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Kurzfassung

Die Matrixexponentialfunktion stellt eine Fundamentall:osung f:ur autonome Systemen li-
nearer Differentialgleichungen dar. Angewendet auf einen Startvektor l:asst sich damit die
Zeitentwicklung dieses Vektors f:ur einen gegebenen Zeitschritt berechnen. In der aktuellen
Arbeit betrachten wir schwachbesetzte Systeme von großer Dimension, welche sich h:aufig
aus der numerischen Behandlung von partiellen Differentialgleichungen (Evolutionsglei-
chungen) ergeben. F:ur solche Systeme ist eine direkte Auswertung der Matrixexponenti-
alfunktion nicht praxistauglich. Die Anwendung der Matrixexponentialfunktion auf einem
Startvektor l:asst sich aber effizient durch Krylov-Unterraum Methoden ann:ahern.
Solche Methoden sind Thema dieser Arbeit. Unter anderem betrachten wir Absch:atzung-

en f:ur den Fehler von Krylov-Unterraum Verfahren zur numerischen Zeitintegration. Damit
l:asst sich die Dimension des Unterraums bzw. die Gr:oße von Zeitschritten des Verfahrens
steuern, um die numerische Zeitenwicklung mit hinreichender Genauigkeit zu berechnen.
F:ur verschiedene Arten von Systemen leiten wir auch neue obere Schranken f:ur die Fehler-
norm her, welche eine besonders zuverl:assige Fehlersch:atzung erlauben.

Ein weiteres Thema dieser Arbeit ist der Zusammenhang zwischen der Spektralzerlegung
des Startvektors und Spektralzerlegungen, welche sich aus der Projektion auf einen Krylov-
Unterraum ergeben. Der Fehler der betrachteten Verfahren zur numerischen Zeitintegration
l:asst sich :uber eine Spektralzerlegung des Startvektors darstellen, welche aber in der Praxis
nicht zur Verf:ugung steht. Absch:atzungen zur Spektralzerlegung des Startvektors basierend
auf Krylov-Unterr:aume k:onnen aber hilfreiche Informationen zum Problem liefern, z.B. um
rationale Matrixfunktionen zur numerischen Zeitintegration zu generieren, die relevante
Charakteristiken der L:osung besonders gut imitieren.
In dieser Arbeit betrachten wir auch das Konvergenzverhalten von Methoden zur nume-

rischen Zeitintegration von schief-Hermiteschen Systemen basierend auf rationalen Krylov-
Unterraum Verfahren. Die Struktur der Spektralzerlegung des Startvektors bleibt im ratio-
nalen Krylov-Unterraum teilweise erhalten. Bestimmte Charakteristiken solcher Systeme,
welche sich vorteilhaft auf rationale Ann:aherungen auswirken, lassen sich daher auch mit
Verfahren basierend auf rationalen Krylov-Unterr:aumen nutzen. Damit l:asst sich teilweise
ein von einer zugrundeliegenden Gitterdiskretisierung unabh:angiges Konvergenzverhalten
solcher Methoden erkl:aren.





Abstract

The matrix exponential represents a time evolution operator for a linear autonomous system
of ordinary differential equations. The action of the matrix exponential on a starting
vector yields its time evolution for a given time step. In the present thesis, we consider
sparse and large systems, which appear frequently in the context of discretized partial
differential equations of evolutionary type. In this setting, a direct computation of the
matrix exponential is not practicable. However, the action of the matrix exponential can
be efficiently approximated using Krylov techniques which are the topic of the present
thesis.

The first part of this thesis is mainly dedicated to error estimates for the Krylov approxi-
mation to the action of matrix exponentials. Error estimates provide a proper dimension for
the underlying Krylov subspace, or a proper choice of time steps such that the constructed
time propagator is sufficiently accurate. For various types of systems, we introduce upper
bounds on the error norm, which constitute most reliable error estimates.

Another topic of the present thesis is the relation between the spectral distribution
of the starting vector and spectral distributions which result from projection on Krylov
subspaces. The error of the discussed time integration methods can be represented by the
spectral distribution of the starting vectors, which is not accessible in practice. Estimates
on this spectral distribution based on Krylov subspace techniques can be of some use for
numerical time integration, e.g., to design rational approximants to the matrix exponential
which imitate specific characteristics of the exact time evolution.
In the present thesis, we also study the convergence behavior of rational Krylov approx-

imations to the action of the exponential of skew-Hermitian matrices. The structure of
the spectral distribution of the starting vector is partly preserved in the rational Krylov
subspace. Thus, specific characteristics of such systemts which are desirable for rational
approximation are also of some use for rational Krylov approximations. Such ideas yield
some insight on convergence behavior independent of a refinement of an underlying grid
discretization for such methods.
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1 Introduction

1.1 Disclaimer

This work consists of four main chapters, Chapter 2-5. Each of these chapters is written
in a self-contained manner including an individual introductory section.

Some of these materials have been published in parallel as a full paper or a preprint:

❼ The content of Chapter 2 has been published in [JAK20] and is cited literally in the
present thesis up to some editorial changes. The paper [JAK20], representing the
start of my scientific activity on Krylov methods in the context of the TU-D doctoral
program, was composed in collaboration with my advisor Winfried Auzinger (TU
Wien) and Othmar Koch (Universit:at Wien). This deserves some explanation: The
ideas about error estimates considered in this work originate from the specification of
the topic when co-applying for the TU-D program by my advisor. Moreover, Othmar
Koch was in parallel working on a related project on quantum dynamics granted by
the Austrian Science Fund (FWF), where adaptive Krylov techniques play also an
important role.

In this context I wish to emphasize that essential results in this work are based on my
personal ideas. This includes a new rigorous a posteriori error estimator, extension to
φ - functions, and the concept of effective order. I also have proposed and implemented
a practical stepsize selection strategy. The results were checked and verified by my
co-authors, including some technical modifications.

❼ Chapter 3 has been published in [Jaw22b] and is cited literally in the present thesis
up to some editorial changes plus Section 3.D which contains additional unpublished
material.

❼ Chapter 4 is also available online as an individual preprint at [Jaw22a]; these versions
are identical up to some editorial changes.

1.2 Overview and setting of Chapter 2

In this chapter we consider polynomial Krylov approximations to the action of matrix φ-
functions, i.e., the vector φp(σ tA)v ϵ Cn for p ≥ 0, a time step t, a complex phase σ ϵ C
with |σ| = 1, a given matrix A ϵ Cnxn and a given vector v ϵ Cn. This includes the action
of the matrix exponential eσ tAv, which corresponds to the case p = 0 with φ0 ≡ exp, and
yields a solution to linear systems of ordinary differential equations. For the case p > 0, the
φ-functions yield solutions to systems of inhomogenous differential equations and have some
relevance in exponential integrators. The polynomial Krylov approximation of φp(σtA)v
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1 Introduction

is based on the Krylov subspace Km(A, v) = span{v,Av, . . . , Am-1v} where m denotes
the dimension of the subspace. By explicitly denoting the complex phase σ, we aim to
simplify the notation in skew-Hermitian cases, e.g., the approximation of eitHv in the
Krylov subspace Km(H, v) which corresponds to the case σ = i and A = H for an Hermitian
matrix H. In the following we assume a non-expansive case, i.e., the numerical range of σA
is located in the left complex plane including the imaginary axis.

Throughout this chapter, our main focus is on a posteriori error estimates and upper
bounds on the error norm. We first recall a defect-based error representation for the
Krylov approximation of eσtAv. In the non-expansive case, this yields an upper bound on
the error norm via the defect integral, i.e., the integral of the absolute value of the scalar
defect. The scalar defect is closely related to divided differences of the exponential function
over the Ritz values, i.e., the eigenvalues of the representation of A in the Krylov basis.
Making use of properties of divided differences for the scalar defect, we derive a new upper
bound on the error norm which corresponds to the leading order term of the error norm
for a time step t - 0. We also recall an error representation based on an expansion in
φ-functions. The first term of this expansion is an asymptotically correct error estimate in
terms of the time step. We show that, for the Hermitian case, this term also yields an upper
bound on the error norm. Similar results are also derived for the Krylov approximation
of φp(σtA)v with p > 0 and the so called corrected Krylov approximation for the case p ≥ 0.
However, a defect formulation is not directly given for the case p > 0 in Chapter 2 (see
Chapter 3 for such results). For the approximation of the matrix exponential, we study
further a posteriori error estimates which can be understood as quadrature estimates of
the defect integral. In this concern, we derive a new error estimate which is based on the
effective order of the defect. The Krylov approximation of the matrix exponential can be
understood as a time integrator, and restarted accordingly. In this context, we apply error
estimates to adaptively choose proper sub steps in time or as a stopping criteria to avoid
using an unnecessary large dimension for the underlying Krylov subspace. We compare the
performance of different error estimates for these tasks using numerical experiments.

1.3 Overview and setting of Chapter 3

Similar to Chapter 2, we consider a polynomial Krylov approximation of φp(tA)v using
the Krylov subspace Km(A, v), where, in contrast to Chapter 2, the complex phase σ is
included in A to simplify the notation. In Chapter 3, we derive a formulation for the defect
of the Krylov approximation of φp(tA)v with p > 0, and a defect-based error representation
in this setting. A similar error representation was restricted to the case p = 0 previously.
Furthermore, we discuss effects of floating point arithmetic to the Krylov approximation
and we include round-off errors in the error representation.

Based on the defect formulation, we derive an upper bound on the error norm for the non-
expansive case with p ≥ 0, particularly, using the defect integral. With further treatment
of the defect integral, this results in computable upper bounds. We consider different cases:
For the case that Ritz values are real, e.g., when A is Hermitian, the defect integral can
be evaluated exactly in practice. For complex Ritz values this is not the case in general.
However, we derive a computable upper bound on the defect integral by neglecting the

2



1.4 Overview and setting of Chapter 4

imaginary parts of the Ritz values for the scalar defect. This result is based on properties
of divided differences of the exponential function. We also discuss the accuracy of this
upper bound on the defect integral using an asymptotic expansion of the effective order of
the defect.

Further error estimates can be ascribed to quadrature formulae applied to the defect
integral. In particular, the error estimate based on the effective order of the defect which
we derive for p ≥ 0 in this chapter, the case p = 0 is already covered in Chapter 2. We also
show that the effective order error estimate constitutes an upper bound on the error norm
when considering time steps close to an asymptotic time regime.

Furthermore, we study effects of clustered Ritz values on the scalar defect for time steps
close to an asymptotic time regime. This describes oscillatory behaviour of the scalar
defect, and has some relevance for quadrature estimates on the defect integral. Clustered
Ritz values can be ascribed to regularity of an underlying continuous problem.

We also derive practical stopping criteria for lucky breakdown which are based on a pos-
teriori error bounds. Various numerical examples illustrate the performance of the different
a posteriori error estimates discussed in this chapter.

1.4 Overview and setting of Chapter 4

In this chapter we consider a vector u ϵ Cn, and a matrix A ϵ Cnxn which is Her-
mitian w.r.t. a given inner product (referred to as M-inner product). The linear func-
tional f ,- (u, f(A)u)M can be understood as a Riemann-Stieltjes integral associated with
a step function αn. This step function is defined by eigenvalues of A and spectral coeffi-
cients of u, i.e., the coefficients in the M-orthonormal eigenbasis of A. The zeros and the
Christoffel numbers corresponding to orthogonal polynomials associated with the distribu-
tion dαn yield quadrature nodes and weights, respectively, of Gaussian quadrature formu-
lae for the respective Riemann-Stieltjes integral. The accumulated quadrature weights of
Gaussian quadrature formulae constitute bounds on the integral over the intervals between
the quadrature nodes. Classical results in this concern date back to works of Chebyshev,
Markov and Stieltjes and are referred to as Separation Theorem of Chebyshev-Markov-
Stieltjes (CMS Theorem).

We recall the relation between polynomial Krylov subspaces Km(A, u), where m denotes
the dimension of the Krylov subspace, and orthogonal polynomials associated with the
distribution dαn. In the context of the Krylov subspace, the Gaussian quadrature nodes
and weights correspond to the Ritz values and spectral coefficients of u projected onto
the Krylov subspace, respectively. In this chapter, we review the classical CMS Theorem
and corresponding intertwining properties in the context of Krylov subspaces. E.g., as a
consequence of the CMS Theorem, the Krylov subspace yields computable bounds on the
sums of spectral coefficients of u related to eigenvalues located between Ritz values. Such
results hold independently of the convergence of Ritz values.

Similar results hold true for rational Krylov subspacesQm(A, u) = {r(A)u} with r = p/q,
where m denotes the dimension of the Krylov subspace, p is a polynomial of degree ≤ m-1,
and q is a preassigned denominator polynomial of degree ≤ m- 1. The basis of a rational
Krylov subspace is closely related to orthogonal rational functions associated with the

3



1 Introduction

distribution dαn, and rational Gaussian quadrature formulae for the respective Riemann-
Stieltjes integral. We derive new CMS type results for some classes of rational Gaussian
quadrature formulae which are related to rational Krylov subspaces with a single pole
of higher multiplicity. These results and other known CMS type results are applied in
the context of rational Krylov subspaces with a single pole and some extended Krylov
subspaces.

In this chapter, we also consider polynomial and rational quasi-orthogonal residual (qor-)
Krylov representations which are closely related to Gauss-Radau quadrature formulae
where one of the quadrature nodes is preassigned. CMS type results also hold in this
context. Our results are illustrated by numerical examples.

Chapter 4 and the action of the matrix exponential. This chapter has some relevance
for the present thesis, particularly, for the approximation of eitAu where A is Hermitian.
The error of polynomial or rational approximation of eitAu can be represented by a scalar
approximation error at the eigenvalues of A weighted by the respective spectral coefficients
of u, see Chapter 5 for more details. The eigenvalues of A and spectral coefficients of u
are not available in practice. However, piecewise bounds on spectral coefficients of u, as
provided in Chapter 4, together with some understanding of polynomial and rational ap-
proximation of the scalar imaginary exponential provide some practical information on how
to efficiently approximate eitAu. Especially for rational approximations, some knowledge
on the problem is required to choose proper poles of the rational approximant. Further-
more, the results of Chapter 4 give some motivation for Chapter 5, and the qor-Krylov
approximation is practical for the approximation of the matrix exponential.

1.5 Overview and setting of Chapter 5

In this chapter we a consider rational Krylov approximation of e-itAu for a time step t, a
matrix A ϵ Cnxn which is Hermitian w.r.t. a given inner product, and an initial vector u ϵ
Cn. The rational Krylov approximation is based on a rational Krylov subspace Qm(A, u)
with preassigned poles which define the denominator of the rational approximant, and
previous results show a near-best approximation property comparing with other rational
approximants with the same denominator. Such results rely on the error of a scalar best
approximation over the full range of the matrix spectrum and do not consider properties
of the initial vector. In the present work, a localized near-best approximation property
is formulated. This property is based on assumptions on the spectral distribution of the
initial vector, and the assumption that the problem projected onto the Krylov subspaces
satisfies a similar distribution. Whether the latter holds true is not known a priori without
further consideration. However, it is reasonable to assume that desired properties of the
spectral distribution of the initial vector carry over to the distribution of the projected
problem due to an intertwining property which goes back to the Separation Theorem of
Chebyshev-Markov-Stieltjes, see Chapter 4. The required assumption is tested for practical
numerical examples. A localized near-best approximation property potentially yields grid-
indepentent convergence rates if the matrix is based on an underlying spatial discretization
of a continuous operator. In that concern, assumptions on the spectral distribution of the

4



1.5 Overview and setting of Chapter 5

initial vector are related to regularity properties of an underlying initial state.
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2 Computable upper error bounds for Krylov
approximations to matrix exponentials and
associated φ-functions

2.1 Introduction

We consider Krylov approximations to the matrix exponential function for the purpose of
the solution of a linear, homogeneous system of differential equations

ψ,(t) = Mψ(t), ψ(0) = ψ0, ψ(t) = etMψ0.

The complex-valued matrix M commonly results from the discretization of a partial differ-
ential equation. In this work we present new results for precise a posteriori error estimation,
which also extend to the evaluation of so-called φ-functions. The application of these es-
timates for the purpose of time propagation is also discussed and illustrated. Theoretical
results are verified by numerical experiments, which are classified into Hermitian (dissipa-
tive), skew-Hermitian (Schr:odinger-type) and general non-normal problems.

Overview of existing approaches and results. The approximate evaluation of large ma-
trix exponential functions is a topic which has been extensively treated in the numerical
analysis literature, for basic reference see e.g. [GVL89, MVL03]. A standard approach is
to project the given matrix M to a low-dimensional Krylov space via Arnoldi or Lanczos
iteration, and to directly exponentiate the projected small matrix. A first mention of the
Lanczos approach can be found in [PL86], where it is also recognized that for the method
to perform satisfactorily, the time-steps have to be controlled. However, the control mech-
anism from [PL86] is not very elaborate and is based on a series expansion of the error,
which is only valid in the asymptotic regime, see for instance [NW12]. For discretizations
of parabolic problems, [GS92] uses an error estimator to choose the step-size, this approach
is improved in [SL96] and has been generalized in [MC10]. Notably, in the latter reference
a strict error bound is used to estimate the time-step instead of asymptotic techniques. It
is argued in [MC10] that the strategy from [MC10] performs better than [MA06] and better
in turn than [PL86].
A first systematic study of Krylov-based methods for the matrix exponential function

was given in [Saa92]. The error is analyzed theoretically, yielding both a priori and com-
putable a posteriori estimates. The analysis there relies on approximation theory and yields
a priori error bounds which are asymptotically optimal in the dimension of the Krylov sub-
space in important situations. The analysis moreover implies correction schemes to lift the
convergence order which are cheap to compute based on the already available information.
The error expansion also suggests a posteriori error estimators resorting to the leading
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

error term. This approach relies on the assumption of the sufficiently rapid decay of the
series representation of the error. A recent generalization of this work together with a
more rigorous justification is given in [JL15]. For early studies of a priori error estimates
see also [DK89, DK95].

A thorough theoretical analysis of the error of Krylov methods for the exponential of
a Hermitian or skew- (anti-) Hermitian matrix was given in [HL97]. The analysis derives
an asymptotic error expansion and shows superlinear error decay in the dimension m of
the approximation subspace for sufficiently large m. These results are further improved
in [BR09]. In [HL97], a posteriori error estimation is also discussed. This topic is further-
more addressed in [Lub08]. There, the Krylov approximation method is interpreted as a
Galerkin method, whence an error bound can be obtained from an error representation
for this variational approximation. This yields a computable estimate via a quadrature
approximation of the error integral involving the defect of the numerical approximation.
The a priori error analysis reveals a step-size restriction for the convergence of the method,
which is less stringent when the subspace dimension is larger.

Further work in the direction of controlling the Lanczos process through information
gained from the defect is given in [BGH13]. The defect is a scalar multiple of the successive
Krylov vector arising in the iteration and can be evaluated efficiently. If the error is
approximated by a Galerkin approach, the resulting estimator corresponds to the difference
of two Lanczos iterates. For the purpose of practical error estimation, in [BGH13] it is seen
as preferable to continue the original Krylov process. Some other defect-based upper bounds
for the error of the matrix exponential are given in [JL15], including a closer analysis of
the error estimate of [Saa92]. These results still require some a priori information on the
matrix spectrum.

Various improved methods for computing the matrix exponential function are given in
the literature, for example restarted methods, deflated restarting methods or quadrature
based restarting methods, see [AEEG08], [EEG11], and [FGS14].

It has also been advocated in [vdEH06] to use preconditioning in the Lanczos method by a
shifted inverse in order to get a good approximation of the leading invariant subspaces. The
shift-and-invert approach (a specific choice to construct a rational Krylov subspace) for the
matrix exponential function was introduced earlier in [MN04]. However, the choice of the
shift is critical for the success of this procedure. This strategy amounts to a transformation
of the spectrum which grants a convergence speed which is independent of the norm of
the given matrix. In [vdEH06], a posteriori error estimation based on the asymptotical
expansion of the error is advocated as well. We note that our results do not immediately
carry over to the shift-and-invert approach, see Remark 2.3.4.

Overview of present work. In Section 2.2 we introduce the Krylov approximation and
the integral representation of the approximation error in terms of its defect. In Section 2.3
we derive a new computable upper bound for the error by using data available from the
Krylov process with negligible additional computational effort (Theorem 2.3.2). This up-
per bound is cheap to evaluate and update on the fly during the Lanczos iteration. It is
also asymptotically correct, i.e., for t - 0 the error of the error estimator tends to zero
faster asymptotically than the error itself. In Section 2.4 these results are extended to

8



2.2 Problem setting, Krylov approximation, and defect-based error representation

the case where the Krylov approach is employed to approximate the φ-functions of matri-
ces (generalizing the exponential function), see Theorem 2.4.1. In Section 2.5, improved
approximations derived from a corrected Krylov process [Saa92] are discussed, and cor-
responding error estimators are analyzed, including an asymptotically correct true upper
bound on the error (Theorem 2.5.4). This approach can be used to increase the order, but
it has the drawback of violating mass conservation. In Proposition 2.5.5 error estimates
are particularized to the Hermitian case. Another view on defect-based error estimation is
presented in Section 2.6.
Section 2.7 is devoted to practical application of the various error estimators for the con-

trol of the time steps t including smaller substeps Δt if it appears indicated. In Section 2.8
we present numerical results for a finite difference discretization of the free Schr:odinger
equation, a Hubbard model of solar cells, the heat equation, and a convection-diffusion
problem, illustrating our theoretical results. Additional practical aspects are also investi-
gated: A priori estimates and the role of restarting are discussed in particular in the context
of practical step-size adaptation. Finally, we demonstrate the computational efficiency of
our adaptive strategy.

2.2 Problem setting, Krylov approximation, and defect-based
representation of the approximation error

We discuss the approximation of the matrix exponential,

E(t)v = eσ tAv, A ϵ Cnxn, σ ϵ C, (2.2.1)

with step size t, applied to an initial vector v ϵ Cn. To simplify the notation we as-
sume |σ| = 1 and ║v║2 = 1 without loss of generality. In many relevant applications
(Schr:odinger-type problems) a complex prefactor is applied to the matrix A. The parame-
ter σ is introduced here to separate the prefactor of the matrix A. The standard notation
for Schr:odinger-type problems is obtained in (2.2.1) with σ = -i and a Hermitian matrix
A. For such problems our notation is helpful to simplify the construction of the Krylov
subspace.
The exponential E(t) = eσ tA satisfies the matrix differential equation

E,(t) = σ AE(t), E(0) = I.

We assume that μ2(σA) ≤ 0, where μ2(σA) denotes the logarithmic norm of σA, or
equivalently, W (σA) ∩ C-, where W (σA) denotes the field of values of σA and we will
refer to this assumption as the nonexpansive case. Following [Hig08, Theorem 10.11] and
associated references we conclude that μ2(σA) ≤ 0 implies ║E(t)║2 ≤ 1 for t ≥ 0. This is
essentially a technical assumption, and most of our theoretical results carry over to a more
general setting, in particular if a priori information about μ2(σA) is available, such that
E(t) can be estimated as ║E(t)║2 ≤ eμ2(σA).

For the skew-Hermitian case with σ = -i we write1

E(t)v = e-i tHv, H ϵ Cnxn Hermitian.

1In this case the matrix A is usually named H (Hamiltonian).
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

In this case, E(t) represents a unitary evolution, i.e., ║E(t)║2 = 1.

Krylov subspaces and associated identities. The numerical approximation of (2.2.1)
considered here (see (2.2.6) below) is based on the conventional Krylov subspace

Km(A, v) = span{v,Av, . . . , Am-1v} ∩ Cn.

First, an orthonormal basis of Km(A, v) is obtained by the well-known Arnoldi iteration,
see [Saa03]. This produces a basis matrix Vm ϵ Cnxm satisfying V *

m Vm = Imxm, and an
upper Hessenberg matrix Tm ϵ Cmxm such that the Krylov identity2

AVm = VmTm + τm+1,m vm+1e
*
m (2.2.2)

is valid, with τm+1,m ϵ R+ and vm+1 ϵ Cn with ║vm+1║2 = 1.

Remark 2.2.1. We are assuming that the Arnoldi iteration is executed until the desired
dimension m. Then, by construction, all lower diagonal entries of Tm are positive [Saa03].
If this is not the case, i.e., if a breakdown occurs, it is known that this breakdown is lucky,,
i.e., the approximation (2.2.6) below obtained in the step before breakdown is already exact,
see [Saa92].

For the case of a Hermitian matrix A the Krylov subspace can be constructed using the
Lanczos iteration, which is a special case of the Arnoldi iteration, resulting in a tridiagonal
matrix Tm ϵ Rmxm. In the following we discuss the general case and comment on the case
of a Hermitian matrix A whenever appropriate.
The following identities hold true due to the upper Hessenberg [tridiagonal] structure

of Tm together with (2.2.2):

e*m T j
m e1 = 0 for j = 0, . . . ,m- 2, (2.2.3)

and

Ajv = VmT j
me1, 0 ≤ j ≤ m- 1, (2.2.4)

see for instance [DK89, Theorem 2] or [Saa92]. Furthermore, let

γm = e*m Tm-1
m e1 =

m-1π
j=1

(Tm)j+1,j , (2.2.5)

where the claimed identity also follows from the upper Hessenberg [tridiagonal] structure
of Tm.

Krylov approximation. The standard Krylov approximation to E(t)v is

Sm(t)v = Vm eσ tTm V *
m v = Vm eσ tTme1. (2.2.6)

We denote the corresponding error operator by Lm(t), with

Lm(t) = E(t)- Sm(t) ϵ Cnxn. (2.2.7)
2Here, em = (0, . . . , 0, 1)* ϵ Cm, and in the sequel we also denote e1 = (1, 0, . . . , 0)* ϵ Cm.
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2.2 Problem setting, Krylov approximation, and defect-based error representation

Defect-based integral representation of the approximation error. We define the defect
(or residual) operator Dm(t) of Sm(t) by

Dm(t) = σ ASm(t)- S,
m(t) ϵ Cnxn.

Then, Lm(t)v and Dm(t)v are related via the differential equation

L,
m(t)v = σ ALm(t)v +Dm(t)v, Lm(0)v = 0,

whence

Lm(t)v =

∫ t

0
E(t- s)Dm(s)v ds. (2.2.8)

An explicit representation for Dm(s)v is obtained from (2.2.2),

Dm(s)v = σ AVm eσ s Tme1 - σ VmTm eσ s Tme1 = σ (AVm - VmTm) eσ s Tme1

= στm+1,m

(
e*m eσ s Tme1

)
vm+1. (2.2.9)

Asymptotically for t - 0,

Dm(t)v = στm+1,m γm
(σt)m-1

(m- 1)!
vm+1 +O(tm), (2.2.10)

which follows from the Taylor series representation for eσ t Tm together with (2.2.3)
and (2.2.5). Thus, by (2.2.8) and (2.2.10) we obtain

║Dm(t)v║ = O(tm-1), and ║Lm(t)v║ = O(tm). (2.2.11)

We can also characterize the asymptotically leading term of the error:

Proposition 2.2.2. For any A ϵ Cnxn the error Lm(t)v satisfies the asymptotic relation

Lm(t)v = τm+1,mγm
(σ t)m

m!
vm+1 +Rm+1(t), Rm+1(t) = O(tm+1), (2.2.12)

for t - 0.

Proof. Taylor expansion. Due to Lm(t)v = O(tm), see (2.2.11),

Lm(t)v = E(t)v - Sm(t)v =
(σ t)m

m!
(Amv - VmTm

m e1) +Rm+1(t),

with Taylor remainder Rm+1(t) = O(tm+1).
(2.2.13)

Multiplying the identity (2.2.4) (with j = m- 1) by A and using (2.2.2) gives

Am v = AVmTm-1
m e1 = (VmTm + τm+1,m vm+1e

*
m)Tm-1

m e1

= VmTm
m e1 + τm+1,m (e*m Tm-1

m e1) vm+1 = VmTm
m e1 + τm+1,mγmvm+1,

whence (2.2.13) simplifies to (2.2.12).

Remark 2.2.3. The Taylor remainder Rm+1 in (2.2.12) can be specified in a more explicit
way showing its dependence on m,

Rm+1(t) =
(σ t)m+1

m!

∫ 1

0

(
Am+1eσ θ tAv - VmTm+1

m eσ θ t Tme1
)
(1- θ)m dθ.
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

2.3 An upper error bound for the nonexpansive case in (2.2.1)

For the nonexpansive case we have ║E(t- s)║2 ≤ 1 for 0 ≤ s ≤ t, and (2.2.8) implies

║Lm(t)v║2 =
║║║ ∫ t

0
E(t- s)Dm(s)v ds

║║║
2
≤

∫ t

0
║Dm(s)v║2 ds.

With ║vm+1║2 = 1, and

δm(s) = e*m eσ s Tme1 =
(
eσ s Tm

)
m,1

, (2.3.1a)

together with (2.2.9) we obtain

║Lm(t)v║2 ≤ τm+1,m

∫ t

0
|δm(s)| ds. (2.3.1b)

This estimate is also given in [Lub08, Section III.2] and appeared earlier in [DGK98, Sub-
section 2.2]. Of course, the integral in (2.3.1b) cannot be computed exactly. In [Lub08]
it is proposed to use numerical quadrature3 to approximate the integral in (2.3.1b). In
contrast, our aim here is to derive a computable upper bound. We proceed in two steps.4

Analytic matrix function via interpolation on the spectrum. To approximate the error
integral in (2.3.1b) we use the representation of matrix exponentials via Hermite inter-
polation of the scalar exponential function on the spectrum of the matrix Tm, see [Hig08,
Chap. 1]: If μ1, . . . , μr (r ≤ m) denote the distinct eigenvalues of Tm and nj is the dimension
of the largest Jordan block associated with μj , then

eσ tTm = pt(Tm), (2.3.2)

where pt(λ) is the Hermite interpolant of degree ≤ m- 1 of the function

ft(λ) = eσ tλ (2.3.3)

over the nodes μ1, . . . , μm in the sense of [Hig08, (1.7)],

p
(l)
t (μj) = f

(l)
t (μj), j = 1, . . . , r, l = 0, . . . , nj - 1.

For a general matrix, the degree of pt may be smaller than m - 1. However, in our
context a special case occurs: Since the lower diagonal entries of Tm do not vanish, Tm

is nonderogatory, i.e., for each eigenvalue μj the associated eigenspace is one-dimensional,
see [HJ85, Section 3.1]. Then,

∑r
j=1 nj = m, which implies that the degree of pt is exactly

m- 1.
In the following we denote the full sequence of the m eigenvalues of Tm by λ1, . . . , λm.

By applying basic properties of the Krylov decomposition and imposed conditions on the
numerical range of A we obtain

spec(σ Tm) ∩ W (σ Tm) ∩ W (σ A) ∩ C-. (2.3.4)

3See also Section 2.6 below.
4In the sequel, the argument of δm(.) is again denoted by t instead of s.
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2.3 An upper error bound for the nonexpansive case in (2.2.1)

The following proposition is partially related to [CM97, Sec. 3] or [JL15]. Here, divided
differences have to be understood in the general sense, i.e., in the confluent sense if multiple
eigenvalues occur; for the detailed definition and properties see [Hig08, Section B.16].

Proposition 2.3.1. Let Tm ϵ Cmxm be an upper Hessenberg matrix with eigenvalues
λ1, . . . , λm and spec(σTm) ∩ C-. Then the function δm(t) defined as in (2.3.1a), i.e.,

δm(t) = e*m eσ t Tme1 =
(
eσ t Tm

)
m,1

,

satisfies

δm(t) = ft[λ1, . . . , λm]γm ≤ tm-1

(m- 1)!
γm, (2.3.5)

with γm from (2.2.5) and where ft[λ1, . . . , λm] is the (m - 1)-th divided difference over
spec(Tm) of the function ft defined in (2.3.3).

Proof. We proceed from the Newton representation of the interpolant pt(λ) from (2.3.2),

pt(λ) =
m-1∑
j=0

ft[λ1, . . . , λj+1]ωj(λ),

with ωj(λ) = (λ- λ1) . . . (λ- λj). From (2.2.3) and by definition of γm, it is obvious that
the ωj satisfy

e*m ωj(Tm) e1 =

{
0, j = 0, . . . ,m- 2,
γm, j = m- 1.

Together with (2.3.2) this shows that the identity claimed in (2.3.5) is valid:

δm(t) = e*m eσ tTm e1 = e*m pt(Tm)e1 =
m-1∑
j=0

ft[λ1, . . . , λj+1]e
*
m ωj(Tm)e1 = ft[λ1, . . . , λm]γm.

According to [Hig08, (B.28)] the divided difference can be estimated by

|ft[λ1, . . . , λm]| ≤ maxzϵΩD(m-1)ft(z)

(m- 1)!

for convex Ω ∩ C which contains all eigenvalues λj .

With D(m-1)ft(λ) = (σ t)m-1eσ tλ, |σ| = 1 and Re(σλj) ≤ 0 we obtain

|ft[λ1, . . . , λm]| ≤ tm-1

(m- 1)!
,

which implies the estimate (2.3.5) for δm(t).
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

Error estimate and asymptotical correctness. Now we apply Proposition 2.3.1 in the
context of our Krylov approximation.

Theorem 2.3.2 (Computable upper bound). For the nonexpansive case the error Lm(t)v
of the Krylov approximation (2.2.6) to E(t)v satisfies

║Lm(t)v║2 ≤ τm+1,mγm
tm

m!
(2.3.6)

with τm+1,m from (2.2.2) and γm from (2.2.5).

Proof. We proceed from (2.3.1). For δm defined in (2.3.1a), Proposition 2.3.1 implies

|δm(s)| ≤ sm-1

(m- 1)!
γm,

and this gives an upper bound for the error integral (2.3.1b):

║Lm(t)v║2 ≤ τm+1,mγm

∫ t

0

sm-1

(m- 1)!
ds = τm+1,mγm

tm

m!
,

which completes the proof.
Proposition 2.3.1 is applied here in the nonexpansive case (W (σA) ∩ C-) which implies

the requirement spec(σTm) ∩ C-, see (2.3.4).

The upper bound (2.3.6) corresponds to the 2-norm of the leading error term (2.2.12) ac-
cording to Proposition 2.2.2. It is easily computable from the Krylov decomposition (2.2.2).
We denote the error estimate given by (2.3.6) as

Erra = τm+1,mγm
tm

m!
. (Erra)

Proposition 2.3.3 (Asymptotical correctness). The upper bound (2.3.6) is asymptotically
correct for t - 0, i.e.,

║Lm(t)v║2 = τm+1,mγm
tm

m!
+O(tm+1). (2.3.7)

Proof. The asymptotic estimate||||║Lm(t)v║2 - τm+1,mγm
tm

m!

|||| = ||||║Lm(t)v║2 -
║║║τm+1,mγm

(σ t)m

m!
vm+1

║║║
2

||||
≤

║║║Lm(t)v - τm+1,mγm
(σ t)m

m!
vm+1

║║║
2
= O(tm+1)

is valid due to Proposition 2.2.2, and this proves (2.3.7).

Remark 2.3.4. In [vdEH06, Section 4] a defect-based error formulation is given for the
shift-and-invert Krylov approximation of the matrix exponential function. In contrast to
the standard Krylov method, the defect is not of order m - 1 for t - 0 there. Hence, our
new results do not directly apply to shift-and-invert Krylov approximations. A study of a
posteriori error estimates for the shift-and-invert approach is a topic of future investiga-
tions.
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2.4 Krylov approximation to φ-functions.

2.4 Krylov approximation to φ-functions.

As another application we consider the so-called φ-functions, with power series represen-
tation

φp(z) =
∞∑
k=0

zk

(k + p)!
, p ≥ 0. (2.4.1a)

We have φ0(z) = ez, and

φp(z) =
1

(p- 1)!

∫ 1

0
(1- θ)p-1eθz dθ, p ≥ 1. (2.4.1b)

As the matrix exponential, φ-functions of matrices also appear in a wide range of appli-
cations, such as exponential integrators, see for instance [AMH11, HLS98, HO10, NW12,
Sid98]. Krylov approximation is a common technique to evaluate φ-functions of matrices
applied to a starting vector,

φp(σ tA)v ≈ Vmφp(σ tTm)e1, p ≥ 0. (2.4.2)

Since φ-functions are closely related to the matrix exponential, our ideas can be applied to
these as well. We use the following notation for the error in the φ-functions:

Lp
m(t)v = φp(σ tA)v - Vmφp(σ t Tm)e1. (2.4.3)

With (2.4.3) we generalize the previously used notation: Lm(t) = L0
m(t).

Theorem 2.4.1. The error of the Krylov approximation (2.4.2) to φp(σ tA)v with p ≥ 0
satisfies

Lp
m(t)v = τm+1,m γm

(σ t)m

(m+ p)!
vm+1 +O(tm+1). (2.4.4a)

Furthermore, in the nonexpansive case its norm is bounded by

║Lp
m(t)v║2 ≤ τm+1,m γm

tm

(m+ p)!
, (2.4.4b)

and this bound is asymptotically correct for t - 0.

Proof. For p = 0 the result directly follows from Propositions 2.2.2, 2.3.3 and Theo-
rem 2.3.2. We now assume p ≥ 1. Via the series representation (2.4.1a) of φp we can
determine the leading term of the error in an analogous way as in Proposition 2.2.2:

φp(σ tA)v - Vmφp(σ tTm)e1 =
(σ t)m (Amv - VmTm

m e1)

(m+ p)!
+O(tm+1)

= τm+1,m γm
(σ t)m

(m+ p)!
vm+1 +O(tm+1),

which proves (2.4.4a).

15



2 Computable upper error bounds for Krylov approximations to matrix exponentials

Furthermore, proceeding from (2.4.1b) we obtain

φp(σ tA)v - Vmφp(σ tTm)e1 =
1

(p- 1)!

∫ 1

0
(1- θ)p-1

(
eσ θ tAv - Vm eσ θ tTme1

)
dθ

=
1

(p- 1)!

∫ 1

0
(1- θ)p-1Lm(θ t)v dθ,

with the error Lm(t)v for the matrix exponential case. Now we apply Theorem 2.3.2 to
obtain

║φp(σ tA)v - Vmφp(σ tTm)e1║2 ≤ 1

(p- 1)!

∫ 1

0
(1- θ)p-1║Lm(θ t)v║2 dθ

≤ τm+1,m γm
tm

(p- 1)!m!

∫ 1

0
(1- θ)p-1θm dθ

= τm+1,m γm
tm

(m+ p)!
,

which proves (2.4.4b).

2.5 Corrected Krylov approximation to the exponential and
φ-functions.

Let us recall the well-known error representation given in [Saa92].

Proposition 2.5.1. see [Saa92, Theorem 5.1] With the φ-functions defined in (2.4.1), the
error (2.2.7) can be represented in the form

Lm(t)v = τm+1,m σ t
∞∑
j=1

e*mφj(σ tTm) e1(σ tA)j-1vm+1. (2.5.1)

In [Saa92] it is stated that, typically, the first term of the sum given in Proposition 2.5.1,
formula (Err1), is already a good approximation to Lm(t)v. Analogously to [Saa92, Section
5.2] we use the notation Err1 for the norm of this term,

Err1 = τm+1,m t |e*mφ1(σ tTm)e1|. (Err1)

In [JL15] it is even shown that Err1 is an upper bound up to a factor depending on spectral
properties of the matrix A. For the case of Hermitian σA we show ║Lm(t)v║2 ≤ Err1 in
Proposition 2.5.5 below.
In Remark 2.5.3 below we show that Err1 is also an asymptotically correct approximation

to the error norm (in the sense of Proposition 2.3.3). Furthermore, the error estimate Err1
is computable at nearly no extra cost, see [Saa92, Proposition 2.1].
According to [Saa92, Proposition 2.1], φ1(σ tTm) can be computed from the extended

matrix

T+
m =

(
Tm 0

τm+1,m e*m 0

)
ϵ C(m+1)x(m+1) (2.5.2a)
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2.5 Corrected Krylov approximation to the exponential and φ-functions.

as

eσ tT+
me1 =

(
eσ tTme1

τm+1,m σ t (e*m φ1(σ tTm) e1)

)
ϵ Cm+1. (2.5.2b)

Equation (2.5.2b) can be used to evaluate the error estimate Err1 or a corrected Krylov
approximation in the form

S+
m(t)v = V +

m eσ tT+
me1 with V +

m =
(
Vm

|| vm+1

)
ϵ Cnx(m+1), (2.5.3)

for which the first term of the error expansion according to Proposition 2.5.1 vanishes,
see [Saa92]. For the error of the corrected Krylov approximation we use the notation

L+
m(t)v = E(t)v - S+

m(t)v.

For general φ-functions we obtain an error representation similar to Proposition 2.5.1
and a corrected Krylov approximation to φ-functions. The corrected Krylov approximation
to φp(σ tA)v is given in [Sid98, Theorem 2]:

φp(σ tA)v ≈ V +
mφp(σ t T+

m)e1

with T+
m and V +

m given in (2.5.2a) and (2.5.3). The error of the corrected Krylov approxi-
mation is denoted by

Lp,+
m (t)v = φp(σ tA)v - V +

mφp(σ t T+
m)e1. (2.5.4)

Proposition 2.5.2 (see [Sid98, Theorem 2]). The error of the Krylov approximation
Lp
m(t)v, see (2.4.3), satisfies

Lp
m(t)v = τm+1,mσ t

∞∑
j=p+1

(e*mφj(σ t Tm)e1) (σ tA)j-p-1vm+1. (2.5.5a)

The error of the corrected Krylov approximation Lp,+
m (t)v, see (2.5.4), is given by

Lp,+
m (t)v = τm+1,mσ t

∞∑
j=p+2

(e*mφj(σ t Tm)e1) (σ tA)j-p-1vm+1. (2.5.5b)

The following remark will be used later on.

Remark 2.5.3. From the representation (2.4.1a) for the φj together with (2.2.3)
and (2.2.5) we observe

e*mφj(σtTm)e1 =
(σt)m-1e*mTm-1

m e1
(m- 1 + j)!

+O(tm) = γm
(σt)m-1

(m- 1 + j)!
+O(tm). (2.5.6)

By (2.5.6) we observe e*mφj(σ tTm) e1 = O(tm-1) for j ≥ 0 and we conclude that the
asymptotically leading order term of Lp

m(t)v for t - 0 is obtained by the leading term
(j = p+ 1) of the series (2.5.5a):

Lp
m(t)v = τm+1,mσ t(e*mφp+1(σ t Tm)e1)vm+1 +O(tm). (2.5.7a)
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

Analogously we obtain the asymptotically leading order term of Lp,+
m (t)v for t - 0 by the

leading term (j = p+ 2) of the series (2.5.5b):

Lp,+
m (t)v = τm+1,m(σ t)2(e*mφp+2(σ t Tm)e1)Avm+1 +O(tm+1). (2.5.7b)

The asymptotically leading terms in (2.5.7a) and (2.5.7b) can be used as error estimators:

║Lp
m(t)v║2 ≈ τm+1,m t|e*mφp+1(σ t Tm)e1| (2.5.8a)

and

║Lp,+
m (t)v║2 ≈ ║Avm+1║2τm+1,m t2|e*mφp+2(σ t Tm)e1|. (2.5.8b)

The error estimators (2.5.8a) and (2.5.8b) are already suggested in [Sid98, NW12]. We will
refer to them as Err1 in the context of the φ-functions with standard and corrected Krylov
approximation, generalizing the corresponding quantities for the exponential case p = 0.

We also obtain true upper bounds for the matrix exponential (p = 0) and general φ-
functions with p ≥ 1.

Theorem 2.5.4. The error of the corrected Krylov approximation (2.5.4) to φp(σ tA)v
with p ≥ 0 satisfies

Lp,+
m (t)v = τm+1,m γm

(σ t)m+1

(m+ p+ 1)!
Avm+1 +O(tm+2). (2.5.9a)

Furthermore, in the nonexpansive case its norm is bounded by

║Lp,+
m (t)v║2 ≤ ║Avm+1║2 τm+1,m γm

tm+1

(m+ p+ 1)!
, (2.5.9b)

and this bound is asymptotically correct for t - 0.

Proof. Applying (2.5.6) (with j = p+ 2) to (2.5.7b) shows (2.5.9a):

Lp,+
m (t)v = τm+1,m γm

(σ t)m+1

(m+ p+ 1)!
Avm+1 +O(tm+2).

From Proposition 2.5.2 we observe

Lp,+
m (t)v = σ tA Lp+1

m (t)v.

Using the integral representation analogously as in the proof of Theorem 2.4.1 for Lp+1
m (t)v

and formula (2.2.8) for Lm(t)v, we obtain

Lp,+
m (t)v = σ tA Lp+1

m (t)v = τm+1,mσ t
1

p!

∫ 1

0
(1- θ)pALm(θ t)v dθ

= τm+1,mσ t
1

p!

∫ 1

0
(1- θ)p

∫ θt

0
eσ(θt-s)AAvm+1δm(s) ds dθ.
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2.5 Corrected Krylov approximation to the exponential and φ-functions.

With norm inequalities (note the nonexpansive case) and Proposition 2.3.1 we obtain

║Lp,+
m (t)v║2 ≤ τm+1,m t ║Avm+1║2 1

p!

∫ 1

0
(1- θ)p

∫ θt

0
|δm(s)| ds dθ

≤ ║Avm+1║2τm+1,mγm tm+1 1

p!m!

∫ 1

0
(1- θ)pθm ds dθ

= ║Avm+1║2τm+1,mγm
tm+1

(m+ p+ 1)!
,

which proves (2.5.9b). Proposition 2.3.1 is applied here in the nonexpansive case, see also
the proof of Theorem 2.3.2.

If the error estimate (2.5.9b) is to be evaluated, the effort of the computation of ║Avm+1║2
is comparable to one additional step of the Krylov iteration.
As mentioned before, we also can show that for Hermitian σA the estimate Err1 gives a

true upper bound:

Proposition 2.5.5. For the nonexpansive case with σ = 1 and a Hermitian matrix A we
obtain

|δm(t)| = δm(t) > 0 for t > 0.

This leads to the following upper bounds for the errors Lp
m and Lp,+

m with p ≥ 0:

║Lp
m(t)v║2 ≤ τm+1,m t e*m φp+1(tTm) e1. .. .

≥ 0

(2.5.10a)

and
║Lp,+

m (t)v║2 ≤ ║Avm+1║2 τm+1,m t2 e*m φp+2(tTm) e1. .. .
≥ 0

. (2.5.10b)

Proof. For a Hermitian matrix A we obtain a symmetric, tridiagonal matrix Tm with dis-
tinct, real eigenvalues via Lanczos approximation, see [HJ85, Chap. 3.1]. By Proposi-
tion 2.3.1 we observe

δm(t) = ft[λ1, . . . , λm]γm

with ft(λ) = et λ for the case σ = 1. For divided differences of real-valued functions over
real nodes we obtain ft[λ1, . . . , λm] ϵ R and

ft[λ1, . . . , λm] =
D(m-1)ft(ξ)

(m- 1)!
=

tm-1etξ

(m- 1)!
for ξ ϵ [λ1, λm]. (2.5.11)

Equation (2.5.11) shows ft[λ1, . . . , λm] > 0 and with γm > 0 we conclude

δm(t) > 0, and |δm(t)| = δm(t).

We continue with (2.5.10a) in the case p = 0:

║Lm(t)v║2 ≤ τm+1,m

∫ t

0
|δm(s)| ds = τm+1,m

∫ t

0
e*m esTm e1 ds = τm+1,mt e*m φ1(tTm) e1.
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

For the case p ≥ 1 we start analogously to Theorem 2.4.1. Using definition (2.4.1b) for the
φ-functions and resorting to the case p = 0 we find

║Lp
m(t)v║2 ≤ 1

(p- 1)!

∫ 1

0
(1- θ)p-1║Lm(θ t)v║2 dθ

≤ τm+1,m t
1

(p- 1)!

∫ 1

0
(1- θ)p-1θ e*m φ1(θ t Tm) e1 dθ.

Evaluation of the integral yields

║Lp
m(t)v║2 ≤ τm+1,m t

1

(p- 1)!

∫ 1

0
(1- θ)p-1θ e*m φ1(θ t Tm) e1 dθ

= τm+1,m t
∞∑
k=0

e*m ( t Tm)k e1
(p- 1)! (k + 1)!

∫ 1

0
(1- θ)p-1θk+1 dθ

= τm+1,m t

∞∑
k=0

e*m ( t Tm)k e1
(p+ k + 1)!

= τm+1,m t e*mφp+1( t Tm) e1.

(2.5.12)

This shows (2.5.10a). To show (2.5.10b) we start analogously to Theorem 2.5.4:

║Lp,+
m (t)v║2 = ║t ALp+1

m (t)v║2 ≤ ║Avm+1║2 τm+1,m t
1

p!

∫ 1

0
(1- θ)p

∫ θt

0
|δm(s)| ds dθ.

Using |δm(s)| = δm(s) and evaluating the inner integral by the φ1 function, we obtain

║Lp,+
m (t)v║2 ≤ ║Avm+1║2 τm+1,m t2

1

p!

∫ 1

0
(1- θ)pθ e*m φ1(θ t Tm) e1 dθ.

Evaluation of the integral analogously to (2.5.12),

║Lp,+
m (t)v║2 ≤ ║Avm+1║2 τm+1,m t2 e*mφp+2( t Tm) e1,

completes the proof.

2.6 Defect-based quadrature error estimates revisited

The term on the right-hand side of (2.2.12) is a computable error estimate, which has been
investigated more closely in Section 2.3. It can also be interpreted in an alternative way.
To this end we again proceed from the integral representation (2.2.8),

Lm(t)v =

∫ t

0
E(t- s)Dm(s). .. .

=: θm(s,t)

v ds. (2.6.1)

Due to ║Dm(t)v║ = O(tm-1),

dj

d sj
Dm(s)v

||
s=0

= 0, j = 0, . . . ,m- 2,
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2.6 Defect-based quadrature error estimates revisited

and the same is true for the integrand in (2.6.1),

gj

gsj
θm(s, t)v

||
s=0

= 0, j = 0, . . . ,m- 2.

Analogously as in [AKT14], this allows us to approximate (2.6.1) by a Hermite quadrature
formula in the form ∫ t

0
θm(s, t)v ds ≈ t

m
θm(t, t)v =

t

m
Dm(t)v. (2.6.2)

From (2.2.10),
t

m
Dm(t)v = τm+1,m γm

(σt)m

m!
vm+1 +O(tm+1),

which is the same as (2.2.12). This means that the quadrature approximation (2.6.2)
approximates the leading error term in an asymptotically correct way.

From (2.6.2), (2.2.9) and (2.3.1a) we obtain

║Lm(t)v║2 ≈ τm+1,m
t

m
|δm(t)|. (2.6.3)

The quadrature error in (2.6.2) is O(tm+1). It is useful to argue this also in a direct way:
By construction, the Hermite quadrature formula underlying (2.6.2) is of order m, and its
error has the Peano representation (cf. also [AKT14])

t

m
θm(t, t)-

∫ t

0
θm(s, t)v ds =

∫ t

0

s (t- s)m-1

m!
gm

gsm θm(s, t)v ds. (2.6.4)

Here, gm

gsm θm(s, t)v = O(1), because dm

dsm Dm(s)v = O(1) which follows from Dm(s)v =
O(sm-1). This shows that, indeed, the quadrature error (2.6.4) is O(tm+1). Furthermore, a
quadrature formula of order m+1 can be constructed by including an additional evaluation
of

g
gs θm(s, t)v

||
s=t

= D[2]
m (t)v, with D[2]

m (t) = d
dtDm(t)- σADm(t).

A routine calculation shows∫ t

0
θm(s, t)v ds =

2 t

m+ 1
Dm(t)v - t2

m(m+ 1)
D[2]

m (t)v +O(tm+2), (2.6.5)

where the error depends on dm+1

dsm+1 Dm(s)v = O(1). This may be considered as an improved
error estimate5 which can be evaluated using

d
dtDm(t)v = σ2τm+1,m e*m(Tm eσ t Tm)e1vm+1.

With the solution in the Krylov subspace, eσ t Tme1 with e*meσ t Tme1 = (eσ t Tme1)m, we can
compute the derivative of the defect at O(1) cost,

d
dtDm(t)v = σ2τm+1,m e*m(Tm eσ t Tm)e1vm+1

= σ2τm+1,m

(
(Tm)m,m (eσ t Tme1)m + (Tm)m,m-1 (e

σ t Tme1)m-1

)
vm+1.

5In the setting of [AKT14] (higher-order splitting methods) such an improved error estimate was not taken
into account since it cannot be evaluated with reasonable effort in that context.
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

Also longer expansions may be considered, for instance∫ t

0
θm(s, t)v ds =

3 t

m+ 2
Dm(t)v - 3 t2

(m+ 1)(m+ 2)
D[2]

m (t)v

+
t3

m(m+ 1)(m+ 2)
D[3]

m (t)v +O(tm+3), with D[3]
m (t) = d

dtD
[2]
m (t)-AD[2]

m (t),

etc.
This alternative way of computing improved error estimates is worth investigating but

will not be pursued further here.

Quadrature estimate for (2.3.1b) revisited. We proceed from (2.3.1b) which is valid for
the nonexpansive case. In [Lub08] it is suggested to use the right-endpoint rectangle rule
as a practical approximation to the integral (2.3.1b),

║Lm(t)v║2 ≤ τm+1,m

∫ t

0
|δm(s)| ds ≈ τm+1,m t|δm(t)|, (2.6.6)

or alternatively the Simpson rule, which is also suggested in [WY17]. The error estimate
in (2.6.6) is also referred to as generalized residual estimate in [HLS98, BGH13] and sim-
ilar error estimates also appeared earlier in [Saa92]. In [DGK98, eq. (32)] an a priori
upper bound on the integral in (2.6.6) is obtained by tmaxsϵ[0,t] |δm(s)|. Applying Hermite
quadrature to (2.3.1b) also directly leads to the error estimate (2.6.3).
For a better understanding of the approximation (2.6.6) we consider the effective order

of |δm(t)| as a function of t: Let us denote f(t) := |δm(t)| and assume f(t) > 0 in a
sufficiently small interval (0, T ]. For the Hermitian case this assumption is fulfilled for
all t > 0, see Proposition 2.5.5. We define the effective order ρ : (0, T ] - R of f by

ρ(t) =
f ,(t) t
f(t)

. (2.6.7)

This definition is motivated by the slope of f in a double-logarithmic graph, i.e., the graph
of

ξ(τ) = ln(f(eτ )) for τ = ln t,

which, for example, corrsponds to the Matlab loglog plot of f(t) over t. The slope in the
double-logarithmic graph, i.e., the derivative of the auxiliary function ξ, satisfies

ξ,(τ) =
f ,(eτ ) eτ

f(eτ )
,

and substituting τ = ln t therein yields the effective order (2.6.7). The concept of the
effective order generalizes the asymptotic order, which can be determined by the slope
of f(t) for t - 0 in a double-logarithmic graph. In particular, we have ρ(0+) = m- 1 for
the effective order of the defect, which satisfies δ(t) = O(tm-1) for t - 0.
Assuming ρ(t) > 0 for t ϵ (0, T ], the effective order satisfies

f(t) =
f ,(t) t
ρ(t)

.
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2.6 Defect-based quadrature error estimates revisited

Integration and application of the mean value theorem shows the existence of t* ϵ [0, t]
with ∫ t

0
f(s) ds =

1

ρ(t*)

∫ t

0
f ,(s) s ds,

and integration by parts gives ∫ t

0
|δm(s)| ds = t |δm(t)|

1 + ρ(t*)
.

