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Kurzfassung

Daten mit einer Graphenstruktur und Dimensionen in Raum und Zeit stellen die Verbin-
dung zwischen Ereignissen in der realen Welt und ihrer abstrakten Darstellung dar, wie
in etwa Verhaltensänderungen in Gesellschaft oder Technologie. Durch die Verarbeitung
solcher Daten werden Erkenntnisse gewonnen, die Auswirkungen auf die reale Welt haben
können.

Die bei einem Internet Service Provider vorhandenen Datensätze enthalten üblicherweise
derartige Dimensionen. Solche Daten können beispielsweise durch die Nutzung von Mobil-
telefonen oder die Telemetriedaten eines Kabelnetzes erzeugt werden. Ersteres kann sehr
nützlich sein, um die Veränderung der Eigenschaften unserer Gesellschaft auf nationaler
Ebene zu bestimmen, und letzteres für die vorausschauende Wartung des Netzwerks. Beim
Umgang mit solchen Datensätzen ist die Skalierbarkeit insbesondere bei kostenintensiven
Operationen wie Geodaten- oder Graph-algorithmen wichtig. Wir entwickeln verteilte
skalierbare Bausteine für Geo-operationen oder führen intelligente Aggregationen durch.
Diese Nutzen wir zur Analyser der Auswirkungen der Non Pharmaceutical Interventions
auf die Gesellschaft.

Das systemische Risiko von Unternehmen waren bisher nicht quantifizierbar, da Liefer-
netzwerke auf Unternehmensebene mit Ausnahme einiger weniger Länder nicht existierten.
Hier rekonstruieren wir aus Telekommunikationsdaten flächendeckende unternehmenswei-
te Versorgungsnetze. Die daraus resultierenden Netzwerke erlauben es uns, das systemische
Risiko einzelner Unternehmen zuverlässig zu quantifizieren und damit die wirtschaftliche
Widerstandsfähigkeit eines Landes abzuschätzen. Die Methode kann zur objektiven Ana-
lyse von Veränderungen in Produktionsprozessen eingesetzt werden, die für die grüne
Wende unerlässlich werden könnten.

Durch die vorausschauende Wartung des Kabelnetzes könnten Auswirkungen im Un-
ternehmensbereich erzielt werden. Für hybride Glasfaser-Koaxial-Netzwerke war die
Suche nach starkem Rauschen im Upstream Kanal in der Vergangenheit umständlich
und zeitaufwändig. Wir präsentieren die Automatisierung einer einfachen Geschäftsregel
(größte Änderung eines bestimmten Werts) und vergleichen ihre Leistung mit modernsten
maschinellen Lernmethoden und kommen zu dem Schluss, dass die top-1 Genauigkeit
um das 2,3-fache verbessert werden kann.
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Abstract

Behavioral changes in society or technology can be represented as a graph with dimensions
in space and time. Such graphs represent the link between events in the real world and
their abstract representation. By analyzing such data, insights are derived, impacting
decisions taken in the real world.

The datasets collected at a telecommunication company commonly contain these dimen-
sions; for example, the usage of mobile phones or the telemetry of a cable modems in a
network. The former can be helpful to determine the change of characteristics of society
and its behavior at the scale of whole countries and the latter for predictive maintenance
of the network. The scalability of particularly costly operations such as geospatial or
graph algorithms is essential when handling such data sets. We develop distributed
scalable primitives here for geospatial operations or perform smart aggregations. These
primitives are applied to analyze the impact of non-pharmaceutical interventions (e.g.
lockdowns) on society.

Systemic risk is the possibility that an event at the company level could trigger severe
instability or collapse an entire industry or economy. The Systemic risk contribution
of companies was hitherto not quantifiable since supply networks on the company-level
did not exist except for very few countries. Here we use telecommunication data to
reconstruct nationwide company-level supply networks. The resulting networks allow
us to quantify the systemic risk of individual companies reliably and thus estimate a
country’s economic resilience. The method can be used for objectively monitoring change
in production processes which might become essential in the green transition.

We could achieve impact in the corporate domain for the predictive maintenance of the
cable network. For hybrid fiber-coaxial (HFC) networks, searching for upstream high
noise in the past was cumbersome and time-consuming. Even with machine learning,
the task remains challenging due to the heterogeneity of the network and its topological
structure and noisy data. We solve the task by sessionizing the data per-incident and
reformulating the classification into a ranking job. We present the automation of a
simple business rule (largest change of a specific value), compare its performance with
state-of-the-art machine-learning methods, and conclude that the precision@1 can be
improved by 2.3 times using the developed machine learning approach.
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CHAPTER 1
Introduction

Behavioral changes in society or technology can be represented as a graph with dimensions
in space and time. Such graphs represent the link between events in the real world and
their abstract representation. By analyzing such data, insights are derived, impacting
decisions taken in the real world.

Interactions and communication between humans ever more frequently take place online
all over the world and generate traces of data. Often, the data is collected for billing
purposes or to improve the maintenance of the underlying communication infrastructure.
But there is more to it - this data may also be used to support solving societal problems:

• Mobile phone usage data permits the moment-by-moment quantification of mobility
behavior for Austria. Such data allows empowering rapid response to combat
COVID-19 and potential future pandemics. We analyze the impact of gender
differences and relative changes with regards to mobility to protect especially
susceptible cohorts of our society. During the COVID-19 pandemic, we had the
opportunity to perform several scientific analyses for social good where some of
them were featured on national broadcast television and other media soon after
publication. In particular, we analyzed the mobility of smartphones in Austria
to calibrate the official epidemiological forecasting models1 and to measure the
impact of the non pharmaceutical interventions (NPI) in real time for a whole
country. By using such data, informed decisions can be made where feedback is
available only with a short delay, and potentially needed corrective measures can be
applied. The pipeline created in this project and outlined in Figure 1.1 illustrates
a fruitful collaboration between government administration, business, and research
in obtaining insights. It should serve as a starting point for further collaborations
also in non-crisis times.

1https://syd19.netlify.app
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1. Introduction

Figure 1.1: We collaborate with multiple mobile phone operators and the epidemic report-
ing system in Austria. Detailed mobility statistics were delivered to two organizations
(DWH and CSH) for modelling the pandemic. The results of the simulations were used
as the basis for evidence-based recommendations to the Austrian government through
the COVID-19 Forecast Consortium.

• Such mobile-phone usage data sets cannot only be used to estimate the amount of
mobility or flow of people between locations. A graph could potentially be created
to determine probable supply links between firms by analyzing the interactions.
Furthermore the interest in analyzing supply chains increased with the exit of the
United Kingdom (UK) from the European Union (EU) as well as the COVID-
19 pandemic, as a supply chain crisis could be observed2. By analyzing the
interactions between mobile phones, we can estimate such supply chain networks
and help to suggest potentially stabilizing measures by outlining the weak points
in these networks. The monetary support could potentially be steered to the most
important firms in the graph to prevent the meltdown of the supply network as
remarkably little is known about the structure, formation, and dynamics of supply
and production networks that are one foundation of society. Neither the resilience
of these networks is understood, nor do we have ways to monitor their ongoing
change systematically. Systemic risk contribution of companies was hitherto not
quantifiable since supply network representations on the company-level did not exist
except for very few countries. We use telecommunication data (calls) to reconstruct
nationwide company-level supply networks. We find the conditional probability of
observing a supply-link, given that a communication-link exists, to be about 90%.
The method can be used for objectively monitoring change in production processes
which might become essential in the green transition.

However, internet service providers (ISPs) usually do not have an intrinsic incentive to
support studies on such datasets.

2https://www.instituteforgovernment.org.uk/publication/supply-chains, 27th
Nov 2021
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1.1. Problem statement

The infrastructure powering the communication network requires maintenance. Usually,
the cable network is structured like a graph where various devices are connected in a
topology. Finding the root cause of a specific problem can be cumbersome and lengthy.
Even with machine learning, the task remains challenging due to the heterogeneity of
the network and its topological structure. When analyzing the root cause of problems
in the cable network to prevent outages of the internet for subscribers by automatically
directing technicians to the source of the problem, we hope to support better internet
quality for subscribers.

1.1 Problem statement
Analyzing massive quantities of spatio-temporal or interconnected (graph) data requires
optimized tools and algorithmic implementations that rise to the challenge. The scalability
of particularly costly operations such as geospatial or graph algorithms is essential when
handling such data sets. The classical big data tools like Apache Spark or Hive did not
offer geospatial primitives out of the box. We develop distributed scalable primitives for
geospatial operations and perform smart aggregations.

Analyzing supply chains on a sufficiently fine-grained level is rarely possible due to data
availability. However, mobile-phone usage data in the past frequently was accessible for
researchers. We develop a suitable anonymization methodology and processing framework
to utilize such data for economic shock simulations.

The cable network infrastructure distributing internet connectivity on the last-mile to
end consumers is sometimes unreliable. In particular certain problem characteristics
lead to a problem amplification where a problem in one single device quickly spreads
to a whole region of the network as parts of the cable infrastructure and frequencies
are shared by multiple devices. Therefore, after the monitoring system has identified
that a problem exists in one region of the network it would be beneficial if a technician
could be quickly directed the location of the root cause in the network to fix a problem.
We develop a machine-learning based solution which performs 2.3 times better than a
business rule currently in place at the participating ISP.

1.2 Data anonymization
When an ISP wants to support an initiative for societal good, properly anonymized data
is critical. Mobile phone data consists of multiple dimensions (geolocation, social network,
application usage). All of these dimensions are considered intricately private. Due to the
General Data Protection Regulation (GDPR) in Europe as well as special laws for the
telecommunication sector, handling that kind of data is strictly regulated. Therefore,
the data needs to be anonymized. Anonymized data cannot be traced back to any
individual person. In particular, this can be hard for geospatial or very high-dimensional
data. To anonymize mobile phone data, any identifiers (international mobile equpipment
identifier (IMEI), international mobile subscriber identifier (IMSI)) are hashed by the

3



1. Introduction

data providing entities with a randomized salt that changes every day and the salt is
deleted after 24 hours. This prevents long-term analyses of any particular individual.

Data that is used for analysis for this research is aggregated additionally. During the
aggregation process, k-anonymity of the individual records in each cohort is ensured.
This means that in any group i.e. age, gender, or postal code, at least k individual
devices need to be present. If fewer than k unique devices are available for a cohort, the
whole cohort is deleted from the data and not available for analysis.

Additionally, we only use cell-id-based localization to enhance the subscribers’ privacy
due to its limited accuracy. Thereby the local regulations have been met and the
recommendations of the GSMA, the alliance of mobile phone providers [GSM20], have
been followed.

For complex attributes such as geospatial details, additional care should be taken in
the anonymization process [HC22]3. Traditional k-anonymization procedures ensure
that at least k unique observations fall into each group to prevent the identification of
any individual contained in the data by reducing the granularity of the data. However,
imagine a geolocation such as a home location of a device which for each day points to a
very similar location. Potentially, some identifying patterns could still be established.
Trying to remediate this problem by reducing the granularity a lot more will yield data
which is no longer valuable. Instead, by applying probabilistic k-anonymization a better
anonymized dataset where a higher amount of detail can be retained can be used.

1.3 Publications and contributions
We list the publications that form a significant basis for the text in this dissertation and
summarize the contribution of each publication.

1. Comparing implementation variants of distributed spatial join on Spark,
[Georg Heiler, Allan Hanbury], IEEE BigData Conference 2019 [HH19]. We compare
a distributed geospatial join for a data-locality-preserving and a non-data-locality-
preserving variant and introduce a broadcast spatial join which is much faster for
up to medium-sized data on the smaller side of the join. First, we compare various
variants of a distributed spatial join. In particular, data-locality-preserving and
non-data-locality-preserving methodologies were juxtaposed. Second, we introduce
a broadcast (map-side) spatial join. It is well suited for enrichment of a large data
set with small to medium sized metadata, as the small data set is copied to all the
nodes. In a second step, a local join is performed for each partition.

2. Country-wide mobility changes observed using mobile phone data dur-
ing COVID-19 pandemic, [Georg Heiler, Tobias Reich, Jan Hurt, Mohammad

3https://georgheiler.com/2021/03/08/can-you-tell-the-nuts-berries-apart-
in-each-group, accessed 28th Nov 2021
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1.3. Publications and contributions

Forghani, Aida Omani, Allan Hanbury, Farid Karimipour], IEEE BigData Con-
ference 2020 [HRH+20]. We design an efficient processing pipeline for mobility
analyses based on mobile phone data and demonstrate the influence of the NPI and
confirm the usefulness of mobility data for modeling the disease spread. We design
and implement an efficient processing pipeline that prepares mobile phone data
daily for anonymized and aggregated mobility analyses. Then, we demonstrate
the influence of the lock-down in Austria on the values of the following metrics:
point of interest (POI) based counting, radius of gyration (ROG). We confirm
the usefulness of mobile phone data for modeling disease spread by identifying a
significant correlation with a time-shift of 8 days for the outflow of people from the
highly infectious quarantined region Ischgl in Austria to other municipalities.

3. The impact of COVID-19 on relative changes in aggregated mobility using
mobile-phone data, [Georg Heiler, Allan Hanbury, Peter Filzmoser], Austrian
journal of Statistics 2022 [HHF20]. We contribute a compositional analysis of the
movement data during the COVID-19 research and conclude that special groups
(elderly and young cohorts during weekends) do not reduce their mobility.

4. Behavioral gender differences are reinforced during the COVID-19 crisis,
[Tobias Reisch, Georg Heiler (equal contribution), Jan Hurt, Peter Klimek Allan
Hanbury & Stefan Thurner], Nature Scientific Reports 2021 [RHH+21]. We find
that for both genders, we observe an increase of total call duration. For women,
the recovery time for total call time initially is as fast as for men, but later, it slows
down. The decrease in mobility following the lock-down is more substantial for
women. In addition, men recover their mobility behavior much more quickly after
the measures are lifted.

5. Monitoring supply networks from mobile phone data for estimating the
systemic risk of an economy, [Tobias Reisch, Georg Heiler (equal contribu-
tion), Christiane Diem, Stefan Thurner], Nature Scientific Reports 2022 [RHD+22].
Repurposing anonymized and aggregated mobile phone data for the first time to
analyze and validate the correctness of the inferred supply chain network. The
resulting networks allow us to quantify the systemic risk of individual companies
reliably and, thus estimate a country’s economic resilience. The method can be
used for objectively monitoring change in production processes which might become
essential in the green transition.We quantifiy the utility of mobile-phone usage data
for supply chain analyses.

6. Identifying the root cause of cable network problems with machine
learning, [Georg Heiler, Thassilo Gadermaier, Thomas Haider, Allan Hanbury,
Peter Filzmoser], Preprint under review [HGHF22]. For hybrid fiber-coaxial (HFC)
networks, searching for upstream high noise in the past was cumbersome and
time-consuming. Even with machine learning, the task remains challenging due
to the heterogeneity of the network and its topological structure. We contribute a
label generation process and data pipeline to train machine learning models and

5



1. Introduction

can advance 2.3 times over the baseline when applying machine learning models to
the problem.

1.4 Research questions
The following research questions form the basis for the work presented in this thesis:

1. How large is the impact of the NPI on mobility and calls? To what extent can
differences be observed in groups of the society formed by age and gender (RQ1)?

2. How well can supply networks be reconstructed from mobile-phone data (RQ2)?

3. How well can machine learning identify the root cause of a given problem in a cable
network (RQ3)?

1.5 Structure of the thesis
We outline the high-level functioning of a mobile phone network (not with regards
to its technical underpinnings, rather focused on mobility analytics) and describe the
methods we use to describe mobility, as well as the scalable data processing pipeline and
the dataset we have collected in Chapter 2 Mobile-phone data analytics. In Chapter 3
Efficient mobility analysis, we outline how to implement scalable geospatial operations
and summarize the primitives which underpin the data processing pipelines with regards
to the scalable geospatial operations. In Chapter 4 COVID-19 mobility insights we present
the results of analyzing the mobile-phone usage data in the context of the pandemic
(RQ1). The inference of supply networks from mobile-phone usage data is presented in
Chapter 5 Reconstructing supply networks from mobile phone data (RQ2). We describe
how the root cause identification process in cable networks can be improved by a factor
of 2.3 over a naive business rule currently employed by the participating ISP in Chapter 6
Identifying the root cause of cable network problems with machine learning (RQ3).

The impact in other fields and an outlook is presented in Chapter 7.

6



CHAPTER 2
Mobile-phone data analytics

Mobile-phone usage data is applicable for research on a wide variety of topics: customer
segmentation [Ahe11], identification of personality traits and lifestyle [CJGP11, HKPO20],
the analysis of large social networks [AKU19, AMRD19, ALS18], hotspot detection
[NIZ+16], prediction of movement [DLY19], mode of transport identification [ZBMR20],
credit scoring [LMZZ18], disaster recovery [ALVC19, ML19], analysis of sleeping behavior
of the population [MBG+17], migration [IFMFM18] and land usage classification [SLS+19,
LPCR+15].

In the last two decades, it became possible to collect data on human behavior on a
population-wide scale, see e.g. [Wat07]. Some of that data has been used to investigate
human responses to crisis and emergencies [BWB11, LBH12, WT14, GR19]. Studying
collective response to a crisis is essential for catastrophe planning and coordination
[BPPC07, GRK+20] and policy makers in health and safety [OLS+20]. Response to crisis
also reveals human qualities that only surface when facing different kinds of actual or
perceived danger [CLL20, TKL+00, BZZ96, GR19].

Albeit strong legal regulation telecommunication data has been accessible to researchers
since more than a decade. Mobile phone data in the form of call detail records (CDRs)
that are collected by mobile phone operators for billing purposes have been used to
study communication networks and the behavior of millions of people [BDK15], leading
to spectacular insights into the structure of human communication and organization
[OSH+07, EMC10], human behavior in emergency situations [BWB11], the spread of
infectious diseases [BGĆC16, JLY+20b] and the principles of human mobility [GHB08,
SQBB10, SDO+21]. CDRs allow for population-wide coverage, granular resolution of
interactions on the person level, and the possibility to be combined with information,
such as age and gender.

7



2. Mobile-phone data analytics

2.1 Mobile phone network
The topology of an ISP‘s network is organized hierarchically and consists of multiple
Location area codes (LACs). Many Base transciever station (BTS) are placed within a
LAC. Each BTS consists of several sectors. Usually these are oriented 60 degrees apart
to cover a full circle. There are exceptions from this rule in case of special situations such
as in-house cells, tunnel-cells or omnidirectional cells. Every sector contains multiple
antennas, wich each send the signal on a variety of frequencies (handling base load or
high capacity) and technologies (2G, 3G, 4G, 5G).

The network is separated in the radio- and core network. To route calls efficiently or
deliver data packages, the radio network precisely knows the location of all the devices
as calls should seamlessly continue even when crossing the borders of countries. The core
network only observes events relevant for traditionally important use cases such as billing
or perhaps legal interception. In particular, the localization information is not available
as detailed as in the radio network.

The core network keeps track of each mobile phone by noting the attached cell-id. We
as researchers get access to an anonymized dataset where these connections to specific
cell-ids in the topology of the network are collected over time.

