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Kurzfassung

Moderne sicherheitskritische Fahrzeuganwendungen wie autonomes Fahren oder Advan-
ced Driver Assistance Systems (ADAS) benötigen genaue Information über die Position
des Fahrzeuges. Sensorbasierte Positionierungsmethoden wie Global Satellite Naviga-
tion Systems (GNSS), Radio/Light Detection and Ranging (RADAR/LiDAR) oder
Kamerasysteme sind gut erforscht und können eine hohe Positionsgenauigkeit erreichen,
haben aber ihre spezfische Schwächen. Die Positionsgenauigkeit von GNSS verringert sich
stark in urbanen Gegenden und RADAR/LiDAR bzw. Kamerasysteme benötigen zur
globalen Positionierung dreidimensionale Karten der Umgebung auf Basis von Punktwol-
ken und rechenintensive Algorithmen, nur um einige Nachteile zu nennen. Kooperative,
Vehicle-to-Infrastructure (V2I) Positionierung im gerade aufkommenden Mobilfunknetz
der 5. Generation (5G-NR) ist ein Technologiekandidat für genaue und verlässliche
Fahrzeugpositionierung aufgrund von erhöhter Bandbreite, der Unterstützung des Milli-
meterwellenbandes (mmWave) und der Verdichtung des Mobilfunknetzes, hat aber bisher
nur moderate Aufmerksamkeit der Forschungsgemeinschaft für diese konkrete Anwedung
bekommen. In dieser Arbeit untersuchen wir die Positionierung mittels Time Difference of
Arrival (TDOA) mit 5G-NR standardkonformen Referenzsignalen. Ein besonderer Fokus
liegt hier auf Situationen ohne Sichtverbindung und mit Mehrwegeausbreitung, da diese
in (sub-)urbanen Fahrzeugszenarien vorherrschend sind. Zu diesem Zweck präsentieren
wir verschiedenen Techniken zur Schätzung von Verzögerungsprofilen und Methoden
zur Detektion der Verzögerung des direkten Pfades um eine genaue Schätzung der Si-
gnalverzögerung und somit der Entfernung zur ermöglichen. Weiters vergleichen wir die
Genauigkeit der Techniken mittels MATLAB-Simulationen. Darauf aufbauend zeigen
wir Methoden zur Lösungsapproximation des hyperbolischen Positionierungsproblems,
welches als Resultat der TDOA-Messung entsteht. Die Genauigkeit der Methoden wird
in Situationen ohne Sichtverbindung und mit Mehrwegeausbreitung mittels Simulationen
verglichen. Zum Abschluss fügen wir ein Ende-zu-Ende Positionierungssystem auf Basis
der bestgeeigneten Methoden zusammen. Um das System zu evaluieren, konstruieren wir
ein Fahrzeugszenario basierend auf der Geometrie in der realen Welt und simulieren die
Positionierungsgenauigkeit entlang einer Fahrzeugtrajektorie. Die Resultate bestätigen,
dass unser vorgeschlagenes System in der herausfordernden Umgebung des Szenarios
genaue Positionisinformation bereitstellen kann.
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Abstract

State-of-the-art safety-critical vehicular applications like autonomous driving or ad-
vanced driver assistance systems (ADAS) require accurate knowledge of the vehicle
position. Sensor-based positioning methods such as global satellite navigation systems
(GNSS), radio/light detection and ranging (RADAR/LiDAR) or camera systems are
well-studied and can provide high positioning accuracy, but have their specific weaknesses.
The performance of GNSS positioning severly degrades in urban environments, while
RADAR/LiDAR or camera systems require three-dimensional point cloud maps and com-
putationally expensive algorithms in order to perform global positioning, only to name a
few drawbacks. Cooperative, vehicle-to-infrastructure (V2I) positioning in the upcoming
5th generation cellular network (5G-NR) is a candidate technology for accurate and
reliable vehicular positioning due to increased bandwidth, support for the millimeter wave
band (mmWave) and network densification, but has up until now received less attention
from the research community for this particular application. In this work, we investigate
time difference of arrival (TDOA) positioning with 5G-NR standard-compliant reference
signals, with a strong focus on non line of sight (NLOS) and multipath propagation
prevalent in (sub-)urban vehicular scenarios. For this purpose, we introduce various delay
profile estimation techniques and direct path delay peak detection methods in order to
perform accurate time delay and range estimation and compare their performance with
MATLAB simulations. Based on that, we show methods for approximately solving the
hyperbolic positioning problem arising from the TDOA measurements and compare their
performance based on simulations in NLOS and multipath-heavy situations. Finally, we
construct an end-to-end positioning framework comprised of the best-suited methods. In
order to evaluate this framework, we build an urban vehicular scenario based on real-world
geometry data and simulate the positioning accuracy along a vehicular trajectory. The
results confirm that our proposed positioning framework is capable of providing accurate
position information in the harsh propagation environment encountered in the simulation
scenario.
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CHAPTER 1
Introduction

The ever increasing demand for personal mobility and transportation in the current and
previous century lead to a steadily increasing road traffic volume in Austria - in part due
to the still growing individual traffic sector [AST]. This gives rise to many challenges such
as increased pollution, road congestion and traffic accidents. Altough the numbers have
been decreasing in the past, in 2021 alone 359 people died in Austria due to road traffic
accidents [STV] and many more have been injured. Current research and development
focuses on trying to tackle many of the problems associated with individual road traffic
with emerging, safety-critical vehicular applications like autonomous driving and advanced
driver assistance systems (ADAS). One thing that systems such as navigation, automatic
lane changing and keeping, collision avoidance and automated parking have in common
is that they require accurate knowledge of the vehicle position. State-of-the-art vehicular
positioning techniques can be broadly classified into the following categories [KFK+18]:

• Sensor-based positioning methods. A sensor (or a combination of multiple sensors)
mounted on the vehicle perceives its environment and based on the recorded data
the global position of the vehicle can be computed.

• Cooperative positioning methods. The vehicle communicates with its environment
and exchanges positioning-related data with other adjacent road users or with
infrastructure at fixed positions in order to determine its global position.

Sensor-based positioning methods include various global navigation satellite system
(GNSS), which have enabled vehicular positioning in the last decades, but suffer from
reliability issues and lowered accuracy especially in urban environments. Other sensor
systems such as radio detection and ranging (RADAR), light detection and ranging
(LiDAR) or cameras can perform measurements of obstacle ranges and are able to achieve
very high vehicular positioning accuracy. However, the major challenge arising with such
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1. Introduction

systems is that they require a three-dimensional point cloud map of the environment in
order to perfom global positioning by correlating the sensor data with a map. Generating
such maps involves resource intensive tasks like data collection, analysis and maintenance
and the associated simultaneous localization and mapping (SLAM) and map-matching
algorithms are computationally expensive. Futhermore, positioning accuracy might be
diminished by environment variations not refelcted by the map, obstructions, interference
or bad weather conditions.

One type of cooperative technique is referred to as vehicle-to-vehicle (V2V) positioning,
where adjacent vehicles transmit and receive wireless signals from each other. Based on
parameters like signal propagation time or angular measurements, the ranges between
the vehicles or, if multiple signals are available, the relative positions can be computed.
Furthermore, vehicles might exchange position information via ad-hoc wireless connections
in order to perform cooperative mapping. These methods however require an additional
system that provides self-localization, such that the relative positions can be put into the
context of a global coordinate system. The positioning accuracy strongly depends on
factors such as communication latency and faults, vehicle movement and line of sight
(LOS) availability. Another cooperative method is known as vehicle-to-infrastructure
(V2I) positioning. Here the vehicle communicates with wireless network infrastructure
such as road side units (RSUs) or cellular network base stations (BSs). Again, based on
signal propagation time, angular measurements or other parameters, the global position
of the vehicle in the network can be determined. As in V2V systems, positioning related
data can be shared with other road users over the network infrastructure. V2I positioning
has a potential for high accuracy and reliability, however complex and expensive network
infrastructure is required and accuracy might severly degrade if effects of non line of sight
(NLOS) propagation cannot be mitigated or used favorably by the positioning algorithm.

In this thesis, we investigate cooperative positioning techniques based on the upcoming
5th generation cellular network - new radio (5G-NR) technology. Several key properties
make 5G-NR-based positioning a promising candidate for high-accuracy positioning
[ZLWW17]:

• Large bandwidths in the order of hundreds of MHz, reducing latency and increasing
time measurement accuracy with improved ranging quality as a consequence.

• High carrier frequencies in the millimeter wave band (mmWave) around 30 GHz,
allowing for large antenna arrays with strong beamforming and signal estimation
capabilities and a sparse channel with regard to multipath components.

• High-speed, low-latency data exchange not only between mobile users and the
cellular base stations, but also directly between mobile devices, known as device-to-
device (D2D) communication.

Furthermore, it is expected that the roll-out of 5G-NR comes with a densification of the
cellular network, leading to an increased number of available reference points and a higher
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1.1. Thesis structure

probability for line of sight (LOS) connections [ZLWW17]. This would be beneficial
for positioning especially in urban areas, where conventional GNSS tends to struggle
the most. Since 5G-NR network infrastructure is currently being implemented around
the world for communication purposes, a potential reduction of the high initial cost
of V2I positioning is expected if existing infrastructure can be used. Additionally, we
highlight that several different positioning methods have already been specified in the
3rd generation partnership project (3GPP) standard for 5G-NR [rGPPG22]. Compared
to other positioning techniques listed above, up until now vehicular positioning in 5G-NR
network has received less attention from the research community. In the course of
this thesis, we investigate and benchmark different methods for positioning in 5G-NR
networks. Based on our findings we propose a positioning method relying on propagation
time parameters and show its applicability to vehicular scenarios, especially focusing on
situations with a high probability for NLOS links. In order to evaluate the proposed
algorithms we develop a suitable MATLAB simulation framework incorporating the
various required system models.

In general it should be stated that a highly accurate and reliable vehicular positioning
framework of the future will likely not comprise of only a single method, but rather
combine multiple of the techniques and approaches introduced above in order to make up
for the different weaknesses and to benefit from all the strengths specific to the individual
methods.

1.1 Thesis structure

This thesis is organized as follows: Chapter 2 gives the reader an overiew over the
positioning problem in cellular networks. The potentially available positioning parameters
are listed and positioning approaches making use of these parameters are presented. In
chapter 3, a transmission system model for the 5G-NR physical layer is introduced, where
special attention is paid to modelling NLOS propagation channels. Furthermore, the
specification and behavior of a 3GPP standard-compliant reference signal for positioning
is outlined. Building on top of this system model, several methods for delay profile
estimation and delay peak detection are introduced and applied to the problem at hand -
for the purpose of estimating propagation time delay. The different methods are evaluated
in a simulation framework and their performance is compared based on the simulation
results. Chapter 4 introduces the problem of position estimation based on time difference
of arrival (TDOA) measurements. Methods for solving this problem are presented and
their performance is compared based on simulations. In chapter 5, the complete 5G-
NR vehicular positioning framework constructed by the previous chapters is applied
to a simulation scenario based on real-world geometry and the resulting positioning
performance is evaluated. Finally, in chapter 6 the findings obtained in the course of this
thesis are summarized and hints for possible future work are given.

3



1. Introduction

1.2 Notation
In this thesis, column vectors are denoted by bold lowercase letters and matrices are
denoted by bold uppercase letters. The following notations are used for matrices with
special structure: In×m denotes the n × m identity matrix, 0n×m denotes an n × m
matrix filled with zeros, 1n×m denotes an n × m matrix filled with ones and diag{·}
defines a matrix where the main diagonal is filled with the argument vector elements and
the elements outside the main diagonal being set to zero. Futhermore, various matrix
operations are used: (·)T for matrix transpose, (·)H for matrix Hermitian, || · ||2 for the
Euclidean or l2 vectornorm. The operator ∗ refers to the linear convolution, � to the
circular convolution, ◦ signifies the Schur product and E{·} denotes the linear expectation
operation. The conjugate of a complex number is expressed by the notation (·)∗, the floor
operation �·� rounds towards minus infinity and a mod b denotes the integer operation
a modulo b.