With the plausible assumption that the order is bounded by 0 ≤ ~m ≤ ρ(t) ≤ m-1 = ρ(0+)
for t ϵ [0, T ], we obtain

t
m |δm(t)| ≤

∫ t

0
|δm(s)| ds ≤ t

~m+1 |δm(t)| ≤ t |δm(t)|. (2.6.8)

This shows that under such an assumption the generalized residual estimate (2.6.6) gives
an upper bound on the error. With the assumption 0 ≤ ρ(t), the defect |δm(t)| (also
called the residual in the literature) is monotonically increasing and the upper bound
suggested in [DGK98, eq. (32)] is equivalent to the generalized residual estimate. However,
in contrast to (2.6.3), the error estimate (2.6.6) is not asymptotically correct for t - 0. In
the following remark we suggest a practical approach to tighten the generalized residual
estimate retaining the property of an upper bound in (2.6.8).

Remark 2.6.1. With ρ(0+) = m-1 and the assumptions that the effective order is slowly
decreasing locally at t = 0 and sufficiently smooth, we suggest choosing ~m = ρ(t) for a step
of size t to improve the quadrature based estimate.

║Lm(t)v║2 ≤ τm+1,m

∫ t

0
|δm(s)| ds ≈ τm+1,m

t
ρ(t)+1 |δm(t)|. (2.6.9)

We will refer to this as effective order quadrature estimate.

Substitute f(t) = |δm(t)| = (
(eσ t Tme1)m(e-σ t -Tme1)m

)1/2
in the ansatz (2.6.7) to obtain a

computable formula for the effective order ρ(t),

ρ(t) =
t
(|δm(t)|),
|δm(t)| = tRe

(
σ(Tm)m,m + σ(Tm)m,m-1

(eσ t Tme1)m-1

(eσ t Tme1)m

)
. (2.6.10)

The computation of (eσ t Tme1)m-1 usually comes hand in hand with the computation of
δm(t) = (eσ t Tme1)m. For a numerical implementation of (2.6.10) we suggest computing
eσ t Tme1 by a Taylor or P.ade approximation.

In the limit t - 0 this choice of quadrature is equivalent to the Hermite quadrature and,
therefore, asymptotically correct.

Up to now we did refer to the effective order of the defect |δm(t)|. For t - 0 the effective
order of the error is given by ρ(t) + 1.
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

2.7 The matrix exponential as a time integrator.

For simplicity we assume the nonexpansive case of (2.2.1) in this section.
We recall from [HL97] that superlinear convergence as a function of m, the dimension of

the underlying Krylov space, sets in for

t ║A║2 < m. (2.7.1)

This relation also affects the error considered as a function of time t. Equation (2.7.1)
can be seen as a very rough estimate for a choice of t which leads to a systematic error
and convergence behavior. Only for special classes of problems as for instance symmetric
negative definite matrices, the relation (2.7.1) can be weakened, see [HL97, BR09] for
details.

In general a large time step t would necessitate large m or a restart of the Krylov
method. For larger dimensional problems memory issues can limit the choice of m and
make a restart necessary. Considering global computational cost it may also be favorable
to use a moderate value of m in combination with restarts. Even if increasing m results
in a larger time step t, the increase in computational cost can lead to a decrease of total
performance in some cases. This issue is relevant particularly for rather large choices of m,
especially if computational cost scaling withm2 or worse gets noticeable. We further discuss
effects of computer arithmetic on the Krylov approximation of the matrix exponential in
Section 2.8 without going into details.

For the matrix exponential seen as a time propagator, a simple restart is possible. The
following procedure has been introduced in [Sid98] and is recapitulated here to fix the
notation.
We split the time range [0, t] into N subintervals,

0 = t0 < t1 < . . . < tN = t,

with step sizes Δtj = tj - tj-1, j = 1, . . . , N.

The exact solution at time tj is denoted by v[j], whence

v[j] = E(Δtj)v
[j-1] = E(tj)v, with v[0] = v.

For simplicity we assume that the dimension m of the Krylov subspace is fixed over the
substeps. We obtain approximations w[j] to v[j] by applying multiple restarted Krylov

steps, with orthonormal bases V
[j]
m and upper Hessenberg matrices T

[j]
m . Starting from

w[0] = v, for j = 1, . . . , N ,

w[j] := S[j]
m (Δtj)w

[j-1] = V [j]
m eσΔtjT

[j]
m
(
V [j]
m

)*
w[j-1] = V [j]

m eσΔtjT
[j]
m e1.

The error matrix in the j-th step is denoted by

L[j]
m (Δtj) := E(Δtj)- S[j]

m (Δtj),

and the accumulated error by

L*
m(t)v = v[N ] - w[N ]. (2.7.2)
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With

v[j] - w[j] = E(Δtj)v
[j-1] - S[j]

m (Δtj)w
[j-1]

= E(Δtj)(v
[j-1] - w[j-1]) + L[j]

m (Δtj)w
[j-1]

we obtain

L*
m(t)v =

N∑
j=1

E(ΔtN ) . . .E(Δtj+1)L
[j]
m (Δtj)w

[j-1].

Recall our premise that E(.) is nonexpansive and assume that the local error is bounded
by

║L[j]
m (Δtj)w

[j]║2 ≤ tol .Δtj . (2.7.3)

Then,

║L*
m(t)v║2 ≤

N∑
j=1

║L[j]
m (Δtj)w

[j-1]║2 ≤ tol

N∑
j=1

Δtj = tol . t.

The term ║L[j]
m (Δtj)w

[j]║2 denotes the truncation error of a single substep and is studied
in the first part of this paper. We now apply local error estimates to predict acceptable
time steps.

Step size control. For a single substep, the error estimate (Erra) suggests a step size to
satisfy a given error tolerance tol as

Δtj =

(
tol m!

τ
[j]
m+1,mγ

[j]
m

)1/m

, j = 1, . . . , N. (2.7.4)

For a local error as in (2.7.3), we replace tol by (Δtj tol) in (2.7.4) and obtain

Δtj =

(
tol m!

τ
[j]
m+1,mγ

[j]
m

)1/(m-1)

, j = 1, . . . , N. (2.7.5)

We remark that Δtj can be computed together with the construction of the Krylov sub-

space, therefore, τ
[j]
m+1,m and γ

[j]
m are known values at this point. For the corrected Krylov

approximation S+
m(t)v[j], see (2.5.3), the error estimate given in (2.5.9b) (p = 0) suggests

a local step size of

Δtj =

(
tol (m+ 1)!║║Av[j]m+1

║║
2
τ
[j]
m+1,mγ

[j]
m

)1/m

, j = 1, . . . , N. (2.7.6)

The error estimator Err1 and estimates given in Section 2.6 cannot be inverted directly
to predict the step size. Computing a feasible step size is still possible via heuristic step
size control. This approach will be formulated for a general error estimate Err. Ideas of
heuristic step size control are given in [Gus91] in general and [Sid98] or [NW12] for a Krylov
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

approximation of the matrix exponential. For a step with step size Δtj-1 and estimated
error Err[j-1], j = 2, . . . , N , a reasonable size for the subsequent step can be chosen as the
solution of

Δtj =

(
Δtj tol

Err[j-1]

)1/m

Δtj-1 resulting in Δtj =

(
tol

Err[j-1]

)1/(m-1)

Δt
m/(m-1)
j-1 . (2.7.7)

In (2.7.7) we only need the evaluation of the error estimate for the previously computed
step with step size Δtj-1. In the Expokit package [Sid98] the heuristic step size control is
used similarly to (2.7.7) and an initial step size Δt1 is chosen by an a priori choice, which
we recall for comparison on numerical examples,

Δt1 =
1

║H║∞

(
tol ((m+ 1)/e)m+1

√
2π (m+ 1)

4 ║H║∞

)1/m

. (2.7.8)

In many cases the construction of the Krylov subspace, which is independent of the step
size, contributes the largest part to the computational cost. In this case we can improve
the choice of Δtj relatively cheaply in an iterative manner before continuing to time step
j + 1:

Δtj,1 := Δtj-1 or result of (2.7.5),

Δtj,l :=
( tol

Err[j,l-1]

)1/(m-1)
Δt

m/(m-1)
j,l-1 , l = 2, . . . , Nj ,

Δtj := Δtj,Nj .

(2.7.9)

By choosing Err[j,l-1] as an error estimate for the Krylov approximation of the j-th step
with time step Δtj,l-1.

The aim of the iteration (2.7.9) is to determine a step size Δtj,∞ with Err[j,∞] = Δtj,∞tol,
see (2.7.3). The convergence behavior of iteration (2.7.9) depends on the structure of the
corresponding error estimate. The idea of the heuristic step size control is based on the
asymptotic order of the error for Δt - 0, which in (2.7.7) and (2.7.9) is assumed to be m,
see (2.2.11). By substituting the asymptotic order m by the effective order ρ(Δt)+1, which
is introduced in (2.6.10), the iteration (2.7.9) could be improved for a step size Δt away
from the asymptotic regime. In our practical examples this iteration does not seem to be
sensitive with respect to the effective order of the error and converges in a small number
of steps using the asymptotic order m.

For the following remarks on Tm we neglect the index j in T
[j]
m to simplify the notation. In

the case of a Hermitian matrix A the matrix Tm is symmetric, tridiagonal and real-valued
which allows cheap and robust computation of its eigenvalue decomposition. The eigenvalue
decomposition of Tm is independent of the step size Δt and allows cheap evaluation of
eσΔt Tme1 or φ1(σΔt Tm)e1 and corresponding error estimates for multiple choices of Δt.

For a non-Hermitian matrix A computing Err[j,l] for multiple choices of l, hence different
step sizes Δtj,l, only leads to slightly larger computational cost, which is usually negligible.
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2.8 Numerical considerations and examples

2.8 Numerical considerations and examples

We give an illustration of our theoretical results for two different skew-Hermitian problems
in Subsection 2.8.1, a Hermitian problem in Subsection 2.8.2, and a non-normal problem in
Subsection 2.8.3. We also compare the performance of different error estimates for practical
step size control (Section 2.7) in Subsection 2.8.1. To show that our error estimate (2.3.6)
is efficient in practice we also compare it with results delivered by the standard package
Expokit [Sid98] and a priori error estimates.

2.8.1 The skew-Hermitian case

For our tests we use different types of matrices.

Free Schr:odinger equation. We consider

H = 1
4 tridiag(-1, 2,-1) ϵ Rnxn, (2.8.1)

with dimension n = 10 000. The matrix H is associated with a finite difference or finite
element discretization of the one-dimensional negative Laplacian. With A = H and σ = -i,
in (2.2.1) we obtain the free Schr:odinger equation. The eigenvalue decomposition of H is
well known, and we can use the discrete sine transform with high precision arithmetic in
Matlab to compute the exact solution E(t)v, see (2.2.1). The starting vector v is chosen
randomly. To compute the Krylov subspace approximation Sm(t)v, see (2.2.6), we use the
eigenvalue decomposition of the tridiagonal matrix Tm.

Discrete Hubbard model. For the description of the Hubbard model we employ a self-
contained notation. The Hubbard model first appears in [Hub63] and was further used in
many papers and books, e.g. [Mah93, PKvdBS16]. The Hubbard model is used to describe
electron density on a given number of sites, which correspond to Wannier discretization of
orbitals, and spin up or down. We consider the following Hubbard Hamiltonian, in second
quantization and without chemical potential:

H =
1

2

∑
i,j,σ

vijc
+
jσciσ +

∑
j,σ

U .njσ.njσ, , (2.8.2)

where i, j sum over the number of sites nsites and the spins σ, σ, ϵ {|, |} where σ, is the
opposite spin to σ. The entries vij with i, j = 1, . . . , nsites describe electron hopping from

site i to j. In (2.8.2), the notation c+jσciσ describes the 2nd quantization operator and

.njσ = c+jσcjσ the occupation number operator. For details on the notation in (2.8.2) we
can recommend several references, e.g. [Hub63, Jaf08, Mah93, PKvdBS16].
For our tests we model 8 electrons at 8 sites (nsites = 8) with spin up and down for

each site, this leads to 16 possible states for electrons. Such an electron distribution is
also referred to as half-filled in the literature. We also restrict our model by considering
the number of electrons with spin up and down to be fixed as nsites/2. This leads to
n = (binomial(8, 4))2 = 4900 considered occupation states which create a discrete basis.
For the numerical implementation of the basis we consider 16-bit integers for which each
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

bit describes a position which is occupied in case the bit is equal to 1 or empty otherwise.
The set of occupation states can be ordered by the value of the integers which leads to a
unique representation of the Hubbard Hamiltonian (2.8.2) by a matrix H ϵ Cnxn. Such
an implementation of the Hubbard Hamiltonian is also described in [Jaf08, Section 3].
In our test setting we use U = 5 and parameter-dependent values for electron hopping

vij = vij(ω) ϵ C with ω ϵ (0, 2π]:

v11 = v88 = -1.75, vjj = -2 for j = 2, . . . , 7,

vj,j+1 = -vj+1,j = - cosω + i sinω for j = 1, . . . , 7 and vij = 0 otherwise.

For this choice of vij(ω) we obtain a Hermitian matrix Hω ϵ Cnxn with 43980 nonzero
entries (for a general choice of ω) and spec(Hω) ∩ (-19.1, 8.3). The spectrum of Hω is
independent of ω.
A relevant application where the Hubbard Hamiltonian (2.8.2) is of importance is the

simulation of oxide solar cells with the goal of finding candidates for new materials promis-
ing a gain in the efficiency of the solar cell, see [Hel07]. The study of solar cells considers
time-dependent electron hoppings vij = vij(t) to model time-dependent potentials which
lead to Hamiltonian matrices H(t). The time-dependent Hamiltonian can be parameterized
via ω. Time propagation of a linear, non-autonomous ODE system can be approximated by
Magnus-type integrators which are based on one or more evaluations of matrix exponentials
applied to different starting vectors at several times t, see for instance [BCOR09, BM05].
Our test setting for the Hubbard Hamiltonian with arbitrary ω is then obtained by (2.2.1)
with the matrix A = Hω as described above and σ = -i.

In the following Subsection 2.8.1 we focus on the skew-Hermitian case. For tests on the
Hermitian case see Subsection 2.8.2 below.

Verification of upper error bound. In the following Figures 2.1 and 2.2 we compare the er-
ror ║Lm(t)v║2 with the error estimates Err1 and Erra. Figure 2.1 refers to the matrix (2.8.1)
of the free Schr:odinger problem and Figure 2.2 to the Hubbard Hamiltonian (2.8.2) with
ω = 0.123. For both cases we show results with Krylov subspace dimensions m = 10 and
m = 30, respectively.

We observe that the error estimate Err1 is a good approximation to the error, but it
is not an upper bound in general. In contrast, Erra is a proven upper error bound. Up
to round-off error, for m = 10 we observe the correct asymptotic behavior of Erra and
Err1. For larger choices of m the asymptotic regime starts at time steps for which the
error is already close to round-off precision. Therefore, for larger choices of m, the Krylov
approximation, as a time integrator, cannot achieve its full order for typical time steps in
double precision.

The matrix (2.8.1) has been scaled such that spec(H) ∩ (0, 1) and ║H║2 ≈ 1. In
accordance with (2.7.1) stagnation of the error is observed for times t < m, see Figure 2.1.

We verify the error estimates in the skew-Hermitian setting of the free Schr:odinger equa-
tion (2.8.1) for the standard Krylov approximation of the φ1 function in Figure 2.3 and
the corrected Krylov approximation of the matrix exponential function in Figure 2.4. In
Figure 2.3 the error estimator Err1 refers to formula (2.5.8a) and Erra shows the upper
error bound (2.4.4b) from Theorem 2.4.1, both for the case p = 1. In Figure 2.4, Err1 is
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Figure 2.1: Error ║Lm(t)v║2 (○) and the error estimates Err1 (x) and Erra (+) for the free
Schr:odinger problem and Krylov subspace dimensions m = 10 and m = 30.
Erra is an upper bound for the error, and both estimates show the correct
asymptotical behavior. Due to round-off error, form = 30 the observed effective
order is less clear than for m = 10.
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Figure 2.2: Error ║Lm(t)v║2 (○) and the error estimates Err1 (x) and Erra (+) for the
Hubbard Hamiltonian with ω = 0.123 and Krylov subspace dimensions m = 10
and m = 30. This shows the same behavior as in Figure 2.1.

from formula (2.5.8b) and Erra denotes the upper error bound (2.5.9b) from Theorem 2.5.4,
both for the case p = 0.

Illustration of defect-based quadrature error estimates from Section 2.6. We first illus-
trate the performance of the estimates based on Hermite quadrature according to (2.6.3)
and improved Hermite quadrature according to (2.6.5) for the Hubbard model, see Fig-
ure 2.5. Both estimates are asymptotically correct, whereas the improved quadrature (2.6.5)
is slightly better for larger time steps t, with the drawback of one additional matrix-vector
multiplication. (See Remark 2.8.2 below for cost efficiency of more expensive error esti-
mates.)
Figure 2.6 refers to the generalized residual estimate (2.6.6), and estimates based on the

effective order quadrature according to Remark 2.6.1, and the Hermite quadrature (2.6.3).
For our test problems the assumptions from Section 2.6 on the defect and its effective
order are satisfied for a significant range of values of t. We also observe that the inequal-
ities (2.6.8) are satisfied. The effective order and Hermite quadrature estimates behave in
an asymptotically correct way, while the generalized residual estimate leads to an upper
error bound which is, however, not sharp for t - 0.
For the skew-Hermitian case use σ = -i and Tm ϵ Rmxm in (2.6.10) to obtain

ρ(t) = t (Tm)m-1,mRe

(-i (e-i t Tme1)m-1

(e-i t Tme1)m

)
.

For computing the effective order we only consider time steps ρ(t) > 0, and where ρ
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Figure 2.3: Error ║L1
m(t)v║2 (○) and the error estimates Err1 (x) and Erra (+) for the free

Schr:odinger problem and Krylov subspace dimension m = 10 and m = 30.
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Figure 2.4: Error ║L+
m(t)v║2 (○) and the error estimates Err1 (x) and Erra (+) for the free

Schr:odinger problem and Krylov subspace dimension m = 10 and m = 30.
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Figure 2.5: Error ║Lm(t)v║2 (○) and the error estimates based on the Hermite quadrature
(x) and improved Hermite quadrature (+), see (2.6.3) and (2.6.5), for the
Hubbard Hamiltonian with m = 10 and m = 30. The dashed lines show the
error estimate Erra.

appears indeed to be monotonically decreasing over the computed discrete time steps.
This restriction is compatible with our assumptions in Section 2.6.

Corrected Krylov approximation and mass conservation. We remark that error esti-
mates for the corrected Krylov approximation usually require one additional matrix-vector
multiplication, and applying a standard Krylov approximation of dimension m + 1 seems
to be a more favorable choice in our approach to error estimation.

The Krylov approximation of the matrix exponential conserves the mass for the skew-
Hermitian case in contrast to the corrected Krylov approximation. Whether this is a real
drawback of the corrected Krylov approximation depends on the emphasis placed on mass
conservation. In the following examples we focus on the standard Krylov approximation,
with some exceptions which serve for comparisons with the original Expokit code, which is
based on the corrected Krylov approximation.

In exact arithmetic we obtain mass conservation for the skew-Hermitian case: For the
case ║v║2 = 1 and the standard Krylov approximation Sm(t)v we have

║Sm(t)v║2 = ║Vme-i t Tme1║2 = e*1e
i t TmV *

mVme-i t Tme1 = 1. (2.8.3)

The requirement V *
mVm = I is essential to obtain mass conservation in (2.8.3). In com-

puter arithmetic the loss of orthogonality of the Krylov basis Vm has been studied earlier,
see also [Pai76]. To preserve the property of mass conservation a reorthogonalization,
see [Par98], may be advisable in this case.
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m = 10

m = 30

Computed effective order of the defect for m = 10:

t 3.9 . 10-2 5.5 . 10-2 7.8 . 10-2 1.1 . 10-1 1.5 . 10-1 2.2 . 10-1 3.1 . 10-1 4.4 . 10-1 6.3 . 10-1 8.8 . 10-1

ρ(t) 8.99 8.98 8.95 8.90 8.81 8.63 8.24 7.44 5.66 1.00

and m = 30:

t 8.8 . 10-1 1.2 . 100 1.8 . 100
ρ(t) 26.68 24.18 18.42

Figure 2.6: The upper left plot shows the error ║Lm(t)v║2 (○), the generalized residual
estimate (2.6.6) (+) and the error estimates based on the Hermite quadra-
ture (2.6.3) (x), and the effective order quadrature (2.6.9) (◊) for the Hubbard
Hamiltonian with m = 10 and m = 30. The dashed lines show the error esti-
mate Erra. On the right-hand side the graphics show a detail from the error
plots to illustrate the inequalities (2.6.8). The table on the bottom shows the
computed effective order of the defect for m = 10 and m = 30 which is used for
the effective order quadrature.
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

Krylov approximation of the matrix exponential in computer arithmetic. It has been
shown in [DGK98, DK92, Gre89] that a priori error estimates for the Krylov approximation
of the matrix exponential remain valid also taking account of affects of arithmetic. Such
results imply that in general in computer arithmetic the convergence of the Krylov approx-
imation is not precluded and round-off errors are not critical. In practice round-off errors
may in some cases lead to a delay of convergence which can make a reorthogonalization
relevant. Stability of the Krylov approximation has been discussed by many authors, see
also [MMS18], but is not further discussed here in detail. In the next paragraph we will
give an argument, following [DGK98], that the a posteriori error estimates which are the
topic of this work are robust with respect to round-off errors.
We recall that the Krylov subspace constructed in computer arithmetic satisfies the

Krylov identity (2.2.2) with a small perturbation, see also [Pai76] for the Lanczos case
and [BLR00, Zem03] for the Arnoldi case, which can both be extended to complex-valued
problems using results from [Hig02]. Following results from [DGK98] we conclude that
a small perturbation of the Krylov identity leads to a small perturbation of the defect
(residual) δm(t) in (2.3.1a) and the integral representation of the error in (2.3.1b). Thus
the error estimates given in Section 2.6 remain stable with respect to round-off.
We further use that by construction the computed Tm is still upper Hessenberg with

a positive lower diagonal and in the Lanczos case also real-valued and symmetric. Then
following Proposition 2.5.5 in the Hermitian (Lanczos) case, the integral representation of
the error in (2.3.1b) results in the upper error bound Err1, which is not critically affected
by round-off errors. For the upper bound Erra we further assume that spectral properties
of (2.3.4) still hold mutatis mutandis under a small perturbation, see [Pai80] for such results
for the Lanczos case, to obtain stability of this upper error bound also with round-off.

Numerical tests for step size control. The idea of choosing discrete time steps for the
Krylov approximation is described in Section 2.7. The following tests are applied to the
matrix exponential of the Hubbard Hamiltonian. We first clarify the notation used for our
test setting.

Expokit and Expokit*. The original Expokit code uses the corrected Krylov approximation
with heuristic step size control and an error estimator which is based on the error
expansion (2.5.1), see [Sid98, Algorithm 3.2] for details. Since the standard Krylov
approximation is not part of the Expokit package, we have slightly adapted the code
and its error estimate such that the standard Krylov approximation is used. We refer
to the adapted package as Expokit*. With Expokit* our comparison can be drawn
with the standard Krylov approximation which may in some cases be the method of
choice as discussed above.

Step size based on Erra. In another test code the upper error bound Erra from The-
orem 2.3.2 is used. With Erra we obtain proven upper bounds on the error and
reliable step sizes (2.7.5).

By gen.res, eff.o.quad, and Err1 we refer to the generalized residual estimate (2.6.6),
the effective order quadrature (2.6.9), and (Err1), respectively. Because these error
estimates cannot be inverted directly we need to apply heuristic ideas for the step

34



2.8 Numerical considerations and examples

size control, see (2.7.7). In addition, we use the iteration (2.7.9) to improve step
sizes. For the test problems we have solved, iteration (2.7.9) converges in less than
2 iterations for m = 10 or less than 5 iterations for m = 30. We simply choose
Nj = 5 for our tests.

The a priori estimates (2.7.8), [HL97, Theorem 4] and [MC10, eq. (20)] are given in
the corresponding references. Formula (2.7.8) taken from the Expokit code directly
provides a step size. In [MC10, eq. (20)] the computation of the step size is described.
For the error estimate given in [HL97, Theorem 4] we apply Newton iteration to
determine an appropriate step size. For tests on the Hubbard model we use (λmax -
λmin) = 27.4 as suggested in the description of the Hubbard Hamiltonian.

In Remark 2.8.2 below we also investigate the following variants:

Step size based on Err+a . By Err+a we denote the upper error bound for the corrected
Krylov approximation as given in Theorem 2.5.4 with p = 0. The corresponding step
size is given by (2.7.6).

By i.H.quad we refer to the improved Hermite quadrature (2.6.5). Similarly to other
quadrature error estimates we use heuristic step size control and iteration (2.7.9) to
determine adequate step sizes.

Remark 2.8.1. In the Expokit code the step sizes are rounded to 2 digits in every step.
Rounding the step size can give too large errors in some steps. This makes it necessary to
include safety parameters in Expokit which on the other hand slow down the performance
of the code. It seems advisable to avoid any kind of rounding of step sizes.

In Table 2.1 we compare the total time step t for the Krylov approximation with m = 10
and m = 30 after N = 10 steps obtained with the different step size control strategies.
For the local error we choose the tolerance tol = 10-8. The original Expokit code seems
to give larger step sizes, but it also uses a larger number of matrix-vector multiplications,
see Remark 2.8.2. The error estimate Erra leads to optimal step sizes for m = 10 and
close to optimal step sizes for m = 30. For any choice of m the error estimate Erra
gives reliable step sizes. The generalized residual estimate overestimates the error and,
therefore, step sizes are smaller. The effective order quadrature and Err1 give optimal
step sizes. With the assumptions from Section 2.6 (which apply to our test examples), the
generalized residual estimate and effective order quadrature give reliable step sizes. For
the error estimate Err1 we do not have results on the reliability of the step sizes since the
error estimate Err1 does not lead to an upper bound of the error in general. The tested
a priori estimates (2.7.8), [HL97, Th. 4], and [MC10, (20)] overestimate the error and
lead to precautious step size choices. For all the tested versions the accumulated error L*

m

(see (2.7.2)) satisfies ║L*
mv║2/t ≤ tol.

Apart from step size control, the upper error bound Erra can be used on the fly to test
if the dimension of the Krylov subspace is already sufficiently large to solve the problem
in a single time step with the required accuracy. For our test problems this stopping
criterion is applied to the Erra estimate.We refer to Table 2.2, in which we observe the
Krylov method with error estimate Erra to stop after 17 steps instead of computing the
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2 Computable upper error bounds for Krylov approximations to matrix exponentials

Table 2.1: The displayed step size t is the sum of N = 10 substeps computed by different
versions of step size control, as described above. In the top table we show the
results form = 10, in the bottom table form = 30, both for tolerance tol = 10-8,
for the Hubbard Hamiltonian.

m = 10 Expokit Expokit* Erra gen.res eff.o.quad Err1 (2.7.8) [HL97, Th. 4] [MC10, (20)]
t 0.9020 0.6850 0.8468 0.6568 0.8488 0.8489 0.1918 0.4918 0.6879
N 10 10 10 10 10 10 10 10 10

#m-v 110 100 100 100 100 100 100 100 100
║L*

mv║2/t 3.5.10-09 2.9.10-09 9.8.10-09 1.0.10-09 1.0.10-08 1.0.10-08 3.0.10-14 7.5.10-11 1.5.10-09

m=30 Expokit Expokit* Erra gen.res eff.o.quad Err1 (2.7.8) [HL97, Th. 4] [MC10, (20)]
t 8.5700 8.2500 9.7248 9.0091 10.2127 10.2222 2.1131 8.2642 8.8111
N 10 10 10 10 10 10 10 10 10

#m-v 310 300 300 300 300 300 300 300 300
║L*

mv║2/t 2.6.10-10 2.9.10-10 2.6.10-09 3.5.10-10 9.5.10-09 9.7.10-09 2.9.10-15 3.4.10-11 1.9.10-10

Table 2.2: With a test setting similar to Table 2.1, we now compute up to a fixed time
t = 0.3 and choose the number N of steps according to the step size control. We
use a tolerance tol = 10-8 and m = 30. For this problem we see a significant
reduction in the number of matrix-vector multiplications used for the estimate
Erra by the stopping criteria described in the text.

m = 10 Expokit Expokit* Erra gen.res Err1 (2.7.8) [HL97, Th. 4] [MC10, (20)]
t 0.3 0.3 0.3 0.3 0.3 0.3 0.3 0.3
N 2 2 1 1 1 2 1 1

#m-v 62 60 17 30 30 60 30 30
║L*

mv║2/t 8.4.10-15 8.4.10-15 1.0.10-09 9.7.10-15 9.7.10-15 1.0.10-14 9.7.10-15 9.7.10-15

full Krylov subspace of dimension 30. In comparison, the original Expokit package needs
a total of 62 matrix-vector multiplications.

Remark 2.8.2. Error estimates for the corrected Krylov approximation or improved error
estimates such as the improved Hermite quadrature (2.6.5) require additional matrix-vector
multiplications. Instead of investing computational effort in improving the error estimate,
one may as well increase the dimension of the standard Krylov subspace. For comparison we
test the original Expokit code, the corrected Krylov approximation with error estimate Err+a
and the improved Hermite quadrature (2.6.5) with Krylov subspace m- 1. Table 2.3 shows
that a standard Krylov approximation with dimension m leads to better results, although
all considered versions use the same number of matrix-vector multiplications. Since the
reliability of error estimates such as Erra has been demonstrated earlier, it appears that
additional cost to improve the error estimate is not justified.

2.8.2 The Hermitian case

To obtain a more complete picture, we also briefly consider the case of a Hermitian matrix
A = H with σ = 1 in (2.2.1). Such a model is typical of the discretization of a parabolic
PDE. Thus, the result may depend on the regularity of the initial data, which is chosen to
be random in our experiments.
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Table 2.3: All variants shown use exactly m matrix-vector multiplications. Whereas Ex-
pokit, improved Hermite quadrature (i.H.quad) and Err+a imply higher cost for
the error estimate, the other codes Erra, effective order quadrature (eff.o.quad)
and Err1 use standard Krylov subspaces and do not spend additional matrix-
vector multiplications on error estimates.

m = 10 Expokit Err+a i.H.quad Erra eff.o.quad Err1
t 0.6620 0.7828 0.5863 0.8346 0.8366 0.8368
N 10 10 10 10 10 10

#m-v 100 100 100 100 100 100

║L*
mv║2/t 4.1 . 10-09 8.8 . 10-09 1.0 . 10-08 9.8 . 10-09 1.0 . 10-08 1.0 . 10-08

m = 30 Expokit Err+a i.H.quad Erra eff.o.quad Err1
t 8.1900 9.5763 9.6591 9.7482 10.2378 10.2473
N 10 10 10 10 10 10

#m-v 100 100 100 100 100 100

║L*
mv║2/t 3.6 . 10-10 2.7 . 10-09 9.2 . 10-09 2.6 . 10-09 9.5 . 10-09 9.7 . 10-09

Heat equation. To obtain the heat equation in (2.2.1) we choose A = H in (2.8.1) and
σ = -1. Details on the test setting are already given in Subsection 2.8.1.

For the heat equation, H given in (2.8.1), we can also verify the error estimates, see
Figure 2.7. In comparison to the skew-Hermitian case we do not observe a large time
regime for which the error is of the asymptotic order m. As shown in Proposition 2.5.5 we
do obtain an upper error bound using Err1 for the heat equation.

Similarly to the skew-Hermitian case, we can also apply the effective order quadrature
according to Remark 2.6.1 to the Hermitian case. Use σ = -1 and Tm ϵ Rmxm in (2.6.10)
to obtain

ρ(t) = -t

(
(Tm)m,m + (Tm)m,m-1

(e-t Tme1)m-1

(e-t Tme1)m

)
.

For computing the effective order we only consider time steps ρ(t) > 0, and where ρ
appears indeed to be monotonically decreasing over the computed discrete time steps.
This restriction is compatible with our assumptions in Section 2.6.

2.8.3 A non-normal problem

For a more general case we consider a convection-diffusion equation (see [MN01, EE06]).

gtu = Δu- τ1gx1u- τ2gx2u, τ1, τ2 ϵ R, u = u(t, x), t ≥ 0, x ϵ Ω = [0, 1]3,

u(0, x) = v(x) for x ϵ Ω, u(t, x) = 0 for x ϵ gΩ.
(2.8.4)

Following [MN01, EE06] we use a central finite difference scheme to discretize the partial
differential operator in (2.8.4). The grid is chosen uniformly with (n+2)3 points and mesh
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Computed effective order of the defect for m = 10 (partly):

t 1.0 . 100 1.5 . 100 2.1 . 100 2.9 . 100 4.1 . 100 5.9 . 100 8.3 . 100 1.2 . 101 1.7 . 101 2.3 . 101 3.3 . 101
ρ(t) 8.50 8.30 8.02 7.64 7.14 6.48 5.65 4.66 3.58 2.52 1.60

and m = 30:

t 3.3 . 101 4.7 . 101 6.6 . 101 9.4 . 101 1.3 . 102 1.9 . 102 2.7 . 102
ρ(t) 16.60 13.47 10.33 7.48 5.15 3.36 2.07

Figure 2.7: Error ║Lm(t)v║2 (○), the error estimates Err1 (x) and Erra (+) and the error
estimate based on the effective order quadrature (2.6.9) (◊) for the heat equa-
tion with m = 10 and m = 30. The tabular on the bottom shows some of the
computed values for the effective order.
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2.9 Summary and outlook.

width h = 1/(n + 1). The dimension N of the discrete operator is N = n3. Choosing
n = 15 we obtain N = 3357. The discretized operator is given by

A = (Inxn ○ (Inxn ○ C1)) + (B ○ Inxn + Inxn ○ C2)○ Inxn) ϵ RNxN , with (2.8.5)

B = 1
h2 tridiag(1,-2, 1) ϵ Rn, Ci =

1
h2 tridiag(1 + μi,-2, 1- μi) ϵ Rn, i = 1, 2,

and μi = τi (h/2). The spectrum of the non-normal matrix A in (2.8.5) (see [MN01])
satisfies

spec(A) ∩ 1
h2 [-6- 2 cos(π h)Re(θ),-6 + 2 cos(π h)Re(θ)]

x 1
h2 i [-2 cos(π h)Im(θ), 2 cos(π h)Im(θ)].

with θ = 1+
√
1- μ2

1+
√

1- μ2
2. Therefore, the eigenvalues are complex-valued if at least

one μi > 1. The matrix A depends on the parameters μi, correspondingly τi, for which we
consider two different cases,

μ1 = 0.9, μ2 = 1.1, with spec(h2A) ∩ [-9,-3]x i[-1, 1], (2.8.6)

and
μ1 = μ2 = 10, with spec(h2A) ∩ [-8,-4]x i[-39, 39]. (2.8.7)

In the following numerical experiments we apply the Krylov approximation to et Av (σ = 1
in (2.2.1)) for different time steps t and starting vector v = (1, . . . , 1)* ϵ RN as in [MN01].
For non-normal A we use the Arnoldi method based on a modified Gram-Schmidt procedure
(see [Saa03, Algorithm 6.2]) to generate the Krylov subspace.

The error estimates Erra and Err1 are compared to the exact error norm ║Lm(t)v║2
in Figure 2.8 for the case (2.8.6) and in Figure 2.9 for the case (2.8.7). As shown in
Theorem 2.3.2 the error estimate Erra constitutes an upper error bound. The error estimate
Err1 gives a good approximation of the error but has not been proven to give an upper
bound in general.

Compared to (2.8.7), the spectrum for (2.8.6) is closer to the Hermitian case. The
spectrum for (2.8.7), on the other hand, is dominated by large imaginary parts similarly
as in the skew-Hermitian case.
In Figure 2.8 we observe effects similar to the Hermitian case. The asymptotic order m

of the error does not hold for a large time regime, and the error estimate Erra is not as
sharp as in the skew-Hermitian case. On the other hand, in Figure 2.9, we observe that
the performance of the error estimates is closer to the skew-Hermitian case. Therefore, the
upper error bound Erra is sharp for a larger range of time steps. As already observed for
the Hermitian and skew-Hermitian cases, the error of the Krylov approximation is closer
to its asymptotic order m for smaller choices of m.

2.9 Summary and outlook.

We have studied a new reliable error estimate Erra for Krylov approximations to the matrix
exponential and φ-functions. This error estimate constitutes an upper bound on the error,
and it can be computed on the fly at nearly no additional cost. The Krylov process can
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Figure 2.8: Error ║Lm(t)v║2 (○) and the error estimates Err1 (x) and Erra (+) for the
convection-diffusion problem (2.8.5) with μ1 = 0.9 and μ2 = 1.1 and Krylov
subspace dimensions m = 10 and m = 30.
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Figure 2.9: Error ║Lm(t)v║2 (○) and the error estimates Err1 (x) and Erra (+) for the
convection-diffusion problem (2.8.5) with μ1 = μ2 = 10 and Krylov subspace
dimensions m = 10 and m = 30.
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2.9 Summary and outlook.

be stopped as soon as the error estimate satisfies a given tolerance. Erra is asymptotically
correct for t - 0 and very tight in the asymptotic regime. Our numerical experiments
illustrate that the asymptotic regime is more relevant for the skew-Hermitian case (com-
pared to the Hermitian case) and for a smaller choice of m and tolerances. The non-normal
examples seem to be in between the skew-Hermitian and Hermitian cases.
In our numerical experiments the defect (residual) is seen to behave nicely close to the

asymptotic regime and the generalized residual estimate is observed to constitute an upper
bound. The generalized residual estimate can be tightened by applying an effective order
quadrature.
For the Hermitian case we have shown that the error estimate Err1 constitutes an upper

bound and, compared to other error estimates, seems to be the most appropriate choice
for Hermitian problems.
Step size control for a simple restarted scheme is an important application. The upper

error bound Erra is an appropriate tool for this task, since the optimal step size for a
given tolerance can be computed directly. This is not the case for other error estimates
for the Krylov approximation, which usually employ heuristic schemes to compute optimal
step sizes in the restarting approach. We have shown that the step size can be cheaply
improved by using a heuristic step size approach in an iterative manner. Also the use of
a priori bounds is not optimal in most cases.
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3 A study of defect-based error estimates for
the Krylov approximation of φ-functions

3.1 Introduction

Overview on prior work. The matrix exponential and associated φ-functions play a crucial
role in some numerical methods for solving systems of differential equations. In practice
this means that the vector etAv, for a time step t, a given matrix A and a given vector v,
representing the time propagation for a linear initial value problem, is to be approximated.
Similarly, the associated φ-functions (see (3.2.2) below) conform to solutions of certain
inhomogeneous differential equations. In particular, evaluation of φ-functions is used in
exponential integrators [HO10].

If the matrix A is sparse and large, approximation of the action of these matrix func-
tions in the class of Krylov subspaces is a general and well-established technique. For the
matrix exponential and φ-functions this goes back to early works in the field of chemical
physics [NW83, PL86], parabolic problems [GS92], some nonlinear problems [FTDR89],
etc. The case of a symmetric or skew-Hermitian matrix A is the most prominent one.
Krylov approximations of the matrix exponential were early studied for the symmet-
ric case in [DK89, DK92, Saa92], and together with φ-functions in a more general set-
ting [HLS98, HL97].

Concerning different approaches for the numerical approximation of the matrix expo-
nential see [MVL03]. In [Saa92] it is shown for the symmetric case that the Krylov ap-
proximation is equivalent to interpolation of the exponential function at associated Ritz
values. This automatically results in a near-best approximation among other choices of
interpolation nodes, see also [DK89, SL96] and further works [BR09] with similar results
for the non-symmetric case and general functions including φ-functions. For other poly-
nomial approaches approximating the matrix exponential we mention truncated Taylor
series [AMH11] (and many works well in advance), Chebyshev interpolation [TEK84], or
the Leja method [CKOR16], where [AMH11] also covers φ-functions.

In general, Krylov approximations (or other polynomial approximations) result in an
accurate approximation if the time step t in etAv is sufficiently small or the dimension of
the Krylov subspace (i.e., the degree of the approximating matrix polynomial) is sufficiently
large, see for instance [HL97]. The dimension of the Krylov subspace is limited in practice,
and large time steps require a restart of the iteration generating the Krylov basis. A larger
time step t can be split into smaller substeps for which the Krylov approximation can
be applied in a nested way. Such a restarting strategy in the sense of a time integrator
was already exploited in [PL86]. In particular we refer to the EXPOKIT package [Sid98].
Similar ideas can be applied for the evaluation of φ-functions [HLS98, NW12, Sid98].

In practice, a posteriori error estimates are used to choose a proper Krylov dimension
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or proper (adaptive) substeps if the method is restarted as a time integrator. Different
approaches for a posteriori error estimation concerning the exponential function make use of
a series expansion for the error given [Saa92] or use a formulation via the defect (also called
residual) of the Krylov approximation [DGK98, HLS98, CM97, BGH13]. A prominent error
estimate concerning φ-functions is the generalized residual estimate introduced in [HLS98],
which is based on the residual of a matrix inverse. Furthermore, a series expansion of the
error concerning φ-functions is given in [Sid98] (similar to the series expansion concerning
the exponential in [Saa92]) and leading terms of this series are used for a posteriori error
estimation in [Sid98, NW12]. Further a priori as well as a posteriori error estimates for
the exponential function are are given in [MN01, Lub08, DMR09, BR09, JL15, WY17,
JAK20], where [DMR09, JAK20] also consider φ-functions. Restarting via substeps based
on different choices of error estimates is further discussed in [JAK20]. A restart with
substeps together with a strategy to choose the Krylov dimension in terms of computational
cost was presented in [NW12, BK19]. For various other approaches for restarting (without
adapting the time step) we refer to [CM97, EE06, TE07, Nie07, AEEG08, EEG11, BGH13,
Sch15].

The influence of round-off errors on the construction of the Krylov basis in floating point
arithmetic was early studied for the symmetric case in [Pai76, Par98]. The orthogonaliza-
tion procedure can behave numerically unstable, typically due to a loss of orthogonality.
Nevertheless, the near-best approximation property and related a priori convergence results
are not critically affected [DK92, DGK98]. Following [DGK98], in the symmetric case the
defect obtained in floating point arithmetic results in numerically stable error estimates.

Beside the polynomial Krylov method, further studies are devoted to the approximation
of matrix functions using so called extended Krylov subspaces [DK98, KS10, GG13], ra-
tional Krylov subspaces [MN04, vdEH06, G:ut10], or polynomial Krylov subspaces with a
harmonic Ritz approach [HH05, Sch15, WZX16].

Overview on results presented here. In Section 3.2 we introduce the problem setting and
recapitulate basic properties of Krylov subspaces.

In Section 3.3 we introduce the defect associated with Krylov approximations to φ-
functions, including the exponential function as the basic case. Our approach for the defect
is different from [WZX16] and is based on an inhomogeneous differential equation for the
approximation error. This is used in Theorem 3.3.1 to obtain an integral representation
of the error, also taking effects of floating point arithmetic into account. 1 In contrast to
previous works ([DGK98, JAK20]), this result is extended to φ-functions here.

This upper bound is further analyzed in Section 3.4 to obtain computable a posteriori
bounds, in particular a new a posteriori bound (Theorem 3.4.3). We also study the accuracy
of our and other existing defect-based bounds [JAK20] with respect to spectral properties
of the Krylov Hessenberg matrix (the representation of A in the orthogonal Krylov basis).
To this end we use properties of divided differences including a new asymptotic expansion
for these given in Appendix 3.C. In Subsection 3.4.1 we consider error estimates based on a
quadrature estimate of the defect norm integral: The generalized residual estimate [HLS98]
for the approximation of φ-functions which conforms to a quadrature of the defect norm

1Cf. [DGK98] for the case of the matrix exponential.
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3.2 Problem statement and Krylov approximation

integral (namely, the right-endpoint rectangle rule), and the effective order estimate, which
was introduced for the approximation of the matrix exponential in [JAK20] and is extended
to φ-functions in the present work. We also discuss cases for which the defect norm behaves
oscillatory and reliable quadrature estimates may be difficult to obtain. In Subsection 3.4.2
we specify a stopping criterion for the so-called lucky breakdown in floating point arithmetic
which is justified by our a posteriori error bounds.
In Section 3.5 we illustrate our results via numerical experiments. This includes further

remarks on previously known error estimates for the Krylov approximation of φ-functions.

3.2 Problem statement and Krylov approximation

We discuss the approximation via Krylov techniques for evaluation of the matrix expo-
nential, and in particular of the associated φ-functions, for a step size t > 0 and matrix
A ϵ Cnxn applied to an initial vector v ϵ Cn. Here,

etAv =

∞∑
k=0

(tA)k

k!
v. (3.2.1)

The matrix exponential u(t) = etAv is the solution of the differential equation

u,(t) = Au(t), u(0) = v.

The associated φ-functions are given by

φp(tA)v =
∞∑
k=0

(tA)k

(k + p)!
v, p ϵ N0. (3.2.2)

This includes the case φ0 = exp. The matrix functions (3.2.1) and (3.2.2) are defined ac-
cording to their scalar counterparts. The following definitions of φp are equivalent to (3.2.2):
For z ϵ C we have φ0(z) = ez, and

φp(z) =
1

(p- 1)!

∫ 1

0
e(1-θ)zθp-1 dθ, p ϵ N. (3.2.3)

(See also [Hig08, Subsection 10.7.4].) The function wp(t) = tpφp(tA)v (p ϵ N) is the
solution of an inhomogeneous differential equation of the form

w,
p(t) = Awp(t) +

tp-1

(p- 1)!
v, wp(0) = 0, (3.2.4)

see for instance [NW12]. This follows from (3.2.2),

d

dt

(
tpφp(tA)v

)
=

d

dt

( ∞∑
k=0

tk+pAkv

(k + p)!

)
= A

∞∑
k=0

tk+pAkv

(k + p)!
+

tp-1v

(p- 1)!

= A(tpφp(tA)v) +
tp-1v

(p- 1)!
.
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3 A study of defect-based error estimates for the Krylov approximation of φ-functions

The φ-functions appear for instance in the field of exponential integrators, see for in-
stance [HO10].

For the case of A being a large and sparse matrix, e.g., the spatial discretization of a par-
tial differential operator using a localized basis, Krylov subspace techniques are commonly
used to approximate (3.2.2) in an efficient way.

Notation and properties of Krylov subspaces. 2 We briefly recapitulate the usual no-
tation and properties of standard Krylov subspaces, see for instance [Saa03]. For a given
matrix A ϵ Cnxn, a starting vector v ϵ Cn and Krylov dimension 0 < m ≤ n, the Krylov
subspace is given by

Km(A, v) = span(v,Av, . . . , Am-1v).

Let Vm ϵ Cnxm represent the orthonormal basis of Km(A, v) with respect to the Hermitian
inner product, constructed by the Arnoldi method and satisfying V *

mVm = Imxm. Its first
column is given by V *

mv = βe1 with β = ║v║2. Here, the matrix

Hm = V *
mAVm ϵ Cmxm

is upper Hessenberg. We further use the notation hm+1,m = (Hm+1)m+1,m ϵ R, and
vm+1 ϵ Cn for the (m+ 1)-th column of Vm+1, with V *

mvm+1 = 0 and ║vm+1║2 = 1.
The Arnoldi decomposition (in exact arithmetic) can be expressed in matrix form,

AVm = VmHm + hm+1,mvm+1e
*
m. (3.2.5)

Remark 3.2.1. The numerical range W(A) = {y*Ay/y*y, 0 /= y ϵ Cn} plays a role in
our analysis. Note that W(Hm) ∩ W(A) (see (3.A.1)).

Remark 3.2.2. The case (Hm)k+1,k = 0 occurs if Kk(A, v) is an invariant subspace of
A, whence the Krylov approximation given in (3.2.9) below is exact. This exceptional
case is referred to as a lucky breakdown. In general we assume that no lucky breakdown
occurs, whence the lower subdiagonal entries of Hm are real and positive, 0 < (Hm)j+1,j

for j = 1, . . . ,m- 1, and 0 < hm+1,m ϵ R.

For the special case of a Hermitian or skew-Hermitian matrix A the Arnoldi iteration
simplifies to a three-term recurrence, the so-called Lanczos iteration. This case will be
addressed in Remark 3.2.4 below.

Krylov subspaces in floating point arithmetic. We proceed with some results for the
Arnoldi decomposition in computer arithmetic, assuming complex floating point arithmetic
with a relative machine precision ε, see also [Hig02]. For practical implementation different
variants of the Arnoldi procedure exist, using different ways for the orthogonalization of
the Krylov basis. These are based on classical Gram-Schmidt, modified Gram-Schmidt,
the Householder algorithm, the Givens algorithm, or variants of Gram-Schmidt with re-
orthogonalization (see also [Saa03, Algorithm 6.1-6.3] and others). We refer to [BLR00]
and references therein for an overview on the stability properties of these different variants.

2In the sequel, ej denotes the j-th unit vector in Cm or Cn, respectively.
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3.2 Problem statement and Krylov approximation

In the sequel the notation Vm, Hm, etc., will again be used for the result of the Arnoldi
method in floating point arithmetic. We now accordingly adapt some statements formulated
in the previous paragraph. By construction, Hm remains to be upper Hessenberg with
positive lower subdiagonal entries. Assuming floating point arithmetic we use the notation
Um ϵ Cnxm for a perturbation of the Arnoldi decomposition (3.2.5) caused by round-off,
i.e.,

AVm = VmHm + hm+1,mvm+1e
*
m + Um. (3.2.6)

An upper norm bound for Um was first introduced in [Pai76] for the Lanczos iteration in
real arithmetic. For different variants of the Arnoldi or Lanczos iteration this is discussed
in [Zem03] and others. We assume ║Um║2 is bounded by a constant C1 which can depend
on m and n in a moderate way and is sufficiently small in a typical setting,

║Um║2 ≤ C1ε║A║2. (3.2.7a)

We further assume that the normalization of the columns of Vm is accurate, in particular
that the (m+1)-th basis vector vm+1 is normalized correctly up round-off with a sufficiently
small constant C2 (see e.g., [Pai76, eq. (14)]),

|║vm+1║2 - 1| ≤ C2ε. (3.2.7b)

Concerning Vm+1 which represents an orthogonal basis in exact arithmetic, numerical loss
of orthogonality has been well-studied. Loss of orthogonality can be significant (see for
instance [Par98, BLR00] and others), depending on the starting vector v. Reorthogonal-
ization schemes or orthogonalization via Householder or Givens algorithm can be used to
obtain orthogonality of Vm+1 on a sufficiently accurate level.

The numerical range of Hm obtained in floating point arithmetic (see (3.2.6)) can be
characterized as

W(Hm) ∩ UC3ε(W(A)), (3.2.7c)

with UC3ε(W(A)) being the neighborhood of W(A) in C with a distance C3ε. With the
assumption that Vm+1 is sufficiently close to orthogonal (e.g., semiorthogonal [Sim84]), the
constant C3 in (3.2.7c) (which also depends on C1 and problem sizes) can be shown to be
moderate-sized. Further details on this aspect are given in Appendix 3.A.

Krylov approximation of φ-functions. 3 Let Vm ϵ Cnxm, Hm ϵ Cmxm and β ϵ R be the
result of the Arnoldi method in floating point arithmetic for Km(A, v) as described above.
For a time-step 0 < t ϵ R and p ≥ 0 the vector φp(tA)v can be approximated in the Krylov
subspace Km(A, v) by the Krylov propagator

up,m(t) := Vmφp(tV
*
mAVm)V *

mv = βVmφp(tHm)e1, p ϵ N. (3.2.8a)

The special case p = 0 reads

u0,m(t) = βVmetHme1. (3.2.8b)

3Remark concerning notation: ,u, objects live in Cn, and ,y, objects live in Cm.
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We remark that the small-dimensional problem φp(tHm)e1 ϵ Cm, typically with m < n,
can be evaluated cheaply by standard methods. In the sequel we denote

yp,m(t) = βφp(tHm)e1 ϵ Cm, i.e., up,m(t) = Vmyp,m(t). (3.2.9)

For p = 0 the small dimensional problem y0,m(t) = βetHme1 solves the differential equation

y,0,m(t) = Hmy0,m(t), y0,m(0) = βe1, (3.2.10)

For later use we introduce the notation

.yp,m(t) = tpyp,m(t), (3.2.11a)

which for p ϵ N and according to (3.2.4) satisfies the differential equation

.y,p,m(t) = Hm.yp,m(t) + tp-1

(p-1)!βe1, .yp,m(0) = 0. (3.2.11b)

Remark 3.2.3. Although we take rounding effects in the Arnoldi decomposition into ac-
count, we do not give a full study of round-off errors at this point. Round-off errors in
substeps such as the evaluation of yp,m(t) or the matrix-vector multiplication Vmyp,m(t)
will be ignored. We refer to [Hig02] for a more general study of these effects.

Remark 3.2.4. In the special cases A = B or A = iB for a Hermitian matrix B ϵ
Cnxn (with A being skew-Hermitian in the latter case) the orthogonalization of the Krylov
basis of Km(B, v) simplifies to a three-term recursion, the so-called Lanczos method. In
the skew-Hermitian case (A = iB) the Krylov propagator (3.2.8a) can be evaluated by
βVmφp(itHm)e1, i.e., we approximate the function λ ,- φp(itλ) in the Krylov subspace
Km(B, v). The advantage is a cheaper computation of the Krylov subspace in terms of
computational cost and better conservation of geometric properties. For details we refer to
the notation eσtB as introduced in Chapter 2, with σ = ±i and a Hermitian matrix B for
the skew-Hermitian case.

The error of the Krylov propagator. We denote the error of the Krylov propagator given
in (3.2.9) by

lp,m(t) = βVmφp(tHm)e1 - φp(tA)v, p ϵ N0. (3.2.12)

We are further interested in computable a posteriori estimates for the error norm, ζp,m(t) ≈
║lp,m(t)║2, which in the best case can be proven to be upper bounds on the error norm
║lp,m(t)║2 ≤ ζp,m(t). Norm estimates of the error (3.2.12) can be used in practice to stop the
Krylov iteration after k steps if ║lp,k(t)║2 satisfies (3.2.13) below, or to restrict the time-step
t to obtain an accurate approximation and restart the method with the remaining time.
For details on the total error with this restarting approach see also [Sid98, JAK20].

