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a b s t r a c t 

With urban residents’ increasing reliance on metro systems for commuting and other daily activities, extreme 

weather events such as heavy rainfall and flooding impacting the metro system services are becoming increasingly 

of concern. Plans for such emergency interruptions require a thorough understanding of the potential outcomes 

on both the system and individual component scales. However, due to the complex dynamics, constraints, and 

interactions of the elements involved (e.g., disaster, infrastructure, service operation, and travel behavior), there 

is still no framework that comprehensively evaluates the system performance across different spatiotemporal 

scales and is flexible enough to handle increasingly detailed travel behavior, transit service, and disaster infor- 

mation data. Built on an agent-based model (ABM) framework, this study adopts a data-driven ABM simulation 

approach informed by actual metro operation and travel demand data to investigate the impact of flood-induced 

station closures on travelers as well as the overall system response. A before-after comparison is conducted where 

the traveler behaviors in disaster scenarios are obtained from a discrete choice model of alternative stations and 

routes. A case study of the Shanghai Metro is used to demonstrate the ability of the proposed approach in evalu- 

ating the impacts of flood-induced station closures on individual traveler behavior under normal operation and 

a series of water level rise scenarios of up to 5m. It was found that, when the flood-induced station closures only 

affect a few river-side stations in the city center, the travelers experience only minor disruptions to their trips 

due to the availability of unaffected stations nearby as a backup. However, as the water level increases and more 

stations (mainly in the suburban area) are affected, up to 25% of trips are no longer being fulfilled due to the 

loss of entrances, exits, or transfer links. The system experiences overall less crowdedness in terms of passenger 

volume and platform waiting time with a few exceptions of increased passenger load due to concentrations of 

passenger flows to alternative stations under flooding-induced station closures. The proposed approach can be 

adapted to other disaster scenarios to reveal the disaster impacts on both aggregated and disaggregated levels 

and guide the design of more spatio- and temporally-targeted emergency plans for metro systems. 
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. Introduction 

Water-related disasters such as floods and extreme rainfalls represent

 large proportion of natural catastrophes, and they are expected to con-

inue to grow in scale and frequency due to climate change, urbaniza-

ion, and degradation of the natural environments [ 1 , 2 ]. In cities, due to

he impermeable concrete surface covering large areas of development,

he run-off water frequently overloads the sewage system and inundates

treets and subways. Past research indicates that subway systems are less
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esilient than roadway systems [3] ; roads can recover in days, while it

akes months for the subway network to recover fully. During the events

f Hurricane Irene (Year 2011), Hurricane Sandy (Year 2012) and Hur-

icane Ida (Year 2021), the New York Metropolitan Transportation Au-

hority (MTA)’s subway network was closed in preparation for the heavy

torms [4] . The disruptions and infrastructure damages caused great im-

acts on the city’s roadway and metro transportation systems, and the

stimated losses or costs of strengthening range from 65 million to 5

illion dollars for the three events [5–7] . Other subway systems in ma-

or cities such as London and Paris face a similar challenge: aging sub-

ay drainage systems and excessive climate-driven extreme rainfalls.

ven for new subway/metro systems in Shanghai and Zhengzhou, their

rainage was not designed for the extreme floods seen in the past few
ctober 2022 
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6

ears. The 2021 inundation of the metro system in Zhengzhou [8] has

ignaled a warning message. 

As subways are more frequently influenced by water penetration re-

ated disturbances or disasters, understanding and managing the metro

etwork as well as mitigating the impacts to the passengers under vari-

us flooding events are key tasks for planners, asset managers, and de-

ision makers to undertake. The system’s capability of restoring after a

isaster is described by resilience, which was first used in ecology but

as widely adopted in many other systems [9–11] . The resilience of

etro systems can thus be defined as the ability to maintain its de-

igned level of service or restore itself in a specific timeframe. The

valuation of resilience can be decomposed into calculating the loss,

s well as the recovery time of serviceability. For highly dynamic sys-

ems and disaster events such as metro flooding, more specific consid-

rations are needed, such as the interactions of the passengers, the in-

rastructures, and the service providers, the congestion and crowding,

he peak and off-peak hours as well as the passenger behavior dynamics

12–16] . 

