go6 and the GoPacket [27], a
network packet processing library. After the execution of all apps we analyze the network
dumps: We look for ARP and SSDP packets to find “volume-based” scanning activities
(ARP) or multicast scanning activities, see Section 3.2.3. We detect:

4https://www.raspberrypi.com/products/raspberry-pi-4-model-b/, last accessed: 20.10.2022
5https://raspap.com/, last accessed: 20.10.2022
6https://go.dev/, last accessed: 20.10.2022

25

4. Design and Implementation

• ARP - If more than 3 ARP packets to different IPs from one single IP (Android
smartphone IP) are found we detect it as ARP scan. We choose 3 ARP packets
as some ARP packets are expected to be seen as this is normal behavior. Since
every operating system has a different implementation of the ARP protocol there
are different numbers of expect ARP packets. However there should not be more
than 3 ARP packets in normal usage.

• SSDP - We detect every SSDP packet as scanning activity.

26

CHAPTER 5
Results

In this chapter we present our results and answer the research questions presented in
Chapter 1.1.

5.1 Yara Ruleset
Our Yara ruleset can classify Android apps that have the capabilities for LAN scanning
(e.g., code/data needed for such functionality). We used apps (e.g., Fing [39] and
Ning [30]) that are known to have such functionality for creating this ruleset. It consists
of 43 normal Yara rules and one “meta-rule”, see Section 4.2 for how they are used and
their development process.
We categorize them as follows:

• Permission Rules
Cover Android permissions.

• IP/MAC Rules
Cover special IP and MAC addresses related to LAN.

• Keyword Rules
Cover keywords as e.g., “portscan” in Android app code.

• Unix Path Rules
Cover special Unix paths (e.g., “/proc/net/arp”).

• Java API Rules
Cover Java API functions which are related to scanning/networking.

• Unix Command Rules
Cover Unix commands as e.g., “ping <IP>”.

27

5. Results

• Native Rules
Look for functionality in native code (“.so” files).

• Misc Rules
Miscellaneous Yara rules.

Our Yara ruleset can be found in Appendix A.1.1. Each rule describes its purpose in the
corresponding metadata field. Table 5.2, Table 5.3 and Table 5.4 show their matching
rates on the respective Android app datasets. Further, we created one special Yara
rule: the “meta-rule” - “LAN_Scanning_APK” (see Appendix A.1.2). We use this rule
to select Android apps for further processing. Based on experiments with our normal
Yara ruleset on known LAN scanning Android apps we build this “meta-rule” to catch
behavior related to LAN scanning. It checks if an Android app matches at least four of
the following Yara rules:

• Hardcoded_local_IPs

• proc_net_arp

• GATEWAY_IP_

• UPnP_Keyword_http

• UPnP_Multicast_Addr

• Scan_Keywords

• NsdManager_discoverServices

• PING_InetAddress_isReachable

• PING_cmd

• WifiInfo_getIpAddress

• Get_Local_IP

• Get_Local_via_WEB

• Get_Local_IP_hashcode

• InetAddress_getHostAddress

We ignored the Yara rules related to Android permissions in the “meta-rule” as previous
work (e.g., Reardon et al. [45]) shows that some Android apps try to circumvent the
permission system. However, we did not find any app circumventing the permission
system. We also tested the app pre-filtering (see Section 4.2) with a weakened Yara
meta-rule for the IoT dataset: Instead of 4 of them we used 3 of them in the rule condition

28

5.2. App Dataset

(see Appendix A.1.2) which results in fewer apps being filtered. With this weakened Yara
meta-rule for the IoT dataset, we got 165 additional apps for the dynamic analysis (see
Section 4.4) which resulted in one additional LAN scanning (ARP) app. We consider
this a reasonable tradeoff between time and precision.

5.2 App Dataset
For conducting our research we used three different Android app datasets: IoT companion
apps, top 1000 general purpose (GP) apps and malicious apps. We further manually
choose apps for evaluating our analysis approach.

5.2.1 IoT Companion Apps
Companion apps are apps which are used in combination with IoT devices for various
different purposes, e.g., initial setup or for updating [53]. Thus, these apps need to
somehow find and communicate with local IoT devices.
We expect seeing LAN scanning from companion apps to be more likely compared to
general purpose apps, as a respective app has to somehow “find” its corresponding IoT
device in the LAN. In this scenario, if the user has given consent, e.g., via UI interaction,
LAN scanning is normal and can be classified as intended behavior.
We used an updated app dataset of Wang et al. [64]: In 2022 only 1,259 apps were left
for downloading from their initial 2,081 apps. As Renuka Kumar et al. show in their
paper [37] this could be because of different reasons, e.g.: geoblocking.

5.2.2 Top 1000 General Purpose
In comparison to the IoT companion apps, where LAN scanning is somehow expected,
we expect to see LAN scanning activities in the top 1,000 GP app dataset much less
frequent. We used the top 1,000 GP apps from the Austrian Google Play Store.1

5.2.3 Malicious Apps
We downloaded 117 random Android APK samples, related to various APT groups and
malware families (e.g., Hydra, APT-C-23, Joker, Teabot, ..), from MalwareBazaar and
VirusTotal. See Appendix A.1.3 for a full list of md5 hashes.

5.2.4 Manually Choosen Apps
To validate our analysis approach we used the following apps: We used Fing [39] and
Ning [30] for creating Yara rules. The two mentioned apps are used for LAN scanning in
an administrative scenario and thus a good fit for creating Yara rules, which are looking
for LAN scanning apps. For validating our dynamic analysis we used the following

1https://play.google.com/store/apps, last accessed: 20.10.2022

29

5. Results

Table 5.1: Hybrid Analysis Results

Set Apps After pre-filter Dumps with data Dumps with scanning ARP-Scan SSDP-Scan
IoT 1,259 479 (38%) 471 (98.3%) 31 (6.5%) 7 (22.5%) 28 (90.3%)
Top 1000 1,000 323 (32.3%) 319 (98.7%) 2 (0.6%) 1 (50%) 1 (50%)

app: Hot Pot Browser - com.huoguo.browser.2 Colleagues found this app in related
research [43] as it is LAN scanning directly on startup - behavior which we look for.

5.3 Analysis Results
In this section, we present our research findings. First, we discuss the results of our static
and dynamic analysis. Second, we showcase four case studies of apps we found to scan
the LAN. Last, we give concrete answers to our research questions.

5.3.1 Static Analysis Results
Table 5.1 shows the results of the app filtering. We used 1,259 IoT, Top 1,000 GP apps
and 117 known malicious apps for the initial app pre-filtering step using Yara. See
Section 4.2 for our discussion of this static analysis approach. After the pre-filtering 479
IoT (38%), 323 GP (32.3%) and 0 malicious apps were left. We compared the matching
rules of both app datasets and found the following relations: As we can see in Table 5.2,
IoT apps seem to be more likely to use the Android permissions related to changing
networking and WIFI state; based on the matching of the following Yara rules:

• AndroidManifest_Permission_CHANGE_WIFI_STATE

• AndroidManifest_Permission_CHANGE_WIFI_MULTICAST_STATE

Also, IoT apps are more likely to use/access proc/net/arp (see rule proc_net_arp), which
is, as IoT/companion apps have to known about related LAN devices, somehow expected
for IoT apps. UPnP_Multicast_Addr and UPnP_Keyword_http are more prevalent
in the IoT dataset which is also expected as IoT apps are more likely to use UPnP.
Hardcoded_local_IPs on the other hand, is quite common in both datasets. This is most
likely because local IPs are used to detect rooted devices or emulators. For example,
Schmidt et al. [53] found the IP “10.0.2.2” in a large number of apps. They found this IP
in a “"React Native” library by Facebook, which uses this IP upon emulator detection.
Based on the rule NsdManager_discoverServices we can see that service discovery
activities are more prevalent in the IoT app dataset. Table 5.1 supports this, as the
SSDP matches are much higher in the IoT app dataset as well.
Interestingly, the Scan_Keywords rule has more matches on the GP app dataset than the

2https://www.virustotal.com/gui/file/00c9f5646d2c93c920b5307990ee5e00aef3198f5e34a3a80811b1b0d130441c,
last accessed: 20.10.2022

30

5.3. Analysis Results

IoT app dataset, which is unexpected. Also rule proc_x_stat is interesting: it matches
more often on the GP app dataset. We assume that app developers do this, just to get
information about the current app process.

To further analyze the matching Yara rules, we combined the two Android app datasets
(GP dataset and IoT dataset) into one dataset and created three new datasets for ARP
and SSDP scanning Android app: the ignored app dataset (apps which did not survive the
pre-filtering; 1,457 apps), the filtered app dataset (apps which did survive the pre-filtering;
794 / 773 apps), scanning app dataset (apps which were found ARP/SSDP scanning; 8 /
29 apps). The results of this analysis can be seen in Table 5.3 for ARP scanning and
Table 5.4 for SSDP scanning.
What we can see from Table 5.3 and Table 5.4 is that the results for the “Ignored App
Dataset” are always smaller than the results for the “Filtered App Dataset”. This shows
that the Yara “meta-rule” (see Section 4.2) indeed covers network-related (LAN scanning)
capabilities pretty well.
Looking at the “ARP Scanning App Dataset” results in Table 5.3 we can see that a few
of the Yara rules match on all of the Android apps:

• AndroidManifest_Permission_ACCESS_WIFI_STATE

• Get_Local_IP

• InetAddress_getHostAddress

• NetworkInterface_getInetAddresses

• NetworkInterface_getNetworkInterfaces

Further, looking at the “SSDP Scanning App Dataset” results in Table 5.4 we can see
that the following few Yara rules match on all of the Android apps:

• AndroidManifest_Permission_ACCESS_WIFI_STATE

• UPnP_Multicast_Addr

• UPnP_Keyword_http

• InetAddress_getHostAddress

For this datasets a modified Yara “meta-rule” might have resulted in similar results,
however, our Yara “meta-rule” catches a wide spectrum of capabilities needed for LAN
scanning. For example the Yara rule “Get_Local_IP_hashcode” (which has 0 matches
in the “ARP Scanning App Dataset”) looks for code which (ab)uses (e.g., for obfuscation)
the “hashCode()” function of “java.net.InetAddress” to load the current IP.
The results of the Yara rule “Scan_Keywords” are also interesting: It has 0 matches in
the “ARP Scanning App Dataset” and 1 (3.45%) match in the “SSDP Scanning App

31

5. Results

Dataset”, whereas the respective matches in the “Filtered App Dataset” are 93 (11.71%)
and 92 (11.90%). As this rule tries to find strings inside Android apps that clearly can
be related to scanning activities (e.g., “portscan”), this could be an indicator that the
Android apps we found LAN scanning might try to hide this functionality.
Also only 4 of the 8 Android apps in the “ARP Scanning App Dataset” are using the
Unix command “ping” (see matches for Yara rule “PING_cmd” in Table 5.3).
Interestingly, the matches for the three rules in the “Native Rules” category (C_socket_usage,
C_ICMP, C_http_request_parts) in the “SSDP Scanning App Dataset” are quite a
bit higher compared to the “Native Rules” in the “ARP Scanning App Dataset”. This
indicates that the SSDP scanning Android apps are more likely to use native libraries.
The Yara rule “PING_InetAddress_isReachable” in the category “Java API Rules” in the
“SSDP Scanning App Dataset” has 16 (55.17%) matches, whereas the same Yara rule has
0 matches in the “ARP Scanning App Dataset”. This could indicate valid SSDP/UPnP
behavior where the devices check if corresponding devices are (still) responsive.

5.3.2 Dynamic Analysis Results
Table 5.1 also shows ARP scanning results of the dynamic analysis: Based on the 479
IoT and 323 GP apps from the static analysis, we got for the IoT apps 471 (98.3%) and
for the GP apps 319 (98.7%) traffic dumps with data. In the IoT traffic dumps we found
31 apps to conduct scanning activities (ARP and/or SSDP): in 7 we found ARP scanning
activity and in 28 we found SSDP scanning activity. Whereas for the GP apps we only
found two apps: for one app (AliExpress, see Section 5.4.1 for details) we only found
ARP scanning activity, and a different app showed SSDP scanning activity. These results
support our assumption that IoT apps are more likely to conduct LAN scanning. We
performed some further general evaluations and analyses, not directly related to LAN
scanning, on the 690 traffic dumps, which we discuss in Section 5.5.

5.4 Case Studies
In this subsection we present four apps which we found doing LAN scanning activi-
ties. For each one of the following four apps we conducted a case study: AliExpress
(com.alibaba.aliexpresshd), Magic Home Pro (com.zengge.wifi), ENSPIRE Controller
(com.yamaha.dkv.enspire) and Hot Pot Browser (com.huoguo.browser).