4



CHAPTER 2
Donwlink positioning methods for

cellular networks

The following chapter introduces the positioning problem underlying this whole thesis.
The focus is on positioning methods for cellular networks, where the BSs transmit
reference radio signals and the receiving user equipment (UE) computes its own position
based on the received signals - hence we focus on downlink positioning only. Note however,
since 5G-NR allows for bidirectional communication, there also exist methods for uplink,
or network-based positioning as well as combined downlink and uplink positioning, which
are not subject of this thesis. In this chapter, we outline the state of the art and show
which different positioning parameters can be estimated in a cellular network and how
these parameters are used to estimate the UE position.

The chapter is structured as follows: Section 2.1 introduces the downlink positioning
problem in cellular networks. In section 2.2, it is explained how the propagation time of
the emitted radio signal can be used to derive range information in order to estimate
the position of the UE, while the methods in section 2.3 rely on angular measurements
to solve the positioning problem. Section 2.4 introduces positioning methods based on
measurement of received signal strenght. In section 2.5 we present modern, emerging
ideas for positioning in cellular networks, which are still in early development but appear
to be promising approaches. Finally, section 2.6 introduces the ideas of filtering and
sensors fusion to provide options for increasing the accuracy of positioning systems.

5



2. Donwlink positioning methods for cellular networks

Figure 2.1: Parameters for downlink positioning in cellular networks supported by the
3GPP standard, NBS = 3

2.1 Problem statement
Consider a cellular network with NBS BSs at arbitrary but known positions rBS,i ∈
Rdim×1, i = 0 . . . NBS − 1, where each is transmitting reference radio signals on downlink,
which are also known. The parameter dim ∈ {2, 3} denotes the dimensionality of the
coordinate system. Furthermore, there is a receiving UE located at the unknown position
rUE ∈ Rdim×1. The task is now to estimate the position rUE , which is carried out in a
two-step process. First, one or multiple sets of parameters available in this constellation
are estimated. In a second step, the UE position is estimated by employing an appropriate
positioning method.The following positioning parameters can be measured in this setup
[PAK+05, ZB11]:

• The time delays due to the radio signal propagation τ0, . . . , τNBS−1, which yield
the transmitter-recveiver ranges d0, . . . , dNBS−1 via the propagation speed c01, as
in di = ||rBS,i − rUE ||2 = c0τi.

• The time delay differences Δτ0 = τ0 − τj , . . . , Δτj−1 = τj−1 − τj , Δτj+1 = τj+1 −
τj , . . . , ΔτNBS−1 = τNBS−1 − τ0 for the reference transmitter at rBS,j yield the

1speed of light, c0 = 299792458 m
s
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2.2. Propagation time based methods

range differences Δd1, . . . , Δdj−1, Δdj+1, . . . , ΔdNBS−1 of those transmitters, via
the above relationship.

• The angles of departure α0, . . . , αNBS−1 at the transmitters.

• The signal strengths at the receiver, which again yield the transmitter-recveiver
ranges d0, . . . , dNBS−1.

The positioning problem and the parameters listed above are visualized in figure 2.1 for
a setup with NBS = 3 transmitting BSs. Note that the short dashed lines represent
arbitrary planes serving as a reference for measuring the angles - they could be the
antenna baseplanes in practice, for example. Furthermore, the dotted lines represent
range differences, while the arrows symbolize the downlink signals which propagate over
the respective transmitter-recveiver distances.
The following sections 2.2, 2.3 and 2.4 are based on [PAK+05, ZB11].

2.2 Propagation time based methods
2.2.1 Time of arrival measurements
The time of arrival (TOA) of a signal is the transmission time of the signal plus the
propagation time due to the distance d between transmitter and receiver. Hence in
order to extract the time delay τ which is required to compute the distance d = c0τ ,
the receiver must know the exact transmission time of the signal, or, in other words,
receiver and transmitter must be perfectly synchronized. Disturbances of the time delay
estimates occur due to additive noise during the transmission. Another major source
of error is multipath propagation, i.e. the attenuation and reflection of the transmit
signal due to blocking objects. The direct signal component might be severly attenuated
and thus lost in noise. This could lead to a reflected signal being picked up at the
receiver instead of the direct signal, which would yield a biased range estimate. Chapter
3 includes a more in-depth explanation of the time delay estimation problem with a focus
on multipath-heavy environments and presents several methods that are able to measure
time delay.

2.2.2 Time difference of arrival measurements
In order to circumvent the strong assumption about perfect receiver-transmitter synchro-
nization imposed by the TOA method, a common approach is to instead measure the
TDOA for multiple different transmitters. Hence for a network with NBS transmitters,
an arbitrary BS j, with 0 ≤ j < NBS , is selected as a time reference to compute the
TDOAs Δτi = τi − τj , with 0 ≤ i < NBS , i �= j. This idea drops the receiver-transmitter
synchronization assumption and only requires time synchronization between transmitters,
however at the cost of sacrificing one transmitting station as a time reference. The TDOA
values yield the range differences Δdi = c0Δτi − τj , with 0 ≤ i < NBS , i �= j. Of course

7



2. Donwlink positioning methods for cellular networks

this method is, much like the TOA method, also negatively affected by additive noise
and multipath propagation.

2.2.3 Lateration
Assuming that NBS range measurements di, 0 ≤ i < NBS are available at the receiving
UE as a result of the TOA method, the ranges can be used to define circles, with the
respective centers being at the BS positions rBS,i and with each corresponding circle
having radius di. If NBS = 1, there are infinite possibilites for the UE position rUE ,
however they are restricted to lie on the circle around the BS. In the case of NBS = 2
(bilateration), there are two circles available, which might intersect in one or two points,
hence adding a second BS already drastically reduces the number of possible UE positions.
If the number of transmitters is increased to NBS = 3 (trilateration), or even further to
NBS > 3 (multilateration), the circles all intersect at a single point, instantly leading to
a unique UE position. In case the transmitted signals are corrupted by additive noise
or multipath propagation, the circles might not overlap in a single point or even not at
all, giving rise to the need for approximate method to solve the set of circular equations.
Note that these explanations assume the two-dimensional positioning case with dim = 2.
For dim = 3, the circles become spheres and NBS ≥ 4 is required to obtain a unique
solution for the UE position. Note that this method is not supported by the 5G-NR
standard [rGPPG22], hence it will not be considered further in this thesis.

In case the TDOA method is employed and NBS range difference values Δdi, 0 ≤
i < NBS , i �= j with respect to the reference BS rBS,j are measured at the receiving
UE, the range differences now define define hyperbolas on which the UE position rUE

must lie. As stated before, lateration with TDOA values requires one additional BS as
compared to lateration with TOA values. Therefore, at least NBS = 4 transmitters are
required to obtain a unique solution for the UE position rUE in the two-dimensional
case with dim = 2. Hence when TDOA measurements are used, usuall only the term
multilateration is used to describe the positioning process. In the three-dimensional case
with dim = 3, the hyperbolas becom hyperboloids and NBS = 5 BSs are required in
order to obtain a unique solution. Of course it is possible to use even more measurements,
which is especially desirable in situations with additive noise or multipath propagation,
where approximate solutions to the hyperbolic set of equations must be found. The
TDOA approach is supported by the 5G-NR standard [rGPPG22] and a more elaborate
discussion of hyperbolic positioning can be found in chapter 4.

2.3 Angle based methods

2.3.1 Angle of departure measurements
The angle of departure (AOD) α of a reference signal at the transmitter can be esti-
mated using smart antennas and reference signal received power (RSRP) reports with
fingerprinting [KSHK19]. The term smart antenna refers to the pairing of antenna arrays

8



2.4. Received signal strength based methods

with signal processing algorithms such as beamforming. The measured AOD value is
then transmitted to the UE in order to be made available to the subsequent positioning
algorithm. AOD information is complementary to TOA or TDOA information as it
provides hints about the direction of the UE relative to the BS, rather than the range or
range differences. The downlink AOD approach is supported by the 5G-NR standard
[rGPPG22]. Note that it is also feasible to measure the angle of arrival (AOA) of a
reference signal at the receiver, using antenna arrays combined with algorithms that
estimate the incident angle, for example based on the phase delay. The challenge in
this setting is that without further sensors such as e.g. a compass, neither position nor
orientation of the receiver are known. Furthermore, the downlink AOA approach is not
supported by the standard [rGPPG22]. As with methods based on propagation time,
major disturbances of angular measurements occur due to additive noise and multipath
propagation.

2.3.2 Angulation

Given NBS AOD measurements αi, 0 ≤ i < NBS at the UE, the UE position can be
computed by defining lines of bearing based on the respective BS positions rBS,i and the
measured AODs. The UE position rUE is situated at the intersection of the bearing lines.
NBS = 2 transmitters are sufficient to obtain a unique solution (biangulation). NBS = 3
(triangulation) or NBS ≥ 3 (multiangulation) transmitters are favorable in situations
where the AOD measurements are disturbed by additive noise or multipath propagation,
because bearing lines might not intersect in a single point, hence giving rise to the need
for approximate solution methods. In case the three-dimensional positioning problem
shall be solved, it is required that in addition to the AODs the respective elevation angles
are estimated, however two transmitters are still sufficient to obtain a unique solution
in the noise and distortion free scenario. Since in this thesis we do not employ antenna
arrays and focus on propagation time based positioning in the single input single output
(SISO) case, the angular approach will not be considered further.

2.4 Received signal strength based methods

Another approach is to measure the received signal strength (RSS) at the receiver. Based
on the known transmit power, the measured RSS and an appropriate path loss model
describing how the reference signal power decreases with the square of the distance and
due to the propagation environment, the range between transmitter and receiver can be
estimated. In a second step, the position of the UE can be computed by lateration, much
like with TOA measurements. An advantage of this method is that in principle it does
not require any time synchronization between network elements. Major sources of error
for this method are multipath propagation, where multiple received signal reflections
interfere with each other, as well as signal attenuation due to blocking objects. Therefore,
the accuracy of RSS based positioning highly depends on the accuracy and applicability
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of the employed path loss model. Note that this method is not supported by the 5G-NR
standard [rGPPG22], hence it is not considered further in this thesis.

2.5 Emerging methods
Since 5G-NR is expected to support technologies such as millimeter wave (mmWave) or
massive multiple input multiple output (MIMO) [BHL+14], it provides the opportunity
for the development and potential deployment of novel positioning methods making use of
the newly introduced network features. The main idea is that technologies like mmWave
or massive MIMO allow multipath propagation to be viewed as a valuable source of
information for the positioning process rather than an undesirable disturbance [WML+16].
The work in [WKWW20] proposes a tensor-based channel estimation algorithm that
is able to determine delays and angles of all individual components in a multipath
propagation environment. Building on this method, [GWK+20] presents an end-to-end
positioning framework that employs a SLAM algorithm to construct an environment
map of signal reflection and scattering points, referred to as virtual anchors. These
virtual anchors are used as reference points to achieve sub-meter positioning accuracy
using only a single transmitting BS at the cost of high computational complexity. In
[KWG+18, KGG+20], these ideas are applied to vehicular scenarios, demonstrating the
feasibility of high accuracy vehicular positioning and tracking in multipath environments
with reference signals from only a single BS. These emerging methods are listed for
completeness and their futher investigation is not a subject of this thesis.

2.6 Filtering and sensor fusion
In order to achieve an accurate and reliable positioning system, especially in dynamic
situations such as positioning of a moving vehicle, it is desirable to apply filtering methods
and to perform sensor fusion [Mit12]. Filtering in this sense refers to a state estimation
process where the next system state is predicted according to a state transition model
and then updated and corrected based on sensor readings giving indication of the actual
current system state. In case of vehicular positioning, the system state comprises of the
current position and speed, while the state transition model would be a kinematic model
of the vehicle. The advantage brought by filtering is that it can provide relatively accurate
system state estimation even in situations where the sensor readings are not realiable, such
as in case of bad signal reception in tunnels or cluttered environments. Common filtering
methods include the well-known Kalman filter or the particle filter. Sensor fusion refers
to an approach where readings from different sensors are combined to achieve increased
state estimation performance. An example applicable to cellular networks would be to
perform joint positioning based on TDOA as well as AOD measurements. Note that any
types of appropriate sensors can be fused. For the application of vehicular positioning,
this might include systems such as RADAR [AEBM20], GNSS [MSD10, MGA+20] or
other state-of-the-art sensor suites [KFK+18]. Due to the diversity, sensor fusion allows
to compensate for weaknesses of individual sensor systems and hence is able to increase
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accuracy and reliability of the positioning system. Filtering and sensor fusion are however
not in the scope of this thesis.
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CHAPTER 3
Time delay measurement with 5G

reference signals

Since the focus of this thesis is on positioning methods using timing information, methods
for measuring propagation time, or equivalently the range, between BS and UE are
required. The following chapter investigates how such measurements can be conducted
in 5G-NR cellular networks by employing standard compliant reference signals. Special
attention is paid to environments with difficult propagation conditions that can be found
in urban regions for example, which are a common field for vehicular applications. Time
delay estimation with sufficient accuracy is particularly challenging in environments like
that.