The resilience of urban underground transportation has been stud-

ed in different aspects. For example, Huang et al. (2022) [17] investi-

ated the multi-hazard impacts of the infrastructure and analyzed the

etwork performance. A few studies have been on quantifying and mod-

ling metro disruptions, mainly focusing on the demand changes and

he schedule design after disruptions. Demand changes are considered

y predicting passenger behaviors responding to a metro disruption. In

his direction, smart cards and other real data sources are frequently

dopted for analyzing and predicting passenger demand patterns. For

xample, Zhu et al. (2016) [3] provided an observational analysis of the

ecovery of trip patterns after Hurricanes Irene and Sandy based on a

idership dataset obtained from the New York MTA. A recovery model

as developed and calibrated against the data, enabling the quantifi-

ation of the resilience of the MTA system. Sun et al. (2016) [18] de-

eloped a Bayesian method and utilized smartcard data to assess the

ffects of common disruptions and identify the delay times in urban

ail transit by arbitrarily selecting specific station closures. Yap et al.

2018) [13] investigated the impact of disturbances on passengers on

he Hague public transport network. Rahimi et al. (2019) [19] employed

 stated-preference method to estimate passengers’ waiting time toler-

nce to unplanned transit service disruptions and found trip variables

uch as distance and times are influential in the passengers’ behavior on

aiting tolerance. Tan et al. (2020) [20] investigated the heterogeneous

isk-taking behaviors of the affected metro passengers. They conducted a

ase study based on a real-world network in Wuhan. Wang et al. (2020)

21] developed a regret theory-based decision-making method to man-

ge the rainstorm disaster in urban rail systems capturing the passen-

ers’ utility and costs. Zhang et al. (2021) [22] explored the metro pas-

engers of both inbound and outbound flows and evaluated the metro

etwork’s vulnerability, and found that there exists a linear relationship

etween the shortest paths passing the nodes and edge. These studies

ried to figure out the influence and the outcomes of the metro disrup-

ions, therefore preparing the countermeasures to reduce the negative

mpacts. 

On the other hand, some researchers studied the timetable and

chedule design of the metro services after disruptions. Gao et al.

2016) [23] incorporated the constraints imposed by the disruption at

and: the limited train capacity, over-crowded conditions, and time-

ependent passenger arrivals, into optimizing the timetable. Veelen-

urf et al. (2017) [24] integrated the rolling stock and the timetable

escheduling by considering the passenger demand changes. Several

tudies also consider multimodal disruption management involving ur-

an rail transit and bus services [ 12 , 25 ]. As bus service efficiently

ridges the metro passengers once disruption occurs, more and more

ttention has been paid to this issue. For instance, Gu et al. (2020)

26] proposed a two-stage approach to allocating buses to predefined
13 
ridging routes after a metro disruption to minimize the bridging time

nd total passenger delay. The model was formulated in a rolling hori-

on framework and applied to two case studies in Shanghai. They find it

s necessary and helpful to plan for the urban metro disruptions, mostly

oncerning timetable adjustments, rolling stock and crew rescheduling,

s well as contracting bridging buses. While the majority of previous

tudies focused on the operation and supply side, research involving

omplex dynamics between the system performance and individual re-

ponse patterns is still emerging, especially under certain natural disas-

ers such as the metro traveler’s behavior when facing a flood. 