5.4.1 AliExpress - com.alibaba.aliexpresshd
Name: AliExpress
Package: com.alibaba.aliexpresshd3

Last Updated: 25.07.2022
Released on: 27.09.2012
Downloads: 500M+

3https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd, last accessed: 20.10.2022

32

5.4. Case Studies

App Version Code/Name: 406 / 8.40.0
Rating: 4.5/5 with 13.3 million ratings
Developer: Alibaba Mobile4

Date of Access: 20.10.2022
Purpose:
AliExpress, a online retail service based in China, is the chinese counterpart to Amazon.
It launched in 2010 and their app can be considered a “online shopping” app: “AliExpress
is the go-to online shopping app to find everything you need at your fingertips!”. [2]
Data Safety:
Based on their Google Play Store site [2, 9], see Figure 5.1, AliExpress collects the fol-
lowing data: Personal info (name, email, user IDs, address and phone number), financial
info (purchase history), app activity (app interactions and in-app search history), web
browsing history, app info and performance (crash logs and diagnostics) and device or
other IDs. Further, they state that the following data is shared with other companies or
organizations: Personal info (name, email, address and phone number) and financial info
(purchase history).
Privacy Policy:
In their privacy policy, [10, 41] in the section “Information That We Collect Automati-
cally” we can see what is collected automatically. They state that they are collecting
“Details of Platform buying and browsing activities”, and that for this purpose they are
collecting “IP addresses, date and time of access to the Platform, device type, unique
device identification numbers, browser type, broad geographic location (e.g. country or
city-level location), browsing patterns and details of how you have interacted with our
Platform and the goods and services available on it”. As we observed the LAN scanning
activities at startup without any user interactions, we expected to find remarks in their
privacy policy - we did not find any remarks towards LAN scanning activities.
Manual Analysis:
We manually installed and started the app, and the app greeted us with “classic” shopping-
app-style content. Also, we found quite some features, that are not directly related to
a shopping app: chatting, games, online wallet - it felt a little like a social media app.
However, we did not find any features related to LAN scanning activities but we found
a Reddit post (Mar 10, 2021) [31] where users are discussing why the AliExpress iOS
app is asking for LAN access permissions. The users from the Reddit post speculate
that the app is doing it for fingerprinting/tracking purposes but no proof is given. A
different reason might be, that these information are used to display recommendations or
to calculate prices based on the devices in the LAN. We tried to look into the code of the
app and look for the code that is related to the scanning activities, but unfortunately we
were not able to pinpoint it exactly, as there is quite a lot of code with various different
functionality. However, we found the usage of “Alibaba MNN” - "MNN is a blazing
fast, lightweight deep learning framework, battle-tested by business-critical use cases in
Alibaba"5 as native lib packed into the app.

4https://play.google.com/store/apps/developer?id=Alibaba+Mobile, last accessed: 20.10.2022
5https://github.com/alibaba/MNN, last accessed: 20.10.2022

33

5. Results

1 POST /amdc/mobileDispatch?appkey=21371601&deviceId=
Ysvr5OQb244DAF498o3fumJ9&platform=android&v=4.0 HTTP/1.1

2 Connection: close
3 Accept-Encoding: gzip
4 Content-Type: application/x-www-form-urlencoded
5 User-Agent: Dalvik/2.1.0 (Linux; U; Android 11; ONEPLUS A6013 Build/RKQ1

.201217.002)
6 Host: amdc.aliexpress.com
7 Content-Length: 280
8
9 appVersion=8.40.0&mnc=wifi&lng=0.0&netType=WIFI&bssid=02%3A00%3A00%3A00%3

A00%3A00&appName=Aliexpress_Android&channel=channel_name&sign=
b8630549528c59359e2ba0faf742c625076bdc49&carrier=wifi&cv=0&t
=1657531369063&platformVersion=11&domain=msg-global.m.taobao.com&
signType=sec&lat=0.0

Listing 5.1: HTTP request from AliExpress leaking BSSID in the request body.

Further, upon manually analyzing the traffic dump, we found 4 HTTP request/response
pairs. 3 HTTP request/response pairs go to amdc.aliexpress.com (47.246.136.167) and
contain some sensible data as BSSID, and most likely longitude and latitude, see List-
ing 5.1 for one of the three HTTP requests. Additionally, we found one single HTTP
request/response pair which seems to ask acs.m.taobao.com (198.11.189.91) for the cur-
rent timestamp, see Listing 5.2.

Our Remarks:
As the main use of this app is to provide a shopping app to their customers, we can not
think of any reason, which is related to shopping, to conduct LAN scanning activities.
One none-shopping-related reason might be: fingerprinting the users and their LAN, as
Kuchhal et al. [36] mentioned and the users of Reddit assume. Further, we are surprised
that AliExpress still uses unencrypted HTTP for some of its communication.
Yara Rule Matches:
This app matched on 14/43 of our rules, see Listing 5.3.

5.4.2 Magic Home Pro - com.zengge.wifi
Name: Magic Home Pro
Package: com.zengge.wifi6

Last Updated: 11.07.2022
Released on: 18.12.2016
Downloads: 1M+
App Version Code/Name: 180 / 1.8.2
Rating: 3.1/5 with 8.14 thousand ratings

6https://play.google.com/store/apps/details?id=com.zengge.wifi, last accessed: 20.10.2022

34

5.4. Case Studies

1 GET /gw/mtop.common.getTimestamp/* HTTP/1.1
2 Connection: close
3 User-Agent: Dalvik/2.1.0 (Linux; U; Android 11; ONEPLUS A6013 Build/RKQ1

.201217.002)
4 Host: acs.m.taobao.com
5 Accept-Encoding: gzip
6
7 HTTP/1.1 200 OK
8 Date: Mon, 11 Jul 2022 09:22:54 GMT
9 Content-Type: application/json;charset=UTF-8

10 Connection: close
11 ufe-result: A6
12 x-paramkey: mtop.common.getTimestamp
13 Content-length: 109
14 Server: Tengine/Aserver
15 s-rt: 2
16 EagleEye-TraceId: 212c89a316575313749343846e90f2
17
18 {"api":"mtop.common.getTimestamp","v":"*","ret":["SUCCESS

::.................."],"data":{"t":"1657531374936"}}

Listing 5.2: HTTP request from AliExpress asking for current timestamp.

1 GATEWAY_IP_2
2 Get_Local_IP
3 Hardcoded_local_IPs
4 InetAddress_getHostAddress
5 Interesting_Keywords
6 NetworkInterface_getInetAddresses
7 NetworkInterface_getNetworkInterfaces
8 Network_Interface
9 Special_MAC

10 TCP_Socket
11 UDP_DatagramSocket_send
12 proc_self_fd
13 proc_x_cmdline
14 proc_x_stat

Listing 5.3: Matching Yara rules for AliExpress app.

Developer: LED Controller7

Date of Access: 20.10.2022
Purpose:
This app provides controlling functionality for smart LED lights. The purpose of this
app already hints scanning activities: findings corresponding devices.

7https://play.google.com/store/apps/developer?id=LED+Controller, last accessed: 20.10.2022

35

5. Results

Figure 5.1: AliExpress Data Safety statement summary.

Data Safety:
As stated by the app developers, see Figure 5.2, the following data is collected [12, 19]:
Personal info (email), app activity, app info and performance (crash logs and diagnostics),
and device or other IDs. Further, they state that they do not share data with third
parties [19]. However, based on their “Security practices” [19], they do not encrypt data
(“Data isn’t encrypted - Your data isn’t transferred over a secure connection”) and they
do not provide a way for you to request the deletion of your data. This circumstance
makes this app most likely not meeting the General Data Protection Regulation (GDPR)
requirements.
Privacy Policy:
The privacy policy [13, 20] states that they are, not only, collecting “location information”:
“To provide users with more stringent data protection, starting with Android 6.0, Android
has removed programming access to the device’s local hardware identifier for applications
using WIFI and Bluetooth. Now, to access the hardware identifiers of nearby external
devices via Bluetooth and WIFI scanning, your app must have location permissions.” [20]
This paragraph mentions the LAN scanning activity but does not explain why they are
doing it and what happens with the collected data. Some could argue that the purpose of
the app implies this kind of behavior, but nevertheless, it is not clear if the data is used
otherwise. Interestingly, their privacy policy somehow contradicts their “Data Safety”
statement [19]: The privacy policy states that they are sharing your data “with service
providers and other third parties who perform services on our behalf, such as analytics
and marketing services” [20]. Their “Data Safety” statement [19], though, states that
they do not share data with third parties.
Manual Analysis:
We manually looked into the app and found the code which is responsible for LAN
scanning, see Listing 5.5. As expected, the code is looking for devices the app is able to
controll: First the apps reads the IP address via android.net.wifi.WifiInfo - getIpAddress().

36

5.4. Case Studies

1 AndroidManifest_Permission_ACCESS_NETWORK_STATE
2 AndroidManifest_Permission_ACCESS_WIFI_STATE
3 AndroidManifest_Permission_CHANGE_WIFI_STATE
4 GATEWAY_IP_1
5 Get_Local_IP
6 Hardcoded_local_IPs
7 InetAddress_getHostAddress
8 NetworkInterface_getInetAddresses
9 NetworkInterface_getNetworkInterfaces

10 PING_cmd
11 TCP_Socket
12 UDP_DatagramSocket_send
13 WifiInfo_getIpAddress
14 proc_self_fd
15 proc_x_stat

Listing 5.4: Matching Yara rules for Magic Home Pro app.

1 C5598h.m9230b("DeviceDiscover InDepth:" + C5546p0.this.f21157a);
2 for (int i = 1; i <= 254 && !C5546p0.this.f21166j; i++) {
3 String str2 = b + String.valueOf(i);
4 if (!str2.equalsIgnoreCase(c)) {
5 try {
6 Thread.sleep(10L);
7 C5546p0.this.f21158b.m30c("HF-A11ASSISTHREAD", str2, 48899);
8 } catch (Exception e3) {
9 e3.printStackTrace();

10 }
11 }
12 }

Listing 5.5: Code of Magic Home Pro which is responsible for LAN Scanning.

Then it generates the IP addresses to scan the /24 subnet. The for-loop in line 2-12
is responsible for this task. For every IP (except the own one) a UDP packet with the
content “HF-A11ASSISTHREAD” is sent. We can see this behavior as this generated a
massive amount of ARP request packets in our traffic dump, see Figure 5.3. The packet
hex data from Figure 5.3 correspond to “HF-A11ASSISTHREAD”.
Our Remarks:
As the purpose of this app is to communicate with (IoT) devices in your LAN, we
expected the scanning behavior. However, we expected this behavior after some kind of
user interaction. Also, it would be nice to see some more information about this behavior
in their privacy policy [20] or “Data Safety” statement. [19]
Yara Rule Matches:
This app matched on 15/43 of our rules, see Listing 5.4

37

5. Results

Figure 5.2: Magic Home Pro Data Safety statement summary.

Figure 5.3: LAN scanning activity of Magic Home Pro.

5.4.3 ENSPIRE Controller - com.yamaha.dkv.enspire

Name: ENSPIRE Controller
Package: com.yamaha.dkv.enspire8

Last Updated: Feb 24, 2021

8https://play.google.com/store/apps/details?id=com.yamaha.dkv.enspire, last accessed: 20.10.2022

38

5.4. Case Studies

Released on: May 31, 2016
Downloads: 10K+
App Version Code/Name: 10000017 / 1.2.2
Rating: 2.6/5 with 54 ratings
Developer: Yamaha Corporation9

Date of Access: 20.10.2022
Purpose:
The purpose of this app is to controlle the Yamaha Disklavier ENSPIRE (music instru-
ment).
Data Safety:
Their Google Play Store site [11, 22] does not show any “Data Safety” statement, see
Figure 5.5.
Privacy Policy:
We were not able to find any privacy policy which violates the Google Play Store regula-
tions.
Manual Analysis:
On looking into the app we found that the app was developed with Apache Cordova [21].
This is interesting, because Abhinav M. et al. [42] published their research involving IoT
companion apps written in “hybrid app” frameworks, like Apache Cordova. They devel-
oped HybriDiagnostics, a vulnerability-assessment framework that is able to detect nine
different types of security issues in such hybrid app. Apache Cordova allows developers to
create their apps with HTML, CSS, and JavaScript for practically every mobile platform.
Because of this, we found the code which is responsible for the scanning activities written
in JavaScript, see Listing 5.8 and 5.7. In the first Listing (5.8) we can see the code which
is responsible for the huge amount of ARP packets seen in the traffic dump. The code
from the second Listing (5.7) is responsible for the SSDP scanning activities found in the
traffic dump, see Figure 5.4.
Interestingly this app is not requesting the “CHANGE_WIFI_MULTICAST_STATE”
Android permission. This permission is needed to listen for multicast packets. In the
case of this app, this permission is not needed (as this app is only sending SSDP requests
and not listening to them), but many apps with similar functionality still declare this
permission. We think that there is some confusion about when this permission is needed
and when it is not needed.
Our Remarks:
Although the purpose of this app implies scanning activities, we would have expected
to find some information about this behavior in their privacy policy or “Data Safety”
statement. Their privacy policy or “Data Safety” statement does not even exist.
Yara Rule Matches:
This app matched on 11/43 of our rules, see Listing 5.6

9https://play.google.com/store/apps/developer?id=Yamaha+Corporation, last accessed: 20.10.2022

39

5. Results

1 AndroidManifest_Permission_ACCESS_NETWORK_STATE
2 AndroidManifest_Permission_ACCESS_WIFI_STATE
3 Get_Local_IP
4 Hardcoded_local_IPs
5 InetAddress_getHostAddress
6 NetworkInterface_getInetAddresses
7 NetworkInterface_getNetworkInterfaces
8 Network_Interface
9 UPnP_Keyword_http

10 UPnP_Multicast_Addr
11 WifiInfo_getIpAddress

Listing 5.6: Matching Yara rules for ENSPIRE Controller app.

Figure 5.4: SSDP traffic dump of ENSPIRE Controller.

5.4.4 Hot Pot Browser - com.huoguo.browser

Name: Hot Pot Browser
Package: com.huoguo.browser10

App Version Code/Name: 127000 / 1.2.7.0
Developer: Unknown
Purpose:
Android browser app.
Manual Analysis:
While research this app we found various interesting things: First, it scans the LAN

10http://www.downyi.com/downinfo/119264.html, last accessed: 20.10.2022

40

5.4. Case Studies

1 var next = function (addr) {
2 var url = ’http://’ + addr + ’/ctrl/getDescription.php’;
3 var httpDone = function () {
4 $worker -= 1;
5 if ($cancel == null) {
6 if (nextAddr() == true) {
7 next(long2ip($current));
8 return;
9 }

10 }
11 if ($worker == 0) {
12 if ($cancel) $cancel(false, ’cancel.’);
13 if ($callback) $callback(true, ’success.’);
14 }
15 };
16 $worker += 1;
17 //appDebug.print(’tcp: ’ + url);
18 appHttpClient.get(url, { connect_timeout: appValue.TCP_TIMEOUT })
19 .then(function (response) {
20 appPianoList.add(response.data, ’tcp’);
21 httpDone();
22 }, function (response) {
23 httpDone();
24 });
25 };

Listing 5.7: Code of ENSPIRE Controller which is responsible for LAN (ARP) Scanning.