This chapter is structured as follows: Section 3.1 introduces the system model for
transmitting and receiving standard-compliant 5G-NR reference signals suitable for
positioning applications. An emphasis is put on modelling propagation channels and
propagation delay. Section 3.2 presents the challenges of delay estimation in urban
environments and introduces the components of a suitable delay estimation procedure.
Section 3.3 introduces various methods for estimating delay profiles of a multipath channel,
while section 3.4 shows methods for detecting delay peaks from such delay profiles.
Finally, section 3.5 introduces the simulation setup and standard-compliant channel
models. Furthermore, it summarizes the simulation results and their interpretation.
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3. Time delay measurement with 5G reference signals

Figure 3.1: OFDM resource grid

3.1 System model
Much like in previous generation long term evolution (LTE) cellular networks, 5G-NR
relies on orthogonal frequency division multiplexing (OFDM) in the physical layer (PHY),
as specified by 3GPP in the standard [rGPPG20b]. OFDM [Mol12] is a multicarrier
transmission scheme, which partitions the entire system bandwith into Nsc mutually
orthogonal narrowband subcarriers. Due to the orthongonality, the subcarriers only
overlap in their zero-crossings in the frequency domain and hence in principle no subcarrier
will interfer with any other. The serial input data symbol stream (Si)i≥0 is split up
into blocks of Nsc symbols, which are in turn distributed over the entire bandwidth to
modulate the available Nsc subcarriers in parallel. An Nsc-length symbol block is referred
to as an OFDM symbol. This idea of orthogonal subcarriers is conveniently represented
by the OFDM resource grid, which is a complex Nsc × Nsym matrix, where Nsym is the
number of consecutive OFDM symbols. The resource grid is shown in figure 3.1.

In 5G-NR a new parameter - the numerology µ ∈ {0, . . . , 4} - is introduced. It defines
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transmitter channel + receiver
(Si)i≥0 x h ∗ x y (Ŝi)i≥0

n

Figure 3.2: Transmission model

the subcarrier spacing Δfsc = 15 ∗ 2µ kHz, the duration Tsym = 1
Δfsc

of an OFDM
symbol and the number of OFDM symbols Nsym = 14 ∗ 2µ per 1 ms subframe, where
10 subframes form a frame. In LTE, only a single subcarrier spacing of Δfsc = 15 kHz
is defined. Each subframe can be subdivided into a varying number of slots with fixed
Nsym = 14, where the number of slots per subframe depends again on µ. Each position in
the resource grid represents a resource block (RB), which is associated with a single and
unique subcarrier. A data symbol from the input stream is assigned to a RB in order to
modulate the corresponding subcarrier. After the OFDM modulation, the parallel data
stream is transformed to the time domain and serialized. The time domain waveform is
transmitted through a radio channel with additive noise, before being parallelized again.
The received data stream is then transformed back into the frequency domain, where
the transmitted symbols can be recovered from the received resource grid by applying a
suitable detection method. This transmission scheme is outlined in figure 3.2. Note that
in the following sections we focus on SISO transmission in the downlink, since time delay
and later position estimates should be computed at the UE in order to minimize latency.
Hence, no derivations for multi-antenna transmission schemes are made. Unless noted
otherwise, the following models are considered in discrete-time.

3.1.1 Transmitter
The transmitter processes the input data symbol stream (Si)i≥0 and packs Nsc data
symbols to construct the l-th OFDM symbol

X l = [Sl,0, . . . , Sl,Nsc−1]T ∈ CNsc×1, l = 0, . . . , Nsym − 1, (3.1)

where each data symbol modulates a distinct subcarrier. Note that a data symbol could
also be unused (Si = 0) or take on the role of a specialized reference or pilot symbol
specified by the standard. This frequency domain symbol vector ist then transformed to
the time domain by an inverse discrete fourier transform (DFT−1),

x�
l,n = 1

NF F T

Nsc−1�
k=0

Sl,ke
j 2πnk

NF F T , l = 0, . . . , Nsym − 1, n = 0, . . . , NF F T − 1 (3.2)

generating the baseband time domain OFDM symbol
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3. Time delay measurement with 5G reference signals

x�
l = [xl,0, . . . , xl,NF F T −1]T ∈ CNF F T ×1. (3.3)

The DFT−1 operation is efficiently realized by the famous inverse fast fourier transform
(FFT−1) algorithm with computational complexity O(n log n) - as opposed to O(n2)
when naively realized as a matrix-vector product. The fast fourier transform (FFT)
size NF F T is typically chosen such that it is the smallest power of two which greater is
than Nsc. If required, the frequency domain vector X l can be adapted to this size by
symmetrically zero-padding it on either end. Hence we can write

x�
l = FFT −1{X �

l} ∈ CNF F T ×1, (3.4)

where X �
l is the vector X l zero-padded to length NF F T . The transmitted signal now

occupies a bandwidth of B = NscΔfsc. The sample rate fs is governed by the oversampling
introduced due to the FFT size NF F T and is given by fs = NF F T Δfsc, with sample
period Ts = 1

fs
.

The time domain OFDM symbol x�
l is then prepended by a cyclic prefix with length Ncp

xcp
l = [xl,NF F T −Ncp−1, . . . , xl,NF F T −1]T ∈ CNcp×1, (3.5)

by simply duplicating the last Ncp samples of x�
l. Stacking xcp

l and x�
l yields the full time

domain transmit signal

xl = [xcp
l x�

l] = [xl,−Ncp , . . . , xl,0, . . . , xl,NF F T −1]T ∈ C(NF F T +Ncp)×1 (3.6)

for the l-th OFDM symbol, as visualized in figure 3.3. This cyclic prefix serves two
purposes. On the one hand, it converts the linear convolution of the transmit signal
and the channel impulse response (CIR) to a cyclic convolution. This allows for simple
frequency domain processing, as the convolution theorem of the discrete fourier transform
(DFT) states that a cyclic convolution with the CIR in the time domain is equivalent to
a multiplication with the channel frequency response (CFR) in the frequency domain.
On the other hand, the cyclic prefix serves as a guard interval between OFDM symbols,
limiting the effect of intersymbol interference (ISI). If the maximum excess delay of
the channel is not greater than the length of the cyclic prefix, ISI of two consecutive
OFDM symbols can be avoided by simply discarding the cyclic prefix at the receiver.
The behavior of the cyclic prefix is further elaborated in section 3.1.3.

Based on the above definitions, we can now define the resource grid for one OFDM slot
as
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−Ncp 0 NF F T − 1
0

0.5

1

n

x
n

Figure 3.3: The values in red are prepended to form the cyclic prefix

S/P converter FFT −1 cyclic prefix
(Sl,i)0≤i<Nsc X l x�

l xl

Figure 3.4: Transmitter

X = [X0, . . . , XNsym−1] ∈ CNsc×Nsym (3.7)

and the corresponding stacked time domain signal vector as

x = [x0 . . . xNs−1] = [xcp
0 x�

0 . . . xcp
Nsym−1x�

Nsym−1] ∈ CNsym(NF F T +Ncp)×1, (3.8)

where Nsym = 14.

Figure 3.4 summarizes the transmission of the l-th OFDM symbol. If the transmitter
is to be realized, the time domain digital signal will be passed through a digital-to-
analog converter (DAC) and handed over to an radio frequency (RF) chain before
transmission. However, these components of the transmitter do not play a role in the
following investigations and are hence not further elaborated.

3.1.2 5G positioning reference signal
For the purpose of time delay estimation in the context of positioning, we employ the
positioning reference signal (PRS) as defined by the 3GPP standard [rGPPG20b] for
5G-NR. The PRS is composed by a pseudo-random symbol sequence (rm)m≥0, whose
parameters are known both at the transmitter and the receiver and which is given by

17



3. Time delay measurement with 5G reference signals

rm = 1√
2

(1 − 2c(2m)) + j
1√
2

(1 − 2c(2m + 1)), m = 0, 1, . . . , (3.9)

where c(i) is the output of a pseudo-random length-31 Gold sequence specified by the
standard. The Gold sequence is initialized by a term incorporating information like the
number of OFDM symbols per slot, the current slot number and a unique identifier of
the transmitter (e.g. the cell ID), yielding a different, pseudo-random PRS at each time
slot and for each transmitter. From the definition of the random symbol stream it is
visible that it follows the quadrature phase shift keying (QPSK) modulation scheme.
The symbols rm cover the entire bandwidth and are distributed over the resource grid as
follows:

Sl,k = βP RSrm, m = 0, 1, . . . (3.10)

k = mKP RS
comb +



(kP RS

offset + k�) mod KP RS
comb

�
(3.11)

l = lP RS
start, lP RS

start + 1, . . . , lP RS
start + LP RS − 1. (3.12)

The parameter LP RS ∈ {2, 4, 6, 12} specifies the number of OFDM symbols occupied
by the PRS resource in a slot, lP RS is the index of the first OFDM symbol in a slot
and βP RS is a power scaling factor. The comb size KP RS

comb ∈ {2, 4, 6, 12} specifies the
spacing between two PRS symbols in the resource grid, i.e. KP RS

comb = 12 signifies that
11 subcarriers are left empty between two symbols. Note that LP RS ≡ 0 mod KP RS

comb

must be satisified. k� is the offset at each symbol, resulting from the selected comb
size and kP RS

offset ∈ {0, 1, . . . , KP RS
comb − 1} is the initial subcarrier offset. More in-depth

explanation of the PRS generation process is given in the aforementioned standard and
in [MKE+21, dPRLSSG+12]. A typical PRS configuration is visualized in figure 3.5.