Apart from the dynamic demand changes and interactions with the

ervice schedules, the uniqueness of the events and systems also needs

o be acknowledged in studying metro resilience. Miao et al., (2018)

27] surveyed various US transit agencies to investigate their prepared-

ess for dealing with extreme weather. They found that extreme weather

s typical in many areas, yet the events and scales can be varied. While

revious literature mainly focused on regional effects or local effects

f disruptions with selected stations and fixed disruption levels for nat-

ral flood disasters, assessment of urban rail transit networks at both

isaggregated and aggregated levels are still valuable for flooding man-

gement in metro systems. In addition, many previous studies focus on a

opological approach without considering the travel demand and service

onditions [22] . For those that consider the service schedule and travel

emand characteristics, only coarse time step or traveler groups are used

nd generated aggregated metrics [ 13 , 24 ], which inevitably overlooks

he dynamics that can only be captured at a finer spatiotemporal scale,

uch as platform waiting time. For planners and asset managers, a more

eneralized approach is needed, where the uniqueness of the events and

he complex interactions of system components at different spatial and

emporal scales are more thoroughly modeled and validated to generate

orecasts of emergent outcomes. 

This study proposes an agent-based model (ABM) framework to

uantify the impacts of flood levels on metro networks, including station

losures, demand pattern changes, and trip pattern and time changes.

raffic modeling has been a powerful tool for forecasting traffic patterns

nder different situations. Hence, they are widely employed for study-

ng the dynamics of traffic systems at various spatial and temporal scales

 9 , 11 , 28 ]. In particular, the ABM has received widespread popularity in

ecent years for traffic and transport system modeling, where the inclu-

ion and validation of fine-grained analysis of passenger behavior are

ossible [ 8 , 29–32 ]. The agent is often defined as a “single cognitive

ntity ”, and in the case of transport planning, often represents the pas-

engers, vehicles, etc. ABM in transport planning applications is used to

apture the emergent behaviors of agents resulting from their interac-

ions with other agents in the system as well as the interactions with

he environment [33] . Specifically, evacuation simulation has become

ne of the most attractive applications of the ABM category due to its

bility to incorporate complex system interactions and model a diverse

ange of scenarios [ 34–36 , 30 , 37 ]. In developing an ABM framework

or metro flooding resilience, the locations of stations and the topology

f a metro network can be created with real data. The passenger de-

and is informed by real-world smart card data and modeled by agents

ho can interact with each other and the metro system. The agent-based

ramework allows the integration of (1) disaster scenarios, (2) individual

uman decisions, as well as (3) infrastructure schedule and operations

nto the analysis of the system. 

The rest of the paper is organized as follows. Section 2 introduces the

roblem and system settings of urban rail transit with natural flood dis-

sters. Section 3 develops the agent-based simulation framework with

ehavioral models for assessing and quantifying the flood level impacts,

hereas Section 4 conducts a case study with large-scale metro net-

orks and demand data. Section 5 validates and compares the system

erformance and demand patterns before and after the floods. Section

 concludes and discusses future research avenues. 
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Fig. 1. Network representation of a metro system. 
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. Problem and system settings of flooding in an urban rail 

ransit system 

Consider a directed metro network graph 𝐺 = ( 𝑍, 𝐴 ) with a finite set

f nodes Z and a finite set of directed links A, as shown in Fig. 1 . Each

ode represents a metro platform or a station, and each link represents

ither a rail linkage between two platforms, a walking path connect-

ng the entrance/exit to the platform, or the walking path to transfer

latforms at interchange stations. 

Each station also has an elevation attribute representing the height

f the station above sea level. During heavy rainstorms, the metro sta-

ions will be affected depending on the flooding level and the elevation

eight. Potential outcomes include station closures, vehicle rerouting,

imetable adjustments, line closures, or system shutdowns. Station clo-

ure is the most common among these emergency operation measures

uring extreme weather and natural disasters. When the flooding level

nduces a station closure, passengers who enter, exit, or transfer at the

losed station may change their origin or destination stations or routes.

ome passengers may be unable to complete their trips in the metro sys-

em if there are no alternative stations or routes, which are called “un-

ulfilled trips. ” As the flooding level rises, the number of station closures

ncreases, leading to a higher number of impacted passengers and other

etwork effects such as accessibility, congestion, queuing, and travel

imes. 