Figure 5.5: ENSPIRE Controller Data Safety statement summary.

directly at startup and even some anti-virus engines on VirusTotal are flagging it.11 Based
on the VirusTotal report (Symantec Mobile Insight “AdLibrary:Igexin”) the mentioned
app uses the Igexin SDK, which is known to spy on its user [70]. As reported in a blog
post by www.lookout.com [70], we were able to find the “plugin” framework code (see
Listing 5.10) which allows the app to load and execute arbitrary code.
Secondly, we also found that the app is using the Jiguang SDK which is known to spy
on its users as well [46]. In the Table 5.7 we can see the domain “jpush.cn” being quite

11https://www.virustotal.com/gui/file/00c9f5646d2c93c920b5307990ee5e00aef3198f5e34a3a80811b1b0d130441c,
last accessed: 20.10.2022

41

www.lookout.com

5. Results

1 var joinGroup = function (socketId) {
2 chrome.sockets.udp.joinGroup(socketId, $address, function (result) {
3 if (result < 0) {
4 chrome.sockets.udp.close(socketId);
5 done(false, ’joinGroup failure.’);
6 } else {
7 $socketId = socketId;
8 done(true, ’success.’);
9 }

10 });
11 };
12 var bind = function (socketId) {
13 chrome.sockets.udp.bind(socketId, ’0.0.0.0’, 0, function (result) {
14 if (result < 0) {
15 chrome.sockets.udp.close(socketId);
16 done(false, ’bind failure.’);
17 } else {
18 joinGroup(socketId);
19 }
20 });
21 };

Listing 5.8: Code of ENSPIRE Controller which is responsible for LAN (SSDP) Scanning.

prominent in the IoT dataset - it is one of the domains used by the Jiguang SDK to
exfiltrate PII.
Unfortunately, we were not able to exactly find the code which is responsible for the
LAN scanning behavior. We found some potential code parts which could be responsible
but as the code base is rather big with many (native) libraries, we can not pinpoint it
exactly.
Our Remarks:
Except for classic browser functionality, it has some malicious “side features”.
Yara Rule Matches:
This app matched on 18/43 of our rules, see Listing 5.9

5.5 Traffic Characterization
A by-product of our approach to find LAN scanning Android apps is a rather big number
of traffic dumps. These traffic dumps contain various interesting statistics.
Table 5.5 shows some general statistics: We got 323 GP and 479 IoT traffic dumps and
we found the avg. GP packet amount (2,046) to be about four times bigger than the
avg. IoT packet amount (517). The avg. packet size in byte is rather similar for both
datasets (GP 980 vs IoT 739), whereas the avg traffic dump size in kb is quite different:
2,036 kb for the GP dataset against 390 kb for the IoT dataset which roughly correlates
with the avg packet amount per dump.

42

5.5. Traffic Characterization

1 AndroidManifest_Permission_ACCESS_NETWORK_STATE
2 AndroidManifest_Permission_ACCESS_WIFI_STATE
3 AndroidManifest_Permission_CHANGE_WIFI_STATE
4 C_http_request_parts
5 C_socket_usage
6 Get_Local_IP
7 Hardcoded_local_IPs
8 InetAddress_getHostAddress
9 NetworkInterface_getInetAddresses

10 NetworkInterface_getNetworkInterfaces
11 Special_MAC
12 TCP_Socket
13 UDP_DatagramSocket_send
14 WifiInfo_getIpAddress
15 proc_net_arp
16 proc_self_fd
17 proc_x_cmdline
18 proc_x_stat

Listing 5.9: Matching Yara rules for com.huoguo.browser app.

We also collected some protocol-level related statistics for HTTP, HTTPS, TCP, UDP,
ARP and DNS: see Table 5.6. Although unencrypted HTTP is considered bad practice
we still found some usage inside the traffic dumps: Of 323 GP traffic dumps 27 (8.3%)
contain unencrypted HTTP traffic, whereas of 479 (13.5%) IoT traffic dumps 65 contain
unencrypted HTTP traffic. The GP dataset got an avg. of 0.36 HTTP packets per dump,
whereas the IoT dataset has an avg. of 0.49 HTTP packets per dump. In comparison,
we found an avg. of 518.92 HTTPS packets in the GP traffic dumps and an avg. of
166.09 HTTPS packets in the IoT traffic dumps. Correlating with the HTTPS statistics,
we found an avg. of 540.33 TCP packets in the GP dumps and an avg. of 177.49 TCP
packets for the IoT dumps. UDP usage is rather balanced: The GP dumps contain
an avg. of 33.04 UDP packets and the IoT dumps an avg. of 23.34 UDP packets. In
accordance with our research findings (we found IoT apps to be more likely to conduct
LAN scannning activities), we see about three times as many ARP packets in the IoT
dumps as in the GP dumps: an avg. of 5.85 ARP packets for the GP dumps and an avg.
of 16.07 ARP packets for the IoT dumps. Further, we found an avg. of 8.06 DNS packets
in the GP dumps and an avg. of 3.48 DNS packets in the IoT dumps.

Based on the collected DNS packets we looked for the top used domains in the respective
traffic dumps, see Table 5.7. As expected, Google-related domains (e.g., googleapis.com)
are quite prominent in both traffic dump datasets. Google is highly integrated into
the Android landscape and thus this finding is implicit. One difference however can be
seen in the usage of Chinese domains in the IoT traffic dumps in comparison to the GP
traffic dumps, e.g., jpush.cn, umeng.com, taobao.com. This behavior can also be seen
in Table 5.8, based on the Top-Level-Domains (TLD) of the found domains: In the IoT

43

5. Results

US CN SG DE NL AT HK FR IT GB Other

Countries

0

100

200

300

400

500

600

700

D
is
t
r
ib
u
t
io
n

GP

IoT

Figure 5.6: Country distribution of IPs from the GP and IoT app dataset.

section the "cn" domain is more prominent than in the GP section. We assume that
the reason for the prominent usage of Chinese domains in the IoT traffic dumps is, that
IoT devices and their companion apps are in many cases produced in China. We also
looked at the destination (DST) IP addresses in the traffic dumps. Based on the DST IP
addresses we created a bar chart that display the country distribution of the DST IPs of
the respective traffic dumps, see Figure 5.6. As the USA holds many big and important
hosting companies (e.g., Google, Microsoft, Amazon) it is expected that we see the US
being the most used location. Again, the clear difference between the two bars is that
China (CN) is very prominent in the IoT bar whereas CN is only fourth highest in the
GP bar. At first glance the rather high occurenc of AT might be unexpected but as we
conducted our tests from within Austria this is expected.

5.6 Discussion of Results

RQ1: Find apps that are conducting local network scanning activities.

We used a two-step approach (see Section 4.1) to find LAN scanning apps: First, we
used a static approach (Yara) to find apps that might conduct LAN scanning. Table 5.1
shows that, based on the Yara rule matching, we found 479 Iot and 323 GP apps. In the
second step, we used a dynamic approach (e.g., executing the apps) to find apps that
are performing LAN scans without any user interaction. We found 7 ARP and 28 SSDP
scanning apps in the IoT app dataset and 1 ARP and 1 SSDP scanning app in the GP
dataset.

44

5.6. Discussion of Results

RQ2: Investigate why those apps are performing local network scans.

To answer this research question, we conducted case studies for four apps, see 5.4.
We found the LAN scanning reasons for two (IoT: Magic Home Pro and ENSPIRE
Controller) of these four apps to be valid: The apps were scanning the LAN because the
app functionality requires them to do so. However, they do it without clear user consent
or user interaction and their privacy policy lacks clear information about LAN scanning
activities.
For the AliExpress app of the GP app dataset, we were not able to find valid reasons
for LAN scanning activities. Further, their privacy policy also lacks information about
such activities. Based on Kuchhal et al. [36] and a Reddit post (Mar 10, 2021) [31], it is
possible that this is done for fingerprinting reasons.
The fourth app com.huoguo.browser is known to spy on its user [16], which we can
confirm, and thus, we consider this app is scanning the LAN for malicious reasons.

RQ3: Study if the apps are scanning without user interaction/consent.

All of the apps we found scanning the LAN are doing it without any user interaction,
except installing and starting the app. Further, we do not know of any privacy policy
from any app that explicitly mentions LAN scanning and its reasons. Thus we conclude
that these activities happen without user consent.

45

5. Results

Table 5.2: Categorized Yara rules and their matches on the app datasets

Rule (Category) GP Matches IoT Matches
Permission Rules
AndroidManifest_Permission_ACCESS_NETWORK_STATE 990 (99.00%) 1,055 (83.80%)
AndroidManifest_Permission_ACCESS_WIFI_STATE 745 (74.50%) 846 (67.20%)
AndroidManifest_Permission_CHANGE_WIFI_STATE 146 (14.60%) 569 (45.19%)
AndroidManifest_Permission_CHANGE_WIFI_MULTICAST_STATE 62 (6.20%) 389 (30.90%)
IP/MAC Rules
Hardcoded_local_IPs 762 (76.20%) 845 (67.12%)
Special_MAC 148 (14.80%) 180 (14.30%)
UPnP_Multicast_Addr 38 (3.80%) 274 (21.76%)
Keyword Rules
Scan_Keywords 76 (7.60%) 53 (4.21%)
ICMP_Keywords 3 (0.30%) 8 (0.64%)
Interesting_Keywords 710 (71.00%) 412 (32.72%)
Network_Interface 682 (68.20%) 577 (45.83%)
UPnP_Keyword_http 24 (2.40%) 186 (14.77%)
Unix Path Rules
proc_net_tcp 10 (1.00%) 1 (0.08%)
proc_net_udp 5 (0.50%) 0 (0%)
proc_x_cmdline 166 (16.60%) 177 (14.06%)
proc_x_stat 638 (63.80%) 218 (17.32%)
proc_self_fd 958 (95.80%) 856 (67.99%)
proc_net_arp 11 (1.10%) 94 (7.47%)
Java API Rules
WifiInfo_getIpAddress 413 (41.30%) 473 (37.57%)
Get_Local_IP_hashcode 1 (0.10%) 0 (0%)
Get_Local_IP 334 (33.40%) 397 (31.53%)
InetAddress_getHostAddress 939 (93.90%) 942 (74.82%)
NetworkInterface_getInetAddresses 603 (60.30%) 477 (37.89%)
NetworkInterface_getNetworkInterfaces 695 (69.50%) 549 (43.61%)
NsdManager_discoverServices 10 (1.00%) 73 (5.80%)
PING_InetAddress_isReachable 19 (1.90%) 107 (8.50%)
UDP_DatagramSocket_send 446 (44.60%) 489 (38.84%)
UPnP_MulticastSocket_send 30 (3.00%) 229 (18.19%)
TCP_Socket 857 (85.70%) 773 (61.40%)
GATEWAY_IP_1 77 (7.70%) 219 (17.39%)
GATEWAY_IP_2 29 (2.90%) 175 (13.90%)
Unix Command Rules
ifconfig_eth0 0 (0%) 1 (0.08%)
ip_neigh 3 (0.30%) 5 (0.40%)
PING_cmd 136 (13.60%) 125 (9.93%)
Native Rules
C_socket_usage 185 (18.50%) 428 (34.00%)
C_ICMP 43 (4.30%) 79 (6.27%)
C_http_request_parts 162 (16.20%) 323 (25.66%)
Misc Rules
NSD_ServiceTypes 2 (0.20%) 0 (0%)
SOAP_xml 335 (33.50%) 203 (16.12%)
Get_Local_via_WEB 6 (0.60%) 6 (0.48%)

46

5.6. Discussion of Results

Table 5.3: Categorized Yara rules and their matches on: ignored app dataset (apps which
did not survive the pre-filtering; 1,457 apps), filtered app dataset (apps which did survive
the pre-filtering; 794 apps), ARP scanning app dataset (apps which were found ARP
scanning; 8 apps).