Due to the employment of a Gold sequence, the PRS has strong autocorrelation and
weak cross-correlation properties, which makes it well-suited to correlation-based time
delay estimation at the receiver in presence of multiple simultaneous PRS transmissions
originating from different cells [DSM+21]. Multiple mechanisms strive to minimize inter-
cell interference, such as different pseudo-random sequences based on the cell ID and a
comb structure of the symbols in a PRS resource, with the option of a distinct frequency
offset kP RS

offset per cell. Furthermore, the standard specifies extensive PRS muting options,
where the transmissions of multiple cells can be coordinated and hence hearability
of a PRS resource can be increased due to decreased inter-cell interference. Further
explanation of the available configuration parameters is given by the documentation in
[MATc].
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Figure 3.5: PRS slot with LP RS = 12, KP RS
comb = 2 and kP RS

offset = 0 (black squares denote
subcarriers occupied by PRS)

3.1.3 Channel
In this work we consider multipath or frequency-selective channels, which tend to occur
in cluttered environments with multiple signal reflectors or scatterers. Such a multipath
CIR is typically modelled as a complex lowpass filter in the time domain [LP04]

h(t) =
Np−1�
l=0

αlδ(t − τl), (3.13)

where Np is the number of propagation paths in the model, αl = |αl|ejθl ∈ C is the
complex path gain with random phase θl ∼ U(0, 2π) and τl ∈ R≥0 is the delay of the l-th
propagation path. Note that the paths are indexed in accordance with ascending delay
duration. Therefore τ0 corresponds to the delay of the direct path, any non-direct path
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has a greater delay and thus a greater index. The discrete-time, or sampled, version of
the CIR is approximated by a finite impulse response (FIR) filter

hn =
Ñp−1�
l=0

α̃lδn−τ̃l
, n = 0, . . . , Nh − 1. (3.14)

Due to the sampling of the CIR, information about narrow-spaced paths arrivals might be
lost if their relative path delays are smaller than the sampling period Ts. In that case, all
paths with delays within the interval of the same sample are combined. This is denoted
by the altered values Ñp, α̃l, τ̃l, which represent the effect of sampling. We now have
Ñp ≤ Np, as multiple paths might collapse into a single FIR filter tap, τ̃l ∈ N since delays
are now multiples of the sampling period and α̃l, which might combine the attenuation
of multiple paths. In simulation, the discrete-time CIR is typically implemented as
a fractional delay FIR filter [IM08]. The length of the discrete-time CIR is given by
the sampled tap delay of the longest path Nh = τ̃Ñp−1 + 1. Passing the time domain
transmit signal x through a multipath channel modelled by a FIR filter leads to the
linear convolution

yn = (h ∗ x)n =
Nh−1�
m=0

hmxn−m, n = 0, . . . , Nsym(NF F T + Ncp) + Nh − 1. (3.15)

We can see that the output value at time n only depends on the Nh previous values of
the transmit signal. If the length of the channel Nh is not greater than the length of
the cyclic prefix Ncp, hence Nh ≤ Ncp holds, the linear convolution with the l-th OFDM
symbol becomes a cyclic convolution, indicated by the operator �:

y�
l,n = (h ∗ [xcp

l x�
l])n = (h ∗ xl)n =

Nh−1�
m=0

hmxl,n−m (3.16)

=
Nh−1�
m=0

hmx�
l,(n−m) mod NF F T

= (h � x�
l)n, n = 0, . . . , NF F T − 1. (3.17)

This is due to the fact that the cyclic prefix replicates the tail of the OFDM symbol and
hence the symbol appears to be periodic with period NF F T to a channel with Nh ≤ Ncp.
The cyclic prefix also admits a simple input-output relationship for the l-th OFDM
symbol in the frequency domain, given by

Y �
l = H ◦ X �

l, with H = DFT {h}. (3.18)
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The operator ◦ signifies the Schur product and is simply an elementwise multiplication of
vectors, resulting from the convolution theorem of the DFT. Moreover, it now becomes
clear how the cyclic prefix prevents ISI if Nh ≤ Ncp. In this case, interference due to the
channel from the preceeding, l − 1-th OFDM symbol only affects the cyclic prefix,

ycp
l,n = (h ∗ [x�

l−1xcp
l ])n, n = −Ncp, . . . , −1, (3.19)

which is discarded at the receiver. The received signal y can, much like the transmit
signal x, be viewed as an alternating sequence of cyclic prefix and OFDM symbols:

y = [y0 . . . yNs−1] = [ycp
0 y�

0 . . . ycp
Ns−1y�

Ns−1] ∈ CNsym(NF F T +Ncp)×1. (3.20)

Another representation [LP04] of the multipath channel is given by the fourier transform
of 3.13:

H(f) =
Np−1�
l=0

αle
−j2πfτl . (3.21)

This CFR can be discretized with respect to the OFDM subcarriers, hence sampled at
every subcarrier frequency. This yields a channel coefficient for each subcarrier k, which
is given by

Hk =
Np−1�
l=0

αle
−j2πΔfsckτl , k = 0, . . . Nsc − 1. (3.22)

Note how in this representation information about individual, narrow-spaced path
delays are preserved in the phase of the channel coefficient, which is why we use this
representation as opposed to the model given by 3.14. Combining all channel coefficients
Hk into a channel vector H leads to an input-output relationship as in 3.18, while
h = DFT −1{H} leads to the relationship 3.15.

Since the goal of this thesis is to estimate a position vector via radio signals, we need to
incorporate range information in the propagtion channel. Given 2D or 3D coordinate
vectors rtx and rrx of the transmitter and receiver respectively, the propagation delay
due to the distance between both amounts to

τr = 
rtx − rrx
2/c0, τr ∈ R≥0, (3.23)
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where c0 corresponds to the propagation speed. As we are dealing with sampled signals,
this delay is further split up into

τ s
r = �τr/Ts�, τ res

r = τr − τ s
r Ts. (3.24)

The residual fractional delay is modelled by applying a phase shift, resulting in h =
FFT −1{H ◦ [1, e−j2πτres

r /NF F T , . . . , e−j2π(NF F T −1)τres
r /NF F T ]T }, while τ s

r is realized by
delaying the received signal by τ s

r samples.

In addition to the propagation channel, we include additive white gaussian noise (AWGN).
This serves to model thermal noise at the receiver. AWGN is parameterized by the mean
noise power σ2

n, hence we obtain the time domain noise vector as

n ∼
�

σ2
n

2 (N (0, I) + jN (0, I))) ∈ CNsym(NF F T +Ncp)×1 (3.25)

and the full time domain signal at the receiver input as

y = (h ∗ x) + n. (3.26)

In the frequency domain the relationship is similar. The noise vector is given by

N l ∼ NF F T

�
σ2

n

2 (N (0, I) + jN (0, I)) ∈ CNF F T ×1 (3.27)

and hence the l-th received OFDM symbol is given as

Y �
l = H ◦ X �

l + N l. (3.28)

Note the scaling of the noise power in the frequency domain due to Parseval’s theorem.

3.1.4 Receiver
The serial input stream at the receiver is given by

y = [y0 . . . yNs−1] = [ycp
0 y�

0 . . . ycp
Nsym−1y�

Nsym−1] ∈ CNsym(NF F T +Ncp)×1, (3.29)
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cyclic prefix removal FFT symbol detector
yl y�

l Y l (Ŝl,i)0≤i<Nsc

Figure 3.6: Receiver

where y is distorted by the channel h and corrupted by the noise n, as explained in the
previous sections. The receiver removes the cyclic prefix, resulting in the vector

y� = [y�
0 . . . y�

Nsym−1] ∈ CNsym(NF F T )×1. (3.30)

In a next step, the receiver parallelizes the input stream by combining NF F T samples
into the l-th OFDM symbol y�

l ∈ CNF F T ×1, which serves as a basis for further processing.
Subsequently, the receiver demodulates the received OFDM symbol by performing an
FFT, yielding the corresponding frequency domain OFDM symbol

Y l = FFT {y�
l} ∈ CNF F T ×1. (3.31)

By combining the received OFDM symbols and truncating the FFT overhead, we obtain
the received resource grid

Y = [Y 0, . . . , Y Nsym−1] ∈ CNsc×Nsym . (3.32)

If the received signal should be subject to further processing, it will be passed to a symbol
detection algorithm. This however is not of relevance to the investigations in this thesis
and hence will not be further elaborated on. Figure 3.6 outlines the reception of the l-th
OFDM symbol.

3.2 Time delay estimation in harsh environments
The goal of this thesis is to investigate the positioning capabilities of 5G-NR cellular
networks, with an emphasis on vehicular applications. Hence it is necessary to study the
radio signal propagation environments arising in different vehicular scenarios. On a coarse
scale, vehicular scenarios can be split into rural and (sub-)urban settings. In the former,
we would expect that LOS links dominate and the amount of reflected paths is limited
- with the notable exception of wooded or mountainous areas. The latter, (sub-)urban
setting, is characterized by many cluttering objects, mainly buildings of varying heights.
In such an urban scenario, we anticipate a large share of NLOS links with a more frequent
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Figure 3.7: Typical multipath propagation with blocked LOS path in an urban setting

delay profile estimator first peak detector
R̂(τ) τ̂ry

Figure 3.8: Two-step time delay estimation procedure

switch between LOS and NLOS links due to the successive appearence of buildings and
empty gaps between them. Furthermore, we expect many reflectors and scatterers in an
urban setting. This type of propagation is visualized in figure 3.7.

Dense multipath propagation channels like this can be modelled by the methods outlined
in section 3.1.3. In this work, we want to focus on scenarios of the latter type, since
traditional positioning techniques based on GNSS typically suffer from performance
degradation in urban situations [WGZ13, KKSM17], as opposed to the rural, open-field-
type scenario. Time delay estimation for NLOS links poses a special challenge - mainly
because the direct path may be heavily attenuated due to blockages. This leads to a
situation where the direct path might not necessarily be the most powerful path or even
might not be detectable at all. In this case, the strategy for estimating the time delay by
detecting the strongest path, which is the maximum likelihood (ML)-optimum estimator
for the AWGN channel [dPRLSSG+12], obviously fails if high ranging accuracy is desired.
Hence, in the following sections we will present and investigate methods for improved
time delay estimation in NLOS multipath channels. We split this task into two sub-tasks,
yielding the two-stage system shown in figure 3.8. At first, a delay profile estimate
R̂(τ) of the channel is required, which can be obtained from the received signal y. An
appropriate estimator would generate peaks close to the arrival times of the multipath
components in such a delay profile. In a second step, a suitable detector is tasked with
locating the first peak in the delay profile, were we assume that it results from the direct
path. The delay of this detected peak amounts to the estimated propagation delay τ̂r.
The delay profile estimation methods studied in this thesis are presented in section 3.3,
while the delay peak detection methods are outlined in 3.4.
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Figure 3.9: Typical time domain correlation delay profile

3.3 Delay profile estimation methods
3.3.1 Time domain correlation
Estimating a delay profile for delay measurement purposes by time domain cross-
correlation can be considered the standard, or textbook approach [KC76, ZB11]. It
serves as the basis for the ML-optimum delay estimator in the AWGN channel. The
delay profile is obtained by correlating the received signal y with the time domain PRS
x emitted by a specific BS, which must be known at the receiver:

R̂T D
τ = |

Nsym−1�
l=0

NF F T −1�
n=0

y∗
l,n+τ xl,n|2, τ = 0, . . . , τmax. (3.33)

A typical delay profile obtained by time domain correlation is shown in figure 3.9.
Advantages of this method are that it can directly operate on the received time domain
signal and the relatively low complexity. Disadvantages are that the resolution of the
method strongly depends on the signal bandwidth and that it is not capable of seperating
closely-spaced multipath components. The residual delay error �(τ) of individual paths
due to the limited resolution can be modelled by the variance of a uniform distribution
over the length of one sample [Men13] and is given by

�(τ) = 1√
12

1
NF F T fsc

. (3.34)

3.3.2 Frequency domain correlation
Another approach for estimating a delay profile is to correlate the received OFDM symbol
Y l and the known reference OFDM symbol X l in the frequency domain [Men13]:
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Figure 3.10: Typical frequency domain correlation delay profile

R̂(τ) = |
Nsc−1�

k=0
e−j2π(k−�(Nsc−1)/2�)Fscτ Y ∗

l,kXl,k|2, τ ∈ [0, τmax]. (3.35)

An example is shown in figure 3.10. Advantages of this method are that it allows for
interpolation in between samples and therefore in theory offers increased delay resolution.
This is reflected by the fact that the delay τ is now a real number in an interval. The
main disadvantages are that the method requires the demodulation of the received signal
and the increased computational complexity due to the interpolation. Furthermore, it is
not able to seperate closely-spaced multipath components.

3.3.3 MUSIC
Recall the CFR given by 3.36. If the roles of time delay τ and frequency f are switched,
we obtain

H(τ) =
Np−1�
l=0

αle
−j2πflτ . (3.36)

We observe that this formula is equivalent to the harmonic signal model, which implies
that spectral estimation algorithms tailored to the harmonic signal model can be em-
ployed for estimating a delay profile from a multipath CFR [LP04]. The multiple signal
classification (MUSIC) algorithm [Sch86] is a well-known superresolution method for
estimating frequencies in a harmonic signal model, often with the goal of obtaining angles
of arrival from signals inbound to an antenna array. Many authors have studied the
applicability of MUSIC to the estimation of delay profiles in multipath radio channels
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[LP04, ZYLS07, GSPL04, DZW+20], with promising results. In this thesis, we closely
follow the ideas presented in [LP04], where the authors proposed MUSIC delay estimation
method that can be applied to 5G-NR.