A prominent task is to test if the error norm per unit step is bounded by a tolerance tol,

ζp,m(t) ≤ t . tol, which should entail ║lp,m(t)║2 ≤ t . tol. (3.2.13)

In case of ζp,m(t) being an upper bound on the error norm, this results in a reliable bound.
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3.3 An integral representation for the error of the Krylov propagator

3.3 An integral representation for the error of the Krylov
propagator

We proceed with discussing the error lp,m of the Krylov propagator. To this end we first
define its scalar defect by

δp,m(t) = βe*mtpφp(tHm)e1 = tp
(
yp,m(t)

)
m

ϵ C, (3.3.1a)

and the defect integral by4

Lp,m(t) =
hm+1,m

tp

∫ t

0
|δp,m(s)| ds ϵ R. (3.3.1b)

Theorem 3.3.1. Let δp,m(t) ϵ C be the defect defined in (3.3.1a). For yp,m(t) ϵ Cm

defined in (3.2.9) and a numerical perturbation Um ϵ Cnxm of the Arnoldi decomposition
(see (3.2.6)), we have:

(a) The error lp,m(t) of the Krylov propagator (see (3.2.12)) enjoys the integral represen-
tation

lp,m(t) = -hm+1,m

tp

∫ t

0
e(t-s)Avm+1δp,m(s) ds- 1

tp

∫ t

0
e(t-s)AUmspyp,m(s) ds.

(3.3.2a)

(b) For given machine precision ε and constants C1, C2 representing round-off effects
(see (3.2.7a),(3.2.7b)), and with κ1 = maxsϵ[0,t] ║esA║2 and κ2 = maxsϵ[0,t] ║esHm║2
the error norm is bounded by

║lp,m(t)║2 ≤ (1 + C2ε)κ1Lp,m(t) + C1ε║A║2 βκ1κ2t
(p+ 1)!

, (3.3.2b)

with the defect integral Lp,m(t) defined in (3.3.1b).

Proof.

(a) For the exact matrix function we use the notation

up(t) = φp(tA)v, and wp(t) = tpup(t).

For the Krylov propagator we denote

up,m(t) = Vmyp,m(t) with yp,m(t) = βφp(tHm)e1

(see (3.2.9)), and we also define

wp,m(t) = tpup,m(t) = Vm.yp,m(t), with .yp,m(t) = tpyp,m(t) defined in (3.2.11a).

4This and the result of Theorem 3.3.1 remain valid for the case t = 0.
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❼ For p ϵ N, the functions wp(t) and wp,m(t) satisfy the differential equations
(see (3.2.4), (3.2.11b))

w,
p,m(t) = Vm.y,p,m(t) = Vm

(
Hm.yp,m(t) + tp-1

(p-1)!βe1
)
,

w,
p(t) = Awp(t) +

tp-1

(p-1)!v, and wp(0) = wp,m(0) = 0.
(3.3.3)

❼ For p = 0, i.e., w0(t) = u0(t) and w0,m(t) = Vmy0,m(t), according to (3.2.10) we
have

w,
0(t) = Aw0(t), w,

0,m(t) = VmHmy0,m(t),

and w0(0) = v, w0,m(0) = βVme1 = v.

Local error representation in terms of the defect. We defined the re-scaled error

.lp,m(t) = wp,m(t)- wp(t) = tplp,m(t).

❼ For p ϵ N this satisfies

.l ,
p,m(t) = w,

p,m(t)- w,
p(t) = A.lp,m(t) + dp,m(t), .lp,m(0) = 0, (3.3.4)

with the defect of wp,m(t) with respect to the differential equation (3.3.3),

dp,m(t) = w,
p,m(t)-Awp,m(t)- tp-1

(p-1)!v

= Vm

(
Hm.yp,m(t) + tp-1

(p-1)!βe1
)-AVm.yp,m(t)- tp-1

(p-1)!v

=
(
VmHm -AVm

).yp,m(t) + tp-1

(p-1)!(βVme1 - v).

Together with (3.2.6) and using of βVme1 = v the defect can be written as

dp,m(t) = -hm+1,m(e*m.yp,m(t))vm+1 - Um.yp,m(t).

❼ For p = 0, in an analogous way we obtain

d0,m(t) = -hm+1,m(e*my0,m(t))vm+1 - Umy0,m(t).

We conclude

dp,m(t) = -hm+1,mδp,m(t)vm+1 - tpUmyp,m(t), p ϵ N0, (3.3.5)

with the scalar defect defined in (3.3.1a). Due to (3.3.4) we have

.lp,m(t) =

∫ t

0
e(t-s)Adp,m(s)ds, p ϵ N0,

and for lp,m(t) = t-p.lp,m(t) together with (3.3.5) this implies (3.3.2a).
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3.3 An integral representation for the error of the Krylov propagator

(b) With κ1 = maxsϵ[0,t] ║esA║2, ║Um║2 ≤ C1ε║A║2 and ║vm+1║2 ≤ 1 + C2ε, the repre-
sentation (3.3.2a) implies the upper bound

║lp,m(t)║2 ≤ (1 + C2ε)κ1
hm+1,m

tp

∫ t

0
|δp,m(s)| ds

+ C1ε║A║2κ1
tp

∫ t

0
sp║yp,m(s)║2 ds.

(3.3.6)

With the defect integral Lp,m(t) defined in (3.3.1b) we obtain the first term in (3.3.2b).
For the second integral term (with yp,m(t) = βφp(tHm)e1) we use the upper bound∫ t

0
sp║φp(sHm)e1║2 ds ≤ max

sϵ[0,t]
║φp(sHm)e1║2 tp+1

p+ 1
. (3.3.7)

❼ For p ϵ N we apply the integral representation due to (3.2.3) for φp(tHm)e1 to
obtain the norm bound

max
sϵ[0,t]

║φp(sHm)e1║2 ≤
maxsϵ[0,t] ║esHm║2

(p- 1)!

∫ 1

0
θp-1 dθ =

maxsϵ[0,t] ║esHm║2
p!

.

(3.3.8)

❼ For p = 0 we obtain (3.3.8) in a direct way.

Combining (3.3.7) with (3.3.8) and denoting κ2 = maxsϵ[0,t] ║esHm║2 we obtain

κ1
tp

∫ t

0
sp║yp,m(s)║2 ds ≤ βκ1κ2t

(p+ 1)!
.

Combining these estimates with (3.3.6) we conclude (3.3.2b).

Remark 3.3.2. The error norm of the Krylov propagator scales with κ1 = maxsϵ[0,t] ║esA║2
and κ2 = maxsϵ[0,t] ║esHm║2 in a natural way. 5 It is well known that

║etA║2 ≤etμ2(A) with the logarithmic norm

μ2(A) = max{Re(W(A))} = max{spec(A+A*)/2},

see for instance [Hig08, Theorem 10.11]. Problems with μ2(A) > 0 can be arbitrary ill-
conditioned and difficult to solve with proper accuracy. (For further results on the stability
of the matrix exponential see also [MVL03, VL77].) We will not further discuss problems
with μ2(A) > 0 and assume μ2(A) ≤ 0. We refer to the case μ2(A) ≤ 0 as the dissipative
case, with κ1 = 1.

5Taking the maximum maxsϵ[0,t] in the definition of κ1 and κ2 is necessary to cover the case p > 0. For the

special case p = 0 the upper norm bound given in Theorem 3.3.1 can be adapted to scale with etμ2(A).
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3 A study of defect-based error estimates for the Krylov approximation of φ-functions

For the dissipative case with μ2(A) ≤ 0 the error bound (3.3.2b) from Theorem 3.3.1
reads

║lp,m(t)║2 ≤ (1 + C2ε)Lp,m(t) + C1ε║A║2 βκ2t

(p+ 1)!
. (3.3.9)

The dissipative behavior of etA carries over to the Krylov propagator up to a perturbation
which depends on round-off errors, including the loss of orthogonality of Vm. In terms of
the numerical range W(Hm), with W(Hm) ∩ UC3ε(W(A)) we have μ2(Hm) ≤ μ2(A)+C3ε,
for a constant C3ε depending on round-off effects (3.2.7c). Thus, μ2(Hm) ≤ C3ε and
κ2 ≤ etC3ε.

Our aim is to construct an upper norm bound for the error per unit step (3.2.13)
via (3.3.9). Let the tolerance tol be given and t be a respective time step for (3.2.13).
Then the round-off error terms in (3.3.9) are negligible if

C2ε < 1, and C1ε║A║2βetC3ε/(p+ 1)! < tol. (3.3.10)

Concerning the constants C1, C2 and C3 see (3.2.7). We recapitulate that C1 and C2 given
in (3.2.7a) and (3.2.7b) can be considered to be small enough in a standard Krylov setting.
The constant C3 can be larger in the case of a loss of orthogonality of the Krylov subspace,
which can however be avoided at the cost of additional computational effort. The constant
C3 only appears as an exponential prefactor for the round-off term in (3.3.10) and is less
critical compared to C1 and C2.
With the previous observation on the round-off errors taken into account in (3.3.9) we

consider the following upper bound to be stable in computer arithmetic in accordance to a
proper value of tol, see (3.3.10).

Corollary 3.3.3. For the case μ2(A) ≤ 0 and with the assumption that round-off error is
negligible, the error of the Krylov propagator is bounded by the defect integral Lp,m(t),

║lp,m(t)║2 ≤ hm+1,m

tp

∫ t

0
|δp,m(s)| ds = Lp,m(t), p ϵ N0.

Note that the defect norm |δp,m(s)| cannot be integrated exactly in general. This point
will further be studied in the sequel.

Representing the defect in terms of divided differences. Divided differences play an
essential role in this work. We use the notation

f [λ1, . . . , λm]

for the divided differences of a function f over the nodes λ1, . . . , λm. (This is to be un-
derstood in the confluent sense for the case of multiple nodes λj , see for instance [Hig08,
Section B.16].)

Theorem 3.3.4 (see for instance [CM97]). Let Hm ϵ Cmxm be an upper Hessenberg
matrix with positive secondary diagonal entries, 0 < (Hm)j+1,j ϵ R for j = 1, . . . ,m - 1,
and eigenvalues λ1, . . . , λm. Let f be an analytic function for which f(Hm) is well defined.
Then,

e*mf(Hm)e1 = γmf [λ1, . . . , λm],

with γm =
πm-1

j=1 (Hm)j+1,j.
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3.3 An integral representation for the error of the Krylov propagator

For f = (φp)t : λ ,- φp(tλ) we will also make use of the following result. 6

Theorem 3.3.5 (Corollary 1 in [Sid98]; expressing φ-functions via dilated exp-functions).
For t ϵ R,

tpe*mφp(tHm)e1 = e*m+p exp(t ~Hp,m)e1

with

~Hp,m =

(
Hm 0mxp

e1e
*
m Jpxp

)
ϵ C(m+p)x(m+p) and Jpxp =

(|||8
0
1 0

. . .
. . .

1 0

)|||) ϵ Cpxp.

The matrix ~Hp,m in Theorem 3.3.5 is block triangular with eigenvalues equal to those

of Hm and Jpxp. Therefore, spec( ~Hm) = {λ1, . . . , λm, 0, . . . , 0}, with 0 as an eigenvalue

of multiplicity p (at least). In our context, ~Hm is upper Hessenberg with a positive lower
secondary diagonal and γm =

πm-1
j=1 (Hm)j+1,j =

πm+p-1
j=1 ( ~Hm)j+1,j . In accordance with

Theorem 3.3.4 the result of Theorem 3.3.5 holds for divided differences in a similar manner,

tp(φp)t[λ1, . . . , λm] = expt[λ1, . . . , λm, 0, . . . , 0. .. .
p times

].

With Theorem 3.3.4 and 3.3.5 the following equivalent formulations can be used the
rewrite the scalar defect δp,m(t) defined in (3.3.1a).

Corollary 3.3.6. Let δp,m(t) be the scalar defect given in (3.3.1a) for the upper Hessen-
berg matrix Hm ϵ Cmxm with positive secondary diagonal entries. Denote 0 < γm =πm-1

j=1 (Hm)j+1,j. Let ~Hp,m ϵ Cm+p be given as in Theorem 3.3.5. For the scalar defect we
obtain the following equivalent formulations:

(i) δp,m(t) = βe*mtpφp(tHm)e1

(ii) = βγmtp(φp)t[λ1, . . . , λm]

(iii) = βe*m+p exp(t ~Hp,m)e1

(iv) = βγm expt[λ1, . . . , λm, 0p]
7

We remark that the eigenvalues λ1, . . . , λm of the Krylov Hessenberg matrix Hm are also
referred to as Ritz values (of A) in the literature.

6Theorem 3.3.5 can be generalized to the case tpe*mφk+p(tHm)e1 = e*m+pφk(t ~Hp,m)e1 with k ϵ N,
see [AMH11, Theorem 2.1]. The case k = 0 is sufficient for our purpose.

7Here we introduce the notation (λ1, . . . , λm, 0p) = (λ1, . . . , λm, 0, . . . , 0) ϵ Cm+p for p ϵ N0.

53



3 A study of defect-based error estimates for the Krylov approximation of φ-functions

3.4 Computable a posteriori error bounds for the Krylov
propagator

The following two propositions are used for the proof of Theorem 3.4.3 below.8

Proposition 3.4.1. For arbitrary nodes λj ϵ C and p ϵ N0,∫ t

0
sp(φp)s[λ1, . . . , λk] ds = tp+1(φp+1)t[λ1, . . . , λk].

Proof. See Appendix 3.B.

Proposition 3.4.2 (Lemma including eq. (5.1.1) in [MNP84]). For arbitrary nodes λj =
ξj + iηj ϵ C,

| expt[λ1, . . . , λk]| ≤ expt[ξ1, . . . , ξk].

Proof. See Appendix 3.B.

We now derive upper bounds for the error via its representation by the defect inte-
gral (3.3.1b).

Theorem 3.4.3. Let p ϵ N0, μ2(A) ≤ 0, and assume that round-off errors are sufficiently
small (see Corollary 3.3.3). For the eigenvalues of Hm we write λj = ξj+iηj, j = 1, . . . ,m.
An upper bound on the error norm is given by

║lp,m(t)║2 ≤ βhm+1,mγmt(φp+1)t[ξ1, . . . , ξm]. (3.4.1)

Proof. Due to Corollary 3.3.6, (iv),

δp,m(t) = βγm expt[λ1, . . . , λm, 0p]. (3.4.2a)

The divided differences in (3.4.2a) span over complex nodes λ1, . . . , λm and 0p ϵ Cp, with
real parts ξ1, . . . , ξm. Propositions 3.4.2 and 3.4.1 imply∫ t

0
| exps[λ1, . . . , λm, 0p]| ds ≤

∫ t

0
exps[ξ1, . . . , ξm, 0p] ds = t(φ1)t[ξ1, . . . , ξm, 0p]. (3.4.2b)

From Corollary 3.3.6 we obtain

t(φ1)t[ξ1, . . . , ξm, 0p] = expt[ξ1, . . . , ξm, 0p+1] = tp+1(φp+1)t[ξ1, . . . , ξm]. (3.4.2c)

Eqs. (3.4.2a)-(3.4.2c) together with Corollary 3.3.3 imply (3.4.1).

For the case of Hm having real eigenvalues, the assertion of Theorem 3.4.3 can be refor-
mulated in the following way (see Proposition 2.5.5 in Chapter 2).

8We use the notation introduced in the previous sections.
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3.4 Computable a posteriori error bounds for the Krylov propagator

Corollary 3.4.4. Assume μ2(A) ≤ 0 and that round-off errors are sufficiently small (see
Corollary 3.3.3). For the case of Hm having real eigenvalues λ1, . . . , λm ϵ R, the upper
bound on the error norm in Theorem 3.4.3 yields an exact evaluation of the defect integral.
Hence,

║lp,m(t)║2 ≤ Lp,m(t) = βhm+1,mt
(
e*mφp+1(tHm)e1

)
.

As a further corollary we formulate an upper bound on the error norm which is cheaper to
evaluate compared to the bound from Theorem 3.4.3 but may be less tight. Using the Mean
Value Theorem, [Hig08, eq. (B.26)] or [dB05, eq. (44)], for the divided differences in The-
orem 3.4.3, eq. (3.4.1) we obtain the following result which corresponds to Theorem 2.3.2
and Theorem 2.4.1 in Chapter 2. For the exponential of a skew-Hermitian matrix a similar
error estimate has been used in [KBC05] and is based on ideas of [PL86] with some lack of
theory.

Corollary 3.4.5. Let p ϵ N0, μ2(A) ≤ 0, and assume that round-off errors are sufficiently
small (see Corollary 3.3.3). Let ξmax = 0 for p ϵ N and ξmax = maxj=1,...,m ξj ≤ 0 for
p = 0 and eigenvalues λj = ξj + iμj ϵ C of Hm. An upper bound on the error norm is
given by

║lp,m(t)║2 ≤ βhm+1,m
γmtmetξmax

(m+ p)!
≤ βhm+1,m

γmtm

(m+ p)!
.

For the case of Hm having purely imaginary eigenvalues, the divided differences in The-
orem 3.4.3 (see (3.4.1)) can be evaluated directly via [Hig08, eq. (B.27)],

t(φp+1)t[0m] = t-p expt[0m+p+1] =
tm

(m+ p)!
,

hence the assertions of Theorem 3.4.3 and Corollary 3.4.5 coincide in this case.

Accuracy of the previously specified upper bounds on the error norm. In the following
we again denote λ1, . . . , λm ϵ C for the eigenvalues of Hm, with λj = ξj + iηj . For the
scalar defect δp,m(t) (see (3.3.1a)) we recapitulate Corollary 3.3.6, in particular

δp,m(t) = βγmtp(φp)t[λ1, . . . , λm] = βγm expt[λ1, . . . , λm, 0p]. (3.4.3)

Theorem 3.4.3 and its corollaries make use of the error bound given in Corollary 3.3.3
and computable upper bounds on the defect integral Lp,m(t). A refinement of the upper
bound from Corollary 3.3.3 would require further applications of the large-dimensional
matrix-vector product with A ϵ Cnxn and has been shown to be inefficient in terms of
computational cost, see also Remark 2.8.2 in Chapter 2. The computable upper bounds on
the defect integral Lp,m(t) will be further discussed. We recapitulate the upper bound of
the divided differences given in Proposition 3.4.2,

| expt[λ1, . . . , λm, 0p]| ≤ expt[ξ1, . . . , ξm, 0p]. (3.4.4)

Thus, in the case of Hm having eigenvalues with a sufficiently small imaginary part, the
upper bound in Proposition 3.4.2, is tight. In the following proposition this statement is
made more precise.
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3 A study of defect-based error estimates for the Krylov approximation of φ-functions

Proposition 3.4.6 (Part of a proof in [MNP84], eq. (5.2.3)). For nodes λj = ξj + iηj ϵ C
and t ≥ 0 with maxj t|ηj | ≤ ~ηt < π/2,

0 < cos(~ηt) expt[ξ1, . . . , ξk] ≤ | expt[λ1, . . . , λk]|.

Proof. See Appendix 3.B.

Under the assumptions of Proposition 3.4.6 we conclude

0 < cos(~ηt) expt[ξ1, . . . , ξm, 0p] ≤ | expt[λ1, . . . , λm, 0p]|. (3.4.5)

With (3.4.3), (3.4.4), (3.4.5) and following the proof of Theorem 3.4.3 the defect integral
in (3.3.1b) can be enclosed by

0 < cos(~ηt) . βγmhm+1,mt(φp+1)t[ξ1, . . . , ξm]

≤ Lp,m(t) ≤ βγmhm+1,mt(φp+1)t[ξ1, . . . , ξm].
(3.4.6)

Hence,
Lp,m(t) =

(
1-O(|tη|2))βγmhm+1,mt(φp+1)t[ξ1, . . . , ξm], (3.4.7)

using the notation O(|tη|2) in the sense of O(|tη|) = O(maxj t|ηj |) for t|ηj | - 0. Following
Proposition 3.4.6 the choice of ~ηt is independent of ξ1, . . . , ξm, and this carries over to the
constant in (3.4.7).
Summarizing, we see that the defect integral can be computed exactly for the case of

Hm having real eigenvalues (Corollary 3.4.4), and a computable upper bound can be given
which is tight for the case of Hm having eigenvalues sufficiently close to the real axis
(Theorem 3.4.3 and eq. (3.4.7)).

The approach underlying Theorem 3.4.3 does not enable us to specify the asymptotic
constant in (3.4.7). Therefore, we use the asymptotic expansion of the divided differences,
| expt[λ1, . . . , λm, 0p]| in (3.4.3), derived in Appendix 3.C, to discuss the asymptotic behav-
ior of the defect norm |δp,m(t)| for t - 0. Theorem 3.C.2 from Appendix 3.C implies

| expt[λ1, . . . , λm, 0p]| = tm+p-1

(m+ p- 1)!
exp

(
ρ1t+ ρ2t

2/2 +O(t3)
)
,

with ρ1 = avgp(ξ) and ρ2 =
varp(ξ)- varp(η)

m+ p+ 1
.

(3.4.8)

Here, the asymptotics holds for t - 0, avgp(ξ) =
∑m

j=1 ξj/(m + p) is the average, and

varp(ξ) =
(∑m

j=1(ξj - avgp(ξ))
2 + p avgp(ξ)

2
)
/(m + p) is the variance of the sequence

{ξ1, . . . , ξm, 0p} and varp(η) is the variance of the sequence {η1, . . . , ηm, 0p}.
Remark 3.4.7. For Hm with purely imaginary eigenvalues (λj ϵ iR), e.g., in the skew-
Hermitian case, the following asymptotic expansion for the defect is obtained from (3.4.8),
9

|δp,m(t)| = βγm
tm+p-1

(m+ p- 1)!
exp

(
- varp(η)

2(m+ p+ 1)
t2 +O(t3)

)
for t - 0. (3.4.9)

9It can be shown that the remainder is of even order O(t4) in this case.
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We use the expansion from (3.4.8) for | expt[λ1, . . . , λm, 0p]| and expt[ξ1, . . . , ξm, 0p] to
obtain

|δp,m(t)| = exp
(
- varp(η)

2(m+ p+ 1)
t2 +O(t3)

)
. βγmtp(φp)t[ξ1, . . . , ξm]. (3.4.10)

Termwise integration of (3.4.10) and the proper prefactor gives an asymptotic expansion
for the defect integral Lp,m(t), similar to (3.4.7),

Lp,m(t) =
(
1- varp(η)(m+ p)t2

2(m+ p+ 1)(m+ p+ 2)
+O(t3)

)
. βhm+1,mγmt(φp+1)t[ξ1, . . . , ξm].

(3.4.11)
Omitting further details we state that (3.4.11) is to be understood in an asymptotic sense
with an remainder of O(t3|ξ||η|2 + t4|η|4). In contrast to (3.4.7) the remainder is depend-
ing on ξ terms but (3.4.11) reveals further constants which can be relevant for practical
applications.

Remark 3.4.8. With (3.4.11) we obtain a computable estimate for the relative deviation
from the defect integral to the upper bound in (3.4.6). The criterion

ac.est.1(t) :=
varp(η)(m+ p)t2

2(m+ p+ 1)(m+ p+ 2)
> 0.1,

can indicate that a tighter estimate on the defect integral could improve the error bound
given in Theorem 3.4.3 in terms of accuracy. A possible choice are quadrature estimates
on the defect integral, see Subsection 3.4.1 below.

A similar criterion can be given for the accuracy of the upper bound,

Lp,m(t) ≤ βhm+1,mγm
tm

(m+ p)!
, (3.4.12)

which appears in Corollary 3.4.5 (with ξmax = 0), and Theorem 2.3.2 and Theorem 2.4.1
in Chapter 2.
With (3.4.8), and ρ1 and ρ2 given therein, the defect integral can be written as

Lp,m(t) = βhm+1,mγm
tm

(m+ p)!

(
1+ρ1

(m+ p)t

m+ p+ 1
+(ρ21+ρ2)

(m+ p)t2

2(m+ p+ 2)
+O(t3)

)
(3.4.13)

for t - 0. In contrast to the error bound in Corollary 3.4.5, the formulas for ρ1 and ρ2
in (3.4.8) require the evaluation of the eigenvalues of Hm. The following Proposition gives
a formula for ρ1 and ρ2 which does not require computation of the eigenvalues of Hm and
can be evaluated on the fly.

Proposition 3.4.9 (Evaluation of ρ1 and ρ2 in terms of entries of Hm). The coefficients
ρ1 and ρ2 in (3.4.8) can be rewritten as

ρ1 =
Re(S1)

m+ p
, ρ2 =

Im(S1)
2 - Re(S1)

2

(m+ p)2
+

Re(S2
1 + S2)

(m+ p)(m+ p+ 1)
, with

S1 =
m∑
j=1

(Hm)j,j and S2 =
m∑
j=1

(Hm)2j,j + 2
m-1∑
j=1

(Hm)j+1,j(Hm)j,j+1.
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Proof. For the coefficients ρ1 and ρ2 we use (3.C.17) with m - m + p and S1 and S2

from (3.C.3). For the nodes λ1, . . . , λm, 0p (with λ1, . . . , λm eigenvalues of Hm) we obtain

S1 =

m∑
j=1

λj = Trace(Hm) =

m∑
j=1

(Hm)j,j and

S2 =
m∑
j=1

λ2
j = Trace(H2

m) =
m∑
j=1

(Hm)2j,j + 2
m-1∑
j=1

(Hm)j+1,j(Hm)j,j+1.

(3.4.14)

The identity for Trace(H2
m) in (3.4.14) holds true due to the upper Hessenberg structure

of Hm.

Following the proof of Theorem 3.C.2 we observe that the case ρ1 = 0 is possible but
results in ρ2 /= 0.

Remark 3.4.10. With (3.4.13) and Proposition 3.4.9 we obtain a computable estimate for
the relative deviation from the defect integral to the upper bound in (3.4.12). The criterion

ac.est.2(t) :=
|||ρ1 (m+ p)t

m+ p+ 1
+ (ρ21 + ρ2)

(m+ p)t2

2(m+ p+ 2)

||| > 0.1

can indicate that a tighter estimate on the defect integral could improve the error bound given
in Corollary 3.4.5 in terms of accuracy. We refer to the error bound in Theorem 3.4.3 in
case the eigenvalues of Hm have a significant real part (which can be observed via ρ1).

3.4.1 Quadrature-based error estimates

First we recapitulate some prior results. In the dissipative case the integral formulation of
the error from Theorem 3.3.1 can be bounded via the defect integral via Corollary 3.3.3 up
to round-off. We conclude that the defect integral can be computed exactly for the case of
Hm having real eigenvalues (Corollary 3.4.4), and a computable upper bound exists which is
tight for the case of Hm having eigenvalues sufficiently close to the real axis (Theorem 3.4.3
and eq. (3.4.6)).

For the case of Hm having eigenvalues with a significant imaginary part, tight estimates
are more difficult to obtain. It can be favorable to approximate the defect integral (3.3.1b)
by quadrature to obtain an error estimate via Corollary 3.3.3. The aim of using quadrature
is to obtain an error estimate which is tighter compared to previous upper norm bounds
on the error. In contrast to the proven upper error bounds given in Theorem 3.4.3, Corol-
lary 3.4.4 and 3.4.5 the following quadrature estimates do not result in upper error bounds
in general. However, in many practical cases such quadrature estimates turn out to be still
reliable.

Here, some remarks on the defect are in order to explain some subtleties with quadrature
estimates for the defect integral Lp,m(t). We discuss a test problem with a skew-Hermitian
matrix A ϵ Cnxn. Following Remark 3.2.4 we choose A = iB with a Hermitian matrix B,
in particularly, B = tridiag(-1, 2,-1) ϵ Rnxn with n = 1000. The matrix B is related to
a finite difference discretization of the one-dimensional negative Laplacian operator and A
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3.4 Computable a posteriori error bounds for the Krylov propagator

corresponds to a free Schr:odinger type problem. The eigenvalues σj , for j = 1, . . . , n, of B
are given by

σj = 4 sin(jπ/(2(n+ 1)))2 with respective eigenvector ψj ϵ Rn. (3.4.15)

Here, μ2(A) = 0, and the conditions of Corollary 3.3.3 hold. For a given starting vector
v ϵ Cn the time propagation for the discretized free Schr:odinger equation is given by
exp(tA)v and can be approximated by the Krylov propagator with p = 0. The following
different cases for the starting vector v will be discussed.

(a) Choose a random starting vector v ϵ Rn.

(b) Start close to a linear combination of eigenvectors, v = 106
∑25

j=1 ψj +
∑n

j=26 ψj for
eigenvectors ψj of the discretized negative Laplacian operator, (3.4.15).

(c) Start close to a linear combination of eigenvectors which are more spread on the
spectrum, v = 105

∑20
j=1 ψj + 105

∑n
j=n-19 ψj for eigenvectors ψj of the discretized

negative Laplacian operator, (3.4.15).

In addition to the setting from (a)-(c) we normalize v, ║v║2 = 1. The defect δp,m(t) for
p = 0 is computed in MATLAB, using expm to evaluate the matrix exponential of Hm and
divided differences for a fixed Krylov dimension m = 20.

In Figure 3.1 we observe |δp,m(t)| = O(tm-1) (for t - 0) up to t ≈ 101 for the case (a)-
(c). The values of |δp,m(t)| in this time regime vary strongly among these cases. We
further remark that in the case (b) for t ≥ 4 . 101 the defect |δp,m(t)| behaves similar to the

divided differences of the exponential over the first eigenvalues λ
(b)
1 , . . . , λ

(b)
4 of Hm with

a proper prefactor. This behavior occurs if eigenvalues of Hm are clustered, in this case

λ
(b)
1 , . . . , λ

(b)
4 ≈ 0, and will be further discussed below, see Figure 3.2. For the case (c) the

eigenvalues of Hm are clustered at ≈ 0 and ≈ 4. Also in this case there is a time regime
for which the defect behaves similar to a lower order function in t with some additional
oscillations. (This may be explained by the existence of different eigenvalue clusters of the
same size.)

As a conclusion from the example illustrated in Figure 3.1, we observe that quadrature
of the defect can be relevant up to a time t for which the quadrature-based estimate of
║lp,m(t)║2 (via the defect integral) is equal to a given tolerance, see (3.2.13). This regime
of t would depend on the choice of tol and additional factors such as β, hm+1,m etc.
which appear in the error bound from Corollary 3.3.3. Depending on parameters and the
starting vector v the defect can be highly oscillatory for relevant times t and, respectively,
a quadrature estimate of the defect integral can be difficult to obtain. Such effects seem to
be relevant for special choices of starting vectors v, for example case (b) and (c). The effect
of Hm having clustered eigenvalues and the prefactor used in Figure 3.1 (+) are explained
in the following model problem, see Figure 3.2.

Divided differences with clustered nodes: an example. Choose m = 3 with nodes a1 =
1.123, a2 = 1.231, a3 = 5.43. With this choice we obtain cluster of nodes, a1 ≈ a2. For the
given example we obtain | expt[ia2, ia3]| < | expt[ia1, ia2]| for t large enough, hence, using
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j λ
(a)
j λ

(b)
j λ

(c)
j

1 0.0002 0.0003 0.0001
2 0.0422 0.0026 0.0005
3 0.1360 0.0054 0.0013
4 0.2712 0.0108 0.0023
5 0.4743 0.3378 0.0032
6 0.6921 0.5763 0.0039
7 0.9440 0.8428 0.0054
8 1.2105 1.1343 0.9160
9 1.5049 1.4444 1.3768

10 1.8318 1.7660 1.7847
11 2.1456 2.0913 2.2385
12 2.4621 2.4124 2.6623
13 2.7540 2.7216 3.1348
14 3.0393 3.0112 3.9938
15 3.2997 3.2741 3.9961
16 3.5088 3.5038 3.9968
17 3.7091 3.6948 3.9977
18 3.8402 3.8423 3.9987
19 3.9510 3.9427 3.9995
20 3.9945 3.9935 3.9999

Figure 3.1: The defect norm |δp,m(t)| (p = 0, m = 20) for the free Schr:odinger example
with different choices of starting vector case (a) (x), case (b) (○) and case (c)

(□). The table on the right-hand side shows eigenvalues λ
(*)
1 , . . . , λ

(*)
m of Hm

for the different starting vectors, case (a)-(c). For the case (b) the divided dif-

ferences over the clustered eigenvalues γm
(π20

j=5 λ
(b)
j

)-1| expt[iλ(b)
1 , . . . , iλ

(b)
4 ]|

is illustrated by (+). The asymptotic expansion of the divided differences for
t - 0 given in (3.4.9) is illustrated using dashed lines. The dash-dotted line is
O(t6).

60



3.4 Computable a posteriori error bounds for the Krylov propagator

10
-1

10
0

10
1

10
2

10
-2

10
-1

10
0

10
1

t

Figure 3.2: The divided differences | expt[ia1, ia2, ia3]| (○) and | expt[ia1, ia2]|/|a3 - a1| (+)
for the choice of a1, a2, a3 given in the text. The asymptotic expansion of the
divided differences for t - 0 given in (3.4.9) is illustrated using dashed lines.

the recursive definition of the divided differences (see [Hig08, eq. (B.24)] or others) we
obtain

| expt[ia1, ia2, ia3]| =
|||expt[ia2, ia3]- expt[ia1, ia2]

a3 - a1

||| ≈ |||expt[ia1, ia2]
a3 - a1

|||, for larger t.

This example is illustrated in Figure 3.2. This behavior can be generalized for a larger
number of nodes and is also observed in Figure 3.1.

Quadrature estimates for the defect integral. With the previous observations on the
defect we now discuss different quadrature-based estimates.
The generalized residual estimate, which was introduced in [HLS98] and appeared in a

similar manner in [DGK98, Saa92, Lub08, BGH13], conforms to a quadrature on the defect
norm integral which is related to the error norm via Corollary 3.3.3.

Remark 3.4.11 (Generalized residual estimate, see also [HLS98]). Applying the right-
endpoint rectangle rule we have∫ t

0
|δp,m(s)| ds ≈ t|δp,m(t)|,

and with Corollary 3.3.3 (and δp,m(t) given in (3.3.1a)) we obtain the error estimate

║lp,m(t)║2 ≈ hm+1,mt1-p|δp,m(t)| = βhm+1,mt|e*mφp(tHm)e1|.
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Assume that maxsϵ[0,t] |δp,m(s)| = |δp,m(t)|, e.g., |δp,m(t)| is monotonically increasing in
t. Then, ∫ t

0
|δp,m(s)| ds ≤ t max

sϵ[0,t]
|δp,m(s)| = t|δp,m(t)|.

In this case the generalized residual estimate from Remark 3.4.11 results in an upper bound
on the error norm.

In the most general case the defect is of high order for t - 0 and in a relevant time
regime, see also Figure 3.1 case (a) and previous remarks. Then the defect is a higher order
function and the right-endpoint quadrature does result in an upper bound but is not tight.
In this case we can improve the estimate by a prefactor depending on the effective order
defined in Appendix 3.C, cf. (2.6.7) in Chapter 2. If the defect is sufficiently smooth in a
relevant time regime this results in a tight upper bound on the error norm.

Remark 3.4.12 (Effective order estimate, see also Section 2.6 in Chapter 2). Denote
f(t) = | expt[λ1, . . . , λm, 0p]| for the time-dependent part of the defect with eigenvalues
λ1, . . . , λm of Hm. Assume f(t) > 0 for a sufficiently small time regime t > 0. We
consider the effective order ρ(t) defined in (3.C.4a). With the following estimate for the
integral of the defect, ∫ t

0
|δp,m(s)| ds ≈ t

ρ(t) + 1
|δp,m(t)|,

and from Corollary 3.3.3 (with δp,m(t) given in (3.3.1a)) we obtain

║lp,m(t)║2 ≈ hm+1,m
t1-p

ρ(t) + 1
|δp,m(t)| = βhm+1,m

t

ρ(t) + 1
|e*mφp(tHm)e1|.

In Section 2.6 (Chapter 2) the effective order is defined for |e*metHme1| (p = 0) which is
equivalent to the definition via the divided differences of f(t). (This follows from Corol-
lary 3.3.6 and the definition of the effective order which is independent of a constant
prefactor.)
Some of the following observations already appeared in Section 2.6 (Chapter 2). The

quadrature scheme in Remark 3.4.12 is motivated by the following relation of the effective
order and the integral of the divided differences f(t). From eq. (3.C.4a),

f(t) =
f ,(t) t
ρ(t)

.

Integration and application of the mean value theorem shows the existence of t* ϵ [0, t]
with ∫ t

0
f(s) ds =

1

ρ(t*)

∫ t

0
f ,(s) s ds,

and integration by parts gives ∫ t

0
f(s) ds =

tf(t)

1 + ρ(t*)
. (3.4.16)

This result can passed over to the integral of the defect.
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Assume the effective order is monotonically decreasing for t small enough, with
minsϵ(0,t] ρ(s) = ρ(t) ≥ 0. This holds in an asymptotic regime for the dissipative case up to
round-off, see also Theorem 3.C.2 with the real parts ξ1, . . . , ξm of the eigenvalues of Hm

being non-positive. With (3.4.16) and the assumption 0 ≤ ρ(t) ≤ ρ(s) ≤ m+p-1 = ρ(0+)
for s ϵ [0, t], we inclose the integral of the defect by

t
m |δp,m(t)| ≤

∫ t

0
|δp,m(s)| ds ≤ t

ρ(t)+1 |δp,m(t)| ≤ t |δp,m(t)|. (3.4.17)

Combining (3.4.17) and Corollary 3.3.3 we obtain the upper bound

║lp,m(t)║2 ≤ hm+1,mt1-p

ρ(t)+1 . |δp,m(t)| ≤ hm+1,mt1-p . |δp,m(t)|.

A computable expression for the effective order was given in (2.6.10) (see Section 2.6 in
Chapter 2). This result can be generalized to the case p ϵ N0,

ρ(t) =

{
tRe

(
(Hm)m,m + (Hm)m,m-1(yp,m(t))m-1/(yp,m(t))m

)
for p = 0, and

Re((yp-1,m(t))m/(yp,m(t))m) for p ϵ N,

with yp,m(t) ϵ Cm from (3.2.9). The expression for the case p ϵ N can be obtained

by (2.6.10) (see Section 2.6 in Chapter 2) applied on the representation |e*m+pe
t ~Hme1|

for the defect ((iii) in Corollary 3.3.6) and making use of the special structure of ~Hm,

βe*m+pe
t ~Hme1 = tp(yp,m(t))m (see Corollary 3.3.6) and βe*m+p-1e

t ~Hme1 = tp-1(yp-1,m(t))m
(see [Sid98, Corollary 1]).
As illustrated in Figure 3.1 the defect can be highly oscillatory in a relevant time regime,

especially for specific starting vectors, and in this case the quadrature estimates should be
handled with care.

3.4.2 A stopping criterion for the lucky breakdown

The special case hk+1,k = 0 during the construction of the Krylov subspace is considered
to be a lucky breakdown, a breakdown of the Arnoldi or Lanczos iteration with the benefit
of an exact approximation of φp(tA)v for any t > 0 via the Krylov subspace Kk(A, v).
In floating point arithmetic the lucky breakdown results in hk+1,k ≈ 0 and can lead to
stability issues if the Arnoldi or Lanczos method is not stopped properly. The condition
that the Krylov propagator is exact is not exactly determinable in floating point arithmetic
but can be weakened to the error condition in (3.2.13) for a given tolerance tol per unit
step. With this approach we introduce a stopping criterion which can be applied on the
fly to detect a lucky breakdown and satisfies an error bound. This does not depend on any
a priori information as long the tolerance tol is chosen properly so that round-off errors
can be neglected, see remarks before Corollary 3.3.3.

Proposition 3.4.13. Let μ2(A) ≤ 0 and assume that round-off errors are sufficiently
small, see Corollary 3.3.3. Let tol be a given tolerance and

βhk+1,k

(p+ 1)!
≤ tol (3.4.18)
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3 A study of defect-based error estimates for the Krylov approximation of φ-functions

be satisfied at the k-th step of the Arnoldi or Lanczos iteration. Then the iteration can be
stopped and the Krylov subspace Kk(A, v) can be used to approximate the vector φp(tA)v
with a respective error per unit step ║lp,k(t)║2 ≤ t . tol.
Proof. We use the upper bound on the error norm from Corollary 3.3.3,

║lp,k(t)║2 ≤ hk+1,k

tp

∫ t

0
|δp,k(s)| ds. (3.4.19)

To obtain a uniform bound on the defect integral we use

|δp,k(t)| ≤ βtp║ek║2║φp(tHk)e1║2 = βtp║φp(tHk)e1║2. (3.4.20)

❼ For p > 0 we apply the integral representation (3.2.3) on φp(tHm)e1 to obtain the
upper bound

║φp(tHm)e1║2 ≤
maxsϵ[0,t] ║esHm║2

(p- 1)!

∫ 1

0
θp-1 dθ =

maxsϵ[0,t] ║esHm║2
p!

. (3.4.21)

❼ For p = 0 the analogous result is directly obtained: Combine (3.4.20) and (3.4.21)
with ║esHk║2 ≤ etμ2(Hk) ≤ etμ2(A) up to round-off and μ2(A) ≤ 0, giving

|δp,k(t)| ≤ β
tp

p!
, and

∫ t

0
|δp,k(s)| ds ≤ β

tp+1

(p+ 1)!
.

Together with (3.4.19) and (3.4.18) we conclude ║lp,k(t)║2 ≤ t . tol.

3.5 Numerical experiments

The notation for the error lp,m(t), the estimate of the error norm ζp,m(t) and the toler-
ance tol have been introduced in (3.2.12) and (3.2.13). The notation ζp,m will be used
for different choices of error estimates discussed in the previous section. Theorem 3.4.3
and Corollary 3.4.5 result in upper bounds on the error norm, ║lp,m(t)║2 ≤ ζp,m(t). The
quadrature-based error estimates given in Remark 3.4.11 and 3.4.12 result in estimates for
the error norm, ║lp,m(t)║2 ≈ ζp,m(t), and with additional conditions also give upper bounds.
For a fixed tolerance tol we use the notation t(m) for the smallest time t with ζp,m(t) =

t . tol, see (3.2.13). This choice of t(m) helps us to verify the tested error estimates for a
time t which is of the most practical interest. With the help of a reference solution the
true error norm per unit step can be tested by ║lp,m(t(m))║2/t(m).

We also consider the following previously known error estimates in our numerical exper-
iments. The generalized residual estimate [HLS98] was recapitulated in Remark 3.4.11 and
will be discussed in the numerical experiments. Furthermore, we test the performance of
the error bound given in [DMR09, Proposition 6]. This upper bound on the error norm
applies to the Krylov approximation of φp(-t A)v for p ϵ N0, a matrix A ϵ Rnxn with a
numerical range in the right complex half-plane (up to a potential shift), and v ϵ Rn. In
this case the matrix A can have real and complex eigenvalues, where the latter come in
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complex conjugate pairs. Concerning the skew-Hermitian case, a similar error bound for
the Krylov approximation to φp(-i tB)v for a Hermitian matrix B ϵ Rnxn and p ϵ N0 is
given separately in [DMR09, Proposition 8]. To evaluate these error bounds the eigenvalues
of Hm and the terms hm+1,m and γm are used.

A series expansion for the error concerning φ-functions is given in [Sid98, Theorem 2]
and the leading terms of this expansion can be used for error estimation, cf. [Sid98, NW12].
In general [Sid98] suggests to evaluate more than one term of this series to ensure reliabil-
ity of the obtained error estimate, which requires further matrix-vector multiplications in
the given large dimensional space. This can often be inefficient in terms of computational
cost, cf. Remark 2.8.2 in Chapter 2, and we avoid this series expansion in the general case.
However, when the Ritz values are real-valued the error bound in Corollary 3.4.4 (corre-
sponding to the bound in Theorem 3.4.3) coincides with the leading term of the error series
in [Sid98, Theorem 2]. Thus, the first term of the error series in [Sid98, Theorem 2] yields
a reliable error bound in this case. For the convection-diffusion equation with parameter
ν = 100 in Subsection 3.5.1 below (the Ritz values have negligible imaginary parts in this
case) the error bound of Theorem 3.4.3 performs well (comparable to the effective order
estimate and better than the other error estimates considered, e.g., the generalized residual
estimate), and this potentially carries over to the error estimates in [Sid98, NW12].

3.5.1 Convection-diffusion equation

Consider the following two-dimensional convection-diffusion equation with t ≥ 0 and x ϵ
[0, 1]2,

gtu = Lu, with L = Δ+ ν(gx1 + gx2), u = u(t, x), ν ϵ R. (3.5.1)

Let A ϵ Rnxn be obtained by the two-dimensional finite difference discretization of the
operator L in (3.5.1) with zero Dirichlet boundary conditions and N = 500 inner mesh
points in each spatial direction, hence, n = N2. This test problem is similar to other
convection-diffusion equations appearing in the study of Krylov subspace methods, see
also [JAK20, EE06, FGS14, BK19] and others.

For the convection parameter we choose ν = 100, 500 which results in a non-normal
matrix A. Considering the spectrum of A the case ν = 100 is closer to the Hermitian case
and ν = 500 is closer to the skew-Hermitian case. In both cases the numerical range of A
is contained in the left complex plane, μ2(A) ≤ 0.

We discuss error estimates for the Krylov approximation of the matrix exponential
(p = 0) and a φ-function (for which we choose p = 2). For the case p = 0 the action of the
matrix exponential etAv is approximated in the Krylov subspace Km(A, v), see (3.2.8b).
Analogously, for the case p = 2 we approximate φp(tA)v as given in (3.2.8a). As a starting
vector we choose the normalized vector v = (1/N, . . . , 1/N)* ϵ Rn. In Figure 3.3 and 3.4
we compare the error bounds given in Theorem 3.4.3, Corollary 3.4.5 and [DMR09, Propo-
sition 6], and the generalized residual estimate (Remark 3.4.11) and the effective order
estimate (Remark 3.4.12), for the convection-diffusion equation. The error bound of Corol-
lary 3.4.5 is applied with ξmax = 0 (the effect of ξmax is negligible for the current examples).
Concerning the error bound given in [DMR09, Proposition 8], we choose the parameter ε
by minimizing [DMR09, eq. (39)], and a = 0.
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For the case ν = 100 the eigenvalues of Hm have a negligible imaginary part and the
upper bound given in Theorem 3.4.3 constitutes a tight upper bound on the exact evaluation
of the scaled defect integral, which yields a tight error bound. This error bound and the
effective order estimate (Remark 3.4.12), which is based on a quadrature estimate on the
defect integral, yield approximately the same results for the case ν = 100. The performance
of the generalized residual estimate (Remark 3.4.11) is similar to the performance of the
error bound in [DMR09, Proposition 6], especially for larger choices of m. The error bound
in Corollary 3.4.5 is only accurate for small m in the current example. The high accuracy
of the error bound in Theorem 3.4.3 and the effective order estimates results in time steps
t(m) which are larger than the time steps suggested by generalized residual estimate and
the error bound in [DMR09, Proposition 6], and significantly larger compared to the time
steps given by Corollary 3.4.5. Comparing the cases p = 0 and p = 2, the time steps
suggested by the error bounds of Corollary 3.4.5 and [DMR09, Proposition 6] are slightly
smaller in relation to the time step prescribed by the effective order estimate for p = 2.
Considering the true error for the time steps computed by the error bound in Theorem 3.4.3,
the effective order estimate and the generalized residual estimate, the performance of these
estimates only differs slightly between the cases p = 0 and p = 2.

For the case ν = 500 the matrix Hm has eigenvalues with larger imaginary parts (es-
pecially for larger m). In this case the error bound in Theorem 3.4.3, is less tight, and
the effective order estimate (Remark 3.4.12) performs best comparing to the other error
estimates. Comparing the cases p = 0 and p = 2, we observe that the time steps suggested
by the error bounds of Theorem 3.4.3, Corollary 3.4.5 and [DMR09, Proposition 6] are
slightly smaller in relation to the time step of the effective order estimate for p = 2.

The criterion ac.est.1(t) given in Remark 3.4.8 is evaluated for ν = 100, 500 and p = 0, 2
with t(m) corresponding to Theorem 3.4.3 (see caption of Figure 3.3 and 3.4). For ν = 100
we obtain ac.est.1(t(m)) < 0.1 for any m tested and p = 0, 2. For ν = 500 the smallest m
with ac.est.1(t(m)) > 0.1 is m = 40 and m = 36 for p = 0 and p = 2, respectively. The
error bound in Theorem 3.4.3 conforms to an upper bound of the scaled defect integral,
and in the case of ac.est.1(t(m)) > 0.1 a more accurate estimate on the defect integral is
likely to perform better. For ν = 500 and m = 40 (p = 0) and m = 36 (p = 2) we observe
that this is the case for the effective order estimate. Similar to the criterion ac.est.1(t), we
test ac.est.2(t) given in Remark 3.4.10 for t(m) according to Corollary 3.4.5. For ν = 100
the smallest m with ac.est.2(t(m)) > 0.1 is m = 7 for p = 0, 2 individually. Otherwise, for
ν = 500 the smallest m with ac.est.2(t(m)) > 0.1 is m = 8 and m = 7 for p = 0 and p = 2,
respectively.

3.5.2 Free Schr:odinger equation, a skew-Hermitian problem

For the free Schr:odinger equation we let A be a finite difference discretization of the Laplace
operator, precisely, we choose A corresponding to L in (3.5.1) with ν = 0 and N = 500.
With A corresponding to a discretized Laplace operator, the vector ei tAv yields a solution to
a discretized free Schr:dinger equation with starting vector v. The free Schr:odinger equation
represents a skew-Hermitian problem, and following Remark 3.2.4 we approximate ei tAv
in the Krylov subspace Km(A, v) by βVmei tHme1. Analogously to the previous subsection,
we choose the normalized starting vector v = (1/N, . . . , 1/N)* ϵ Rn, and we also consider
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Figure 3.3: Convection-diffusion problem (3.5.1) for the parameter ν = 100. We consider
p = 0 (left) and p = 2 (right). Three rows of figures are presented here: The
first row shows the time t(m) which is the smallest t such that ζp,m(t) = t . tol
for tol = 10-6 and ζp,m corresponding to the error bound given in Theo-
rem 3.4.3 (x), Corollary 3.4.5 (○), the generalized residual estimate given in
Remark 3.4.11 (+), the effective order estimate given in Remark 3.4.12 (□),
and the error bound given in [DMR09, Proposition 6] (Δ). For the second row
we choose t*(m) as the largest time step t(m) given by the currently discussed
error estimate, and we show t(m)/t*(m) for t(m) as chosen above. The third
row shows the true error per unit step, ║lp,m(t(m))║2/t(m), for the time t(m)
as chosen above.
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p = 0, ν = 500

t(
m
)

10-3

10-4

10-5

10-6

10-7

p = 2, ν = 500

t(
m
)

t*
(m

)

1

0.9

0.8

0.7

0.6

0.5

0.4

║l p
,m

(t
(m

))
║ 2

t(
m
)

10-6

10-7

10-8

10-9

10-10

tol = 10-6

20 40 60 80 100 120

m

tol = 10-6

20 40 60 80 100 120

m

Figure 3.4: Convection-diffusion problem (3.5.1) for the parameter ν = 500, similar to Fig-
ure 3.3. We consider p = 0 (left) and p = 2 (right). The first row of figures shows
the time t(m) which is the smallest t such that ζp,m(t) = t . tol for tol = 10-6

and ζp,m corresponding to the error bound given in Theorem 3.4.3 (x), Corol-
lary 3.4.5 (○), the generalized residual estimate given in Remark 3.4.11 (+), the
effective order estimate given in Remark 3.4.12 (□), and the error bound given
in [DMR09, Proposition 6] (Δ). For the second row we choose t*(m) as the
largest time step t(m) given by the currently discussed error estimate, and we
show t(m)/t*(m) for t(m) as chosen above. The third row shows the true error
per unit step, ║lp,m(t(m))║2/t(m), for the time t(m) as chosen above.
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the Krylov approximation to φp(itA)v for p = 2, i.e., βVmφp(i tHm)e1.
In Figure 3.5 the error bounds given in Corollary 3.4.5 (which coincides with the error

bound given in Theorem 3.4.3 in the skew-Hermitian case) and [DMR09, Proposition 8]
(the counterpart to [DMR09, Proposition 6] for the skew-Hermitian case), the effective
order estimate (Remark 3.4.12), and the generalized residual estimate (Remark 3.4.11) are
evaluated for the current example. For the parameter ε in [DMR09, Proposition 8] we
choose ε = m/t as suggested in the numerical experiments therein.
For the skew-Hermitian case, the effective order estimate (Remark 3.4.12) yields the

largest time steps compared to the other error estimates. The error bound of Corollary 3.4.5
performs well for moderate m and better than the error bound in [DMR09, Proposition 8]
for any of the tested m here. For larger m the generalized residual estimate performs better
than the error bound of Corollary 3.4.5. Similar to examples of the previous subsection, the
error bound of Corollary 3.4.5 performs better for the case p = 0 compared to p = 2. Similar
results can be observed for the error bound of [DMR09, Proposition 8]. The performance
of the effective order estimate and the generalized residual estimate only differs slightly
between the cases p = 0 and p = 2.

We test ac.est.2(t) given in Remark 3.4.10 for t(m) according to Corollary 3.4.5. The
smallest m with ac.est.2(t(m)) > 0.1 is m = 15 and m = 13 for p = 0 and p = 2, respec-
tively. Following Remark 3.4.10, the error bound given in Corollary 3.4.5 overestimates the
error by a factor 1.1 (in an asymptotic sense) for these values of m, which fits to the results
shown in Figure 3.5.

3.5.3 Free Schr:odinger equation with a double well potential and a Gaussian
wave packet as an initial state

In the following numerical experiment we choose a special starting vector which results in
the matrix Hm having clustered eigenvalues, and we observe effects which were previously
discussed in Subsection 3.4.1. Typically, this is related to regularity properties of the
underlying initial state.
We consider the one-dimensional free Schr:odinger equation with a double well potential,

gtψ = -iHψ, with H = -Δ+ V, ψ = ψ(t, x) ϵ C, V = V (x) ϵ R, (3.5.2)

for t ≥ 0, x ϵ [-10, 10] and V (x) = x4 - 15x2. Let B ϵ Cnxn be the discretized version
of the Hamiltonian operator H in (3.5.2) with periodic boundary conditions using a finite
difference scheme with a mesh of size n = 10000. With B Hermitian, the full problem
A = -iB is skew-Hermitian (see Remark 3.2.4) with μ2(A) = 0. For the initial state
of (3.5.2) we choose a Gaussian wave packet,

ψ(t = 0, x) = (0.2π)-1/4 exp(-(x+ 2.5)2/(0.4)), (3.5.3)

which is evaluated on the mesh and normalized to obtain a discrete starting vector v ϵ Rn.
This problem also appears in [IKS19, Sin19].
We discuss error estimates for the case p = 0 (Krylov approximation of e-itBv). The

implementation of the skew-Hermitian problem is described in Remark 3.2.4. In Figure 3.6
the upper bound given in Corollary 3.4.5 (which coincides with the error bound given in
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Figure 3.5: The skew-Hermitian problem φp(iA)v where A corresponds to the Laplace op-
erator ((3.5.1) with ν = 0) and v = (1/N, . . . , 1/N)*. Results are shown for
p = 0 (left) and p = 2 (right). For p = 0 this problem is related to the free
Schr:odinger equation. The top row shows the time t(m) which is the small-
est t such that ζp,m(t) = t . tol for tol = 10-6 and ζp,m corresponding to the
error bound given in Theorem 3.4.3 (x), Corollary 3.4.5 (○), the generalized
residual estimate given in Remark 3.4.11 (+), the effective order estimate given
in Remark 3.4.12 (□), and the error bound given in [DMR09, Proposition 8]
(Δ). The error bounds in Theorem 3.4.3 (x) and Corollary 3.4.5 (○) coincide
in the skew-Hermitian case. For the middle row we choose t*(m) as the largest
time step t(m) given by the currently discussed error estimate, and we show
t(m)/t*(m) for t(m) as chosen above. The bottom row shows the true error per
unit step, ║lp,m(t(m))║2/t(m), for the time t(m) as chosen above.
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Theorem 3.4.3 for the skew-Hermitian case) and the error estimates given in Remark 3.4.11
and 3.4.12 are compared. Additionally, we consider the error bound given in [DMR09,
Proposition 8] with the parameter choice ε = m/t.