Rule (Category) Ignored App Dataset Filtered App Dataset ARP Scanning App Dataset
Permission Rules
AndroidManifest_Permission_ACCESS_NETWORK_STATE 1,256 (86.20%) 782 (98.49%) 7 (87.50%)
AndroidManifest_Permission_ACCESS_WIFI_STATE 818 (56.14%) 765 (96.35%) 8 (100.00%)
AndroidManifest_Permission_CHANGE_WIFI_STATE 296 (20.32%) 415 (52.27%) 4 (50.00%)
AndroidManifest_Permission_CHANGE_WIFI_MULTICAST_STATE 98 (6.73%) 351 (44.21%) 2 (25.00%)
IP/MAC Rules
Hardcoded_local_IPs 845 (58.00%) 755 (95.09%) 7 (87.50%)
Special_MAC 95 (6.52%) 232 (29.22%) 1 (12.50%)
UPnP_Multicast_Addr 27 (1.85%) 281 (35.39%) 4 (50.00%)
Keyword Rules
Scan_Keywords 36 (2.47%) 93 (11.71%) 0 (0.00%)
ICMP_Keywords 1 (0.07%) 10 (1.26%) 0 (0.00%)
Interesting_Keywords 643 (44.13%) 476 (59.95%) 3 (37.50%)
Network_Interface 674 (46.26%) 582 (73.30%) 3 (37.50%)
UPnP_Keyword_http 7 (0.48%) 200 (25.19%) 3 (37.50%)
Unix Path Rules
proc_net_tcp 3 (0.21%) 8 (1.01%) 0 (0.00%)
proc_net_udp 0 (0.00%) 5 (0.63%) 0 (0.00%)
proc_x_cmdline 162 (11.12%) 180 (22.67%) 1 (12.50%)
proc_x_stat 477 (32.74%) 374 (47.10%) 5 (62.50%)
proc_self_fd 1,103 (75.70%) 705 (88.79%) 6 (75.00%)
proc_net_arp 0 (0.00%) 105 (13.22%) 0 (0.00%)
Java API Rules
WifiInfo_getIpAddress 235 (16.13%) 646 (81.36%) 5 (62.50%)
Get_Local_IP_hashcode 0 (0.00%) 1 (0.13%) 0 (0.00%)
Get_Local_IP 145 (9.95%) 578 (72.80%) 8 (100.00%)
InetAddress_getHostAddress 1,086 (74.54%) 787 (99.12%) 8 (100.00%)
NetworkInterface_getInetAddresses 400 (27.45%) 672 (84.63%) 8 (100.00%)
NetworkInterface_getNetworkInterfaces 525 (36.03%) 711 (89.55%) 8 (100.00%)
NsdManager_discoverServices 5 (0.34%) 76 (9.57%) 2 (25.00%)
PING_InetAddress_isReachable 13 (0.89%) 113 (14.23%) 0 (0.00%)
UDP_DatagramSocket_send 379 (26.01%) 550 (69.27%) 6 (75.00%)
UPnP_MulticastSocket_send 28 (1.92%) 228 (28.72%) 3 (37.50%)
TCP_Socket 906 (62.18%) 718 (90.43%) 6 (75.00%)
GATEWAY_IP_1 34 (2.33%) 259 (32.62%) 3 (37.50%)
GATEWAY_IP_2 14 (0.96%) 188 (23.68%) 2 (25.00%)
Unix Command Rules
ifconfig_eth0 0 (0.00%) 1 (0.13%) 0 (0.00%)
ip_neigh 0 (0.00%) 8 (1.01%) 0 (0.00%)
PING_cmd 54 (3.71%) 203 (25.57%) 4 (50.00%)
Native Rules
C_socket_usage 280 (19.22%) 331 (41.69%) 2 (25.00%)
C_ICMP 26 (1.78%) 96 (12.09%) 0 (0.00%)
C_http_request_parts 208 (14.28%) 276 (34.76%) 1 (12.50%)
Misc Rules
NSD_ServiceTypes 0 (0.00%) 2 (0.25%) 0 (0.00%)
SOAP_xml 220 (15.10%) 317 (39.92%) 1 (12.50%)
Get_Local_via_WEB 1 (0.07%) 11 (1.39%) 0 (0.00%)

47

5. Results

Table 5.4: Categorized Yara rules and their matches on: ignored app dataset (apps which
did not survive the pre-filtering; 1,457 apps), filtered app dataset (apps which did survive
the pre-filtering; 773 apps), SSDP scanning app dataset (apps which were found SSDP
scanning; 29 apps).

Rule (Category) Ignored App Dataset Filtered App Dataset SSDP Scanning App Dataset
Permission Rules
AndroidManifest_Permission_ACCESS_NETWORK_STATE 1,256 (86.20%) 761 (98.45%) 28 (96.55%)
AndroidManifest_Permission_ACCESS_WIFI_STATE 818 (56.14%) 744 (96.25%) 29 (100.00%)
AndroidManifest_Permission_CHANGE_WIFI_STATE 296 (20.32%) 403 (52.13%) 16 (55.17%)
AndroidManifest_Permission_CHANGE_WIFI_MULTICAST_STATE 98 (6.73%) 328 (42.43%) 25 (86.21%)
IP/MAC Rules
Hardcoded_local_IPs 845 (58.00%) 736 (95.21%) 26 (89.66%)
Special_MAC 95 (6.52%) 225 (29.11%) 8 (27.59%)
UPnP_Multicast_Addr 27 (1.85%) 256 (33.12%) 29 (100.00%)
Keyword Rules
Scan_Keywords 36 (2.47%) 92 (11.90%) 1 (3.45%)
ICMP_Keywords 1 (0.07%) 9 (1.16%) 1 (3.45%)
Interesting_Keywords 643 (44.13%) 473 (61.19%) 6 (20.69%)
Network_Interface 674 (46.26%) 564 (72.96%) 21 (72.41%)
UPnP_Keyword_http 7 (0.48%) 174 (22.51%) 29 (100.00%)
Unix Path Rules
proc_net_tcp 3 (0.21%) 8 (1.03%) 0 (0.00%)
proc_net_udp 0 (0.00%) 5 (0.65%) 0 (0.00%)
proc_x_cmdline 162 (11.12%) 177 (22.90%) 4 (13.79%)
proc_x_stat 477 (32.74%) 374 (48.38%) 5 (17.24%)
proc_self_fd 1,103 (75.70%) 686 (88.75%) 25 (86.21%)
proc_net_arp 0 (0.00%) 97 (12.55%) 8 (27.59%)
Java API Rules
WifiInfo_getIpAddress 235 (16.13%) 629 (81.37%) 22 (75.86%)
Get_Local_IP_hashcode 0 (0.00%) 1 (0.13%) 0 (0.00%)
Get_Local_IP 145 (9.95%) 561 (72.57%) 25 (86.21%)
InetAddress_getHostAddress 1,086 (74.54%) 766 (99.09%) 29 (100.00%)
NetworkInterface_getInetAddresses 400 (27.45%) 654 (84.61%) 26 (89.66%)
NetworkInterface_getNetworkInterfaces 525 (36.03%) 692 (89.52%) 27 (93.10%)
NsdManager_discoverServices 5 (0.34%) 73 (9.44%) 5 (17.24%)
PING_InetAddress_isReachable 13 (0.89%) 97 (12.55%) 16 (55.17%)
UDP_DatagramSocket_send 379 (26.01%) 535 (69.21%) 21 (72.41%)
UPnP_MulticastSocket_send 28 (1.92%) 207 (26.78%) 24 (82.76%)
TCP_Socket 906 (62.18%) 703 (90.94%) 21 (72.41%)
GATEWAY_IP_1 34 (2.33%) 248 (32.08%) 14 (48.28%)
GATEWAY_IP_2 14 (0.96%) 183 (23.67%) 7 (24.14%)
Unix Command Rules
ifconfig_eth0 0 (0.00%) 1 (0.13%) 0 (0.00%)
ip_neigh 0 (0.00%) 7 (0.91%) 1 (3.45%)
PING_cmd 54 (3.71%) 203 (26.26%) 4 (13.79%)
Native Rules
C_socket_usage 280 (19.22%) 320 (41.40%) 13 (44.83%)
C_ICMP 26 (1.78%) 86 (11.13%) 10 (34.48%)
C_http_request_parts 208 (14.28%) 272 (35.19%) 5 (17.24%)
Misc Rules
NSD_ServiceTypes 0 (0.00%) 2 (0.26%) 0 (0.00%)
SOAP_xml 220 (15.10%) 293 (37.90%) 25 (86.21%)
Get_Local_via_WEB 1 (0.07%) 11 (1.42%) 0 (0.00%)

Table 5.5: General statistics for app dataset traffic dumps.

GP IoT
Amount of traffic dumps 323 479
Avg. packets per traffic dump 2,046 517
Avg. packet size (byte) per traffic dump 980 739
Avg. traffic dump size (kb) 2,036 390

48

5.6. Discussion of Results

1 public boolean m7299a(Context context, String str, String str2, String
str3, String str4) {

2 Class cls = null;
3 File file = new File(str);
4 File file2 = new File(str + ShareConstants.JAR_SUFFIX);
5 C2997e.m7193a(context.getFilesDir().getAbsolutePath(), str4, false);
6 C2997e.m7188b(file, file2, str3);
7 if (file2.exists()) {
8 try {
9 try {

10 cls = new DexClassLoader(file2.getAbsolutePath(), context
.getFilesDir().getAbsolutePath(), null, context.
getClassLoader()).loadClass(str2);

11 } catch (Exception e) {
12 ActivityC2755b.m8045a(f9404a + "|" + e.toString());
13 }
14 file2.delete();
15 C2997e.m7193a(context.getFilesDir().getAbsolutePath(), str4,

true);
16 if (cls == null) {
17 return false;
18 }
19 IPushExtension iPushExtension = (IPushExtension) cls.

newInstance();
20 if (iPushExtension != null) {
21 try {
22 iPushExtension.init(C2922g.f9218f);
23 this.f9406b.add(iPushExtension);
24 ActivityC2755b.m8045a(f9404a + "| [main] extension

loaded: " + str);
25 return true;
26 } catch (Exception e2) {
27 ActivityC2755b.m8045a(f9404a + "|" + e2.toString());
28 }
29 }
30 } catch (Throwable th) {
31 ActivityC2755b.m8045a(f9404a + "|" + th.toString());
32 if (file2.exists()) {
33 file2.delete();
34 }
35 }
36 }
37 return false;
38 }

Listing 5.10: igexin library code which loads external code.

49

5. Results

Table 5.6: Protocol statistics for app dataset traffic dumps (per dump).

GP IoT
Dumps with HTTP packets 27/323 (8.3%) 65/479 (13.5%)
Avg. HTTP packets 0.36 0.49
Avg. HTTPS packets 518.92 166.09
Avg. TCP packets 540.33 177.49
Avg. UDP packets 33.04 23.34
Avg. ARP packets 5.85 16.07
Avg. DNS packets 8.06 3.48

Table 5.7: Top 20 domains of GP and IoT dataset

GP IoT
Domain Amount Domain Amount
googleapis.com 431 googleapis.com 359
facebook.com 347 crashlytics.com 120
voodoo-ads.io 112 facebook.com 86
crashlytics.com 102 google.com 83
appsflyer.com 77 jpush.cn 79
unity3d.com 70 app-measurement.com 72
app-measurement.com 60 gstatic.com 46
google.com 57 doubleclick.net 41
applovin.com 57 reolink.com 33
gstatic.com 56 applovin.com 32
doubleclick.net 34 qq.com 31
adcolony.com 34 googleusercontent.com 25
branch.io 30 amazonaws.com 23
vungle.com 28 googlesyndication.com 21
rayjump.com 25 umeng.com 20
googleusercontent.com 25 tuyaeu.com 17
amazonaws.com 24 googletagservices.com 15
startappservice.com 22 mob.com 15
supersonicads.com 22 taobao.com 14
appcenter.ms 20 flurry.com 1

50

5.6. Discussion of Results

Table 5.8: Top 20 TLD’s of GP and IoT dataset

GP IoT
Domain Amount Domain Amount
com 2,145 com 1,409
io 177 cn 93
net 102 net 74
ms 30 io 32
mobi 22 ms 12
cn 17 tv 9
eu 13 arpa 7
org 12 co 5
at 11 org 5
tv 9 in 3
info 8 cloud 3
me 7 cc 2
video 7 bike 1
sg 6 me 1
website 3 za 1
arpa 2 de 1
app 2 es 1
cloud 2 eu 1
world 2 it 1
hk 2 br 1

51

CHAPTER 6
Discussion

In this chapter we talk about limitations of our approach and future work.

6.1 Limitations
In this section we discuss the limitations and shortcomings of our approach.

Limited User Simulation/Interaction

In our approach we only start the Android apps and do not provide any user simula-
tion/interaction. We tried to use Android Monkey (see Section 3.4.2) for basic user
simulation/interaction (see Section 4.4), however, as Monkey is not designed to be used
as user simulation but rather as stress testing tool, we did not get transparent, repeatable
results. We argue that our approach without user simulation catches the most interesting
apps: apps which might try to hide their LAN scanning activities. However, a full and
smart user simulation/interaction will most likely result in finding more LAN scanning
activities.

Simulation Time

In our dynamic analysis approach, we start the Android apps for 60 (120 seconds if
the app provides broadcasts or services, see Section 4.4) seconds. For this 60 seconds
timeframe, we dump the network traffic and look for LAN scanning activities. After
60 seconds we kill and uninstall the Android apps. This approach misses all the LAN
scanning activities which happen after 60 seconds. We argue that we catch most of
the LAN scanning activities without user interaction in the 60-second period. However,
increasing the timeframe will likely result in more findings.

53

6. Discussion

Encrypted Traffic

As our approach of detecting LAN scanning activities relies on unencrypted protocols
(ARP and SSDP, see Section 3.2.1) there was no need to implement a functionality (e.g.,
HTTPS mitmproxy1) that help in analyzing encrypted traffic like HTTPS. However,
such functionality would have allowed us to dig deeper into the traffic dumps to find
more interesting data for the Miscellaneous Findings Section 5.5, like PII leaks.

App Entrypoints

Android apps have multiple different ways to trigger functionality, like broadcasts and
services. In our approach, except for starting the app, we trigger one broadcast and one
service (if existing) for each app, see Section 4.4. With this approach, we did not trigger
all possible entrypoints and thus not we might have missed LAN scanning activities.
However, we argue that this is negligible.

6.2 Future Work
First, it would be interesting to add a real/smart user simulation to our dynamic analysis.
This would trigger more app functionality and result in more network traffic and thus
most likely in more LAN scanning activities to be found. For the scope of this work we
omitted the user simulation (except for some tests with Monkey, see Section 4.4) as this
topic is not straight-forward and there is interesting ongoing research in this field.

Also, we like to add functionality (like HTTPS proxies) that makes it possible to analyze
encrypted traffic. We then would be able to analyze the network dumps more thoroughly.
For the scope of this work we did not implement such functionality as some apps might
not work with it, e.g., some apps might use TLS certificate pinnging and will not behave
as normal.

Additionally, it would be interesting to start the apps inside a network with additional
different devices. This would allow us to see if and how the apps are trying to interact
with devices on the same network. Further, this would allow us to analyze if apps are
only scanning for devices or if they also try to interact.

In our work we did not find Android apps which circumvent the Android permission
system. However, we would like to research the field of Android permission circumvention
related to network permissions in the future.