2.2 Mobility measures
Mobility information obtained from sources such as the Global System for Mobile
Communication (GSM) network can be helpful to monitor mobility on a large scale
[OLS+20]. We quantify the movement of the population by several measures ranging
from simple counting to estimation of the mobility via radius of gyration to the evaluation
of origin destination (OD)-flow matrix, which are described in the following subsections.

2.2.1 Counting devices
The mobile phone network consists of multiple topological layers. Some base stations
cover a larger area. Indoor or underground cells as for example found in metro stations
are well suited to monitor the number of daily commuters due to their small coverage
area. For several POI, i.e. base station in the Viennese underground metro network or for
an airport and region of quarantine (Ischgl) we count the number of unique subscribers
per day.

2.2.2 Radius of gyration
We obtain mobility data as a stream of spatially localized network signaling events. It
is transformed into a list of locations x⃗iµ = (xiµ, yiµ), with associated stay duration tiµ

for every individual i = 1...Nindiv at location index µ = 1...Nlocations, where x and y
represent longitude and latitude, respectively. Due to the anonymization procedure the
location index µ is reset every day and the individual index i is reshuffled accordingly.
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2.2. Mobility measures

The radius of gyration RG is calculated as the square root of the time-weighted mean of
the squared distances d (Calculated as the Haversine distance which calculates a distance
in meters from latitude and longitude coordinates given in degrees.) of the locations x⃗iµ

to the daily centroid xi = µ
x⃗iµtiµ

µ
tiµ

:

RG,i = τ d(xi, x⃗iτ )2

τ tiτ
(2.1)

It captures the amount of movement in a time-weighted manner and has the dimension
of a length in meters.

2.2.3 Entropy
For our second mobility measure entropy the locations x⃗iµ are binned into a hexagonal
raster using Uber’s H3 [IB18]. The chosen resolution level for the raster yields hexagons
with an area of approximately 800m2 (This is H3’s resolution level 8.). For each hexagon
x̃ν (ν = 1...Nhex), the stay duration of the locations in each hexagon are aggregated to
t̃iν

t̃iν =
ν∀x⃗iν∈x̃ν

tiν (2.2)

The stay time distribution of an individual i is then defined as the share of its time spent
in a given hexagon x̃ν

p(x̃iν) = t̃iν

ν t̃iν
(2.3)

The entropy of an individual’s stay time distribution, Si, is defined, using the standard
formulation of Shannon Entropy, as:

Si = −
ν

p(x̃iν) log2(p(x̃iν)) (2.4)

2.2.4 Night location
[WYU+15] propose to use the most cell tower during night time to derive a home location.
We only use night-time activity from 8 pm until 12 pm to obtain a spatial reference
for each device i. The resulting spatial reference is mapped to a post-code for further
analysis.

2.2.5 OD flow matrix construction
The mobility interaction network can be captured by extracting the origin–destination
(OD) matrix, which specifies the amount of travel between regions throughout the study
area.

9



2. Mobile-phone data analytics

It is calculated for multiple scales including macroscopic scales, e.g., at the inter-urban
level, or at microscopic scales, e.g., at the intra-urban level. In recent years, OD matrices
have often been constructed from mobile phone data [SK08, MBL+19, GZ18, Pur18,
LLP+15, BKG+19, FKC20].

A trajectory can be modeled by sorting the localized events per user by time. To derive the
OD matrix, the continuous stream of point localizations in the network is first rasterized
to the desired resolution. We are analyzing various resolutions as defined in Section 2.2.5,
e.g. municipalities and post-codes as well as mathematically well defined grids like Uber’s
H3 [IB18]. For each discrete location l a stay duration is computed, which is referred to
as weight w.

We cluster these discretized point localizations by space and time in order to compute
time-weighted stays for each user and raster cell. The most important points can be
aggregated as a OD matrix, where most important refers to the points with a stay
duration of at least sk seconds. Each stay has an associated entry and exit time. We set
a threshold of sk = 600 seconds for our analyses based on an analysis of the distribution.
Finally, we aggregate the matrix over all the devices i daily by counting the subscribers
moving from one grid unit to the other.

The analyses were performed at a multitude of spatial resolutions. We use the following
levels, which are increasing in the level of detail:

1. Austria as a whole

2. federal states

3. political areas 1

4. municipalities and postal codes

5. specific points of interest

2.2.6 Points of interest (Shopping, Leisure)

Specific points of interest reflecting shopping and leisure zones in Vienna were analyzed
in more detail. We first used H3 by Uber [IB18] to create a discrete raster for the
whole country to speed up the analysis of specific locations afterwards. Then we count
the number of unique subscribers in a set of manually defined hexagons. We limit our
investigations to stays longer than 10 minutes and shorter than 4 hours. We assume
this eliminates devices passing the shopping complex on the nearby highway, as well as
persons working there, because these activities take much shorter or longer, respectively.

1https://www.statistik.at/web_de/klassifikationen/regionale_gliederungen/
politische_bezirke/index.html

10

https://www.statistik.at/web_de/klassifikationen/regionale_gliederungen/politische_bezirke/index.html
https://www.statistik.at/web_de/klassifikationen/regionale_gliederungen/politische_bezirke/index.html


2.3. Calling behavior

2.2.7 Graph-based movement analysis
The use of graph-based analyses in crowd-movement studies has been investigated,
especially in the use of mobility data extracted from cellular networks [GZW20]. The
OD matrix can be interpreted as a graph where pairs of nodes m and n represent origins
and destinations which are connected by links with non-negative weights Am,n if one
or more trips are made between the nodes. By modeling the crowd-movement in the
structure of a graph, it is possible to characterize the architecture and dynamics of the
population mobility and demonstrate relationships between people and places [FK18].
In graph theory, the topological criteria such as centrality, connectedness, path length,
diameter, and degree play a vital role in the description of a graph where links are
usually represented as binary states (i.e. adjacency matrix). For the mobility analysis,
the difference in the strength of the interaction links between pairs of nodes is important
[SMBH17].

2.3 Calling behavior
By analyzing calls, social interactions can be modeled. This part of the data consists
of a list of outgoing (MO) and incoming (MT) calls, each associated with a source and
destination. We filter to calls with a duration of at least 25 seconds to adjust for a shift
in the distribution corresponding to calls that were not answered.

For each device c we find NMO
c outgoing and NMT

c incoming calls with kMO
c and kMT

c

other individuals, respectively (in- and out-degree). The call duration is denoted by t̄.
Additionally, as described earlier for the mobility dimension, for each device, age group
and gender are specified.

For all of these device-level metrics we report the median of the whole population, or for
cohorts specified by age groups or gender. We will add superscripts g and h to indicate
gender.

2.4 Gender and Age Group differences
To investigate gender differences we calculate the gender ratio rx for the various ag-
gregations x (calling, ROG) presented here. The ratio rx is calculated as the quotient
of the aggregate for the female cohort divided by the aggregate for the male cohort
rx = xfemale/xmale (x represents the aggregation, e.g. median RG or median call duration
t̄). A gender ratio rx close to 1 (or 100%) indicates that the quantity is of similar size for
both genders, less (more) than 100% indicates smaller (larger) values for females.

2.5 Scalable data processing pipeline
Our data processing pipeline is depicted in Figure 2.1. Firstly, to improve the performance
of our analyses and to ease the mental burden for the person conducting the evaluation, we
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CLEANUP
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Figure 2.1: Daily aggregations are calculated as a first step to clean up and compress the
data. Subsequent analyses can be implemented efficiently – as depicted here in the case
of the computation for an OD matrix.

computed a daily aggregation of the raw data, removing domain-specific knowledge, prior
to beginning the specific analyses. The GSM network and attached monitoring tools are
a complex system that requires a lot of business knowledge (telecommunication-specific
knowledge required to process the raw data, such as special types of events or structures
of the topology). We abstracted this knowledge away and allow for effective and efficient
analyses on top of our aggregations.

For each device, timestamp and cell-id were recorded and anonymized with a rotating
key. Then, we enriched each cell-id with its location information which is provided by
the ISP (described in 2.6.1). As a next step, stays within a raster cell, which are defined
by the regional levels listed in Section 2.2.5, were detected by spatio-temporal clustering
the signalling events. Thereafter, each stay was enriched with the daily night location,
see Section 2.2.4 for details. Finally, the OD matrix was created as described in Section
2.2.5. After the daily cleanup, aggregation and compression, analyses were built on this
solid and reusable foundation.

We needed to process an immense quantity of data as the raw events amount to more
than one billion per day. Therefore, we rely on a cluster of computers to achieve good
performance. Using Apache Spark [ZCDD12], a map-reduce style big-data framework,
the burden of a distributed system is eased for the developers of the analyses as failures
of compute nodes are handled automatically.

As Spark lacks support for geospatial primitives, GeoSpark was utilized for distributed
spatial joins [YJM15]. Additional geospatial functionality is made available by using
GeoMesa [HAE+15], which in its core is based on the java-topology-suite for providing
the geospatial functionality. This is similar to GeoSpark, but still offers complementary
functionality such as calculating spatial distances. To enrich spatial metadata such as
political areas, we utilize a custom broadcast spatial join [HH19](Chapter 3), which is
faster than its distributed equivalent.

Furthermore, columnar file formats with compression and run-length encoding are used,
as these allow for significant compression of the data when sorted by the join keys.
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2.6. Description of the datasets

2.6 Description of the datasets
The following Chapters take reference to a dataset describing COVID-19 infection rates
in Austria as well as various aggregations obtained from the mobile phone usage data.

2.6.1 Mobile phone usage data
We partnered with a large Austrian ISP to get access to anonymized data from mobile
phones. We use a combination of classical Call Data Records for the voice domain as well
as a combination of generic data records (known as X Data Records) for the data domain.
Thus we do not only register an event when a call is performed, but rather perceive
additional events when data packages are transferred. Various network interfaces are
connected via probes so we get data points from a multitude of network technologies for
mobile data usage (2G, 3G, 4G), calls, text messages as well as Voice over LTE, from
both user- as well as control plane.

The information on all exchanges made between a mobile phone network and its users are
recorded as events. Any direct (user plane) as well as indirect (control plane) interaction
with the network continuously generates events in the data set, which are aggregated
daily. The data set is based on classical Call Data Record (CDR) and includes X Data
Record (XDR) of the data domain, thereby providing anonymized metadata about voice
and data usage. The events stem from various network interfaces covering all most
widely used signalling technologies (2G, 3G, 4G, calls, text messages & Voice over LTE
(VoLTE)).

The data set contains approximately 1 Billion events from 4.5 Million devices per day.
For 80% of these, the subsequent event is received in 1.7 minutes, on average 4 minutes.
This means that for some old, i.e. 2G devices, which are only rarely used, almost no data
is transmitted whilst not actively in operation. Therefore, fewer events are generated and
these devices are thus much harder to analyze when considering them for mobility use
cases. Our analyses are based on filtering the data of approximately 1.2 Million devices
registered with the partner ISP as mobile handsets excluding sensor devices from the
Internet of Things as well as roamers2 or events obtained from virtual network operators3.

The GSM network registers events for each device i with a very accurate time information
and a location with latitude (ylat) and longitude (xlong). As the network continuously
generates events, a near-real-time monitoring of aggregate population behavior is possible
[XGM+20]. Our analyses were updated on a daily basis.

From this data we extract gender-specific features about communication patterns, such
as the average interaction duration and the number of calls for all possible gender
combinations of calling and being called. The data further allows us to characterize
mobility. From location data we estimate the number of people shopping for food and
the usage of recreational areas.

2Devices with a foreign SIM-card using the local network, i.e. mostly tourists.
3Virtual operators resell the existing network of the providers – often more cheaply.
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2. Mobile-phone data analytics

Demographic information is not available for roamers or virtual mobile operators (MVNO)
and thus they are excluded from this analysis.

Furthermore each day, only devices with a radius of gyration RG (see eq. (2.1) below)
larger than 0m and lower than 300km are considered. The lower bound aims to exclude
internet of things-devices, which typically do not move, such as LTE-internet routers.
The upper bound excludes a small number of devices which have a RG larger than the
theoretically maximal RG inside Austria and are attributed to network artifacts.

Calls are filtered to a length of at least 25 seconds prior to aggregation to exclude calls
that were not picked up, which form a distinct peak just below 25 seconds.

Our localization methodology is based on the topology of the network, namely the
observed cell-id. This means that the accuracy is limited, and much less accurate
than Global Positioning System (GPS)-based localization or the result of custom apps
combining Bluetooth, WiFi and GPS. However, the data is available for a large quantity
of devices. The ISP provides us with the localization information for each cell-id, which
is based on the centroid of the network coverage simulation.

Sociodemographics: Using additional metadata, an individual can be assigned to a gender
group (female, male), to an age group (here we consider the age groups in 15 year
intervals: 15-29, 30-44, 45-59, 60-74, and 75+), and to an Austrian district of the daily
night location to derive the groups. This metadata is provided in an anonymized format
from the ISP. Since the distributions are generally very right-skewed, we work with the
median per group and day in the following and also ensure k-anonymity for each one.
The distribution of the genders: 454,000 women and 452,000 men is approximately equal.

The anonymized data covers the time period across the government interventions from
February 1st to June 29th of 2020.

2.6.2 Infection data set
On behalf of the Austrian Ministry of Health, the company Gesundheit Österreich GmbH
provides access to the electronic epidemiological reporting system (EMS)4. The data
contains cumulative daily COVID-19 infection numbers from March 5th 2020 onwards.

4https://datenplattform-covid.goeg.at/
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CHAPTER 3
Efficient mobility analysis

Many of the mobility analyses require a spatial data processing primitive: The spatial
join. Having access to a fast implementation of it is important for scalable data pipelines.

3.1 The need for scalable spatial methods
The current mobile phone network already generates a vast amount of data. Also, 5G, as
the new mobile phone network standard currently rolling out in various countries with
many tiny cells (microcells), will generate even more data than previous versions. In
both cases, processing a rapidly increasing amount of data is essential. Many use cases
like urban planning, location-based advertising, recommendation of points of interest
(POI), or socio-economic analyses require data in the spatio-temporal domain.

One of the most frequently used spatial operations is the spatial join. A naïve imple-
mentation is computationally expensive when performing a spatial enrichment on large
quantities of data. Traditional geospatial information system (GIS) tools like PostGIS1

offer such spatial processing capabilities, however their processing power is limited as
they are usually bound to a single node. In the Hadoop ecosystem, it is possible to
scale computation up to thousands of machines. The distributed architecture is only
effective when network traffic is minimized. A naïve distributed implementation utilizing
a cross-product would still be slow. Before filtering to the relevant results according to a
spatial predicate (intersection, overlap, ...) the intermediate state which is required to be
exchanged between compute nodes, is enormous as all tuples on the left side are paired
with all tuples from the right side. Using frameworks like Spatial Hadoop [EM15], it is
possible to achieve the desired level of scalability. However, based on classical map-reduce,
queries are slow and also inherit the complexity from operationalizing Hadoop. Apache
Spark is a popular, fast and scalable in-memory computation framework [ZCDD12].

1https://postgis.net/
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It is sometimes used without Hadoop in the cloud to make Spark more accessible for
newcomers. Spark - like many distributed computing frameworks - is still based on the
map-reduce paradigm where computation is split into chunks and processed in parallel
on multiple nodes. Spark is not only faster than classical map-reduce, but also offers a
higher level API mimicking a local collection object with operations like filter, join, or
groupBy as resilient distributed datasets (RDD). RDDs are immutable and state which is
lost can be recomputed. Spark achieves speed by transferring data in memory and not
writing to disk between each query step. With the addition of Spark-SQL, a graph of
operations to be executed even allows for optimization to improve query performance.

However, no native support for spatial data types, queries, or most importantly spatial in-
dices is built into Spark. Multiple frameworks are readily available to perform distributed
spatial operations using Spark [TYM+15, YTA+17, XLY+16, YZS19, Sri14]. A detailed
comparison of these systems can be found in [YZS19] and [GGCI+17]. With currently2

1.1k stars on gitHub3, GeoSpark [YJM15] has a large community. Therefore, we chose
it as the basis for our comparison. Its implementation is based on spatial partitioning,
thus providing the possibility to join large spatial data sets. Exchanging data over the
network (shuffling) is mandatory to colocate tuples which are close in the spatial domain
and to enable fast local queries of a spatial index for each partition.

Accessing neighbours in the time and space domain is relevant for various trajectory-
related computations like smoothing/noise reduction or clustering. These tasks are
only efficient if local data, i.e. data which resides on the same node, is accessed when
querying for neighbours. Not all use cases require two large data sets. When working
with trajectories we propose a faster methodology for enrichment of spatial data which
requires less network traffic and is thus faster.

3.2 Experiment description for comparison of join
implementations

In distributed systems a join of two datasets commonly requires a shuffle operation to
exchange data between the compute nodes. If the size of the data is large, this task can
become very costly and slow due to large network IO. However, if one of the two datasets
is small it could be broadcasted - and the other big one does not require to be shuffled.
This is supported by a tool like Apache Spark out of the box. But as mentioned before,
Spark does not include support for geospatial operations. We develop a broadcast spatial
join wich preserves data locality and is efficient as no large amount of data needs to be
exchanged. The small dataset needs to be indexed using a spatial indexing data structure
(such as an R tree) and broadcasted.

We compare the computational speed of various distributed spatial join implementations
utilizing three methodologies:

220th February 2022
3https://github.com/DataSystemsLab/GeoSpark
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3.2. Experiment description for comparison of join implementations

1. GeoSpark framework in a non-data locality-preserving way. Time to un-nest the
data set was not counted, only a default inner join was performed, no re-aggregation
to the original locality-preserving format (i.e., the least overhead when using out of
the box tools to perform scalable spatial enrichment).

2. GeoSpark in a data locality-preserving way. The data initially fed to the spatial
join was un-nested in a way that each observation from the array formed a new
row. A left join was added manually as GeoSpark does not offer such an operation
and we did not want to lose observations. Finally, the data was compacted again
to allow for further processing in the data locality optimized representation. In
more detail, data was aggregated for each user and period to contain the array of
events with information about the joined POI.

3. Distributed systems like Apache Spark provide basic building blocks for generic data
operations. However, as described before lack geospatial primitives. Usually they
provide distributed joins and broadcast join primitives. A distributed join is very
scalable, but also slow as the data needs to be exchanged over the network. The
broadcast join can be much faster if one side of the join is small (which frequently
is the case) and fits into the memory of a single worker node. In such a case, a full
copy of the small dataset is broadcasted to all the worker nodes and then combined
node-local with the other one. Our data locality-preserving method consisting of
a spatial index (R-tree) created from the POI data which is using the broadcast
approach to be distributed to all the worker nodes. Thus the join is performed
without accessing the network locally on each partition of the data.

We investigated the enrichment of spatial trajectories with the nearest POI using a
spatial join. The data was used to better understand recurrent patterns in trajectory
data e.g., for classification of activity. The data was simulated and an exponentially
increasing load of users was generated for multiple periods. For each user, time period
(date) and a data locality-preserving array of events (time, latitude, longitude, accuracy
(uncertainty of localization)) were stored partitioning the data per date as this allows
effortless calculation of trajectory operations per group and easy addition of new data. All
simulated locations were within Austria. Initially, the data resided in a locality-preserving
format suitable for various trajectory analyses, but without the POIs.