The error bounds given in Corollary 3.4.5 and [DMR09, Proposition 8] are reliable but
not tight for the current example. Thus, the time steps t(m) which are suggested by these
error bounds are significantly smaller than the time steps suggested by the quadrature-based
error estimates (Remark 3.4.11 and 3.4.12), and comparing with the numerical experiments
of the previous subsection, this seems to be highly affected by the choice of the starting
vector. For the error bound in Corollary 3.4.5 this can be explained by the loss of order
of the defect. However, the error bound in Corollary 3.4.5 shows a better performance
compared to the error bound in [DMR09, Proposition 8].

In terms of accuracy the effective order estimate (Remark 3.4.12) performs significantly
better compared to the error bounds in Corollary 3.4.5 and [DMR09, Proposition 8], and
better compared to the generalized residual estimate (Remark 3.4.11). In terms of reliability
we have argued that the effective order estimate and the generalized residual estimate
constitute upper bounds on the error norm when the defect norm behaves sufficiently
smooth. The defect norm |δm,0(t)|, which is presented in the lower right corner of Figure 3.6,
does have an oscillatory behavior in a specific time regime which can be related to the
starting vector, cf. Subsection 3.4.1. For the time steps which are relevant for the current
example, this does not critically affect the quadrature estimates on the defect integral
related to Remark 3.4.11 and 3.4.12. Under certain conditions, e.g., a different choice
for the tolerance tol, this oscillatory behavior of the defect can lead to failure of the error
estimates given in Remark 3.4.11 and 3.4.12. However, the quadrature of the defect integral
can be further improved in such cases to ensure a reliable error estimate.

3.6 Conclusions and outlook

In this work various a posteriori bounds and estimates on the error norm, which have their
origin in an integral representation of the error using the defect (residual), are studied. We
have characterized the accuracy of these error bounds by the positioning of Ritz values (i.e.,
eigenvalues of Hm) on the complex plane. The case of real Ritz values is the most favorable
one to obtain a tight error bound via an integral on the defect norm (Corollary 3.4.4). A
new error bound (Theorem 3.4.3) has shown to be tight if Ritz values are close to the
real axis and in this case favorably compares with existing error bounds. We further
recapitulate an existing error bound (Corollary 3.4.5) which remains relevant, especially
for the case of Ritz values with a significant imaginary part. In addition for the error bound
in Theorem 3.4.3 and Corollary 3.4.5, we have provided a criterion to quantify the achieved
accuracy on the fly. For an illustration of the claims concerning the new error bound we
primary refer to the numerical example given in Subsection 3.5.1. The quadrature-based
error estimates in Subsection 3.4.1 (e.g., the generalized residual estimate) do not yield
proven upper bounds on the error norm and we addressed special cases (e.g., the numerical
example in Subsection 3.5.3) for which the reliability of these estimates can be problematic.
These cases are also analyzed in terms of Ritz values in Subsection 3.4.1 and this relation
can be of further interest for a numerical implementation. Nevertheless, in most cases the
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Figure 3.6: Results for the free Schr:odinger problem with a double well potential and the
starting vector given by (3.5.3). This figure shows the time t(m) (bottom left),
which is the smallest t so that ζ0,m(t) = t . tol for tol = 10-6, the true error per
unit step ║l0,m(t(m))║2/t(m) (top) and the defect norm |δm,0(t)| (bottom right)
for m ϵ {10, 20, 30, 40, 50}. The results for t(m) and ║l0,m(t(m))║2/t(m) are
given for ζ0,m being the upper norm bound given in Theorem 3.4.3 (x), Corol-
lary 3.4.5 (○), the generalized residual estimate given in Remark 3.4.11 (+),
the effective order estimate given in Remark 3.4.12 (□) and the error bound
given in [DMR09, Proposition 8] (Δ). The results for Theorem 3.4.3 (x) and
Corollary 3.4.5 (○) coincidence in the skew-Hermitian case.
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3.6 Conclusions and outlook

quadrature-based estimates remain valid, whereat the effective order quadrature stands out
in terms of performance.
We also remark that the theory provided in our work gives the possibility to adapt the

choice of the error estimate on the fly to obtain an estimate which is as reliable, accurate
and economic as possible. This is the topic of further work.
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Appendix

3.A Properties of the Krylov subspace in exact and floating
point arithmetic

Let Hm = V *
mAVm and V *

mVm = Imxm in exact arithmetic. For z ϵ W(Hm) (numerical
range of Hm) there exists x ϵ Cm with

z =
x*Hmx

x*x
=

x*V *
mAVmx

x*V *
mVmx

=
y*Ay
y*y

, for y = Vmx, (3.A.1)

whence W(Hm) ∩ W(A).

Similar results hold in floating point arithmetic with relative machine precision ε and
certain additional assumptions. Assume there exists an orthonormal basis .Vm ϵ Cnxm

and a perturbation ~Um ϵ Cmxm, which is sufficiently small in norm (i.e., there exists a
moderate constant C3 with ║~Um║2 ≤ C3ε), with

Hm = .V *
mA.Vm + ~Um. (3.A.2)

With assumption (3.A.2) and basic properties of the numerical range we obtain

W(Hm) ∩ W(.V *
mA.Vm) +W(~Um). (3.A.3)

Similar to (3.A.1) we obtain

W(.V *
mA.Vm) ∩ W(A). (3.A.4)

Then we combine (3.A.3) and (3.A.4) and make use of ║~Um║2 ≤ C3ε to obtain

W(Hm) ∩ UC3ε(W(A)),

with UC3ε(W(A)) being the neighborhood of W(A) with a distance C3ε.

In [Sim84, Theorem 5] the existence of the representation (3.A.2) is proven for the Lanc-
zos method with a sufficiently small constant C3 and the assumption that the Krylov basis
is semiorthogonal.

For the general case of the Arnoldi method the representation (3.A.2) can be derived
using (3.2.6), (3.2.7a) and an additional condition on the level of orthogonality of the
Krylov basis, e.g., assuming that an orthonormal basis .Vm exists for which ║.Vm - Vm║2 is
small enough (see also [BLR00, Theorem 2.1] and references therein).

3.B Some properties of divided differences

Proof of Proposition 3.4.1. For p ϵ N0 and any A ϵ Cmxm, w ϵ Cm, from the series
representation (3.2.2) we obtain∫ t

0
spφp(sA)w ds =

∫ t

0

( ∞∑
k=0

sk+pAkw

(k + p)!

)
ds =

∞∑
k=0

tk+p+1Akw

(k + p+ 1)!
= tp+1φp+1(tA)w. (3.B.1)
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3.B Some properties of divided differences

This identity carries over to divided differences in the following way. Let

θm =

(|||8
λ1

1 λ2

. . .
. . .

1 λm

)|||) ϵ Cmxm.

As a consequence of the Opitz formula, see [Opi64] and remarks in [dB05, Proposition 25],
we have

(φp)t[λ1, . . . , λm] = e*mφp(tθm)e1. (3.B.2)

Using (3.B.1) and (3.B.2) we obtain

∫ t

0
sp(φp)s[λ1, . . . , λm] ds = e*m

∫ t

0
spφp(sθm)e1 ds = e*mtp+1φp+1(tθm)e1

= tp+1(φp+1)t[λ1, . . . , λm],

which completes the proof.

Remark 3.B.1. We will make use of the following integral representation for divided dif-
ferences, the so-called Hermite-Genocchi formula, [Hig08, eq. (B.25)]. With the differential

operator (D(m-1)ft)(λ) =
dm-1

dλm-1 f(tλ),

ft[λ1, . . . , λm] =

∫
[λ1,...,λm]

D(m-1)ft

=

∫ 1

0

∫ s1

0
. . .

∫ sm-2

0
D(m-1)f

(
λ1 +

m-1∑
j=1

sj(λj+1 - λj)
)
dsm-1 . . . ds2 ds1.

(3.B.3)

Proof of Proposition 3.4.2. Applying (3.B.3) to the exponential function gives

| expt[λ1, . . . , λk]| ≤
∫ 1

0

∫ s1

0
. . .

∫ sk-2

0
tk-1

||| exp(λ1 +

k-1∑
j=1

sj(λj+1 - λj)
)||| dsk-1 . . . ds2 ds1

=

∫ 1

0

∫ s1

0
. . .

∫ sk-2

0
tk-1 exp

(
ξ1 +

k-1∑
j=1

sj(ξj+1 - ξj)
)
dsk-1 . . . ds2 ds1

= expt[ξ1, . . . , ξk],

which completes the proof.
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Proof of Proposition 3.4.6. We use (3.B.3) to obtain

expt[λ1, . . . , λk] =

∫ 1

0

∫ s1

0
. . .

∫ sk-2

0
tk-1 exp

(
t
(
λ1 +

k-1∑
j=1

sj(λj+1 - λj)
))

dsk-1 . . . ds2 ds1

=

∫ 1

0

∫ s1

0
. . .

∫ sk-2

0
tk-1

.
(
cos

(
t
(
η1 +

k-1∑
j=1

sj(ηj+1 - ηj)
))

+ i sin
(
t
(
η1 +

k-1∑
j=1

sj(ηj+1 - ηj)
)))

. exp
(
t
(
ξ1 +

k-1∑
j=1

sj(ξj+1 - ξj)
))

dsk-1 . . . ds2 ds1

= (cos(tx) + i sin(ty)) expt[ξ1, . . . , ξk]

for certain x, y ϵ Conv({η1, . . . , ηk}).

Here, in the last step we have used the Mean Value Theorem for the integral. In this way
we end up with the estimate

| expt[λ1, . . . , λm]| = | cos(tx) + i sin(ty)| . expt[ξ1, . . . , ξm].

With |tx|, |ty| ≤ ~ηt < π/2 we obtain

cos(~ηt) ≤ cos(tx) ≤ | cos(tx) + i sin(ty)|,

which completes the proof.

3.C A new asymptotic expansion of divided differences

Our goal is to derive an asymptotic expansion for | expt[λ1, . . . , λm]|, see Theorem 3.C.2 at
the end of this section.

Let λ1, . . . , λm ϵ C. We use the shortcut κk for the divided differences of power functions,

κk = (.)m-1+k[λ1, . . . , λm] for k ϵ N0, (3.C.1)

where (.)j : z ,- zj for j ϵ N0. Note that

(.)j [λ1, . . . , λm] = 0 for j = 0, . . . ,m- 2.

With the notation (3.C.1) and the series representation of the exponential function we
obtain

expt[λ1, . . . , λm] =
∞∑
j=0

tj (.)j [λ1, . . . , λm]

j!
= tm-1

∞∑
k=0

tkκk
(m- 1 + k)!

(3.C.2a)

=
tm-1

(m- 1)!
+O(tm) for t - 0. (3.C.2b)
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We also introduce the notation

Sl =
m∑
j=1

λl
j , l ϵ N. (3.C.3)

For κ0, κ1 and κ2 we obtain the following formula.

Proposition 3.C.1. For κk introduced in (3.C.1) we have

κ0 = 1, κ1 = S1, κ2 = (S2
1 + S2)/2.

Proof. This follows from [dB05, eq. (27)].

To simplify the notation we write

f(t) = | expt[λ1, . . . , λm]|.

The following asymptotic expansion of f(t) for t - 0 is motivated by the concept of effective
order. We define the effective order by

ρ(t) =
f ,(t) t
f(t)

, (3.C.4a)

satisfying ρ(t)/t =
(
log(f(t))

),
. (3.C.4b)

The effective order of the function f(t) can be understood as the slope of the double-
logarithmic function

ln(f(eτ )) with τ = ln t, with derivative
f ,(eτ ) eτ

f(eτ )
.

We now analyze the divided differences close to an asymptotic regime under the assump-
tion f(t) > 0, which holds for sufficiently small t > 0. The effective order ρ(t) is then
well-defined by (3.C.4a). The following expansion (3.C.5) for ρ(t) is be considered in an
asymptotic sense for t - 0; convergence of the series is not an issue here.

We make the ansatz

ρ(t) =

∞∑
k=0

ρkt
k (3.C.5)

Using (3.C.5) in (3.C.4b) we obtain

ρ(t)

t
=

(
ρ0 log(t) +

∞∑
k=1

ρkt
k/k

),
= (log(f(t))),

c exp
(
ρ0 log(t) +

∞∑
k=1

ρkt
k/k

)
= f(t),

c tρ0 exp
( ∞∑

k=1

ρkt
k/k

)
= f(t).
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From (3.C.2b) we see that c = 1/(m- 1)! and ρ0 = m- 1, whence

ρ(t) = m- 1 +
∞∑
k=1

ρkt
k, (3.C.6)

and for sufficiently small t,

f(t) = | expt[λ1, . . . , λm]| = tm-1

(m- 1)!
exp

( ∞∑
k=1

ρkt
k/k

)
. (3.C.7)

We aim for deriving a formula for the coefficients ρk. To avoid the square roots we
choose q(t) = f(t)2, such that f ,(t) = q,(t)/(2q(t)1/2). Due to (3.C.4a) the effective order
ρ(t) satisfies

q(t)ρ(t) = q,(t)t/2. (3.C.8)

We proceed by rewriting q(t) and q,(t) to obtain a formulation for ρk (k ≥ 1) via (3.C.8).
From (3.C.2a),

q(t) = | expt[λ1, . . . , λm]|2 = t2(m-1)
( ∞∑

k=0

tkκk
(m- 1 + k)!

)( ∞∑
l=0

tlκl

(m- 1 + l)!

)
.

The representation of q(t) as well as tq,(t)/2 as a Cauchy product can be written in the
form

q(t) =
t2(m-1)

((m- 1)!)2

∞∑
k=0

αkt
k, and tq,(t)/2 =

t2(m-1)

((m- 1)!)2

∞∑
k=0

(
(m-1)+k/2

)
αkt

k, (3.C.9)

with coefficients αk given by

α0 = 1, and αk =
k∑

j=0

((m- 1)!)2 κjκk-j

(m- 1 + j)! (m- 1 + k - j)!
for k ϵ N.

With κ0 = 1 (see Proposition 3.C.1) this can be written as

αk =
2(m- 1)! Re(κk)

(m- 1 + k)!
+

k-1∑
j=1

((m- 1)!)2 κjκk-j

(m- 1 + j)! (m- 1 + k - j)!
for k ϵ N. (3.C.10)

Furthermore, from (3.C.6) and (3.C.9) we obtain a representation of q(t)ρ(t) in form of a
Cauchy product,

q(t)ρ(t) =
t2(m-1)

((m- 1)!)2

∞∑
k=0

θkt
k, with θk =

k-1∑
j=0

αjρk-j + (m- 1)αk, k ϵ N0. (3.C.11)

We remark that (3.C.11) only holds for t small enough. With α0 = 1, in (3.C.11) we have

θ0 = m- 1, and θk = ρk +
k-1∑
j=1

αjρk-j + (m- 1)αk, k ϵ N. (3.C.12)

78



3.C A new asymptotic expansion of divided differences

For the implicit equation (3.C.8) we combine (3.C.9) and (3.C.11) to obtain

∞∑
k=0

θkt
k =

∞∑
k=0

(m- 1 + k/2)αkt
k. (3.C.13)

Comparing coefficients of tk in (3.C.13) and using (3.C.12) we conclude

θk = (m- 1 + k/2)αk, and ρk =
kαk

2
-

k∑
l=1

αlρk-l, k ≥ 1. (3.C.14)

From (3.C.14) we obtain a recursion for the coefficients ρk in the expansion (3.C.6) which
can be resolved using (3.C.1) and (3.C.10).
We now evaluate the lower coefficients of ρ(t). For α1 and α2, using Proposition 3.C.1

in (3.C.10) gives

α1 =
2 Re(κ1)

m
=

2 Re(S1)

m
, and α2 =

|κ1|2
m2

+
2 Re(κ2)

m(m+ 1)
=

|S1|2
m2

+
Re(S2

1 + S2)

m(m+ 1)
,

(3.C.15)
with S1, S2 according to definition (3.C.3) From the recursion in (3.C.14) we have

ρ1 =
α1

2
, ρ2 =

1

2

(
2α2 - α2

1

)
, (3.C.16)

and combining (3.C.15) with (3.C.16) we eventually obtain

ρ1 =
Re(S1)

m
,

ρ2 =
|S1|2
m2

+
Re(S2

1 + S2)

m(m+ 1)
- 2 Re(S1)

2

m2
=

Im(S1)
2 - Re(S1)

2

m2
+

Re(S2
1 + S2)

m(m+ 1)
.

(3.C.17)

To study the influence of the real and imaginary parts of the nodes λj = ξj + iηj we
introduce the notation

Slk =

m∑
j=1

ξljη
k
j , l, k ϵ N0. (3.C.18)

Basic computations, mostly binomial sums in (3.C.3), show

S1 = S10 + iS01, S2 = S20 + 2iS11 - S02, and S2
1 = S2

10 + iS10S01 - S2
01,

and

Im(S1) = S01, Re(S1) = S10, Re(S2) = S20-S02, and Re(S2
1) = S2

10-S2
01. (3.C.19)

Combining (3.C.17) with (3.C.19) gives

ρ1 =
S10

m
, and ρ2 =

S2
01 - S2

10

m2(m+ 1)
+

S20 - S02

m(m+ 1)
. (3.C.20)

After all these technicalities we arrive at the following asymptotic expansion.
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Theorem 3.C.2. Assume that for λj = ξj + iηj at least one of the sequences {ξj}mj=1 and
{ηj}mj=1 is not constant, and ξj ≤ 0 for j = 1, . . . ,m. Let avg(ξ) =

∑m
j=1 ξj/m be the

average and var(ξ) =
∑m

j=1(ξj-avg(ξ))2/m be the variance of {ξ1, . . . , ξm}, and var(η) the
variance of {η1, . . . , ηm}. Then,

(1)

| expt[λ1, . . . , λm]| = tm-1

(m- 1)!
exp

(
ρ1t+ ρ2t

2/2 +O(t3)
)

for t - 0,

with

ρ1 = avg(ξ), ρ2 =
var(ξ)- var(η)

m+ 1
,

and either ρ1 /= 0 or ρ2 /= 0.

(2) The derivative of the effective order ρ(t) (see (3.C.4a)) satisfies ρ,(t) = ρ1+ρ2t+O(t2)
for t - 0, and

ρ,(0+) < 0.

Proof. We use the expansion (3.C.7) for sufficiently small t. For the variance we obtain

var(ξ) =
1

m

m∑
j=1

(ξj - avg(ξ))2 =
1

m

( m∑
j=1

ξ2j -
1

m

( m∑
j=1

ξj
)2)

.

The first coefficients ρ1 and ρ2 are given in (3.C.20). With the notation from (3.C.18)
we observe avg(ξ) = S10/m (for the average avg(ξ)) and var(ξ) = (S20 - S2

10/m)/m,
var(η) = (S02 - S2

01/m)/m (for the variance var(ξ) and var(η), respectively), whence

ρ1 = avg(ξ), and ρ2 =
var(ξ)- var(η)

m+ 1
.

With ξ1, . . . , ξm ≤ 0 for j = 1, . . . ,m we obtain ρ1 ≤ 0 and ρ1 = 0 iff ξ1, . . . , ξm = 0. For
the case ξ1, . . . , ξm = 0 we obtain var(ξ) = 0 and

ρ2 = -var(η)

m+ 1
≤ 0.

Here, ρ2 = 0 only in the trivial case with ξ1, . . . , ξm = 0 and a constant sequence η1, . . . , ηm.
This proves (a). For the proof of (b) we take the derivative of ρ(t) in an asymptotic sense
and make use of ρ1 ≤ 0 and ρ2 < 0 iff ρ1 = 0, see (a).

3.D Auxiliary material

3.D.1 Auxiliary remarks on stopping criteria for the lucky breakdown

In Figure 3.7 a) we illustrate the criterion of Proposition 3.4.13 for the case p = 0 and
a skew-Hermitian problem: Following Remark 3.2.4 we choose A = iB for a Hermitian
matrix B to conform to the skew-Hermitian case. Let B ϵ Rnxn be a diagonal matrix with
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3.D Auxiliary material

diagonal entries ( 1, . . . , 1. .. .
n-9 times

, 2, . . . , 10) ϵ Rn and n = 5000. Then B has exactly 10 distinct

eigenvalues and the rank of the respective Krylov subspaceKm(B, v) is at most 10 for anym,
independently of the starting vector v. For the current example we choose the normalized
starting vector v = (1/

√
n, . . . , 1/

√
n) ϵ Rn. Thus, a breakdown of the Lanczos iteration

occurs after 10 iteration steps when constructing Km(B, v), and the approximation to eitBv
in the Krylov subspace Km(B, v) for m = 10 is exact for any t > 0 up to round-off. In this
case we have βhk+1,k ≈ 10-32 for k = 10 and the stopping criterion of Proposition 3.4.13
correctly detects the lucky breakdown for any reasonable choice of tol.

Furthermore, we consider the case that a lucky breakdown nearly occurs. Results for the
following setting are illustrated in Figure 3.7 b). We choose B = tridiag(-1, 2,-1) ϵ Rnxn

with n = 1000 and we choose the normalized starting vector v = ψ1 + ψ11 + ψ21, where ψj

refers to the eigenvectors of B as in (3.4.15), Subsection 3.4.1. Thus, the vector v conforms
to a linear combination of three eigenvectors of B. The Krylov approximation eitBv in the
Krylov subspace Km(B, v) corresponds to the skew-Hermitian case, A = iB as given in
Remark 3.2.4. When constructing the Krylov subspace Km(B, v) a lucky breakdown could
be expected for m = 3, but due to numerical inaccuracy (also depending on the accuracy
of the provided eigenvectors ψj) no lucky breakdown occurs in computer arithmetic: In
Figure 3.7 b) we observe that the error of the Krylov approximation is above round-off
level for m = 3, and the accuracy of the Krylov approximation can be further improved
by increasing the dimension of the Krylov subspace beyond m = 3. Appropriately, the
criterion of Proposition 3.4.13 indicates that the error per unit step is smaller than 3 . 10-8

form = 3 and no further iteration steps are required in case this satisfies the error tolerance.
In the setting of Figure 3.7 b) the small values for the error per unit step ║lp,m(t)║2/t

for m > 3 can be further evaluated via a time-independent bound on the defect and the
respective defect-based error bound: With Corollary 3.3.3 we have

║lp,m(t)║2 ≤ hm+1,mt1-p max
sϵ[0,t]

|δp,m(s)|. (3.D.1)

Following Corollary 3.3.6 the defect satisfies

δp,m(t) = βγmtp(φp)t[λ1, . . . , λm]. (3.D.2)

When the eigenvalues λ1, . . . , λm of Hm are distinct, then the Lagrange representation
(cf. [dB05, Example 9]) for the divided differences in (3.D.2) yields

(φp)t[λ1, . . . , λm] =
m∑
j=1

φp(tλj)
/ mπ

l=1, l /=j

(
λj - λl

)
.

With |φp(tλj)| ≤ 1/p! for Re(λj) ≤ 0 this implies

|δp,m(t)| ≤ β γm
tp

p!

m∑
j=1

1
/ mπ

l=1, l /=j

||λj - λl

||. (3.D.3)

Combining (3.D.1) and (3.D.3) yields

║lp,m(t)║2/t ≤ β hm+1,mγm
1

p!

m∑
j=1

1
/ mπ

l=1, l /=j

||λj - λl

||. (3.D.4)
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3 A study of defect-based error estimates for the Krylov approximation of φ-functions

This error bound is illustrated in Figure 3.7 b).

3.D.2 The defect norm for φ-functions with p > 0

We have discussed effects of clustered nodes for the divided differences of the exponential
function previously in Subsection 3.4.1. This can be relevant for the defect norm |δp,m(t)|
for p > 0: With the identities in Corollary 3.3.6 we have

δp,m(t) = βγm expt[λ1, . . . , λm, 0p].

Thus, the defect norm for p > 0 corresponds to the scaled divided differences of the expo-
nential function with p-many additional nodes equal to zero, and for sufficiently large t the
defect norm behaves similar to expt[0p] = tp-1/(p- 1)!.
In Figure 3.8 we illustrate the defect norm for p > 0 for the free Schr:odinger example with

the starting vector described in case (a) previously in Subsection 3.4.1 and m = 20. The

respective Ritz values λ
(a)
1 , . . . , λ

(a)
m are shown in the table in Figure 3.1 in Subsection 3.4.1.

One of the Ritz values is close to zero, i.e., λ
(a)
1 ≈ 0, and we observe that |δp,m(t)| behaves

similar to | expt[iλ(a)
1 , 0p]| for t ϵ [101, 104] approximately. For p = 1 this relation is

illustrated by showing γm
(πm

j=2 λ
(a)
j

)-1| expt[iλ(a)
1 , 0]| in Figure 3.8. The prefactor of this

term is motivated by previous results in Subsection 3.4.1. We recall | expt[iλ(a)
1 , 0p]| = O(tp)

and |δp,m(t)| = O(tm+p-1), for t - 0 respectively. For the error estimation via the defect
integral (3.3.1b) the asymptotic regimes of the defect norm can have a significant impact
on the performance of the estimate. However, the time regime which is relevant for the
error estimation depends on the actual time step which further depends on problem sizes,
and in many practical examples the defect norm for a moderate p > 0 behaves similar to
the case p = 0 in the relevant time regime.
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Figure 3.7: Numerical illustrations concerning the lucky breakdown and the Krylov approx-
imation to the matrix exponential.
- Figure a) We choose a diagonal matrix B ϵ Rnxn with diagonal entries
(1, . . . , 1, 2, . . . , 10) ϵ Rn and n = 5000, and a normalized starting vector
v = (1/

√
n, . . . , 1/

√
n) ϵ Rn. The line marked by (x) symbols shows βhm+1,m

for the Krylov subspace Km(B, v), and the dashed lines show the error per
unit step ║lp,m(t)║2/t for the respective Krylov approximation to eitBv with
t = 102, 101, 100, 10-1 marked by (►, ◊, *, .), respectively. For m = 10 the value
of βhm+1,m indicates a lucky breakdown, and respectively, the Krylov approxi-
mation in Km(B, v) for m = 10 is exact up to round-off for any value of t shown
here.
- Figure b) We choose a tridiagonal matrix B = tridiag(-1, 2,-1) ϵ Rnxn

with n = 1000 and a normalized starting vector v = ψ1+ψ11+ψ21 ϵ Rn, where
ψj refers to the eigenvectors of B as in (3.4.15). The vector v corresponds to a
linear combination of three eigenvectors of B which would cause a lucky break-
down after three iteration steps of the Lanczos method in exact arithmetic when
constructing the Krylov subspace Km(B, v). In computer arithmetic the Lanc-
zos method can be continued beyond m = 3, and the accuracy of the Krylov
approximation to eitBv can be further improved by increasing the dimension of
the Krylov subspace. The dashed lines show the error per unit step ║lp,m(t)║2/t
for the respective Krylov approximation to eitBv with t = 105, 104, 103, 102, 101

marked by (○,Δ,◄,►, ◊), respectively. The line marked by (x) symbols shows
βhm+1,m for the Krylov subspace Km(B, v), and the line marked by (□) sym-
bols shows the error bound given in (3.D.4). Both yield upper bounds for the
error per unit step, whereat βhm+1,m corresponds to the stopping criterion for
the lucky breakdown in Proposition 3.4.13.
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Figure 3.8: The defect norm |δp,m(t)| for p = 0 (x), p = 1 (○), p = 2 (□) and p = 3 (Δ)
for the free Schr:odinger example with m = 20 and the randomized starting
vector described in case (a), see also Figure 3.1 which includes the eigenvalues

λ
(a)
1 , . . . , λ

(a)
m . With λ

(a)
1 being small the defect norm behaves similar to the

divided differences expt[λ
(a)
1 , 0p] for sufficiently large t. This is illustrated for

p = 1 by showing γm
(πm

j=2 λ
(a)
j

)-1
expt[λ

(a)
1 , 0] marked by (+).
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Figure 3.9: Convection-diffusion problem (3.5.1) for the parameter ν = 100 (top) and ν =
500 (bottom). For each choice of ν we consider p = 0 (left) and p = 2 (right).
Each plot showsm(t)/mt wheremt is the smallestm such that ║lp,m(t)║2 ≤ t.tol
for tol = 10-6 and the exact error lp,m(t), and m(t) is the smallest m such that
ζp,m(t) ≤ t . tol for tol = 10-6 and ζp,m corresponding to the following error
estimates: The error bound given in Theorem 3.4.3 (x), Corollary 3.4.5 (○),
the generalized residual estimate given in Remark 3.4.11 (+), the effective order
estimate given in Remark 3.4.12 (□), and the error bound given in [DMR09,
Proposition 6] (Δ). Additionally, the dotted lines show (mt + k)/mt for k =
1, . . . , 10 as a reference. For a better visual impression the values of m(t)/mt

are averaged over the time interval [2-0.1 t, 20.1 t]. For the respective values of
m(t) see also Figure 3.3 and 3.4.

3.D.3 Numerical illustrations supplement to Section 3.5

Additional plots for the convection-diffusion problem (3.5.1). In Figure 3.9 we provide
additional numerical illustrations for the convection-diffusion problem (3.5.1) in Subsec-
tion 3.5. In this figure we show m(t)/mt over the time t, where mt is the smallest Krylov
dimension m such that ║lp,m(t)║2 ≤ t . tol and m(t) is the smallest Krylov dimension m
such that ζp,m(t) ≤ t . tol for tol = 10-6 and ζp,m(t) corresponding to different choices of
error estimates. For the values of m(t) over t see also Figure 3.3 and 3.4 in Subsection 3.5.

Additional plots for the skew-Hermitian problem. In Figure 3.10 we provide an ad-
ditional numerical illustration for the skew-Hermitian problem φp(iA)v as introduced in
Subsection 3.5; namely, A corresponds to the Laplace operator ((3.5.1) with ν = 0) and
v = (1/N, . . . , 1/N)*. This figure shows m(t)/mt over the time t, where mt is the smallest
Krylov dimension m such that ║lp,m(t)║2 ≤ t .tol and m(t) is the smallest Krylov dimension
m such that ζp,m(t) ≤ t . tol for tol = 10-6 and ζp,m(t) corresponding to different choices
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Figure 3.10: The skew-Hermitian problem φp(iA)v where A corresponds to the Laplace
operator ((3.5.1) with ν = 0) and v = (1/N, . . . , 1/N)*. Results are shown
for p = 0 (left) and p = 2 (right). Each plot shows m(t)/mt where mt is the
smallest m such that ║lp,m(t)║2 ≤ t . tol for tol = 10-6 and the exact error
lp,m(t), and m(t) is the smallest m such that ζp,m(t) ≤ t .tol for tol = 10-6 and
ζp,m corresponding to the following error estimates: The error bound given in
Theorem 3.4.3 (x), Corollary 3.4.5 (○), the generalized residual estimate given
in Remark 3.4.11 (+), the effective order estimate given in Remark 3.4.12 (□),
and the error bound given in [DMR09, Proposition 8] (Δ). The error bounds
in Theorem 3.4.3 (x) and Corollary 3.4.5 (○) coincide in the skew-Hermitian
case. Additionally, the dotted lines show (mt + k)/mt for k = 1, . . . , 10 as a
reference. For a better visual impression the values of m(t)/mt are averaged
over the time interval [2-0.1 t, 20.1 t]. For the respective values of m(t) see also
Figure 3.5.

of error estimates. For the respective values of m(t) see also Figure 3.5 in Subsection 3.5.
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4 A review of the Separation Theorem of
Chebyshev-Markov-Stieltjes for polynomial
and some rational Krylov subspaces

4.1 Introduction and historical context

In the present chapter we consider an Hermitian matrix A ϵ Cnxn and a given vector u ϵ
Cn. The coefficients of u in the orthonormal eigenbasis of A are referred to as spectral
coefficients, see (4.2.3) below. These coefficients rely on an underlying inner product on Cn

which is specified in (4.2.2), and denoted as M-inner product in the sequel. Furthermore,
Krylov subspaces in the sequel also rely on the M-inner product.

4.1.1 Historical context and previous works

For a polynomial or rational Krylov subspace of a matrix A with starting vector u, the
spectral coefficients of u play a crucial role: The linear functional f ,- (u, f(A)u)M can
be understood as a Riemann-Stieltjes integral associated with a non-decreasing step func-
tion αn. This step function is defined by the eigenvalues of A and the spectral coefficients
of u, and many results concerning the theory of polynomial Krylov subspaces have their
origin in the theory of orthogonal polynomials, namely, polynomials on the real axis which
are orthogonal w.r.t. the Riemann-Stieltjes integral associated with αn; see also [GM10]
for a survey. We also refer to these polynomials as orthogonal polynomials associated with
the distribution dαn. In a similar manner, orthogonal rational functions describe rational
Krylov subspaces.

For the polynomial case, the Lanczos method [Lan50] is used in practice to generate
an M-orthonormal basis of the Krylov subspace and the associated Jacobi matrix, which
corresponds to the representation of A in the respective Krylov subspace, see also [Saa11].
The respective M-orthonormal basis vectors satisfy a three-term recursion which conforms
to the three-term recursion of the underlying orthogonal polynomials associated with dαn;
the Krylov basis and the orthogonal polynomials exist in an equivalent manner.

The Jacobi matrix associated with orthogonal polynomials for a given distribution plays a
crucial role for Gaussian quadrature formulae for the respective Riemann-Stieltjes integral,
which also goes by the name Gauss-Christoffel quadrature, cf. [Gau81]. For the Gauss-
Christoffel quadrature formula with m quadrature nodes which integrates polynomials of
degree ≤ 2m - 1 exactly, the quadrature nodes are given by the zeros of the (m + 1)-th
orthogonal polynomial and the quadrature weights are given by so called Christoffel num-
bers. Early works on quadrature formulae [Wil62, GW69] (historical remarks in [Gau81]
also refer to earlier works of Goertzel) show that these quadrature nodes and weights can be
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

computed via the Jacobi matrix; the zeros of the (m+1)-th orthogonal polynomial coincide
with eigenvalues of the respective Jacobi matrix, and the Christoffel numbers correspond
to entries of its eigenvectors. In these works, the underlying distribution is not necessarily
based on a matrix-vector pair as it is the case when considering a polynomial Krylov sub-
space; a reference to the Krylov setting is made later in [FF94, FH93] and also discussed
in detail (including historical remarks) in [GM10, LS13]. In this context, the eigenvalues of
the Jacobi matrix are also referred to as Ritz values, and m denotes the dimension of the
Krylov subspace. Furthermore, the Christoffel numbers, which are given by entries of the
eigenvectors of the Jacobi matrix, can be written as spectral coefficients of a vector x ϵ Rm.
In particularly, the vector x corresponds to the representation of the starting vector u in
the Krylov subspace, i.e., the first unit vector scaled by the norm of u. Here, the spectral
coefficients of x ϵ Rm denote its coefficients in the l2-orthonormal1 eigenbasis of Jm.

The Separation Theorem of Chebyshev-Markov-Stieltjes (CMS Theorem) states that ac-
cumulated quadrature weights of a Gaussian quadrature formula (i.e., the accumulated
Christoffel numbers) are bounded by Riemann-Stieltjes integrals over the interval be-
tween the left integral limit and the quadrature nodes. For details and historical remarks
see [Sze85, Akh65, VA93]. In an equivalent manner, this statement can be formulated in
a Krylov setting: The accumulated entries of eigenvectors of the Jacobi matrix (spectral
coefficients of x) are bounded by Riemann-Stieltjes integrals associated with αn over the
interval between the left-most eigenvalue of A and the Ritz values. The step function
αn corresponds to accumulated spectral coefficients of u, and as a corollary, accumulated
spectral coefficients of x yield bounds on sums of spectral coefficients of u and vice versa.
Analogously, this statement can be formulated as an intertwining property of the distri-
bution dαn and a distribution dαm associated with the step function αm which is defined
by Ritz values and spectral coefficients of x: Similar to f ,- (u, f(A)u)M and αn, the
functional f ,- (x, f(Jm)x)2 can be understood as a Riemann-Stieltjes integral associ-
ated with the step function αm. The underlying Gaussian quadrature formula implies
(u, p(A)u)M = (x, p(Jm)x)2 for polynomials p of degree ≤ 2m - 1, and therefore, the
distributions dαn and dαm have the same moments up to degree 2m- 1.

For distributions with the same moments, an intertwining property is stated in [KS53,
Theorem 22.2], see also [Fis96, Theorem 2.2.5] and [LS13, Theorem 3.3.4]. Indeed, this
intertwining property coincides with the result of the CMS Theorem. In the context
of Krylov subspaces, the intertwining property of the distributions dαn and dαm al-
ready appeared earlier in [FF94, Fis96, LS13]. For further remarks (including many his-
torical remarks) on the moment problem we particularly refer to [LS13]. The identity
(u, p(A)u)M = (x, p(Jm)x)2 above corresponds to quadrature properties, and results from
well-known identities for polynomials in the Krylov subspace in an equivalent manner;
p(A)u = Vm p(Jm)x for polynomials p of degree ≤ m - 1 and p(A)u - Vm p(Jm)x |M Vm

for polynomials p of degree m where Vm ϵ Cmxn denotes the M-orthonormal Krylov basis
written in matrix form.

The related theory in [Sze85, Akh65] applies in a slightly more general setting, namely,
for Gaussian quadrature formulae which integrate polynomials of degree ≤ 2m- 2 exactly
(where m is the number of quadrature nodes). This includes Gauss-Radau quadrature

1The notation ;l2-orthonormal, refers to a basis orthonormal w.r.t. the Euclidean inner product.
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formulae where one of the m quadrature nodes is preassigned. The quadrature nodes and
weights of Gauss-Radau quadrature formulae can be represented by the zeros of a so-called
quasi-orthogonal polynomial and the Christoffel numbers associated with this polynomial,
respectively. Similar to the Jacobi matrix, the recursion of the underlying set of polyno-
mials constitutes a tridiagonal structure in matrix form, and the respective quadrature
nodes and weights correspond to the eigenvalues and entries of eigenvectors, respectively,
of this tridiagonal matrix. This relation between Gauss-Radau quadrature formulae and
the eigendecomposition of this Jacobi-like tridiagonal matrix goes back to [Gol73] and is
reviewed in detail in [GM10, Section 6.2].
In the present work we also consider rational Krylov subspaces, namely, subspaces

spanned by {r(A)u} where r = p/q for polynomials p of degree ≤ m- 1 and a preassigned
denominator polynomial q of degree ≤ m-1 (here, p and q are complex polynomials and m
again denotes the dimension of the Krylov subspace). For early works on rational Krylov
subspaces we refer to [ER80, Ruh84], and for a review we refer to [G:ut10]. The zeros of
the denominator q are also referred to as poles in this context. Rational Krylov techniques
using a single pole of multiplicity m - 1 yield the most prominent cases, the resulting
rational Krylov subspaces are also referred to as Shift-and-Invert (SaI) Krylov subspaces.
The rational Krylov subspace with preassigned denominator polynomial q and starting

vector u is identical to the polynomial Krylov subspace with starting vector q(A)-1u.
The respective orthogonal polynomials (particularly, orthogonal polynomials associated
with a scaled distribution d.αn) divided by the denominator polynomial q yield rational
functions which are orthogonal w.r.t. the Riemann-Stieltjes integral associated with αn

(as given previously), cf. [DB07]. These orthogonal rational functions, evaluated at A
as a matrix function and applied to u, provide an M-orthonormal basis of the rational
Krylov subspace. Furthermore, results regarding Gaussian quadrature formulae carry over
to the rational setting: The orthogonal rational functions which span the rational Krylov
subspace of dimensionm with a preassigned denominator q constitute a rational quadrature
formula for the Riemann-Stieltjes integral associated with αn, which integrates rational
functions r = p/|q|2 exactly for polynomials p of degree ≤ 2m - 1. For an overview on
rational Gaussian quadrature see also [Gau93], and for the relation between rational Krylov
subspaces and rational Gaussian quadrature we also refer to [LLRW08, Dec09, JR11].
The relation between a rational Krylov subspace with denominator q and starting vec-

tor u, and the polynomial Krylov subspace with starting vector q(A)-1u is more of a
theoretical nature. In practice, various algorithms, covering different settings, are relevant
to construct a rational Krylov subspace, and result in different sequences of M-orthonormal
basis vectors of this subspace. To keep our results general, we do no restrict ourselves to
a specific algorithm or an underlying recursion for the basis vectors in that concern. As-
suming an M-orthonormal basis of a rational Krylov subspace is given, we refer to the
representation of A in this basis as Rayleigh quotient Am ϵ Cmxm. Furthermore, we reuse
the notation x ϵ Cm for the representation of u in the given basis. As stated above,
a rational Krylov subspace is closely related to orthogonal rational functions which con-
stitute a rational Gaussian quadrature formula. In particular, the quadrature nodes and
weights for this rational Gaussian quadrature formula correspond to the eigenvalues of the
Rayleigh quotient Am and the spectral coefficients of x, respectively. We remark that the
eigenvalues of Am (also referred to as rational Ritz values, which are real due to Am being

89



4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

Hermitian) and the spectral coefficients of x, which refer to the coefficients of x in the
l2-orthonormal eigenbasis of Am, are independent of the choice of the basis. Furthermore,
the respective quadrature formula conforms to the identity (u, r(A)u)M = (x, r(Am)x)2
for rational functions r = p/|q|2 as above.

Similar to the polynomial case, the functional f ,- (x, f(Am)x)2 can be understood as a
Riemann-Stieltjes integral associated with αm, which is now defined by eigenvalues of Am

and the spectral coefficients of x. The rational quadrature properties imply that dαn and
dαm have 2m- 1 identical rational moments.

For rational Gaussian quadrature formulae, CMS type results depend on the choice of
the denominator, and do not seem to be as popular as for the polynomial case. In [Li98]
a separation theorem is given for a class of Laurent polynomials and an integral defined
on the positive real axis. Here, Laurent polynomials correspond to rational functions with
denominator q(λ) = λm/2 for even m. In a Krylov setting, this class of rational functions is
related to some extended Krylov subspaces [DK98] for a matrix A with positive eigenvalues
(i.e., the step function αn is defined on the positive real axis). However, the results of [Li98]
have not been applied in a Krylov setting yet.

More recently, [ZTK19] computes piecewise estimates on αn based on a Shift-and-Invert
Krylov subspace with a pole of multiplicity m-1 at zero (i.e., q(λ) = λm-1), for a matrix A
with positive eigenvalues. In this work, a Shift-and-Invert representation is used instead of
the Rayleigh quotient (see also [G:ut10, Subsection 5.4.3]). The given estimates are based
on an intertwining property of dαn and a distribution given by spectral properties of the
Shift-and-Invert representation; the intertwining property goes back to the polynomial case,
referring to [KS53, Theorem 22.2].

In the present work, we also consider Krylov techniques related to rational Gauss-Radau
quadrature formulae. These quadrature formulae integrate rational function r = p/|q|2
exactly, where p is a polynomial of degree ≤ 2m - 2, q is the given denominator, and
one of the m quadrature nodes is preassigned, see also [LLRW08, JR13]. For rational
Gauss-Radau quadrature formulae in a more general setting see also [Gau04, DBVD10,
DB12]. Analogously to the Gauss-Radau quadrature formulae in the polynomial case,
this slightly generalizes the previously discussed rational quadrature properties but can be
treated similarly concerning the intertwining properties of the underlying distributions dαn

and dαm.

4.1.2 Applications

Computable estimates on spectral coefficients of u. A direct computation of eigenvalues
and spectral coefficients requires access to the eigenbasis of the given matrix A which is
not practical for problems of a large problem size n in general; typically, the full spectrum
of A is not available. However, information on partly accumulated spectral coefficients,
namely, the step function αn on subsets of the spectrum of A, can be sufficient for some
applications. CMS type results provide suitable estimates for this purpose, which can be
evaluated using Krylov techniques. In particularly, this yields piecewise estimates on αn

covering the full spectrum of A. These estimates hold true independently of the convergence
of individual (rational) Ritz values. However, more detailed information is provided for
parts of the spectrum which are well resolved by (rational) Ritz values. We proceed to give
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some applications based on estimates on αn.

The eigenvalues of A together with the spectral coefficients of u have some relevance for
the approximation of the action of a matrix function f(A)u, e.g., the matrix exponential
function or the matrix inverse. Polynomial Krylov methods yield good approximations on
matrix functions without any a priori information on the spectrum of A (such approximants
are discussed in Chapter 2 and 3 for the matrix exponential function). However, further
knowledge on the spectrum of A can help to improve the quality of the approximation
(here we also refer to the introduction of [FH93]). In [FF94], piecewise estimates on αn are
applied to construct a polynomial preconditioner for the conjugate gradient method. This
approach is based on the intertwining property of the distributions dαn and dαm, where
the latter is computed using a small number of Lanczos iterations in the progress (thus,
αm is based on a polynomial Krylov subspace here).

In [HPS09], the authors consider iterative bidiagonalization methods to solve ill-posed
linear systems. In this work, effects of a noisy right-hand side on the projected problem are
discussed. The ill-posed problems therein are associated with an underlying distribution
(similar to dαn given previously in the present introduction), and due to problem assump-
tions and noise on the initial data this distribution is of a special structure which carries
over to the projected problem. This process is closely related to the intertwining property
of the distributions dαn and dαm in the Lanczos case, and results in criteria to detect the
noise level on the run, as introduced in [HPS09].

In [ZTK19], an inhomogeneous differential equation, arising in applications of dynamic
analysis of structure, is diagonalized using eigenvectors of a large matrix. This requires
computation of a moderate number of eigenvectors, namely, eigenvectors such that the
external force vector is resolved with sufficient accuracy. The spectral decomposition of
this vector is associated with a distribution dαn, and estimates on this distribution allow
to determine intervals which cover eigenvalues corresponding to the required eigenvectors.
In [ZTK19], estimates on αn are based on a Shift-and-Invert Lanczos method, and yield a
pole selection strategy and stopping criteria for an eigenproblem solver based on rational
Krylov methods.

In future works, estimates on αn will be applied to design special rational approximations
to the action of the exponential of skew-Hermitian matrices.

The structure of αn roughly carries over to αm. In Chapter 5, we consider a localized
best approximation property of rational Krylov approximants to the action of a matrix ex-
ponential. In particularly, we consider the exponential of a skew-Hermitian matrix applied
to a vector which is subject to some assumptions. Namely, strict increases of αn are, up to
a small perturbation, located in an interval. For some rational Krylov subspaces we illus-
trate that such properties carry over to the associated step function αm. These ideas are
based on theoretical results derived in the present chapter; and in Chapter 5 this approach
motivates a localized best approximation result which can show a mesh-independent con-
vergence (in a setting where the matrix exponential arises from a spatial discretization of a
PDE (evolution equation)). In contrast to previously mentioned applications, computable
estimates on αn are not topical for the approach of Chapter 5.

91



4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

Other applications. Apart from the Krylov setting, the CMS Theorem has applications
in various fields, e.g., for a work on discretization of quantum systems see [Rei79].
Furthermore, bounds on distribution functions have some importance in probability the-

ory and statistics; and various bounds are referenced to Chebyshev, Markov, Stieltjes and
others. This includes variants of the CMS Theorem formulated in terms of moments,
e.g., [Zel54] or more recently [H:ur15]. Moment-matching methods also appear in the con-
text of system theory [Ant05].
Krylov methods also have applications in the approximation to bilinear forms (u, f(A)u)M,
where f is a given function, see also [LLRW08, GM10, JR11, JR13]. Due to the relation
between (u, f(A)u)M and a Riemann-Stieltjes integral associated with αn, estimates on
this bilinear form are directly related to quadrature formulae. However, these applications
will not be further discussed in the present work.

4.1.3 Main contributions and overview of present work

We proceed to highlight the main contributions of the present chapter, including results or
remarks which are considered to be new by the author.

❼ We introduce a new CMS type result for a class of rational Gaussian quadrature
formulae, namely, quadrature formulae based on rational functions with a single real
pole of higher multiplicity, see Theorem 4.4.11 in Subsection 4.4.3. To prove this
result, we introduce rational majorants and minorants on Heaviside type functions
in Proposition 4.4.12. In a Krylov setting, this theorem applies to the SaI Krylov
subspace with a real shift. Our results include the case that the shift is located in
the contour of the matrix spectrum; we consider a more general setting compared
to [ZTK19]. An intertwining property of the distributions dαn and dαm holds true
up to a constant, see Proposition 4.4.13.

❼ For the setting of rational functions with a single complex pole of higher multiplicity,
we introduce a new CMS type result which yields an upper bound on the Riemann-
Stieltjes integral over the interval between neighboring quadrature nodes and at the
boundary, see Proposition 4.4.19 in Subsection 4.4.4. This result applies to the SaI
Krylov subspace with a single complex shift of higher multiplicity. To prove this upper
bound, we make use of polynomial majorants on Heaviside type functions on the unit
circle given in [Gol02]. Furthermore, we propose the use of an isometric Arnoldi
method to compute the Rayleigh quotient of the SaI Krylov subspace with complex
shift in a cost efficient way (comparable to the Lanczos method which applies when
the shift is real), see Remark 4.2.7.

❼ Applying a CMS type result given in [Li98], we present an intertwining property for
dαn and dαm in the setting of an extended Krylov subspace in Subsection 4.4.5.

Recalling results of [GM10] and others, we also apply the theory of quasi-orthogonal
polynomials in a polynomial Krylov setting. This results in an Arnoldi-like decomposition
where the residual is provided by a quasi-orthogonal polynomial; we refer to the respective
representation as a quasi-orthogonal residual (qor-) Krylov representation for which one of
the eigenvalues can be preassigned.
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❼ The CMS Theorem is known to apply to Gauss-Radau quadrature formulae. In the
present work, we specify these results in a Krylov setting; results in Section 4.4 for
the polynomial case include the qor-Krylov setting, e.g., the intertwining property of
dαn and dαm holds true when αm is based on the qor-Krylov representation. This
potentially leads to refined estimates on αn in practice.

❼ Furthermore, we introduce a qor-Krylov approximation to the action of matrix func-
tions in Subsection 4.3.1, comparable to the corrected Krylov scheme for the matrix
exponential function given in [Saa92].

Various results for the polynomial case carry over to the rational case, and we introduce
a rational qor-Krylov representation where one of the eigenvalues is preassigned, similar
to [LLRW08, JR13].

❼ For the rational case, we introduce an efficient procedure to compute a rational qor-
Krylov representation in Subsection 4.3.2.

❼ The CMS type result given in Subsection 4.4.3 and further estimates in Subsec-
tion 4.4.4 include the rational qor-Krylov case. Considering these CMS theorems, for
some cases bounds on quadrature weights related to quadrature nodes at the right
boundary (of the spectrum of A) are affected by αn at the left boundary (of the
spectrum of A) and vice versa, e.g., as in Corollary 4.4.16; αn affects the bounds in
a cycled sense at the boundaries. This is no longer the case when one of the nodes
is preassigned at the boundary of the spectrum, see also Remark 4.4.17, and this
potentially results in refined bounds.

❼ We introduce a rational qor-Krylov approximation to the action of matrix functions
in Subsection 4.3.2.

Overview of present work In Section 4.2 we first recall some theory of orthogonal poly-
nomials and the relation between orthogonal polynomials and the polynomial Krylov sub-
space. Here, polynomials are orthogonal w.r.t. an inner product on the vector space, which
can be written as a Riemann-Stieltjes integral associated with a non-decreasing step func-
tion αn. Furthermore, we recall some known results for rational Krylov subspaces based
on the polynomial case. In Subsection 4.2.1 we provide some remarks on the SaI Krylov
subspace. This includes a new approach to compute the SaI Krylov subspace with a com-
plex shift based on the isometric Arnoldi method - a short-term recursion. In Section 4.3
we recall some theory on quasi-orthogonal polynomials which results in a polynomial and
rational qor-Krylov representation in Subsection 4.3.1 and 4.3.2, respectively. Here, we also
include some algorithmic details.

The main results of the present chapter concerning CMS theorems and intertwining
properties of distributions are stated in Section 4.4. We first recall quadrature proper-
ties in Subsection 4.4.1 concerning polynomial and Gaussian quadrature formulae for the
Riemann-Stieltjes integral associated with the step function αn. Quadrature nodes and
weights for these quadrature formulae are provided by the Jacobi matrix or the Rayleigh
quotient of the respective Krylov subspace. The following results in Subsection 4.4.2-4.4.5
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are stated for quadrature nodes and weights of respective quadrature formulae, and as such
apply to eigenvalues and spectral coefficients for representations in the respective Krylov
subspaces. In Subsection 4.4.2 we recall the classical CMS Theorem which applies to the
polynomial Krylov setting. Besides other remarks in this subsection, we also specify the
step function αm and recall the intertwining property of the distributions dαn and dαm.
In Subsection 4.4.3 we introduce new results concerning rational Gaussian quadrature for-
mulae for a class of rational functions with a single pole s ϵ R of higher multiplicity. This
result applies to the SaI Krylov setting with a real shift, and the distributions dαn and dαm

(whereat, dαm is now provided by the rational Krylov subspace) satisfy an intertwining
property up to a constant shift. In Subsection 4.4.4 we proceed with a similar upper bound
for the rational case with a single pole s ϵ C of higher multiplicity, which corresponds to
a SaI Krylov setting with a complex shift. In Subsection 4.4.5 we apply CMS theorems
given in [Li98] in the setting of an extended Krylov subspace, which yields results similar
to the polynomial case. Previously discussed intertwining properties which correspond to
CMS theorems are verified by numerical examples in Section 4.5.

4.2 Krylov subspace techniques and orthogonal polynomials

A basis of a Krylov subspace obtained by the Lanczos method is closely related to the
theory of orthogonal polynomials. This relationship is explained in [GM10] and others and
is reviewed here.

In the sequel, let A ϵ Cnxn be a given Hermitian matrix, and let u ϵ Cn be a given
initial vector. The polynomial Krylov subspace, with m ≤ n, is denoted by

Km(A, u) = span{u,Au, . . . , Am-1u} ∩ Cn. (4.2.1)

Krylov subspace techniques rely on an inner product. Although the Euclidean inner product
on the underlying vector space is practical in many cases, we consider a more general
notation: For two vectors x, y ϵ Cn we define the M-inner product by2

(x, y)M = xHMy, (4.2.2)

where M ϵ Cnxn is an Hermitian3 positive definite matrix which is given by the underlying
problem setting. This notation includes the Euclidean inner product, namely, the case M =
I with4 (x, y)M = (x, y)2. In the current work, the motivation behind the M-inner product
lies in problems which are based on discretized Hilbert spaces, e.g., for a FEM discretization
of the Hilbert space L2 (on a spatial domain) the inner product (x, y)M = xHMy with M
representing the mass matrix of the finite element space is a natural choice.

In the sequel we assume that A is Hermitian (self-adjoint) w.r.t. the M-inner product,

(Ax, y)M = (x,A y)M, x, y ϵ Cn.

2The M-inner product given in (4.2.2) induces a vector norm, i.e., ║x║M =
√

(x, x)M, which is equivalent
to the Euclidean norm.