Furthermore, as we found some apps with a privacy policy differing from their Google Play
Store “Data Safety” statement, e.g., Magic Home Pro - com.zengge.wifi 5.4.2, we would
like to run a large-scale analysis to find more apps with differing privacy statements.

As this approach covers only Android apps, in future work it would be interesting to
also cover iOS apps. Since iOS 14, apps that want to interact with devices on the local

1https://mitmproxy.org/, last accessed: 20.10.2022

54

6.2. Future Work

network have to ask for permission [8] and it would be interesting to see if some apps
can circumvent that permission. However, dynamic analysis for iOS apps is more dificult,
as there are less tools and frameworks for analyzing apps, compared to Android apps.

55

CHAPTER 7
Conclusion

Apps that are able to access the LAN can collect information about other devices
connected and use this information for profiling and fingerprinting. This is the reason
iOS 14 introduced a new permission which any app that wants to interact with the LAN
has to ask for. Android does not have such a permission. Thus we show that Android
apps scanning the LAN without a valid reason exist and that there is need for a similar
permission in the Android system.
We found LAN scanning Android apps by implementing a hybrid analysis approach,
consisting of three steps: We first pre-filtered the app dataset with over 40 manually
crafted Yara rules to find Android apps that contain data/functions related to LAN
scanning activities. In the next step, we started each app from the pre-filtered dataset
on a real smartphone and capture its network traffic. After the dynamic execution of
the Android apps, we analyzed the traffic dumps and look for ARP and SSDP scanning
activities.
We used three different Android app datasets for our analysis: the top 1,000 general
purpose (GP) apps from the Austrian Google Play Store, 1259 companion/IoT apps,
and 117 known malware apps. We found 7 ARP and 28 SSDP scanning apps in the IoT
dataset and 1 ARP and 1 SSDP scanning app in the top 1,000 GP dataset. We did not
find any LAN scanning app in the known malware app dataset.
Based on the found apps we created four case studies to analyze the reasons for LAN
scanning. The AliExpress Android app, see case study 5.4.1, was found to scan the LAN
without stating it in their privacy policy and without a clear reason for doing it. We
reason that this is most likely done for fingerprinting reasons. Magic Home Pro, see case
study 5.4.2, and ENSPIRE Controller, see case study 5.4.3, both IoT apps, also perform
LAN scanning activities. Magic Home Pro somehow states it in its privacy policy but
does not actively ask the user for permission. ENSPIRE Controller does not even have a
privacy policy. Both apps are used to controll IoT devices, which makes this behavior
expected, however, we expected this behavior after some kind of user interaction and

57

7. Conclusion

to be clearly stated in their privacy policy. Hot Pot Browser, see case study 5.4.4, also
scans the LAN and uses libraries that are known to spy on its users.
With our work, we are making a step towards finding mobile apps performing LAN
scanning attacks and providing a basis for considering new Android permissions regarding
LAN access.

58

APPENDIX A
Appendix

A.1 Yara Rules
A.1.1 Main Rules

1 rule AndroidManifest_Permission_CHANGE_WIFI_STATE {
2 meta:
3 description = "Detects permissions in AndroidManifest"
4 strings:
5 $x4 = "android.permission.CHANGE_WIFI_STATE" ascii
6 condition:
7 filename == "AndroidManifest.xml" and 1 of them
8 }
9

10 rule AndroidManifest_Permission_CHANGE_WIFI_MULTICAST_STATE {
11 meta:
12 description = "Detects permissions in AndroidManifest"
13 strings:
14 $x3 = "android.permission.CHANGE_WIFI_MULTICAST_STATE" ascii
15 condition:
16 filename == "AndroidManifest.xml" and 1 of them
17 }
18
19 rule AndroidManifest_Permission_ACCESS_NETWORK_STATE {
20 meta:
21 description = "Detects permissions in AndroidManifest"
22 strings:
23 $x2 = "android.permission.ACCESS_NETWORK_STATE" ascii
24 condition:
25 filename == "AndroidManifest.xml" and 1 of them
26 }
27
28 rule AndroidManifest_Permission_ACCESS_WIFI_STATE {
29 meta:
30 description = "Detects permissions in AndroidManifest"
31 strings:
32 $x1 = "android.permission.ACCESS_WIFI_STATE" ascii
33 condition:
34 filename == "AndroidManifest.xml" and 1 of them
35 }
36
37
38
39 rule Hardcoded_local_IPs {
40 meta:
41 description = "Detects hardcoded local IPs"

59

A. Appendix

42 strings:
43 $x1 = /(127\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})

|(10\.[0-9]{1,3}\.[0-9]{1,3}\.[0-9]{1,3})
|(172\.1[6-9]{1}[0-9]{0,1}\.[0-9]{1,3}\.[0-9]{1,3})
|(172\.2[0-9]{1}[0-9]{0,1}\.[0-9]{1,3}\.[0-9]{1,3})
|(172\.3[0-1]{1}[0-9]{0,1}\.[0-9]{1,3}\.[0-9]{1,3})
|(192\.168\.[0-9]{1,3}\.[0-9]{1,3})/

44 condition:
45 1 of ($x*)
46 }
47
48 rule Special_MAC {
49 meta:
50 description = "Detects special MAC addresses"
51 strings:
52 $ = "ff:ff:ff:ff:ff:ff" ascii fullword
53 $ = "00:00:00:00:00:00" ascii fullword
54 condition:
55 1 of them
56 }
57
58 rule UPnP_Multicast_Addr {
59 meta:
60 description = "Detects UPnP multicast address"
61 strings:
62 $x1 = "224.0.0.251" ascii
63 $x3 = "239.255.255.250" ascii
64 condition:
65 1 of ($x*)
66 }
67
68
69
70 rule Scan_Keywords {
71 meta:
72 description = "Detects keywords associated with network scanning"
73 strings:
74 $ = "portscan" ascii nocase
75 $ = "tcpscan" ascii nocase
76 $ = "udpscan" ascii nocase
77 $ = "arpscan" ascii nocase
78 $ = "upnpscan" ascii nocase
79 $ = "pingscan" ascii nocase
80 $ = "NetworkScanEngine" ascii nocase
81 condition:
82 1 of them
83 }
84
85 rule ICMP_Keywords {
86 meta:
87 description = "Detects ICMP keywords"
88 strings:
89 $ = "ICMP_ECHOREPLY" ascii
90 $ = "ICMP_DEST_UNREACH" ascii
91 $ = "ScannerIcmp" ascii nocase
92 $ = "ScannerPing" ascii nocase
93 $ = "Destination Host Unreachable" ascii
94 $ = "Time to live exceeded" ascii
95 condition:
96 1 of them
97 }
98
99 rule Interesting_Keywords {

100 strings:
101 $ = "malware" ascii nocase
102 $ = "backdoor" ascii nocase
103 $ = "keylogger" ascii nocase
104 $ = "stealer" ascii nocase
105 //$ = "wiper" ascii nocase
106 $ = "exploit" ascii nocase
107 condition:
108 1 of them
109 }

60

A.1. Yara Rules

110
111 rule Network_Interface {
112 meta:
113 description = "Detects names of network interfaces"
114 strings:
115 $x1 = "wlan" ascii fullword
116 $x2 = "eth" ascii fullword
117 condition:
118 1 of ($x*)
119 }
120
121 rule UPnP_Keyword_http {
122 meta:
123 description = "Detects UPnP keywords"
124 strings:
125 $ = "urn:schemas-upnp-org:device:InternetGatewayDevice:1" ascii
126 $ = "upnp:rootdevice" ascii
127 $ = "M-SEARCH * HTTP/1.1" ascii
128 $ = "_services_dns-sd_udplocal" ascii
129 condition:
130 1 of them
131 }
132
133
134 rule proc_net_tcp {
135 meta:
136 description = "Detects linux filesystem access to /proc/net/tcp"
137 strings:
138 $x1 = "/proc/net/tcp"
139 condition:
140 1 of them
141 }
142
143 rule proc_net_udp {
144 meta:
145 description = "Detects linux filesystem access to /proc/net/udp"
146 strings:
147 $x1 = "/proc/net/udp"
148 condition:
149 1 of them
150 }
151
152 rule dev_tcp {
153 meta:
154 description = "Detects linux filesystem TCP sockets"
155 strings:
156 $x1 = "/dev/tcp/"
157 condition:
158 1 of them
159 }
160
161 rule dev_udp {
162 meta:
163 description = "Detects linux filesystem UDP sockets"
164 strings:
165 $x1 = "/dev/udp/"
166 condition:
167 1 of them
168 }
169
170 rule proc_x_cmdline {
171 meta:
172 description = "Detects reading /proc/.*/cmdline"
173 strings:
174 $re = /\/proc\/.{2,10}\/cmdline/
175 condition:
176 1 of them
177 }
178
179 rule proc_x_task_x_fd {
180 meta:
181 description = "Detects reading /proc/%s/task/%s/fd"
182 strings:

61

A. Appendix

183 $re = /\/proc\/.{2,10}\/task\/.{2,10}\/fd/
184 condition:
185 1 of them
186 }
187
188 rule proc_x_stat {
189 meta:
190 description = "Detects reading /proc/.*/stat"
191 strings:
192 $re = /\/proc\/.{2,10}\/stat/
193 condition:
194 1 of them
195 }
196
197 rule proc_self_fd {
198 meta:
199 description = "Detects reading /proc/self/fd/"
200 strings:
201 $x1 = "/proc/self/fd/" ascii fullword
202 condition:
203 1 of ($x*)
204 }
205
206 rule proc_net_arp {
207 meta:
208 description = "Detects reading /proc/net/arp"
209 strings:
210 $x1 = "/proc/net/arp" ascii fullword
211 condition:
212 1 of ($x*)
213 }
214
215
216 rule WifiInfo_getIpAddress {
217 meta:
218 description = "Detects calls to ’WifiInfo.getIpAddress()’"
219 ref = "https://stackoverflow.com/a/6071963"
220 strings:
221 $ = "Landroid/net/wifi/WifiInfo;->getIpAddress()I" ascii
222 condition:
223 1 of them
224 }
225
226 rule Get_Local_IP_hashcode {
227 meta:
228 description = "Detects retrieving of local IP via hashcode instead of getHostAddress"
229 ref = "https://stackoverflow.com/a/10199498"
230 strings:
231 $ = "Ljava/net/NetworkInterface;->getInetAddresses()Ljava/util/Enumeration;" ascii
232 $ = "Ljava/net/InetAddress;->hashCode()" ascii
233 $ = "formatIpAddress" ascii
234 condition:
235 all of them
236 }
237
238 rule Get_Local_IP {
239 meta:
240 description = "Detects retrieving of local IP, combination of

InetAddress_getHostAddress & NetworkInterface_getInetAddresses"
241 ref = "https://stackoverflow.com/a/13007325"
242 strings:
243 $ = "Ljava/net/NetworkInterface;->getInetAddresses()Ljava/util/Enumeration;" ascii
244 $ = "Ljava/net/InetAddress;->getHostAddress()Ljava/lang/String;" ascii
245 condition:
246 all of them
247 }
248
249 rule InetAddress_getHostAddress {
250 meta:
251 description = "Detects calls to ’InetAddress.getHostAddress()’"
252 strings:
253 $ = "Ljava/net/InetAddress;->getHostAddress()Ljava/lang/String;" ascii
254 condition:

62

A.1. Yara Rules

255 1 of them
256 }
257
258 rule NetworkInterface_getInetAddresses {
259 meta:
260 description = "Detects calls to ’NetworkInterface.getInetAddresses()’"
261 strings:
262 $ = "Ljava/net/NetworkInterface;->getInetAddresses()Ljava/util/Enumeration;" ascii
263 condition:
264 1 of them
265 }
266
267 rule NetworkInterface_getNetworkInterfaces {
268 meta:
269 description = "Detects calls to ’NetworkInterface.getNetworkInterfaces()’"
270 strings:
271 $ = "Ljava/net/NetworkInterface;->getNetworkInterfaces()Ljava/util/Enumeration;" ascii
272 condition:
273 1 of them
274 }
275
276 rule NsdManager_discoverServices {
277 meta:
278 description = "Detects NSD scanning via NsdManager.discoverServices()"
279 strings:
280 $x1 = "Landroid/net/nsd/NsdManager;->discoverServices(" ascii
281 condition:
282 1 of ($x*)
283 }
284
285 rule PING_InetAddress_isReachable {
286 meta:
287 description = "Detects isReachable() function call often used for ping scanning"
288 strings:
289 $x1 = "Ljava/net/Inet4Address;->isReachable(" ascii
290 $x2 = "Ljava/net/InetAddress;->isReachable(" ascii
291 condition:
292 1 of ($x*)
293 }
294
295 rule UDP_DatagramSocket_send {
296 meta:
297 description = "Detects <DatagramSocket>.send() function call often used for UDP port

scanning"
298 strings:
299 $x1 = "Ljava/net/DatagramSocket;->send(Ljava/net/DatagramPacket;)" ascii
300 condition:
301 1 of ($x*)
302 }
303
304 rule UPnP_MulticastSocket_send {
305 meta:
306 description = "Detects <MulticastSocket>.send() function call often used for UPnP"
307 strings:
308 $x1 = "Ljava/net/MulticastSocket;->send(Ljava/net/DatagramPacket;)" ascii
309 condition:
310 1 of ($x*)
311 }
312
313 rule TCP_Socket {
314 meta:
315 description = "Detects ’Socket(ip, port)’ usage, often used for TCP port scanning"
316 strings:
317 $x1 = "Ljava/net/Socket;-><init>(Ljava/net/InetAddress;" ascii
318 $x2 = "Ljava/net/Socket;->connect(Ljava/net/SocketAddress;" ascii
319 condition:
320 1 of ($x*)
321 }
322
323 rule GATEWAY_IP_1 {
324 meta:
325 description = "Detects ’((WifiManager) systemService).getDhcpInfo().gateway’ usage"
326 strings:

63

A. Appendix

327 $ = "getSystemService(" ascii
328 $ = "WifiManager;->getDhcpInfo()" ascii
329 $ = "DhcpInfo;->gateway" ascii
330 condition:
331 all of them
332 }
333
334 rule GATEWAY_IP_2 {
335 meta:
336 description = "Detects ’((WifiManager) systemService).getDhcpInfo().gateway’ usage"
337 ref = "https://stackoverflow.com/a/30200861"
338 strings:
339 $x1 = "getSystemService(" ascii
340 $x2 = "WifiManager;->getDhcpInfo()" ascii
341 $s2 = "netmask" ascii
342 condition:
343 all of ($x*) and 1 of ($s*)
344 }
345
346
347
348 rule ifconfig_eth0 {
349 meta:
350 description = "Detects calling ’ifconfig eth0’"
351 strings:
352 $x1 = "ifconfig eth0" ascii fullword
353 condition:
354 1 of ($x*)
355 }
356
357 rule ip_neigh {
358 meta:
359 description = "Detects calling ’ip neigh’"
360 strings:
361 $x1 = "ip neigh" ascii fullword
362 $x2 = "ip neighbour show" ascii fullword
363 condition:
364 1 of ($x*)
365 }
366
367 rule PING_cmd {
368 meta:
369 description = "Detects ping command"
370 strings:
371 $ping1 = "ping" ascii fullword
372 $ping2 = "/system/bin/ping" ascii fullword
373 $s1 = "-c " ascii fullword
374 $s2 = "-W " ascii fullword
375 condition:
376 (
377 1 of ($ping*) and 1 of ($s*)
378) or $ping2
379 }
380
381
382
383 rule C_socket_usage{
384 meta:
385 description = "Detects socket functions used in C libs"
386 strings:
387 $x1 = "gethostbyname" ascii fullword
388 $x2 = "setsockopt" ascii fullword
389 $x3 = "gethostbyname" ascii fullword
390 $x4 = "recvfrom" ascii fullword
391 $x5 = "recvmsg" ascii fullword
392 $x6 = "inet_addr" ascii fullword
393 $x7 = "inet_ntoa" ascii fullword
394 $x8 = "socket" ascii fullword
395 $x9 = "sendto" ascii fullword
396 $x10 = "gethostbyaddr" ascii fullword
397 condition:
398 ext == ".so" and 3 of ($x*)
399 }

64

A.1. Yara Rules

400
401 rule C_ICMP {
402 meta:
403 description = "Detects icmp string in C libs"
404 strings:
405 $ = "icmp" ascii fullword nocase
406 condition:
407 ext == ".so" and 1 of them
408 }
409
410 rule C_http_request_parts {
411 meta:
412 description = "Detects HTTP string parts in C libs"
413 strings:
414 $ = "Host:" ascii fullword
415 $ = "Cookie:" ascii fullword
416 $ = "Content-Type:" ascii fullword
417 $ = "Cookies-Set:" ascii fullword
418 $ = "Content-Length:" ascii fullword
419 $ = "Connection:" ascii fullword
420 $ = "Keep-Alive:" ascii fullword
421 $ = "Connection:" ascii fullword
422 $ = "POST" ascii fullword
423 $ = "GET" ascii fullword
424 $ = "text/plain" ascii fullword
425 $ = "text/html" ascii fullword
426 condition:
427 ext == ".so" and 3 of them
428 }
429
430
431
432 rule NSD_ServiceTypes {
433 meta:
434 description = "Detects NSD scanning"
435 strings:
436 $ = "_services._dns-sd._udp"
437 $ = "_workstation._tcp"
438 $ = "_companion-link._tcp"
439 $ = "_ssh._tcp"
440 $ = "_adisk._tcp"
441 $ = "_afpovertcp._tcp"
442 $ = "_device-info._tcp"
443 $ = "_googlecast._tcp"
444 $ = "_printer._tcp"
445 $ = "_ipp._tcp"
446 $ = "_http._tcp"
447 $ = "_smb._tcp"
448 $ = "_hap._tcp"
449 $ = "_coap._tcp"
450 condition:
451 6 of them
452 }
453
454 rule SOAP_xml {
455 meta:
456 description = "Detects SOAP xml"
457 strings:
458 $x1 = "</s:Body></s:Envelope>" ascii fullword
459 $x2 = "<s:Envelope xmlns:s=" ascii fullword
460 $x3 = "http://schemas.xmlsoap.org/soap" ascii fullword
461 condition:
462 1 of ($x*)
463 }
464
465 rule Get_Local_via_WEB {
466 meta:
467 description = "Detects retrieving of local IP via web calls"
468 ref = "https://stackoverflow.com/a/51840861"
469 strings:
470 $ = "://checkip.amazonaws.com/" ascii
471 $ = "://api.ipify.org/" ascii
472 $ = "://ipinfo.io/ip" ascii

65

A. Appendix

473 $ = "://bot.whatismyipaddress.com" ascii
474 $ = "://ipecho.net/plain" ascii
475 $ = "ifconfig.co" ascii
476 $ = "ifconfig.me" ascii
477 $ = "icanhazip.com" ascii
478 condition:
479 1 of them
480 }

A.1.2 Meta Rules
1 rule LAN_Scanning_APK {
2 meta:
3 description = "Detects combination of rules which are most likely scanning LAN"
4 strings:
5 $ = "Hardcoded_local_IPs" ascii
6 $ = "proc_net_arp" ascii
7 $ = "GATEWAY_IP_" ascii
8 $ = "UPnP_Keyword_http" ascii
9 $ = "UPnP_Multicast_Addr" ascii

10 $ = "Scan_Keywords" ascii
11 $ = "NsdManager_discoverServices" ascii
12 $ = "PING_InetAddress_isReachable" ascii
13 $ = "PING_cmd" ascii
14 $ = "WifiInfo_getIpAddress" ascii
15 $ = "Get_Local_IP" ascii
16 $ = "Get_Local_via_WEB" ascii
17 $ = "Get_Local_IP_hashcode" ascii
18 $ = "InetAddress_getHostAddress" ascii
19 condition:
20 4 of them
21 }

A.1.3 Android Malware MD5 Hashes

A.2 Hashes
1 006ead0cabf1312dbce67ed42d524bfc
2 0294f46d0e8cb5377f97b49ea3593c25
3 037a384d211021c5cf2c1b830cdf2a4d
4 07e01c2fa020724887fc39e5c97eccee
5 0ce1648ff7553189e5b5db2252e27fd5
6 b712f4576332b7ae443abb0be0765024
7 0d5c03da348dce513bf575545493f3e3
8 103cfbc4f61dd642f9f44b8248545831
9 d33afd39b3dbb50cf7c32a38f3fb2f84

10 1e5213e02dd6f7152f4146e14ba7aa36
11 1fb9d7122107b3c048a4a201d0da54cd
12 201d55ffca3b469cf3f0a9bdc78483e3
13 805874eb17894224cb0b4dbc9bd6521d
14 2e06bbc26611305b28b40349a600f95c
15 2e1ed1f4a5c9149c241856fb07b8216b
16 2e49775599942815ab84d9de13e338b3
17 f303e8ef98e6326545838cee0105cd4e
18 3285ae59877c6241200f784b62531694
19 34a5b1b6c61d75b92476e3be2379b934
20 389c20a9a4a4aada461535ad22e0dc2a
21 3d4373015fd5473e0af73bdb3d65fe6a
22 3eb36a9853c9c68524dbe8c44734ec35
23 3fe46408a43259e400f7088c211a16a3
24 4139bc61833f61365f49dc165aab0ae5
25 6ccd8006bb11dcfc2f2bb08565d61181
26 426351383dfe8f88a0959a9d5e8c43c7
27 428c9aea62d8988697db6e96900d5439
28 43aac5543b41bc2272b590e4901bebae
29 4556ccecbf24b2e3e07d3856f42c7072
30 4626ed60dfc8deaf75477bc06bd39be7
31 46cd3890b5d6586bfcc940beb7d6bfe4
32 bf2ddaf430243461a8eab4aa1ed1e80d

66

A.2. Hashes

33 49d1c82a6b73551743a12faec0c9e8b1
34 4a530c949efbe3a1c99a48c51a641f55
35 4ae13489e22c79cc794d59ff74cb1aee
36 511e2e53e79dd8818287e7a283ec1760
37 51b9d09d57365fa4e09251b0072eff1d
38 53cd72147b0ef6bf6e64d266bf3ccafe
39 54777021c34b0aed226145fde8424991
40 55a3a52a0a74fe9415a4bfd381f8e059
41 dc4fbadc2d6e0210d0ec3b99a07e0002
42 58333095cd9c36b7388901ce997baa0c
43 e173d533a004027de26222f76181daad
44 5a49013b1e49c7a5bce1755cdb36519c
45 662cf5d1eaee03c3b96200346bd66178
46 5f563a38e3b98a7bc6c65555d0ad5cfd
47 618e30a0f5aa6119ea7687399227e776
48 14d9cea1080b4ef3e41329d7fb84f70b
49 627aa2f8a8fc2787b783e64c8c57b0ed
50 62fad3ac69db0e8e541efa2f479618ce
51 65d399e6a77acf7e63ba771877f96f8e
52 66f5e93d654b6157ec296e770fcf951f
53 2cb58ccb6461e4fe22bb22c0a5f78f9e
54 6b323840d7cb55bb5c9287fc7b137e83
55 6bf9b834d841b13348851f2dc033773e
56 6c3308cd8a060327d841626a677a0549
57 6f7710e122e547d1bcd8eb496a30ec01
58 705313f75d9048531c21b3d7d123007c
59 72104cd624f9f6eb691e6b2c8a0a99a0
60 7285f44fa75c3c7a27bbb4870fc0cdca
61 73636b094276a1f918d73f94d38d4185
62 76265edd8c8c91ad449f9f30c02d2e0b
63 79f06cb9281177a51278b2a33090c867
64 80079907e8324f454977947661c48d2e
65 8008bedaaebc1284b1b834c5fd9a7a71
66 6b2d8b82efb9990b4d5e2687e4cad11d
67 83c423c36ecda310375e8a1f4348a35e
68 a492cf1a84c67ed311f4f519082956be
69 8a75b7e4075ed1c237d64940f13dbc70
70 8d5c64fdaae76bb74831c0543a7865c3
71 8d8c011ae462913386f63974bd239a60
72 2e56a5dd927f20d9306c9d9656cc5aef
73 931435cb8a5b2542f8e5f29fd369e010
74 94a3ca93f1500b5bd7fd020569e46589
75 c81e236e8e7445375ee40d8e3f327873
76 997bc9a539b2decd5bb3b3e6799f55e2
77 9c4cb389e8ef10b78b64df982bc0a032
78 9eb18198d02001614f19a9b2822dcb33
79 a097b8d49386c8aab0bb38bbfdf315b2
80 a20fc273a49c3b882845ac8d6cc5beac
81 a330456d7ca25c88060dc158049f3298
82 a57bac46c5690a6896374c68aa44d7b3
83 a795f662d10040728e916e1fd7570c1d
84 a7a07b5c9d606fbc5480ebd5acd2cf1d
85 a912e5967261656457fd076986bb327c
86 aac2942b2193cb4f011d62b1d74f7e61
87 abdef021da3fcb8082c82743c2e730ae
88 035a8b191d2e92da307b07d8e66ed91c
89 af0e580b67938afaeb783b72cf2a1c61
90 af44bb0dd464680395230ade0d6414cd
91 b107c35b4ca3e549bdf102de918749ba
92 b4706f171cf98742413d642b6ae728dc
93 b7784d5f2f4967c3dbf8f5773db11c76
94 b8006e986453a6f25fd94db6b7114ac2
95 b91491c2525b4a578a88b7a13df679aa
96 bae69f2ce9f002a11238dcf29101c14f
97 c334bade6aa52db3eccf0167a591966a
98 c36de50fe488e5015a58a241eb9b2411
99 4fe2d12c67a7f5360dd6d57ce2402e6a

100 dd4596cf68c85eb135f7e0ad763e5dab
101 cc96f03b5d13d2549304d49c4df2c3e3
102 cf71ba878434605a3506203829c63b9d
103 5d45ce9395a95f1b76ae8e40a9ef0262
104 dd772975bc0a360f7696bde8a7148a03
105 d23472f47833049034011cad68958b46

67

A. Appendix

106 d26681348c0df5cfadd3e00a029dfe8c
107 d924211bef188ce4c19400eccb6754da
108 f2b54eda7c3e19c4e429d7adb1b7560c
109 dd0062b572261e989b4b2f47c9d194bb
110 dea4161f076a3d2b52e3c8be7a97d242
111 e5811485b2185e4cebb60425b6a63c99
112 e7fdc332b5018d5b21f05324be027f01
113 ecdf36149b3fface308607f17133a80b
114 f449cca2bc85b09e9bf4d3c4afa707b6
115 fbc117cb98053dc31d52eb677dab496c
116 fce625ece62c1ff41ea0bbfb57a521af
117 fe15c0eacdbf5a46bc9b2af9c551f86a

68

List of Figures

3.1 Architecture of Android app isolation. 11
3.2 TCP Three-Way Handshake. 12
3.3 Components of the Android Debug Bridge (ADB). 19

4.1 Overview of our hybrid (static and dynamic) analysis framework. 22
4.2 Architecture of the dynamic analysis testbed. 25

5.1 AliExpress Data Safety statement summary. 36
5.2 Magic Home Pro Data Safety statement summary. 38
5.3 LAN scanning activity of Magic Home Pro. 38
5.4 SSDP traffic dump of ENSPIRE Controller. 40
5.5 ENSPIRE Controller Data Safety statement summary. 41
5.6 Country distribution of IPs from the GP and IoT app dataset. 44

69

List of Tables

4.1 Timeouts of ADB commands. 25

5.1 Hybrid Analysis Results . 30
5.2 Categorized Yara rules and their matches on the app datasets 46
5.3 Categorized Yara rules and their matches on: ignored app dataset (apps which

did not survive the pre-filtering; 1,457 apps), filtered app dataset (apps which
did survive the pre-filtering; 794 apps), ARP scanning app dataset (apps
which were found ARP scanning; 8 apps). 47

5.4 Categorized Yara rules and their matches on: ignored app dataset (apps which
did not survive the pre-filtering; 1,457 apps), filtered app dataset (apps which
did survive the pre-filtering; 773 apps), SSDP scanning app dataset (apps
which were found SSDP scanning; 29 apps). 48

5.5 General statistics for app dataset traffic dumps. 48
5.6 Protocol statistics for app dataset traffic dumps (per dump). 50
5.7 Top 20 domains of GP and IoT dataset 50
5.8 Top 20 TLD’s of GP and IoT dataset . 51

71

Bibliography

[1] Gunes Acar, Danny Yuxing Huang, Frank Li, Arvind Narayanan, and Nick Feamster.
„Web-based Attacks to Discover and Control Local IoT Devices“. In: Proceedings of
the 2018 Workshop on IoT Security and Privacy. ACM SIGCOMM 2018 Conference.
Association for Computing Machinery, 2018. isbn: 978-1-4503-5905-4. doi: 10.
1145/3229565.3229568. url: https://dl.acm.org/doi/10.1145/
3229565.3229568.