We conducted our experiments on a Hadoop cluster using Spark version 2.2 on yarn with
37 containers using 4 cores each and 55GB of RAM per worker node totalling up to
145 cores. POIs were derived from the open street map (OSM) project as a subset with
certain filter criteria.

The above mentioned methodologies were compared using the following configurations.
Our code is available on gitHub4.

(a) 200 events per period and user and 3 periods, 9.8k POI
4https://github.com/complexity-science-hub/distributed-POI-enrichment
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Figure 3.1: Configuration (a): 200 events per user per period for 3 periods. Load of
users (x axis), processing time shown in logarithmic scale (y axis) for the 3 different
implementations of a spatial join. Each one was run 5 times. The graph shows the mean
and 95 confidence intervals as error bars.

(b) 2000 events per period and user and 3 periods, 9.8k POI

(c) 200 events per period and user and 300 periods, 9.8k POI

(d) 200 events per period and user and increased number of POI to 65.1 Million. Using
all OSM POI for Austria.

3.3 Performance comparison of scalable spatial join
implementations

In the following Section we describe the results of the experiment.

Configuration (a): As indicated in Figure 3.1, the locality-preserving GeoSpark join (2)
is faster than the non-preserving approach (1) for large-enough quantities of data.

This is particularly surprising considering the larger amount of data being shuffled in the
locality-preserving distributed GeoSpark join for: un-nesting, left join and aggregation.
In almost all cases the custom implementation (3) using a map-side broadcast join was
optimal, although in extreme cases the advantage of (3) diminished.

Configuration (b): When the number of events per user and period was increased, we
obtained a more expected result concerning (1) and (2) where the latter was slower, as
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3.3. Performance comparison of scalable spatial join implementations

Figure 3.2: Configuration (2): increased number of events per user to 2000 events per
period for 3 periods. Load of users (x axis), processing time shown in logarithmic scale
(y axis). For each methodology 5 runs were computed. The graph shows the mean and
95 confidence intervals as error bars

indicated in Figure 3.2. We also noted that (2) generated a fairly large amount of shuffle
IO when reconstructing the trajectory optimized format.

Configuration (c): As seen in Figure 3.3, (1) and (2) converge when increasing the load
to 300 periods. This means that the overhead of shuffling for disaggregation and later
re-aggregation is negligible from a time perspective, though it causes several 100GB of
shuffle IO. Methodology (3) was the fastest variant. As an additional benefit no shuffle
IO was caused.

Configuration (d): (d) was considered very specific as a high number of POI were within
close proximity of each other. In this case more POI than trajectory points are present
for small to medium sized workloads. Therefore, only in this case spatial partitioning was
applied on the POI, not on the trajectory data set. A minimal workload already returned
a large number of tuples. Methodology (3) was not suitable as it did not complete the
computation. For this configuration, a distributed spatially partitioned join was the
only option as each individual event already generated a large number of tuples and the
parallelism was higher, resulting in smaller resource requirements compared to (3) and
thus the completion of the queries.
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Figure 3.3: Configuration (3): 200 events per user per period. Increased number of
periods to 300. Load of users (x axis), processing time as shown in logarithmic scale (y
axis). For each methodology 5 runs were computed. The graph shows the mean and 95
confidence intervals as error bars

3.4 Discussion
Various use cases require different implementations for distributed spatial joins. A
general-purpose framework like GeoSpark is useful, however, we observed that sometimes
a more specific implementation, like methodology (3), the broadcast spatial join, proved
more efficient. This property is particularly useful in scenarios where shuffle IO needs
to be minimized, e.g., a real-time streaming computation or cases in which the spatial
enrichment includes up to medium-sized (10k-100k) number of tuples. Fine-tuning Spark
itself, i.e., setting the right level of parallelism might improve future approaches. In
the future, a discretized spatial index like [IB18] could yield even more improvements,
especially concerning event data as it would be possible to precompute an enrichment for
all available raster cells of a specific resolution for a country and then applied very fast
to new incoming data. Additionally, validation on a real-world data set like a mobile
telecommunication data set should be performed.

Meanwhile geospark was renamed to Sedona and accepted as a top-level Apache foundation
software project and has started to support the proposed methodology of a broadcast
spatial join out of the box5. Furthermore other cloud databases such as BigQuery have
added geospatial functions6.

5https://sedona.apache.org/api/sql/Optimizer/
6https://cloud.google.com/bigquery/docs/reference/standard-sql/geography_
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3.4. Discussion

functions
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CHAPTER 4
COVID-19 mobility insights

In March 2020, the Austrian government introduced a widespread lock-down in response
to the COVID-19 pandemic. Based on subjective impressions and anecdotal evidence,
Austrian public and private life came to a sudden halt. Here we assess the effect of
the lock-down quantitatively for all regions in Austria and present an analysis of daily
changes of human mobility throughout Austria using near-real-time anonymized mobile
phone data.

Having access to properly anonymized data is important to perform mobility analytics
to empower rapid response to combat COVID-19 and future pandemics. We analyze the
absolute mobility of groups formed by age and gender and compare how the reduction
induced by the NPI relates to the duration of calls. We show that a significant time-lagged
relationship exists with the mobility outflow of COVID hotspots and the case numbers in
the destination regions. Then, we apply compositional data analytics methods to identify
how much groups (relative to each other) have changed their mobility behavior.

4.1 Mobility and the COVID pandemic
Extensive literature using mobility data during the COVID-19 pandemic has been pub-
lished [PBG+20, JLY+20a, GRK+20, JWA+20, YTF+20, VMU+20, XGM+20, SFS+20,
SSS+20, ISS+20, Heu]. International mobility reports of mobile-phone-based data are
analyzed by the European commission to report on the effect of the COVID-19 lock-down
including the comparison of the effect in different countries and estimation of cross-border
effects [SFS+20, SSS+20, ISS+20]. Furthermore, [Heu] published analyses of mobility
behavior subsequent to the lock-down using GPS-data evaluate the virus’s spread from
the highly infectious region in Ischgl to different countries. They used data from the
private company Umlaut, which collected GPS measurements using tracking toolkits in
apps. This data offers a higher positioning accuracy. However, the number of users and,
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hence, the number of data records and the population’s coverage are limited compared
with GSM-based data.

Many studies, primarily employing data from China, analyze mobility to predict infection
numbers. Jia et al. [JLY+20a] and Goa et al. [GRK+20] predict the number of infections
in China with the outflow of people from Wuhan. Kraemer et al. [KYG+20], Jeffrey et al.
[JWA+20] and Yabe et al. [YTF+20] report that the correlation between mobility and
the infection rates dropped after implementation of the lock-down measures in China,
the United Kingdom and Japan, respectively.

The two companies behind Android and iOS, Google1 and Apple2, both published
aggregate mobility reports as well. These are available for many countries. Vollmer et al.
[VMU+20] and Xu et al. [XGM+20] use mobility data to calibrate epidemiological models.
We extend the literature by investigating Austrian mobility behavior and combining a
wide variety of measures.

4.2 The pandemic in Austria

At the end of 2019 the SARS-CoV2 virus emerged in China, causing an ongoing, world-
wide pandemic. In response to sharply rising numbers during the “first wave”, on March
15th the Austrian government introduced a severe nationwide lock-down. The implemented
non-pharmaceutical interventions (NPIs) included: school closures, restaurant closures,
mandatory use of masks, incentives to use home-office, the complete prohibition of
gatherings of any size, closure of all non-essential shops, and a general limitation of
mobility. It was possible to leave the house for one of four reasons only: work that
cannot be postponed, shopping for groceries, assisting others, and short recreational
walks [DlDH+20].

The government’s call seemed successful based on anecdotal evidence, such as reports of
empty public spaces [orf20] or low traffic levels on highways 3. However, to estimate the
effect on epidemic spreading and plan further policy measures, a countrywide quantifica-
tion of the impact of the actions was necessary. It is generally agreed upon that ensuring
a minimum spatial distance between people and limited exchange between segregated
communities are critical factors in preventing the spread of COVID-19.

These measures led to a massive reduction of mobility as measured for example with cell-
phone data [HRH+20], or traffic counts [Asf20]. The lock-down had severe consequences
on public life: 58% of all Austrians who were in employment or self-employed reported
that they were employed in a company that introduced home-office to at least some

1https://www.google.com/covid19/mobility/
2https://www.apple.com/covid19/mobility
3https://www.tt.com/artikel/16774378/zurueckversetzt-in-eine-andere-zeit-

kaum-noch-verkehr-durch-tirol, accessed 18th of March 2020
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extent4, the number of people registered unemployed increased by 76% 5, more than
1,300,000 persons were temporarily laid off [Hag20], and public life, such as theaters,
cinemas, restaurants, bars, shopping-malls and even large parks, came to a halt.

In our analyses we consider multiple phases indicated by Roman numerals, based on the
data set of non-medical interventions published by Desvars et. al. [DlDH+20]:

I. pre-lock-down – before 11th of March. Pre-awareness phase. The population is
practically not yet aware of the presence of the disease in Austria.

II. transition period from the announcement (March 12th) to the actual lock-down on
March 16th.

III. lock-down – 17th of March until 1st of May

IV. easing – 2nd of May onwards.

For the Section on Gendered impact analysis we evaluate the easing process in more
detail as it was conducted in a later publication and we decided to split the easing period
into individual sub-phases there. III and IV are split into:

III. lock-down until first easing of NPIs (April 13th)

IV. period gatherings of more than 10 people are allowed, begins on May 1st

V. back to normal, restaurants and businesses re-open

VI. easing – 2nd of May onwards

4.3 Absolute changes of mobility and call duration
Mobility information obtained from sources such as the GSM network can be helpful
to monitor the reduction in mobility on a large scale [OLS+20]. We monitored daily
changes of mobility in Austria using anonymized mobile phone data, compared behavior
before, during and after lock-down measures and published parts of our results online 6

due to the inherent relevance for the public. Here we present and extend the results and
elaborate on the technological background of our efforts during the COVID-19 pandemic.

4https://www.market.at/market-aktuell/details/corona-definiert-
arbeitswelten-von-morgen-neu.html, accessed 8th of October 2020.

5https://www.ams.at/arbeitsmarktdaten-und-medien/arbeitsmarkt-daten-und-
arbeitsmarkt-forschung/berichte-und-auswertungen, accessed 8th of October 2020

6https://csh.ac.at/covid19, accessed 5th of February 2020
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4.3.1 Overall mobility reduction
We found a reduction of commuters at Viennese metro stations of over 80% and the
number of devices with a radius of gyration of fewer than 500 m almost doubled. The
results of studying crowd-movement behavior highlight considerable changes in the
structure of mobility networks, revealed by higher modularity and an increase from 12 to
20 detected communities.

Public transport usage

Figure 4.1 shows the reduction of passengers on the Viennese metro, which translates into
the effectiveness of the far-reaching restrictions undertaken by the government of Austria.
After a first press conference on the 10th of March (first black line), the measures were
announced and activity was reduced until full implementation of the lock-down measures
on the 15th of March. The frequency of metro usage was about 1/5 of a regular Monday
in this state induced by full implementation of the lock-down measures. We still can
observe the weekly trend that there is less usage of the metro during weekends. From
Easter onwards metro usage starts to recover almost to previous levels.With the official
end of the lock-down, mobility has recovered to 52.5% when comparing calendar week
22 with week 10 – i.e. with the levels of before the crisis. Even later until August a full
recovery to previous levels is not reached.

POI analyses

For two selected locations (airport, quarantined region), see Figure 4.2, the dramatic
reduction in devices present is depicted. Both can be seen as a proxy for long dis-
tance/international travel activities7. This also justifies that both locations have not
recovered until the end of the analysis period.

ROG

Before the crisis, the median ROG for the whole population was 2 kilometers per day.
After the announcement of the restrictions on the 15th of March, it reduced to 800 meters.
The distribution of the ROG is heavily skewed. When creating discrete bins of the ROG
the effect of very large ROG can be mitigated. We create three bins, [0, 500m[ for devices
showing little to no movement, [500, 5000m[ for intermediate and [5000m, max.] for large
movements. Bin sizes were chosen based on qualitative experience with test devices.
Figure 4.3A depicts how the lock-down measures increased the number of devices moving
very little. Even after the official easing of the measures the population has not yet
recovered to previous levels of movement until the end of our study period. Conversely,
for medium distance movements in the range of 500–5000 m and large radii above 5000
m, Figures 4.3BC show the effect of the lock-down measures by depicting a dramatic
reduction of movement.

7https://www.tirolwerbung.at/wp-content/uploads/2018/04/tiroler-tourismus-
daten-und-fakten-2017.pdf
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Figure 4.1: Reduction in public transport usage in Vienna during the COVID19 pandemic.
Even after easing of the measures previous levels of metro usage are not reached again.

We additionally computed a daily night location as defined in Section 2.2.4 for each user.
This location was assigned the matching post code allowing to produce a map of Austria,
Figure 4.4, visualizing the spatial differences in the relative reduction of mobility, as
measured by the ROG. The reduction is consistent throughout Austria, except for some
small towns where the number of observations might be too small.

Figure 4.5 shows the effects of the lock-down. A reduction of mobility in the districts
of Austria occurs from before the lock-down (panel A) to right after it (panel B). As a
measure for mobility we use the median radius of gyration, RG.RG captures the time
weighted, spatial extent of an individuals trajectory. We observe a decrease of RG between
59% and 14%. Panel C shows the time evolution of RG, averaged over all districts. After
a sharp decline of almost 50% in phase III a rebound to almost pre-crisis levels is seen. In
panel D we observe a more than 60% increase of call duration per call, t̄. For a definition,
see Methods. Panel E shows a brief increase of the number of calls per person, Nc, in the
days just before the lock-down (phase II) followed by a 10% decrease. We now stratify
these changes with respect to gender and age.

Moreover, we have broken down the analysis into hourly groups (Figure 4.6). Each line
represents an hour. Before the lock-down, we observe a relatively consistent weekly trend.
During the week there is a large spread between daily and nightly mobility, whereas on
weekends this gap is reduced strongly due to less movement during the daytime and
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Figure 4.2: The count of mobile phones with a stay duration from 10 minutes to 4 hours
for Ischgl and the Airport of Vienna. There is a clear difference between the Airport and
Ischgl. While Ischgl went into quarantine, and all tourists were sent home on the 15th of
March, the shutdown of the Airport happened the following week.

an increase in ROG at night. With the introduction of the lock-down measures ROG
decreases for all times, but retains its weekly pattern, except for the characteristic nightly
increase of activity on weekends, which is not recovering, even after reduction of the
lock-down restrictions. Apart from weekend nights mobility at all times of day is slowly
increasing towards pre-lock-down level.

4.3.2 Gendered impact analysis
Behavioral gender differences have been found for a wide range of human activities,
including the way people communicate, move, provision themselves, or organize leisure
activities. Using mobile phone data from 1.2 million devices in Austria across the first
phase of the COVID-19 crisis, we quantify gender-specific patterns of communication
intensity, mobility and circadian rhythms. We show the resilience of behavioral patterns
concerning the shock imposed by a strict nationwide lock-down that Austria experienced
at the beginning of the crisis with severe implications on public and private life. We find
drastic differences in gender-specific responses during the different phases of the pandemic.
After the lock-down, gender differences in mobility and communication patterns increased
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Figure 4.4: Relative change of mean ROG for week of March 2nd and week of March 23rd

measured at postcode level.

massively. In particular, women had fewer but longer phone calls than men during the
lock-down. Mobility declined massively for both genders. However, women tend to
restrict their movement stronger than men. Women tended to avoid shopping centers and
more men frequented recreational areas. After the lock-down, males returned to normal
quicker than women; young age-cohorts returned faster. We interpret and discuss these
findings as signals for underlying social, biological and psychological gender differences
when coping with crisis and taking risks.

Empirical research has long been concerned with assessing whether women and men behave
differently in their daily lives. Behavioral differences were reported in communication
behavior, visible for example in the different investment in biological offspring across
women and men’s lifetimes [PKK+12]. Gender differences in mobility patterns do rise from
a mix of cultural, infrastructure, resource, safety and socio-economic factors [GTP+20].
Psychological and cognitive and other non-reproductive differences have been studied
for many decades, maybe even centuries, see e.g. [Hal13]. Also differences in stress
perception and respective coping mechanisms have been known to exist for a long time
[BZZ96, Mat04]. Non-reproductive biological differences include women having shorter
circadian rhythms [DCC+11] and showing different co-morbidity patterns than men
across their lifetimes [CKT14]. Even in virtual societies of online game players, strong
behavioral gender differences were found. In particular, male and female players tend to
behave differently in economic activities, their dealing with aggression and hostilities,
and generally how they structure their social networks [ST13].

Times of stress may alter social norms, socio-economic constraints, and “typical” behavior.
It is a priori not clear if and how these changes increase or decrease behavioral gender
differences. On the one hand, one might speculate that stress leads to a more universal be-
havior, where gender differences become less critical and thus less pronounced [WXX+20].
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Figure 4.5: Population-wide response to the COVID-19 crisis. The maps show the
mobility (radius of gyration, RG) for calendar week (A) 10 and (B) 12 for Austria. The
timeseries below outline the changes in (C) RG, (D) the call duration per call t̄, and
(E) the number of calls per device Nc. During the lock-down mobility was drastically
reduced throughout Austria. The call duration per call t̄ increased dramatically and the
number of calls, after a brief increase around the beginning of the lock-down, dropped
below the pre-lock-down level.

On the other hand, psychological gender differences might become amplified when coping
with crisis [BZZ96, GAR+02, JAD+20]. A crisis such as the COVID-19 pandemic is
an exceptional shock to social systems and can be seen as a natural experiment that
allows us to investigate the impact of population-wide stress and its consequences on
gender-specific changes in behavior. Such a natural experiment can be used to estimate
the resilience of behavioral changes, i.e., how long it takes after the onset of a well-defined
shock to return to pre-crisis patterns of behavior. This characteristic time might also
be necessary for a better objective understanding of temporal changes of psychological
effects after emergencies, which are usually studied with self-reported data at a few points
in time [BZZ96, GAR+02, Mat04, CLL20].

The uncertainty of the situation, especially the threat of job-loss or additional childcare
duties caused stress and anxiety in the Austrian population [PLMG20]. Right from
the start, it lead to the apprehension that women could be affected more by the lock-
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Figure 4.6: Hourly geometric mean of ROG for selected hours. The night activity on
weekends is not recovering, even after reduction of the lock-down restrictions.

down due to additional childcare duties [IS20, Vig20, OEC20], domestic violence [BJI20],
employment in high exposure jobs and simultaneously higher unemployment [OEC20].
Austrian women were more affected by unemployment and partial layoffs [Arb20], surveys
registered an increase of domestic violence [SE20], and female scientists posted less pre-
prints and started less projects [Vig20]. It has been argued that during the COVID-19
pandemic “disproportionately affected women and widened gender inequalities across
the globe” [MRR21]. The fact that men and women react differently to stress and
crises is not new. Women experience more stress [Zei06, BZZ96] and employ relatively
more active and problem-focused coping strategies [BZZ96, Mat04], while men tend to
emotion-focused coping, such as emotional avoidance [BZZ96].