3The matrix M is Hermitian w.r.t. the Euclidean inner product, i.e., M = MH.
4By (., .)2 and ║ . ║2 we denote the Euclidean inner product and norm, respectively.
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Let λ1, . . . , λn ϵ R denote the eigenvalues and q1, . . . , qn ϵ Cn the M-orthonormal eigen-
vectors of A ϵ Cnxn, i.e., Aqj = λjqj with (qj , qk)M = δjk, and let

wj = (qj , u)M ϵ C (4.2.3)

denote the corresponding spectral coefficients of the initial vector u ϵ Cn, i.e.,

u =
n∑

j=1

wj qj .

In practice, the Lanczos method (cf. [Saa03]) delivers an M-orthonormal5 basis Vm =
(v1, . . . , vm) ϵ Cnxm of the Krylov subspace Km(A, u), i.e.,

span(Vm) = Km(A, u), and (Vm, Vm)M = I,

for which the starting vector u satisfies

(Vm, u)M = β0 e1, β0 = ║u║M and e1 = (1, 0, . . . , 0)H ϵ Rm.

,Full rank, of Km(A, u) means

rank
(
u,Au, . . . , Am-1u

)
= m. (4.2.4)

To proceed with the construction of Km+1(A, u) at the m-th Lanczos iteration step we
require (4.2.4) to hold also for m + 1. Otherwise Km(A, u) is an invariant subspace of A,
and we refer to this case as a lucky breakdown after m steps. We remark that only if there
exist at least m coefficients wj /= 0 with distinct eigenvalues λj , then (4.2.4) holds true for a
respective6 m. In the sequel we will assume that no lucky breakdown occurs: I.e., without
loss of generality we assume that (4.2.4) holds true for m ≤ n, hence we consider wj /= 0
with distinct eigenvalues λj for j = 1, . . . , n. We further assume the ordering

λ1 < λ2 < . . . < λn.

With (4.2.1) there exist polynomials p0, . . . , pm-1 which satisfy

vl = pl-1(A)u, l = 1, . . . ,m.

For these polynomials the orthonormal property of Vm, i.e., (vl, vk)M = δlk, yields

(pl-1(A)u, pk-1(A)u)M = δlk, l, k = 1, . . . ,m. (4.2.5)

Various properties of Krylov subspaces have their origin in the theory of orthogonal
polynomials for which we mainly refer to [Sze85, Akh65]. The theory therein can be
formulated in terms of an integral-based inner product: Following [GM10], depending on u
we consider the step function

αn(λ) =

({(
0, λ < λ1,∑l

j=1 |wj |2, λl ≤ λ < λl+1, l = 1, . . . , n- 1,∑n
j=1 |wj |2, λn ≤ λ.

(4.2.6a)

5For two vectors x, y ϵ Cm an M-orthonormal basis Vm satisfies (Vm x, Vm y)M = (x, y)2.
6See Proposition 4.A.1, Appendix 4.A.
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We choose an interval (a, b) which includes λ1, . . . , λn. For f : R - C we have

n∑
j=1

|wj |2f(λj) =

∫ b

a
f(λ) dαn(λ), (4.2.6b)

where the right-hand side is to be understood as a Riemann-Stieltjes integral. For the
corresponding inner product we introduce the notation

(f, g)αn =

∫ b

a
f (λ)g(λ) dαn(λ). (4.2.6c)

In the eigenbasis of A the vector p(A)u, where p is a polynomial, has the representation

p(A)u =
n∑

j=1

p(λj)wj qj .

For two complex polynomials p and g the M-inner product of p(A)u and g(A)u reads

(p(A)u, g(A)u)M =

n∑
j=1

|wj |2 p(λj)g(λj). (4.2.7)

With (4.2.6b), (4.2.6c) and (4.2.7) we have the equivalent formulations

(p, g)αn =

∫ b

a
p(λ)g(λ) dαn(λ) =

n∑
j=1

|wj |2 p(λj)g(λj) = (p(A)u, g(A)u)M. (4.2.8)

Thus, polynomials which satisfy (4.2.5) are indeed ,αn - orthonormal,, i.e.,

(pl, pk)αn = δlk, l, k = 0, . . . ,m- 1. (4.2.9)

We remark that the normalization factor β0 as given previously satisfies the identities

β0 =
(
(u, u)M

)1/2
=

(
(1, 1)αn

)1/2
=

(∫ b

a
1 dαn(λ)

)1/2
. (4.2.10)

Three-term recursion, zeros of orthogonal polynomials, and the Jacobi matrix. Our
assumption that a lucky breakdown does not occur for any m < n corresponds to wj /= 0
and λj being distinct for j = 1, . . . , n and entails that the step function αn has n points of
strict increase. Following [Sze85, Section 2.2] the respective inner product yields orthonor-
mal polynomials p0, . . . , pn-1 of degree 0, . . . , n- 1, respectively. These polynomials enjoy
a three-term recursion, see also [GM10, Section 2.2] or [Akh65, Sze85]:

Proposition 4.2.1. Let β0 = (
∫ b
a 1 dαn)

1/2 as in (4.2.10). With p0 = 1/β0, p-1 = 0
and m < n there exist a1, . . . , am ϵ R, β1, . . . , βm > 0 and αn-orthonormal polynomi-
als p0, . . . , pm for which the three-term recursion

λ pj-1(λ) = βj-1pj-2(λ) + ajpj-1(λ) + βjpj(λ), j = 1, . . . ,m, (4.2.11)

holds. Here, aj = (pj-1, λpj-1)αn, and βj > 0 is fixed such that (pj , pj)αn = 1.
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In the sequel the notation p0, . . . , pm refers to the orthonormal polynomials from Propo-
sition 4.2.1, where pj is of degree j for j = 0, . . . ,m due to the recursion (4.2.11).

Proposition 4.2.2 (See Section 3.3 in [Sze85]). We recall the following well-known prop-
erties of the zeros of pm;

1. The zeros θ1, . . . , θm ϵ R of pm are distinct. Assume

θ1 < θ2 < . . . < θm.

2. The zeros of pm and the eigenvalues λ1, . . . , λn of A are interlacing. This means λ1 <
θ1, θm < λn , and for k = 1, . . . ,m- 1 there exists at least one λj(k) with

θk < λj(k) < θk+1.

The three-term recursion (4.2.11) can be represented in terms of the so-called symmetric
Jacobi matrix Jm, whose eigenvalues coincide with the zeros of pm: With a1, . . . , am ϵ R
and β1, . . . , βm > 0,

Jm =

(|||||8
a1 β1
β1 a2 β2

. . .
. . .

. . .

βm-2 am-1 βm-1

βm-1 am

)|||||) ϵ Rmxm. (4.2.12)

Denoting P (λ) = (p0(λ), . . . , pm-1(λ))
H ϵ Cm, the recursion (4.2.11) can be written in

matrix form,

λP (λ) = Jm P (λ) + βm pm(λ)em. (4.2.13)

From (4.2.13) we observe that the zeros θ1, . . . , θm of pm are eigenvalues of Jm with non-
normalized eigenvectors P (θj) = (p0(θj), . . . , pm-1(θj))

H,

θjP (θj) = Jm P (θj), j = 1, . . . ,m.

We conclude that the matrix Jm has m distinct eigenvalues θ1, . . . , θm ϵ R which are indeed
identical to the zeros of pm and for which the properties from Proposition 4.2.2 hold true.
We refer to θ1, . . . , θm ϵ R as Ritz values.

Polynomial Krylov subspace. We recall the usual denotation Vm = (v1, . . . , vm) ϵ Cnxm

for the M-orthonormal basis of Km(A, u) provided by the Lanczos method. We have
span{Vm} = Km(A, u) and (Vm+1, Vm+1)M = I where Vm+1 includes the subsequent basis
vector vm+1. The basis {v1, . . . , vm+1} satisfies a three-term recursion according to the
Lanczos algorithm [Saa03, Section 6.6]. (The Lanczos algorithm in [Saa03, Section 6.6] re-
lies on the Euclidean inner product but can be generalized in a direct manner.) Substituting
A for λ in (4.2.11) and applying u yields a recursion for p0(A)u, . . . , pm(A)u which coincides
with the Lanczos three-term recursion. Hence, vj = pj-1(A)u for j = 1, . . . ,m+1 with the
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orthonormal polynomials p0, . . . , pm from Proposition 4.2.1. Analogously to (4.2.13) the
three-term recursion defining Vm can be written in matrix form,

AVm = Vm Jm + βmvm+1e
H
m. (4.2.14)

We refer to βm vm+1 as a residual. With (4.2.14) and the M-orthogonality property of Vm

the Jacobi matrix satisfies

Jm = (Vm, A Vm)M.

The tridiagonal structure of Jm implies Aj u = β0Vm J j
m e1 for j = 0, . . . ,m - 1 and

β0Vme1 = u where β0 = ║u║M [DK89, Saa92]. Thus,7

p(A)u = β0Vm p(Jm)e1, p ϵ πm-1. (4.2.15a)

Furthermore, the corresponding deviation for a polynomial p ϵ πm of exact degree m is in
the span of the residual,

β0Vm p(Jm)e1 - p(A)u ϵ span{vm+1} |M Km(A, u). (4.2.15b)

Proposition 4.2.3. With respect to the M-inner product the identity

(u, p(A)u)M = β2
0 (e1, p(Jm)e1)2, p ϵ π2m-1 (4.2.16)

holds true.

Proof. For p ϵ π2m-1 we can write p = g1 g2 with g1 ϵ πm-1 and g2 ϵ πm, and

(u, p(A)u)M = (g 1(A)u, g2(A)u)M and (e1, p(Jm)e1)2 = (g 1(Jm)e1, g2(Jm)e1)2. (4.2.17)

For g 1(A)u and g2(A)u we apply (4.2.15a) and (4.2.15b), respectively, to conclude

(g 1(A)u, g2(A)u)M = β2
0(Vm g 1(Jm)e1, Vm g2(Jm)e1)M. (4.2.18)

With (Vm, Vm)M = I we recall

(Vm g 1(Jm)e1, Vm g2(Jm)e1)M = (g 1(Jm)e1, g2(Jm)e1)2. (4.2.19)

Combining (4.2.17), (4.2.18) and (4.2.19) implies (4.2.16).

Rational Krylov subspace. For rational Krylov subspaces we consider rational func-
tions r = p/q with a preassigned denominator q. The zeros of q are also referred to as
the poles of r. Using the notation s1, s2, . . . ϵ C U ±∞ for the poles of r, for which we
define

qm-1(λ) =

m-1π
j=1, sj /=±∞

(λ- sj). (4.2.20)

7The denotation πj refers to the class of complex polynomials of degree ≤ j.
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Here we admit sj = ±∞ in order to include cases for which the denominator of r is of a
smaller degree than its numerator. This can be used to constitute the so called extended
Krylov subspace, see also [DK98] and will further be relevant in Subsection 4.3.2 below.8

We assume that the poles sj are distinct from the eigenvalues λ1, . . . , λn of A, such that
q-1
m-1(A) is well-defined. The rational Krylov subspace Qm(A, u) with poles s1, . . . , sm-1

and qm-1 from (4.2.20), is defined by the span of {r(A)u : r = p/qm-1 for p ϵ πm-1}, i.e.,9

Qm(A, u) := span{q-1
m-1(A)u,A q-1

m-1(A)u, . . . , Am-1q-1
m-1(A)u}

= Km(A, q-1
m-1(A)u).

(4.2.21a)

To simplify the notation we write

uq = q-1
m-1(A)u. (4.2.21b)

With (4.2.21), the rational Krylov subspace Qm(A, u) is identical to the polynomial Krylov
subspace Km(A, uq). Let wj be the spectral coefficient of u w.r.t. the eigenvalue λj , then
q-1
m-1(λj)wj is the corresponding spectral coefficient of uq. Analogously to αn in (4.2.6a),
we introduce the step function

.αn(λ) =

({(
0, λ < λ1∑l

j=1 |q-1
m-1(λj)wj |2, λl ≤ λ < λl+1, l = 1, . . . , n- 1,∑n

j=1 |q-1
m-1(λj)wj |2, λn ≤ λ.

(4.2.22)

Analogously to (4.2.6c), the Riemann-Stieltjes integral associated with .αn defines an inner
product,

(f, g).αn
=

∫ b

a
f (λ)g(λ) d.αn(λ).

The .αn-orthonormal polynomials given by Proposition 4.2.1 constitute a basis of Km(A, uq).
For the existence of these orthonormal polynomials, analogously as before we assume that
we have n coefficients wj /= 0 for distinct eigenvalues λj , together with 0 /= q-1

m-1(λj) ϵ C.
Let Jm and Vm be the Jacobi matrix and the M-orthonormal basis for Km(A, uq). For

the eigenvalues θ1, . . . , θm of Jm the results of Proposition 4.2.2 remain valid.

The Jacobi matrix Jm = (Vm, A Vm)M corresponds to a representation of A in the un-
derlying rational Krylov subspace Qm(A, u) = Km(A, uq). However, Vm and Jm are more
of a theoretical nature in this context. In practice, uq = q-1

m-1(A)u, is not directly available
and the rational Krylov subspace is not constructed via its polynomial counterpart, but in
an iterative manner. While the Lanczos method is by far the most prominent approach
to construct a polynomial Krylov subspace, various iterative algorithms are relevant for
the rational case. Choosing a proper algorithm to construct a rational Krylov subspace
depends on the setting, e.g., the choice of poles. For computational details we also re-
fer to [DB07, BG15, G:ut10, BR09]. Unlike the polynomial case, where Vm refers to the

8For 0 /= s1, s2, . . . ϵ C we can exchange the factors of qm-1, i.e., (λ - sj), with (1 - λ/sj) to obtain a
definition of qm-1 which is equivalent to (4.2.20). This clarifies the convention sj = ±∞ in (4.2.20).

9In the sequel, we also use q-1
m-1(λ) for qm-1(λ)

-1 = 1/qm-1(λ) to shorten the denotation.
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

orthonormal basis constructed by the Lanczos method, we choose the notation for the ra-
tional Krylov subspace independent of the underlying algorithm: We assume Um ϵ Cnxm

is a given M-orthonormal basis of Qm(A, u), i.e.,

Um ϵ Cnxm, span{Um} = Qm(A, u) and (Um, Um)M = I,

and we let Am refer to the respective Rayleigh quotient

Am = (Um, AUm)M ϵ Cmxm.

For instance, this notation covers rational Krylov bases and representations constructed as
in Subsection 4.2.1. The matrix Am is Hermitian w.r.t. the Euclidean inner product but
in general not tridiagonal and does not coincide with Jm. Let us denote

Km = (Vm, Um)M ϵ Cmxm. (4.2.23a)

Um and Vm represent orthonormal bases of the same subspace, thus,

Um = Vm(Vm, Um)M = VmKm. (4.2.23b)

By definition of the M-inner product we have KH
mKm = UH

mMVmKm, and together with
VmKm = Um (4.2.23b) this yields

KH
mKm = (Um, Um)M = I. (4.2.23c)

Furthermore, Am and Jm are orthogonally similar matrices,

Am = (Um, AUm)M = KH
m (Vm, A Vm)MKm = KH

m JmKm, (4.2.24)

therefore, the eigenvalues of Am are equal to the Ritz values θ1, . . . , θm corresponding
to Km(A, uq).

We proceed with some identities in the rational Krylov subspace, a rational counterpart
to (4.2.15). Assume that q-1

m-1(Am) is well-defined, and let

x := (Um, u)M ϵ Cm.

Then,
r(A)u = Um r(Am)x for r = p/qm-1 with p ϵ πm-1. (4.2.25a)

This result was given earlier in [G:ut10, Lemma 4.6] and others. Furthermore, let r =
p/qm-1 for a polynomial p ϵ πm of degree exactly m, then10

(Um r(Am)x- r(A)u) |M span{Um} = Qm(A, u). (4.2.25b)

Following [G:ut13, Remark 3.2] we conclude:

Proposition 4.2.4. For x = (Um, u)M ϵ Cm and rational functions r = p/|qm-1|2 with p ϵ
π2m-1,

(u, r(A)u)M = (x, r(Am)x)2. (4.2.26)
10A proof of (4.2.25a) and (4.2.25b) is also provided in Proposition 4.A.3, Appendix 4.A.
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Proof. For r ϵ π2m-1/|qm-1|2 we write r = r1 r2 with r1 ϵ πm-1/qm-1 and r2 ϵ πm/qm-1,
and

(u, r(A)u)M = (r 1(A)u, r2(A)u)M, and (x, r(Am)x)2 = (r 1(Am)x, r2(Am)x)2. (4.2.27)

For r 1 ϵ πm-1/qm-1 and r2 ϵ πm/qm-1 we apply (4.2.25a) and (4.2.25b), respectively, to
conclude

(r 1(A)u, r2(A)u)M = (Um r 1(Am)x, Um r2(Am)x)M. (4.2.28)

Combining (4.2.27) with (4.2.28) and making use of (Um, Um)M = I implies (4.2.26).

4.2.1 Some remarks on the Shift-and-Invert (SaI) Krylov subspace

The poles sj are not required to be distinct. A prominent example is the

Shift-and-Invert (SaI) Krylov subspace,

with qm-1(λ) = (λ- s)m-1 for a single pole s ϵ C of multiplicity m- 1.

Remark 4.2.5. The rational Krylov subspace Qm(A, u) with a single pole s ϵ C of
multiplicity m - 1 is identical to the polynomial Krylov subspace Km(X,u) with X =
(A- s I)-1, i.e.,

Km(X,u) = span{u, (A- sI)-1u, . . . , (A- sI)-(m-1)u}.
Note that Qm(A, u) ∩ Km(X,u) via the partial fraction decomposition for rational functions
with denominator qm-1(λ) = (λ-s)m-1, and Km(X,u) ∩ Qm(A, u) by normalizing. Thus,
the rational Krylov subspace Qm(A, u) can be constructed analogously as the polynomial
Krylov subspace Km(X,u). The matrix X is no longer Hermitian for Im s /= 0, and in
this case the construction of the Krylov subspace Km(X,u) requires the Arnoldi method,
the counterpart of the Lanczos method for general matrices. Further computational details
for the case Im s /= 0 are given in Remark 4.2.7 below. The Lanczos or Arnoldi method
for Km(X,u) generates an orthonormal basis Um and an upper Hessenberg matrix Xm =
(Um, XUm)M. With the subsequent basis vector um+1 and xm+1,m = (Xm+1)m+1,m, the
Arnoldi decomposition of Km(X,u) (similar to (4.2.14)) gives

(A- s I)-1Um = UmXm + xm+1,m um+1 e
H
m. (4.2.29)

With (4.2.29) and using the notation yHm = eHmX-1
m , we obtain

AUm = Um(X-1
m + s I)- xm+1,m(A- s I)um+1y

H
m. (4.2.30)

For the Rayleigh quotient Am = (Um, AUm)M, identity (4.2.30) implies

Am = X-1
m + s I - xm+1,m (Um, A um+1)M yHm. (4.2.31)

This identity can be further simplified in view of numerical efficiency and stability (similar
to [DK98, eq. (5.7)] for s = 0 or [Gri12, eq. (5.8)] for s ϵ R): With A being Hermitian
and the identity (4.2.30) we have

(Um, A um+1)M = (AUm, um+1)M = -xm+1,m

(
(Aum+1, um+1)M - s

)
ym. (4.2.32)
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Algorithm 4.1: An algorithm to compute an orthonormal basis Um and the
Rayleigh quotient Am of Qm(A, u) for a single pole s ϵ C of multiplicity m- 1,
the SaI case.

X = (A- sI)-1;
if s ϵ R apply the Lanczos method for Km-1(X,u);
else apply the Arnoldi method for Km-1(X,u);

in both cases this returns β0, Um, Xm = (Um, XUm)M, βm, um+1;
κ = (um+1, A um+1)M ϵ R;
yHm = eHmX-1

m ;

Am = (X-1
m + (X-1

m )H)/2 + Re(s) I + β2
m(κ- Re(s))ym yHm;

set x = β0e1;
return x, Um, Am;

Combining (4.2.31) and (4.2.32) together with κ = (um+1, A um+1)M ϵ R yields

Am = X-1
m + s I + x2m+1,m(κ- s)ym yHm. (4.2.33)

With Am and ym yHm ϵ Cmxm being Hermitian we take the Hermitian part of (4.2.33) to
obtain

Am = (X-1
m + (X-1

m )H)/2 + Re(s) I + x2m+1,m(κ- Re(s))ym yHm.

This representation for Am is equivalent to (4.2.31) but it is better suited for numerical
computation. A shift of the inverse of the Hessenberg matrix Xm, i.e., X-1

m + s I, is closely
related to the Rayleigh quotient Am, see also [G:ut10, Subsection 5.4.3], but it does not
conserve orthogonality. E.g., for s /ϵ R the matrix X-1

m + s I is not necessarily Hermitian.

Note that x = β0 e1 for the SaI Krylov subspace.

The procedure which is stated in Remark 4.2.5 is summarized in Algorithm 4.1.

In some works concerning the SaI Krylov subspace, the matrix X-1
m + sI appears in

place of the Rayleigh quotient, e.g. [vdEH06, ZTK19]; for a comparison see also [G:ut10,
Subsection 5.4.3]. In the following remark we show that for s ϵ R the matrix X-1

m + sI
satisfies an identity similar to (4.2.26).

Remark 4.2.6. Let X = (A-sI)-1 for a given shift s ϵ R. Thus, X is Hermitian. Then,
the matrix Xm = (Vm, X Vm)M associated with the polynomial Krylov subspace Km(X,u)
satisfies (u, p(X)u)M = (x, p(Xm)x)2 for p ϵ π2m-1 due to Proposition 4.2.3. Polynomials
of X can be rewritten as rational functions of A, see also Remark 4.B.1 in Appendix 4.B. A
polynomial in Xm can be rewritten in an analogous manner: We recall qm-1(λ) = (λ-s)m-1

for the given shift s ϵ R. For a given p ϵ π2m-2 we have r ϵ π2m-2/q
2
m-1 with p(X) =

r(A) and p(Xm) = r(X-1
m + sI). Thus, similar to (4.2.26) we have the identity

(u, r(A)u)M = (x, r(X-1
m + sI)x)2, r ϵ π2m-2/|qm-1|2. (4.2.34)

Here, we remark |qm-1| = qm-1 for s ϵ R. In (4.2.34), the numerator is of degree 2m- 2
instead of 2m- 1 as in (4.2.26).

102



4.2 Krylov subspace techniques and orthogonal polynomials

We proceed with some additional remarks on the SaI Krylov subspace with a complex
shift s ϵ C \ R.
Remark 4.2.7. As stated in Remark 4.2.5, the rational Krylov subspace with a single pole
s ϵ C of multiplicity m - 1 corresponds to the polynomial Krylov subspace Km(X,u) with
X = (A- s I)-1 ϵ Cnxn. Let us consider the case s ϵ C \ R.

In contrast to the case s ϵ R, the matrix X is not Hermitian for s ϵ C \R, and thus, the
Lanczos three-term recursion fails to construct the Krylov subspace Km(X,u). The Arnoldi
method can be applied in this case but results in additional computational cost compared
to the Lanczos method. However, to preserve some favorable properties of the Lanczos
method in the case of s ϵ C \ R, we can construct the Krylov subspace by applying an
isometric Arnoldi method on a transformed matrix, using a Cayley transform: We recall
that A ϵ Cnxn is Hermitian w.r.t. the M-inner product. Then, the matrix

Z = (A- s I)(A- s I)-1 ϵ Cnxn

is unitary w.r.t. the M-inner product, i.e., (Z v, Z w)M = (v, w)M for v, w ϵ Cn. We
introduce the notation τ for the corresponding scalar Cayley transform

τ(λ) = (λ- s)(λ- s)-1, τ : R - T \ {1}, (4.2.35)

where T ∩ C denotes the unit circle. The matrix Z has eigenvalues τ(λj) and eigenvec-
tors qj, where λj and qj denote the eigenvalues and eigenvectors of A, respectively. The
function τ as given in (4.2.35) is bijective, which implies that A and Z have the same
number of distinct eigenvalues with nonzero spectral coefficients wj = (qj , u)M. From re-
marks stated previously in the current section, and Proposition 4.A.1 in Appendix 4.A, we
conclude that the rank of Qm(A, u) and the rank of Km(Z, u) are identical. For the poly-
nomial Krylov subspace Km(Z, u) we observe Km(Z, u) ∩ Qm(A, u) by normalizing. Due
to having the same rank, the rational Krylov subspace Qm(A, u) and the polynomial Krylov
subspace Km(Z, u) are identical.
For Km(Z, u) we consider the following setting: Let Vm denote an M-orthonormal basis of

the Krylov subspace Km(Z, u) with (Vm, u)M = β0e1 and an upper Hessenberg matrix Zm =
(Vm, Z Vm)M ϵ Cmxm, and let vm+1 denote the subsequent basis vector with normalization
factor zm+1,m = (Zm+1)m+1,m > 0, ║vm+1║M = 1 and (Vm, vm+1)M = 0, such that

Z Vm = VmZm + zm+1,m eHmvm+1. (4.2.36)

Such a representation can be generated by a short term Arnoldi method, e.g., the isometric
Arnoldi method [JR94, Algorithm 3.1, eq. (3.4) and (3.5)] introduced in [Gra93, JR94].
For further details we also refer to [BGF97, Sch08, BMV18]. We also recapitulate the
isometric Arnoldi method in Algorithm 4.2. In contrast to the standard Arnoldi method,
the isometric Arnoldi method is more efficient in terms of computational cost, comparable
to the Lanczos algorithm for Hermitian matrices.

Let the decomposition (4.2.36) be given and set Um := Vm, then Um conforms to an
orthonormal basis of the rational Krylov subspace Qm(A, u) with denominator qm-1(λ) =
(λ- s)m-1, and x = β0e1. Substituting Z and Vm in (4.2.36) yields

(A- s I)(A- s I)-1 Um = UmZm + zm+1,m eHmvm+1.
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

Algorithm 4.2: An isometric Arnoldi method to compute an orthonormal
basis Um and the Zm = (Um, Z Um)M of Km(Z, u) for a unitary matrix Z, e.g., a
Cayley transform Z = (A- s I)(A- s I)-1 where A is an Hermitian matrix and
s ϵ C \ R. See Remark 4.2.7 and references therein.

β0 = ║u║M, v1 = u/β0, .v = v1, Zm = Imxm;
for k = 1 : m;
w = Zvk;
γ = -(.v, w)M;
vnext = w + γ.v;
σ = ║vnext║M; // = (1- |γ|2)1/2 in exact arithmetic;
vk+1 = vnext/σ;
if k < m;

(Zm):,[k:k+1] - (Zm):,[k:k+1] .
( -γ σ

σ γ

)
;

.v - σ.v + γvk+1;.v - .v/║.v║M; // not required in exact arithmetic;
else // k = m;

(Zm):,k - -γ(Zm):,k;
zm+1,m = σ;

return β0, Um = (v1, . . . , vm), vm+1, Zm, zm+1,m;

Similar to Remark 4.2.5, this provides a computable formulation for the Rayleigh quotient
Am = (Um, AUm)M. With κ = (vm+1, A vm+1)M ϵ R and yHm := eHm(I - Zm)-1 we have

Am = (sI - sZm)(I - Zm)-1 + z2m+1,m

(
κ- s

)
ymyHm.

This procedure is summarized in Algorithm 4.3.

As an alternative approach to compute the SaI Krylov subspace with s ϵ C \ R, we also
remark that the matrix X = (A - s I)-1 is in the class of so called normal(1, 1) matrices
(cf. [BM00]), i.e., the M-adjoint of X corresponds to a rational function p(X)q(X)-1 with
p, q ϵ π1, namely,

X* = (A- s I)-1 = (X-1 + (s- s) I)-1 = X (I + (s- s)X)-1,

due to X-1 = A - s I. For normal(1, 1) matrices a short Arnoldi recurrence exists,
see [BM00, BMV18], but we do not further discuss this approach in the current work.

4.3 A review on quasi-orthogonal polynomials

The theory of quasi-orthogonal polynomials is for instance covered in [Sze85, Akh65,
GM10]. We will refer to a special linear combination .pm of pm-1 and pm as a quasi-
orthogonal polynomial of degree m, where p0, . . . , pm denote the orthonormal polynomials
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Algorithm 4.3: An optimized algorithm to compute an orthonormal basis Um

and the Rayleigh quotient Am of Qm(A, u) for a single pole s ϵ C \ R of multi-
plicity m- 1, see Remark 4.2.7.

Z = (A- s I)(A- s I)-1;
apply the isometric Arnoldi method for Km(Z, u), see Algorithm 4.2;
this returns β0, Um, Zm = (Um, ZUm)M, zm+1,m, um+1;
κ = (um+1, A um+1)M ϵ R;
yHm = eHm (I - Zm)-1;

Am = (sI - sZm)(I - Zm)-1 + z2m+1,m

(
κ- s

)
ymyHm;

set x = β0e1;
return x, Um, Am;

from the previous section. In the class of quasi-orthogonal polynomials we impose an
additional condition, i.e., we require that

the quasi-orthogonal polynomial .pm vanishes at a given ξ ϵ R, i.e., .pm(ξ) = 0. (4.3.1)

Quasi-orthogonal polynomials also appear in the theory of Gauss-Radau quadrature for-
mulae. Similar to the three-term recursion of the orthogonal polynomials, the underlying
recursion of the polynomials p1, . . . , pm-1 and .pm constitutes a matrix Tm which coincides
with the Jacobi matrix Jm up to one entry. It was already shown in [Wil62, GW69], that
Tm provides quadrature nodes and weights of Gauss-Radau quadrature formulae associ-
ated with the underlying distribution (i.e., dαn in the present setting). In the context of
Gauss-Radau quadrature formulae, the preassigned zero ξ corresponds to a preassigned
quadrature node, see also [Gau04, GM10].

At the beginning of the present section we recall some theory on quasi-orthogonal poly-
nomials. In Subsection 4.3.1 this theory will be applied to the polynomial Krylov sub-
space Km(A, u). While keeping the orthonormal basis Vm of Km(A, u) as before, we con-
sider the modified matrix Tm (given by the underlying recursion; see (4.3.4) below) as a
representation of A in Km(A, u). This results in the matrix decomposition (4.3.6), where.pm provides the residual. Thus, we also refer to Tm as a

quasi-orthogonal residual (qor-)Krylov representation.

The zero ξ ϵ R of .pm which is preassigned constitutes an eigenvalue of the modified matrix
Tm. The spectrum of Tm constitutes a step function αm which is introduced properly in
Section 4.4 below. Based on the CMS Theorem, the distributions dαn and dαm satisfy some
intertwining property (in general, this result is known for the Gauss-Radau quadrature rule;
in the Krylov setting we specify this result in Section 4.4 below). In the qor-Krylov setting,
we can make use of the preassigned zero ξ to modify computable bounds on αn, which
potentially result in refined bounds. Furthermore, we consider the matrix Tm to approxi-
mate a matrix function f(A)u. This is referred to as qor-Krylov approximation, see (4.3.10)
below. The qor-Krylov approximation can be understood as a corrected Krylov approxima-
tion, comparable to the corrected Krylov scheme for the matrix exponential in [Saa92]. In
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the context of approximating matrix functions, making use of quasi-orthogonal polynomials
is a new idea.

Later on in this section the theory of quasi-orthogonal polynomials will be applied to
the case of a rational Krylov subspace. We also refer to [Gau04] for rational Gauss-Radau
quadrature formulae, which are also applied in a Krylov setting in [LLRW08, JR13]. As in
the polynomial case, we aim to refine estimates on αn in the sequel, and we also introduce a
rational qor-Krylov approximation. In Remark 4.3.8 below, we introduce a new procedure
to efficiently compute the rational qor-Krylov representation, i.e., we rewrite a rational
Krylov subspace with arbitrary complex poles as an extended Krylov subspace with a
modified initial vector, and then construct the rational qor-Krylov representation based on
results for the polynomial case.

We proceed to recall some theory on quasi-orthogonal polynomials. Let p0, . . . , pm be
the sequence of orthonormal polynomials from Proposition 4.2.1. Let βm-1 > 0 be given
as in Proposition 4.2.1, and let ωm ϵ R (to be fixed in the sequel, see (4.3.3b)). We define

.pm(λ) = (λ- ωm)pm-1(λ)- βm-1pm-2(λ). (4.3.2a)

The polynomial pm satisfies the recursive identity (4.2.11) (for j = m). Thus, .pm can be
expressed as a linear combination of pm-1 and pm,

.pm = βm pm + (am - ωm)pm-1, hence, .pm | p0, . . . , pm-2. (4.3.2b)

With the orthogonality property (4.3.2b) we refer to .pm as quasi-orthogonal polynomial of
degree m.11

According to the requirement .pm(ξ) = 0 imposed above (see (4.3.1)) for a given ξ ϵ R
with pm-1(ξ) /= 0, definition (4.3.2a) implies

0 = .pm(ξ) = (ξ - ωm)pm-1(ξ)- βm-1pm-2(ξ). (4.3.3a)

This fixes the value of ωm,

ωm = ξ - βm-1
pm-2(ξ)

pm-1(ξ)
. (4.3.3b)

We now reuse the denotation θ1, . . . , θm in a modified way: In the context of quasi-
orthogonal polynomials, θ1, . . . , θm ϵ R denote the zeros of .pm. We assume the ordering
θ1 < θ2 < . . . < θm.

Proposition 4.3.1 (See also Section 3.3 in [Sze85]). Let .pm be the quasi-orthogonal poly-
nomial defined in (4.3.2a), with ωm from (4.3.3b) for a given ξ ϵ R with pm-1(ξ) /= 0.

(i) The zeros θ1, . . . , θm of .pm are distinct.

(ii) Interlacing property of eigenvalues λ1, . . . , λn and zeros of .pm: For k = 1, . . . ,m- 1
there exists at least one λj(k) with

θk < λj(k) < θk+1.

11In the case am = ωm the polynomial .pm in (4.3.2a) is identical to βmpm, thus, .pm is an orthogonal
polynomial.
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(iii) At most one of the zeros θ1, . . . , θm is located outside of [λ1, λn]. E.g., in the case
ξ < λ1 we have θ1 < λ1 < θ2 < . . . < θm < λn.

As a slight modification of the Jacobi matrix Jm from (4.2.12) we now define the sym-
metric tridiagonal matrix

Tm =

(|||||8
a1 β1
β1 a2 β2

. . .
. . .

. . .

βm-2 am-1 βm-1

βm-1 wm

)|||||) ϵ Rmxm, with ωm from (4.3.3b). (4.3.4)

With the recursion (4.2.11) and identity (4.3.2b) the sequence of orthonormal polynomi-
als P (λ) = (p0(λ), . . . , pm-1(λ))

H ϵ Rm and .pm satisfy

λP (λ) = Tm P (λ) + .pm(λ)em. (4.3.5)

Thus, the eigenvalues of Tm are exactly the zeros θ1, . . . , θm of .pm.

4.3.1 Krylov methods and quasi-orthogonal polynomials

Let p0, . . . , pm be the orthonormal polynomials from Proposition 4.2.1, which provide the
M-orthonormal Krylov basis vectors vj = pj-1(A)u for j = 1, . . . ,m + 1, and let .vm+1 =.pm(A)u with the quasi-orthogonal polynomial .pm from (4.3.2). Analogously to (4.3.5) we
have the matrix decomposition

AVm = Vm Tm + .vm+1 e
H
m. (4.3.6)

We refer to .vm+1 ϵ Cn as the residual of (4.3.6), with

.vm+1 ϵ span{vm, vm+1} |M Km-1(A, u).

Proposition 4.3.2. For p ϵ πm-1,

β0Vm p(Tm)e1 = p(A)u. (4.3.7)

Proof. We prove β0VmT j
m e1 = Aj u for j = 0, . . . ,m- 1 by induction. This holds true for

j = 0. Assuming that it also holds true for some j < m- 1, then

Aj+1u = AAju = β0AVmT j
m e1.

Together with identity (4.3.6) this gives

Aj+1u = β0VmT j+1
m e1 + β0.vm+1e

H
mT j

m e1.

Due to the tridiagonal structure of Tm we have eHm T j
m e1 = 0 for j = 0, . . . ,m - 2. Al-

together, this implies β0Vm T j
m e1 = Aj u for j = 0, . . . ,m - 1, which completes the proof

of (4.3.7).
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In addition to Proposition 4.3.2 we note that for p ϵ πm exactly of degree m,

β0Vm p(Tm)e1 - p(A)u ϵ span{vm, vm+1} |M Km-1(A, u).

The following proposition is associated with identities of Gauss-Radau quadrature for-
mulae, see also [GM10] or [Gau04, Subsection 3.1.4]. This relation is discussed in more
detail in Section 4.4 below.

Proposition 4.3.3. For p ϵ π2m-2,

(u, p(A)u)M = β2
0(e1, p(Tm)e1)2. (4.3.8)

Proof. We write p = g1 g2 with g1, g2 ϵ πm-1 and apply Proposition 4.3.2 to both terms,

(u, p(A)u)M = (g 1(A)u, g2(A)u)M = β2
0(Vm g 1(Tm)e1, Vm g2(Tm)e1)M.

With (Vm, Vm)M = I this implies (4.3.8).

We proceed by recapitulating results from [GM10, Subsection 6.2.1] and [Gol73, Section
7] which reveal an algorithm to construct Tm.

Remark 4.3.4 ([GM10, Gol73]). Let Jm-1 be the Jacobi matrix constructed by m - 1
steps of the Lanczos method. After substituting ξ for λ in (4.2.13), the Jacobi matrix Jm-1

and P (ξ) = (p0(ξ), . . . , pm-2(ξ))
H ϵ Rm-1 satisfy

(Jm-1 - ξI)P (ξ) = -βm-1 pm-1(ξ)em-1.

The solution δ = (δ1, . . . , δm-1) ϵ Rm-1 of the linear system

(Jm-1 - ξI)δ = β2
m-1em-1 (4.3.9)

is given by

δl = -βm-1
pl-1(ξ)

pm-1(ξ)
, l = 1, . . . ,m- 1.

The eigenvalues of Jm-1 are identical to the zeros of pm-1, hence, with pm-1(ξ) /= 0 the
matrix (Jm-1 - ξI) is invertible. The solution δ ϵ Rm-1 of (4.3.9) yields a computable
formula for ωm via (4.3.3b),

ωm = ξ + δm-1.

Algorithm 4.4 represents a summary on Remark 4.3.4. In Figure 4.1 we show values of
ωm over ξ for a given example.

A quasi-orthogonal residual (qor-)Krylov approximation to matrix functions f(A)u.
We refer to

β0Vmf(Tm)e1 ≈ f(A)u (4.3.10)

as quasi-orthogonal residual (qor-)Krylov approximation, based on the construction of Vm

and Tm according to Algorithm 4.4. We recall that only m-1 steps of the Lanczos iteration
are required. This provides the orthonormal basis Vm-1, the subsequent basis vector vm and
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4.3 A review on quasi-orthogonal polynomials

Algorithm 4.4: An algorithm to compute Vm and the qor-Krylov representation
Tm for a given ξ ϵ R which is distinct to the eigenvalues of Jm-1.

apply the Lanczos method for Km-1(A, u): this returns β0, Vm-1, Jm-1, βm-1, vm;

set ωm = ξ + β2
m-1e

H
m-1(Jm-1 - ξI)-1em-1 and define Tm via (4.3.4);

set Vm = (Vm-1, vm);
return β0, Vm, Tm;
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Figure 4.1: This figure shows the matrix entry ωm of the qor-Krylov representation Tm,
computed for different values of ξ ϵ R andm = 5. To compute the entries ωm we
follow Algorithm 4.4. As an example we choose A to be a nxn diagonal matrix
with n = 50 and diagonal entries (1, . . . , n), and we choose u = (1, . . . , 1)H ϵ Rn.
When the choice of ξ matches one of the eigenvalues of Jm (marked by (,○,)),
then the matrices Tm and Jm coincide (the matrix entry am of Jm is illustrated
by the dashed horizontal line). On the other hand, when ξ coincides with
an eigenvalue of Jm-1 (marked by (,x,) and dotted vertical lines), then ωm is
undefined and Algorithm 4.4 fails. We remark that two neighboring eigenvalues
of Jm enclose exactly one eigenvalue of Jm-1, cf. [Sze85, Theorem 3.3.2]. This
property carries over to the eigenvalues of Tm via (4.3.2b) (indeed, the sign
of .pm corresponds to the sign of pm at the zeros of pm-1 and at the boundary
of R). Thus, two neighboring eigenvalues of Tm enclose exactly one eigenvalue
of Jm-1 for any valid choice of ξ.
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the Jacobi matrix Jm-1. The qor-Krylov approximation makes use of the orthonormal basis
Vm = (Vm-1, vm), where the polynomial Krylov approximation, i.e, β0Vm-1f(Jm-1)e1 ≈
f(A)u, provides an approximation in the basis Vm-1.

The idea to ,correct, the Krylov approximation by including the subsequent basis vector
(which is vm at the (m- 1)-th step) also appears in [Saa92], namely, the corrected Krylov
scheme for the matrix exponential which is widely used in the Expokit package [Sid98] and
others. Compared to the corrected Krylov scheme, the qor-Krylov approximation can be
favorable if spectral properties of f(A) are relevant, e.g., the mass conservation of e-itAu
carries over to the qor-Krylov approximation β0Vme-itTme1 due to Tm being Hermitian.

4.3.2 Rational Krylov methods and the theory of quasi-orthogonal polynomials

A rational Krylov subspace satisfies Qm(A, u) = Km(A, uq) for uq = q-1
m-1(A)u, where qm-1

denotes the denominator given by preassigned poles. Let Jm and Vm denote the Jacobi
matrix and M-orthonormal basis of Km(A, uq). The procedure of Subsection 4.3.1 applies
to the polynomial Krylov subspace Km(A, uq): For a given ξ ϵ R the matrix Tm is defined
in (4.3.4) and satisfies the matrix decomposition (4.3.6) together with A and Vm.

In a practical setting, uq = q-1
m-1(A)u is not directly available to construct the ra-

tional Krylov subspace via Km(A, uq). We proceed to generalize the qor-Krylov rep-
resentation for the rational Krylov subspace: Let Um be a given M-orthonormal basis
of Qm(A, u), i.e., span{Um} = Qm(A, u) and (Um, Um)M = I. The respective Rayleigh
quotient is Am = (Um, AUm)M. With the orthonormal transformation Km = (Vm, Um)M ϵ
Cmxm we have Am = KH

m JmKm as given in (4.2.24). For a representation of Tm in the
basis Um we introduce the notation

Bm = KH
m TmKm. (4.3.11)

The eigenvalues of Bm are equal to the eigenvalues θ1, . . . , θm ϵ R of Tm and satisfy
Proposition 4.3.1. The Hermitian structure of Tm carries over to Bm.

Proposition 4.3.5. With x = (Um, u)M we have

r(A)u = Um r(Bm)x for r ϵ πm-1/qm-1. (4.3.12)

Proof. Let ζ0 = ║uq║M, let Vm be the M-orthonormal basis of Km(A, uq), and let Tm be
the respective qor-Krylov representation for a given ξ ϵ R. Then Proposition 4.3.2 w.r.t.
Km(A, uq) implies

p(A)uq = ζ0 Vm p(Tm)e1, p ϵ πm-1. (4.3.13)

This implies qm-1(A)uq = ζ0Vm qm-1(Tm)e1, and with the identities qm-1(A)uq = u and
(Vm, Vm)M = I we arrive at

ζ0 e1 = q-1
m-1(Tm)(Vm, u)M. (4.3.14)

Let r = p/qm-1 for p ϵ πm-1 then r(A)u = p(A)uq, and with (4.3.13) we have

r(A)u = ζ0 Vm p(Tm)e1. (4.3.15)
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Inserting (4.3.14) into (4.3.15) gives

r(A)u = Vm p(Tm)q-1
m-1(Tm)(Vm, u)M = Vm r(Tm)(Vm, u)M. (4.3.16)

With KmKH
m = I (see (4.2.23c)) the matrix Bm in (4.3.11) satisfies r(Tm) = Kmr(Bm)KH

m,
and together with VmKm = Um (4.2.23c) we have

Vm r(Tm)(Vm, u)M = Um r(Bm)(Um, u)M. (4.3.17)

Combining (4.3.16) with (4.3.17) results in (4.3.12).

The following proposition is associated with identities of rational Gauss-Radau quadra-
ture formulae, see also [Gau04, ➜ 3.1.4.4]. For more details on this relation see Section 4.4
below.

Proposition 4.3.6. With x = (Um, u)M,

(u, r(A)u)M = (x, r(Bm)x)2 for r ϵ π2m-2/|qm-1|2. (4.3.18)

Proof. For rational functions r ϵ π2m-2/|qm-1|2 we write r = r1 r2, where r1 ϵ πm-1/qm-1

and r2 ϵ πm-1/qm-1. With this notation we write

(u, r(A)u)M = (r 1(A)u, r2(A)u)M, and (x, r(Bm)x)2 = (r 1(Bm)x, r2(Bm)x)2. (4.3.19)

For r1, r2 ϵ πm-1/qm-1 we apply Proposition 4.3.5 to conclude

(r 1(A)u, r2(A)u)M = (Um r 1(Bm)x, Um r2(Bm)x)M. (4.3.20)

Combining (4.3.19) with (4.3.20) and making use of (Um, Um)M = I we conclude (4.3.18).

The definition of Bm in (4.3.11) is of a theoretical nature. We propose a setup in
which Bm can be computed efficiently. Let Qm-2(A, u) be a rational Krylov subspace with
arbitrary poles s1, . . . , sm-3 ϵ C U {±∞}. The poles s1, . . . , sm-3 define the denominator
qm-3 and we write uq = q-1

m-3(A)u. We also recall the identities

Qm-2(A, u) = Km-2(A, uq) and Km(A, uq) = Km-2(A, uq)○ span{Au,A2u}.
We extend the rational Krylov subspace Qm-2(A, u) by two additional polynomial Krylov
steps, i.e.,

Km(A, uq) = Qm-2(A, u) ○ span{Au,A2u}, where uq = q-1
m-3(A)u. (4.3.21)

The Krylov subspace Km(A, uq) can be referred to as an extended Krylov subspace, and
some of the following results are related to [DK98, Section 5].

Proposition 4.3.7. Let m be fixed and uq = q-1
m-3(A)u for a given denominator qm-3.

Let Um-2 ϵ Cnxm-2 be a given M-orthonormal basis of Qm-2(A, u) = Km-2(A, uq), and
Am-2 = (Um-2, AUm-2)M. Let Km(A, uq) refer to the extended Krylov subspace given
in (4.3.21). Let Vm = (v1, . . . , vm) ϵ Cnxm be the M-orthonormal basis of Km(A, uq)
provided by the Lanczos method. Then the following statements hold true and provide a
procedure to compute the qor-Krylov representation of Bm for a given ξ ϵ R and the basis~Um (given below) of the extended Krylov subspace Km(A, uq).
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(i) With ~Um = (Um-2, vm-1, vm) ϵ Cnxm we have an M-orthonormal basis of the ex-
tended Krylov subspace Km(A, uq), i.e., span{~Um} = Km(A, uq) and (~Um, ~Um)M = I.

Furthermore, ~Um can be computed without reference to uq.

(ii) The Rayleigh quotient ~Am = (~Um, A ~Um)M of the extended Krylov subspace is given
by

~Am =

( ~Am-1 βm-1em-1

βm-1e
H
m-1 am

)
ϵ Cmxm, with (4.3.22)

~Am-1 =

(
Am-2 ~a~aH am-1

)
ϵ Cm-1xm-1, and ~a = (Um-2, A vm-1)M ϵ Cm-2.

Furthermore, am = (Jm)m,m, am-1 = (Jm)m-1,m-1 and βm-1 = (Jm)m,m-1 for the
Jacobi matrix Jm of Km(A, uq). The matrix entries am, am-1, βm-1, and ~a are
computed in course of the orthogonalization procedure in (i).

(iii) For the basis transformation ~Km = (Vm, ~Um)M we have

~Km =

(
Km-2 0

0 I2

)
, with I2 =

(
1 0
0 1

)
, (4.3.23)

and Km-2 = (Vm-2, Um-2)M.

(iv) Let Tm be defined by (4.3.4) for Km(A, uq). Then, ~Bm = ~KH
m Tm

~Km satisfies

~Bm =

( ~Am-1 βm-1 em-1

βm-1 e
H
m-1 ωm

)
, (4.3.24a)

with
ωm = ξ + β2

m-1e
H
m-1( ~Am-1 - ξI)-1em-1. (4.3.24b)

Proof.

(i) We have span{Um-2} = Km-2(A, uq) = span{Vm-2}, and by adding vm-1 and

vm to the basis we have span{~Um} = Km(A, uq). With (Um-2, Um-2)M = I and

vm-1, vm |M Km-2(A, uq) this also implies (~Um, ~Um)M = I.

The M-orthonormal basis ~Um can be constructed without referring to uq by the
following procedure: We construct vm-1 by orthogonalizing ~v = Au w.r.t. Um-2

and normalizing. In a similar manner we construct vm via Avm-1. To demon-
strate that this procedure yields the correct results, we argue as follows: We recall
uq = q-1

m-3(A)u, hence, u = qm-3(A)uq. We introduce the notation ~p(λ) = λ qm-3(λ),
where λ qm-3(λ) = λm-2+~pm-3(λ) for a polynomial ~pm-3 ϵ πm-3. Let ~v = Au, then~v = ~p(A)uq. We recall vj = pj-1(A)uq for the orthonormal polynomials p0, . . . , pm
provided by Proposition 4.2.1. The polynomials ~p and pm-2 both have a posi-
tive real-valued leading coefficient. Hence, we obtain pm-2 by orthogonalizing ~p
w.r.t. p0, . . . , pm-3 and normalizing. Analogously, we obtain vm-1 by orthogonalizing~v = Au w.r.t. Um-2 and normalizing as stated above.
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(ii) In order to specify ~Am = (~Um, A ~Um)M we recall ~Um = (Um-2, vm-1, vm). The upper
left submatrix of ~Am is given by Am-2 = (Um-2, AUm-2)M. In a similar manner we
deduce ~a, am, am-1 and βm-1. Here am = (vm, A vm)M by the structure of ~Um and
with Jm = (Vm, A Vm)M we also have am = (Jm)m,m. Analogously, am-1 and βm-1

are equal to entries of Jm. We introduce the notation ~a = (Um-2, A vm-1)M ϵ Cm-2.
The entries (Um-2, A vm)M are zero due to Avm ϵ span{vm-1, vm, vm+1} being M-
orthogonal to Um-2.

(iii) The basis transformation ~Km = (Vm, ~Um)M for ~Um = (Um-2, vm-1, vm) and Vm =
(v1, . . . , vm), where ~Um and Vm are M-orthonormal bases, indeed has the simple struc-
ture (4.3.23).

(iv) We proceed with the matrix entry ωm of Tm in (4.3.4). Following Algorithm 4.4,
ωm evaluates to

ωm = ξ + β2
m-1e

H
m-1(Jm-1 - ξI)-1em-1, (4.3.25)

where βm-1 refers to (Jm)m,m-1 which is equal to ( ~Am)m,m-1, see (4.3.22). By the

matrix structure of ~Km (see (4.3.23)) we have ~Km-1em-1 = em-1, thus,

eHm-1(Jm-1 - ξI)-1em-1 = eHm-1
~KH
m-1(Jm-1 - ξI)-1 ~Km-1em-1 (4.3.26)

Furthermore, ~KH
m-1

~Km-1 = I (4.2.23c) together with ~Am-1 = ~KH
m-1 Jm-1

~Km-1

yield

eHm-1
~KH
m-1(Jm-1 - ξI)-1 ~Km-1em-1 = eHm-1( ~Am-1 - ξI)-1em-1. (4.3.27)

Combining (4.3.25) with (4.3.26) and (4.3.27) we conclude (4.3.24b).

Compare Jm (4.2.12) with Tm (4.3.4) to observe

Tm = Jm + (ωm - am)emeHm.

With ~KH
m em = em and ~Am = ~KH

m Jm ~Km this implies~Bm = ~KH
m Tm

~Km = ~Am + (ωm - am)emeHm. (4.3.28)

With (4.3.22) and (4.3.28) we conclude (4.3.24a).

Remark 4.3.8. The approach of Proposition 4.3.7 provides Bm for an extended Krylov
subspace and can be slightly modified to fit for a fully rational Krylov subspace Qm(A, u).
Let s1, . . . , sm-1 ϵ C U {±∞}, where sm-2, sm-1 ϵ C, and let qm-1 be the respective
denominator. We recall

Qm(A, u) = Km(A, uq), where uq = q-1
m-1(A)u. (4.3.29)

We introduce the modified initial vector .u and denominator .qm-3(A) as

.u = (A- sm-2I)
-1(A- sm-1I)

-1u, and.qm-3(A) = (A- s1I)(A- s2I) . . . (A- sm-3I).
(4.3.30)
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Let Qm-2(A, .u) be the rational Krylov subspace according to the initial vector .u and poles
s1, . . . , sm-3. Then

Qm-2(A, .u) = Km-2(A, .q-1
m-3(A).u).

Due to (4.3.30), this initial vector satisfies .q-1
m-3(A).u = uq for uq given in (4.3.29). This

implies

Qm-2(A, .u) = Km-2(A, uq). (4.3.31)

To apply Proposition 4.3.7 for the rational Krylov subspace Qm-1(A, u) in (4.3.29), we
represent Qm-1(A, u) with poles s1, . . . , sm-1 ϵ C as an extended Krylov subspace of the
form (4.3.21). Substituting .u for the initial vector u in extended Krylov subspace in (4.3.21),
we have

Qm-2(A, .u) ○ span{A .u,A2.u}. (4.3.32)

We proceed to show that this accumulated vector space coincides with Qm(A, u). Substitut-
ing

Km(A, uq) = Km-2(A, uq)○ span{Am-2uq, A
m-1uq}

for Km(A, uq) in (4.3.29), we have

Qm(A, u) = Km-2(A, uq)○ span{Am-2uq, A
m-1uq}. (4.3.33)

Substituting .u = .qm-3(A)uq, we rewrite the right-hand term in (4.3.32) to

span{A .u,A2.u} = span{A .qm-3(A)uq, A
2.qm-3(A)uq }.

The matrix polynomials A .qm-3(A) and A2.qm-3(A) correspond to polynomials of degree
m- 2 and m- 1, respectively, and this implies

Km-2(A, uq)○ span{A .u,A2.u} = Km-2(A, uq)○ span{Am-2uq, A
m-1uq}.

Combining (4.3.31) and (4.3.33) with this identity, we conclude

Qm(A, u) = Qm-2(A, .u) ○ span{A .u,A2.u}.
Thus, this rational Krylov subspace corresponds to an extended Krylov subspace with

initial vector .u = (A- sm-2I)
-1(A- sm-1I)

-1u, and the approach of of Proposition 4.3.7
provides an algorithm to compute a rational qor-Krylov representation Bm of Qm(A, u)
without accessing q-1

m-1(A)u.

Following Remark 4.3.8, the approach of Proposition 4.3.7 provides a procedure to com-
pute the matrix Bm for a rational Krylov subspace. For the SaI Krylov subspace with a
single pole s ϵ C of multiplicity m- 1 and a fixed ξ ϵ R this is specified in Algorithm 4.5.