[2] AliExpress. AliExpress - Google Play Store. url: https://play.google.
com/store/apps/details?id=com.alibaba.aliexpresshd (visited on
08/01/2022).

[3] Android. Android NDK. 2022. url: https://developer.android.com/ndk
(visited on 07/18/2022).

[4] Android. Application Sandbox. 2022. url: https://source.android.com/
security/app-sandbox (visited on 07/18/2022).

[5] Android. class InetAddress. 2022. url: https://developer.android.com/
reference/java/net/InetAddress (visited on 07/18/2022).

[6] Android. Permissions on Android. url: https://developer.android.com/
guide/topics/permissions/overview (visited on 07/18/2022).

[7] Android. Runtime Permissions. 2022. url: https://source.android.com/
devices/tech/config/runtime_perms (visited on 07/18/2022).

[8] Apple. If an app would like to connect to devices on your local network. 2020. url:
https://support.apple.com/en-us/HT211870 (visited on 07/18/2022).

[9] archive.ph. AliExpress - Google Play Store. url: https://archive.ph/iWIeL
(visited on 08/01/2022).

[10] archive.ph. AliExpress - Privacy Policy. url: https://archive.ph/wip/
vMFrh (visited on 08/01/2022).

[11] archive.ph. ENSPIRE Controller - Googe Play Store. url: https://archive.
ph/2Ww3O (visited on 08/01/2022).

[12] archive.ph. Magic Home Pro - Google Play Store. url: https://archive.ph/
udYCz (visited on 08/01/2022).

73

https://doi.org/10.1145/3229565.3229568
https://doi.org/10.1145/3229565.3229568
https://dl.acm.org/doi/10.1145/3229565.3229568
https://dl.acm.org/doi/10.1145/3229565.3229568
https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd
https://play.google.com/store/apps/details?id=com.alibaba.aliexpresshd
https://developer.android.com/ndk
https://source.android.com/security/app-sandbox
https://source.android.com/security/app-sandbox
https://developer.android.com/reference/java/net/InetAddress
https://developer.android.com/reference/java/net/InetAddress
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://source.android.com/devices/tech/config/runtime_perms
https://source.android.com/devices/tech/config/runtime_perms
https://support.apple.com/en-us/HT211870
https://archive.ph/iWIeL
https://archive.ph/wip/vMFrh
https://archive.ph/wip/vMFrh
https://archive.ph/2Ww3O
https://archive.ph/2Ww3O
https://archive.ph/udYCz
https://archive.ph/udYCz

[13] archive.ph. Privacy Policy Of MAGIC HOME. url: https://archive.ph/
wip/yjckE (visited on 08/01/2022).

[14] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. „Flow-
Droid: precise context, flow, field, object-sensitive and lifecycle-aware taint analysis
for Android apps“. In: Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation. PLDI ’14: ACM SIGPLAN
Conference on Programming Language Design and Implementation. ACM, June 9,
2014. isbn: 978-1-4503-2784-8. doi: 10.1145/2594291.2594299. url: https:
//dl.acm.org/doi/10.1145/2594291.2594299.

[15] Alexandre Bartel, Jacques Klein, Yves Le Traon, and Martin Monperrus. „Dexpler:
converting android dalvik bytecode to jimple for static analysis with soot“. In:
Proceedings of the ACM SIGPLAN International Workshop on State of the Art in
Java Program analysis. 2012.

[16] Bleepingcomputer. Chinese Advertising SDK Caught Stealing Data From Android
Devices. url: https://www.bleepingcomputer.com/news/security/
chinese-advertising-sdk-caught-stealing-data-from-android-
devices/ (visited on 08/01/2022).

[17] Elias Bou-Harb, Mourad Debbabi, and Chadi Assi. „Cyber Scanning: A Compre-
hensive Survey“. In: Proceedings of IEEE Communications Surveys Tutorials. 2014.
doi: 10.1109/SURV.2013.102913.00020.

[18] Michael Brengel and Christian Rossow. „{YARIX}: Scalable YARA-based Malware
Intelligence“. In: Proceedings of the 30th USENIX Security Symposium (USENIX
Security 21). 2021.

[19] LED Controller. Magic Home Pro - Google Play Store. url: https://play.
google.com/store/apps/details?id=com.zengge.wifi (visited on
08/01/2022).

[20] LED Controller. Privacy Policy Of MAGIC HOME. url: https://faqsys.
magichue.net:4489/zengge_privacy_policy_en.html (visited on
08/01/2022).

[21] Apache Cordova. Apache Cordova. 2022. url: https://cordova.apache.org/
(visited on 07/18/2022).

[22] Yamaha Corporation. ENSPIRE Controller - Googe Play Store. url: https:
//play.google.com/store/apps/details?id=com.yamaha.dkv.
enspire (visited on 08/01/2022).

[23] Lucas DiCioccio, Renata Teixeira, Martin May, and Christian Kreibich. „Probe
and Pray: Using UPnP for Home Network Measurements“. In: Proceedings of
International Conference on Passive and Active Network Measurement. 2012. isbn:
978-3-642-28536-3 978-3-642-28537-0. doi: 10.1007/978-3-642-28537-0_10.
url: http://link.springer.com/10.1007/978-3-642-28537-0_10.

74

https://archive.ph/wip/yjckE
https://archive.ph/wip/yjckE
https://doi.org/10.1145/2594291.2594299
https://dl.acm.org/doi/10.1145/2594291.2594299
https://dl.acm.org/doi/10.1145/2594291.2594299
https://www.bleepingcomputer.com/news/security/chinese-advertising-sdk-caught-stealing-data-from-android-devices/
https://www.bleepingcomputer.com/news/security/chinese-advertising-sdk-caught-stealing-data-from-android-devices/
https://www.bleepingcomputer.com/news/security/chinese-advertising-sdk-caught-stealing-data-from-android-devices/
https://doi.org/10.1109/SURV.2013.102913.00020
https://play.google.com/store/apps/details?id=com.zengge.wifi
https://play.google.com/store/apps/details?id=com.zengge.wifi
https://faqsys.magichue.net:4489/zengge_privacy_policy_en.html
https://faqsys.magichue.net:4489/zengge_privacy_policy_en.html
https://cordova.apache.org/
https://play.google.com/store/apps/details?id=com.yamaha.dkv.enspire
https://play.google.com/store/apps/details?id=com.yamaha.dkv.enspire
https://play.google.com/store/apps/details?id=com.yamaha.dkv.enspire
https://doi.org/10.1007/978-3-642-28537-0_10
http://link.springer.com/10.1007/978-3-642-28537-0_10

[24] Emmanuel Dupuy. JD-GUI - Java Decompiler. 2022. url: http://java-
decompiler.github.io/ (visited on 07/18/2022).

[25] Dhia Farrah and Marc Dacier. „Zero Conf Protocols and their numerous Man in the
Middle (MITM) Attacks“. In: Proceedings of the 2021 IEEE Security and Privacy
Workshops (SPW). IEEE, 2021.

[26] Googe. Android Debug Bridge (adb). 2022. url: https://developer.android.
com/studio/command-line/adb (visited on 07/18/2022).

[27] Googe. GoPacket - Provides packet processing capabilities for Go. 2021. url:
https://github.com/google/gopacket (visited on 07/18/2022).

[28] Googe. UI/Application Exerciser Monkey. 2022. url: https://developer.
android.com/studio/test/other-testing-tools/monkey (visited on
07/18/2022).

[29] Muhammad A. Hakim, Hidayet Aksu, A. Selcuk Uluagac, and Kemal Akkaya.
„U-PoT: A Honeypot Framework for UPnP-Based IoT Devices“. In: Proceedings of
the 37th International Performance Computing and Communications Conference
(IPCCC). Proceedings of the 37th International Performance Computing and
Communications Conference (IPCCC). ISSN: 2374-9628. 2018. doi: 10.1109/
PCCC.2018.8711321.

[30] https://github.com/csicar. Ning - Network-Scanner for Android. url: https:
//github.com/csicar/Ning (visited on 08/01/2022).

[31] https://www.reddit.com/user/CruZer000/. Why does AliExpress need access to
my local network??? url: https://www.reddit.com/r/Aliexpress/
comments / m1u2en / why _ does _ aliexpress _ need _ access _ to _ my _
local/ (visited on 08/01/2022).

[32] Center for Internet Security. EternalBlue. 2019. url: https://www.cisecurity.
org/wp-content/uploads/2019/01/Security-Primer-EternalBlue.
pdf (visited on 07/18/2022).

[33] Umar Iqbal, Steven Englehardt, and Zubair Shafiq. „Fingerprinting the Finger-
printers: Learning to Detect Browser Fingerprinting Behaviors“. In: Proceedings
of the 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021. doi:
10.1109/SP40001.2021.00017.

[34] Fox IT. FAQ on the WanaCry ransomware outbreak. 2017. url: https://
blog.fox-it.com/2017/05/13/faq-on-the-wanacry-ransomware-
outbreak/ (visited on 07/18/2022).

[35] JesusFreke. smali/baksmali is an assembler/disassembler for the dex format. 2022.
url: https://github.com/JesusFreke/smali (visited on 07/18/2022).

75

http://java-decompiler.github.io/
http://java-decompiler.github.io/
https://developer.android.com/studio/command-line/adb
https://developer.android.com/studio/command-line/adb
https://github.com/google/gopacket
https://developer.android.com/studio/test/other-testing-tools/monkey
https://developer.android.com/studio/test/other-testing-tools/monkey
https://doi.org/10.1109/PCCC.2018.8711321
https://doi.org/10.1109/PCCC.2018.8711321
https://github.com/csicar/Ning
https://github.com/csicar/Ning
https://www.reddit.com/r/Aliexpress/comments/m1u2en/why_does_aliexpress_need_access_to_my_local/
https://www.reddit.com/r/Aliexpress/comments/m1u2en/why_does_aliexpress_need_access_to_my_local/
https://www.reddit.com/r/Aliexpress/comments/m1u2en/why_does_aliexpress_need_access_to_my_local/
https://www.cisecurity.org/wp-content/uploads/2019/01/Security-Primer-EternalBlue.pdf
https://www.cisecurity.org/wp-content/uploads/2019/01/Security-Primer-EternalBlue.pdf
https://www.cisecurity.org/wp-content/uploads/2019/01/Security-Primer-EternalBlue.pdf
https://doi.org/10.1109/SP40001.2021.00017
https://blog.fox-it.com/2017/05/13/faq-on-the-wanacry-ransomware-outbreak/
https://blog.fox-it.com/2017/05/13/faq-on-the-wanacry-ransomware-outbreak/
https://blog.fox-it.com/2017/05/13/faq-on-the-wanacry-ransomware-outbreak/
https://github.com/JesusFreke/smali

[36] Dhruv Kuchhal and Frank Li. „Knock and Talk: Investigating Local Network Com-
munications on Websites“. In: Proceedings of the 21st ACM Internet Measurement
Conference. Association for Computing Machinery, 2021. isbn: 9781450391290. doi:
10.1145/3487552.3487857. url: https://doi.org/10.1145/3487552.
3487857.

[37] Renuka Kumar, Apurva Virkud, Ram Sundara Raman, Atul Prakash, and Roya
Ensafi. „A Large-scale Investigation into Geodifferences in Mobile Apps“. In: Pro-
ceedings of the 31st USENIX Security Symposium (USENIX Security 22). Boston,
MA: USENIX Association, 2022. isbn: 978-1-939133-31-1. url: https://www.
usenix.org/conference/usenixsecurity22/presentation/kumar.

[38] Anh Le, Janus Varmarken, Simon Langhoff, Anastasia Shuba, Minas Gjoka, and
Athina Markopoulou. „AntMonitor: A system for monitoring from mobile devices“.
In: Proceedings of the 2015 ACM SIGCOMM Workshop on Crowdsourcing and
Crowdsharing of Big (Internet) Data. 2015.

[39] Fing Limited. Fing - Netzwerk-Scanner. url: https://play.google.com/
store/apps/details?id=com.overlook.android.fing (visited on
08/01/2022).

[40] MITRE. MITRE ATT&CK (registered trademark). 2022. url: https://attack.
mitre.org/ (visited on 07/18/2022).

[41] Alibaba Mobile. AliExpress - Privacy Policy. url: https://terms.alicdn.
com/legal- agreement/terms/suit_bu1_aliexpress/suit_bu1_
aliexpress201909171350_82407.html (visited on 08/01/2022).