Here we want to understand the effects of the COVID-19 crisis on behavioral gender
differences in five directions: Changes in communication patterns, changes in mobility,
changes in food supply, changes in spending leisure time and changes in circadian
rhythms as seen in digital traces. We discuss gender as more than the distinction between
biologically different sexes, but as a socially constructed categorization [Haw13].

To control for differences between our sample composition and the demographics of
Austria, and to relate behavioral changes to different phases of life, we stratify our results
with respect to age. Finally, we estimate the circadian activity of telecommunication and
internet usage, from which we estimate e.g. gender differences in sleeping patterns.

The gender categories in our study are self-reported and are, for technical reasons, limited
to female and male. We observe changes in the digital traces of humans in Austria that
are shaped by the lived social experiences that are played out within specific contexts,
constraints, and gendered opportunity structures. Many studies, including the present,
empirically find behavioral and psychological gender differences. However, one should
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, over time. We observe a
large drop in RG for both genders in phase III and a drop in gender ratio in phases III
(lock-down), IV, and V (lock-down eased).

not interpret these findings as a manifestation of an inherent difference between men
and women, but as a starting point to discuss the roots of different experiences of the
pandemic that are lived by women and men.

Telecommunication data has been used earlier to study the effect of crisis and emergencies.
They were used to detect crisis [CGW+08], study communication patterns subsequent
to different emergencies [BWB11], predict movement, e.g. subsequent to the Haiti
earthquake 2010 [LBH12], and to help explain the spread of SARS-CoV-2 [GRK+20].
Gender differences in human mobility and communication were studied in [PKK+12,
GTP+20]. In [PKK+12] changes in communication behavior across age and gender were
reported and in particular, how reproductive investments and preferred relationships
of both sexes shift over a lifespan. It is a known fact that males tend to have their
workplaces further from home and thus generally move more, see e.g. [PSHS08]. Gender
differences in mobility in Santiago de Chile are reported in [GTP+20]. There, significantly
different movement behavior is found and is interpreted as a result of an interplay of
socio-economic and urban factors. The gender specific behavioral response to seven
terrorist attacks in six cities is investigated in [JAD+20]. They compare temporal mobile
phone communication patterns in response to the attacks and report significant differences
between the genders.

Mobility

Figure 4.7 A shows RG for the two genders, Rf
G (red) and Rm

G (blue). The gender-ratio,
defined as rRG

= Rf
G/Rm

G is depicted in panel B. The female population is moving less
than males in pre-crisis times (phase I), as seen in the ratio rRG

of 78% on weekdays
and 88% on weekends. After a brief transition period II the Weekday ratio drops to
around 73% during the lock-down phase III, while on weekends the ratio remains at
initial levels. In phase IV, once restrictions were lifted, RG for males returns back to
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normal more quickly than for females, hence decreasing the gender ratio further down to
67%. The ratio starts to recover towards pre-crisis levels starting from phase V onward,
once the main restrictions were lifted. When fitting the RG curves as they converge to
pre-crisis levels after the lock-down, we report a half-life time for men of tm

1/2 = 34.8d,
and tf

1/2 = 36.0d for women.

The changes in gender ratios of RG are significant between the phases. Especially the
changes from phase I to the subsequent phases and from III to phase IV are indeed highly
significantly. We find similar results if we replace the radius of gyration by an alternative
measure for mobility that is inspired by entropy, S

f/m
i .

In Fig. 4.9 B we show the age-stratification of the gender-ratios. Before the crisis we
observe very different gender ratios for different ages. Generally the ratio decreases with
increasing age. For the young cohort of 15-29 years, the weekday-ratio is above 90%.
For the two age cohorts above the average age of first childbirth (26.3 years for women
and 28.7 for men [Aus19]), 30-44 and 45-59, the ratio is reduced to about 83%. For the
age cohorts of retirement, 60-74 and 75+, gender disparity becomes even more biased
towards men with a ratio of about 70%. In phase III, the three younger cohorts show an
overall trend of increasing gender biases. For the age cohort 45-59, this trend is much
less pronounced. Strikingly, the effect is reversed for the retirement cohorts where the
gender ratio changes from around 70% to more than 80%, which again decreases towards
pre-crisis levels in phase IV. The ratio for the old cohorts returns much more quickly to
pre-crisis values than all the younger ones, which do not return to the previous values
until the end of the observation period. We do not observe large differences in half-life
times across gender, but t1/2 is much smaller for older cohorts. For all cohorts we find
values between t1/2 = 38.8d for 15-29 year old women to t1/2 = 28.8d for 75+ year old
men.

The radius of gyration can be compared with corresponding data of the previous year
(2019) in the same time period. We find that during the lock-down phase in 2020, there
is less than 40% of the movement than in 2019.

Communication patterns

As proxies for the strength of social interactions we first analyze the call duration per
pair of interaction partners, t̄gh(t), the number of calls, Ng

c (t), and the number of calling
partners per user, kg(t), see Methods. The superscripts indicate gender, g represents the
gender of the caller h is the gender of the called.

Figure 4.8 depicts the situation over time. In panel A we see a massive increase of calling
times for the different gender combinations in phase II and the beginning of III. For the
female-female calls we observe an increase of up to 140%, female-male and male-female
rise by up to 81% and 97%, respectively, and male-male calls increase up to 66%. We
find that calls involving women are generally longer than those involving men. Moreover,
the call time increase is larger when women are involved.
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Figure 4.8: Gender-specific changes in communication behavior. (A) Median call duration
of the four possible types of gender-specific calls, depending on who initiated the call
and who received it. By mid-May pre-crisis levels are reached. Half-life times range
from 17.3d in the female-female to 14.9 in the female-male case. (B) Number of calls
originating from males (blue) and females (red). The median call duration peaks in
phase III, particularly for female-female calls, whereas the number of calls assumes a
minimum. Up to the end of the observation period, pre-crisis levels are not reached. (C)
The number of communication partners, the degree kg(t), rises briefly and then drops
below pre-crisis levels.
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Calling times decrease gradually and reach pre-crisis levels in phase VI. This decay can be
fitted with an exponential function. The exponents of the fits translate into corresponding
“half-life” times, which are t1/2,mm = 15.9d for male-male and t1/2,ff = 17.3d for female-
female interactions, the mixed interactions have half-life times of t1/2,mf = 15.5d and
t1/2,fm = 14.5d for male-female and female-male interactions, respectively.Call times
show a pronounced bias towards female initiated calls being longer. In phase I, female
originated calls were 10% longer than male originated, and up to 30% longer on weekdays
in phase III. From its maximum in phase III, the gender ratio continuously declines to
normal levels in phase V.

The age profile for the median call duration is relatively flat for the adult and senior age
cohorts and has very low values for the youngest cohort. The call duration increases
slightly for the two youngest, but strongly for the two oldest cohorts. The gender ratio
in call duration is biased towards women for all ages during the crisis, as seen in Fig. 4.9
A. Notably, the age cohort 15-29 is the only cohort having a more balanced call duration
on weekends. For all other cohorts gender differences are increased on weekends. Around
the beginning of phase III, the ratios for all except the 75+ cohort reach a maximum.
The 75+ cohort reaches a maximum of the gender imbalance in phase IV.

In Fig. 4.8 B we show the number of calls, Ng
c , for male and female generated calls. Here

we display the mean of Ng
c because the median due to its discrete nature in combination

with the relatively small average Ng
c between 3.5 and 4.5, would make changes and gender

differences hard to see. After a short increase in calls in phase II (female: +13%, male
+6%) we see a significant drop in calls in phase III (both -9%), which never reaches
pre-lock-down levels in the observation period. It stabilizes at a level of -5% and -4%
of the previous level for women and men, respectively. There are only small gender
difference in the number of calls.

In Fig. 4.8 C we show the timeseries for the number of different communication partners,
kg, i.e. the degree of men and women in their communication networks. For the same
reason as for Ng

c , we show the average instead of the median for kg. After a brief rise (up
to 8% and 13% for men and women, respectively) in phase II, kg falls below its pre-crisis
level (-3% and -2%). In phases IV and V kg rises to values higher than the initial values
in phase I. In phase VI kg is about 4% higher for men and 2.5% higher for women.

During normal times (phase I) we find that men have a slightly higher average degree
(communication partners) on weekdays (f/m ratio 95%, men 1.6, women 1.55 unique
contacts per day), while on weekends it is more or less balanced (women and men 1.4). In
phase II, kg is increased for both genders to a maximum around 1.73, with an increasingly
smaller gender bias. In phase III the degree drops below pre-crisis levels, but men reduce
kg stronger, resulting in a smaller gender divide in phase III (96%). From phase IV
onward, the degree slightly increases (even above pre-crisis levels: men 1.7 and women
1.6), even stronger for men, hence resulting in an increased gender divide (less than 94%).

Call duration increases much more than the number of calls decreases, regardless of
gender. This is visible in Fig. 4.5 D and E. Just in phase II there is a drastic rise in both,
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Figure 4.9: Gender ratios of communication and mobility for different age cohorts. The
gender ratio of (A) the median call duration t̄ and (B) the radius of gyration, RG, is seen.
In III the RG gender ratio of young cohorts is shifted towards women moving significantly
(p < 0.001) less, while for old cohorts it is shifted towards a more balanced value. In the
same period, for all cohorts except 75+, the gender bias for the call duration increases
towards women that have a higher call duration.
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call time per call, and the number of calls. The concentration of communication partners
is higher for females and increases during crisis. The bias is also shifted towards men
having more communication partners in phase VI. All proxies indicate a strengthening of
individual contacts and a focus on important contacts.

Gender ratios of different phases are considered to be distributed around different
stationary values. Subsequently, we compare them with a two-sided Mann-Whitney-U
test, and reject the null hypothesis that they are from the same distribution.

Basic provisioning

We show the number of unique devices as a proxy for the number of people at a shopping
center across the lock-down. We count the number of unique subscribers in a specifically
defined area.The shopping center is the largest of its kind in Austria and one of the
largest in Europe. It is a cluster of 359 shops spread over an area of 670,000 m2. Shops
sell a wide range of products, including sports equipment, garments, furniture and
electronics. It is visited by more than 20 million visitors each year from Vienna and its
hinterland, especially in the south, as well as from Hungary and Slovakia. There are also
14 shops, including supermarkets, drug stores and pharmacies that were not affected by
the lock-down.

The visiting patterns of the shopping center in phase I show a pronounced weekly
periodicity with a maximum on Saturdays and very few visitors on Sundays, when all
stores except cinemas and restaurants are closed. The gender ratio in phase I is close
to one, indicating gender balance. In phase III the shopping complex was shut down
to a large extent. No businesses other than stores for basic provisioning were allowed
to open. Nevertheless we find a small number of visitors that we account mainly to
persons shopping for food and drugs. The gender ratio in phases III and IV is clearly
male-dominated In phase V, when shops were allowed to re-open, visitor numbers rose
to pre-crisis levels at the beginning of the week, however without the strong peaks on
Saturdays. The gender ratio returns to a balanced situation.

Leisure activities

In Fig. 4.10 A we count the numbers in a popular recreational area nearby Vienna, the
Kahlenberg, frequented mainly for walks, and easy hikes. The number of visitors does
not drop in phases II–V, but increases with the usual seasonal trend from March to June.
We find more visitors on weekends and on days with good weather, explaining the high
variance in numbers.

4.4 Relative changes of mobility and call duration
Evaluating relative changes leads to additional insights which would remain hidden when
only considering absolute changes. We analyze a data set describing the mobility of
mobile phones in Austria before, during COVID-19 lock-down measures. By applying
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Figure 4.10: Visitors in a leisure area outside of Vienna, Kahlenberg, during the Covid-19
crisis. (A) The upper panel shows the counts of men and women present in the defined
area. (B) The lower panel shows the gender ratio of the counts. The overall counts are
unaffected from the lock-down, but the gender ratio changes from being from female-
biased to equality.

compositional data analysis, we show that formerly hidden information becomes available:
we see that the elderly population groups increase relative mobility. The younger groups,
especially on weekends, do not decrease their mobility as much as the others.

Traditionally, a comparison is made in terms of absolute information, i.e., the ROG
time series values of the different groups are analyzed in their unit of meters, such as
[RHH+21] - see Section 4.3.

An alternative is to compare relative information, for example the ROG of the males with
respect to females, or in terms of the ratio males to females. This leads to a dimensionless
time series, and to a different aspect of data analysis which emphasizes the differences
between the individual groups. A joint increase or decrease in both groups may not
lead to a big change of the ratio. On the other hand, the ratio will change if the values
of one group increase, and at the same time they decrease in the other group, or vice
versa. Here again, the relative change rather than the absolute change is important. For
example, if the ROG changes from 1000m to 2000m in one group, and from 2000m to
1000m in the other group, the ratio would change from 1/2 to 2. The same change could
be observed if the absolute values in both groups would be bigger by a factor of 10. Thus,
absolute values are no longer relevant in this consideration, because a multiplication by
any positive constant leads to the same ratio. This is still trivial in case of comparing
two groups, but it is no longer straightforward when relative information of several
groups, such as age classes, should be compared. Compositional data analysis is devoted
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4. COVID-19 mobility insights

to this problem of analyzing relative information [Ait86, PGETD15, FHT18]. In fact,
compositional data analysis is frequently used in geosciences, but also more and more in
other fields such as biology [ESS+20], bioinformatics [QERC18], economics [TMTAS19],
marketing [JC18], medicine [DPPA+20], etc.

4.4.1 Compositional data analysis primer
From the point of view of compositional data analysis, a composition is defined as
multivariate information, consisting of strictly positive values, where the absolute numbers
as such are not of interest, and only relative information is relevant for the analysis
[FHT18]. A composition can be given for example by the median ROG values of different
age categories for a certain day, and every age category is denoted as a compositional
part. We use the notation x1, . . . , xD for the compositional parts of D categories, and
the composition is written as the (column) vector x = (x1, . . . , xD)′. For every day
recorded in our data base we will observe such a composition, which in fact leads to a
multivariate compositional time series. The interest is in relative information in terms
of the ratios, and thus all pairs xj/xk, for j, k = 1, . . . , D, should be considered in
the analysis. Obviously, the pairs for j = k are not relevant, and pairs of the reverse
ratio xk/xj do not contain potentially new information. This motivates to consider the
logarithm of the ratios, ln(xj/xk), so-called log-ratios. The reverse ratios have a different
sign, and thus do not need to be considered, and their variance is the same as for the
original ratio. Moreover, the distributions of log-ratios tend to be more symmetric than
without a logarithm [PGETD15].

Still, the resulting D(D−1) pairs ln(xj/xk), for k > j, only live in a subspace of dimension
≤ D − 1 [FHT18], and thus it is natural to aggregate this information. Consider an
aggregation

y1 = 1
D


ln x1

x2
+ . . . + ln x1

xD


= ln x1

g(x) , (4.1)

where

g(x) = D

D

j=1
xj

is the geometric mean of the composition x. Then, y1 represents all relative information
about the part x1 to the other parts in the composition in a form of an average of the
log-ratios. This leads to the definition of so-called centered log-ratio (CLR) coefficients
[Ait86]

y = (y1, . . . , yD)′ with yj = ln xj

g(x) . (4.2)

The vector y contains all relative information about x in the above sense. It consists of D
components yj which are associated with the relative information about the corresponding
part xj . However, it turns out that y1 + . . . + yD = 0, and thus a representation of data
in terms of CLR coefficients leads to singularity [FHT18]. Although there are ways to
circumvent this issue [FHT18], we will proceed with CLR coefficients for the following
analysis for simplicity.
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4.4. Relative changes of mobility and call duration

Consider now a multivariate compositional time series xt = (xt1, . . . , xtD)′, for the time
points t = 1, . . . , T , and the observations xtj for each part j ∈ {1, . . . , D}. The time
series expressed in CLR coefficients is yt = (yt1, . . . , ytD)′, with ytj = ln(xtj/g(xt)), with
the geometric mean g(xt) = ( D

j=1 xtj)1/D per time point. Since this data representation
only reflects relative information of the time series, an additional visualization of the
absolute time series values can be interesting to get a more complete picture.

The CLR coefficients result in multivariate data that can be analyzed with the traditional
multivariate statistical methods [FHT18]. A prominent way to represent the information
in a lower-dimensional space is to use principal component analysis (PCA). Since PCA is
sensitive to data outliers or inhomogeneous data, robust versions have been proposed,
also in the compositional data analysis framework [FHT18]. The resulting loadings and
scores are commonly represented in a biplot to get an overview of the multivariate data
[AG02].

4.4.2 Compositional analysis of mobility
The results reported in this Section refer to the median values of the ROG per group.
To begin with, Figure 4.11 A shows the absolute values for the females (top) and males
(bottom) for different age groups as a reference to better understand the utility of the
relative analyses. The legend indicates the considered age groups: 15 for age 15-29, 30
for age 30-44, 45 for age 45-59, 60 for age 60-74, and 75 for age elder than 75. For all of
the following time series plots, the vertical dashed lines indicate the date March 16th,
2020, when the restrictions came into action, and the date April 6th, 2020, when they
were relaxed. The data considered here are from the period February 1st until August
9th, 2020. The plots clearly show the lock-down by an abrupt decay of the median ROG
values in all age classes for both genders. After the lock-down, the order of the values
remains the same, from the eldest group with the smallest values and the youngest group
with the highest values, but it is on a much smaller level. The level then increased more
or less systematically until the middle of June. Afterward, the level is not changing a lot,
it is lower than at the beginning, and weekly patterns are clearly visible. Note that these
weekly time series patterns that are very regular at the beginning are getting somehow
distorted, partially also due to holidays (April 13th, May 1st, May 21th, June 1st, June
11th), and they never get back to this regularity. Figure 4.11 B focuses on the relative
information contained in the median ROG values. We consider the female age groups and
the male age groups separately as two compositions. The plots show the corresponding
CLR coefficients for females (top) and males (bottom). While in Figure 4.11 A we have
essentially seen a decline of all values at the beginning of the lock-down phase, followed
by an increase, we did not pay attention how differently the age groups declined and
increased. This is the purpose of the relative view in Figure 4.11 B, where we mainly
investigate the developments of the age groups to each other.

In both plots of Figure 4.11 B we can see roughly the same pattern after the lock-down:
the biggest relative changes are visible for the youngest and the oldest age group, but
they go into different directions. While group 15 had the biggest decline, group 75+
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Figure 4.11: A: Median ROG values for different age groups over time for females (top)
and males (bottom) in different age groups.; B: CLR coefficients of median ROG values
for the female (top) and the male (bottom) composition.
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4.4. Relative changes of mobility and call duration

increased the values relative to the other age groups. This seems to be counter-intuitive,
but it can be explained by the fact that the geometric mean also went down significantly,
and the ratio of the values of group 75+ to the geometric mean then even increased after
the lock-down. Another interesting phenomenon is that the groups 60 and 75+ show the
biggest increase in mobility (in a relative sense) during the weekends in this lock-down
period. Although on a different level, the values from July show a similar structure to
those from February. It is interesting to note that the youngest age group 15 shows a
somehow mirrored weekly pattern compared to the elder age groups. This is not visible
when looking at the absolute values in Figure 4.11 A. Relative information could also be
understood in terms of data proportions. In particular, one could compute the proportion
of a group on the total per time point, which in fact corresponds to normalizing the data
per time point to a value of 1. Such a proportional presentation is shown in Figure 4.12
for the ROG values of the female age groups. Obviously, the information contained in
this representation is different from CLR coefficients which focus on log-ratio information.
One can hardly see any differences between the lock-down period and the remaining
period, and thus this kind of “relative view” is not valuable for the analysis.
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Figure 4.12: Proportional presentation of the median ROG values for the female age
groups. For each time point, the data are normalized to a value of 1.