A rational qor-Krylov approximation to matrix functions f(A)u.
We refer to

Umf(Bm)x ≈ f(A)u (4.3.34)

as a rational quasi-orthogonal residual (qor-)Krylov approximation.
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Algorithm 4.5: An algorithm to compute the matrix Bm for the SaI Krylov
subspace with a single pole s ϵ C of multiplicity m - 1 and a preassigned Ritz
value ξ ϵ R. This algorithm follows Proposition 4.3.7 for a modified starting
vector .u = X2u with X = (A- s I)-1..u = X2u with X = (A- s I)-1;
run Algorithm 4.1 to compute Um-2 and Am-2 for the SaI Krylov subspace
Km-2(X, .u);~v = A.u;
orthogonalize ~v with Um-2 and set vm-1 = ~v/║~v║M;.v = Avm-1;
for j = 1, . . . ,m- 2;

yj = (uj , .v)M;.v - .v - yjuj ;
am-1 = (vm-1, .v )M and .v - .v - am-1vm-1;
βm-1 = ║.v║M and vm = .v/βm-1;

Am-1 = [Am-2, y ; yH, am-1 ];

ωm = ξ + β2
m-1e

H
m-1(Am-1 - ξI)-1em-1;

Bm = [Am-1, βm-1em-1 ; βm-1e
H
m-1, ωm ];

Um = (Um-2, vm-1, vm);
x = (Um, u)M;
return x, Um, Bm;

4.4 The Separation Theorem of Chebyshev-Markov-Stieltjes
(CMS Theorem) for polynomial and some rational Krylov
subspaces

The CMS Theorem states that the accumulated quadrature weights of Gaussian quadra-
ture formulae are bounded by Riemann-Stieltjes integrals over the intervals between the
left integral limit and the quadrature nodes. In Subsection 4.4.1 we first reformulate previ-
ously stated identities of the Krylov representation (namely, Proposition 4.2.3, 4.2.4, 4.3.3
and 4.3.6) as Gaussian quadrature formulae for the Riemann-Stieltjes integral associated
with the step function αn; this allows us to present results in the following subsections
(which apply in the Krylov setting) for a more general setting, i.e., for Gaussian quadra-
ture formulae. We also recall some notation for Gaussian quadrature formulae of Riemann-
Stieltjes integrals, and we link classical notations to the previously introduced setting.

In Subsection 4.4.2 we recapitulate the CMS Theorem for the polynomial Krylov setting,
and in Subsection 4.4.3-4.4.5 we introduce CMS type results for various rational Krylov
settings.

Throughout the present chapter, we consider integrals associated with a non-decreasing
step function αn with n points of strict increase. However, most of the results in the present
section hold true for integrals associated with non-decreasing continuous functions α in a
similar manner; the case of α being a continuous is not discussed in detail in the present
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work.

4.4.1 Gaussian quadrature formulae and Krylov subspaces. Historical context

The integral associated with the step function αn is to be understood as a Riemann-
Stieltjes integral. Gaussian quadrature formulae for Riemann-Stieltjes integrals are also
referred to as Gauss-Christoffel quadrature formulae in the literature, for previous remarks
see also Subsection 4.1.1. For the Gauss-Christoffel quadrature formula which integrates
polynomials of degree ≤ 2m - 1 exactly, the quadrature nodes are given by the zeros of
the associated orthogonal polynomial of degree m, and the quadrature weights are given
by so called Christoffel numbers. Similar results hold for Gauss-Radau formulae for which
the quadrature nodes and weights coincide with zeros of quasi-orthogonal polynomials
and respective Christoffel numbers. We briefly recapitulate the relation between Gaussian
quadrature formulae and the Jacobi matrix, which is also mentioned in Subsection 4.1.1; for
further details on Gaussian quadrature formulae we refer to [Gau81] and others. Further
below in the present subsection, we recall similar results for rational Gaussian quadrature
formulae.

The Christoffel numbers and the eigendecomposition of the Jacobi matrix. For the
orthonormal polynomials p0, . . . , pm-1 associated with the distribution dαn, see Proposi-
tion 4.2.1, we define

ρm-1(λ) = 1
/m-1∑

k=0

pk(λ)
2 ϵ R.

We recall that the Ritz values θ1, . . . , θm ϵ R correspond to the zeros of pm. The numbers
ρm-1(θ1), . . . , ρm-1(θm) are also referred to as Christoffel numbers in the literature.

We proceed to recall the relation between Christoffel numbers and entries of eigenvectors
of the Jacobi matrix which goes back to [Wil62, GW69]. We introduce the denotation
c1, . . . , cm ϵ R for the spectral coefficients of the vector β0 e1 in the eigenbasis of Jm, which
further correspond to the first components of the scaled eigenvectors: Let .q1, . . . , .qm ϵ Rm

denote the l2-orthonormal eigenvectors of Jm, i.e., Jm.qj = θj.qj for the Ritz values θj and
(.qj , .qk)2 = δjk, then

cj = β0 (.qj , e1)2 ϵ R. (4.4.1)

The Christoffel numbers correspond to the first components of the eigenvectors of the Jacobi
matrix: We recall the following results for the eigenvectors of Jm. Following Section 4.2,
the eigenvector for the eigenvalue θj is given by

(p0(θj), . . . , pm-1(θj))
T ϵ Rm. (4.4.2)

For the first component of the eigenvector we have p0 = 1/β0. Thus, the first component
of the j-th normalized eigenvector scaled by β0 and squared satisfies

c2j = 1
/m-1∑

k=0

pk(θj)
2 ϵ R, j = 1, . . . ,m, (4.4.3)
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and for the Christoffel numbers we have the identity

c2j = ρm-1(θj), j = 1, . . . ,m. (4.4.4)

The Christoffel numbers are nonzero,12 i.e., cj /= 0. Although cj is real-valued, we also
write |cj |2 in place of c2j .

Similar results hold for the spectrum of the qor-Krylov representation Tm introduced
in Subsection 4.3.1. We reuse some notation associated with the spectrum of Jm for Tm:
Corresponding to Tm the denotations θ1, . . . , θm and c1, . . . , cm refer to the eigenvalues of
Tm and the spectral coefficients of β0 e1 in the l2-orthonormal eigenbasis of Tm, respec-
tively. For the qor-Krylov representation Tm we assume that the preassigned eigenvalue
ξ is given such that the underlying quasi-orthogonal polynomial is well-defined, and we
assume that the eigenvalues of Tm are included within the integral limits of the respec-
tive Riemann-Stieltjes integral. (See Proposition 4.3.1 for some details on the location of
the eigenvalues of Tm.) Following (4.3.5), the eigenvectors of Tm conform to (4.4.2) when
θ1, . . . , θm refer to the respective eigenvalues. Similar to the case of the Jacobi matrix, the
representation (4.4.3) and the identity (4.4.4) also hold true for Tm.

A review on Gaussian quadrature formulae for the Riemann-Stieltjes integral. We
proceed to reformulate Proposition 4.2.3 and 4.2.4 as Gaussian quadrature formulae for
the Riemann-Stieltjes integral associated with the step function αn. We recall that αn is
based on the eigenvalues of A and the spectral coefficients of u.
For a complex-valued function f : R - C, where we consider polynomials or rational

functions later on, the following formulations are equivalent (see also (4.2.8)),∫ b

a
f(λ)dαn(λ) = (u, f(A)u)M =

n∑
j=1

f(λj)|wj |2. (4.4.5a)

In a similar manner, the orthonormal eigendecomposition of Jm yields

β2
0(e1, f(Jm)e1)2 =

m∑
j=1

f(θj)|cj |2. (4.4.5b)

Identity (4.4.5b) also holds true for Tm if θj and cj refer to the spectrum of Tm.
The Ritz values θj and Christoffel numbers ρm-1(θj) provide quadrature nodes and

weights, respectively, for the Gaussian quadrature formulae which are also referred to as
Gauss-Christoffel quadrature formulae in the literature, see also [Gau81]. We recapitulate
classical results on Gaussian quadrature formulae using the notation |cj |2 for the Christoffel
numbers, see (4.4.4).

Remark 4.4.1 (Gaussian quadrature property, e.g., Subsection 6.2 [GM10]). The Ritz
values θ1, . . . , θm and the spectral coefficients c1, . . . , cm w.r.t. Jm constitute a Gaussian
quadrature formula for the Riemann-Stieltjes integral (4.2.6b),∫ b

a
p(λ)dαn(λ) =

m∑
j=1

p(θj)|cj |2, p ϵ π2m-1. (4.4.6)

12The result cj /= 0 is clarified in Appendix 4.A, Proposition 4.A.2.
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

Here, the Ritz values and the spectral coefficients represent the quadrature nodes and quadra-
ture weights, respectively. On the basis of results of the present work, identity (4.4.6) can
be verified via the identities for the inner product in (4.2.6c) and (4.4.5),∫ b

a
p(λ)dαn(λ) = (u, p(A)u)M = β2

0(e1, p(Jm)e1)2 =

m∑
j=1

p(θj)|cj |2, p ϵ π2m-1.

Analogously, the qor-Krylov representation Tm provides the following quadrature formula.
Let θ1, . . . , θm and c1, . . . , cm be the eigenvalues and spectral coefficients of Tm, then the
identities (4.3.8) for p ϵ π2m-2 together with (4.4.5) imply∫ b

a
p(λ)dαn(λ) =

m∑
j=1

p(θj)|cj |2, p ϵ π2m-2. (4.4.7)

When ξ = a (thus, θ1 = a) or ξ = b (thus, θm = b) is preassigned this is also referred to as
a Gauss-Radau quadrature formula.

In view of Remark (4.4.1) we summarize results for the Jacobi matrix Jm and the
qor-Krylov representation Tm. For these results we write out the Riemann-Stieltjes in-
tegral (4.2.6b) in terms of its sum representation.

Corollary 4.4.2. Let θ1, . . . , θm and c1, . . . , cm denote the eigenvalues and spectral coeffi-
cients, respectively, of either Jm or Tm, where the spectral coefficients cj refer to the vector
β0 e1. Then, ∫ b

a
p(λ)dαn(λ) =

m∑
j=1

p(θj)|cj |2, p ϵ π2m-2. (4.4.8)

Rational Gaussian quadrature formulae and rational Krylov subspaces. For ratio-
nal Krylov subspaces Qm(A, u) we recall the definition of the Rayleigh quotient Am =
(Um, AUm)M, where Um is an orthonormal basis of Qm(A, u). Furthermore, the vec-
tor x = (Um, u)M and the rational qor-Krylov representation Bm (introduced in Subsec-
tion 4.3.2 via (4.3.11)) implicitly depend on Um. In the sequel we consider Um to be fixed,
and we assume that Bm is well-defined. For the latter we refer to the conditions concerning
the definition of Tm in Section 4.3. We proceed to reuse the denotation θ1, . . . , θm for the
eigenvalues of Am (,rational, Ritz values), and c1, . . . , cm for the spectral coefficients of x
in the orthonormal eigenbasis of Am: Let .qj ϵ Cm denote the l2-orthonormal eigenvectors
of Am, i.e., Am.qj = θj.qj and (.qj , .qk)2 = δjk, then

cj = (.qj , x)2 ϵ C, j = 1, . . . ,m. (4.4.9)

We remark that the coefficients cj are independent of the explicit choice of the orthonormal
basis Um, this is clarified in Proposition 4.A.4, Appendix 4.A. For a function f : R - C,
the eigendecomposition of Am yields

(x, f(Am)x)2 =

m∑
j=1

f(θj)|cj |2. (4.4.10)

118



4.4 The CMS Theorem for polynomial and some rational Krylov subspaces

In the context of the rational qor-Krylov representation Bm the denotation θ1, . . . , θm
and c1, . . . , cm is reused accordingly, and an identity similar to (4.4.10) holds true for Bm

when θj and cj refer to the spectrum of Bm.

Remark 4.4.3. Similar to Remark 4.4.1, the identity in (4.2.26) corresponds to the fol-
lowing rational Gaussian quadrature formula. Let θ1, . . . , θm and c1, . . . , cm refer to the
spectrum of Am, then∫ b

a
r(λ) dαn(λ) =

m∑
j=1

r(θj)|cj |2, r ϵ π2m-1/|qm-1|2. (4.4.11)

To demonstrate (4.4.11) we recall the identities for the inner product in (4.2.26), (4.4.5a),
and (4.4.10),∫ b

a
r(λ)dαn(λ) = (u, r(A)u)M = (x, r(Am)x)2 =

m∑
j=1

|cj |2r(θj), r ϵ π2m-1/|qm-1|2.

The rational qor-Krylov representation Bm provides the following quadrature formula via
Proposition 4.3.6, ∫ b

a
r(λ)dαn(λ) =

m∑
j=1

r(θj)|cj |2, r ϵ π2m-2/|qm-1|2.

When the preassigned eigenvalue of Bm is set to one of the integral limits, i.e., θ1 = a or
θm = b, then this formula is also referred to as rational Gauss-Radau quadrature formula.

We summarize the statements of Remark 4.4.3 concerning Am and Bm.

Corollary 4.4.4. Let θ1, . . . , θm and c1, . . . , cm denote the eigenvalues and spectral coeffi-
cients, respectively, of either Am or Bm, where the spectral coefficients refer to the vector x.
Then, ∫ b

a
r(λ) dαn(λ) =

m∑
j=1

r(θj)|cj |2, r ϵ π2m-2/|qm-1|2. (4.4.12)

4.4.2 The CMS Theorem for the polynomial case

The CMS Theorem dates back to works of Chebyshev, Markov and Stieltjes in the 19th
century and also goes by the name Chebyshev-Markov-Stieltjes inequalities. For further
historical and technical remarks we refer to [Sze85, Section 3.41] (including an extensive
survey of this theorem), [Akh65, Theorem 2.54], [VA93, Section 4], [LS13, Section 3], [Chi78]
and others.
The Riemann-Stieltjes integral associated with αn (4.2.6a) over a subset of (a, b) can be

understood as a measure of such a subset. Namely, with αn(a) = 0 we consider αn(θ) to be
the associated measure of the interval (a, θ] for θ ϵ (a, b). To simplify the notation in the
sequel, we let μn(R) denote the measure of a subset R of (a, b) associated with αn. More
precisely, we first define

J(R) =
{
j : λj ϵ R

} ∩ {1, . . . , n}, for a set R ∩ (a, b). (4.4.13a)
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

The sum of the spectral coefficients wj over the index set J(R) corresponds to the measure
of the set R associated with αn, and we define

μn(R) =
∑

jϵJ(R)

|wj |2. (4.4.13b)

Thus, we have μn((a, θ]) = αn(θ) for θ ϵ (a, b). Furthermore, we proceed to use the
notation μn and αn for the measure of an interval (a, θ] in an equivalent manner. Similarly,
we use the notation αn(θ-) for the measure of the open interval (a, θ), i.e.,

αn(θ-) := lim
ε→0+

αn(θ - ε) = μn((a, θ)).

We proceed to recall the CMS Theorem. This theorem is based on the Gaussian quadra-
ture properties (4.4.8) as in Corollary 4.4.2, and thus, the following results hold true when
θj and cj refer to the spectrum of the Jacobi matrix Jm or the qor-Krylov representation
Tm.

Theorem 4.4.5 (Separation Theorem of Chebyshev-Markov-Stieltjes, see also Section 3.41
in [Sze85]). Let θ1, . . . , θm ϵ (a, b) and c1, . . . , cm ϵ C satisfy the Gaussian quadrature
property (4.4.8), then

αn(θk) < |c1|2 + . . .+ |ck|2 < αn(θk+1-), k = 1, . . . ,m- 1. (4.4.14)

We point out that for k = m the bounds in (4.4.14) can be replaced by the following
identity. The Gaussian quadrature property (4.4.8) for p = 1 implies

m∑
j=1

|cj |2 = αn(b). (4.4.15)

(This also results directly from ║u║M = β0║e1║2.)
To recall a classical proof of the CMS Theorem we introduce the following polynomials.

Proposition 4.4.6 (Eq. (3.411.1) in [Sze85], part of Theorem (2.5.4) in [Akh65] and
others13). Let θ1 < . . . < θm ϵ R and let k be fixed with 1 ≤ k < m. Then there exist
polynomials p{+,k} and p{-,k} ϵ π2m-2 which satisfy14

p{±,k}(θj) =
{

1, j = 1, . . . , k,
0, j = k + 1, . . . ,m,

(4.4.16)

together with

p{+,k}(λ) ≥
{

1, λ ≤ θk,
0, λ > θk,

and p{-,k}(λ) ≤
{

1, λ < θk+1,
0, λ ≥ θk+1.

(4.4.17)

Additionally, the inequalities in (4.4.17) are strict inequalities for λ /ϵ {θ1, . . . , θm}.
The polynomials of Proposition 4.4.6 are illustrated in Figure 4.2 for a numerical example.

With Proposition 4.4.6 we proceed to prove Theorem 4.4.5.

13A classical proof of Proposition 4.4.6 is recapitulated in Appendix 4.B.
14In the sequel statements concerning p{±,k} apply to p{+,k} and p{-,k} individually.
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Figure 4.2: This figure illustrates the polynomials p{+,k} (left) and p{-,k} (right) given in
Proposition 4.4.6 for given nodes θ1, . . . , θm with m = 5. The identities (4.4.16)
are illustrated for θ1, . . . , θk (,○,) and θk+1, . . . , θm (,x,) with k = 3, and the
dashed line illustrates the bounds (4.4.17).

Proof of Theorem 4.4.5. Let p{±,k} ϵ π2m-2 be given according to Proposition 4.4.6 for
the eigenvalues θ1 < . . . < θm and k = 1, . . . ,m-1. The polynomials p{±,k} satisfy (4.4.16),
and this implies

m∑
j=1

p{±,k}(θj)|cj |2 =
k∑

j=1

|cj |2. (4.4.18)

On the other hand, identity (4.4.8) yields

m∑
j=1

p{±,k}(θj)|cj |2 =
∫ b

a
p{±,k}(λ) dαn(λ).

Evaluating the Riemann-Stieltjes integral in this identity, we arrive at

m∑
j=1

p{±,k}(θj)|cj |2 =
n∑

j=1

p{±,k}(λj)|wj |2. (4.4.19)

Let the index set J((a, θk]) ∩ {1, . . . , n} be given as in (4.4.13a). Then, the inequalities
for p{+,k} in (4.4.17) imply

n∑
j=1

p{+,k}(λj)|wj |2 >
∑

jϵJ((a,θk])
|wj |2 = αn(θk). (4.4.20)

This inequality is strict due to the interlacing property of the eigenvalues λj and θj , see
Proposition 4.2.2 and 4.3.1. Combining (4.4.18), (4.4.19) and (4.4.20) yields the lower
bound in (4.4.14).
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

Similarly to (4.4.20), the inequalities for p{-,k} in (4.4.17) imply

n∑
j=1

p{-,k}(λj)|wj |2 <
∑

jϵJ((a,θk+1))

|wj |2 = αn(θk+1-). (4.4.21)

Combining (4.4.18), (4.4.19) and (4.4.21) yields the upper bound in (4.4.14).

The inequalities (4.4.14) in Theorem 4.4.5 yield the following bounds on the measure of
the intervals located between Ritz values. In the following, we use the notation μn for the
measure as in (4.4.13b).

Corollary 4.4.7. In the setting of Theorem 4.4.5, the following inequalities hold true.

❼ For indices j, k with 1 < j < k < m,

μn([θj , θk]) < |cj |2 + |cj+1|2 + . . .+ |ck|2 < μn((θj-1, θk+1)) (4.4.22a)

❼ Furthermore, the accumulated spectral coefficients satisfy

μn([θj , b)) < |cj |2 + . . .+ |cm|2 < μn((θj-1, b)), j = 2, . . . ,m. (4.4.22b)

Proof. Applying (4.4.14) twice (once we substitute j - 1 for the index k therein) and
subtracting, we observe

αn(θk)- αn(θj-) < |cj |2 + |cj+1|2 + . . .+ |ck|2 < αn(θk+1-)- αn(θj-1),

this shows (4.4.22a). Subtracting (4.4.14) for the index j - 1 from (4.4.15), we arrive at

αn(b)- αn(θj-) < |cj |2 + . . .+ |cm|2 < αn(b)- αn(θj-1), (4.4.23)

which entails (4.4.22b).

We proceed to specify the intertwining property of the distributions dαn and dαm which
already appeared in the introduction of Subsection 4.1.1: Similarly to αn in (4.2.6a), we
introduce the step function

αm(λ) =

({(
0, λ < θ1,∑l

j=1 |cj |2, θl ≤ λ < θl+1, l = 1, . . . ,m- 1,∑m
j=1 |cj |2, θm ≤ λ.

(4.4.24)

For f : R - C the Riemann-Stieltjes integral associated with αm reads∫ b

a
f(λ) dαm(λ) =

m∑
j=1

|cj |2f(θj).

Thus, the quadrature property in Corollary 4.4.2 coincides with the identity∫ b

a
λj dαn(λ) =

∫ b

a
λj dαm(λ), j = 0, . . . , 2m- 2. (4.4.25)
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4.4 The CMS Theorem for polynomial and some rational Krylov subspaces

The integral terms in (4.4.25) correspond to the moments of the distributions dαn and dαm,
and thus, the Gaussian quadrature property in Corollary 4.4.2 coincides with dαn and dαm

having matching moments up to order 2m- 2. We define the auxiliary function

F (λ) = αn(λ)- αm(λ), (4.4.26)

and remark the following properties of F . The step functions αn(λ) and αm(λ) are both
increasing in λ, whereat the step function αm(λ) has exactly m points of increase at λ =
θ1, . . . , θm. Thus, the function F (λ) is increasing for λ ϵ (θk, θk+1), k = 1, . . . ,m- 1, and
away from the boundaries λ < θ1 and λ > θm. Furthermore, Theorem 4.4.5 yields

αn(θk)- (|c1|2 + . . .+ |ck|2) < 0 < αn(θk+1-)- (|c1|2 + . . .+ |ck|2), k = 1, . . . ,m- 1.

The accumulated coefficients ck correspond to the step function αm (4.4.24), namely,

|c1|2 + . . .+ |ck|2 = αm(θk) = αm(θk+1-), (4.4.27)

and we observe the inequalities

F (θk) < 0 < F (θk+1-) for k = 1, . . . ,m- 1. (4.4.28)

More precisely, the inequalities (4.4.28) are equivalent to the assertion of the CMS Theorem
(Theorem 4.4.5).

To clarify the intertwining property of dαn and dαm in this context: The CMS Theorem
relies on quadrature properties which correspond to (4.4.25), i.e., dαn and dαm having
matching moments, and the result of the CMS Theorem corresponds to (4.4.28), which can
be understood as an intertwining property of dαn and dαm.

Besides these remarks, the function F is further used in the following subsection to rewrite
CMS type results for rational cases, and in Section 4.5 below where we verify results of the
present section for numerical examples.

Remark 4.4.8. In the present chapter, the measure αn is introduced based on eigenvalues
λj of A and the spectral coefficients wj of the initial vector u in the eigenbasis of A as
in (4.2.6a). Thus, the bounds given by the CMS Theorem reveal bounds for the accumu-
lated spectral coefficients wj. To simplify the notation we proceed with the setting of the
Jacobi matrix Jm, i.e., the eigenvalues θj and spectral coefficients cj refer to the spectrum
of the Jacobi matrix. In a similar manner such results also hold for the qor-Krylov rep-
resentation Tm as specified below. The bounds on αn provided by the CMS Theorem are
computable, i.e., θj and cj are available via an eigendecomposition of the Jacobi matrix
which can be computed using the Lanczos method.

We proceed in the setting of the Jacobi matrix. For its eigenvalues θj we define the
index l = l(k) for k = 1, . . . ,m, such that

λl(k) ≤ θk < λl(k)+1. (4.4.29)

The positioning of the eigenvalues, which is specified in Proposition 4.2.2, implies l(k) <
l(k + 1) for k = 1, . . . ,m- 1 and 1 ≤ l(k) < n for k = 1, . . . ,m.
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With l(k) defined in (4.4.29) we have the representations

αn(θk) =

l(k)∑
j=1

|wj |2, and αn(θk+1) =

l(k+1)∑
j=1

|wj |2, k = 1, . . . ,m- 1. (4.4.30)

Note that αn(θk+1-) ≤ αn(θk+1); to keep the notation simple, the case αn(θk+1-) <
αn(θk+1) is not treated separately here. For the remainder of the present remark we assume

λl(k) /= θk, k = 1, . . . ,m.

Thus, with (4.4.30) Theorem 4.4.5 reads

l(k)∑
j=1

|wj |2 <
k∑

j=1

|cj |2 <
l(k+1)∑
j=1

|wj |2, k = 1, . . . ,m- 1. (4.4.31)

Furthermore, for a set of eigenvalues of A located between two Ritz values θj and θk with
j < k we recall

λl(j) < θj < λl(j)+1 < . . . < λl(k) < θk, k = 2, . . . ,m,

and with (4.4.30), the sum of spectral coefficients wj associated with these eigenvalues
corresponds to

l(k)∑
ι=l(j)+1

|wι|2 = αn(θk)- αn(θj), j < k. (4.4.32)

Furthermore, combining this identity with (4.4.31) or (4.4.22), we obtain computable bounds
on accumulated spectral coefficients of u. E.g., for 1 < j < k < m the inequality (4.4.22a)
yields

|cj+1|2 + . . .+ |ck-1|2 <
l(k)∑

ι=l(j)+1

|wι|2 < |cj |2 + . . .+ |ck|2,

where the lower bound is trivial in the case k = j + 1.

We remark that the results of the present subsection can be generalized to the setting of
the qor-Krylov representation Tm. For the qor-Krylov representation, the cases θ1 < λ1

and λn < θm have to be considered explicitly in the notation, namely, the indices l(1) and
l(m) have to be adapted accordingly for these cases.

Remark 4.4.9. In the present work the measure αn is based on the spectrum of A and
has n points of strict increase. Thus, the identity of [Sze85, eq. (3.41.3)] which relies on a
continuous measure does not hold true in the present case, i.e.,

in general, we do not find any point yk ϵ R such that αn(yk) =

k∑
j=1

|cj |2.
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Nevertheless, the inequalities in (4.4.31) imply that there exist indices νk with l(k) < νk ≤
l(k + 1) and numbers ξk ϵ (0, 1] for k = 1, . . . ,m- 1 such that

νk-1∑
j=1

|wj |2 + ξk|wνk |2 =
k∑

j=1

|cj |2,

This can give further theoretical insight on the estimates provided in Remark 4.4.8. Nev-
ertheless, the indices νj and scaling factors ξj are not computable in general.
The indices νk satisfy λνk ϵ (θk, θk+1], thus,

λ1 < θ1 < λν1 ≤ θ2 < λν2 < . . . ≤ θm-1 < λνm-1 ≤ θm < λn.

For each spectral coefficient ck, this implies

|c1|2 =
ν1-1∑
j=1

|wj |2 + ξ1|wν1 |2,

|ck|2 = (1- ξk-1)|wνk-1
|2 +

νk-1∑
j=νk-1+1

|wj |2 + ξk|wνk |2, k = 2, . . . ,m- 1, and

|cm|2 = (1- ξm-1)|wνm-1 |2 +
n∑

j=νm-1+1

|wj |2.

4.4.3 The rational case with a single pole s ϵ R of higher multiplicity

In the present subsection we consider CMS type results for the setting of a rational Krylov
subspace Qm(A, u) with a single pole s ϵ R, thus, we have the denominator qm-1(λ) =
(λ - s)m-1. This subspace corresponds to a SaI Krylov subspace; for previous remarks
see also Subsection 4.2.1. Following Subsection 4.4.1, the eigenvalues θ1, . . . , θm ϵ (a, b)
and spectral coefficients c1, . . . , cm ϵ C of the respective Rayleigh quotient Am or qor-
representation Bm satisfy the quadrature property (4.4.12) in Corollary 4.4.4. To provide
results in a more general setting, the results in the remainder of the subsection are based
on the quadrature property (4.4.12); we provide results for a class of rational Gaussian
quadrature formulae which fit to the respective SaI Krylov setting.
Although the rational Krylov subspace corresponds to the polynomial Krylov subspace

Km(A, uq) with starting vector uq = q-1
m-1(A)u, results of the previous subsection do not

yield bounds associated with αn, this is specified in the following remark.

Remark 4.4.10. The rational Krylov subspace Qm(A, u) with the respective denominator
qm-1 is identical to Km(A, uq) with uq = q-1

m-1(A)u. This polynomial Krylov subspace is
associated with the step function .αn given in (4.2.22). Let Jm and Vm denote the Jacobi
matrix and the M-orthonormal eigenbasis of Km(A, uq) constructed by the Lanczos method.
In the setting of Km(A, uq), Theorem 4.4.5 yields bounds based on spectral coefficients of
the vector xq = (Vm, uq)M in the eigenbasis of Jm and the step function .αn. This does not
entail bounds based on spectral coefficients of x = (Vm, u)M and the step function αn in
general.
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To simplify the notation in the sequel, we first define the indices k1 and km such that

θkm < s < θk1 , k1 = km + 1, in case of s ϵ (θ1, θm), (4.4.33a)

and otherwise,

k1 = 1 and km = m, in case of s < θ1 or s > θm. (4.4.33b)

Furthermore, we define the sets Ik ∩ {1, . . . ,m} and Rk ∩ R for k = 1, . . . ,m by

Ik =

{ {k1, . . . , k}, k1 ≤ k ≤ m,
{1, . . . , k, k1, . . . ,m}, 1 ≤ k < k1,

and

Rk =

{
(s, θk], θk > s,
(a, θk] U (s, b), θk < s.

(4.4.34)

The set Rk is illustrated in Figure 4.3.
Let μn(Rk) and μn(R

o
k) as in (4.4.13b) denote the measure of the sets Rk and 15Ro

k,
respectively. Thus, we have

μn(Rk) =

{
μn((s, θk]) = αn(θk)- αn(s), θk > s,

μn((a, θk] U (s, b)) = αn(θk) + αn(b)- αn(s), θk < s,
(4.4.35a)

and

μn(R
o
k) =

{
μn((s, θk)) = αn(θk-)- αn(s), θk > s,

μn((a, θk) U (s, b)) = αn(θk-) + αn(b)- αn(s), θk < s.
(4.4.35b)

In the following theorem we provide a CMS type result for a class of rational Gaussian
quadrature formulae which applies to the setting of SaI Krylov subspaces with a shift s ϵ R.

Theorem 4.4.11 (A separation theorem for rational Gaussian quadrature formulae with
a single single pole s ϵ R of higher multiplicity). Let θ1, . . . , θm ϵ (a, b) and c1, . . . , cm ϵ C
satisfy the rational Gaussian quadrature properties (4.4.12) for qm-1(λ) = (λ - s)m-1

with s ϵ R. Let the index km be defined as in (4.4.33). Let the sets Ik ∩ {1, . . . ,m}
and Rk ∩ R for k = 1, . . . ,m be defined as in (4.4.34), and let μn be defined as in (4.4.13b)
(analogously, (4.4.35)). Additionally, define Rm+1 := R1. Then,

μn(Rk) <
∑
jϵIk

|cj |2 < μn(R
o
k+1), k ϵ {1, . . . ,m} \ {km}. (4.4.36)

The case k = km is not discussed in Theorem 4.4.11. In this case we have Ik = {1, . . . ,m}
and the bounds (4.4.36) can be replaced by the identity

m∑
j=1

|cj |2 = αn(b). (4.4.37)

This identity corresponds to the identity (4.4.12) for r = 1 (or directly results from ║u║M =
║x║2).

To prove Theorem 4.4.11, we first introduce rational functions which constitute bounds
on a Heaviside type step function, similar to the polynomials given in Proposition 4.4.6.

15In the sequel, we let Ro denote the interior of a set R.
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4.4 The CMS Theorem for polynomial and some rational Krylov subspaces

a) the case θk > s: s θk
Rk = (s, θk]

b) the case θk < s: sθk
Rk = (a, θk] U (s, b)

►
+∞◄-∞

Figure 4.3: In Figure a) and b) we illustrate the set Rk ∩ R given in (4.4.34) for a given
sequence of nodes θ1, . . . , θm (,○,), and a given pole s which satisfies θ1 < s < θm.
In Figure a) we choose the index k such that θk > s, and in Figure b) we
consider θk < s. In each figure the set Rk is highlighted by a dashed area.

Proposition 4.4.12. Let θ1 < . . . < θm be a given sequence and let s ϵ R be a given
pole which is distinct to θ1, . . . , θm. We make use of the denotations k1 and km introduced
in (4.4.33). Furthermore, let the sets Ik ∩ {1, . . . ,m} and Rk ∩ R for k = 1, . . . ,m be
defined as in (4.4.34), and we define Rm+1 := R1.

For k ϵ {1, . . . ,m}\{km} and qm-1(λ) = (λ-s)m-1 there exist rational functions r{+,k}
and r{-,k} ϵ π2m-2/|qm-1|2 which satisfy16

r{±,k}(θj) =
{

1, j ϵ Ik,
0, otherwise.

(4.4.38)

Furthermore, we have

r{+,k}(λ) ≥
{

1, λ ϵ Rk,
0, λ ϵ Rs \Rk,

and r{-,k}(λ) ≤
{

1, λ ϵ Ro
k+1,

0, λ ϵ Rs \Ro
k+1,

(4.4.39)

where Rs = (a, b)\{s}. The inequalities in (4.4.39) are strict for λ /ϵ {θ1, . . . , θm}. Without
loss of generality, we assume (a, b) = R in the present proposition.

Proof. See Appendix 4.B.

Rational functions r{-,k} as introduced in Proposition 4.4.12 are illustrated in Figure 4.4
for a numerical example.

We proceed with the proof of Theorem 4.4.11.

Proof of Theorem 4.4.11. Let k1 and km be given in (4.4.33), and let k ϵ {1, . . . ,m} \
{km} be fixed. For the eigenvalues θ1, . . . , θm we let r{±,k} denote the rational functions
given in Proposition 4.4.12. We proceed to prove the lower bound in (4.4.36). The identi-
ties (4.4.38) imply ∑

jϵIk
|cj |2 =

m∑
j=1

r{±,k}(θj)|cj |2. (4.4.40a)

16Analogously to p{±,k}, the denotation r{±,k} refers to r{+,k} and r{-,k} individually.
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Figure 4.4: In Figure a)-c) we show r{-,k} for a given sequence of nodes θ1, . . . , θm with
m = 8, and a given pole s which is located between the nodes, i.e., θ1 < s <
θm. These figures show results for different choices of k ϵ {1, . . . ,m} \ {km}
where km = 3 (following (4.4.33b)). In each figure the symbols (,○,) and (,x,)
mark r{-,k}(θj) for j ϵ Ik and j /ϵ Ik, respectively. The dashed lines illustrate
the upper bounds given in (4.4.39). Figure b) shows the special case k =
m for which the upper bound (4.4.39) relies on Rm+1 = R1. For additional
illustrations considering r{±,k} we refer to Figure 4.13 and 4.14 in Appendix 4.B.
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4.4 The CMS Theorem for polynomial and some rational Krylov subspaces

Furthermore, the quadrature property (4.4.12) implies∫ b

a
r{±,k}(λ) dαn(λ) =

m∑
j=1

r{±,k}(θj)|cj |2.

Rewriting this Riemann-Stieltjes integral as in (4.4.5a), we arrive at

n∑
j=1

r{±,k}(λj)|wj |2 =
m∑
j=1

r{±,k}(θj)|cj |2. (4.4.40b)

The inequalities in (4.4.39) for r{+,k} entail

n∑
j=1

r{+,k}(λj)|wj |2 >
∑

jϵJ(Rk)

|wj |2. (4.4.41)

This inequality is strict due to the interlacing property of the eigenvalues λj and θj , see
Proposition 4.2.2 and 4.3.1. Combine (4.4.40) and (4.4.41) to conclude with the lower
bound in (4.4.36).
In a similar manner, r{-,k} reveals the upper bound in (4.4.36); the inequalities in (4.4.39)

for r{-,k} yield
n∑

j=1

r{-,k}(λj)|wj |2 <
∑

jϵJ(Ro
k+1)

|wj |2. (4.4.42)

Indeed, the identities (4.4.40) together with (4.4.42) conclude the upper bound in (4.4.36).

We reformulate the result of Theorem 4.4.11 in the following proposition.

Proposition 4.4.13. In the setting of Theorem 4.4.11, the following inequality holds true,

αn(θk) ≤ |c1|2 + . . .+ |ck|2 + γ ≤ αn(θk+1-), k = 1, . . . ,m- 1, (4.4.43a)

with
γ = αn(s)- αm(s), (4.4.43b)

where αm is given in (4.4.24). The inequalities in (4.4.43a) are strict for k /= km. Addi-
tionally, the case k = m /= km in (4.4.36) corresponds to

αn(θm) ≤ |c1|2 + . . .+ |cm|2 + γ, and γ ≤ αn(θ1-). (4.4.44)

Proof of Proposition 4.4.13. We first prove (4.4.43). Here, we consider different cases
for the index k = 1, . . . ,m- 1.

❼ k < k1 with k1 as in (4.4.33); this case only occurs for k1 > 1 which follows from
s ϵ (θ1, θm). This case also implies km = k1 - 1,

αm(s) = |c1|2 + . . .+ |ckm |2, and αm(b)- αm(s) = |ck1 |2 + . . .+ |cm|2, (4.4.45)

129
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and with Ik as in (4.4.34),∑
jϵIk

|cj |2 = |c1|2 + . . .+ |ck|2 + αm(b)- αm(s). (4.4.46)

- Additionally, let k < k1 - 1 = km. This case implies θk, θk+1 < s and as given
in (4.4.35),

μn(Rk) = αn(θk) + αn(b)- αn(s), and μn(R
o
k+1) = αn(θk+1-) + αn(b)- αn(s).

(4.4.47)

Substituting (4.4.46) and (4.4.47) in the inequalities (4.4.36), subtracting αn(b) (=
αm(b)) and adding αn(s), we conclude (4.4.43) for k < k1 - 1.

- Let k = k1 - 1. Thus, k = km /= m, and for this case the inequalities (4.4.36) do
not apply; we show (4.4.43) in a direct manner:

For k = km we have |c1|2 + . . .+ |ck|2 = αm(s) as in (4.4.45). With this identity, the
enclosed term in (4.4.43a) simplifies to

|c1|2 + . . .+ |ck|2 + γ = αn(s). (4.4.48)

Due to αn being an increasing function and θk < s < θk+1 for k = k1 - 1 we have

αn(θk) ≤ αn(s) ≤ αn(θk+1-), for k = k1 - 1. (4.4.49)

Combining (4.4.48) and (4.4.49), we conclude (4.4.43) for the case k = k1 - 1.

❼ k ≥ k1. For this case we further distinguish between s < θm and s > θm.

- Let s < θm (this includes the case s < θ1). With Ik as in (4.4.34), we have∑
jϵIk

|cj |2 = |c1|2 + . . .+ |ck|2 - αm(s) (4.4.50)

Furthermore, this case implies θk, θk+1 > s (we recall k < m), and as in (4.4.35),

μn(Rk) = αn(θk)- αn(s), (4.4.51a)

and
μn(R

o
k+1) = αn(θk+1-)- αn(s). (4.4.51b)

Substituting (4.4.51) and (4.4.50) in the inequalities (4.4.36), we conclude (4.4.43)
for k ≥ k1 and s < θm.

- Otherwise, for k ≥ k1 and s > θm our notation simplifies to k1 = 1 and∑
jϵIk

|cj |2 = |c1|2 + . . .+ |ck|2. (4.4.52)

The case s > θm implies αm(b) = αm(s), and due to αm(b) = αn(b), we have

αn(b) = αm(s). (4.4.53)
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4.4 The CMS Theorem for polynomial and some rational Krylov subspaces

Furthermore, we have θk, θk+1 < s, and μn(Rk) and μn(R
o
k+1) correspond to (4.4.47)

further above. Making use of (4.4.53) in (4.4.47) and substituting γ, we simplify

μn(Rk) = αn(θk)- γ, and μn(R
o
k+1) = αn(θk+1-)- γ. (4.4.54)

Substituting (4.4.52) and (4.4.54) in the inequalities (4.4.36), we conclude (4.4.43)
for k ≥ k1 and s > θm.

We proceed with the proof of (4.4.44). The case k = m /= km only occurs for s ϵ (θ1, θm).
Thus with s < θm, μn(Rm) corresponds to (4.4.51a). Substituting μn(Rm) as in (4.4.51a)
and the sum over Im as in (4.4.50) in the lower bound in (4.4.36), we conclude the inequality
on the left-hand side of (4.4.44).
To prove the inequality on the right-hand side of (4.4.44), we first recall θ1 < s, and as

in (4.4.47)
μn(R

o
1) = αn(θ1-) + αn(b)- αn(s). (4.4.55)

Substituting (4.4.50) and (4.4.55) in the upper bound in (4.4.36) (for the case k = m /= km
with μn(R

o
m+1) = μn(R

o
1) due to convention), we arrive at

|c1|2 + . . .+ |cm|2 - αm(s) < αn(θ1-) + αn(b)- αn(s)

On the left-hand side we can further simplify |c1|2 + . . .+ |cm|2 = αn(b) and subtract this
term, which entails the inequality on the right-hand side of (4.4.44).

Remark 4.4.14. For the case αm(s) = αn(s) the constant γ in Proposition 4.4.13 is zero,
and the inequalities (4.4.43a) coincide with the inequalities given by Theorem 4.4.5, i.e., the
CMS Theorem for polynomial Gaussian quadrature formulae. Furthermore, for this case
the inequalities given in Corollary 4.4.7 hold true. Here, we highlight the case s /ϵ (λ1, λn)
for the Gaussian quadrature formulae without preassigned nodes (this implies θj ϵ (λ1, λn));
a prominent case for which αm(s) = αn(s) holds true a priori.

Remark 4.4.15. Following Remark 4.2.6, the SaI Krylov representation X-1
m +sI provides

a Gaussian quadrature formula. For the case of a real shift s ϵ R, the respective quadrature
nodes are located on the real axis, and at least one eigenvalue λj is located between each
neighboring pair of quadrature nodes. Thus, the result of Theorem 4.4.11 and its corollaries
hold true in this setting. However, results concerning the SaI Krylov representation X-1

m +
sI are not discussed in further detail in the present work.

CMS type results for the SaI Krylov representation are also given in [ZTK19]. In the
present work we include the case of a shift s being located inside the convex hull of the
spectrum of A, which extends some results of [ZTK19].

We proceed to specify the results of Proposition 4.4.13 for the pole s being located in
the convex hull of the rational Ritz values, i.e., s ϵ (θ1, θm). This case implies km /= m,
and substituting αn(b) = |c1|2 + . . .+ |cm|2 in (4.4.44), we observe

αn(θm)- αn(b) ≤ γ ≤ αn(θ1-). (4.4.56)

With these inequalities, we further specify the results of Proposition 4.4.13: The following
corollary states some bounds on piecewise accumulated quadrature weights, similar to
Corollary 4.4.7 in the previous subsection for the polynomial case.
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Corollary 4.4.16. Additionally to the setting of Theorem 4.4.11, we assume s ϵ (θ1, θm).
Then Proposition 4.4.13 yields the following inequalities.

❼ The accumulated quadrature weights satisfy

μn([θ1, θk]) ≤ |c1|2+ . . .+ |ck|2 ≤ μn((a, θk+1)U(θm, b)), k = 1, . . . ,m-1. (4.4.57a)

❼ For indices j, k with 1 < j < k < m, the following piecewise accumulated quadrature
weights satisfy

μn([θj , θk]) ≤ |cj |2 + . . .+ |ck|2 ≤ μn((θj-1, θk+1)). (4.4.57b)

❼ Furthermore, the accumulated quadrature weights satisfy

μn([θj , θm]) ≤ |cj |2 + . . .+ |cm|2 ≤ μn((a, θ1) U (θj-1, b)), j = 2, . . . ,m. (4.4.57c)

Proof. The inequalities (4.4.43a) in Proposition 4.4.13 yield

αn(θk)- γ ≤ |c1|2 + . . .+ |ck|2 ≤ αn(θk+1-)- γ.

Substituting (4.4.56) for γ, we arrive at

αn(θk)- αn(θ1-) ≤ |c1|2 + . . .+ |ck|2 ≤ αn(θk+1-) + αn(b)- αn(θm).

This implies (4.4.57a).
To prove the inequalities in (4.4.57c), we first remark

|cj |2 + . . .+ |ck|2 = |c1|2 + . . .+ |ck|2 + γ - (|c1|2 + . . .+ |cj-1|2 + γ
)
.

Applying (4.4.43a) twice (once we substitute j - 1 for the index k therein) we observe

αn(θk)- αn(θj-) ≤ |cj |2 + . . .+ |ck|2 ≤ αn(θk+1-)- αn(θj),

which implies (4.4.57b).
To show (4.4.57c), apply (4.4.57a) for the index j - 1 and subtract the result from

|c1|2 + . . .+ |cm|2 = μn((a, b)).

Remark 4.4.17. For the case s ϵ (θ1, θm) as in Corollary 4.4.16, bounds on quadrature
weights related to the leftmost or rightmost quadrature nodes potentially depend on the
measure of an interval including the opposite integral limit. This relation can be avoided
by preassigning one of the quadrature nodes at the integral limit, using a rational Gauss-
Radau formula associated with the spectrum of a rational qor-Krylov representation Bm in
the Krylov setting.

❼ For a preassigned node ξ < λ1, we have θ1 = ξ and αn(θ1) = 0. Thus, the inequalities
in (4.4.57a) correspond to

μn([a, θk]) ≤ |c1|2 + . . .+ |ck|2 ≤ μn((a, θk+1) U (θm, b)), (4.4.58a)

and the inequalities in (4.4.57c) correspond to

μn([θj , θm]) ≤ |cj |2 + . . .+ |cm|2 ≤ μn((θj-1, b)). (4.4.58b)
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❼ For a preassigned node ξ > λn, we have θm = ξ and αn(θm) = αn(b). Thus, the
inequalities in (4.4.57a) correspond to

μn([θ1, θk]) ≤ |c1|2 + . . .+ |ck|2 ≤ μn((a, θk+1)), (4.4.58c)

and the inequalities in (4.4.57c) correspond to

μn([θj , b]) ≤ |cj |2 + . . .+ |cm|2 ≤ μn((a, θ1) U (θj-1, b)). (4.4.58d)

We proceed to introduce a step function Fs which changes its sign at each rational
Ritz value according to Proposition 4.4.13; with the step function F given in (4.4.26) we
introduce

Fs(λ) = F (λ)- F (s). (4.4.59)

Here, F (s) = γ with γ as in Proposition 4.4.13. As previously stated in (4.4.27), we have

αm(θk) = αm(θk+1-) = |c1|2 + . . .+ |ck|2.
Then the inequalities (4.4.43a) correspond to

Fs(θk) ≤ 0 ≤ Fs(θk+1-), k = 1, . . . ,m- 1, (4.4.60a)

whereat these inequalities are strict for k /= km. Furthermore, the inequalities (4.4.44)
correspond to

Fs(θm) < 0, and 0 < Fs(θ1-), (4.4.60b)

for km /= m.

Remark 4.4.18. In (4.4.60), the special case k = km holds true due to the identity (4.4.37);
the case k ϵ {1, . . . ,m} \ {km} corresponds to the result of Theorem 4.4.11. Namely, the
result of Theorem 4.4.11 conforms to the following inequality in an equivalent manner,

Fs(θk) ≤ 0 ≤ Fs(θk+1-) for k ϵ {1, . . . ,m} \ {km}, and with θm+1 = θ1.

4.4.4 The rational case with a single pole s ϵ C \ R of higher multiplicity

In the present subsection, we consider rational Gaussian quadrature formulae which satisfy
the quadrature property (4.4.12) with qm-1(λ) = (λ - s)m-1 for s ϵ C \ R. To specify,
these quadrature formulae are exact for rational functions with denominator |qm-1(λ)|2 =
((λ-Re s)2 + (Im s)2)m-1 where Im s /= 0, i.e., rational functions with complex-conjugate
poles of higher multiplicity. Considering Krylov subspaces, these quadrature formulae are
related to SaI Krylov subspaces with a complex shift s ϵ C \ R.

As a main result of the present subsection, the following Proposition yields upper bounds
on the measure of the intervals between neighboring quadrature nodes, and the measure at
the boundary of the spectrum.

Proposition 4.4.19. Let c1, . . . , cm and θ1 < . . . < θm satisfy the quadrature prop-
erty (4.4.12) with qm-1(λ) = (λ - s)m-1 for s ϵ C \ R. Then, with μn given in (4.4.13)

μn([θk, θk+1]) ≤ |ck|2 + |ck+1|2, k = 1, . . . ,m- 1, (4.4.61a)

and
μn((a, θ1]) + μn([θm, b)) ≤ |c1|2 + |cm|2. (4.4.61b)
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Before proving Proposition 4.4.19, we proceed with some auxiliary results. The results
of the previous subsection do not apply for the case s ϵ C \ R. However, the present class
of rational functions can be related to polynomials on the unit circle T and vice versa. To
specify this relation, we recall the Cayley transform as in (4.2.35),

τ(λ) = (λ- s)(λ- s)-1, τ : R - T \ {1}.
For a complex polynomial p ϵ πm-1 we consider p(τ(λ)) as a function of λ; normalizing
shows

p(τ(λ)) = g(λ)/qm-1(λ), for some g ϵ πm-1,

For λ ϵ R we conclude

|p(τ(λ))|2 = g (λ)g(λ)/|qm-1(λ)|2, where gg ϵ π2m-2. (4.4.62)

In the following corollary we introduce rational majorants on a Heaviside type step function,
based on interpolating polynomials on the unit circle given in [Gol02, Lemma 4].

Corollary 4.4.20 (A corollary of Lemma 4 in [Gol02]). Let θ1, . . . , θm be a given sequence
of nodes, and let qm-1(λ) = (λ- s)m-1 for a given pole s ϵ C \ R.

(i) Let k ϵ {1, . . . ,m- 1} be fixed. There exists a rational function rk ϵ π2m-2/|qm-1|2
with

rk(θj) =

{
1, j ϵ {k, k + 1},
0, otherwise,

(4.4.63a)

and

rk(λ) ≥
{

1, λ ϵ [θk, θk+1],
0, λ ϵ (-∞, θk) U (θk+1,∞).

(4.4.63b)

(ii) Additionally, there exists a function rm ϵ π2m-2/|qm-1|2 with

rm(θj) =

{
1, j ϵ {1,m},
0, otherwise,

(4.4.64a)

and

rm(λ) ≥
{

1, λ ϵ (-∞, θ1] U [θm,∞),
0, λ ϵ (θ1, θm).

(4.4.64b)

Proof. The Cayley transform τ as in (4.2.35) reads

τ(λ) = (λ- s)(λ- s)-1, τ : R - T \ {1}.
Simplifying this fraction yields

τ(λ) = 1 +
s- s

λ- s
= 1 +

2i Im s

λ- s
.

Here, τ : R - T \ {1} is a continuous and bijective function, and with the previous repre-
sentation, we observe

τ(-∞) =

{
1 + i0+, Im s < 0,
1 + i0-, Im s > 0.
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Thus, τ maps R to T \ {1} in counter-clockwise and clockwise order for Im s < 0 and
Im s > 0, respectively.
We proceed to define distinct points ζ1, . . . , ζm ϵ T by

ζj :=

{
τ(θj), Im s < 0,
τ(θm-j+1), Im s > 0,

j = 1, . . . ,m. (4.4.65)

The points ζ1, . . . , ζm ϵ T are distinct, in counter-clockwise order, and the point 1 is located
between ζ1 and ζm on the unit circle. For the remainder of the proof we assume the case
Im s < 0 to simplify the notation. Thus, we consider ζj = τ(θj).

Additionally to (4.4.65), we define ζm+1 := ζ1. Let pk ϵ πm-1 denote the complex poly-
nomial given by [Gol02, Lemma 4] for the points ζj and a fixed index k ϵ {1, . . . ,m}. Here,
we also normalize pk at ζk. Thus, pk satisfies |pk(ζk)| = |pk(ζk+1)| = 1. Following (4.4.62),
the function rk(λ) := |pk(τ(λ))|2 conforms to a rational function rk ϵ π2m-2/|qm-1|2.
We proceed to show (4.4.63) for the rational function rk; let k ϵ {1, . . . ,m- 1}:
❼ With rk(θj) = pk(ζj) the identities |pk(ζk)| = |pk(ζk+1)| = 1 yield rk(θk) = rk(θk+1) =
1, and the identity pk(ζj) = 0 for j /= k, k+1 yields rk(θj) = 0 for j /= k, k+1, which
shows (4.4.63a).

❼ Due to τ being a continuous and bijective function, the points ζ located on the unit
circle between ζk and ζk+1 (including ζk and ζk+1) are identical to the set {ζ =
τ(λ) | λ ϵ [θk, θk+1]}. As a result of [Gol02, Lemma 4], the polynomial pk satisfies
|pk(ζ)| ≥ 1 for ζ in this set of points, i.e., |p(τ(λ))| ≥ 1 for λ ϵ [θk, θk+1]. Thus,
we have rk(λ) ≥ 1 for λ ϵ [θk, θk+1]; furthermore, rk is positive for λ ϵ R due to
rk(λ) = |pk(ξ(λ))|2, which implies (4.4.63b).

We proceed to sketch the proof of (4.4.64) which corresponds to the case k = m. The
polynomial pm satisfies |pm(ζm)| = |pm(ζ1)| = 1. Furthermore, the points ζ located between
ζ1 and ζm correspond to the set {ζ = τ(λ) | λ ϵ (-∞, θ1)U (θm,∞)}U {1} ∩ T. Similar to
previous arguments, this shows (4.4.64).
Considering the definition of ζj in (4.4.65), similar arguments hold for the case Im s >

0.

We proceed with the proof of Proposition 4.4.19.

Proof of Proposition 4.4.19. Let k ϵ {1, . . . ,m - 1} be fixed, we prove (4.4.61a). For
the nodes θ1, . . . , θm and k given, we let rk ϵ π2m-2/|qm-1|2 denote the rational function
given in Corollary 4.4.20 which satisfies (4.4.63). Due to (4.4.63a) we have

m∑
j=1

|cj |2rk(θj) = |ck|2 + |ck+1|2. (4.4.66a)

The quadrature property (4.4.12) implies∫ b

a
rk(λ) dαn(λ) =

m∑
j=1

|cj |2rk(θj), (4.4.66b)
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and the inequality (4.4.63b) yields∫ b

a
rk(λ) dαn(λ) ≥ μn([θk, θk+1]). (4.4.66c)

Combining (4.4.66a)-(4.4.66c), we conclude (4.4.61a).

Analogously, making use of the rational function rm ϵ π2m-2/|qm-1|2 (which satisfies
the properties (4.4.64)) in combination with the quadrature property (4.4.12), we con-
clude (4.4.61b).

4.4.5 Results for an extended Krylov subspace

In the present subsection, we consider an extended Krylov subspace. Namely, the Krylov
subspace of so called Laurent polynomials which also appears in [DK98] and corresponds
to a rational Krylov subspace. Here, we also include a shift s < λ1. This yields a rational
Krylov subspace with denominator q(λ) = (λ- s)ϱ-1 for m = 2ϱ- 1, i.e.,

Q2ϱ-1(A, u) = span{(A- s)-ϱ+1u, . . . , (A- s)-1u, u,Au, . . . , Aϱ-1u} (4.4.67)

= K2ϱ-1(A, (A- s)-ϱ+1u).