[42] Abhinav Mohanty and Meera Sridhar. „HybriDiagnostics: Evaluating Security
Issues in Hybrid SmartHome Companion Apps“. In: Proceedings of the 2021 IEEE
Security and Privacy Workshops (SPW). IEEE. 2021.

[43] Amogh Pradeep, Alvaro Feal, Julien Gamba, Ashwin Rao, Martina Lindorfer, Narseo
Vallina-Rodriguez, and David Choffnes. „Not Your Average App: A Large-scale
Privacy Analysis of Android Browsers“. In: Proceedings of the Privacy Enhancing
Technologies Symposium (PETS) (to appear). 2023.

[44] Abbas Razaghpanah, Narseo Vallina-Rodriguez, Srikanth Sundaresan, Christian
Kreibich, Phillipa Gill, Mark Allman, and Vern Paxson. „Haystack: In situ mobile
traffic analysis in user space“. In: arXiv preprint arXiv:1510.01419. 2015.

[45] Joel Reardon, Álvaro Feal, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-
Rodriguez, and Serge Egelman. „50 Ways to Leak Your Data: An Exploration of
Apps’ Circumvention of the Android Permissions System“. In: Proceedings of the
28th USENIX Security Symposium (USENIX Security 19). USENIX Association,
2019. isbn: 978-1-939133-06-9. url: https://www.usenix.org/conference/
usenixsecurity19/presentation/reardon.

[46] Joel Reardon, Nathan Good, Robert Richter, Narseo Vallina-Rodriguez, Serge
Egelman, and Quentin Palfrey. „JPush Away Your Privacy: A Case Study of
Jiguang’s Android SDK“. In: (2020).

76

https://doi.org/10.1145/3487552.3487857
https://doi.org/10.1145/3487552.3487857
https://doi.org/10.1145/3487552.3487857
https://www.usenix.org/conference/usenixsecurity22/presentation/kumar
https://www.usenix.org/conference/usenixsecurity22/presentation/kumar
https://play.google.com/store/apps/details?id=com.overlook.android.fing
https://play.google.com/store/apps/details?id=com.overlook.android.fing
https://attack.mitre.org/
https://attack.mitre.org/
https://terms.alicdn.com/legal-agreement/terms/suit_bu1_aliexpress/suit_bu1_aliexpress201909171350_82407.html
https://terms.alicdn.com/legal-agreement/terms/suit_bu1_aliexpress/suit_bu1_aliexpress201909171350_82407.html
https://terms.alicdn.com/legal-agreement/terms/suit_bu1_aliexpress/suit_bu1_aliexpress201909171350_82407.html
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon
https://www.usenix.org/conference/usenixsecurity19/presentation/reardon

[47] Jingjing Ren, Martina Lindorfer, Daniel J. Dubois, Ashwin Rao, David Choffnes,
and Narseo Vallina-Rodriguez. „Bug Fixes, Improvements, ... and Privacy Leaks -
A Longitudinal Study of PII Leaks Across Android App Versions“. In: Proceedings
of the 2018 Network and Distributed System Security Symposium. NDSS, 2018.
isbn: 978-1-891562-49-5. doi: 10.14722/ndss.2018.23143.

[48] Jingjing Ren, Ashwin Rao, Martina Lindorfer, Arnaud Legout, and David Choffnes.
„ReCon: Revealing and Controlling PII Leaks in Mobile Network Traffic“. In:
Proceedings of the 14th Annual International Conference on Mobile Systems, Appli-
cations, and Services. MobiSys ’16. Association for Computing Machinery, 2016.
isbn: 9781450342698. doi: 10.1145/2906388.2906392. url: https://doi.
org/10.1145/2906388.2906392.

[49] Thomas Reps, Susan Horwitz, and Mooly Sagiv. „Precise interprocedural dataflow
analysis via graph reachability“. In: Proceedings of the 22nd ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 1995.

[50] Franziska Roesner, Tadayoshi Kohno, and David Wetherall. „Detecting and Defend-
ing Against Third-Party Tracking on the Web“. In: Proceedings of the 9th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 12). USENIX
Association, 2012. isbn: 978-931971-92-8. url: https://www.usenix.org/
conference/nsdi12/technical-sessions/presentation/roesner.

[51] Shanto Roy, Nazia Sharmin, Jamie C. Acosta, Christopher Kiekintveld, and Aron
Laszka. „Survey and Taxonomy of Adversarial Reconnaissance Techniques“. In:
Proceedings of ACM Computing Surveys (CSUR). 2021. url: https://arxiv.
org/abs/2105.04749.

[52] Android Runtime. Android Runtime. url: https://source.android.com/
docs/core/runtime (visited on 08/01/2022).

[53] David Schmidt. „Large-scale Static Analysis of PII Leakage in IoT Companion
Apps“. MA thesis. TU Wien, 2021. url: https://doi.org/10.34726/hss.
2021.86548.

[54] Vijay Sivaraman, Dominic Chan, Dylan Earl, and Roksana Boreli. „Smart-Phones
Attacking Smart-Homes“. In: Proceedings of WiSec’16: 9th ACM Conference on
Security & Privacy in Wireless and Mobile Networks. Association for Computing
Machinery, 2016. isbn: 978-1-4503-4270-4. doi: 10.1145/2939918.2939925.
url: https://dl.acm.org/doi/10.1145/2939918.2939925.

[55] Kansas State University & University of South Florida. Argus-SAF. 2021. url:
https://github.com/arguslab/Argus-SAF (visited on 07/18/2022).

[56] statista. Number of available apps in the Apple App Store from 2008 to 2022. 2022.
url: https://www.statista.com/statistics/268251/number-of-
apps-in-the-itunes-app-store-since-2008/ (visited on 07/18/2022).

77

https://doi.org/10.14722/ndss.2018.23143
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/2906388.2906392
https://doi.org/10.1145/2906388.2906392
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/roesner
https://www.usenix.org/conference/nsdi12/technical-sessions/presentation/roesner
https://arxiv.org/abs/2105.04749
https://arxiv.org/abs/2105.04749
https://source.android.com/docs/core/runtime
https://source.android.com/docs/core/runtime
https://doi.org/10.34726/hss.2021.86548
https://doi.org/10.34726/hss.2021.86548
https://doi.org/10.1145/2939918.2939925
https://dl.acm.org/doi/10.1145/2939918.2939925
https://github.com/arguslab/Argus-SAF
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/
https://www.statista.com/statistics/268251/number-of-apps-in-the-itunes-app-store-since-2008/

[57] statista. Mobile operating systems’ market share worldwide from January 2012
to January 2022. 2022. url: https://www.statista.com/statistics/
272698/global-market-share-held-by-mobile-operating-systems-
since-2009/ (visited on 07/18/2022).

[58] statista. Number of available applications in the Google Play Store from December
2009 to March 2022. 2022. url: https://www.statista.com/statistics/
266210/number-of-available-applications-in-the-google-play-
store/ (visited on 07/18/2022).

[59] statista. Number of smartphones sold to end users worldwide from 2007 to 2021.
2021. url: https://www.statista.com/statistics/263437/global-
smartphone-sales-to-end-users-since-2007/ (visited on 07/18/2022).

[60] Blake E Strom, Andy Applebaum, Doug P Miller, Kathryn C Nickels, Adam G
Pennington, and Cody B Thomas. MITRE ATT&CK (registered trademark): Design
and Philosophy. 2020. url: https://attack.mitre.org/docs/ATTACK_
Design_and_Philosophy_March_2020.pdf (visited on 07/18/2022).

[61] Blake E Strom, Joseph A Battaglia, Michael S Kemmerer, William Kupersanin,
Douglas P Miller, Craig Wampler, Sean M Whitley, and Ross D Wolf. Finding
Cyber Threats with ATT and CK (registered trademark)-Based Analytics. 2017.
url: https://www.mitre.org/publications/technical-papers/
finding-cyber-threats-with-attck-based-analytics (visited on
07/18/2022).

[62] Raja Vallée-Rai, Etienne Gagnon, Laurie Hendren, Patrick Lam, Patrice Pominville,
and Vijay Sundaresan. „Optimizing Java bytecode using the Soot framework: Is it
feasible?“ In: Proceedings of the International conference on compiler construction.
Springer. 2000. isbn: 978-3-540-46423-5.

[63] VirusTotal. Yara - The pattern matching swiss knife. 2022. url: https://github.
com/VirusTotal/yara (visited on 07/18/2022).

[64] Xueqiang Wang, Yuqiong Sun, Susanta Nanda, and XiaoFeng Wang. „Looking from
the Mirror: Evaluating IoT Device Security through Mobile Companion Apps“. In:
Proceedings of 28th USENIX Security Symposium (USENIX Security 19). USENIX
Association, 2019. isbn: 978-1-939133-06-9. url: https://www.usenix.org/
conference/usenixsecurity19/presentation/wang-xueqiang.

[65] Fengguo Wei, Sankardas Roy, Xinming Ou, and Robby. „Amandroid: A Precise
and General Inter-component Data Flow Analysis Framework for Security Vetting
of Android Apps“. In: Proceedings of ACM Transactions on Privacy and Security.
ACM, 2018. doi: 10.1145/3183575. url: https://dl.acm.org/doi/10.
1145/3183575.

78

https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://www.statista.com/statistics/263437/global-smartphone-sales-to-end-users-since-2007/
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://attack.mitre.org/docs/ATTACK_Design_and_Philosophy_March_2020.pdf
https://www.mitre.org/publications/technical-papers/finding-cyber-threats-with-attck-based-analytics
https://www.mitre.org/publications/technical-papers/finding-cyber-threats-with-attck-based-analytics
https://github.com/VirusTotal/yara
https://github.com/VirusTotal/yara
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://www.usenix.org/conference/usenixsecurity19/presentation/wang-xueqiang
https://doi.org/10.1145/3183575
https://dl.acm.org/doi/10.1145/3183575
https://dl.acm.org/doi/10.1145/3183575

[66] Haohuang Wen, Qingchuan Zhao, Qi Alfred Chen, and Zhiqiang Lin. „Automated
Cross-Platform Reverse Engineering of CAN Bus Commands from Mobile Apps“. In:
Proceedings of the 27th Annual Network and Distributed System Security Symposium
(NDSS’20). NDSS, 2020. doi: 10.14722/ndss.2020.24231. url: https:
//dx.doi.org/10.14722/ndss.2020.24231.

[67] Connor Tumbleson & Ryszard Wiśniewski. apktool - A tool for reverse engineering
Android apk files. 2022. url: https://ibotpeaches.github.io/Apktool/
(visited on 07/18/2022).

[68] Daoyuan Wu, Debin Gao, Rocky K. C. Chang, En He, Eric K. T. Cheng, and Robert
H. Deng. „Understanding Open Ports in Android Applications: Discovery, Diagnosis,
and Security Assessment“. In: Proceedings 2019 Network and Distributed System
Security Symposium. NDSS, 2019. isbn: 978-1-891562-55-6. doi: 10.14722/ndss.
2019.23171. url: https://www.ndss-symposium.org/wp-content/
uploads/2019/02/ndss2019_06B-5_Wu_paper.pdf.

[69] Daoyuan Wu, Debin Gao, Robert H. Deng, and Chang Rocky K. C. „When
Program Analysis Meets Bytecode Search: Targeted and Efficient Inter-procedural
Analysis of Modern Android Apps in BackDroid“. In: Proceedings of the 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN).
2021. doi: 10.1109/DSN48987.2021.00063.

[70] www.lookout.com. Igexin advertising network put user privacy at risk. url: https:
//www.lookout.com/blog/igexin-malicious-sdk (visited on 08/01/2022).

[71] Qingchuan Zhao, Chaoshun Zuo, Brendan Dolan-Gavitt, Giancarlo Pellegrino, and
Zhiqiang Lin. „Automatic Uncovering of Hidden Behaviors From Input Validation
in Mobile Apps“. In: Proceedings of 2020 IEEE Symposium on Security and Privacy
(SP). IEEE, 2020. isbn: 978-1-72813-497-0. doi: 10.1109/SP40000.2020.
00072. url: https://ieeexplore.ieee.org/document/9152205/.

[72] Chaoshun Zuo, Zhiqiang Lin, and Yinqian Zhang. „Why Does Your Data Leak?
Uncovering the Data Leakage in Cloud From Mobile Apps“. In: Proceedings of the
2019 IEEE Symposium on Security and Privacy. 2019.

79

https://doi.org/10.14722/ndss.2020.24231
https://dx.doi.org/10.14722/ndss.2020.24231
https://dx.doi.org/10.14722/ndss.2020.24231
https://ibotpeaches.github.io/Apktool/
https://doi.org/10.14722/ndss.2019.23171
https://doi.org/10.14722/ndss.2019.23171
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_06B-5_Wu_paper.pdf
https://www.ndss-symposium.org/wp-content/uploads/2019/02/ndss2019_06B-5_Wu_paper.pdf
https://doi.org/10.1109/DSN48987.2021.00063
https://www.lookout.com/blog/igexin-malicious-sdk
https://www.lookout.com/blog/igexin-malicious-sdk
https://doi.org/10.1109/SP40000.2020.00072
https://doi.org/10.1109/SP40000.2020.00072
https://ieeexplore.ieee.org/document/9152205/

	Kurzfassung
	Abstract
	Contents
	Introduction
	Problem Statement and Motivation
	Methodology
	Structure

	Related Work
	Background
	Android Platform
	Network Scanning
	Static Analysis
	Dynamic Analysis

	Design and Implementation
	Overview
	App Pre-Filtering
	Static Analysis
	Dynamic Analysis

	Results
	Yara Ruleset
	App Dataset
	Analysis Results
	Case Studies
	Traffic Characterization
	Discussion of Results

	Discussion
	Limitations
	Future Work

	Conclusion
	Appendix
	Yara Rules
	Hashes

	List of Figures
	List of Tables
	List of Algorithms
	Bibliography

		2022-12-05T11:00:00+0100
	Signature Box
	Martina Lindorfer
	Signature