MUSIC requires an estimate Ĥ of the channel as an input, which can be obtained by
employing the deconvolution method in OFDM systems [ZYLS07]:

Ĥ = Y ◦ 1
X

= H + N ◦ 1
X

= H + W ∈ CNsc×1. (3.37)

Recall the elementwise vector multiplication denoted by the operator ◦. The received
signal is simply divided by the reference signal symbols in the frequency domain, which
leads to an estimate of the channel coefficients at each subcarrier. Note that as a result
of the deconvolution operation, the white gaussian noise N now becomes a colored noise
vector W . The main concept behind MUSIC is that the algebraic space spanned by the
autocorrelation matrix RĤĤ of the estimated channel can be seperated in channel and
noise subspaces H and W by computing the eigendecomposition of RĤĤ :

RĤĤ = E{ĤĤ
H} = RHH + RW W ∈ CNsc×Nsc , (3.38)

RĤĤ = UΛUH = UHΛHUH
H + UWΛWUH

W . (3.39)

E{·} denotes the linear expectation operation, the matrix Λ is a diagonal matrix with
the eigenvalues λi, i = 0, . . . , Nsc − 1 of RĤĤ as the diagonal elements and the matrix
U contains the corresponding eigenvectors ui, 0 < i < Nsc − 1. We further decompose
RHH = V AV H , with

V = [v(τ0), . . . , v(τNp−1)], (3.40)
v(τl) = [1, e−j2πΔfscτl , . . . , e−j2π(Nsc−1)Δfscτl ]T , (3.41)

A = E{aaH}, a = [α0, . . . , αNp−1]T . (3.42)

It can be shown that the matrix rank of V AV H is Np and that the smallest Nsc −
Np eigenvalues correspond to the noise autocorrelation RW W . Hence, by sorting the
eigenvalues of RĤĤ in an descending order, we can seperate the Nsc-dimensional space
containing Ĥ into the orthogonal channel and noise subspaces H and W as the Np

largest eigenvalues and their corresponding eigenvectors span H, while the eigenvectors
corresponding to the remaining Nsc − Np smallest eigenvalues span W. The matrix
projecting into the noise subspace is therefore given by P W = UW(UH

WUW)−1UH
W =

UWUH
W and due to the orthogonality of H and W it holds that P Wv(τl) = 0. The

MUSIC pseudospectrum, which in this context can be interpreted as a delay profile, is
now given by
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Figure 3.11: Typical MUSIC delay profile

R̂MUSIC(τ) = 1
||P Wv(τ)||2 = 1

||UH
Wv(τ)||2 = 1�Nsc−1

i=Np
|uH

i v(τ)|2 , τ ∈ [0, τmax]. (3.43)

The local maxima of this function are located at the estimated multipath delays, as
visualized by the example in figure 3.11.

Two issues arise in the practical implementation of the MUSIC method: First, the
autocorrelation matrix RĤĤ = E{ĤĤ

H} cannot be computed exactly and hence must
be estimated from a finite dataset. Second, the parameter Np is unknown and must
be estimated as well. The autocorrelation matrix RĤĤ can be estimated from a single
channel measurement Ĥ in the following way:

R̂ĤĤ = 1
M

M−1�
k=0

ĤkĤ
H
k , Ĥk = [Ĥk, . . . , Ĥk+L−1]T , M = Nsc − L + 1. (3.44)

Different values for L have been studied in the literature, in this thesis we set L = 2Nsc
3 .

The estimate of the autocorrelation matrix can be further refined by applying forward-
backward smoothing

R̂
F B
ĤĤ = 1

2(R̂ĤĤ + JR̂ĤĤJ) ∈ CL×L, (3.45)

where the exchange matrix J ∈ NL×L is zero except for the antidiagonal, which is filled
with ones. The number of multipath components Np present in a radio channel realization

28



3.4. Delay peak detection methods

can be estimated by employing the minimum descriptive length (MDL) criterion [VT04].
First, a cost function

C(Θ) = M(L − Θ) ln

 1
L−Θ

�L
i=Θ+1 λi−1��L

i=Θ+1 λi−1
� 1

L−Θ

 (3.46)

is computed, then the estimated number of multipath components is obtained by

N̂p = arg min
Θ

�
C(Θ) + 1

2(Θ(2L − Θ) + 1) ln M

�
, Θ = 1, . . . , L. (3.47)

There are many further possibilities for refining delay profile estimation with the MUSIC
technique, which are however not in the scope of this thesis.

Advantages of this method include the ability to seperate closely-spaced multipath
components, the superresolution of the delay profile and an increased robustness against
noise due to the seperation of the signal and noise subspaces. Disadvantages include
the required demodulation of the received signal and the high computational complexity
resulting from the costly eigendecomposition of the autocorrelation matrix and the
interpolation of the pseudospectrum. The required a-priori information about the number
of multipath components Np can be considered as an additional drawback.

3.4 Delay peak detection methods

3.4.1 Maximum peak detector
In the AWGN channel, the ML-optimum strategy for estimating the propagation delay
τ̂r of a reference signal is simply to find the delay of the single time domain correlation
peak [dPRLSSG+12]. We extend this method to obtain the estimated delay from an
arbitrary delay profile R̂(τ):

τ̂MP
r = arg max

τ
R̂(τ). (3.48)

As elaborated in section 3.2 and visualized in figure 3.12, this method is not well-suited
for the task of finding the peak due to the direct path in NLOS multipath channels,
therefore it is mainly used as a baseline for comparison with the more sophisticated
method presented below.
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Figure 3.12: Delay estimation in an NLOS channel with the maximum peak detector

3.4.2 Adaptive threshold detector
One approach for detecting the first peak of a delay profile is to define a threshold that
adapts to the level of the noise floor present in a certain radio link. For this method,
we closely follow the ideas from [XHZD16]. In a first step, a signal arrival region needs
to be determined such that the data outside of this region can be used for estimating
the level of the noise floor. For this purpose, a moving sum over the delay profile with a
window size matched to the length of the cyclic prefix Ncp is computed:

R̂win,τ =
τ+Ncp−1�

t=τ

R̂τ , τ = 0, . . . , τmax − Ncp − 1. (3.49)

For the superresolution delay profiles, the size of the window must be adapted to account
for the interpolation steps. The signal is assumed to having arrived in the interval

τstart ≤ τ ≤ τstart + Ncp − 1 s.t. τstart = arg max
τ

R̂win,τ , (3.50)

where the moving sum achieves the maximum value. In a next step, the level of the noise
floor nf is determined by averaging the delay profile values outside of the determined
signal arrival region. This serves to avoid a possible bias of the noise floor introduced by
delay profile peaks. Furthermore, the value of the maximum delay profile peak

R̂max = max
τstart≤τ≤τstart+Ncp−1

R̂τ (3.51)
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Figure 3.13: Delay estimation in an NLOS channel with the adaptive threshold detector

is determined within the signal arrival region. In a final step, it is now possible to define
a threshold based on these parameters:

Θ(nf , R̂max) = α(βR̂max + (1 − β)nf ), β ∈ [0, 1]. (3.52)

In this thesis we set α = 1, β = 0.03, which were found to be values yielding robust
and consistent results for multiple channel models. The incorporation of the maximum
peak value serves the purpose of raising the threshold in high signal-to-noise ratio (SNR)
situations, in order to avoid detecting correlation side lobe peaks. The propagation delay
of the first detected path can now be estimated as

τ̂AT
r = min

τstart≤τ≤τstart+Ncp−1
τ << s.t. R̂τ ≥ Θ(nf , R̂max). (3.53)

Figure 3.13 visualizes the behavior of this detection method.

For the superresolution algorithms, we have to impose the additional constraint that the
first detected path must be at a local maximum of the delay profile.

Advantages of the method are the ability to detect the first peak in a delay profile, while
still keeping the computational cost relatively low. The main disadvantage is the necessity
for parameter tuning in the threshold definition, which proves to be a challenging task if
overfitting to a specific channel model should be avoided.
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3. Time delay measurement with 5G reference signals

3.5 Simulations
3.5.1 Channel models
In all simulations done for this thesis, we make use of the stochastic tapped delay line
(TDL) channel models specified by the 3GPP standard [rGPPG18]. The channel models
are defined by taps at normalized time delays τ norm and their corresponding average tap
powers ρ. The NLOS channel taps follow a Rayleigh distribution, while LOS channel
taps are Rice-distributed. The Rician first tap has the K-factor K = 10 log10

A2

ρ0
as

an additional parameter, where A2 refers to the mean power of the direct path. The
normalized tap delays must be scaled to the desired delay spread DS, which yields the tap
delays τ = DSτ norm. Realizations of the channel models can be obtained by sampling
from a complex gaussian distribution [FE08]. In the NLOS case, the tap coefficients α
are generated as follows:

α ∼
�

ρ

2 (N (0, I) + jN (0, I)). (3.54)

N (µ, σ2) signifies the normal distribution with mean and variance parameters. In case of
LOS channel models, the first tap coefficient follows a different distribution:

α0 ∼ A +
�

ρ0
2 (N (0, 1) + jN (0, 1)). (3.55)

The tap coefficients are normalized such that the channel has unit power and the final
values τ and α are then inserted into the model 3.22 to obtain a discrete-time CFR. The
standard specifies the three NLOS channel models TDL-A, TDL-B and TDL-C, with their
average-power-delay-profiles shown in figure 3.14. Further, the two LOS channel models
TDL-D and TDL-E are specified in the standard, with their average-power-delay-profiles
shown in figure 3.14. Note that for the purpose of visualization, the NLOS channel
models have been truncated and hence not all taps are shown in the figures. For the
simulations, it is assumed that the channel remains constant for the time period of one
slot.

3.5.2 Setup
In order to evaluate the ranging accuracy of the algorithms introduced in the sections
above, we consider a simple scenario with one receiver and one transmitter. The
PRS is passed through channel filters generated from the standard-compliant channel
models shown in section 3.5.1 and a random propagation delay sampled from a uniform
distribution. Furthermore, we include AWGN and set the noise power such that the SNR
values required for the SNR sweep are achieved, according to the definition SNR = Px/σ2

n
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Figure 3.14: 3GPP channel models

33



3. Time delay measurement with 5G reference signals

Name Value
Monte Carlo repetitions Nmc = 400
Transmit bandwidth B ∈ {20, 50, 100} MHz
Number of subcarriers Nsc ∈ {612, 1596, 3276}
FFT size NF F T ∈ {1024, 2048, 4096}
Cyclic prefix length Ncp ∈ {72, 144, 288}
Subcarrier spacing Δfsc = 30 kHz
Numerology µ = 1
PRS symbols per slot LP RS = 12
PRS comb size KP RS

comb = 2
Channel model TDL-A - TDL-E
Delay spread DS ∈ {65, 129, 634} ns
SNR SNR ∈ [−30, 20] dB

Table 3.1: Simulation parameters

with Px = 1
N

�N−1
n=0 |xn|2. Note that the channel filter can be neglected in this definition

due to it being normalized to unit power. Since the time delay estimation algorithms are
to be used in a positioning application, we consider the range root mean squared error
(RMSE) as performance metric in the simulations. It is defined as

RMSEr = c0RMSEτr = c0
�

E{(τr − τ̂r)2}, (3.56)

where the expectation operation is approximated by computing the sample means of Nmc

Monte Carlo simulation repetitions with different channel, range and noise realizations.
Range and delay RMSE are related via the signal propagation speed constant c0. For
evaluating the performance in different scenarios, the simulations are conducted with
all TDL channel models listed in section 3.5.1, with different delay spread DS for the
channel models and with different bandwidths B. Recall that the bandwidth is configured
by the number of subcarriers Nsc, which in turn affects the FFT size NF F T and the
cylic prefix length Ncp. Furthermore, for each simulation repetition one slot with 14
OFDM symbols is transmitted. The delay spread values are suggested by the Urban
Microcell (UMi) scenario defined in the standard [rGPPG18]. MATLAB was used for
implementing the algorithms and the simulation environment, where features of the 5G
toolbox [MATa] were used for standard-compliant signal transmission. The full list of
simulation parameters can be found in table 3.1. Note that for symplicity purposes we
assume perfect synchronization between receiver and transmitter - this assumption will
however be dropped in the next chapters when performing TDOA position estimation.
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Figure 3.15: Ranging performance comparison for different delay profiles in the AWGN
channel, B = 100 MHz, DS = 129 ns

3.5.3 Results
First, we investigate how the algorithms behave in the AWGN channel. The simulation
results for this setting are visualized in figure 3.15. It immediately becomes clear that the
combination of the time domain correlation delay profile and maximum peak detector
yields the best result with the most accurate estimates, as it represents the ML-optimum
estimator in the AWGN channel. Notice also, how the ranging error saturates at the
residual error due to the bandwitch, as given by equation 3.34. Frequency domain
correlation and MUSIC delay profiles perform slightly worse than that when combined
with the maximum peak detector, as they are not ML-optimum. Employing the adaptive
threshold first peak detector shows decreased ranging accuracy as compared to the
maximum peak detector for all three types of delay profiles. This is due to the fact that in
high SNR cases the threshold will be so low that correlation side lobes of the delay peak
are wrongly detected as first paths. The situation is even more extreme when looking at
the MUSIC curve, where the ranging error curve at first approaches the residual error,
but then even rises again for higher SNR due to the threshold dropping to low.