The median ROG values for the female and male age groups are analyzed in the following
with PCA. Here, the method ROBPCA [HRV05] is taken, a robust version of PCA which
downweights outlying observations. Figure 4.13 shows the biplot of the first two principal
components (PCs) for the clr coefficients. The coloring is according to the time phases:
green before the lock-down, pink during the lock-down period, purple after lock-down
until mid of June, and light-blue after this period. The left biplot for the females identifies
these four periods as clear clusters, while there is more overlap visible in the right biplot
for the males. For the females, the direction of the first PC (71% explained variance)
shows a transition of the relative ROG values from the young generation (f15, f30) before
lock-down to the old (f75) one during lock-down, and then back to the center. Thus,
younger and elder females show a contrasting behavior in this time period, which was
already observed in Figure 4.11 B (top panel). The second PC (21% explained variance)
shows also differences between the time periods, but it also reveals weekend effects.
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Figure 4.13: Biplots of the CLR coefficients of the median ROG values for females (left)
and male (right) age groups. Green color for period before the lock-down, pink for
lock-down period, purple after lock-down until mid of June, and light-blue after this
period.

Especially on Sundays, the mobility for group f15 was bigger before and after lock-down,
but it moved to group f75 during the lock-down phase.

The data structure in the biplot for the males (right plot) looks a bit different, but leads
to similar conclusions. PC1 explains 69% and PC2 25% of the variance. Groups m75 and
m15 have a similarly diverging behavior of Sunday mobility as observed for the females.
The weekdays of the lock-down phase are in the center of the distribution, while for the
females they were clearly moved towards group f75. On the other hand, the weekdays
in the first time period (February 1st - March 15th) are better distinguishable from the
weekdays of the last period (June 15 - August 9); a possible explanation is the fact that
the working male population changed the mobility behavior more significantly than that
of females due to home office.

A contrasting view is revealed in Figure 4.14, which shows the robust PCA results for
the absolute values of ROG, for females (left) and males (right). In both analyses, PC1
explains 98% of the variability, and this direction essentially reflects the big change of
the ROG over this time period. Otherwise, there is not much information left in these
analyses, which reflects the limited usefulness of absolute information if the task is to
compare age groups.

4.4.3 Compositional analysis of interaction
Figure 4.15 investigates the median call duration, reported in seconds, again for the two
genders and the age groups. The absolute values are shown in the upper plot jointly for
males and females. Here we observe the reverse ordering of the age groups compared
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Figure 4.14: Biplots of the (absolute) median ROG values for females (left) and male
(right) age groups. Green color for period before the lock-down, pink for lock-down
period, purple after lock-down until mid of June, and light-blue after this period.

to the plots for the ROG values: the lowest values are for the youngest group, and the
biggest for the oldest group. The values of the females are systematically higher than
those of the males. It is interesting to see that the call durations already started to
increase one week before the lock-down. While the ROG time series had their peaks
during the weekend, we have the opposite here. This pattern, however, seems to change
after the lock-down for group f75 (uppermost line), and it went back to normality only
later on.

The bottom plot of Figure 4.15 presents the CLR coefficients, which are separately
calculated for females and males, but presented here jointly for easy comparison. Although
the absolute values of the youngest age group also increased with the lock-down, the
increase was smaller compared to the other groups, which is reflected by decreasing CLR
coefficients. The pattern of f15 and m15 has also an interesting structure: Before the
lock-down, the groups had quite different behavior within their gender-group, but during
the lock-down phase they became quite similar. From June on, they show again a similar
behavior as at the beginning. Another interesting phenomenon can be seen after the
lock-down: the two oldest groups show a contrary behavior to the other groups during
the weekends. Their decline in call duration during the weekends was much smaller than
that of the other age groups.

Figure 4.16 presents biplots of a robust PCA for the CLR coefficients for the female
(left) and male (right) age groups. The coloring is taken as in the previous biplots, green
before lock-down, pink during, purple after lock-down, and light-blue from June 15th

onwards. PC1 explains 72% of the variability for the females, 54% for males, and PC1
and PC2 together explain about 98% variance in both cases. The different groups which
are visible in the biplots are essentially weekend-effects or affects due to the lock-down.
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Figure 4.15: Median values of call durations per gender and age group over time (top),
and clr representations separately for female and male age groups (bottom).

These grouping effects are essentially caused by the youngest and oldest age groups.
When comparing the first observed time period with the last one, we can find quite clear
differences in the corresponding PCA scores. These differences are essentially caused
by the changing contrasting behavior between the youngest group and the elder groups;
groups f75 and m75 (and also m30) do not seem to contribute to this difference. A possible
explanation is the exploration of alternative methods for communication, especially for
the elder groups.

Interactions between source and destination

It can be recorded who is actively calling a person, and who is receiving a call. The
former person is called source, and the latter destination. Here we investigate the median
ROG values for the different age groups of the females and males. However, the data set
is more complex, because a person from a specific age group can be the source, while
the destination can originate from a different age group. Moreover, both source and
destination will have specific median ROG values.

Figure 4.17 illustrates these data for four specific cases: source f45 (f45_src) with
destination f75 (f75_dst), and source f75 (f75_src) with destination f45 (f45_dst). In
both cases, the median ROG values can be taken from the source group or from the
destination group, see also figure legend. Throughout the whole period (here from
February 1st - July 26th), the median ROG values from the source groups (solid lines)
have slightly higher values than those of the destination groups (dashed lines) for the
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4.4. Relative changes of mobility and call duration
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Figure 4.16: Biplots of the CLR coefficients of the median call duration values for females
(left) and male (right) age groups. Green color for the period before the lock-down, pink
for lock-down period, light-blue after this period.

same age classes, which can be expected because people from the source groups might
call from a place outside their usual environment. While the lines are on a similar level
at the beginning and at the end of the considered period, the weekly periodicity changes,
probably caused by the summer holidays.

0
50

0
10

00
15

00
20

00
25

00

R
O

G

20
20

−0
2−

02

20
20

−0
2−

09

20
20

−0
2−

16

20
20

−0
2−

23

20
20

−0
3−

01

20
20

−0
3−

08

20
20

−0
3−

15

20
20

−0
3−

22

20
20

−0
3−

29

20
20

−0
4−

05

20
20

−0
4−

12

20
20

−0
4−

19

20
20

−0
4−

26

20
20

−0
5−

03

20
20

−0
5−

10

20
20

−0
5−

17

20
20

−0
5−

24

20
20

−0
5−

31

20
20

−0
6−

07

20
20

−0
6−

14

20
20

−0
6−

21

20
20

−0
6−

28

20
20

−0
7−

05

20
20

−0
7−

12

20
20

−0
7−

19

20
20

−0
7−

26

f45_src − f75_dst
f45_dst − f75_src
f75_src − f45_dst
f75_dst − f45_src

Figure 4.17: Median ROG values for the female age groups f45 and f75, depending
whether they actively call (src) or they passively receive the call (dst). For example, line
f75_src – f45_dst refers to the median ROG values for females in age group f75, actively
calling females in age group f45.

In the following analyses we are interested in the similarity of the relative ROG values in
terms of correlations, before lock-down (February 1st – March 15th) and after (March
16th – May 31th). In order to investigate relative information, the CLR coefficients are
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Figure 4.18: Correlations of the CLR coefficients for median ROG values for the female
age groups (1 to 5, referring to 15 to 75+), when they are actively calling (src) or passively
receiving a call (dst), recorded before March 16th, 2020 (left), and afterwards (right).

computed for a composition with all 25 age combinations of the source-destination groups
and all 25 age combinations of the destination-source groups, separately for females and
males. Figure 4.18 shows the resulting correlation matrix for the females as a heat map,
left for time points before the lock-down, and right after lock-down. The row and column
labels are referring to the group numbers. For example, src1-3 refers to the time series
f15_src – f30_dst, or dst5-1 is the series f75_dst – f15_src. The heatmaps show that
the correlation structure before and after lock-down has clearly changed. Afterwards,
there are more blocks with higher (absolute) correlations, and thus more similarity or
dissimilarity between certain age groups. In general, there is a more pronounced difference
after lock-down in the mobility behavior between the younger and the elder age groups.

4.4.4 Incorporating spatial location in compositional analyses
The mobile phone data also contain information about the location, in our case about
the Austrian political district in which the phone has been used. The Austrian regions
had different restrictions during the lock-down phase, and in particular people from
all districts in Tirol had the strongest movement restrictions. Thus, in Figure 4.19 we
compare the median ROG values for Kitzbühel, a district in Tirol, and Zell am See,
which is also a rural district but located in Salzburg. The absolute values of the female
age groups are shown in the upper plots, while the CLR coefficients are presented in the
lower plots. Since the same scale is used along the vertical axes, one can clearly see the
difference in mobility during the lock-down period in Kitzbühel and Zell am See, and this
is also visible in the CLR coefficients. For Kitzbühel, there is much smaller variability of
the values during lock-down, and also the relative differences between the age groups
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Figure 4.19: Median ROG values for Kitzbühel (left) and Zell am See (right) as absolute
(top) and relative (bottom) information.

become much smaller. The change in the relative differences is not so pronounced for Zell
am See. This means that also from a relative point of view, the data structure changes
completely in Kitzbühel due to the restrictions.

Figure 4.20 focuses on the male age group m30, and compares the composition of all
districts in Tirol with that of all districts in Salzburg. The dashed lines refer to the
district capitals (Innsbruck and Salzburg, respectively). These districts behave differently
compared to the other districts which are rural with many people commuting to their
work place. The values of the districts in Tirol (except Innsbruck) get closer to each
other after lock-down, and they start to diverge only in the middle of April. This may be
explained by a similar mobility behavior of the m30 group within this period, probably
caused by home-office or reduced working time. This seems different in districts of
Salzburg, where the CLR coefficients show more variability after lock-down.

4.5 Summary
In this work, we described the changes in human mobility in Austria during the lock-down
with regards to the SARS-CoV-2 pandemic using near-real-time, anonymized mobile
phone data. We discussed mobility changes for very confined regions such as metro
stations, airports or single villages, as well as regional and national changes. The results
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Figure 4.20: CLR coefficients of median ROG values for the male group m30 in all
districts of Tirol (top) and Salzburg (bottom). The capitals are shown as dashed lines.

showed that the announcement of restrictions led to a dramatic reduction in human
mobility in the whole country.

For all the movement metrics we consistently observed a reduction. This reduction is
followed by an increase in modularity, as communities decompose into clusters. A similar
observation can be made in the other direction as the mobility subsequently recovers.
However, for the POI based indicators we cannot observe such a recovery.

Our analyses could be improved if data with a better accuracy were available, such as
based on triangulation. Other limitations apply as well: we only analyze data from a
single big ISP, its regional market share might vary. Furthermore, we localize the data
only with the coarse cell-id. As a result, in rural areas the accuracy is in the range of a
couple of kilometers, whereas for a city usually approximately 500 m. In certain rural
areas there might be no cell tower coverage at all. Moreover, people from time to time
leave their phone at home, which would not generate movement in our data set even
though people are moving.

Furthermore, standardizing on a (sub-)set of the presented measures would allow compar-
ison between network providers in the same country or between multiple countries. This
would improve over the analyses of the European commission [SSS+20, ISS+20] where
inconsistencies between different countries are mentioned. Additionally, limitations of
this study such as the daily re-anonymization of the data could be lifted to perform a
long-term evaluation of the impact of a pandemic on mobility.

The COVID-19 pandemic represents a unique natural experiment to understand individual
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4.5. Summary

and collective coping mechanisms with respect to stress and crisis. Telecommunication
data reveals almost real-time insights into many aspects of daily life without interfering
with the subjects’ actions and interactions. Using anonymized mobile phone data of a
large fraction of the Austrian population, we find that gender differences that can be
observed in communication patterns, mobility, and spending leisure time are amplified
during the crisis, imposed by a severe lock-down in the first phase of the COVID-19 crisis.
In the context of basic provisioning, we find indications that during the crisis there exists
a bias toward men doing the shopping for food that is absent in normal times.

For both genders we observe an increase of total call duration, which is due to an increase
of the call time per call and, interestingly, a decrease in the number of calls. This is a
clear sign that communication becomes more focused and intense. This finding is in line
with a general decline of the number of communication partners during the lock-down,
suggesting a focus on a core of communication partners. The reduction of communication
partners could result from the loss of conversation partners from work, however, we also
observe a reduction on weekends, where one would not expect effects from professional
contacts. The degree distribution before the crisis is in line with earlier work on mobile
phone data [OSH+07]. While they find a mean degree 2.34 (averaged over 18 months), we
get a smaller value of 1.53, presumably, because we average over 24 hours. However, we
find the same power-law exponent, ∼ −8, for the degree distribution. In these quantities
we see a clear increase and amplification of the gender-biases.

Women show a smaller decrease in the number of calls and a stronger increase in call time
per call. As a consequence, the gender ratios of the respective quantities shift towards
females. Women have been reported to have more tightly knit (online) networks than men
[ST13, ITY05]. We interpret our findings as a signal that this behavior intensifies during
crisis. The tightening of the social network can also be attributed to social carework,
such as calling lonely elderly, which was reportedly performed more often by women
during the lock-down [Pra20]. In previous studies, women were reported to employ more
active, problem-oriented coping strategies such as emotional and social support, while
men show rational and detachment strategies in response to everyday stress [Mat04] and
during a community crisis [BZZ96]. This, again, supports the expectation that women
seem to tighten their social networks more than men.

We find that the recovery time to women’s total call time initially is as fast as for
men, but later, clearly slows down. The increase of demand for communication can be
interpreted in the context with higher needs for communication as a coping strategy in
an ongoing crisis [BZZ96, Mat04]. It also aligns well with the fact that women experience
more stress than men [MAH+09], have higher levels of post traumatic stress disorder
[SWF00], and have a higher prevalence to depression, partly due to “stress responsiveness”
[PB10]. For the COVID-19 pandemic, similar results have been reported. For example,
a study in Spain found that women showed more symptoms of depression, anxiety and
PTSD, more feelings of loneliness, and less spiritual well-being when compared to men
[AGSCM20]. Our result could be confounded by gender differences introduced by work
environments. However, increasing gender-ratios in call times per call and the number
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4. COVID-19 mobility insights

of calls on weekends are indicators that the confounder indeed weakens the effect on
weekdays.

The age stratification of call times and the number of calls seemingly suggest that younger
cohorts communicate less than older ones. We attribute this to a higher proportion of
instant messaging services [TMJ+16] and other modern communication channels in the
younger cohorts. Here a channel selection bias towards younger cohorts using web-based
communication services more actively acts as a severe confounding factor.

The female population is moving less over the entire period, confirming earlier work in
different countries and contexts [GTP+20, PSHS08]. The decrease in mobility, following
the lock-down is stronger for women. In addition, men recover their mobility behavior
much more quickly after the measures are lifted. This effect depends on age. For the
young and adolescent population the existing gender-bias in mobility is enhanced, while
for those above retirement age the bias reduces. We relate this to childcare duties
during the reproductive age and gender specific differences in occupation. Unequal
distribution of childcare work has been a large concern at the beginning of the pandemic
[IS20, Vig20, OEC20]. Several studies identified it as a driver of gender inequality
[MWNM20, Gra20]. Our data supports this hypothesis as the gender ratio is significantly
(MWU p<0.0001) more equal after the school openings in phase VI. Occupational
differences become apparent in the unemployment numbers at the beginning of phase
III, where the increase for women was 8.7% larger than for men (women +67,5%, men
58,8%)[Arb20].

In addition to care-taking duties and occupational differences, the literature suggests an
additional effect: Women have been shown to exhibit more ethical behavior, at least where
it is socially desirable, while men often behave less community-aware [BOS89, DO11].
For women, it has been shown that they are 50% more likely to adopt non-pharmaceutical
interventions in response to a respiratory epidemic [MDV16]. In this context, the reduction
of mobility in women could be partly attributed to responsible behavior in staying at
home to protect vulnerable parts of the population. This argument is supported by
a qualitative panel survey, that reports women taking the COVID-19 pandemic more
seriously in Austria [ELPK20, KKB+20].

Since it seems that men move more for work-related issues and are more often responsible
for gathering basic provisions during the lock-down, they are more exposed to the
perceived danger of catching SARS-CoV-2. One could speculate that this might be
a sign of higher risk-taking behavior in men, in line with several previous arguments
[Gus98, BMS99, ST13]. For a conclusive clarification of this matter, obviously, more
research is needed.

Generally, gender differences in mobility decrease on weekends. We confirmed that the
radius of gyration is larger for men because they commute more/farther [GTP+20]. This
suggests that a main factor for our observed behavioral changes is indeed employment.
Further evidence for this hypothesis is found in the fact that only for the 60+ age cohort
the gender-ratio does not change between weekends and weekdays. Nevertheless, the
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4.5. Summary

effects discussed above persist on weekends and our conclusions remain valid.

By analyzing relative changes using compositional data analysis methodologies formerly
hidden insights can be identified. In this work of analyzing mobility during the COVID-19
lock-down measures we see that certain age-groups of the population (elderly, young during
weekends) do restrict mobility less than other members of the population. Especially for
the elderly which are at high risk of infections potentially additional reminders should
be sent to adhere to the interventions. Similarly, for the young groups on weekends
additional reminders to use mouth nose protection could be useful.

We find that that for both genders we observe an increase of total call duration, that the
recovery time to women’s total call time initially is as fast as for men, but later, clearly
slows down. The decrease in mobility, following the lock-down is stronger for women. In
addition, men recover their mobility behavior much more quickly after the measures are
lifted.
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CHAPTER 5
Reconstructing supply networks

from mobile phone data

Remarkably little is known about the structure, formation, and dynamics of supply
and production networks that are one foundation of society. Neither is the resilience
of these networks understood, nor do we have ways to monitor their ongoing change
systematically. Systemic risk contribution of companies was hitherto not quantifiable
since supply networks on the firm-level did not exist except for a very few countries.
We use readily available telecommunication data to reconstruct nationwide firm-level
supply networks in almost real-time. We find the conditional probability of observing
a supply-link, given a communication-link exists, to be about 90%. The resulting
networks allow us to reliably quantify the systemic risk of individual companies and thus
estimate a country’s economic resilience. We identify 65 companies that could potentially
cause massive damages. The method can be used for objectively monitoring change in
production processes which might become essential in the green transition.
Even though possible, inter-firm or organisational networks have so far not been studied
systematically with mobile phone data.