This study considers station closure in the metro network based

n the flooding levels. It develops a general framework of quantita-

ive and qualitative methods with agent-based simulations to evaluate

he impacts of flooding levels on metro network congestion and queu-

ng. The framework is portable to another city given standard transit

tudy inputs without deteriorations in computational speed. The fol-

owing section describes the evaluation framework with agent-based

imulation. 

. Evaluating flooding level impacts with agent-based simulation 

In the proposed evaluation framework, the impact of station closures

ue to water level rises or localized flooding is studied by integrating the

raveler behavior model and a dynamic agent-based transit simulation,

s shown in Fig. 2 . The behavior model informs how travelers’ origin,

estination, and departure times will change. The transit simulation is

sed to derive key performance metrics, such as the impacted trips, in-

rease in travel time, and critical platforms. The evaluation outputs will

ield the impacts of the flooding levels at the individual passenger, sta-

ion, and network levels, including the number of station closures, the

umber of unfulfilled trips, the origin-destination pattern changes and

he network congestion and queuing trends after the station closures.

he rest of this section explains the behavioral models and agent-based

imulations developed for the evaluation framework. 
14 
.1. Travel pattern analyses with discrete choice models 

Following the assumptions made by Zhang et al. (2019) [38] , it is

ssumed that the station entrance is 0.45m higher than the ground ele-

ation. Once the flooding level is above the station entrance, the corre-

ponding station will be closed while the rail transit operation maintains

he same. Therefore, changes in travel patterns (i.e., new entrance, exit,

r transfer stations) will be expected for passengers with original en-

rance, exit, or transfer stations associated with the closed stations. The

hanges in user behaviors with station closures are captured by two di-

ensions: 1) the change in the origin-destination patterns and 2) new

outes, jointly determined through the discrete route choice model. 

Upon a station closure, we assume passengers whose origins or desti-

ations are associated with the closed station will use one of the nearby

lternative stations within walking distance 𝑤 (e.g., 𝑤 = 1km). There-

ore, in city centers where stations are relatively densely located, a pas-

enger may have multiple alternative choices of origin, destination, or

oth. The choice sets are all available entrance and exit station pairs

 𝑜 
𝑝 

𝑖 
, 𝑑 

𝑞 

𝑖 
) for passenger 𝑖 when either one or both original entrance and

xit stations ( 𝑜 0 
𝑖 
, 𝑑 0 

𝑖 
) are closed. We denote the alternative origin stations

or passenger 𝑖 as 𝑂 𝑖 = { 𝑜 1 
𝑖 
, 𝑜 2 

𝑖 
, … 𝑜 

𝑝 

𝑖 
} and the alternative destination sta-

ions as 𝐷 𝑖 = { 𝑑 1 
𝑖 
, 𝑑 2 

𝑖 
, … 𝑑 

𝑞 

𝑖 
} . In this case, the passenger 𝑖 has a set of

iscrete route choices denoted by 𝑓 𝑖 = { 𝑓 𝑖, 1 , 𝑓 𝑖, 2 , … , 𝑓 𝑖,𝑘 } , where 𝑓 𝑖,𝑘 is

ne of the routes connecting the origin-destination pair ( 𝑜 𝑝 
𝑖 
, 𝑑 

𝑞 

𝑖 
) . 