Similar to previous sections, Um denotes an M-orthonormal basis of the Krylov subspace
and Am = (Um, AUm)M denotes the associated Rayleigh quotient. As previously, we let
x = (Um, u)M. An extended Lanczos recurrence to compute Um and Am in an efficient
manner is given in [DK98, Section 5] and summarized in Algorithm 4.6.

Let θ1, . . . , θm ϵ (a, b) and c1, . . . , cm ϵ C denote the eigenvalues and spectral coefficients
of the Rayleigh quotient Am. Following Proposition 4.2.26 and Corollary 4.4.4, these
eigenvalues and spectral coefficients satisfy the identity (4.4.12) for r ϵ π2m-1/q

2 with
q2(λ) = (λ- s)2ϱ-2 = (λ- s)m-1, i.e.,∫ b

a
r(λ) dαn(λ) =

m∑
j=1

r(θj)|cj |2, r ϵ π2m-1/(λ- s)m-1. (4.4.68)

The CMS type results given in [Li98] apply to rational quadrature formulae which sat-
isfy (4.4.68). i.e., a Gaussian quadrature formulae for so called Laurent polynomials.

We proceed to recapitulate results given in [Li98] for the setting of the extended Krylov
subspace (4.4.67). To this end, we first recall the following rational functions intro-
duced [Li98] which yield majorants and minorants on a Heaviside step function similar
to the polynomials in Proposition 4.4.6.

Proposition 4.4.21 (Theorem 4 and 5 in [Li98]). Let ν1 < . . . < νm ϵ R with ν1 > 0
and let k be fixed with 1 ≤ k < m. Then there exist rational functions .r{+,k} and .r{-,k} ϵ
π2m-2/λ

m-1 which satisfy

.r{±,k}(νj) =
{

1, j = 1, . . . , k,
0, j = k + 1, . . . ,m,

(4.4.69)
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Algorithm 4.6: A summary of the extended Lanczos recurrence in [DK98, Sec-
tion 5]; an algorithm to compute the M-orthogonal basis Um and the Rayleigh
quotient Am = (Um, AUm)M of the extended Krylov subspace given in (4.4.67).
Here, m = 2ϱ- 1.

run Algorithm 4.1 to compute β0 = ║u║M, USaI
ϱ and ASaI

ϱ = (USaI
ϱ , AUSaI

ϱ )M for the

SaI Krylov subspace Kϱ(X,u) with X = (A- sI)-1;~v = Au;
orthogonalize ~v with USaI

ϱ and set Uϱ = USaI
ϱ and uϱ+1 = ~v/║~v║M;.v = Auϱ+1;

for j = 1, . . . , ϱ;
yj = (uj , .v)M;.v - .v - yjuj ;

a1 = (uϱ+1, .v )M and .v - .v - a1uk+1;
β1 = ║.v║M and uϱ+2 = .v/β1;
consider uϱ+1, uϱ+2, and a1 and β1 to be the result of two initial Lanczos steps,
and continue the Lanczos procedure to compute uϱ+3, . . . , u2ϱ-1 and the Jacobi
matrix Jϱ-1 (using a total of ϱ- 1 Lanczos steps);

Am = [ASaI
ϱ , y eH1 ; e1 y

H, Jϱ-1 ], where y eH1 ϵ Cϱxϱ-1;

x = β0 e1;
return x, Um, Am;

together with

.r{+,k}(λ) ≥
{

1, λ ≤ νk,
0, λ > νk,

and .r{-,k}(λ) ≤
{

1, λ < νk+1,
0, λ ≥ νk+1.

(4.4.70)

Additionally, the inequalities in (4.4.17) are strict inequalities for λ /ϵ {ν1, . . . , νm}.

In the proof of Proposition 4.4.22 below, we apply these results for the shifted case with
s ≤ a < λ1.

We proceed to recapitulate [Li98, eq. (4) in Theorem 1]. For the following proposition,
we recall that λ1 < θ1 holds true when θj refers to the eigenvalues of the Rayleigh quotient
Am, thus, for a pole s < λ1 the condition s < θ1 is satisfied.

Proposition 4.4.22 (Eq. (4) in Theorem 1 in [Li98]). Let θ1, . . . , θm ϵ (a, b) and
c1, . . . , cm ϵ C satisfy (4.4.68) for r ϵ π2m-2/(λ- s)m-1 and a pole s < λ1, θ1. Then,

αn(θk) < |c1|2 + . . .+ |ck|2 < αn(θk+1-), k = 1, . . . ,m- 1. (4.4.71)

Proof. The proof of this proposition is similar to the proof of Theorem 4.4.5, and is also
provided in [Li98]. We proceed with a sketch of the proof.

We first introduce νj = θj - s for j = 1, . . . ,m. The nodes νj are positive due to s < θ1
and for a fixed k = 1, . . . ,m - 1 we let .r±,k ϵ π2m-2/λ

m-1 denote the rational functions
given in Proposition 4.4.21. Based on these rational functions, we consider the rational
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functions r±,k(λ) = .r±,k(λ- s) in the class π2m-2/(λ- s)m-1; and based on properties of.r±,k given in Proposition 4.4.21 the functions r±,k satisfy

r{±,k}(θj) =
{

1, j = 1, . . . , k,
0, j = k + 1, . . . ,m,

(4.4.72a)

together with

r{+,k}(λ) ≥
{

1, λ ≤ θk,
0, λ > θk,

and r{-,k}(λ) ≤
{

1, λ < θk+1,
0, λ ≥ θk+1.

(4.4.72b)

The identity (4.4.72a) implies

m∑
j=1

|cj |2r{±,k}(θj) = |c1|2 + . . .+ |ck|2, (4.4.73a)

Analogously, the inequalities in (4.4.72b) imply

αn(θk) =
∑

{j:λj≤θk}
|wj |2 <

n∑
j=1

|wj |2r{+,k}(λj), (4.4.73b)

and

αn(θk+1-) =
∑

{j:λj<θk+1}
|wj |2 >

n∑
j=1

|wj |2r{-,k}(λj). (4.4.73c)

The right-hand sides of (4.4.73b) and (4.4.73c) can be understood as a Riemann-Stieltjes
integral (4.4.5a), for which the quadrature property (4.4.68) yields

n∑
j=1

|wj |2r{±,k}(λj) =

m∑
j=1

|cj |2r{±,k}(θj), (4.4.73d)

Combining the identities and inequalities in (4.4.73), we conclude (4.4.71); for further
details we also refer to the proof of Theorem 4.4.5.

As previously discussed in Remark 4.4.9; in the Krylov setting the measure αn is not
continuous and a property as in [Li98, eq. (3) in Theorem 1] does not hold in general.
The spectrum of the Rayleigh quotient Am for the extended Krylov subspace given

in (4.4.67) defines a measure αm, as in (4.4.24). The result of Proposition 4.4.22 can be
understood as an intertwining property of the distributions dαn and dαm, similar as in the
polynomial case in Subsection 4.4.1. This property is illustrated for a numerical example
in Section 4.5 below.
Considering a rational qor-Krylov setting, previous results for the qor-Krylov represen-

tation Bm also apply to the extended Krylov subspace (which does correspond to the
rational Krylov subspace Q2ϱ-1(A, u) with denominator q(λ) = (λ - s)ϱ-1 as previously
mentioned). Thus, Proposition 4.4.22 holds true for the qor-Krylov representation Bm

(assuming s ≤ a < θ1). However, these results are not specified here.
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4.5 Numerical illustrations

In the present section we verify the results of Theorem 4.4.5 (Subsection 4.4.2) and 4.4.11
(Subsection 4.4.3), and Proposition 4.4.19 (Subsection 4.4.4) and 4.4.22 (Subsection 4.4.5)
by numerical experiments.

For the present numerical examples, the notation θj and cj refers to the quadrature nodes
and weights, respectively, satisfying different polynomial and rational Gaussian quadrature
formulae which originate from polynomial Krylov subspaces Km(A, u) and rational Krylov
subspaces Qm(A, u) with different choices of poles. Here, the matrix A ϵ Rnxn corresponds
to the finite-difference discretization of the negative 1D Laplace operator with n = 1200,
and u is a random starting vector which is normalized. The M-inner product corresponds
to the Euclidian inner product.

For the polynomial case, the quadrature nodes and weights are based on the spectrum
of the Jacobi matrix Jm which is computed using the Lanczos method. Considering the
rational case, we show results for SaI Krylov subspaces with real and complex shifts. For
the case of a real shift, we consider the Rayleigh quotient Am as in Algorithm 4.1 and the
rational qor-Krylov representation Bm as in Algorithm 4.5. For a complex shift we show
an example using the Rayleigh quotient Am. Furthermore, we show results for an extended
Krylov subspace, for which the Rayleigh quotient Am is computed using Algorithm 4.6.

The step functions αn (4.2.6a) and αm (4.4.24) are illustrated for numerical examples
in Figure 4.5. The step function αm is shown for the polynomial Krylov subspace and a
SaI Krylov subspace with a shift s ϵ R located outside of the convex hull of the matrix
spectrum, namely, s < λ1. In both cases the distributions dαn and dαm satisfy an in-
tertwining property. To provide a clear illustration of the results of the previous section
we also show the function F (λ) given in (4.4.26) for a numerical example concerning the
polynomial case in Figure 4.6 a). In this figure, we observe that F (λ) changes its sign at
the Ritz values, and following (4.4.28), this verifies the result of Theorem 4.4.5. For the
SaI Krylov subspace with a shift s < λ1 we have F (s) = 0 which implies Fs(λ) = F (λ) for
the function Fs(λ) as given in (4.4.59). Considering this example, the function F = Fs is
illustrated in Figure 4.6 b), and following Remark 4.4.18, the change of the sign of Fs at
rational Ritz values verifies Theorem 4.4.11.

The case of a SaI Krylov subspace with a shift s ϵ R such that θ1 < s < θm is illustrated
in Figure 4.7. As for the previous example, the change of the sign of Fs at rational Ritz
values verifies Theorem 4.4.11 as stated in Remark 4.4.18. Here, Figure 4.7 a) illustrates Fs

for the Rayleigh quotient Am and Figure 4.7 b) illustrates Fs for a rational qor-Krylov
representation with a preassigned eigenvalue ξ ϵ R; this verifies the result of Theorem 4.4.11
for these cases.

In Figure 4.8 we consider a SaI Krylov subspace with a complex shift s ϵ C \R. For this
example, we illustrate |ck|2+|ck+1|2 for k = 1, . . . ,m-1 and |cm|2+|c1|2, which yield upper
bounds on μn([θk, θk+1]) for k = 1, . . . ,m-1 and μn((-∞, θ1]U [θm,∞)), respectively. This
verifies the result of Proposition 4.4.19.

For the extended Krylov subspace as in Subsection 4.4.5, Proposition 4.4.22 yields an
intertwining property for the distributions dαn and dαm as in the polynomial case; the
changing sign of F as illustrated in Figure 4.9 verifies the result of Proposition 4.4.22.
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Figure 4.5: The matrix A ϵ Rnxn is given by the finite-difference discretization of the
negative 1D Laplace operator with n = 1200, and u is a random starting vector
which is normalized. The continuous line without additional symbols illustrates
the step function αn associated with the eigenvalues and spectral coefficients
of u in the eigenbasis of A. The symbols (,○,) mark αm(θj) where θj are the
Ritz values of the polynomial Krylov subspace Km(A, u) with m = 10, and αm

is the respective step function given in (4.4.24). Similarly, the symbols (,x,)
mark αm(θj) where θj refer to the rational Krylov subspace Qm(A, u) with m =
10 and a single pole s = -102 of multiplicity m- 1.
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Figure 4.6: In Figure a) and b) the matrix A ϵ Rnxn is given by the finite-difference
discretization of the negative 1D Laplace operator with n = 1200. The starting
vector u is chosen at random and is normalized. In these figures we show the
function F = αn - αm where αm originates from different settings as stated
below. The symbols (,○,) and (,x,) mark F (θk-) and F (θk), respectively.
- Figure a) shows F with αm given by spectral weights and Ritz values of the
Jacobi matrix Jm for the polynomial Krylov subspace Km(A, u) with m = 10.
The y-axis is scaled logarithmically in positive and negative direction, namely,
with range (-100,-10-6) U (10-6, 100).
- Figure b) shows F where αm refers to the spectrum of the Rayleigh quotient
Am for the rational Krylov subspaceQm(A, u) withm = 10 and a single pole s =
-102 of multiplicity m-1, thus, s < λ1. Similar to Figure a) the y-axis is scaled
logarithmically and covers (-100,-10-5)U(10-5, 100). Additionally, the x-axis
is scaled logarithmically in a classical sense.
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Figure 4.7: In Figure a) and b) the matrix A ϵ Rnxn is given by the finite-difference dis-
cretization of the negative 1D Laplace operator with n = 1200. The start-
ing vector u is chosen at random and is normalized. These figures show
Fs(λ) = F (λ) - F (s) for different settings, and the symbols (,○,) and (,x,)
mark Fs(θk-) and Fs(θk), respectively. Similar to Figure 4.6 the y-axis is
scaled logarithmically and covers (-100,-10-12) U (10-12, 100). With λ be-
ing the argument of the function Fs(λ) as illustrated in the y-axis, the x-axis
shows λ - s, i.e. the distance from the argument λ to the pole s = 104.
Furthermore, the x-axis is scaled logarithmically with a range of approxi-
mately (-104,-101) U (101, 104).
- Figure a) shows Fs(λ) corresponding to the spectrum of Am, where Am is the
Rayleigh quotient in the rational Krylov subspace Qm(A, u) with m = 10 and
a single pole s = 104 of multiplicity m- 1. Here, the pole s is enclosed by the
eigenvalues of Am.
- Figure b) shows Fs(λ) where αm corresponds to the spectrum of Bm, which
is the rational qor-Krylov representation for which the eigenvalue θ1 = -10
is preassigned. For the underlying rational Krylov subspace Qm(A, u) we
have m = 10 and a single pole s = 104 of multiplicity m - 1. The pole s
is enclosed by the eigenvalues of Bm.
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Figure 4.8: The matrix A ϵ Rnxn is given by the finite-difference discretization of the nega-
tive 1D Laplace operator with n = 1200. The starting vector u is chosen at ran-
dom and is normalized. For the present figure we consider the SaI Krylov sub-
space Qm(A, u) with m = 10 and a complex shift s = 104-102i. In the present
caption, cj and θk refer to the entries of eigenvectors and the eigenvalues of the
respective Rayleigh quotient Am. The symbols (,x,) mark |cj |2 over θj . The
symbols (,+,) show |ck|2+ |ck+1|2 over the midpoint of the interval [θk, θk+1] for
k = 1, . . . ,m- 1. Furthermore, the symbol (,+,) located at the right boundary
of the spectrum shows |cm|2+ |c1|2. The line marked by (,○,) shows the measure
μn([θk, θk+1]) over each interval [θk, θk+1] for k = 1, . . . ,m-1, and the measure
μn((-∞, θ1]U [θm,∞)) at the boundary. The y-axis is scaled logarithmically in
a classical sense, and the x-axis shows λ-Re s, i.e. the distance from the argu-
ment λ to the real part of the shift, i.e., Re s = 104. Furthermore, the x-axis is
scaled logarithmically with a range of approximately (-104,-101)U (101, 104).
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Figure 4.9: The matrix A ϵ Rnxn is given by the finite-difference discretization of the
negative 1D Laplace operator with n = 1200. The starting vector u is chosen
at random and is normalized. In this figure we show the function F = αn-αm

where αm corresponds to the spectrum of the Rayleigh quotient Am given by the
extended Krylov subspace (4.4.67) with m = 11 (thus, ϱ = 6) and the shift s =
-10 < λ1. The symbols (,○,) and (,x,) mark F (θk-) and F (θk), respectively,
where θk refers to the eigenvalues of Am. The y-axis is scaled logarithmically in
positive and negative direction, namely, with range (-100,-10-6)U(10-6, 100).
Additionally, the x-axis is scaled logarithmically in a classical sense.
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Appendix

4.A Some properties of Krylov subspaces

Proposition 4.A.1. Let (q1, . . . , qn) ϵ Cnxn be an orthogonal eigenbasis of the matrix A ϵ
Cnxn. Here, orthogonal is to be understood w.r.t. a given positive definite inner product.
Let λ1, . . . , λn ϵ C be the corresponding eigenvalues, and wj = (qj , u)M ϵ C be the spectral
coefficients of a given vector u. Then

rank{u,Au, . . . , Am-1u} = m, (4.A.1)

if and only if there exist at least m coefficients wj /= 0 with distinct λj.

Proof. According to the eigendecomposition of A we have

Alu =
n∑

j=1

λl
jwjqj for l ϵ N0.

The matrix corresponding to the left-hand side of (4.A.1) takes the form of a Vandermonde
matrix,

(u,Au, . . . , Am-1u) = (q1w1, q2w2, . . . , qnwn)

(|||8
1 λ1 λ2

1 . . . λm-1
1

1 λ2 λ2
2 . . . λm-1

2
...

...
...

...
1 λn λ2

n . . . λm-1
n

)|||) ϵ Cnxm.

(4.A.2)
Let n1 ≤ n be the number of nonzero coefficients wj , thus, there exist indices j(1), . . . , j(n1)
with wj(1), . . . , wj(n1) /= 0. We define

θ1 =
(
qj(1)wj(1), qj(2)wj(2), . . . , qj(n1)wj(n1)

) ϵ Cnxn1 .

The orthogonality properties of q1, . . . , qn imply rank(θ1) = n1. For the corresponding
rows of the Vandermonde matrix we introduce the notation

θ2 =

(||||8
1 λj(1) λ2

j(1) . . . λm-1
j(1)

1 λj(2) λ2
j(2) . . . λm-1

j(2)
...

...
...

...

1 λj(n1) λ2
j(n1)

. . . λm-1
j(n1)

)||||) ϵ Cn1xm.

The identity in (4.A.2) can now be written as(
u,Au, . . . , Am-1u

)
= θ1θ2. (4.A.3)

With θ1 ϵ Cnxn1 and rank(θ1) = n1 we have rank(θ1θ2) = rank(θ2). Let n2 ≤ n1 be the
number of distinct eigenvalues within λj(1), . . . , λj(n1), hence, we have indices l(1), . . . , l(n2)
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for which λj(l(1)), . . . , λj(l(n2)) are distinct. Then the Vandermonde matrix θ2 satis-
fies rank(θ2) = min{m,n2}, hence,

rank(θ1θ2) = rank(θ2) = min{m,n2}. (4.A.4)

Combining (4.A.3) with (4.A.4) we conclude

rank{u,Au, . . . , Am-1u} = min{m,n2}.

We recall that n2 is number of nonzero coefficients wj with distinct λj , and (4.A.1) holds
if and only if n2 ≥ m which completes the proof.

Proposition 4.A.2. Let w1, . . . , wn ϵ C with wj /= 0 and λ1 < . . . < λn be given. Let
m < n, and let θ1 < . . . < θm and |c1|2, . . . , |cm|2 denote quadrature nodes and quadrature
weights, respectively, and assume

n∑
j=1

|wj |2p(λj) =

m∑
j=1

|cj |2p(θj), p ϵ π2m-2. (4.A.5)

Then cj /= 0 for j = 1, . . . ,m.

Proof. We define gl(λ) =
πm

j=1,j /=l(λ - θj)
2 ϵ π2m-2. The polynomial gl is zero only at

the nodes θ1, . . . , θl-1, θl+1, . . . ,m and positive otherwise. Due to n > m at least one λj is
distinct to θ1, . . . , θm and this yields

n∑
j=1

|wj |2gl(λj) > 0.

Making use of the identity (4.A.5) and evaluating the right-hand side therein we conclude

m∑
j=1

|cj |2gl(θj) = gl(θl)|cl|2 > 0.

With gl(θl) > 0 this concludes |cl|2 > 0.

Proposition 4.A.3 (Identities for rational functions in the rational Krylov subspace).
Let Um ϵ Cnxm with (Um, Um)M = I and span{Um} = Qm(A, u) for the rational Krylov
subspace Qm(A, u) with denominator qm-1. Let Am = (Um, AUm)M and x = (Um, u)M.

(i) The following identities hold true,

r(A)u = Um r(Am)x, r ϵ πm-1/qm-1.

(ii) Let r = p/qm-1 with p ϵ πm being a polynomial of degree exactly m, then

(Um r(Am)x- r(A)u) |M span{Um}. (4.A.6)
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Proof. We proceed similar to the proof of Proposition 4.3.5 in Subsection 4.3.2. We recall
the identity Qm(A, u) = Km(A, uq) with uq = q-1

m-1(A)u. Let ζ0 = ║uq║M, let Vm be the
M-orthonormal basis of Km(A, uq), and let Jm be the respective Jacobi matrix. Then the
identity (4.2.15a) w.r.t. Km(A, uq) implies

p(A)uq = ζ0 Vm p(Jm)e1, p ϵ πm-1. (4.A.7)

This implies qm-1(A)uq = ζ0 Vm qm-1(Jm)e1, and with the identities qm-1(A)uq = u and
(Vm, Vm)M = I we arrive at

ζ0 e1 = q-1
m-1(Jm)(Vm, u)M. (4.A.8)

Let r = p/qm-1 with p ϵ πm-1 then r(A)u = p(A)uq, and with (4.A.7) we have

r(A)u = ζ0 Vm p(Jm)e1. (4.A.9)

Inserting (4.A.8) into (4.A.9) gives

r(A)u = Vm p(Jm)q-1
m-1(Jm)(Vm, u)M = Vm r(Jm)(Vm, u)M. (4.A.10)

With the identity KmKH
m = I (see (4.2.23c)) and (4.2.24) the matrix Am satisfies r(Jm) =

Km r(Am)KH
m, and together with VmKm = Um (4.2.23c) we have

Vm r(Jm)(Vm, u)M = Um r(Am)(Um, u)M. (4.A.11)

Combining (4.A.10) with (4.A.11) completes the proof of (i).
For a polynomial p of degree exactly m and w.r.t. Km(A, uq) the property (4.2.15b)

writes
p(A)uq - ζ0Vm p(Jm)e1 |M span{Vm}, p ϵ πm. (4.A.12)

Let r = p/qm-1, then the identities in (4.A.8) and (4.A.11) with x = (Um, u)M entail

ζ0Vm p(Jm)e1 = Vm r(Jm)(Vm, u)M = Um r(Am)x.

With r(A)u = p(A)uq this yields

p(A)uq - ζ0Vm p(Jm)e1 = r(A)u- Um r(Am)x. (4.A.13)

Making use of span{Vm} = span{Um} in (4.A.12) and substituting (4.A.13), we con-
clude (4.A.6).

Proposition 4.A.4 (The spectral coefficients cj for the rational Krylov subspace and the
choice of Um). The spectral coefficients cj of x = (Um, u)M ϵ Cm in the orthonormal
eigenbasis of Am = (Um, AUm)M ϵ Cmxm are independent of the explicit choice of the
underlying orthonormal basis Um of Qm(A, u).

Proof. We recall the representation of the spectral coefficients cj given in (4.4.9),

cj = (.qj , x)2, j = 1, . . . ,m.
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Here .qj ϵ Cm refer to the orthonormal eigenvectors of Am. We further recall that the ratio-
nal Krylov subspace Qm(A, u) corresponds to the polynomial Krylov subspace Km(A, uq)
with uq = q-1

m-1(A)u for the denominator qm-1. Let us recall the notation Jm and Vm for
the Jacobi matrix and Krylov basis of Km(A, uq). Furthermore, we recall the orthonormal
transformation Km = (Vm, Um)M ϵ Cmxm given in (4.2.23a). With Um = VmKm (4.2.23b)
the vector x = (Um, u)M corresponds to

x = KH
m(Vm, u)M =: KH

mξ, and thus, cj = (Km.qj , ξ)2. (4.A.14)

With the identity Am = KH
m JmKm (4.2.24) and .qj being eigenvectors of Am, the vectors

Km.qj for j = 1, . . . ,m correspond to the orthonormal eigenvectors of Jm. Thus, (4.A.14)
implies that the coefficients cj correspond to spectral coefficients of ξ = (Vm, u)M in the
orthonormal eigenbasis of Jm, and furthermore, the coefficients cj are independent of the
explicit choice of Um.

4.B Auxiliary functions for the CMS Theorem

Proof of Proposition 4.4.6. We recapitulate arguments of [Sze85, Akh65] and others.
Let θ1 < . . . < θm and k ϵ {1, . . . ,m - 1} be given. We first prove the existence of
a polynomial p{+,k} of degree 2m - 2 which satisfies (4.4.16) and (4.4.17). Let p be a
polynomial of degree 2m- 2 subject to the conditions

λ

1.0

0.0

p
(λ
)

p(θk)

Figure 4.10: A numerical illustration of the
polynomial p subject to the
conditions (4.B.1); duplicated
from Figure 4.2.

p(θ1) = 1, p,(θ1) = 0,
...

...
p(θk-1) = 1, p,(θk-1) = 0,
p(θk) = 1,
p(θk+1) = 0, p,(θk+1) = 0,

...
...

p(θm) = 0, p,(θm) = 0.

(4.B.1)

Thus, we have m many conditions for
the polynomial p and m - 1 many condi-
tions for its derivative, and such a poly-
nomial uniquely exists. By the condi-
tions (4.B.1) the polynomial p satisfies the
identities (4.4.16).

To show that p satisfies the inequalities (4.4.17) considering p{+,k}, we proceed to locate
the zeros of p, which correspond to points of extreme values of p: The derivative p, is
a polynomial of degree 2m - 3, and thus, has 2m - 3 zeros. By the conditions (4.B.1),
we have m - 1 many zeros of p, located at nodes. For each pair of neighboring nodes
in {θ1, . . . , θk} and {θk+1, . . . , θm} the conditions (4.B.1) and Rolle,s Theorem imply the
existence of a zero of p, between the respective nodes. Thus, the derivative p, has m - 1
many simple zeros located at nodes and m- 2 many simple zeros located between nodes.
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With p(θk) > p(θk+1) and with the respective changes of sign for p, we conclude that p
satisfies the inequalities for p{+,k} in (4.4.17).
Furthermore, we have p(λ) > 1 for λ ϵ (θj , θj+1) with j = 1, . . . , k - 1 and λ < θ1, and

we have p(λ) > 0 for λ ϵ (θj , θj+1) with j = k, . . . ,m and λ > θm. Thus, the inequalities
for p{+,k} in (4.4.17) are strict for λ /ϵ {θ1, . . . , θm}.

In a similar manner we conclude results for p{-,k}.

λ

1.0

0.0

p
(λ
)

p(θk)

Figure 4.11: A numerical illustration of the
polynomial p subject to the
conditions (4.B.2); duplicated
from Figure 4.2.

Let p be a polynomial of degree 2m - 2
subject to the conditions

p(θ1) = 1, p,(θ1) = 0,
...

...
p(θk) = 1, p,(θk) = 0,
p(θk+1) = 0,
p(θk+2) = 0, p,(θk+2) = 0,

...
...

p(θm) = 0, p,(θm) = 0.

(4.B.2)

Then similar arguments as previously show
that such a polynomial p satisfies the iden-
tities (4.4.16) and inequalities (4.4.17) as-
sociated with p{-,k}.

Thus, the polynomials subject to the conditions (4.B.1) and (4.B.2) satisfy the desired
properties of p{+,k} and p{-,k}, respectively, which completes the proof.

Proof of Proposition 4.4.12. Let a = -∞ and b = ∞ to simplify the notation.
For the given pole s ϵ R we define the transformation

x : R \ {s} - R \ {0}, x(λ) := (λ- s)-1. (4.B.3)

For the case θ1 < s < θm the indices k1 > 1 and km = k1 - 1 are given in (4.4.33a) and
the values x(θj) satisfy the ordering

x(θkm) < x(θkm-1) < . . . < x(θ1) < 0 < x(θm) < x(θm-1) < . . . < x(θk1). (4.B.4a)

Otherwise, for s < θ1 (and s > θm) we have k1 = 1 and km = m as in (4.4.33b), and

x(θkm) < . . . < x(θk1) < 0, s < θ1
(
0 < x(θkm) < . . . < x(θk1), s > θm

)
. (4.B.4b)

For the index km we recall and highlight

km = k1 - 1, for θ1 < s < θm, and km = m, otherwise. (4.B.5)

For any of these cases we define the index mapping

ι : {1, . . . ,m} - {1, . . . ,m}, ι(j) :=

{
k1 - j, 1 ≤ j < k1,
m+ k1 - j, k1 ≤ j ≤ m.
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4 The Separation Theorem of Chebyshev-Markov-Stieltjes for Krylov subspaces

The action of ι is illustrated in the following table,

j 1 2 . . . k1 - 2 k1 - 1 k1 k1 + 1 . . . m- 1 m

ι(j) k1 - 1 k1 - 2 . . . 2 1 m m- 1 . . . k1 + 1 k1
, (4.B.6)

where km = k1-1 or km = m as specified in (4.B.5). ( Thus, in the case of s < θ1 or s > θm
this gives

j 1 = k1 2 . . . m- 1 m = km
ι(j) m m- 1 . . . 2 1

.
)

(4.B.7)

We remark that ι is involutory with ι(1) = km (ι(km) = 1), and ι(m) = k1 (ι(k1) = m).
Thus, this mapping is bijective and with ι(km) = 1 we have

ι(k)- 1 ϵ {1, . . . ,m- 1}, for k ϵ {1, . . . ,m} \ {km}. (4.B.8)

Let ξ1, . . . , ξm denote the sequence of x(θj) arranged as in (4.B.4), i.e.,

ξj := x(θι(j)), thus, ξ1 = x(θkm) < . . . < ξm = x(θk1).

We remark that ι being involutory implies

ξι(j) = x(θj). (4.B.9)

We recall the definition of the index set Ik given in (4.4.34), i.e.,

Ik =

{ {1, . . . , k, k1, . . . ,m}, 1 ≤ k < k1,
{k1, . . . , k}, k1 ≤ k ≤ m.

(4.B.10)

The set {x(θj) : j ϵ Ik} can be rewritten as follows: With ξι(j) = x(θj) (4.B.9) we have

{x(θj) : j ϵ Ik} =

{ {ξι(1), . . . , ξι(k)} U {ξι(k1), . . . , ξι(m)}, 1 ≤ k < k1, and

{ξι(k1), . . . , ξι(k)}, k1 ≤ k ≤ m.
(4.B.11)

We proceed to rewrite the indices of the sets on the right-hand side of this equation us-
ing (4.B.6). In particularly, the identities ι(1) = k1 - 1, ι(k1) = m and ι(m) = k1 imply

(ι(1), . . . , ι(k)) = (k1 - 1, k1 - 2, . . . , ι(k)) for k < k1 and

(ι(k1), . . . , ι(m)) = (m,m- 1, . . . , k1).

Thus,

{ξι(1), . . . , ξι(k)} U {ξι(k1), . . . , ξι(m)} = {ξι(k), ξm-1, . . . , ξm}, 1 ≤ k < k1. (4.B.12a)

In a similar manner, identity (4.B.6) yields

(ι(k1), . . . , ι(k)) = (m,m- 1, . . . , ι(k)), for k ≥ k1,

which implies
{ξι(k1), . . . , ξι(k)} = {ξι(k), . . . , ξm}, k1 ≤ k ≤ m. (4.B.12b)
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The identity (4.B.11) together with (4.B.12), under consideration of the different cases
for k, show

{x(θj) : j ϵ Ik} = {ξι(k), . . . , ξm}, k = 1, . . . ,m. (4.B.13)

In a similar manner the set Rk ∩ R in (4.4.34) for k = 1, . . . ,m satisfies

x(Rk) = [ξι(k),+∞) \ {0}, and x(Rs \Rk) = (-∞, ξι(k)) \ {0}, (4.B.14a)

where Rs = R\{s}. The first identity in (4.B.14a) is illustrated in Figure 4.12. Analogously,
the interior of Rk satisfies

x(Ro
k) = (ξι(k),+∞) \ {0}, and x(Rs \Ro

k) = (-∞, ξι(k)] \ {0}. (4.B.14b)

In the current setting we assume k satisfies k ϵ {1, . . . ,m} \ {km}, thus, with (4.B.8) we
have ι(k) - 1 ϵ {1, . . . ,m - 1}. For the sequence ξ1 < . . . < ξm and the index ι(k) - 1
we let p{+,ι(k)-1} and p{-,ι(k)-1} refer to the polynomials introduced in Proposition 4.4.6.
Additionally, we define g{±,k} by

g{±,k}(y) := 1- p{+, ι(k)-1}(y), k ϵ {1, . . . ,m} \ {km}. (4.B.15)

The identities (4.4.16) for p{±,ι(k)-1} write

p{±,ι(k)-1}(ξj) =
{

1, j = 1, . . . , ι(k)- 1,
0, j = ι(k), . . . ,m,

and this entails the following identities for g{±,k},

g{±,k}(ξj) =
{

0, j = 1, . . . , ι(k)- 1,
1, j = ι(k), . . . ,m.

With (4.B.13) this conforms to the following identities for the nodes θj ,

g{±,k}(x(θj)) =
{

1, j ϵ Ik,
0, otherwise.

(4.B.16)

In a similar manner the inequalities (4.4.17) for p{±,ι(k)-1} read

p{+,ι(k)-1}(y) ≥
{

1, y ≤ ξι(k)-1,

0, ξι(k)-1 < y,
and p{-,ι(k)-1}(y) ≤

{
1, y < ξι(k),

0, ξι(k) ≤ y,
(4.B.17)

and this entails

g{+,k}(y) ≥
{

0, y < ξι(k),

1, ξι(k) ≤ y,
and g{-,k}(y) ≤

{
0, y ≤ ξι(k)-1,

1, ξι(k)-1 < y.
(4.B.18)

With (4.B.14a) the inequalities (4.B.18) for g{+,k} yield inequalities on the domain of x,

g{+,k}(x(λ)) ≥
{

0, λ ϵ Rs \Rk,
1, λ ϵ Rk,

(4.B.19)
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To rewrite the inequalities (4.B.18) for g{-,k} we proceed in a similar manner: We first
consider the cases s < θ1 and s > θm. For these cases the action of the mapping ι is
illustrated in (4.B.7) and we observe

ι(k)- 1 = ι(k + 1), k = 1, . . . ,m- 1, and s < θ1 or s > θm.

Thus, we have ξι(k)-1 = ξι(k+1) for these cases and the identities (4.B.14b) imply

x(Ro
k+1) = (ξι(k)-1,+∞) \ {0}, and x(Rs \Ro

k+1) = (-∞, ξι(k)-1] \ {0}.

Together with the inequalities for g{-,k} in (4.B.18), this shows the following inequalities
in the domain of x,

g{-,k}(x(λ)) ≤
{

0, λ ϵ Rs \Ro
k+1,

1, λ ϵ Ro
k+1,

for s < λ1 or s > λm, and
k = 1, . . . ,m- 1.

(4.B.20)

Similar results hold for the case θ1 < s < θm (thus, km < m): The illustration in (4.B.6)
reveals

ι(k)- 1 = ι(k + 1), k ϵ {1, . . . ,m- 1} \ {km}, and ι(m)- 1 = ι(1).

Thus, with (4.B.14b) and the denotation Rm+1 = R1 we have

x(Ro
k+1) = (ξι(k)-1,+∞) \ {0}, k ϵ {1, . . . ,m} \ {km},

with similar results considering x(Rs \Ro
k+1). With this identity, the inequalities for g{-,k}

in (4.B.18) reveal inequalities similar to (4.B.20) for the case θ1 < s < θm. Together
with (4.B.20) for the case s < λ1 or s > λm, we conclude with

g{-,k}(x(λ)) ≤
{

0, λ ϵ Rs \Ro
k+1,

1, λ ϵ Ro
k+1,

k ϵ {1, . . . ,m} \ {km}, (4.B.21)

We define the rational function r{±,k} ϵ π2m-2/q
2
m-1 by

r{±,k}(λ) := g{±,k}(x(λ)).

Indeed, as demonstrated in Remark 4.B.1 further below, such a function is rational. In
Figure 4.13 and 4.14 we plot the rational function r{±,m} and the respective auxiliary
polynomial function g{±,m} for numerical examples. For further illustrations of r{-,m} we
refer to Figure 4.4 in Subsection 4.4.3.
The rational functions r{±,k} satisfy the identities (4.4.38) and inequalities (4.4.39) which

concludes the proof of Proposition 4.4.12: The identities (4.B.16) conclude the identi-
ties (4.4.38) for r{±,k}(θj) = g{±,k}(x(θj)). Analogously, (4.B.19) and (4.B.21) entail the
inequalities (4.4.39).

Furthermore, we consider the inequalities (4.B.19) and (4.B.21) to be strict for λ /=
{θ1, . . . , θm}. Indeed, for a given λ with λ /= {θ1, . . . , θm} we have y = x(λ) /= {ξ1, . . . , ξm}
and the underlying inequalities for p±,ι(k)-1 in (4.B.17) are strict, which carries over to the
inequalities (4.B.19) and (4.B.21).
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a)
s θk

the case θk > s: Rk = (s, θk]

b)
0 ξι(k)

x(Rk) = [ξι(k),+∞)

c) the case θk < s: Rk = (-∞, θk] U (s,+∞)
sθk

d)

0ξι(k)
x(Rk) = [ξι(k),+∞) \ {0}

►
+∞◄-∞

Figure 4.12: In these figures we illustrate the identity x(Rk) = [ξι(k),+∞) \ {0} (4.B.14a)
for given nodes θ1, . . . , θm. The pole s is given and satisfies θ1 < s < θm.
For the index k we consider two different cases, namely, we choose k such
that θk > s in Figure a) and b), and we choose k such that θk < s in Figure c)
and d).
- Figure a) and c) show the real axis with the nodes θ1, . . . , θm (,○,). Further-
more, the set Rk ∩ R given in (4.4.34) is highlighted by a dashed area.
- Figure a) and c) show the real axis with ξ1, . . . , ξm (,x,), i.e., the image
of θ1, . . . , θm under the transformation x (4.B.3) with x(θk) = ξι(k) (4.B.9).
Furthermore, the dashed area highlights x(Rk) which satisfies the iden-
tity (4.B.14a).
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b) k = 8, ι(k) = 4

x = x(λ)

g{-,k}(ξι(k))
◄

Figure 4.13: - In Figure a) we plot the rational function r{-,k} (introduced in Proposi-
tion 4.4.12) for a numerical example; we show r{-,k}(λ) over λ for a given
pole s = -3, and given nodes θ1, . . . , θm with m = 8. We have θ1 < s < θm,
namely, θkm < s < θk1 with km = 3 and k1 = 4. For j ϵ Ik we mark r{-,k}(θj)
by (,○,), and for j /ϵ Ik we mark r{-,k}(θj) by (,x,). The dashed lines illustrate
the upper bounds of r{-,k} given in (4.4.39).
- In Figure b) we show the auxiliary polynomial function g{-,k} which
appears in the proof of Proposition 4.4.12, namely, (4.B.15) therein.
The nodes ξ1, . . . , ξm correspond to the image of the nodes θj under x,
namely, ξι(j) = x(θj) for j = 1, . . . ,m. For k = 8 we have ι(k) = 4. The sym-
bols (,x,) and (,○,) mark g{-,m}(ξj) for j = ι(k)-1, . . . ,m and j = ι(k), . . . ,m,
respectively. The dashed lines illustrate the upper bounds of g{-,k} given

in (4.B.18).

Remark 4.B.1. Let g ϵ π2m-2 and let x(λ) = (λ- s)-1, then

r(λ) = g(x(λ)) (4.B.22)

defines a rational function in λ, namely, r ϵ π2m-2/q
2
m-1 for qm-1(λ) = (λ - s)m-1. To

demonstrate this result we define

.g(λ) = g
(
(λ- s)-1

)
(λ- s)2m-2. (4.B.23)

Expanding the right-hand side of (4.B.23) shows .g ϵ π2m-2. Substituting x(λ) and qm-1(λ)
in (4.B.23), and dividing by qm-1(λ)

2 reveals the representation

.g(λ)/qm-1(λ)
2 = g(x(λ)),

and thus, with (4.B.22) we have r(λ) = .g(λ)/qm-1(λ)
2. This shows r ϵ π2m-2/q

2
m-1.
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Figure 4.14: - In Figure a) and c) we plot the rational function r{+,k} (introduced in Propo-
sition 4.4.12) for numerical examples. The nodes θ1, . . . , θm with m = 8 and
the pole s are given as in Figure 4.13 a). For the index k we choose k = 7 in
Figure a) and k = 1 in Figure c). For j ϵ Ik we mark r{+,k}(θj) by (,○,), and
for j /ϵ Ik we mark r{+,k}(θj) by (,x,). The dashed lines illustrate the upper
bounds of r{+,k} given in (4.4.39).
- In Figure b) and c) we show the auxiliary polynomial function g{+,k} which
appears in the proof of Proposition 4.4.12, namely, (4.B.15) therein. The
function g{+,k} with k = 7 plotted in Figure b) is associated with the func-
tion r{+,k} in Figure a), and analogously, such a relation is given for Figure d)
and Figure c). For the index ι(k) which is relevant in the proof of Propo-
sition 4.4.12 we remark ι(k) = 5 for k = 7 and ι(k) = 3 for k = 1. As in
Figure 4.13 b), the nodes ξ1, . . . , ξm correspond to the image of the nodes θj
under x, namely, ξι(j) = x(θj) for j = 1, . . . ,m. The symbols (,x,) and (,○,)
mark g{+,m}(ξj) for j = ι(k)- 1, . . . ,m and j = ι(k), . . . ,m, respectively. The

dashed lines illustrate the upper bounds of g{+,k} given in (4.B.18).
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5 A localized near-best approximation
property for rational Krylov approximations
to exponentials of skew-Hermitian
matrices

5.1 Introduction

The matrix exponential yields an evolution operator to a linear, homogeneous system of dif-
ferential equations and is relevant for many applications. In the present work we consider
rational Krylov approximations to the action of exponentials of skew-Hermitian matri-
ces, i.e., e-i tAu where A ϵ Cnxn is Hermitian, t > 0 denotes a time step and u ϵ Cn

denotes the initial vector. For the problem setting we refer to Section 5.2.

As the main result of the present chapter, we discuss a new near-best approximation
property for the rational Krylov approximation (Proposition 5.3.2 in Section 5.3). More
precisely, an error bound based on the approximation error of a scalar best approxima-
tion of the imaginary exponential on an interval covering a subset of the spectrum of A,
which holds independently of the full spectrum of A. Comparing with the classical near-
best approximation property which depends on a scalar best approximation on the convex
hull of the spectrum of A, we refer to our result as a localized near-best approximation
property. Our result is based on properties of the decomposition of the initial vector u
in the eigenbasis of A (Assumption (A1) in Proposition 5.3.2). We further require that
these spectral properties of the initial vector are preserved in the rational Krylov subspace
(Assumption (A2) in Proposition 5.3.2). As a key aspect of the present work, we further
discuss whether Assumption (A2) can be deduced from spectral properties of A and u,
especially, when Assumption (A1) holds true. Such a statement is not proven here in a
practical setting but seems to be valid for relevant examples (numerical experiments are
presented in Section 5.4).

As an application for the localized near-best approximation property provided by Propo-
sition 5.3.2, we discuss a problem setting where the rational Krylov approximation can
show a grid-independent convergence rate, in contrast to a polynomial Krylov approxima-
tion: Let A and u correspond to a spatial grid discretization of an unbounded differential
operator and an initial state, respectively. Then the error of the polynomial Krylov ap-
proximation to the matrix exponential typically correlates with the spectral norm of A,
which increases with a refinement of the underlying grid. On the other hand, the rational
Krylov approximation yields a grid-independent convergence rate in relevant cases. We
give an overview on previous works on a grid-independent convergence rate for the rational
Krylov approximation in Section 5.2. When the initial vector u is related to an initial state
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5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

of high regularity, then u fits to the setting of Assumption (A1). If we further assume
that Assumption (A2) holds in this setting independently of a grid refinement (which is
reasonable for the numerical experiments in Section 5.4), then Proposition 5.3.2 provides
a grid-independent best-approximation property. This yields further insights on a grid-
independent convergence rate for the rational Krylov approximation and a proper choice
for the poles of the rational Krylov subspace, which will be topic of future work.

5.2 Problem setting and previous work

Let φ(t) ϵ Cn be the solution of a large system of ordinary differential equations (ODEs),
with an Hermitian matrix A ϵ Cnxn and an initial vector u ϵ Cn at t = 0,

φ,(t) = -iAφ(t), φ(0) = u, -iA ϵ Cnxn skew-Hermitian. (5.2.1)

A prominent example is a spatially discrete evolution equation of Schr:odinger type, with
a sparse matrix A, typically resulting from an ansatz based on localized basis functions on
a given grid. To discuss the effects of a refinement of the underlying grid, we introduce a
generalized inner product on Cn which is motivated by an inner product on the underlying
function space, e.g., the L2-inner product on the space of functions which are square-
integrable on the underlying spatial domain. For two vectors u, v ϵ Cn we define the
M-inner product by1

(u, v)M = uHMv, (5.2.2)

where M ϵ Cnxn is an Hermitian2 positive definite matrix which is given by the underlying
problem setting. In the case of A being based on a finite difference discretization of a
differential operator, the M-inner product typically corresponds to a scaled Euclidean inner
product, e.g.,3 (u, v)M = h (u, v)2 for a one-dimensional spatial domain with grid with h.
With (5.2.2) this conforms to M = h I. Otherwise, in the case of an underlying finite
element method (FEM) discretization, the matrix M typically corresponds to the mass
matrix of the finite element space.
In the sequel, we assume that A is Hermitian (self-adjoint) w.r.t. the M-inner product.

Let λ1, . . . , λn ϵ R denote the eigenvalues of A, with λ1 ≤ . . . ≤ λn. As a typical case, A
includes a discretization of the negative Laplacian -Δ, with4 ║A║M = maxj=1,...,n |λj | - ∞
for n - ∞, i.e., A is unbounded for n - ∞.
A basic assumption is λ1 ≥ a ϵ R, with a independent of the problem size n.

Krylov approximation of the matrix exponential function. The solution of (5.2.1) is
given by the matrix exponential,

φ(t) = e-itAu =
∞∑
k=0

(-itA)ku

k!
. (5.2.3)

1The M-inner product given in (5.2.2) induces a vector norm, i.e., ║u║M =
√

(u, u)M, which is equivalent
to the Euclidean norm.

2The matrix M is Hermitian w.r.t. the Euclidean inner product, i.e., M = MH.
3By (., .)2 and ║ . ║2 we denote the Euclidean inner product and norm in Cn, respectively.
4The vector M-norm induces a matrix norm which is equivalent to the spectral norm.
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5.2 Problem setting and previous work

For the time propagation of (5.2.1) it is not required to compute the matrix e-i tA directly
which is rarely beneficial for efficiency reasons. Instead, in practice one approximates its ac-
tion (5.2.3) applied to a given initial vector u. A common approach relies on approximation
of φ(t) in a polynomial Krylov subspace

Km(A, u) = span{u,Au, . . . , Am-1u}.

Such a type of approximation was early applied in the field of quantum mechanics [NW83,
PL86], and a more extensive study is given in [Lub08]. For the exponential of a symmetric
matrix, the Krylov approximation was early studied in [DK89, DK92, GS92, Saa92, HL97],
and many other works are devoted to the case of more general matrices.
Let us introduce the notation for polynomial Krylov subspaces. By Vm ϵ Cnxm we denote

the M-orthonormal5 basis of Km(A, u) constructed by the Lanczos iteration starting from u,
with

(Vm, u)M = β0 e1, β0 = ║u║M, e1 = (1, 0, . . . , 0)T ϵ Rm, (5.2.4)

and let6

Jm = (Vm, A Vm)M ϵ Rmxm (5.2.5)

denote the low-dimensional representation of A w.r.t. the Krylov subspace Km(A, u). We
refer to the polynomial Krylov approximation as

β0Vm e-i tJme1 ≈ e-i tAu. (5.2.6)

Here, e-i tJm typically represents a low-dimensional problem which can be treated in a
direct manner in contrast to the original high-dimensional problem.
We use the denotation πm-1 for the class of complex polynomials of degree ≤ m - 1.

The Krylov approximation (5.2.6) is near-optimal in the class of corresponding polynomial
approximations. This result was stated early in [SL96] and others for the symmetric case
and remains valid in a more general setting. An a priori estimate for the skew-Hermitian
case is given in [Lub08, Theorem 2.8], and holds w.r.t. the M-inner product,

║β0Vm e-i tJme1 - e-i tAu║M ≤ 2 min
pϵπm-1

max
λϵ[λ1,λn]

|p(λ)- e-i tλ|║u║M.

This upper bound provides a rule of thumb for the Krylov dimension to obtain superlinear
convergence. In general, a proper Krylov dimension m is related to the problem size (via
║A║M) and the time step t, namely m ≈ t║A║M for an Hermitian matrix A and the ap-
proximation of λ ,- e-i tλ, see also [GS92, HL97]. In our setting a grid refinement for the
underlying discretization results in a larger norm ║A║M and respectively, a larger Krylov
dimension m will be required to compute an accurate approximation in typical cases.

Over the last years, rational Krylov techniques have become more and more popular.
These are based on a rational Krylov subspace

Qm(A, u) = {r(A)u : r ϵ πm-1/qm-1},
5For two vectors x, y ϵ Cm an M-orthonormal basis Vm satisfies (Vm x, Vm y)M = (x, y)2.
6The notation (Vm, A Vm)M with Vm = (v1, . . . , vm) ϵ Cnxm refers to a m x m-dimensional matrix for
which the (j, k)-th entry corresponds to (vj , Avk)M.
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5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

with a preassigned set of poles s1, . . . , sm-1 ϵ C defining the denominator qm-1(λ) =πm-1
j=1 (λ - sj). For an early work on rational Krylov techniques we refer to [Ruh84].

Let Um ϵ Cnxm be a given M-orthonormal basis of Qm(A, u) for which we define7

x = (Um, u)M ϵ Cm. (5.2.7)

In contrast to the polynomial case, where Vm corresponds to the Krylov basis constructed
by the Lanczos iteration, various algorithms exist to construct a rational Krylov subspace.
Some specific algorithms for this purpose are given in more detail in Section 5.4. How-
ever, the notation Um for the rational Krylov basis suits a rather general setting. For
the corresponding low-dimensional representation of A w.r.t. Qm(A, u) we introduce the
denotation8

Am = (Um, AUm)M ϵ Cmxm. (5.2.8)

Similar to (5.2.6) the resulting rational Krylov approximation of the matrix exponen-
tial (5.2.3) is then given by

Um e-i tAm x ≈ e-i tAu. (5.2.9)

A review on rational Krylov methods for matrix functions is given in [G:ut10].
For the algorithmic construction of a rational Krylov subspace, several applications of an

inverse of full dimension n are required, relying on iterative techniques if applicable. This
typically increases the computational cost compared to the polynomial case. Furthermore,
the choice of poles will strongly influence the quality of the approximation and some a priori
knowledge of the problem will be essential. On the other hand, making use of rational
functions can significantly enhance the quality of the approximation.
For a dissipative system a rational approximations can benefit from the decaying nature

of solutions. For this case, rational Krylov approximations with a single pole are studied
in [vdEH06], and a priori convergence results independent of the matrix spectrum are given.
The influence of the refinement of the underlying spatial discretization on the convergence
behavior is typically not critical here. Similar results hold for sectorial operators [MN04].
For the skew-Hermitian case (5.2.1), on the other hand, solutions show an oscillatory

behavior, and the approach from [vdEH06] and [MN04] is not directly applicable: Similar
to the polynomial case we have a near-optimal convergence rate for the rational Krylov
approximation in a class of rational functions r with denominator qm-1, see also [G:ut10,
Theorem 4.10] or [DKZ09, BR09],

║Um e-i tAm x- e-i tAu║M ≤ 2 min
rϵπm-1/qm-1

max
λϵ[λ1,λn]

|r(λ)- e-i tλ|║u║M. (5.2.10)

For the dissipative case, an error bound of the type (5.2.10) depends on an approximation
error of the negative exponential, i.e., maxλϵR+ |r(λ) - e-tλ|, instead of the imaginary
exponential, and an upper bound independent of the matrix spectrum is viable [vdEH06,
Lemma 3.1 and following remarks]. Such a result does not appear to be plausible for
the skew-Hermitian case based on (5.2.10). Nevertheless, desirable convergence properties

7With (Um, u)M = x ϵ Cm we include the case where u is not the first basis vector of Um. Note that
║x║2 = ║u║M.

8In the sequel we refer to the matrix Am as Rayleigh quotient.
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5.3 A localized near-best approximation property for the rational Krylov approximation

have been observed in relevant applications of the skew-Hermitian case, e.g., for time
integration of Maxwell equations in [Bot16] and [HPS+15]. For the skew-Hermitian case,
a grid-independent convergence behavior seems to require further regularity properties of
the initial vector u. An appropriate theory is introduced within a series of works9 [GG10,
Gri12, GG17] which we now briefly recapitulate. The work of [GG10] also considers the
so-called φ-functions closely related to the exponential function; e.g.,

e-i tAu = u+ φ1(-i tA)(-i tA)u, with φ1(λ) = (eλ - 1)/λ. (5.2.11)

The matrix φ-functions can be approximated by a truncated resolvent series ([GG10]) or
in a resolvent Krylov subspace (i.e., a rational Krylov subspace with a single pole, [Gri12]),
with a sublinear convergence rate independent of the underlying grid. For the resolvent
series in [GG10] this result carries over to the respective matrix exponential function if
additional regularity assumptions on the initial vector u are prescribed. In particular, Au
is assumed to be bounded in norm independent of the grid. Intuitively, the importance
of such bounds on Au can be understood from (5.2.11). With the smoothness operators
introduced in [GG17] and regularity assumptions on u, results of [Gri12] carry over to the
approximation of the matrix exponential in the resolvent Krylov subspace, essentially as
in [GG17, Theorem 7.1].

5.3 A localized near-best approximation property for the rational
Krylov approximation

As a main result of the present chapter we state a localized near-best approximation prop-
erty for the rational Krylov approximation, see Proposition 5.3.2 below. This result provides
a near-best approximation property which can hold independently of the full spectrum of A,
and yields further insights on a potential grid-independent convergence rate of the rational
Krylov approximation.
We proceed with formulating appropriate assumptions.

Influence of the initial vector u on the quality of the Krylov approximation: a general
consideration. Let Q = (q1, . . . , qn) ϵ Cnxn represent an M-orthonormal eigenbasis of A
with eigenvalues λ1 ≤ . . . ≤ λn ϵ R, i.e., Aqj = λjqj and (qj , qk)M = δjk. For the initial
vector u we define the spectral coefficients w1, . . . , wn ϵ C by wj = (qj , u)M. Then,

u =
n∑

j=1

wj qj , with ║u║2M =
n∑

j=1

|wj |2. (5.3.1)

Let .pm-1 denote the polynomial interpolant of λ ,- e-i tλ at the eigenvalues of Jm defined
in (5.2.5), which are also known as Ritz values. For the error norm of the polynomial
Krylov approximation we have ([Eri90])

║β0Vm e-i tJme1 - e-i tAu║M =
( n∑

j=1

|.pm-1(λj)- e-i tλj |2 |wj |2
)1/2

. (5.3.2a)

9See also [GH08] for trigonometric functions which are closely related to the exponential of a skew-
Hermitian matrix.
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5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

A similar result holds for rational Krylov approximations: Let .rm-1 be the rational inter-
polant of λ ,- e-i tλ at the eigenvalues of Am defined in (5.2.8), i.e., .rm-1 = ~pm-1/qm-1

where ~pm-1 is the Lagrange interpolant of λ ,- qm-1(λ)e
-i tλ at these eigenvalues. The

identity Um e-i tAm x = .rm-1(A)u (see [G:ut10, Theorem 4.8]) and (5.3.1) directly yield a
counterpart of (5.3.2a) for the rational case, namely

║Um e-i tAm x- e-i tAu║M =
( n∑

j=1

|.rm-1(λj)- e-i tλj |2 |wj |2
)1/2

, (5.3.2b)

with the Rayleigh quotient Am defined in (5.2.8).