5.1 Estimating supply networks from mobile phone data
Bilateral interactions between the agents in an economy lead to networks that dom-
inate practically all aspects of the economy, ranging from networks of production
[FA10, DMR15], finance [BEST04], distribution [KKGB10], consumption [DGFP20],
and recycling [SS97]. Networks are not only the basis of the efficient functioning of the
economy. They are also the source of some of its implied risks and, in particular, systemic
risk, or the risk that a large fraction of networks stop to function and do no-longer fulfil
their function. Remarkably, the understanding of the economy in terms of its underlying
networks has not arrived at mainstream economics [Art21].
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5. Reconstructing supply networks from mobile phone data

For about two decades, systemic risk has been associated with network structures and
ways to quantify it are nowadays available.The main idea behind the quantification
of systemic risk is to estimate the economic or financial consequences of a defaulting
node or link in a given network on the entire system. The fraction of the total system
affected is typically associated with the systemic risk of a node or link. Knowing
the systemic risk contributions of agents offers a way to quantify the resilience and
robustness of a system. The first networks available to research were financial networks
such as networks of inter-bank claims and liabilities [BEST04], or of overnight money
markets [IDMP+08]. Systemic risk in these networks was first quantified with network
measures like betweenness centrality [BST04], which were later improved by explicitly
incorporating economic default mechanisms and the associated accounting procedures
[BPK+12, TP13]. Further extensions involved multilayer networks [LBR14, PMBMJ+15],
overlapping portfolios [PPT21, CS19], in the context of financial networks, as well as
some applications in the real economy [FTFS16], and lately, also in production networks
[IT19, DBR+21].

Systemic risk in mainstream economics has often been discussed not on the basis of
networks [AB11, APPR17], but on financial time series data that obviously can’t account
correctly for cascading processes. It is precisely the cascading that leads to extraordinary
large effects that are often associated with the fat tailed distributions of losses [MB19].
The default of Lehman Brothers in 2008 [Hal09, Lon10], the 2008-2010 global food crisis
[dWK+16] and, more recently, world wide supply chain disruptions due to the COVID-19
pandemic [RL20, MT21] are only a few examples of severe events in financial markets,
basic provision, or production networks, where cascading plays an essential role.

A network-based quantification of systemic risk makes it possible to identify the weak
points in these systems and consecutively allows one to design mitigation strategies, for
example an adaptive systemic risk tax to reduce the systemic risk in a banking system
[PT16, LT17] or the computation of optimal networks that carry a minimum of systemic
risk [DPT20, PPT21]. However, the computation of systemic risk requires the detailed
understanding of the structure and dynamics of the underlying networks, which hitherto
posed a major challenge [BL18].

This is particularly true for systemic risk in production networks. Only for very few
countries buyer-supplier relations are known on a granular level of individual companies
from which the supply-chain networks can be constructed. For Hungary value-added
tax (VAT) data exists that specifies which company pays VAT to another. From this
the exact national supply-chain network has been reconstructed [BS+20], containing
more than 89,000 companies and 235,000 business relations (links). Using estimations
for production functions for these companies makes it possible to obtain the national
production network. Using this as an input, firm level systemic risk for all individual
companies were computed by using an appropriately designed SR measure, the Economic
Systemic Risk Index (ESRI) [DBR+21]. It is a network-based measure to estimate the
fraction of the total production output (goods and services) of the economy that is
affected by a firm’s (short-term) failure.
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5.1. Estimating supply networks from mobile phone data

Figure 5.1: (a) Schematic view of the inter-firm multilayer network with a communication
layer (blue) of phone calls between groups of devices that are associated to firms and the
supply layer that captures the actual flow of goods (orange). (b) Section of the multilayer
network where communication links, cij , exist if at least one phone call between firms i
and j takes place and supply links, sij , exist if goods flow from i to j. (c) Conditional
probabilities between supply links and communication links are defined as the probabilities
to find a supply link, conditional on a communication link being present, p(s|c). (d)
The inter-firm communication network as provided by a mobile phone company. Arcs
link firms that have an average call duration of more than 150s/d. Firms are slightly
dislocated randomly, enough to ensure the anonymity of companies.

However, the Hungarian data is an exception. Granular and exhaustive data sets on the
supply network of an entire nation are notoriously hard to obtain. Data exists only for
a handful of countries, Japan [FA10], Belgium [DMR15], Brasil [SAT20], and Hungary
[BS+20]. Customer-supplier relations are inferred either from surveys and business
intelligence [FA10], payment system data [SAT20], or VAT data [DMR15, BS+20]. Survey
data is typically very costly to collect and suffers from being outdated, highly incomplete,
unweighted, and hard to verify [BL18]; on the other hand, payment system and tax data
–in countries where it is collected– is sensitive and access is highly restrictive.

Here, we propose an alternative approach to reconstruct the supply-chain network by using
the multilayer network structure of firm-to-firm relations. We assume that companies that
communicate with each other also entertain customer-supplier relations. We thus focus
on two network layers, the flow of goods and services that constitute supply relations
and the mobile phone communication between companies. Figure 5.1a schematically
depicts the two-layer network. The communication layer (blue) shows the mobile devices
belonging to one firm, calling devices in other firms. The supply layer (orange) represents
the flow of intermediate products (or services) between firms. In Fig. 5.1b we show the
same situation by showing a communication link cij (blue) between firm i and j if they
had at least one phone call within a certain time period and a supply link sij (orange) if
goods or services flow from firm i to j. Note that communication links are undirected,
supply links are directed.
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5. Reconstructing supply networks from mobile phone data

The coordination of a customer-supplier relation, such as ordering, negotiating prices,
or organizing shipping, requires communication between firms and has been studied
intensively [HLC04, PLC08]. We thus expect the existence of strong link-correlations
between the communication and supply layers. From the multilayer network in Fig. 5.1b
we define the conditional probability, p(sij |cij), to find a supply link, sij , between firms
i and j given that a communication link, cij , exists, and vice versa, the conditional
probability, p(cij |sij), to observe a communication link given that a supply link exists,
see Fig. 5.1c.

Figure 5.2: (a) Probability p(s|c) to find a supply link, sij , given that there exists a
communication link, cij , between firms i and j for communication links exceeding a
given call duration, d̄ij . Error bars denote the quartiles of a bootstrap simulation.(b)
Cumulative distribution function p(ki > k) for the degree k of the RSN (blue dots),
HSN (orange x’s) and HCN (green pluses). The degree distribution of the HSN is much
more similar to the RSN than the HCN. Errorbars denote the quartiles of a bootstrap
simulation.

Through a cooperation with a large mobile phone provider we have access to a dataset
of CDRs in a medium-sized European country that allows us to identify groups of
phones that are associated with a company through anonymized billing information,
for details, see [RHD+22]. The dataset contains additional information on the firm’s
primary industry classification and balance sheet information. In Fig. 5.1d we show
the corresponding firm-to-firm communication network (FCN) as obtained from our
data. Firm locations are shifted by random distances (on average 30km) to ensure the
anonymity of companies. Arcs in the figure represent communication links between
firms. We find many short-range interactions within one city or economic region and
few long-range interactions. We are intentionally vague with regards to information
concerning the mobile phone provider because we are contractually bound to ensure its
anonymity, as well as to protect sensitive business information such as the exact market
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5.2. Description of the estimation process

share in the business-to-business market.

Here we demonstrate that phone data can indeed be used to reasonably reconstruct
supply networks that allow for a meaningful estimation of firm level economic systemic
risk of an economy. The method is an efficient alternative to survey, tax, or bank
transactions estimates. It uniquely allows us to study supply networks and monitor
economic systemic risk in real time and provides a nearly complete overview of a nation’s
production network.

5.2 Description of the estimation process
The anonymized (but fine-grained, device-level) call detail record (CDR) data is mapped
to an anonymized ID for each company. The observation period is approximately 125
days in autumn 2020 between two lockdowns. The obtained edge list is aggregated for
the whole observation period, grouped by each source/destination, anonymized firm ID
tuple and the call duration (in seconds) for each arc is summed up. Further, node-level
statistics i.e. the number of devices is aggregated.

The firm communication dataset is merged with a commercially available business
intelligence database that includes balance sheet information the industry classification
in the NACE 2008 system [nac06]).For analysis, we drop NACE J61, J62, M70, and N82
to exclude businesses such as call-centers that have telephone activity at the center of
their business and would confound the study with exceptionally high numbers of calls.

To compare the reconstructed supply network (RSN) with a real supply network we use
a dataset based on granular VAT reporting in Hungary (HSN), described in [BS+20,
DBR+21]. It contains a link between two firms only if at least two transactions occur
in two different quarters. We use the data from 2017, where only transactions with
a tax content larger than 1,000,000 Forint (approx. 3000€) are included. Hungarian
VAT rates range from a 27% base rate to a 18% and 5% reduced tax rate for certain
foods, pharmaceuticals, etc. and a 0% rate for public transport [Del15]. The calculations
presented here are based on an unweighted version of the Hungarian production network.

We further compare the topology of the FCN with a human-to-human communication
network (HCN). To this end we use a dataset provided by the same phone provider. It
contains CDRs of calls between individual mobile phones which are anonymized with a
new key every 24 hours. For this reason we can only analyze the HCN of one day. We
choose September 17, 2020, a Thursday during the observation period outside of the
holiday season and before the winter lock-downs. On that day we find 144,516 active
devices and 154,557 calls.

We use input-output tables containing information on how many intermediate goods or
services were used for the overall production of a certain good in a national economy in a
given year. We use the input-output table of 2017, it is the latest available of the country
studied. It contains 64 sectors in the CPA classification (Classification of Products by
Activity [cpa08]), which is harmonized with NACE 2008 on level 2.
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5. Reconstructing supply networks from mobile phone data

5.3 Conditional supply-link probability.
We determine the conditional supply-link probability p(s|c) by comparing the firm
communication network, shown in Fig. 5.1d, with ground-truth information on the
real customer-supplier relations, obtained from a nationwide survey in April 2020. In
the online survey more than 100,000 companies and businesses were asked to share
their ten most critical suppliers and customers, respectively. More than 5,900 firms
declared at least one supplier or customer with a total of more than 17,000 customer-
supplier relations reported. For details on the survey see [RHD+22].We obtain the overall
probability that a supply link exists between two companies, given that they had at least
one conversation event in the observed period of approximately 150 days, is p(s|c) = 0.19.
For the conditional communication probability we get p(c|s) = 0.27. For comparison,
the respective marginal probability from the firm communication network directly is
p(c) = 0.002. For the linking probability ––using Hungarian data–– we get p(s) = 0.00005.
Since both values are orders of magnitude smaller than the conditional probabilities,
highly significant link correlations between the supply and communication layers are
indicated.

The conditional link probability increases with the intensity of the firm-firm communi-
cation. As a proxy for the latter we use the average daily call duration, d̄ij , in seconds
per day. In Fig. 5.2a p(s|c) is shown as a function of d̄ij (red). The number of links
used to calculate the overlap is shown in blue. p(s|c) rises from 19% to values around
70% for d̄ij = 30s/d and around 90% for 60s/d. The number of links reduces from 75 to
14 links as d̄ij increases. Note that errors do not increase, because a higher probability
is associated with a smaller error. For details of the computation and errorbars see
[RHD+22].

For the supply network (p(c|s)) the best proxy for tie strength would be the amount of
traded goods. However, this information is not available, so we estimate the link weight
as the product of the firm’s sizes. Here, to stay consistent on the communication data,
we proxy the firm size with the number of devices associated with a firm. We find an
increase from 27% to around 60% for the network of firms with 4 or more devices. For
thresholds larger than 4, the curve levels off and stabilizes around 70% for thresholds of
6 or more devices. The thresholds were chosen based on a distributional analysis of the
data.

5.4 Reconstructing the supply network.
For obtaining an estimate of the supply network, based on the FCN, we chose d̄ij = 30s/d,
with the aim to balance the loss of information due to ignored supply links and increasing
link correlations due to the thresholds. This particular threshold is the result of a
minimization of the Kullback-Leibler divergence for degree distributions of the HSN
and thresholded FCNs.We arrive at an unweighted and undirected reconstructed supply
network (RSN). To get an estimate for the link directions (firm i supplies j or vice
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communication

versa), we use classical input-output tables of the national statistical office. They contain
information on the volume of trade between economic sectors in the economy. An element
of the input-output table, Gab, describes the flow of goods (in Euro) from sector a
to sector b. We denote the number of links (firm-firm supply relations) from sector a
to sector b by Lab and assume that the ratio of links from one sector to the other is
proportional to the ratio of goods flowing between these sectors, Lab/Lba ≈ Gab/Gba.
For example, the flow between the agricultural sector (a) and the food industry (f) is
Gaf ≈ 3, 400me, while the food industry sold goods for Gfa ≈ 450me to the agricultural
sector. We now assume that it is 3, 400/450 ≈ 7.6 times more likely that a supply link
points from a firm a to one in f . We now consider every link from firm i in sector a to
firm j in sector b in the RSN and assign it a direction according to the probability

p(i → j) = Gab

Gab + Gba
. (5.1)

Since we perform this assignment stochastically, we should think in ensembles of RSNs.
Finally, we estimate a supply-link weight for every link in the RSN. We use the companies’
total assets, calculated from the balance sheets, as size information, si; it is obtained
from a commercially available business intelligence database, see Materials and Methods.
Following the philosophy of “gravity models” in economics, we assume that large and
small firms typically trade large and small volumes, respectively [And11]. Therefore
we obtain a link weight estimate between firms i and j as the product of firm sizes,
Wij = sisj . We will use only relative weights in the following.

5.5 Comparing network topologies of supply-chains,
firm-firm communication, and human communication

It is enlightening to compare the network topology of the so-obtained RSN (blue) with
the topologies of the Hungarian supply network (HSN) (orange) (for which exact topology
is known [DBR+21]) and the private communication network between individual people
(green) (i.e. not between companies). Figure 5.2b shows the degree distribution of the
RSN (blue) in comparison to the exact Hungarian supply network (HSN) derived from
VAT data [BS+20]. Both networks are similar and fat tailed, in contrast to the human
communication network (HCN) that was obtained from the mobile phone data set. The
RSN has an average degree of ⟨kRSN ⟩ = 4.79. Its degree distribution has a maximum at
kRSN = 2 and its fat tail can asymptotically be approximated by a power law exponent
αRSN

k = 2.18(12) for kRSN > 30. The HSN does not show an increase for small k but
also exhibits a fat tail with αHSN

k = 2.40(3), for kHSN > 30. The average degree is
⟨kHSN ⟩ = 2.1. For the HCN we find an average degree of ⟨kHCN ⟩ = 4.75. There the
decrease of p(k) for high values is stronger, with an exponent of αHCN

k = 4.89(26) for
kHCN > 20.
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5.6 Economic Systemic Risk

With a reasonable reconstruction of the supply network, RSN, we turn to the quantification
of economic systemic risk in the national production network in work with Tobias. For
quantification we use the economic systemic risk index (ESRI) as developed in [DBR+21];
see the publication [RHD+22] for details.

We find 65 firms of high systemic risk to mainly belong to the manufacturing sector
(NACE lvl. 1 category C, 77%), followed by companies in the electricity, gas stream and
air conditioning supply (D, 8%) and financial and insurance activities (K, 6%) sectors.In
contrast to the exact Hungarian production network [DBR+21], several companies from
non-manufacturing sectors (NACE ≥ 45) are found in the plateau. This is somewhat
unexpected since they are associated with linear production functions, which causes their
shock spreading behavior to be less extreme than for Leontief producers.

5.7 Robustness of results

Our study is subject to several limitations, in particular (i) the imperfect overlap of
the two communication and supply-link layers, limiting the possible accuracy, (ii) the
limited market coverage of the phone provider (resulting in limited agreement even if
p(s|c) = 1), and (iii) errors originating from the network reconstruction uncertainties in
the estimations of directions and weights.

To estimate the biases and errors introduced by these weaknesses, we perform several
simulation studies. First, we generate a synthetic communication network based on the
HSN and the probabilities to find a communication link, where a supply-link is present
p(c|s), and where no supply-link is found p(c|¬s). From this synthetic communication
network we then take a sample of nodes according to an estimated market share m of
the data provider and calculate the induced subgraph comprised by links only between
the sampled nodes.

Finally, following the procedure used on the empirical data, we reconstruct a supply
network from this synthetic communication network and calculate the ESRI. We calculate
Spearman’s rank correlation coefficient, ρ, between the ESRI as calculated on the full,
real HSN and on the reconstructed subgraph. After repeating these steps for 100 times
with m = 1/3, p(c|s) = 0.21 and p(c|¬s) = 9.3 × 10−5, we find an average Spearman
correlation of ⟨ρ(ESRIHSN , ESRIreconstr)⟩ = 0.563(6). We find that the most relevant
effect is caused by the limited market share with a drop of correlation of ∆⟨ρ⟩ = 0.31,
followed by the limited overlap, adding another, ∆⟨ρ⟩ = 0.13. The effects from network
reconstruction reduce the correlation by only ∆⟨ρ⟩ = 0.0004, which is remarkably small.
We calculate the probability that a node that is among the 0.1% riskiest nodes of the
subsample is also among the riskiest 0.1% of all nodes and find 32.9(82)%. The probability
that one of the top 0.1% of the subsample nodes is among the top 1% of the full network
is 47.7(99)%.
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5.8 Discussion
We show that mobile phone metadata can be used to reasonably reconstruct the flow
of goods between firms in an economy, i.e., the supply network. The reconstruction is
possible because of the similarity of the communication- and the supply layer of the inter-
firm network. This method is one of the very few alternatives to obtain a comprehensive
view on national supply network, when there is no VAT or payment system data.

Based on the supply network we calculate economic systemic risk and find that a small
core of about 65 high systemic risk firms have the potential to affect large parts of the
economic activity. Apart from these core firms systemic risk of companies is generally
small. These results agree well with the previous results for Hungary, where a core
of 32 high systemic risk firms was found to contribute to 45% of the overall systemic
risk [DBR+21]. With a series of robustness checks we demonstrate the reliability of the
results.

Using a large-scale survey on the actual customer-supplier relationships between compa-
nies, we find the probability of a supply link to exist, given an existing communication
link as p(sij |cij) ≈ 0.19. When thresholding for higher interaction strength of the com-
munication relation p(sij |cij) the conditional probability increases strongly to 92%. Note
that the survey asked for the firms’ most critical suppliers. It is almost certain that in
the FCN we observe connections to suppliers that are perhaps important but were not
classified as essential in the survey, causing p(sij |cij) to be underestimated. Landline
phones are still common practice in many firms; these communication links are not
covered, thus further underestimating the overlap of communication and supply links.

We find that the degree exponents of the reconstructed supply network, αRSN
k ≈ 2.18,

and the exact Hungarian supply network, αHSN
k ≈ 2.40, are similar; the degree exponent

of the human-human communication network is much larger, αCN
k ≈ 4.89. Also for the

average nearest neighbor degree and the local clustering coefficient the topology of the
RSN is more similar to the topology of the exact HSN than to the HCN.

We showed that the FCN and the HSN are most similar when thresholding communication
strength to dij > 30s/d. We sample supplier directions using external information on
companies’ industry sectors and from input-output tables. Link weights are estimated by
the product of firm sizes. Future improvement of the reconstruction method could be
reached by using additional information contained in the FCN, such as asymmetries in the
calling behavior, temporal patterns in the sequence of calls, as well as using dependencies
of supply link weights on communication intensity.