Looking at the simulation results for the NLOS channels depicted in figure 3.16 im-
meadiately reveals the superiority of the adaptive threshold first peak detector over the
maximum peak detector in these situations. While the maximum peak detector yields
similar ranging results for all three NLOS channel models (we only show the results for
TDL-C since the results for TDL-A and TDL-B were similar), the adaptive threshold
detector increases the ranging accuracy by almost one order of magnitude - of course
depending on the delay profile estimation method and the channel model. In terms of
delay profiles, we observe that with the MUSIC algorithm the ranging error already
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Figure 3.16: Ranging performance comparison for different delay profiles in NLOS
channels, B = 100 MHz, DS = 129 ns
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Figure 3.17: Ranging performance comparison for different delay profiles in LOS channels,
B = 100 MHz, DS = 129 ns

starts to drop for lower SNR as compared to the other delay profiles, with the frequency
domain correlation method being most sensitive to noise. We explain this behavior with
the ability of the MUSIC algorithm to separate multipath components even in lower
SNR ranges. In two out of three channel models, MUSIC yields the lowest ranging
error, however with only a small performance gap to the other methods. Furthermore, it
becomes again visible that the chosen threshold highly affects the performance of the
adaptive threshold detector also in NLOS channels, since the ranging error might even
rise again in low SNR regimes if the first multipath component is the strongest.

The simulation results for the LOS channels are visualized in figure 3.17. We observe a
similar trend of the ranging error as compared to the results for the AWGN channel, with
the combination of time domain correlation delay profile and maximum peak detector
yielding the highest accuracy. Again, the adaptive threshold detector performs worse
since it missdetects correlation side lobes as the main delay peak.

The curves in figure 3.18 visualize the effect of a varying transmission bandwidth B on
the ranging accuracy. Note that increasing the bandwidth also increases the received
noise power, hence when the bandwidth is doubled, the curves in figure 3.18 are moved
to the right by 3 dB. Furthermore, we only show results for the time domain correlation
delay profile, since the behavior is similar for the other delay profiles considered in
the thesis. The simulations confirm that an increased bandwidth improves the ranging
accuracy for the bandwith values investigated in our experiments, due to higher time
delay resolution. This is true for the adaptive threshold detector in both LOS (TDL-C)
and NLOS (TDL-D) channels (behavior similar for channels not depicted in plots), while
the maximum peak detector only profits from increased bandwith in the LOS case. In
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Figure 3.18: Ranging performance comparison with varying transmission bandwidth B
(delay profile: time domain correlation), DS = 129 ns
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Figure 3.19: Ranging performance comparison with varying delay spread DS (delay
profile: time domain correlation, delay peak detector: maximum peak), B = 100 MHz

NLOS situations, the maximum peak detector of course fails to identify the direct path,
hence the ranging error approximately saturates at the same value for all the simulated
bandwidth values.

Finally, we simulate the effect of channel delay spread DS on the ranging accuracy. Note
that we only show results for the time domain correlation delay profile, since the behavior
is similar for the other delay profiles considered in the thesis. Figure 3.19 shows how the
ranging error yielded by the maximum peak detector is affected by varying the delay
spread. In the NLOS (TDL-C) channel, ranging accuracy decreases with increasing delay
spread. This is because in channels with a long delay spread the delay peak resulting
from the shortest path might be farther away from the detected strongest peak - as
opposed to channels with short delay spread. That behavior also explains why varying
the delay spread in the value range simulated in this thesis does not have a significant
effect on the ranging performance of the maximum peak detector in the LOS (TDL-D)
channel. Figure 3.20 shows the delay spread variation simulation results for the adaptive
threshold detector. We can observe that also for the adaptive threshold detector, a shorter
delay spread can have a favorable effect on ranging accuracy in some NLOS channels
(TDL-A/C). This is due to the fact that if the weak first peak cannot be detected, the
time delay estimation error will be lower due to the shorter interval between peaks as
compared to longer delay spread values. In other NLOS channels (TDL-B), where the
delay peak resulting from the shortest is close to the strongest peak, or in LOS channels
(TDL-D), delay spread variation in the value range simulated in this thesis does not have
a significant effect on the ranging accuracy.
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Figure 3.20: Ranging performance comparison with varying delay spread DS (delay
profile: time domain correlation, delay peak detector: adaptive threshold), DS = 129 ns
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CHAPTER 4
Position estimation with TDOA

information

In chapter 2, an overview over various approaches suitable for positioning in cellular
networks was given. Chapter 3 presented the challenges imposed by time delay estimation
in urban vehicular scenarios and introduced methods for tackeling the problem. In the
following chapter, we investigate how downlink propagation time information can be used
to estimate the position of a vehicle, also referred to as multilateration. More concretely,
we focus on TDOA positioning, which only requires timing synchronization between the
BSs, as opposed to TOA positioning, which additionally requires timing synchronization
between all BSs and the UE at the vehicle [ZB11]. This is desirable, since synchronization
between BSs is also required by other features of the cellular network and thus already
specified for 5G-NR by the 3GPP standard [rGPPG20a]. Furthermore, note that TDOA
is supported by the standard, while TOA-based positioning is not [rGPPG22]. The key
components of such a positioning system based on time delay measurements obtained
from multiple received reference signals yi, i = 0, . . . , NBS − 1 are visualized in figure 4.1.

The chapter is structured as follows: Section 4.1 introduces the system model for the
hyperbolic positioning problem with TDOA information and section 4.2 presents solution
methods to the hyperbolic problem in order to estimate the UE position. Finally,
section 4.3 introduces the simulation setup and standard-compliant path loss models for

time delay estimator position estimator...
τ̂ r̂UE

y0

yNBS−1

Figure 4.1: Positioning procedure based on time delay estimates in a cellular network
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evaluating the performance of the positioning methods and summarizes the simulation
results.

4.1 System model
To begin with, consider a cellular network composed of NBS transmitting BSs, with their
known 3D position coordinates

rBS,i = [xBS,i, yBS,i, zBS,i]T , i = 0, . . . , NBS − 1 (4.1)

and a receiving UE with the unknown 3D position rUE = [xUE , yUE , zUE ]T . Note that
all following derivations are also valid for the 2D positioning case - for that purpose the
z coordinate has to be omitted. The ranges between BSs and UE are given by

d = [d0, . . . , dNBS−1]T ∈ RNBS×1
≥0 , with di = ||rBS,i − rUE ||2 (4.2)

=
�

||rBS,i||22 − 2rT
BS,irUE + ||rUE ||22 (4.3)

=
�

(xBS,i − xUE)2 + (yBS,i − yUE)2 + (zBS,i − zUE)2. (4.4)

Furthermore, as a result of employing methods from chapter 3, unsynchronized estimates
of the propagation time delay between the UE and every BS are assumed to be available:

τ̂ = [τ̂0, . . . , τ̂NBS−1]T ∈ RNBS×1
≥0 . (4.5)

The true delay values τ are related to the ranges by c0τ = d, where c0 is the propagation
speed. The i-th delay estimate can be modelled as τ̂i = τi + �i + bclock, where �i is the
estimation error and bclock is a clock bias due to the non-present time synchronization
between BSs and UE. Furthermore, the estimation error might include a significant bias
resulting from NLOS propagation. Taking the difference of two delay estimates from
different BSs

τ̂i − τ̂j = τi + �i + bclock − τj − �j − bclock = (τi + �i) − (τj + �j), i �= j (4.6)

eliminates the clock bias. Hence, by designating one BS as a reference point, the need
for timing synchronization between BSs and UE vanishes. Without loss of generality,
it is assumed that rBS

0 is the position of the reference BS. In a next step, the NBS − 1
TDOA values are computed from the time delay estimates

42



4.1. System model

Figure 4.2: Hyperbolic positioning with perfect range information, NBS = 3

τ̂ Δ = [τ̂1 − τ̂0, . . . , τ̂NBS−1 − τ̂0]T ∈ R(NBS−1)×1
≥0 , (4.7)

with their corresponding range differences

dΔ = [d1 − d0, . . . , dNBS−1 − d0]T ∈ R(NBS−1)×1. (4.8)

One major tradeoff of the TDOA positioning method becomes visible immediately: the
delay measurement of the reference BS must be sacrificed for synchronization purposes
and is thus not available to the subsequent positioning algorithm. As a consequence, the
TDOA positioning method requires NBS ≥ dim+1, where dim refers to the dimensionality
of the coordinate system. The TOA positioning method on the other hand only requires
NBS ≥ dim. Combining the TDOA values and range differences, a set of NBS − 1
non-linear equations is introduced:

d̂Δ = dΔ, where d̂Δ = c0τ̂ Δ. (4.9)
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Figure 4.3: Hyperbolic positioning with range uncertainty, NBS = 3

From a geometric point of view, each of the equations in 4.9 describes a hyperbola,
hence the TDOA positioning method is often referred to as hyperbolic positioning. The
position of the UE is located at the intersection of these hyperbolas, as shown in figure
4.2. In practice, the equations in 4.9 only hold approximately and the hyperbolas do not
exactly intersect in a single point due to the erroneous estimates τ̂ Δ of τ Δ, as depicted
in figure 4.3. This leads to an approximate estimate r̂UE of the unknown UE position
rUE . Additional estimation errors are introduced due to linearization or non-linear
optimization of the equations in 4.9. In the following section, methods for obtaining a
solution for the hyperbolic equations are presented.

4.2 Hyperbolic positioning methods

4.2.1 Friedlander’s method
In this section we present the hyperbolic positioning method discovered by Friedlander
[Fri87]. First, we rearrange and square the equations 4.9 to form d2

i = (d̂Δ,i + d0)2,
i = 1, . . . , NBS − 1. The squared ranges from equation 4.2 can now be written as

d̂2
Δ,i + 2d̂Δ,id0 + d2

0 = ||rBS,i||22 − 2rT
BS,irUE + ||rUE ||22 (4.10)
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and if the squared range of the reference BS d2
0, obtained by setting i = 0 in 4.2, is

substracted from the result above, we end up with

d̂2
Δ,i + 2d̂Δ,id0 = ||rBS,i||22 − 2(rBS,i − rBS,0)T rUE − ||rBS,0||22. (4.11)

Writing this result in matrix-vector notation

SrUE = u − d0d̂Δ (4.12)

with

S =


rT

BS,1 − rT
BS,0

...
rT

BS,NBS−1 − rT
BS,0

 ∈ R(NBS−1)×dim (4.13)

and

u = 1
2


||rBS,1||22 − ||rBS,0||22 − d̂2

Δ,1
...

||rBS,NBS−1||22 − ||rBS,0||22 − d̂2
Δ,NBS−1

 ∈ R(NBS−1)×1, (4.14)

immediately shows that this form is now linear in the unknown rUE , with the unknown
nuisance parameter d0 present. The trick in [Fri87] is to remove this nuisance parameter
by premultiplying the matrix-vector equation with a matrix M = (I(NBS−1)×(NBS−1) −
Z)D−1, which is constructed such that Md̂Δ = 0(NBS−1)×1, hence d̂Δ is in its null-space
of M . The matrix M is constructed with D = diag{d̂Δ} and the circular shift matrix

Z =


0 1 0 . . . 0
0 0 1 . . . 0

. . . . . . . . .
0 0 0 . . . 1
1 0 0 . . . 0

 ∈ R(NBS−1)×(NBS−1) (4.15)

Multiplying equation 4.2.1 by M yields
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MSrUE = Mu. (4.16)

This equation can now be solved by forming the Moore-Penrose pseudoinverse of MS
and the estimated UE position is obtained as the linear least squares (LS) solution of
equation 4.16 given by

r̂UE = (ST MT MS)−1ST MT Mu. (4.17)

Note that NBS > dim + 1 is required in order for MS to be non-singular.