Some reasonable settings concerning the spectral coefficients of the initial vector u
corresponding to a discretized initial state of higher regularity. We proceed with some
remarks on the present setting, namely that (5.2.1) has its origin in a spatially discretized
partial differential equation (PDE). In this context, the regularity of the underlying differ-
ential equation describes how many times the differential operator can be applied to the
initial state in accord to the domain of definition of the underlying operator. For a proper
spatial discretization this entails grid-independent bounds on ║Aku║M in a typical setting,
where k ϵ N0 depends on the level of regularity. Furthermore, we consider the conver-
gence of eigenvalues λj and spectral coefficients wj defined in (5.3.1) for a sufficiently fine
grid, i.e., n - ∞. We classify eigenvalues λj to be ,relevant, if the corresponding spectral
coefficient wj is of significant size. Typically, eigenvalues do not converge with a uniform
speed, e.g., eigenvalues of the Laplace operator related to higher frequencies require a finer
grid to converge. Nevertheless, once the relevant eigenvalues are roughly approximated,
then grid-independent bounds on ║Aku║M = (

∑n
j=1 λ

2k
j |wj |2)1/2 entail that the spectral

coefficients of ,irrelevant, eigenvalues related to higher frequencies are appropriately small
in size.
Motivated by regularity properties of an underlying initial state, we proceed to discuss

different settings for the spectral coefficients w1, . . . , wn of the initial vector u, and the
potential effects of a grid refinement on the error of the polynomial and rational Krylov
approximation via the error representation in (5.3.2).

(W1) We first consider the initial vector u ϵ Cn to represent a discretization of a smooth
(analytic) initial state. Technically, we assume there exists an interval [a, b] which we
consider to be grid-independent and for which the following assumptions hold true:
We assume the interval [a, b] covers the relevant eigenvalues, and therefore, |wj | <
║u║M for any λj /ϵ [a, b]. Additionally, we assume that |wj | decays exponentially in j
for λj /ϵ [a, b].

The polynomial .pm-1 and the rational function .rm-1 need to provide an accurate
approximation of λ ,- e-i tλ for sum terms related to relevant eigenvalues λj in (5.3.2),
in order to guarantee an accurate Krylov approximation. In the polynomial case,.pm-1(λ) increases polynomially in λ. Nevertheless, with the present assumptions of
|wj | decaying exponentially the polynomial increase of .pm-1(λ) is not critical and
the polynomial approximation can show close to grid-independent convergence rates
in this case. For the rational function .rm-1 in (5.3.2b) it is reasonable to assign
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5.3 A localized near-best approximation property for the rational Krylov approximation

poles close to the relevant eigenvalues in [a, b] such that relevant eigenvalues are
first resolved in the Krylov subspace. Hence, we consider .rm-1 to be bounded on the
,irrelevant, part of the spectrum, λj /ϵ [a, b]. This lets us expect that both, polynomial
as well as rational Krylov approximations, have the potential for grid-independent
convergence rates in such cases.

(W2) A major topic of this work is to consider also perturbed states. We assume that the
interval [a, b] covers the relevant eigenvalues independently of the grid. Furthermore,
let λl, . . . , λn denote the ,irrelevant, eigenvalues, then we assume (

∑n
j=l |wj |2)1/2 <

ε║u║M with 0 < ε < 1 being independent of the grid.

Thus, the relevant eigenvalues are located in a specific part of the spectrum, and the
contribution of the remaining eigenvalues to the initial vector constitutes a pertur-
bation which is sufficiently small in norm. Such a perturbation may, for instance,
originate from approximation of an (originally) analytical initial state, e.g., resulting
from previous integration steps.

In this case the behavior of a polynomial approximation can significantly differ from
the behavior of a rational approximation. Although the perturbation is assumed to
be small, the polynomial increase of .pm-1(λ) can scale up the error terms in (5.3.2a)
related to larger eigenvalues λj , especially for λj /ϵ [a, b]. This effect is strengthened
with the existence of larger eigenvalues λj , hence, the influence of the refinement
of the underlying spatial discretization a grid can be critical for the approximation
performance of .pm-1(λ). On the other hand a rational function .rm-1(λ), with a
proper choice of poles, is bounded for larger choices of λ and does not critically scale
up error terms related to λj /ϵ [a, b], therefore, a grid-independent convergence can
be expected for the rational approximation.

(W3) As a theoretical consideration we comment on the case of an initial vector u which
is ,uniformly spread, over the spectrum of A. In this case both, the polynomial and
rational Krylov approximation, need to give an accurate approximation on the full
spectrum and for both the difficulty of this problem increases with the problem size,
in particular on the choice of the underlying grid.

One of our main interests is case (W2), concerning rational approximation, for which we
may expect a significantly improved performance compared to the polynomial case.

Stability properties of rational functions and a grid-independent convergence rate for
bounded rational approximants to the matrix exponential. Here the term stability is
used according to the context of numerical time integration (see also [HW02]), which fits
well to the approximation of the exponential function. In a traditional context the stability
study of a numerical integrator considers stability domains, subsets of the complex plane
for which the time integration step satisfies specific bounds. In our setting we consider a
bounded rational approximation of the exponential function on a subset of the imaginary
axis. For a fixed qm-1 ϵ πm-1 we denote

Rϱ,b = {r = p/qm-1 : p ϵ πm-1, sup
λϵ(b,+∞)

|r(λ)| ≤ ϱ}. (5.3.3)
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A prominent example for functions in the class Rϱ,b arise from A-acceptable rational ap-
proximations to the exponential (which correspond to A-stable numerical integrators). This
relation is further clarified in Remark 5.A.1, Appendix 5.A.
In the following proposition we give a grid-independent error bound for a rational ap-

proximation of the matrix exponential function with assumptions according to case (W2)
and assuming that the rational approximant is properly bounded.

Proposition 5.3.1. Let λ1, . . . , λl-1 ϵ [a, b] and (
∑n

j=l |wj |2)1/2 < ε ║u║M. Consider
the class Rϱ,b defined in (5.3.3) with fixed denominator qm-1, assuming that qm-1(A) is
invertible. Then, for r ϵ Rϱ,b,

║r(A)u- e-i tAu║M ≤ max
λϵ[a,b]

|r(λ)- e-i tλ| ║u║M + ε(1 + ϱ)║u║M. (5.3.4)

Proof. See Appendix 5.A.

With Assumption (W2), i.e., if [a, b] and ε are independent of the underlying discretiza-
tion, we refer to the error bound from Proposition 5.3.1 as grid-independent.

A new approach to motivate a grid-independent convergence rate for the rational Krylov
approximation. Now we consider a rational Krylov approximation with denominator qm-1

defined via preassigned poles, and Rϱ,b ∩ πm-1/qm-1. We recall r(A)u = Um r(Am)x
for x given in (5.2.7) and r ϵ πm-1/qm-1, see [G:ut10, Lemma 4.6] and others. For
arbitrary r ϵ Rϱ,b this implies

║Um e-i tAm x- e-i tAu║M ≤ ║r(A)u- e-i tAu║M + ║Umr(Am)x- Ume-i tAm x ║M. (5.3.5)

Due to Um being an M-orthonormal basis, the second term on the right-hand side of this
inequality satisfies

║Umr(Am)x- Ume-i tAm x ║M = ║r(Am)x- e-i tAm x ║2,

and (5.3.5) simplifies to

║Um e-i tAm x- e-i tAu║M ≤ ║r(A)u- e-i tAu║M + ║r(Am)x- e-i tAm x ║2. (5.3.6)

For the first term on the right-hand side of (5.3.6) we can apply Proposition 5.3.1. The
second term is of a similar type, substituting A and u by Am and x, respectively. Hence,
we require conditions of Proposition 5.3.1 to be valid w.r.t. the spectral decomposition of x
in the spectrum of Am. We introduce the notation

θ1, . . . , θm ϵ R, and Qm ϵ Cmxm

for the eigenvalues and the l2-orthonormal10 eigenbasis of Am, respectively, i.e., Am =
QmθmQH

m, with θm = diag(θ1, . . . , θm). We assume the ordering

θ1 < . . . < θm.

10The notation ;l2-orthonormal, refers to a basis orthonormal w.r.t. the Euclidean inner product.
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Furthermore, we let c1, . . . , cm ϵ C denote the coefficients of x in the eigenbasis of Am

defined by (c1, . . . , cm)T = QH
m x. We will also refer to these coefficients as the spectral

coefficients w.r.t. the Krylov subspace.

We now give a new upper bound on the error norm for rational Krylov approximations
of the matrix exponential.

Proposition 5.3.2. Let Um span the rational Krylov subspace Qm(A, u) with poles given
by qm-1, and x = (Um, u)M and Am = (Um, AUm)M. With the notation introduced before,
we assume the following conditions to hold for ε, .ε > 0 and some indices l, k:

(A1) λ1, . . . , λl-1 ϵ [a, b] with (
∑n

j=l |wj |2)1/2 ≤ ε║u║M, and

(A2) θ1, . . . , θk-1 ϵ [a, b] with (
∑m

j=k |cj |2)1/2 ≤ .ε║u║M.

Let Rϱ,b be given by (5.3.3) with denominator qm-1. Then,

║Ume-i tAmx- e-i tAu║M ≤ 2 min
rϵRϱ,b

max
λϵ[a,b]

|r(λ)- e-i tλ|║u║M + (1 + ϱ)(ε+ .ε)║u║M.

Proof. See Appendix 5.A.

In Proposition 5.3.2, Assumption (A1), i.e., the choice of [a, b] and ε, is based on proper-
ties of the underlying problem and can be assumed independently of the spatial discretiza-
tion in a reasonable setting (W2). On the other hand, Assumption (A2) cannot be justified
in an a priori sense without further considerations. However, the spectral coefficients cj
of x in the Krylov subspace are closely related to the spectral coefficients wj of u.

As an example we proceed with a result based on Remark 4.4.14 and Corollary 4.4.7
(Section 4.4 in Chapter 4). With the assumption a < λ1 in the present chapter, the
notation a in the present chapter conforms to Chapter 4. However, the notation b has
a different meaning in the present chapter and Chapter 4; we apply results of Chapter 4
with b = ∞.

Corollary 5.3.3. [Remark 4.4.14 and Corollary 4.4.7] Consider the rational Krylov sub-
space with a single pole s < λ1 of multiplicity m - 1, i.e., qm-1(λ) = (λ - s)m-1. Let
l = l(k - 1) ϵ N be defined by

λl(k-1) < θk-1 ≤ λl(k-1)+1 for 1 < k ≤ m. (5.3.7)

Then the spectral coefficients in the Krylov subspace satisfy

m∑
j=k

|cj |2 <
n∑

j=l(k-1)+1

|wj |2 for k = 2, . . . ,m. (5.3.8)

Proof. Following Remark 4.4.14, the spectral coefficients cj and the measure μn as given
in (4.4.13) in Subsection 4.4.2 satisfy the inequalities given in Corollary 4.4.7. Particularly,
the upper bound in (4.4.22b) in Corollary 4.4.7 yields

m∑
j=k

|cj |2 < μn((θk-1,∞)).
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5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

With the index l as in (5.3.7), the measure μn as in (4.4.13) as satisfies

μn([θk-1,∞)) =
n∑

j=l(k-1)+1

|wj |2,

which implies (5.3.8).

Without going into detail, we remark that for the Ritz values θ1, . . . , θm ϵ (λ1, λn), the
index l(k - 1) with 1 ≤ l(k - 1) < n is well-defined in (5.3.7), and θk-1 ≤ λl(k-1)+1 < θk.
In order to apply Corollary 5.3.3 we assume that there exist at least one Ritz value θk > b,
otherwise, with a < θ1 Assumption (A2) is trivially satisfied. We remark a special case for
which Corollary 5.3.3 specifies .ε in (A2): Let (A1) be satisfied, and

θk-1 ≤ b < λl(k-1)+1 < θk, then Corollary 5.3.3 implies
( m∑

j=k

|cj |2
)1/2

< ε║u║M.

(5.3.9)
Thus, for the case (5.3.9) Assumption (A2) can be concluded from (A1) with .ε = ε. In a
general setting, λl(k-1)+1 ϵ [a, b] is plausible, and further properties of the Krylov subspace
have to be considered to conclude (A2) in an a priori sense. Such arguments will not be
followed here further. In Section 5.4 we present numerical examples which suggest that (A1)
implies Assumption (A2) to hold with .ε ≈ ε independently of the underlying grid width.

We proceed to give similar results for the rational Krylov subspace with a single pole sϵR
of multiplicity m - 1 which is located within the range of the eigenvalues of A, i.e., λ1 <
s < λn, where the choice λ1 < s < b is reasonable in the setting of Proposition 5.3.2. To
be more precise, we assume θ1 < s < θm for the Ritz values, which certainly holds for a
sufficiently large m when λ1 < s < λn. We proceed with the following result based on
Corollary 4.4.16 (Subsection 4.4.3 in Chapter 4).

Corollary 5.3.4. [see Corollary 4.4.16] Consider the rational Krylov subspace with a single
pole s ϵ R of multiplicity m-1 and λ1 < s < λn. We further assume θ1 < s < θm. Let the
index k be given with k > 1, and let l(k - 1) ϵ N and l(1) ϵ N be defined by (5.3.7). Then

m∑
j=k

|cj |2 ≤
l(1)∑
j=1

|wj |2 +
n∑

j=l(k-1)+1

|wj |2. (5.3.10)

Proof. The spectral coefficients cj and the measure μn as given in (4.4.13) in Subsec-
tion 4.4.2 satisfy the inequalities given in Corollary 4.4.16. Particularly, the upper bound
in (4.4.57c) in Corollary 4.4.16 yields

m∑
j=k

|cj |2 ≤ μn((a, θ1) U (θk-1,∞)).

With the index l as in (5.3.7), the measure μn as in (4.4.13) satisfies

μn((a, θ1) U [θk-1,∞)) =

l(1)∑
j=1

|wj |2 +
n∑

j=l(k-1)+1

|wj |2,
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5.3 A localized near-best approximation property for the rational Krylov approximation

which entails (5.3.8).

The upper bound in (5.3.10) includes spectral coefficients wj related to eigenvalues λj

which are located on the left side of the spectrum. In the setting of Proposition 5.3.2 these
spectral coefficients can be of larger size. Nevertheless, numerical illustrations in Section 5.4
suggest that Assumption (A2) holds with .ε ≈ ε in the present setting.

Further choices for the poles of the rational Krylov subspace are not discussed in theory.
However, for the numerical experiments in Section 5.4 we also consider Krylov subspaces
according to a single complex pole or multiple poles, respectively.

We proceed with remarks on quasi-orthogonal residual (qor-)Krylov approximations.

The qor-Krylov approximation with a preassigned eigenvalue. The rational qor-Krylov
approximation is introduced in Subsection 4.3.2 (Chapter 4) and is given by

Ume-itBmx ≈ e-itAu, (5.3.11)

where Um denotes an orthonormal basis of the rational Krylov subspace Qm(A, u), the vec-
tor x refers to the representation of u in the respective orthonormal basis, and Bm ϵ Cmxm

denotes the qor-Krylov representation which is introduced in Subsection 4.3.2 (Chapter 4).
One of the eigenvalues of Bm is preassigned, and we denote it by ξ ϵ R. In the present
setting we reuse the denotations θ1, . . . , θm and c1, . . . , cm for the eigenvalues of Bm and
the respective spectral coefficients of x, respectively.
The error of the qor-Krylov approximation is bounded similar to Proposition 5.3.2: Fol-

lowing Proposition 4.3.5 in Subsection 4.3.2 (Chapter 4), the identity Umr(Bm)x = r(A)u
holds true for r ϵ πm-1/qm-1. Furthermore, we need to exclude the case θ1 < a, where θ1
denotes the smallest eigenvalue of Bm (see also Proposition 4.3.1 in Section 4.3, Chapter 4
for more details considering the eigenvalues of Bm). Then the proof of Proposition 5.3.2
remains valid in the setting of the qor-Krylov approximation. Thus, with the assumptions
and denotations of Proposition 5.3.2 we have

║Um e-i tBmx- e-i tAu║M ≤ 2 min
rϵRϱ,b

max
λϵ[a,b]

|r(λ)- e-i tλ|║u║M+(1+ϱ)(ε+ .ε)║u║M. (5.3.12)

For the qor-Krylov representation Bm, bounds on the spectral coefficients similar to
Corollary 5.3.3 and 5.3.4 hold true. The main reason why we present the qor-Krylov ap-
proximation at this point is the possibility to preassign one of the eigenvalues θ1, . . . , θm,
which we exploit to simplify bounds on the spectral coefficients, in order to deduce As-
sumption (A2) from Assumption (A1). However, in the setting of the following remark,
Assumption (A2) with .ε = ε can be concluded from (A1) but the case θ1 < a can occur,
and the error bound (5.3.12) as such does not hold in this case.

Remark 5.3.5. We consider the rational Krylov subspace with a single pole s < λ1 of
multiplicity m - 1. Let one of the eigenvalues of Bm be preassigned at ξ = b, where b
corresponds to the right interval boundary of [a, b] according to (5.3.12). Similar to the
Ritz values, we assume the ordering θ1 < θ2 < . . . < θm for the eigenvalues of Bm.
Furthermore, we assume that at least one of the eigenvalues of Bm is larger than b, and
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5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

let k ≤ m denote the smallest index such that θk > b. Thus, we have θk-1 = b for the
preassigned eigenvalue ξ = b of Bm. The index l = l(k- 1) as in (5.3.7) is well-defined for
the current setting, and similar to Corollary 5.3.3, we have

m∑
j=k

|cj |2 ≤
n∑

j=l(k-1)+1

|wj |2.

Thus, we can recreate the result of Corollary 5.3.3 for the spectrum of the qor-Krylov
representation Bm in the current setting. Furthermore, with θk-1 = b and l(k - 1) as
given in (5.3.7) we have λl(k-1)+1 > b, and previous remarks, especially (5.3.9), imply that
Assumption (A2) with .ε = ε can be concluded from (A1) in this case.

Unfortunately, the case θ1 < a can occur, see Proposition 4.3.1 in Section 4.3. In the
case of θ1 < a the error bound (5.3.12) does not hold as such and an a priori statement on
the error of the qor-Krylov approximation cannot be given in general.

As a second approach to gain theoretical benefit from the qor-Krylov approximation we
consider the case of a single pole s ϵ (λ1, λn). Let Bm be the qor-Krylov representation
with a preassigned eigenvalue ξ = a, where a corresponds to the left interval boundary of
[a, b] according to (5.3.12) and we further assume a < λ1. In this case we have θ1 = a and
θ2, . . . , θm ϵ (λ1, λn), and the error bound in (5.3.12) holds true.

We proceed with bounds on the spectral coefficients in the setting of the qor-Krylov
representation, based on results given in Subsection 4.4.3 in Chapter 4.

Corollary 5.3.6. [see Remark 4.4.17] Let Bm be the qor-Krylov representation correspond-
ing to the rational Krylov subspace with a single pole s ϵ R of multiplicity m - 1 and a
preassigned eigenvalue ξ = a < λ1. Thus we have θ1 = a. We further assume θ1 < s < θm.
Furthermore, let c1, . . . , cm denote the spectral coefficients of x w.r.t. the l2-orthonormal
eigenbasis of Bm. Let the index k be given with k > 1, and l = l(k-1) be defined by (5.3.7).
Then,

m∑
j=k

|cj |2 ≤
n∑

j=l(k-1)+1

|wj |2. (5.3.13)

Proof. Following Remark 4.4.17, we have

m∑
j=k

|cj |2 ≤ μn((θk-1,∞)),

and with μn([θk-1,∞)) =
∑n

j=l(k-1)+1 |wj |2, this implies (5.3.13).

In contrast to Corollary 5.3.4, which corresponds to Am, the upper bound in Corol-
lary 5.3.6, which corresponds to Bm, does not include spectral coefficients w1, . . . , wl(1)

which can be of larger size in the setting of Proposition 4.3.1. Nevertheless, Corollary 5.3.6
cannot be used to justify Assumption (A2) with .ε = ε from (A1) in an a priori manner
(see also arguments following Corollary 5.3.3).
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5.4 Numerical illustrations concerning the assumptions of Proposition 5.3.2

Remark 5.3.7. We consider a special case for which Assumption (A1) implies (A2)
with .ε = ε. Let Bm be the qor-Krylov representation corresponding to the rational Krylov
subspace with a single pole s = b of multiplicity m-1, and a preassigned eigenvalue ξ = a <
λ1. Let there be an index k > 1 with θk-1 < s < θk as in (A2). We apply Theorem 4.4.11
(Subsection 4.4.3 in Chapter 4) for the index set Im = {k, . . . ,m} as given in (4.4.34). The
upper bound in (4.4.36) yields

m∑
j=k

|cj |2 < μn(R
o
1).

With θ1 = a, the set Ro
1 as given in (4.4.34) in Subsection 4.4.3 simplifies to Ro

1 =
(s,∞). The measure μn is given in (4.4.13) in Subsection 4.4.2 and satisfies μn((s,∞)) =∑n

j=l |wj |2 for the index l as in Assumption (A1). Thus, we have

m∑
j=k

|cj |2 <
n∑

j=l

|wj |2

and Assumption (A1) implies (A2) with .ε = ε.

For the qor-Krylov approximation as in Remark 5.3.7, we can conclude (A2) in Proposi-
tion 5.3.2 based on Assumption (A1) in an a priori manner. However, the pole s = b is not
the best choice considering the performance of the Krylov approximation in some cases.

5.4 Numerical illustrations concerning the assumptions of
Proposition 5.3.2

In this section we present the following numerical experiments: We consider matrices A ϵ
Rnxn corresponding to a finite-difference discretization of a Hamiltonian operator (related
to a Schr:odinger equation, see (5.4.2) below) for different problem sizes n. For each problem
size we consider different initial vectors u ϵ Cn which fulfill Assumption (A1) for different
choices of ε > 0: In Subsection 5.4.1 the initial vectors u correspond to a smooth initial state
(in reference to a given differential equation) to which we add a randomized perturbation.
The perturbation size directly affects the choice of ε corresponding to Assumption (A1). In
Subsection 5.4.2 we consider u resulting from of a numerical time propagation step starting
at a smooth initial state. The approximation error of the numerical time propagation step
entails Assumption (A1) to hold with different choices of ε > 0. For each choice of A and
u, we construct the respective rational Krylov subspace, whereat different choices of poles
will be considered, and we test whether Assumption (A2) holds true with .ε ≈ ε.

The matrix A in the present test setting. For the spatial domain of the discretization
we choose [-10, 10] ∩ R, and we define the grid width

h = 20/(n- 1),

where the problem size n corresponds to the number of grid points. Thus, the respective
grid points satisfy

ηj = 20 (j - 1)/(n- 1)- 10, j = 1, . . . , n.
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5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

In the following we consider the problem sizes n = 800, 1600, 2400. For each n we consider
A ϵ Rnxn to be the respective finite-difference discretization of -Δ+ V with V = V (x) =
4x4 - 15x2 ϵ R, i.e.,

A = 1/h2 tridiag(-1, 2,-1) + diag(V (ηj)), (5.4.1)

where diag(V (ηj)) denotes a diagonal matrix with diagonal entries V (η1), . . . , V (ηn). In
addition to (5.4.1), we set An,1 = A1,n = -1/h2 conforming to periodic boundary condi-
tions. In view of (5.2.1), we remark that A ϵ Rnxn, together with an initial vector u ϵ Cn,
corresponds to a discretized Schr:odinger equation,

φ,(t) = -iAφ(t), φ(0) = u, φ(t) ϵ Cn, t ≥ 0, (5.4.2)

whereat V (x) given above represents a double well potential in this context. This problem
also appears in Section 3.5.3 (Chapter 3) and references therein.
For the current problem setting we consider an inner product on Cn which fits to a dis-

cretized version of the L2-inner product on the function space of square-integrable functions
on the spatial domain [-10, 10]. Thus, we define

(u, v)M = h (u, v)2, u, v ϵ Cn,

where h denotes the grid width.
For the eigenvalues of A, i.e., λ1 < . . . < λn ϵ R, we have λ1 > a with a = -9 for any n,

and λn ≈ 4.44 . 104, 6.35 . 104, 9.55 . 104 for n = 800, 1600, 2400, respectively, where λn

refers to the rightmost eigenvalue of A ϵ Rnxn.
In the following, the vector φ0 ϵ Rn corresponds to a discretized Gaussian wave packet,

φ0 = (φ0,1, . . . , φ0,n)
T, with φ0,j = (0.4π)-1/4 exp(-(ηj + 2.5)2/(0.8)). (5.4.3a)

With Q = (q1, . . . , qn) ϵ Rnxn denoting the M-orthonormal eigenbasis of A as introduced
before, we introduce the notation w0

1, . . . , w
0
n for the spectral coefficients of φ0 in this

eigenbasis,
w0
j = (qj , φ0)M, j = 1, . . . , n. (5.4.3b)

5.4.1 A smooth initial vector with a randomized perturbation

For our first numerical experiments we construct the initial vector u by adding a randomized
perturbation to the vector φ0 given in (5.4.3a). This procedure is applied for each problem
size, n = 800, 1600, 2400, and for different scaling factors δ = 10-3, 10-4, 10-5, which scale
the perturbation size as stated below. This yields a total of 9 different initial vectors.
We construct these initial vectors u ϵ Rn such that Assumption (A1) holds true, whereat

the choice of ε in (A1) depends on δ and is specified below. Considering (A1), the eigenval-
ues λ1 < . . . < λn and spectral coefficients w1, . . . , wn refer to the spectrum of the matrix
A ϵ Rnxn given in the previous paragraph. In view of Assumption (A1) we perturb spec-
tral coefficients related to eigenvalues which are located outside of an interval [a, b]. To this
end, we choose

b = 2100, 2700, 3400 for δ = 10-3, 10-4, 10-5, respectively, (5.4.4a)
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5.4 Numerical illustrations concerning the assumptions of Proposition 5.3.2

and a = -9 as given in the previous paragraph. Let Q = (q1, . . . , qn) ϵ Rnxn denote the
M-orthonormal eigenbasis of A as introduced before. With uniformly distributed random
numbers r1, . . . , rn ϵ (0, 1) we define

.v =
n∑

j=l

rj qj , where l ϵ N conforms to λl-1 < b < λl. (5.4.4b)

For each choice of n and δ, we set

u = φ0 + δ .v/║.v║M. (5.4.5)

As introduced before, the notation w1, . . . , wn refers to the spectral coefficients of u in the
M-orthonormal eigenbasis of A. The spectral coefficients w1, . . . , wn, together with the
spectral coefficients w0

1, . . . , w
0
n of φ0 given in (5.4.3b), are illustrated in Figure 5.1.

For each choice of n and δ, the spectral decomposition of u w.r.t. A satisfies Assump-
tion (A1) with ε = 1.02 . δ, where the choice of b and l in Assumption (A1) and (5.4.4)
coincides and depends on δ.

Testing whether Assumption (A2) holds with .ε ≈ ε in this setting. To this end we
consider rational Krylov subspaces Qm(A, u) with given poles. We construct the Rayleigh
quotient Am ϵ Cmxm given in (5.2.8) or the qor-Krylov representation Bm ϵ Cmxm (for a
given preassigned eigenvalue ξ ϵ R) and refer to θ1 < . . . < θm ϵ R as the eigenvalues of the
respective matrix. For a single pole s ϵ C of multiplicity m-1 the Rayleigh quotient Am is
computed by Algorithm 4.1 (see Section 4.2 in Chapter 4), and the matrix Bm is computed
by Algorithm 4.5 (see Subsection 4.3.2 in Chapter 4). For the action of the matrix inverse
in Algorithm 4.1 and 4.5 we apply a direct solver (corresponding to the Matlab backslash
operator) if not stated otherwise. For a numerical example concerning multiple poles we
apply the rat krylov procedure [BG15, Algorithm 3.1]. For any of these experiments the
Krylov subspace is constructed w.r.t. the M-inner product.

Let b ϵ R correspond to (5.4.4a). We first assume that at least one of the eigenvalues
θ1 < . . . < θm is larger than b, and we define k(m) ≤ m as the smallest index such
that θk(m) > b. Here the index k(m) depends on m, the initial vector u and the choice of b.
Let c1, . . . , cm denote the spectral coefficients of x as introduced before. We define

ζm =
( m∑

j=k(m)

|cj |2
)1/2

, where k(m) conforms to θk(m)-1 ≤ b < θk(m). (5.4.6)

Thus, Assumption (A2) holds true with .ε = ζm and the respective choice of b and k = k(m)
for eachm ϵ N. In Figure 5.2 and 5.4 we show ζm overm for different choices of n and δ, and
for rational Krylov subspaces with different sets of poles. For the case θ1 < . . . < θm < b,
which is likely valid for smaller choices of m, we consider ζm to be zero and no symbols are
added to the plot. The number of eigenvalues θj which are larger than b slowly increases
with m and is equal to m- k(m) + 1. In the following figures the values ζm are marked by
symbols (where (□), (○) and (x) correspond to results for n = 800, 1600, 2400, respectively).
Additionally, values of ζm which refer to the same initial vector u and for which the value
of m- k(m) + 1 matches are connected by a curve.
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Figure 5.1: The plots show spectral coefficients of u given in (5.4.5) for different choices
of n and δ. The dot marks in each plot illustrate the spectral coefficients |wj |
of u versus the corresponding values of λj . The spectral coefficients |w0

j | of the
vector χ for the respective choices of n, see (5.4.3), are located on the dashed line
but not explicitly shown in the plot. The spectral coefficients of u correspond
to the spectral coefficients of φ0 for λj < b (the dots cover the dashed line
for λj < b) and perturbed by random values otherwise, see also (5.4.4). The
dotted vertical line show b which depends on δ and is given in (5.4.4a).
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5.4 Numerical illustrations concerning the assumptions of Proposition 5.3.2

In Corollary 5.3.3, 5.3.4 and 5.3.6 a motivation for the following statement is given:
Assumption (A1) entails Assumption (A2) with .ε ≈ ε. For the present numerical examples
Assumption (A1) holds with ε ≈ δ and Assumption (A2) holds with .ε = ζm, thus, ζm < δ
implies that this conclusion holds true.

In Figure 5.2 a) we consider the Rayleigh quotient Am for Qm(A, u) with a single pole
s = -10 of multiplicity m- 1. With s < λ1 this conforms to the setting of Corollary 5.3.3.
In Figure 5.2 b) and 5.2 c) we consider the Rayleigh quotient Am for a single pole s = 100
(in b)) and s = 400 (in c)) with multiplicity m - 1. These poles are located within the
range of the Ritz values θ1, . . . , θm for a large enough choice of m, thus, Corollary 5.3.4
applies. In Figure 5.2 d) we consider the qor-Krylov representation Bm for a single pole
s = 100 with multiplicity m - 1 and a preassigned eigenvalue ξ = -10. This conforms to
the setting of Corollary 5.3.6.

For all of the plots in Figure 5.2 we observe ζm ≈ δ and ζm - δ for larger choices of m
independent of the problem size n. We remark that in Figure 5.2 a)-d) the number of
eigenvalues θj which are larger than b strictly increases with m for these examples, and the
exact points of increase match the jumps of ζm.

Additionally, for the pole s = 100 we compare ζm corresponding to the Rayleigh quotient
Am in Figure 5.2 b) and the qor-Krylov representation Bm in Figure 5.2 d). These examples
fit to the setting of Corollary 5.3.4 and 5.3.6, respectively, which yield bounds on ζm (set
k = k(m) in Corollary 5.3.4 and 5.3.6). The bound in Corollary 5.3.6 is tighter compared
to the bound in Corollary 5.3.4. However, the results in Figure 5.2 b) and d) are similar
with the exception that θm < b (hence, no eigenvalue θj is located outside of [a, b]) holds
true for larger choices of m in Figure 5.2 d).

In Figure 5.3 we consider the qor-Krylov representation Bm for a single pole s = b of
multiplicity m - 1 and a preassigned eigenvalue ξ = -10. Here, the pole s depends on
the choice of the starting vector. In Remark 5.3.7 above, we show that Assumption (A1)
implies (A2) with .ε = ε in this case. This corresponds to ζm ≤ δ, which is verified for the
numerical example in the plot. The property that Assumption (A1) implies (A2) allows
to apply Proposition 5.3.2 in an a priori sense which is desirable in theory. However, the
pole s = b is potentially not the best choice for the accuracy of a Krylov approximation in
practice. Approximately half of the eigenvalues θj are located outside of [a, b] in this case,
which can be due to the choice of the pole s = b. Considering the performance of a Krylov
approximation to a matrix function, it can be favorably when eigenvalues θj are located
close to the relevant eigenvalues of A.

In Figure 5.4 a) we consider the Rayleigh quotient Am for Qm(A, u) with a single pole
s = 100+100 i ϵ C of multiplicity m-1. In Figure 5.4 b) we consider the Rayleigh quotient
Am for Qm(A, u) corresponding to the denominator

qm-1(λ) = λj(λ-100)j(λ-200)j(λ-300)j(λ-400)j , with m = 5j + 1 for j ϵ N. (5.4.7)

Thus, the denominator in (5.4.7) corresponds to a rational Krylov subspace with multiple
poles sk of higher multiplicity, where sk ϵ {0, 100, 200, 300, 400} for k = 1, . . . ,m- 1.

Theoretical bounds on spectral coefficients concerning the rational Krylov subspace in
the setting of Figure 5.4 a), namely a single pole s ϵ C \ R, and Figure 5.4 b), namely
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Figure 5.2: In a)- d) we show ζm given in (5.4.6). In each figure the three different graphs
show result for different choices of δ, i.e., δ = 10-3, 10-4, 10-5 as denoted on
top of each graph and illustrated by a dotted line. For each δ the choice
of b is given in (5.4.4a). The different symbols refer to the different prob-
lem sizes, i.e., n = 800 (□), n = 1600 (○) and n = 2400 (x), and additionally
values of ζm which refer to the same choice of n and where Am (or Bm in Figure
d) ) has the same number of eigenvalues larger than b are connected by a curve.
The initial vector u is given in (5.4.5).
- Figure a) The given results refer to the spectrum of the Rayleigh quotient Am

for the rational Krylov subspace with a single pole s = -10 of multiplicitym-1.
- Figure b) Similar to Figure a) with s = 100.
- Figure c) Similar to Figure a) with s = 400.
- Figure d) The given results refer to the spectrum of the qor-Krylov repre-
sentation Bm for the rational Krylov subspace with a single pole s = 100 of
multiplicity m- 1 and a preassigned eigenvalue at ξ = -10.
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Figure 5.3: This plot shows ζm for the initial vector u given in (5.4.5) and the problem
size n = 800 (□), n = 1600 (○) and n = 2400 (x). For details we refer to the
caption of Figure 5.2. The given results refer to the spectrum of the qor-Krylov
representation Bm for the rational Krylov subspace with a single pole s = b of
multiplicity m- 1, and a preassigned eigenvalue ξ = -10.

175



5 The rational Krylov approximation to exponentials of skew-Hermitian matrices

10
-3

10
-2

10
-4

10
-3

15 20 25 30 35 40 45 50 55 60

10
-5

10
-4

δ = 10-3, b = 2100

ζm

δ = 10-4, b = 2700

ζm

δ = 10-5, b = 3400

ζm

m

a)

10
-3

10
-2

10
-4

10
-3

45 50 55 60 65 70

10
-5

10
-4

δ = 10-3, b = 2100

ζm

δ = 10-4, b = 2700

ζm

δ = 10-5, b = 3400

ζm

m

b)

Figure 5.4: In a) and b) the plots show ζm for the initial vector u given in (5.4.5) and the
problem size n = 800 (□), n = 1600 (○) and n = 2400 (x). For details we refer
to the caption of Figure 5.2.
- Figure a) The given results refer to the spectrum of Am for the rational
Krylov subspace with a single pole s = 100 + 100 i of multiplicity m- 1.
- Figure b) The given results refer to the spectrum of Am for the rational Krylov
subspace with multiple poles sk ϵ {0, 100, 200, 300, 400} for k = 1, . . . ,m - 1
where each pole is of an equal multiplicity. Thus, we consider the Krylov
dimensions m = 6, 11, 16, . . ., where m = 51 and m = 56 are the smallest
choices of m for which ξm is not equal zero and visible in the plots. The
denominator qm-1 of this rational Krylov subspace is explicitly given in (5.4.7).

multiple poles, are not discussed in the present work. Nevertheless, similar to the results
of Figure 5.2 we observe ζm ≈ δ and ζm - δ for larger choices of m in Figure 5.4.

5.4.2 The influence of a preceding inexact time propagation step

Similar to the previous numerical experiments we consider the rational Krylov approxima-
tion for an initial vector u and we discuss whether the assumptions of Proposition 5.3.2 are
reasonable, especially whether Assumption (A2) can be deduced from Assumption (A1)
with .ε ≈ ε. In the following examples we consider the initial vector u to originate from
an approximated solution of the differential equation (5.4.2): Let A ϵ Rnxn be defined
in (5.4.1) with periodic boundary conditions and let φ0 ϵ Rn be defined in (5.4.3a). For a
time step τ > 0 which will be fixed later we define

φτ = e-iτAφ0 ϵ Cn. (5.4.8)

The matrix exponential in (5.4.8) conforms to a time evolution operator for the differential
equation (5.4.2): The solution φ(t) ϵ Cn of (5.4.2) with initial vector φ(0) = φ0 satisfies
φ(τ) = φτ .

The notation w0
j = (qj , φ0)M has been introduced in (5.4.3b) and refers to the spectral

coefficients of φ0 in the M-orthonormal eigenbasis of A. The matrix exponential in (5.4.8)
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5.4 Numerical illustrations concerning the assumptions of Proposition 5.3.2

is unitary. Thus, it applies a phase shift to the spectral coefficients of φ0 and we have
|(qj , φ0)M| = |(qj , e-iτAφ0)M| for τ ≥ 0. For w0

j in (5.4.3b) and φτ in (5.4.8) this implies

|w0
j | = |(qj , φτ )M|. (5.4.9)

We now consider u to be a numerical approximation of φτ . When this approximation is
accurate and the spectral coefficients of φτ satisfy an upper bound as in Assumption (A1),
then the spectral coefficients of u satisfy the same upper bound up to a small deviation:
For δ ≥ 0,

║u- φτ║M ≤ δ implies
( n∑

j=l

|wj |2
)1/2 ≤

( n∑
j=l

|w0
j |2

)1/2
+ δ. (5.4.10)

In Subsection 5.4.1 we have discussed Assumption (A1) for the vector φ0 with an additional
perturbation, and the results therein carry over to the vector φτ which spectral coefficients
also correspond to |w0

j |: The vector φτ satisfies Assumption (A1) for a proper choice of
[a, b] and ε, similarly as for φ0. With (5.4.10) this carries over to u, when u denotes a
sufficiently accurate approximation of φτ .

An initial vector u resulting from a preceding rational Krylov approximation to (5.4.8).
For a given τ > 0, the rational Krylov approximation (5.2.9) applied to the right-hand
side of (5.4.8) yields an approximation to φτ . Here we consider the rational Krylov sub-
space Q~m(A, φ0) with a single pole s = -10 of multiplicity ~m- 1, where we choose ~m = 40
for the Krylov dimension. The corresponding Krylov basis U~m, the Rayleigh quotient A~m
and x are provided by Algorithm 4.1 (see Chapter 4). This algorithm requires applications
of the matrix inverse of A - sI, for which we either apply a direct solver or an iterative
method. This results in two different choices of u:

❼ For the first approach we implement Algorithm 4.1 using a direct solver for the
underlying matrix inverse. Let U~m, A~m and x be the result of Algorithm 4.1, where
the matrix inverses are computed by a

Cholesky decomposition, then we define uds = U~me-iτA ~mx ϵ Cn, (5.4.11)

with τ -values specified in (5.4.13) below.

❼ For the second approach we apply an iterative method to compute the action of the
matrix inverse of A - sI in Algorithm 4.1, namely, using the Matlab pcg procedure
realizing a preconditioned conjugate gradient method. For the current examples,
using a direct solver is certainly the better choice and we choose the iterative variant
solely for the purpose of testing. For pcg we choose the tolerance δcg specified below,
following (5.4.13). As preconditioner we choose the diagonal entries of A - sI. Let
U~m, A~m and x be the result of Algorithm 4.1 using

pcg, then we define ucg = U~me-iτA ~mx ϵ Cn, (5.4.12)

where τ is specified in (5.4.13). The approach of using an iterative method to compute
the matrix inverse for the rational Krylov approximation is also discussed in [vdEH06,
Section 5] and others.
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Similar to the previous test setting, we consider the vectors ucg and uds for different
problem sizes n = 800, 1600, 2400, and δ = 10-3, 10-4, 10-5, respectively. Here δ refers to a
tolerance on the approximation error as given in (5.4.10); we consider the following setting:
Due to properties of the rational Krylov approximation, ucg and uds yield an accurate
approximation to φτ if the underlying time step τ is sufficiently small. Additionally, for
ucg the tolerance δcg for pcg procedure has to be sufficiently small. For each choice of δ
(the influence of n is negligible here) we choose τ and δcg such that ║ucg - φτ║M ≈ δ holds
true, i.e.,

τ = 6.5 . 10-3, 3.8 . 10-3, 2.2 . 10-3, for δ = 10-3, 10-4, 10-5, respectively, (5.4.13)

and δcg = δ/τ . 10-4. The deviation of ucg and φτ has its origin partly in the inexact
construction of the rational Krylov subspace (depending on δcg) and partly in the approx-
imation of the matrix exponential (5.2.9) (scaling with the time step τ). For comparison
reasons the same choice of τ is used for uds, and we have

║u- φτ║M ≤ δ, for u = ucg, uds. (5.4.14)

Let wj denote the spectral coefficients of u in the M-orthonormal eigenbasis of A where
u = ucg, uds. The spectral coefficients wj of u = ucg and u = uds are illustrated in
Figure 5.5 and 5.6, respectively. Similar to Subsection 5.4.1, we want u to comply with
Assumption (A1) for a given interval [a, b], and a suitable choice of ε. As previously we
choose a = -9. In the present subsection we consider two different choices of b, which we
refer to as b1 and b2: We choose b1 s.t. |wj | shows a significant deviation from |w0

j | for
u = ucg, uds likewise for λj > b1 (considering Figure 5.5 and 5.6), namely,

b1 = 1600, 2600, 3000, for δ = 10-3, 10-4, 10-5, respectively. (5.4.15)

We choose b2 such that the spectral coefficients of ucg significantly distinguish from the
spectral coefficients of uds (considering Figure 5.6), namely,

b2 = 4000, 5000, 6000, for δ = 10-3, 10-4, 10-5, respectively. (5.4.16)

Here, the perturbations on the spectral coefficients |wj | of u seem to be of different nature for
u = uds and u = ucg: In the former case |wj | show an exponential decay in j, cf. Figure 5.5.
(we did ascribe a decay on spectral coefficients to regularity properties of the underlying
differential equation, which seem to carry over from the initial state when sub-steps of the
numerical time propagation preserve regularity properties, i.e., when the matrix inverse is
sufficiently accurate in the case of uds); In the later case multiple matrix applications of A
are required when applying the conjugate gradient method, which result in a perturbation
of the spectral coefficients |wj | for arbitrary eigenvalues λj , cf. Figure 5.6.

To specify ε in Assumption (A1) for the current setting, we introduce

ν =

n∑
j=l

|wj |, where l conforms to λl-1 < b < λl. (5.4.17)

Thus, for the spectral decomposition of u (with u = uds, ucg and different choices of n and
δ) Assumption (A1) holds with ε = ν (for b = b1, b2 respectively). In all of the current test
settings we observe ν ≤ 1.2 . δ.
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Figure 5.5: The different plots show the spectral coefficients of uds given in (5.4.11) for
different choices of n and δ. Here δ refers to (5.4.14) and fixes the choice of
the underlying time step τ as given in (5.4.13). The dot marks (which mainly
conform to a curve) in each plot illustrate the spectral coefficients |wj | of u = uds
versus the corresponding values of λj . The spectral coefficients |w0

j | of the
vector φ0 for the respective choices of n are located on the dashed line, and
they are identical to the spectral coefficients of φτ , see also (5.4.8) and (5.4.9).
The spectral coefficients of uds correspond to the spectral coefficients of φτ

for λj < b, where b = b1 is given in (5.4.15). For larger choices of λj the
spectral coefficients |wj | significantly distinguish from the spectral coefficients
of φτ .
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Figure 5.6: The different plots show the spectral coefficients of ucg given in (5.4.12) for
different choices of n and δ. Here δ refers to (5.4.14) and fixes the choice of the
underlying time step τ (and δcg) as given in (5.4.13). The dot marks in each
plot illustrate the spectral coefficients |wj | of u = ucg versus the corresponding
values of λj . As given in the caption of Figure 5.6 the spectral coefficients
of φτ are located on the dashed line. The spectral coefficients of u correspond
to the spectral coefficients of φτ for λj < b1, where b1 is given in (5.4.15).
For larger choices of λj the spectral coefficients |wj | significantly distinguish
from the spectral coefficients of φτ . For b1 < λj < b2 (b2 is given in (5.4.16))
the spectral coefficients of ucg and uds (shown in Figure 5.5) are similar, and
for λj > b2 the spectral coefficients of ucg seem to be perturbed more randomly
(similar to results of Figure 5.1 in Subsection 5.4.1).
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5.5 Summary

Testing whether Assumption (A2) holds with .ε ≈ ε in this setting. As stated previously
Assumption (A1) holds with ε = ν for the present choices of u and b. In the following we
consider the rational Krylov subspace Qm(A, u) for a single pole s = -10 of multiplicity
m - 1 and u = ucg, uds, individually. For the spectral coefficients of u in the respective
Krylov subspace Assumption (A2) holds true with .ε = ζm, where ζm is given in (5.4.6) for
the respective choice of b. Thus, in the following numerical experiments ζm ≈ ν implies
that Assumption (A2) follows from Assumption (A1) with .ε ≈ ε.

In Figure 5.7 a)-c) we illustrate ζm over m for Qm(A, u) and the initial vector u = ucg
(with b = b1, b2 separately) and u = uds (with b = b1), together with ν. In any of these
figures we observe ζm ≈ ν, which suggests that Assumption (A2) is reasonable to hold with.ε ≈ ε when Assumption (A1) is holds true.
In Figure 5.7 b) we observe ζm - ν similar to results shown in Figure 5.2 and 5.4 in

Subsection 5.4.1. In the setting of Figure 5.7 b) with b = b2 and for the setting which
is discussed in Subsection 5.4.1, a perturbation on |wj | is rather randomly distributed for
λj > b. In contrast to Figure 5.7 b), the results of ζm in Figure 5.7 a) and c) with b = b1
show steep jumps, which seem to be related to a decay in |wj | for λj ≈ b1. Furthermore,
we recall that results of ξm are connected by a curve when the number of Ritz values which
are larger than b matches for the respective values of m. Especially before the number of
Ritz values which are larger than b increases (i.e., a jump in ζm in the figure) we observe
ζm < ν which can be beneficial for the error estimate in Proposition 5.3.2. Such effects can
be relevant for future work but will not be further discussed here.

5.5 Summary

In the present chapter we have formulated a localized near-best approximation property for
the rational Krylov approximation to the exponential of a skew-Hermitian matrix. When
the action of the matrix exponential to the initial vector corresponds to the time evolution
of a discretized differential equation and further assumptions are fulfilled which are related
to regularity properties of the underlying problem, then the localized near-best approxi-
mation property can give insights on a grid-independent convergence rate of the rational
Krylov approximation. We have discussed the necessary assumptions for this approach and
numerically verified that these assumptions are realistic for a relevant numerical example,
namely a Schr:odinger-type equation.
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Figure 5.7: For a)-c) the plots show ζm (given in (5.4.6) with b = b1 or b = b2 depending
on the sub-figure) for the initial vector u, where u = ucg or u = uds depending
on the sub-figure, and the problem size n = 800 (□), n = 1600 (○) and n =
2400 (x). Additionally, values of ζm which refer to the same choice of n and
where Am has the same number of eigenvalues larger than b are connected by
a curve. The dotted lines show ν given in (5.4.17), where the symbol on the
left-hand side of the dotted line refers to the underlying problem size n. The
choice of δ refers to (5.4.14) and respective choices for the parameter τ and b,
where the former is used to construct the initial vector u = ucg, uds.
- Figure a): The results refer to the spectrum of Am for the rational Krylov
subspace Qm(A, u) with a single pole s = -10 of multiplicity m-1 and u = ucg
given in (5.4.11). For ζm and ν we choose b = b1 given in (5.4.15).
- Figure b): Similar to a) with u = ucg given in (5.4.12), and b = b2 given
in (5.4.16).
- Figure c): Similar to a) with u = uds given in (5.4.11), and b = b1 given
in (5.4.15).
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Appendix

5.A Auxiliary material

Remark 5.A.1 (Bounded rational functions and stability properties of implicit methods).
Implicit methods are well-studied in the field of numerical time integration. Stability prop-
erties of such methods give insights on possible restrictions on the choice of time steps
and the underlying mesh size. The stability function of a method (see also [HW02, Def-
inition 2.1]) corresponds to the respective numerical solution of x, = λx with x = x(t),
x(0) = 1, and λ ϵ C. Thus, for an implicit method the stability function corresponds to a
rational function which approximates the exponential function z ,- ez for z = hλ ϵ C where
h ϵ R+ denotes a time step. Let .rm-1 be a rational stability function which is not further
specified here, but satisfies the assumption .rm-1 = .pm-1/.qm-1 with .pm-1 and .qm-1 ϵ πm-1

for a given m ϵ N, .rm-1(z) ≈ ez.

For the denominator .qm-1 of .rm-1(z) we write

.qm-1(z) =

m-1π
j=1

(z - ξj), where ξ1, . . . , ξm-1 ϵ C denote the poles of .rm-1.

Then the stability domain related to .rm-1 corresponds to

S = {z ϵ C : |.rm-1(z)| ≤ 1}.
We are especially interested in bounded rational approximants to the exponential of a

skew-Hermitian matrix e-itA. To match the denotations, we write

r(λ) = .rm-1(-iλ), thus, r(λ) ≈ e-itλ, λ ϵ R. (5.A.1)

The respective denominator satisfies

.qm-1(-iλ) =

m-1π
j=1

(-iλ- ξj) = (-i)m-1
m-1π
j=1

(λ- iξj).

Thus, we can represent the rational function r in (5.A.1) as r = p/qm-1 with p and qm-1 ϵ
πm-1, whereat the denominator satisfies

qm-1(λ) =
m-1π
j=1

(λ- sj), sj = iξj . (5.A.2)

Let ξ1, . . . , ξm-1 ϵ C denote poles of a given stability function .rm-1 for which the re-
spective stability domain covers the imaginary axis. Then the rational function r given
in (5.A.1) is an element of the class of bounded rational functions Rϱ,b introduced in (5.3.3)
with denominator qm-1 as given in (5.A.2), ϱ = 1, and any b ϵ R.

The stability domain of A-stable implicit methods (see also [HW02, Definition 3.3.])
covers the left half-plane, i.e., S ∩ C-, including the imaginary axis. Thus, stability
functions of these methods yield examples for rational functions in the class Rϱ,b for the
respective denominator.
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Proof of Proposition 5.3.1. By assumption we have

λ1, . . . , λl-1 ϵ [a, b], λl, . . . , λn ϵ (b,+∞), and
( n∑

j=l

|wj |2
)1/2 ≤ ε║u║M. (5.A.3)

For u given in (5.3.1) we define

u1 =
l-1∑
j=1

wjqj , and u2 =
n∑

j=l

wjqj .

With u = u1 + u2 the left-hand side of (5.3.4) satisfies

║r(A)u- e-itAu║M ≤ ║r(A)u1 - e-itAu1║M + ║r(A)u2 - e-itAu2║M. (5.A.4)

Similar to (5.3.1) we make use of the eigendecomposition of A to simplify the first term on
the right-hand side of (5.A.4),

║r(A)u1 - e-itAu1║M =
( l-1∑

j=1

|r(λj)- e-itλj |2|wj |2
)1/2≤ max

j=1,...,l-1
|r(λj)- e-itλj |║u1║M.

Thus, with ║u1║M ≤ ║u║M and λj ϵ [a, b] for j = 1, . . . , l- 1, we have

║r(A)u1 - e-itAu1║M ≤ max
λϵ[a,b]

|r(λ)- e-itλ|║u║M. (5.A.5)

Analogously, the second term on the right-hand side of (5.A.4) satisfies

║r(A)u2 - e-itAu2║M ≤ max
j=l,...,n

|r(λj)- e-itλj |║u2║M. (5.A.6)

With λl, . . . , λn ϵ (b,+∞) as given in (5.A.3) and for r ϵ Rϱ,b given in (5.3.3) we con-
clude |r(λj)| ≤ ϱ for j = l, . . . , n, and together with |e-itλj | = 1 this implies

max
j=l,...,n

|r(λj)- e-itλj | ≤ 1 + ϱ. (5.A.7)

The upper bound in (5.A.3) implies ║u2║M ≤ ε║u║M, and together with (5.A.6) and (5.A.7)
this yields

║r(A)u2 - e-itAu2║M ≤ (1 + ϱ)ε║u║M. (5.A.8)

Combining (5.A.4) with (5.A.5) and (5.A.8) completes the proof.

Proof of Proposition 5.3.2. For an arbitrary r ϵ Rϱ,b we recall (5.3.6),

║Ume-itAmx- e-itAu║M ≤ ║r(A)u- e-itAu║M + ║r(Am)x- e-itAmx║2. (5.A.9)

With Assumption (A1) in Proposition 5.3.2 the result of Proposition 5.3.1 applies to the
first term on the right-hand side of (5.A.9),

║r(A)u- e-itAu║M ≤ max
λϵ[a,b]

|r(λ)- e-itλ|║u║M + (1 + ϱ)ε║u║M. (5.A.10)
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Assumption (A2) in Proposition 5.3.2 (with ║x║2 = ║u║M) conforms to the assumptions of
Proposition 5.3.1 for the second term on the right-hand side of (5.A.9) w.r.t. the Euclidean
inner product. Thus, Proposition 5.3.1 yields

║r(Am)x- e-itAmx║2 ≤ max
λϵ[a,b]

|r(λ)- e-itλ|║x║2 + (1 + ϱ)ε║x║2. (5.A.11)

Combining (5.A.9), (5.A.10) and (5.A.11) (with ║x║2 = ║u║M), and choosing the minimum
over r ϵ Rϱ,b, we complete the proof of Proposition 5.3.2.
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