The method has several limitations. We systematically investigate the error introduced
by the imperfect overlap of the communication- and supply layers, the limited market
share of the mobile phone provider, and the reconstruction of the link directions. In
a simulation study we find an average rank correlation between the true ESRI in the
HSN and the ESRI on a carefully simulated synthetic firm communication network of
⟨ρ(ESRIHSN , ESRIreconstr)⟩ = 0.563. The limited market coverage and the imperfect
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link overlaps contribute most of the effect. We expect ⟨ρ(ESRIHSN , ESRIreconstr)⟩ to
be higher in reality since it is based on the estimate for p(s|c) that is a lower bound.
Further, despite the limited correlation, our method allows us to capture heterogeneity in
shock spreading well and uncovers the localized effects of up- and downstream cascades
on the firm level that traditional methods such as input-output models cannot describe.

There are also three limitations that could not be addressed explicitly. First, firms use
many more communication channels than mobile phones such as landlines, e-mail or
physical mail, and a growing number of new interaction channels, such as social media
or online portals. Nevertheless, we assume that, if the supply relation is sufficiently
strong, firms become more and more likely to use mobile phones to arrange spontaneous
meetings, inform partners about delays, coordinate the quality, quantity and timing of
deliveries, fix dates, provide support, etc.

Second, due to the anonymity of the telecommunication data it is not possible to perform
targeted surveys on the customers of the phone provider. To reach significant overlap
of the survey respondents and the customers of the phone provider, untargeted surveys
need a response rate of a considerable fraction of firms within a country.

Third, another consequence of the anonymity of the data is that –by definition– firms
cannot be identified and concrete policy statements can only be made on the level of the
network. However, within the anonymity constraints, the effect of heterogeneous shocks
in relation to economic sectors and geography can still be investigated. This is important
since recent work has shown that heterogeneity in the initial economic shocks can cause
dramatically different economic outcomes [IT19, DBR+].

Since mobile phone data is easily available, the presented method to reconstruct a national
production network is cheap, scalable, and easily implemented. It can be used for countries
where no tax or survey data is available. The method also captures international links
which allow us to identify economic exposures to specific countries. Maybe one of the
most interesting features of the method is its temporal resolution, supply relations can be
monitored in real-time. This offers the possibility to study how firm-ties form and rewire
on the network-level. Monitoring the restructuring processes of the economy during
natural disasters or economic crises are immediate areas of application and could become
crucial for monitoring the progress of the green transition, where production networks
have to transform such as to no longer produce greenhouse gases.
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CHAPTER 6
Identifying the root cause of cable

network problems with machine
learning

Good quality network connectivity is ever more important. For hybrid fiber coaxial
(HFC) networks, searching for upstream high noise in the past was cumbersome and
time-consuming. Even with machine learning due to the heterogeneity of the network
and its topological structure, the task remains challenging. We present the automation
of a simple business rule (largest change of a specific value) and compare its performance
with state-of-the-art machine-learning methods and conclude that the precision@1 can
be improved by 2.3 times. As it is best when a fault does not occur in the first place,
we secondly evaluate multiple approaches to forecast network faults, which would allow
performing predictive maintenance on the network.

Hybrid fiber coaxial (HFC) networks deliver internet connectivity directly to end cus-
tomers. Unfortunately, their reliability can be poor [BBF18, GPS+13]. The network
contains separate channels for up (US) and downstream (DS) signals. The US signal of
the HFC network refers to data that is transferred from the customer up to the central
root node. In contrast, the DS part refers to the opposite direction of the signal, i.e.,
commonly used for downloads from the internet. In particular, for a problem related
to the US channels, a fault usually affects only a single or limited group of customers.
It relatively quickly spreads in the whole region of the network named fiber-node area.
Therefore resolving such a problem fast and without disrupting connectivity further is
essential. However, at the partnering internet service provider (ISP), the field technicians
currently perform a binary search to identify the root cause of the problem by discon-
necting certain amplifiers. This means that not only is a considerable amount of time
spent searching for the device, which is the root cause of the incident, the search process
itself temporarily disrupts the service for other customers.
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The cable industry suggests using proactive network measurements (PNM) to diagnose
problems. But the sheer volume of proactive alarms overwhelms the technicians as
PNM data generically suggest areas of improvement and not the root cause of a specific
incident.

Over time, implicit business knowledge has been built up to define a rule by the partnering
ISP, but so far could not be executed automatically. We use it: Largest transmission
power change before the incident – as a baseline when comparing our results. We
demonstrate that by developing machine-learning enhanced models, precision can be
improved over this baseline. This allows to 2.3 times better (measured by precision@1)
direct the technicians and faster resolve high noise faults in the network. Such faults are
sometimes referred to as common path distortion (CPD).

This problem is particularly interesting as normal behavior is different for each network
region. The topological structure of the network as defined in Section 6.2.1should be
included in the modeling approach.

In principle, it would be even better if a fault could be predicted before a field technician
needs to be dispatched and customers observe degraded or unavailable service. Therefore,
we develop a prediction pipeline for network faults to showcase the potential of predictive
fault detection.

Our research question is (I) to evaluate whether machine learning enhanced models can
steer technicians better to a given root cause of a high noise incident and (II) whether
a future incident indicated by an overly high codeword error ratio can be predicted in
advance.

6.1 State of the art
For a given high noise incident we use machine learning models to steer technicians to
the root cause of the incident.

The scientific literature focuses on issues in the DS path of the signal [ZSR20, ZS17],
identification of anomalies [ZSR20], prediction of hotline calls from incident tickets and
telemetry [HZY+20, Eck21] spectral analysis of the telemetry data for fault detection
[RW18, ZMLZ10], collection of better quality data [TH20] directly from the cable modems,
generic network data analysis with neural networks [FHS+20]. Tool vendors in the
industry offer software solutions for individual and manual spectral-analysis-based failure
analysis for specific devices. However, too many warnings are created. Additionally,
technicians are not guided to the root cause of an incident as these systems generate too
much data to obtain detailed information for the whole network in real-time.

In addition to the US data used in [HZY+20] we furthermore utilize the DS PNM data
in our study as features for the various models. The publications [Eck21, HZY+20] are
trying to predict customer interactions on the hotline (based on generic faults), whereas
we identify the actual root cause for any US high-noise-related incident automatically.
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The authors of the tool CableMon [HZY+20] observe that they can predict approximately
80% of trouble tickets that would lead to a call. Eckert [Eck21] observes a similar result
when using autoencoders.

However, here for the high noise root cause detection, we are in a different setting: Instead
of only identifying an anomaly, we need to exactly pin-point the root cause of a given
high-noise incident where often many cable modems start to act anomalously at almost
the same time.

6.2 Problem description
In the following Section follows a description of the topological architecture of HFC
networks as well as physical details of the problem.

6.2.1 HFC architecture
The HFC network resembles a tree-like hierarchy. An example is visualized in Figure 6.1.
Often the network was built over a long period. Usually, some operators were bought
and merged in this process. This contributes to further technical heterogeneity of the
individual network segments (hubs). Hubs represent the physical structure of the network
region. Commonly the devices in such a region were built together at the same time
with the same technology and configuration. Interestingly, some regions in the country
are worse than others. The root node of a hub named cable modem termination system
(CMTS) contains several fiber-node areas which are connected using optic-fiber. Thus,
these connections are highly reliable and in any case of failure, it is simple to identify
the exact point of failure. The area of each fiber-node limits any signal interference. A
fiber-node - typically using many line- and distribution amplifiers and potentially splitters
- connects the last mile to the network. The last amplifier before a final consumer, i.e.,
the house, is named the last line amplifier. Based on coaxial copper cables, in particular,
corrosion can badly influence the quality of the connections as parts of these networks
are many decades old now 1.

PNM is recommended to improve fault resolution by the cable industry. Monitoring
tools deployed in the industry can generate many proactive alarms. The sheer volume
of proactive alarms can be overwhelming for the technicians. Therefore, even though
included in the Data Over Cable Service Interface Specification (DOCSIS) standard since
2005 [Cab], dealing with PNM data remains a challenge as the recommendations for
best practices and software deployed in the industry work with manually configured
thresholds [Cab, WHTG]. These are often used statically and tailored to use cases such
as general proactive network maintenance. Although the problems identified by PNM
data indicate faulty network connections, they are not directly related to any specific
customer disruption. As a result, these identified problem notifications might deliver too
many findings to be handled for a specific incident. As there, the task is to identify the

1https://calcable.org/learn/history-of-cable, accessed 11th of September 2021
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Figure 6.1: Overview of the architecture of an HFC network from [HZY+20].

root cause quickly, given the limited human resources of the technicians. Furthermore,
the proactive PNM alarms of a HFC plant monitoring system do not resemble any kind
of predictions for maintenance, rather only minor (=non-outage) faults, which could
indicate the need for maintenance in the specific network elements if they frequently
occur in a region of the network. In other words: PNM data can be helpful to proactively
gradually improve the quality of the overall network, but this data does not offer the
clue for a specific incident. In particular, PNM data does not outline which device is the
root cause of any specific incident. However, this information would be needed to guide
technicians when the fault resolution process should be improved. Accurate root cause
indications have to be created with manual effort and this leads to the problem that this
cannot be fulfilled with the available human resources of technicians.

6.2.2 Fault characteristics
High noise caused by CPD (Common Path Distortion) is an upstream distortion that is
typically generated by corroded contact surfaces on a loosely tightened connector. An
example is shown in Figure 6.2.x For the specific high noise problem characteristics, it is
essential to understand that US channels (i.e. frequency bands) are shared. Therefore, a
fault initially affecting only a single device on a specific frequency channel can quickly
spread within the network region and in extreme cases destroy any connectivity in the
whole fiber-node area. Unlike downstream faults, where tracing these to a common
specific point for technicians to fix, the upstream channel becomes more complex in case
of problems as many cable modems can depict anomalous behavior in such a scenario at
almost the same time.

In a normally functioning US channel, each cable modem sends the signal to a common
point at the top of the cable network (CMTS) without any disruption. The modems may
not transmit on the same frequency at the same time. The CMTS uses the DOCSIS
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Figure 6.2: Damaged connector and loosely tied F-connector (partly due to corrosion):
Upstream high noise is typically created by corroded contact surfaces or loosely tied
connectors. Technicians of the ISP supplied these visualizations of corrosion.

protocol to control which modem is allowed to transmit at what time and frequency using
the Time and Frequency Division Multiplexing (TaFDM) protocol. In case of disturbance
on the US channel, any disturbance is transmitted onwards to the common point at the
top of the network as coaxial cables are vulnerable to interference. Therefore, a single
disturbance can negatively affect the DOCSIS signal for all modems in this fiber-node
area or even make them unusable. The downstream signal contains many different
frequency bands. These do mainly affect the US but also the downstream signal behind
the corroded connector. In typical coaxial networks, this effect occurs at network points
with a sufficiently high downstream signal where the US signal is relatively lower than
the downstream. Thus, the disturbance affects the upstream more than the downstream.
The term High Noise has become established as it forms a characteristic picture. An
example is found in Figure 6.3. It materializes as a noise floor in the spectral domain
due to the huge amount of frequency bands participating in the fault.

Technicians are faced with the challenge of not knowing which point in the network
the disturbance is coming from. The current fault finding process is as follows: A
technician has to go through the network and identify where the fault is coming from
on the path through the network to the root cause by conducting a binary search. To
make matters worse, the problem is often unstable and the technician cannot complete
troubleshooting. Only when the source of the problem is found, the process of fixing
the fault can be initiated. The main disadvantage is not only that technicians spend a
lot of time troubleshooting, but that many customers are affected by the problem and
that during the binary search procedure by the technicians to identify the root cause,
additional customers might be affected.

In the following, we outline how the root-cause searching process can be improved by
automating a simple rule-based classifier and utilizing machine learning enhanced methods.
Secondly, we present a fault prediction method to prevent faults from happening in the
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Figure 6.3: Only the upstream channel is visualized. A noise floor is created by the vast
amount of frequency bands participating in the incident. The x-axis is the frequency of
the signal and the y-axis is the signal level for each frequency. The yellow scenario (with
the green marker) denotes a case with correct SNR, whereas the black scenario visualizes
the noise floor (with the red marker) for reduced SNR. The blue line represents the basic
DOCSIS user data frequencies (carriers).

first place ideally.

6.3 Dataset description

In this section the various data sources are detailed: From the raw telemetry data of the
cable network monitoring tool to the generated alarms and the issue tickets that field
force technicians are using when making any changes to the network or fixing a problem
in the network.

6.3.1 Telemetry data

The telemetry information is collected on multiple levels: each cable modem reports data
per each channel using simple network management protocol (SNMP) polling, but also
the CMTS collects similar data. However, the cable-modem-based data might not be
available in network outages for particular modems. The following are stored, in the
raw form for each channel of each modem (MAC address), separately for both up- and
downstream, with hourly resolution including a timestamp: signal to noise ratio (SNR),
a cable modem transmission power (Tx power), the received signal power (Rx power),
codeword error ratio (CER) and corrected CER (CCER). For the downstream, additional
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micro reflections (m-reflection, impedance mismatch on the cable affecting the signal)
are available.

6.3.2 Alarms
The network operating center (NOC) stores alarming events for each device in Elastic-
search. For each device, the start and end of the alarm are noted.

6.3.3 Truckroll-tickets
contain a free form text field for the notes of the technician, category of the incident,
processing time and a free form text field for the amplifier causing the incident.

We developed a parsing logic here to extract the amplifier(s) which were identified as the
root cause by the technician. Due to inconsistent naming of the amplifiers in different
network regions and the process of parsing a free form text field, unfortunately, we are
not able to utilize all tickets. The tickets are filtered to contain high-noise-relevant tickets
already only.

6.3.4 Topology
Geospatial coordinates (location) for each amplifier as well as the path between the
various amplifiers to the fiber-node.

The ground truth labels denote a root cause at a specific topology level. We decided to
only accept accurate root cause identifications as valid labels, which denote an individual
amplifier (on the lowest level) as the root cause. As the telemetry data is initially
provided on the level of the fine-grained frequency bands where many belong to an
individual amplifier, we decided to aggregate the data to the topological level of the last
line amplifier. Due to the sheer size of telemetry data for the whole country of the ISP we
choose to use Apache Spark (version 3.1.2) [ZCDD12] to perform the aggregation. During
this aggregation process, the anonymity of the subscribers is ensured and we only ever
receive anonymized data for our study. Here, after linearly interpolating missing data
for each device, we compute descriptive statistics (mean, std, min, max), change ratio
(current/previous) and relative changes ((current-previous)/previous) for each feature.
Additionally, we consider a sliding window of 4 hours and calculate the change there
as the difference between the largest and smallest value in each window instead of the
difference between the current and previous observation. This data aggregation process
is depicted in Figure 6.4.

We are evaluating a total of approximately five months of data (2021-02-25 – 2021-07-25).
After the aggregation process, we consider 26069 last line amplifiers in the dataset, where
some participate in multiple incidents.

An incident can become more severe (as more devices are affected). We need to aggregate
the individual device-level alarms to the whole fiber-node as high-noise-related incidents
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Figure 6.4: Data pipeline overview. For each labeled incident, a dynamic state (session
window) of 72 hours before each incident is obtained.
Using the available data, alarms and truck-roll tickets are correlated using a temporal

join.

often affect many devices. We need to have the global beginning and end of the incident.
The global alarm time window is then used for a temporal join with the truck roll
tickets as, unfortunately, no direct link between an incident, incident ticket, truck roll-
ticket and the corresponding telemetry data was established before. Furthermore, only
high-noise-related alarms are filtered for this specific use case.

With the alarms and parsed truck-roll tickets we can obtain ground truth labels for
each incident. For each incident, we obtain a session window where one or more last
line amplifier is marked with the label denoting a root cause for this particular incident.
Figure 6.5 depicts an example case of the classical Tx spikes before a high noise incident
that matches the positive class label.

As we need to identify the root cause for a specific incident, we can only keep incidents
where a label is available in our dataset. 796 root cause amplifiers remain labeled
from the ground truth data from 7 network regions for 457 unique fiber-node areas and
672 truckroll tickets. This means that for some tickets ≥ 1 offending (= root-causing
amplifier) are suggested in the ground truth data. In total, we obtain 796 positively
labeled amplifiers out of a total of 26069 for an amplifier identified as the root cause of a
high noise incident. The remaining data are kept as negative examples. This makes the
dataset highly unbalanced with regard to the target labels.
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Figure 6.5: Given network alarms (in red) and truck-roll tickets we perform a multidi-
mensional sessionization on the telemetry data. 72 hours before an incident are kept as
training data. The root cause label (defined by the truck-roll ticket as ground truth in
blue) is used to identify the offending amplifier. The y-axis contains the various amplifiers
participating in the schematic incident session window. The line of the amplifier causing
the incident is highlighted in brown.

6.4 Data Preprocessing

The network as described in Section 6.2.1 contains two crucial levels in the network’s
topology: hubs and fiber-nodes.

For most statistical models, numeric distances between the features are important. As
the quality, if the network is different in each region differs, we must normalize the data
in a way that we can learn from and compare all incidents taking both the physical effects
and error boundaries mentioned above into account, as a feature that is considered high
or anomalous in one region might be completely normal for another one. We propose
to double normalize the data: As discussed in Section 6.2.1, the devices in a hub have
similar physical properties, which can be handled using simple standardization (0 mean,
unit variance). When introducing the HFC topology we already explained that any
error is limited to the extent of each fiber-node area, Section 6.2.1. To make amplifiers
comparable across fiber nodes, we need to standardize again, now taking time into account
and do so for each of the 72 hours of session window for each feature, but standardize
only within the amplifiers related to this particular incident.

6.5 Models

Starting with a simple business rule as our baseline we compare various state-of-the-art
(SOTA) ML/AI-enhanced approaches.
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6.5.1 Baseline: business rule
Decades of knowledge of the technicians define a very simple business rule as follows:
Shortly before the incident, the largest upstream Tx change identifies the root causing
amplifier.

This rule has a significant advantage: It is dynamically adapting to the specific situation
of each incident due to choosing the largest change. Given two very different network
regions with different physical properties or quality, the largest change is still a fairly
reliable indicator for the amplifier causing the incident. Furthermore, this simple rule is
well understood by the technicians. In case fine-tuning is required, they can easily adjust
the cutoff parameters for themselves and instead of analyzing the top-1 (largest) change
they could consider the top-n.

As we will see later, when evaluating statistical machine-learning models, such dynamics
which is specific for each incident needs to be explicitly considered there as well during
evaluation.

6.5.2 Subgroup discovery
Using explainable models can increase the trust of the non-tech business stakeholders as
they can easily understand the inner workings. Singh et. al. [SNT+21] provide a package
with implemented models that might be able to replace black-box models with simpler
ones while improving efficiency and interpretability without sacrificing accuracy.