Advandtages of this method include that it can potentially use an unlimited number
of TDOA measurements, that it does not require a-priori information and that it is
relatively simple to implement and compute. The major disadvantage and source of
error is that the noisy time delay measurements are not weighted according to their
estimation confidence and hence are treated as equally accurate, altough the method can
be extended to incorporate this information. Another drawback of the method is that it
simply eliminates the nuisance parameter d0 rather than estimating it as well.

4.2.2 Chan’s method
In this section, the solution method proposed by Chan et al. [CH94a, CH94b] is investi-
gated. Without loss of generality, for the following derivations it is assumed that the
reference BS with coordinates rBS

0 is placed at the origin, which can be achieved in a
straight-forward manner by shifting the reference coordinate system. Setting rBS

0 = 0
simplifies equation 4.10 to

d̂2
Δ,i + 2d̂Δ,id0 = ||rBS,i||22 − 2rT

BS,irUE . (4.18)

The method aims to solve this problem in a two-step procedure. First, assume rUE and
the nuisance parameter d0 to be independent and combine them to the parameter vector
u1 = [rT

UE , d0]T ∈ R(dim+1)×1. Rearranging equation 4.18 and writing it in matrix-vector
notation yields

h1 = G1u1 (4.19)

with
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h1 =


d̂2

Δ,1 − ||rBS,1||22
...

d̂2
Δ,NBS−1 − ||rBS,NBS−1||22

 ∈ R(NBS−1)×1 (4.20)

and

G1 = −2


rT

BS,1 d̂Δ,1
...

...
rT

BS,NBS−1 d̂Δ,NBS−1

 ∈ R(NBS−1)×(dim+1). (4.21)

The ML estimator of u1 is given by weighted LS solution of equation 4.26

û1 = (GT
1 W 1G1)−1GT

1 W 1h1 (4.22)

with the weighting matrix

W 1 = 1
4c2

0
B−1

1 Cτ Δ
−1B−1

1 , B1 = diag{[d1, . . . , dNBS−1]T }. (4.23)

The matrix Cτ Δ ∈ R(NBS−1)×(NBS−1) expresses the reliability of the measurements
contained in τ̂ Δ. Following an idea from [Men13], this covariance matrix is constructed
as

Cτ Δ = Ddiag{[σ2
τ,0, . . . , σ2

τ,NBS−1]T }DT , (4.24)

with D = [−1(NBS−1)×1, I(NBS−1)×(NBS−1)] ∈ R(NBS−1)×(NBS) and where σ2
τ,i, i =

0, . . . , NBS − 1 are the variances of the unsynchronized time delay estimates for all
BS-UE links in the network. In this thesis, we approximate these values by the receiver
SNR of the links, i.e. σ2

τ,i ≈ 1/SNRi, i = 0, . . . , NBS − 1. This is justified because the
simulation results from the previous chapter showed that a high SNR is necessary in
order to obtain accurate time delay measurements. Note that the values from d used
to construct B1 are of course unknown, hence it is necessary to first approximate the
estimated parameter vector û1 by

û1 ≈ (GT
1 Cτ Δ

−1G1)−1GT
1 Cτ Δ

−1h1. (4.25)
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This result can be used to approximate B1 in order to compute equation 4.22. Note that
the result is now only an approximation of the ML estimator. Repeated computation
of equation 4.22 with refined approximations of û1 can improve the overall estimation
accuracy. In a second step, it is necessary to account for the actual dependence between
rUE and d0 and hence to eliminate d0 from the result. A second equation set

h2 = G2u2. (4.26)

is obtained by squaring the elements of û1, with h2 = [û2
1,0, . . . , û2

1,dim−1]T , u2 =
[r2

UE,0, . . . , r2
UE,dim−1] and

G2 =
�
Idim×dim

1T
dim×1

	
∈ R(dim+1)×dim. (4.27)

The solution to this equation is obtained by the second approximated ML estimator

û2 ≈ (GT
2 W 2G2)−1GT

2 W 2h2. (4.28)

The second weighting matrix is given by

W 2 = 1
4B−1

2 GT
1 W 1G1B−1

2 , B1 = diag{[u1,0, . . . , u1,dim−1]}. (4.29)

To obtain the desired estimate of the UE position, we compute

r̂UE = diag{[sgn(û2,0), . . . , sgn(û2,dim−1])}
�

û2, (4.30)

where the signs of the elements in û2 are preserved to resolve the ambiguity due to the
square root. Note that the r̂UE has to be transformed back to the original coordinate
system if the reference BS was moved to the origin in the beginnig of the algorithm.

Advantages of the method include that it is an approximation of the ML estimator, the
weighting of the TDOA measurements according to their reliability and the fact that
the nuisance parameter d0 is estimated as well rather than simply being eliminated.
Furthermore, this method is able to potentially process an unlimited number of TDOA
estimates. Disadvantages are the more involved computation due to the multi-step
weighted LS procedure and the required a-priori information.
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4.3 Simulations
4.3.1 Path loss model
In order to evaluate the positioning methods, it is necessary to incorporate the effect
of the physical distance between BS and UE on the radio signal propagation into the
simluation setup. This is done by employing a so-called path loss model. The most basic
path loss model is known as the Friis equation or free space model [PP00] and describes
the ratio PLfs between the received signal power Prx and the transmit power Ptx in an
area free of obstruction:

PLfs = Prx

Ptx
= GtxGrx

�
c0

4πfcd

�2
. (4.31)

The values Gtx and Grx refer to the transmitter and receiver gain respectively, while fc

denotes the carrier frequency of the modulated pass-band signal, d denotes the distance
between transmitter and receiver and c0 is the propagation speed. This equation reveals
a fundamental property of radio wave propagation, which states that the received power
decreases with the square of the distance. The free space model can also be written in
the convenient logarithmic form

PLfs|dB = Ptx|dBm − Prx|dB = Gtx|dB + Grx|dB + 20 log10

�
c0

4πfcd

�
(4.32)

in order to compute the path loss in decibels.

For the simulations in this thesis, we use more sophisticated path loss models specified
by the UMi and Urban Macrocell (UMa) scenarios from the 3GPP standard [rGPPG18].
These models are taylored to propagation conditions in urban settings and are able to
generate a different path loss for LOS and NLOS links.

4.3.2 Setup
The simulation setup used in this section builds on top of the simulation framework from
chapter 3. In order to perform positioning, we introduce a cellular network geometry
in the form of BS and UE positions, which can be used in conjunction with a path loss
model as described above. The layout of the BSs in the setup is given by a hexagonal
grid, which is common for simulating cellular networks and used by many authors, e.g. in
[dPRLSSG+12, DZW+20]. The AWGN is now modelled as thermal noise at the receiver
[MATb], with average noise power

σ2
n = kB ∗ Ts ∗ (Trx + 290 · (10

NF
10 − 1)). (4.33)
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Figure 4.4: UMi scenario network layout
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Figure 4.5: UMa scenario network layout

Name Value
Pathloss model 3GPP UMi
Delay spread DS = 129 ns
Number of BSs NBS = 7
Transmit power Ptx = 24 dBm
Inter-station distance 200 m
BS height zBS = 10 m
UE height zUE = 1.5 m

Table 4.1: UMi scenario parameters

Name Value
Pathloss model 3GPP UMa
Delay spread DS = 363 ns
Number of BSs NBS = 7
Transmit power Ptx = 24 dBm
Inter-station distance 500 m
BS height zBS = 25 m
UE height zUE = 1.5 m

Table 4.2: UMa scenario parameters

The value kB refers to the Boltzmann constant1, Ts is the sampling rate of the OFDM
transmission system, Trx refers to the receiver temperature and NF represents the
receiver noise figure. The reference signal is transmitted with a certain transmit power
Ptx. The received signal is now given by

y = 1√
PL

(h ∗ x) + n, (4.34)

where PL refers to the pathloss value obtained from the selected path loss model.
Note that in this setup all BSs transmit only reference signals. Furthermore, inter-cell
interference free transmission is assumed, which can be achieved by an appropriate PRS
configuration as described in section 3.1.2. In a real system we would of course expect
some form of interference, e.g. due to the simultaneous transmission of data and PRS on
interfering BSs. Investigating the effect of such interference on the positioning accuracy
is however not in the scope of this thesis. For LOS and NLOS links a respective TDL

1kB = 1.380649 · 10−23 J
K
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Name Value
Monte Carlo repetitions Nmc = 1000
Transmit bandwidth B = 100 MHz
Number of subcarriers Nsc = 3276
FFT size NF F T = 4096
Sampling rate Ts = 128 MHz
Cyclic prefix length Ncp = 288
Subcarrier spacing Δfsc = 30 kHz
Numerology µ = 1
PRS symbols per slot LP RS = 12
PRS comb size KP RS

comb = 2
LOS channel model TDL-D
NLOS channel model TDL-C
Carrier frequency 3 GHz
Transmit power Ptx = 24 dBm
Receiver noise figure NF = 9 dB
Receiver temperature Trx = 290 K

Table 4.3: Common simulation parameters

channel model is selected from the standard [rGPPG18] and applied as explained in
section 3.5.1. As for the propagation delay estimation method for this simulation setup,
we employ the delay profile computation based on time domain correlation in combination
with the adaptive threshold detector, as introduced in sections 3.3.1 and 3.4.2. In order
to asses the quality of the positioning methods in scenarios with many NLOS links, we
conduct simulations for a steadily increasing number of NLOS links, starting of with
only LOS links and ending with a situation where the UE is in NLOS for all BSs. This
results in NBS different simulation configurations, where the distribution of the Euclidean
position error

Epos = ||rUE − r̂UE ||2 (4.35)

in each configuration is approximated by sampling from random UE positions uniformly
distributed over the region of interest in Nmc Monte Carlo repetitions. We consider two
different simulation scenarios, which are the already introduced UMi and UMa scenarios
specified by the standard [rGPPG18]. Their respective network layouts are shown in
figures 4.4 and 4.5 and their distinct simulation parameters are listed in tables 4.1 and
4.2. Table 4.3 summarizes all common parameters relevant for the setup in this chapter.
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Figure 4.6: UMi scenario, dim = 2

4.3.3 Results
Looking at the simulation results for the two-dimensional positioning problem in the UMi
scenario in figure 4.6, reveals the significant performance difference between Friedlander’s
and Chan’s method. While the positioning accuracy of both methods is similar in
case all links are in LOS (i.e. 0/7 NLOS links), Chan’s method is clearly superior in
situations where links switch from LOS to NLOS. This confirms that weighting the TDOA
measurements in accordance with their reliability and estimating nuisance parameters
rather than discarding them can bring a performance improvement. Note however, that
Chan’s method still suffers under NLOS propagation and the performance also degrades
if most links are in NLOS. Figure 4.7 indicates that mostly UE positions outside the
fundamental hexagon are affected by this performance degradation, the reason being that
the increased path loss due to higher distances decreases the probability that the direct
path in NLOS will be detected in the noise. The simulation results for the UMa scenario
show a similar, even more articulate performance difference between Friedlander’s and
Chan’s method for NLOS TDOA positioning, as can be seen in figure 4.8. Compared
to the UMa scenario, the positioning accuracy of both methods in the UMa scenario
degrades stronger in case of multiple NLOS links, which is, as elaborated before, due to
increased distances in the scenario.