6.5.3 ML models
Logistic regression: A simple statistical baseline using a standard logistic regression
procedure, it is implemented in scikit-learn [PVG+11]. Lightgbm [KMF+17] is one
example for gradient boosted tree models which generally deliver good model fitting
performance and is fast to train. Unlike neural networks, it does not require extensive
fine-tuning. Compared to basic decision trees many trees are trained to improve the
overall model. However, unlike random forests where random trees are used to stabilize
and improve the results, gradient boosted trees are build that the next tree always best
reduces the loss function (error) of the so far existing trees.

We compare various neural network-based approaches as well. These are based on tsai
[Ogu20] as an implementation of various state-of-the-art time-series oriented architectures
based on fast.ai [HG20]. We use the models of tsai for our dataset and in particular,
adapt the data loaders for the sessionization and normalization as outlined above. For
any of the neural network models, we use the learning rate finder2 provided by the fast.ai
library to balance the speed of training and accuracy of the models whilst still improving
the performance of the models as there is a smaller chance being stuck in local optima.
LSTM long-short-term-memory is a traditional neural network architecture for time series

2https://sgugger.github.io/how-do-you-find-a-good-learning-rate.html
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handling [HS97] InceptionTime, is a recent SOTA architecture for time series [ILF+20].
TST BERT [DCLT18] and transformers revolutionized the field of sequence-based neural
networks. Only recently first adaptations of these models for temporal tasks have been
developed. The time series transformer (TST) [ZJP+21] is one such example. It is based
on [VSP+17, HRKA21] the domain of information retrieval.

Both text- and image-based domains were revolutionized when pre-trained models could
be used. This drastically decreased the required compute resources and datasets. For the
time-series domain, the classical pre-trained models cannot be used as they stem from a
completely different domain. Instead, we follow a self-supervised pre-training3 approach
by first training a BERT based model in unsupervised mode to create network embeddings
for our LSTM core; secondly, we use this pre-trained model in three scenarios: LSTM
self supervised (fine-tuning), LSTM self supervised (training), and LSTM self supervised
(train) + data augmentation training with the CutMix [YHO+19] data augmentation
strategy.

The hyperparameters of the models were optimized using Optuna [ASY+19] on a GPU-
equipped server.

6.5.4 (Ranked) evaluation of results
When evaluating the models we do not only perform a classical binary classification
evaluation, where for one particular observation a probability is emitted. Rather, we
classify a single incident session globally by obtaining the predictions of the model if any
amplifier is a root cause for the incident and then rank these predictions. The ranked
evaluation takes place in two stages: Firstly, the binary classification is performed by
the various models. Secondly, the output probabilities are ranked and a top-k evaluation
is performed. This is a deliberate decision as it enhances each of the models with the
dynamics of the particular incident and network region as mentioned in Section 6.5.1 we
could not account for otherwise. Empirically this proves to work well for all models as
we are in a ranking a task where the most probable root cause for each incident needs to
be identified when analyzing the precision@k, see Table 6.1.

6.6 Results
The discovered subgroups can be used to create rules which are easily understandable.
Interestingly, these statistically discovered rules align well with the business practice of
the field technicians. Showcasing the technicians that we can use these to derive their
business rule increased trust in our other modeling activities.

The results of the first raw (binary classification) evaluation are depicted in Figure 6.6.
The logistic regression is worse with regards to both precision and recall compared to

3https://github.com/timeseriesAI/tsai/blob/main/tutorial_nbs/08_Self_
Supervised_TSBERT.ipynb [Ogu20]
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Figure 6.6: Precision and Recall for the raw model outputs of the first binary classification
stage for each cross-validation fold.
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Figure 6.7: Comparison of models using precision@k (ranked). Any of the more complex
models deliver better results than the simple business rule for both top-1 and top-3
evaluation. LightGBM in particular performs best with a wide margin. Only a naive
logistic regression is worse than the business rule.

the business rule. Most of the other models (except LightGBM and LSTM) result in
higher precision. With regards to recall, none of the other models is better than the
business rule. However, the business rule baseline can achieve the high recall only with
very limited precision. In any real-world scenario when deployed at an ISP the human
resources of the technicians are limited to evaluate false alarms, therefore a high precision
is more important than recall as the technicians otherwise might lose trust in the technical
solution.

Furthermore, when reframing the task into a ranking task, where the most probable
root cause is identified, the superiority of the ML enhanced models clearly becomes
visible. The models are evaluated for a top-1 and any within the top-3 match. However,
for sake of brevity and increased precision, we only discuss the top-1 match when
comparing the results, as this is the variant that would most likely be used by an ISP to
minimize the workload overhead of the technicians induced by faulty recommendations.
Figure 6.7 depicts both cases for completeness. Detailed results for precision, recall and
the precision@rank-k are listed in Table 6.1. The simple business rule (largest Tx change
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6. Identifying the root cause of cable network problems with machine learning

precision step 1 recall step 1 precision @k false positives@k true positives@k
mean std mean std mean std mean std mean std

top-k model
1 lightGBM 0.032 0.004 0.894 0.078 0.902 0.072 14.8 10.918 136.4 10.502

InceptionTime 0.640 0.103 0.241 0.098 0.459 0.031 81.8 4.604 69.4 4.879
LSTM 0.130 0.022 0.579 0.009 0.442 0.018 84.4 2.966 66.8 2.588
LSTM, self supervised (train) + data augmentation 0.777 0.109 0.189 0.032 0.431 0.036 86.0 5.612 65.2 5.404
TST 0.586 0.068 0.286 0.039 0.421 0.028 87.6 4.393 63.6 4.037
LSTM, self supervised (fine tuning) 0.639 0.056 0.229 0.053 0.415 0.038 88.4 6.066 62.8 5.675
LSTM, self supervised (train) 0.537 0.069 0.272 0.034 0.392 0.039 92.0 6.000 59.2 5.891
business rule (largest tx change) 0.270 0.035 1.000 0.000 0.270 0.035 110.4 5.030 40.8 5.404
logistic regression 0.206 0.023 0.259 0.038 0.253 0.031 113.0 4.899 38.2 4.550

3 lightGBM 0.032 0.004 0.894 0.078 1.000 0.000 0.0 0.000 151.2 0.447
TST 0.586 0.068 0.286 0.039 0.569 0.016 65.2 2.387 86.0 2.550
InceptionTime 0.640 0.103 0.241 0.098 0.567 0.044 65.4 6.580 85.8 6.611
LSTM 0.130 0.022 0.579 0.009 0.562 0.031 66.2 4.658 85.0 4.583
LSTM, self supervised (train) + data augmentation 0.777 0.109 0.189 0.032 0.558 0.021 66.8 3.114 84.4 3.209
LSTM, self supervised (fine tuning) 0.639 0.056 0.229 0.053 0.552 0.026 67.8 4.087 83.4 3.715
LSTM, self supervised (train) 0.537 0.069 0.272 0.034 0.532 0.031 70.8 4.712 80.4 4.615
business rule (largest tx change) 0.526 0.037 1.000 0.000 0.526 0.037 71.6 5.683 79.6 5.459
logistic regression 0.206 0.023 0.259 0.038 0.382 0.029 93.4 4.506 57.8 4.324

Table 6.1: Summary statistics (mean, std) for the results of the various root cause analysis
models. Notice: The counts are aggregated high noise incidents. Each incident contains
a varying but high number of underlying amplifiers.

before the incident) results in a top-1 precision (on average for the cross-validation folds)
of 0.27. Any of the other more complex models deliver better results: In particular the
tree-based model LightGBM results in a top-1 precision of 0.902. The various neural-
network-based approaches differ in their precision only marginally (0.392 – 0.45) and
are additionally worse and more complex to interpret and computationally expensive to
train than LightGBM. Interestingly, LightGBM outperforms all the neural network-based
approaches in our comparison. Most likely the reason for this is that the amount and
quality of the training data is limited so far:

• quantity: we were only able to obtain ground truth labels for a limited area in the
network see Section 6.3.4 due to free form text field parsing

• quality: due to a missing id field in the various data sources connecting the alarm
and field-force ticket to an incident we need to perform a temporal correlation.

LightGBM has the advantage that the model training procedure is swift and allows
for more experimentation with regards to hyperparamters. Especially in an industrial
context where often AI is only an enhancing part of the overall process the optimization
of the hyperparameters can be performed very fast.

6.7 Discussion
The machine learning aspects are only part of a bigger use case. Hence, it is important
to understand the requirements of the ISP well in case it should be deployed in a scalable
real-time setting with integration into an existing processing landscape. Indeed, the simple
automation of the presented business rule will have the advantage of being most easy to
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get started with and transparent to the HFC technicians maintaining and operating the
network. However, as we have shown any of the other more complex models outperforms
this simplistic business rule by a wide margin: The best one, LightGBM, is more than
2.3 times better than the baseline.

To benefit most from these ideas, the ISP should further consider creating a heat-
map of the identified root cause devices over a more extended period of time. Thus
if repeatedly problems are identified in an area, technicians can be dispatched there,
perform maintenance and improve the overall quality of the network (not related to
any specific incident). This can be especially useful in case of hard-to-reproduce (flaky)
problems.

The suggested approach can be improved by making more and better quality data
available:

• generating more training data: Creating a structured ticket reporting instead of
free form text field parsing.

• collecting better quality labels: Currently, a temporal join is required to link the
telemetry data with the alarms and incident tickets. Instead one stringent equi-join
(id-based) identification of incident and label would further enhance the quality of
the labels available to the ML pipelines

In the long run, upgrading the infrastructure as suggested by [TH20] to result in better
measurements for individual cable modems leads to better data, but considerable market
invest and time are required for such a change. Perhaps as an intermediate step upgrading
the monitoring tool could be a more viable option: Other ISPs4 use monitoring tools
that intrinsically collect more data, which could further enhance the results if available.

Like in regular ethernet networks, [DS16] HFC could be inspired by some of the recent
advances in fault localization methodologies in internet-protocol (IP) based networks.

Enhancing the fault-finding process with machine-learning enhanced models can improve
the time to resolution as technicians do not need to follow a lengthy fault-finding process:
The best model LightGBM, improves precision@k more than 2.3 times over the baseline
for a kvof 1.

Furthermore, we have shown that predicting faults at future time steps of the network
can be helpful to prevent failures in the network before they show customer impact.

4https://medium.com/tele2techblog/great-insights-in-hfc-networks-from-pre-
equalisation-data-6b8cab2c1dab
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CHAPTER 7
Conclusion

In this thesis large scale datasets with a graph structure are analyzed to better understand
the real world and their abstract representation, such as behavioral changes in society or
technology. We demonstrate how such datasets can be used to solve societal problems.

7.1 Research question answers
We are now able to answer the main research questions:

• RQ1: How large is the impact of the NPI on mobility and calls? To what extent
can differences be observed in groups of the society formed by age and gender? We
find that that for both genders we observe an increase of total call duration, that
the recovery time to women’s total call time initially is as fast as for men, but later,
clearly slows down. The decrease in mobility following the lock-down is stronger
for women. In addition, men recover their mobility behavior much more quickly
after the measures are lifted. By analyzing relative changes using compositional
data analysis methodologies formerly hidden insights can be identified. We see that
certain age-groups of the population (elderly, young during weekends) do restrict
mobility less than other members of the population.

• RQ2: How well can supply networks be reconstructed from mobile-phone data? We
are able to construct supply networks from phone data. We find the conditional
probability of observing a supply-link, given a communication-link exists, to be
about 90% and hope to set the stage for a new area of research utilizing such
datasets for this purpose and extending upon our work.

• RQ3: How well can root cause analyses utilizing machine learning methods improve
over traditional rule-based approaches? We present the automation of a simple
business rule (largest change of a specific value) and compare its performance with
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state-of-the-art machine-learning methods and conclude that the precision@1 can
be improved by 2.3 times. As it is best when a fault does not occur in the first
place we secondly evaluate multiple approaches to forecast network faults, which
would allow performing predictive maintenance on the network.

7.2 Impact
Due to the global interest in researching the pandemic we participated in several collabo-
ration projects. Due to the inherent relevance for the public publications were featured
on blog posts, press releases1 and also national television.

7.2.1 Impact in other fields
Many contributions together with various collaboration partners in different fields were
created. The most notable ones are listed below:

• Varieties of mobility measures: Comparing survey and mobile phone data during
the COVID-19 pandemic [KSH21] Measures to reduce individual mobility are prime
governmental non-pharmaceutical interventions to curb infection rates during a
pandemic. To evaluate the effectiveness of these efforts, scientific research relies on
a variety of mobility measures that commonly stem from two main data sources:
survey-self-reports and behavioral mobility data from mobile phones. However,
little is known about how mobility from survey self-reports relates to popular
mobility estimates using GSM and GPS data. Spanning March 2020 until April
2021, this study compares self-reported mobility from a panel survey in Austria to
aggregated mobility estimates utilizing (i) GSM data and (ii) Google’s Community
Mobility Reports. Our analyses show that correlations in mobility changes over
time are high, both in general and when comparing different subgroups. Differences
emerge if subgroup differences are compared between mobility estimates. Overall,
our findings suggest that these mobility measures manage to capture similar latent
variables, but researchers should be aware of the specific form of mobility different
data sources measure.

• Meteorological factors and non-pharmaceutical interventions explain local differences
in the spread of SARS-CoV-2 in Austria [LKC+21] The drivers behind regional
differences of SARS-CoV-2 spread on finer spatio-temporal scales are yet to be
fully understood. Here we develop a data-driven modelling approach based on
an age-structured compartmental model that compares 116 Austrian regions to a
suitably chosen control set of regions to explain variations in local transmission rates
through a combination of meteorological factors, non-pharmaceutical interventions
and mobility. We find that more than 60% of the observed regional variations can
be explained by these factors. Decreasing temperature and humidity, increasing

1https://csh.ac.at/covid19
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cloudiness, precipitation and the absence of mitigation measures for public events
are the strongest drivers for increased virus transmission, leading in combination
to a doubling of the transmission rates compared to regions with more favorable
weather. We conjecture that regions with little mitigation measures for large
events that experience shifts toward unfavorable weather conditions are particularly
predisposed as nucleation points for the next seasonal SARS-CoV-2 waves.

• National-scale surveillance of emerging SARS-CoV-2 variants in wastewater [AME+22]
SARS-CoV-2 surveillance is crucial to identify variants with altered epidemiological
properties. Wastewater-based epidemiology (WBE) provides a complementary
approach to sequencing individual cases. Yet, national WBE sequencing programs
have not been widely implemented and data analyses remain challenging. The
collaboration partners deep-sequenced 3.413 wastewater samples representing 94
municipal catchments, covering >59% of Austria’s population, from December 2020
to February 2022. Our Variant Quantification in Sewage pipeline designed for
Robustness (VaQuERo) enabled us to deduce abundance of predefined variants
from complex wastewater samples and delineate the spatiotemporal dynamics of
circulating variants, including the variants of concern Alpha, Beta, Delta and
Omicron. These results were cross validated by epidemiological records of >311,000
individual cases, demonstrating the potential to apprehend the composition of
circulating variants from WBE. Furthermore, the partners describe elevated viral
diversity during the Delta variant dominated period, in contrast to the Alpha and
Omicron variants. Finally, the partners provide a framework to predict emerging
variants de novo and measure the reproductive advantage of variants of concern by
calculating variant-specific reproduction numbers from wastewater. Together, this
study demonstrates the power of national-scale WBE to support public health and
promises particular value for countries without extensive individual monitoring.

• Data Anonymization – The key to innovation [HC22] To open up opportunities for
innovation and to overcome the complex data protection hurdles that often prevail,
entrepreneurs are increasingly relying on data anonymization. We answer legal
and technical questions which arise about the effectiveness of the anonymization
procedure and suggest a probabilistic k-anonymizaiton procedure for anonymizing
high-dimensional data whilst retaining a high degree of detail.

7.2.2 Television and other media

In the introduction we stated that by analyzing data about society, research can have an
impact in the real world. Our COVID mobility analyses were featured multiple times
on national broadcast television as well as national and international news coverage.
We hope and also are confident that such feedback loops provide value to society. In
particular, the following press announcements and policy briefs were covered in the media:
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• Regionalized low incidence strategy2 By introducing exit tests for regions of high
incidence we observe a reduction of the growth factor by 6% and for regions close
by for 3%.

• Do lockdowns wear off?3 During the first lockdown in Austria, beginning on March
15, 2020 streets were empty. On average, people moved 70% less than usual,
according to anonymized mobile phone data. During the summer, mobility was still
20% down compared to 2019. The second nationwide lockdown, which started on
Nov 17, 2020 still reduced mobility by around 60%. In the midst of the third hard
lockdown—beginning at Christmas and reinforced by the mandatory use of FFP2
masks and two-meter distancing (replacing the 1 meter "baby elephant") people
move around almost as much as in the weeks before lockdown 3 started.

• How did the 4th Lockdown affect mobility in Austria? 4 It becomes apparent that
with the beginning of the 4th lockdown mobility decreased at a much steeper rate
than during the weeks before. However, the mobility reduction has not yet reached
a level as low as mobility during the 2nd lockdown in 2020. It remains to be seen
how the situation will develop.

7.3 Future work
Future topics which could be investigated in more detail, were partly covered or could be
extended upon:

• A potential future study could analyze co-movement patterns, identify human
contacts and subsequently, determine the effect of (non) social distancing [HLW+20]

• Geo-spatially correlated supply chain shocks Natural disasters, such as large floods,
are predicted to become more likely in the next decades as a consequence of rising
temperatures due to global climate change. Therefore, it becomes increasingly
important to improve the assessment of the economic implications of such disasters.
We propose approaching this challenge by combining a model for the localized effects
of a flood, the spatial footprints of companies, and a model for shock spreading
on the firms’ supply network. The flood model will provide an area that would
be flooded in the event of a given magnitude (e.g. 100-year event). If this area
overlaps with the footprint of a company, we can assume that the company will
receive an economic shock.

2https://www.csh.ac.at/wp-content/uploads/2021/04/2021-April-CSH-Policy-
Brief-Ausreisetests.pdf

3https://www.csh.ac.at/lockdowns-and-mobility-in-austria/, https://
www.csh.ac.at/wp-content/uploads/2021/01/2021-01-25-CSH-Policy-Brief-
BewegungsradiusUpdate.pdf

4https://www.csh.ac.at/lockdown-for-unvaccinated-mobility-in-austria/,
https://www.csh.ac.at/wp-content/uploads/2021/11/2021-11-26-CSH-Policy-Brief-
Mobilitat-Herbst-2021-final.pdf
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• With increasing complexity of the COVID-19 crisis in 2022 due to more complex
containment policies, test concepts, vaccinations, virus variants and immunity
waning, agent-based epidemic models slowly start to outperform their macroscopic
compartmental counterparts. Although highly limited by long computation times,
these models could have the potential of correctly depicting the current epidemiolog-
ical situation. Nevertheless, their application is not without controversy since their
validity strongly depends on the model for the geo-spatial contact process. Showing
that the latter is correctly depicted is a highly challenging task. One could pursue
a highly flexible approach for modelling contacts in epidemiological agent-based
models based on contact locations and origin-destination matrices. Using the OD
matrices we have calculated in this thesis a future publication could derive the
speed of propagation of the virus and mutations as well as the calibration of an
agent-based simulation of COVID like [BRU+20] by correlating the mobility flows
with sequenced wastewater analyses.

z
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