The simulation results for the three-dimensional positioning problem reveal a similar
distribution, but overall strongly degraded positioning accuracy as compared to the
two-dimensional case. This can verified in figure 4.9 for the UMi scenario and in figure
4.10 for the UMa scenario. The reason for this accuracy gap between dim = 2 and
dim = 3 is mainly due to the reduced redundancy in the dim = 3. For three-dimensional
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Figure 4.7: UMi scenario, spatial distribution of the 2D position error, dim = 2
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Figure 4.8: UMa scenario, dim = 2

hyperbolic positioning, already NBS = 5 BSs are required just to obtain a unique solution,
as compared to NBS = 4 in the two-dimensional problem. Hence, in this hexagonal grid
scenario with a total of 7 BSs, less redundant range measurements remain in order to
make up for unreliable values - confirming that three-dimensional TDOA positioning is
less accurate than two-dimensional positioning for the same number of transmitting BS.
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Figure 4.9: UMi scenario, dim = 3
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Figure 4.10: UMa scenario, dim = 3

55





CHAPTER 5
Vehicular positioning in an urban

scenario

Chapter 3 introduced methods for time delay estimation in NLOS multipath environments
and chapter 4 showed how the positioning problem can be solved in cellular networks,
especially with unreliable TDOA measurements in mind. The goal of this chapter is
to make use of the methods presented in the previous chapters and to apply them to
vehicular positioning in a scenario based on the geometry of a real-world location.

This chapter is structured as follows: Section 5.1 introduces the vehicular positioning
scenario and section 5.2 summarizes the simulation result and presents an in-depth
interpretation of the results.
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5. Vehicular positioning in an urban scenario

Figure 5.1: Mauerbach scenario layout, red dots signify the 10 BS positions, blue signifies
the vehicle’s trajectory

5.1 Scenario

For the simulations in this chapter, we select an Austrian town named Mauerbach [MAU]
as a basis for the scenario. It is located in the federal state of Lower Austria on the
border to Vienna and features a suburban-type settlement placed along a curvy main
road. This location was chosen because it features frequent switches between LOS and
NLOS for the radio links, which leads to the cellular positioning challenges addressed in
the previous chapters. The curvy trajectory leads to further NLOS links and makes it an
interesting scenario for sensor fusion, e.g. with radar [AEBM20]. We incorporate some
functionalities from the Vienna 5G System Level Simulator [MAD+18] in our simulation
framework, which allow us to fetch and use open source street and building geometry data
from OpenStreetMap [OSM]. The data obtained by this method is visualized in figure
5.1. Furthermore, the Vienna 5G System Level Simulator provides the ability to compute
for any given radio link from any given position if it is LOS or NLOS, hence blocked by
a building. This is done by making use of the actual geometry data downloaded from
OpenStreetMap. In this scenario, we assume that the cellular receiver is attached to
a vehicle in a height of zUE = 1.5 m, which is moving at a constant speed of v = 50
km/h along the town’s main road. The reference positions of the vehicle are obtained
by sampling this trajectory at a rate of 10 Hz, as visualized in figure 5.1. Note that the
start of the trajectory is close to the right corner of figure 5.1. In the basic simulation
scenario we place a total of 10 BSs in the region of interest, with the biggest share being
placed along the main road with an inter-station distance of at least 200 m. Variations of
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Name Value
Channel realizations per position Nmc = 100
Pathloss model 3GPP UMi
Delay spread DS = 129 ns
Number of BSs NBS ∈ {6, 10, 30}
Transmit power Ptx = 24 dBm
BS height zBS ∈ [30, 100] m
UE height zUE = 1.5 m
Vehicle speed v = 50 km/h
Positioning rate 10 Hz

Table 5.1: Mauerbach scenario parameters

this scenario decrease the amount of BS to a total of NBS = 6 or increase the BS density
to NBS = 30.

5.2 Simulations

5.2.1 Setup

The simulation framework used in this chapter is similar to the setup introduced in the
previous chapter, with some minor tweaks. The common simulation parameters are the
same as in table 4.3, while the scenario-specific parameters are listed in table 5.1. Note
that the increased BS heights are a result of the location’s terrain, as it is located in
a valley. For the same reasons as stated in the previous chapter, we employ the time
domain correlation method for estimating the propagation delay. In terms of delay peak
detection methods, we employ the adaptive threshold detector since we expect many
NLOS links. Additionally, we compare it with the maximum peak detector to evaluate
what can be gained in this scenario by employing a more advanced method. Furthermore,
we introduce a combined detection method, which assumes that perfect knowledge of
the LOS condition of all links at the receiver is supplied by an oracle. Hence we refer to
this method as oracle detector. Since we know from the results in section 3.5 that the
maximum peak detector performs best for LOS links and the adaptive threshold detector
performs best for NLOS links, we switch the delay peak detection method based on the
given LOS condition. In order to estimate the UE position we employ Chan’s method,
as the simulation results from section 4.3 showed the method’s superior performance in
NLOS-heavy environments. We also present a performance comparison with Friedlander’s
method. Note that as in the previous chapter, inter-cell interference free transmission is
assumed.
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Figure 5.2: Mauerbach scenario, delay peak detection method comparison

5.2.2 Results

The simulation results from this chapter present how the positioning framework introduced
by the former chapters performs in a NLOS-heavy scenario based on a real-world location.
In figure 5.2, the 2D position error distributions are visualized for different delay peak
detection methods. The simulation results depicted in this figure confirm that employing
the adaptive threshold detection method in an environment with many NLOS links can
improve the positioning accuracy - the error is reduced by almost 50% for 50% of the
trajectory (c.f. table 5.2) - as compared to a setup using the naive maximum peak
detector. Combining the advantages of both detection methods in the oracle detector
yields only little improvement. Interestingly, the distributions overlap for very small
positioning errors, which is where the measurements stem from road sections with the
highest number of LOS links. Furthermore, we observe that the maximum peak detector
is more accurate in the high-error regime. We explain this behavior with situations where
the direct path is strongly attenuated and thus the adaptive threshold detector wrongly
picks up a noise peak, yielding higher errors than picking the maximum peak. Selected
values from the empirical cumulative distribution function (ECDF) curves in figure 5.2
are presented in table 5.2. Variations in the results such as the slighty decreased accuracy
of the oracle detector as compared to the adaptive threshold detector for 80% of the
values are assumed to be a result of non-perfect measurement confidence weighting in
Chan’s positioning method and varying channel realizations.
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Method 50% ≤ 80% ≤ 90% ≤
Max. peak det. 13.83 m 56.95 m 74.99 m
Adaptive thresh. det. 7.23 m 59.40 m 110.69 m
Oracle det. 6.87 m 59.73 m 110.25 m

Table 5.2: Selected 2D position error values from the distributions in figure 5.2
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Figure 5.3: Mauerbach scenario, hyperbolic positioning method comparison

Method 50% ≤ 80% ≤ 90% ≤
Friedlander (linear LS) 540.12 m 736.52 m 907.05 m
Chan Ho (weighted LS) 7.23 m 59.40 m 110.69 m

Table 5.3: Selected 2D position error values from the distributions in figure 5.3

In figure 5.3, the simulation results confirm again that Chan’s weighted LS approach is
far superior to Friedlander’s linear LS method when performing hyperbolic positioning in
NLOS-heavy environments with unreliable TDOA measurements. Selected values from
the ECDF curves in figure 5.3 are presented in table 5.3.

The simulation results pictured in figure 5.4 clearly show the effect of varying the BS
density in the scenario. Selected accuracy values are listed in table 5.4. Significantly
increasing the number of BSs from 10 to 30 yields a distribution with significantly
lower variance in the 2D positioning error. This is because an increased number of BSs
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Figure 5.4: Mauerbach scenario, varying NBS

NBS 50% ≤ 80% ≤ 90% ≤
6 222.27 m 368.52 m 692.69 m
10 7.23 m 59.40 m 110.69 m
30 1.02 m 1.99 m 3.08 m

Table 5.4: Selected 2D position error values from the distributions in figure 5.4

simultaneously increases the propability for high confidence TDOA measurements, both
due to more LOS links and more powerful NLOS links. The opposite is observed if the
BS density is reduced from 10 to 6 - the number of LOS links available at a specific
road section decreases as well as the number of powerful NLOS links, hence leading to a
distribution with a large amount of low accuracy values.

Figure 5.5 visualizes the simulated 2D positioning error for every position on the vehicle
trajectory. Furthermore, for each position the number of available LOS links is shown,
implying that the remaining links are in NLOS for that specific position. Observing
both graphs in conjunction reveals a correlation pattern with the following behavior:
The positioning accuracy tends to increase with an increasing number of LOS links and
decreases with an increasing number of NLOS links. The strongest position error jumps
tend to occur in situations where the number of available LOS links switches between 2
and 3. This leads to the observation that our framework requires at least 2-3 LOS links
in this scenario to deliver reasonable performance - depending on the BS-UE distances at
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Figure 5.5: Mauerbach scenario, NBS = 10, adaptive threshold detector

a certain position. The rather short intervals with low positioning accuracy might as well
be mitigated by filtering or sensor fusion methods as described in section 2.6. Figure 5.6
shows the positioning error from figure 5.5 plotted over the actual scenario geometry.
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5. Vehicular positioning in an urban scenario

Figure 5.6: Mauerbach scenario, NBS = 10, adaptive threshold detector. Note that not
all BS positions are shown in this figure.
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CHAPTER 6
Conclusion

In this thesis, we argued that multipath propagation and attenuated direct signal paths
due to reflections and blockages are prevalent in cellular network transmissions for (sub-)
urban vehicular scenarios. Based on that, we identified the need for methods able to
accurately measure propagation time delay in NLOS channels for a cellular network
vehicular positioning system. Therefore, we investigated different methods suitable for
estimating multipath delay profiles with 5G-NR standard-compliant reference signals.
Furthermore, we presented methods for estimating the propagation time delay due to the
direct path in NLOS channels by detecting the first peak in a delay profile. A MATLAB
simulation framework implementing the 5G-NR OFDM transmission system model was
developed in order to compare the ranging accuracy of the various methods by employing
3GPP standard-compliant stochastic channel models. The simulation results showed that
for LOS channels, the combination of the time domain cross-correlation delay profile and
the maximum peak detector methods yields the best ranging performance. For NLOS
channels, the simulations revealed that the MUSIC delay profile in combination with the
adaptive threshold detector yields the best ranging performance, however with varying
results due to difficult threshold tuning in the detection method.

In order to estimate the position of a vehicle, we presented the hyperbolic positioning
problem arising from TDOA measurements in cellular networks. We showed two methods
for solving the hyperbolic positioning problem, one relying on a simple linear least
squares approach without a-priori information and another, employing the weighted
least squares method with TDOA value weighting due to measurement confidence. Our
MATLAB simulation framework was extended to allow for the modelling of cellular
network geometry with multiple transmitting BSs and with standard-compliant path
loss models and simulation scenarios. The simulations revealed the clearly superior
positioning accuracy of the weighted least squares approach in situations where at least
one link is subject to NLOS propagation.

65



6. Conclusion

Finally, we modelled a simulation scenario based on the real world geometry of an urban
area. For this purpose, we extracted blockage data from OpenStreetMap and used it
to compute the LOS/NLOS condition for all radio links on any given point along a
predefined vehicular trajectory with our MATLAB framework. This information was used
to simulate the vehicular positioning accuracy along the trajectory. The results showed
that a 2D position error well below 10 m is feasible with our positioning framework
in situations where at least 2-3 LOS links are available, depending on the particular
transmission distance. Furthermore, the simulation results revealed that in our scenario
periods with a high positioning error are limited to comparably short road sections.

6.1 Future work
The work in this thesis could be extended by investigating various optimizations of the
methods outlined in this thesis. Specific hints for possible improvements are given in
the respective chapters. A future work could be to take the positioning data along
the vehicular trajectory generated by the simulations of an urban scenario and pass it
to a filtering method in order to mitigate the sections with low positioning accuracy.
Another major extension would be to take the step from performing simulations further
to performing real world measurement campaigns. For this it would be crucial to
communicate with network providers on how they implement the reference signals
required for the methods in this thesis. Furthermore, a challenging task would be to
establish a suitable ground truth in order to be able to asses the positioning accuracy
of the proposed framework. Finally, such a measurement campaign could also be used
to collect positioning data from other methods such as for example GNSS or RADAR.
This data would be interesting on the one hand to provide a basis for comparing the
performance of the methods and on the other hand to perform sensor fusion.
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