The passenger’ route choice is modeled based on the random utility

unction (Ben-Akiva and Bierlaire, 2003): 

 𝑖𝑘 = 𝑉 𝑖𝑘 + 𝜀 𝑖𝑘 (1)

 𝑖𝑘 = 𝑤𝑡 𝑖𝑘 
𝑜 
+ 𝑡𝑡 𝑖𝑘 

𝑜𝑑 
+ 𝑤𝑡 𝑖𝑘 

𝑑 
+ 𝑡 𝑖𝑘 

𝑠 
(2)

here 𝑈 𝑖𝑘 is the passenger’s utility of choosing route 𝑓 𝑖,𝑘 including a sys-

ematic component 𝑉 𝑖𝑘 representing deterministic utility and a random

omponent 𝜀 𝑘 capturing the uncertainty or disturbances of the utility.

n the function of 𝑉 𝑖𝑘 , both 𝑤𝑡 𝑖𝑘 
𝑜 

and 𝑤𝑡 𝑖𝑘 
𝑑 

are the walking times, from

he original entrance/exit to the new entrance/exit. If the original en-

rance/exit is not affected by the local water level rise, the walking time

s 0. 𝑡𝑡 𝑖𝑘 
𝑜𝑑 

is the in-transit time from the new entrance to the new exit

tation and is estimated using the train schedules. 𝑡 𝑖𝑘 
𝑠 

is the transfer time

or route 𝑓 𝑖,𝑘 (e.g., 90s for each transfer). 

The probability that a traveler will choose a route 𝑓 𝑖,𝑘 is modeled

ased on the multinominal logit model where the random component

 𝑘 is assumed to be independent and identically distributed with Gumbel

istribution. The probability of choosing a route 𝑓 𝑖,𝑘 is expressed as 

 𝑖𝑘 = 𝑃 
(
𝑈 𝑖𝑘 ≥ 𝑈 𝑖𝑚 , ∀𝑚 ∈ 𝑓 𝑖 , 𝑚 ≠ 𝑘 

)

= 𝑃 
(
𝑉 𝑖𝑘 + 𝜀 𝑖𝑘 ≥ 𝑉 𝑖𝑚 + 𝜀 𝑖𝑚 , ∀𝑚 ∈ 𝑓 𝑖 , 𝑚 ≠ 𝑘 

)

= 

𝑒 − 𝜇𝑉 𝑖𝑘 ∑
𝑚 ∈𝑓 𝑖 

𝑒 − 𝜇𝑉 𝑖𝑚 
(3) 

here 𝜇 is the scaling parameter related to the common standard de-

iation of the Gumbel distribution. Without loss of generality, we set it

rbitrarily to a convenient value 1, as commonly used in literature. 

Therefore, the probability a passenger 𝑖 will choose a route 𝑓 𝑖𝑘 is

xpressed as: 

 𝑖𝑘 = 

𝑒 
− 
(
𝑤𝑡 𝑖𝑘 𝑜 + 𝑡𝑡 

𝑖𝑘 
𝑜𝑑 
+ 𝑤𝑡 𝑖𝑘 

𝑑 
+ 𝑡 𝑖𝑘 𝑠 

)

∑
𝑚 ∈𝑓 𝑖 

𝑒 
− 
(
𝑤𝑡 𝑖𝑚 𝑜 + 𝑡𝑡 𝑖𝑚 𝑜𝑑 

+ 𝑤𝑡 𝑖𝑚 
𝑑 
+ 𝑡 𝑖𝑚 𝑠 

) (4)

In the entire urban rail transit network, the demand for each route

is expressed as: 

 𝑓 = 

∑
𝑗∈𝐽 

𝑃 𝑗𝑘 (5)

here 𝐽 is the set of the passenger who has alternative route 𝑓 in their

oute sets. 
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Fig. 2. Conceptual framework to evaluate flooding level on urban rail transit networks. 
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.2. Data-driven ABM simulation 

The overall framework is comprised of three key procedures ( Fig. 2 ),

ncluding 1) behavior modeling, which handles and adjusts the inputs

travel demand patterns, network connectivity, etc.) to the simulation

ccording to the flooding scenarios; 2) an agent-based simulation mod-

le capturing the spatiotemporal interactions of different categories of

gents, such as the train arrival, departure, passenger walking, queue-

ng, boarding, platform crowdedness, and vehicle occupancy; and 3)

n output module that generates passenger, train, infrastructure, and

etwork-level outputs for post-processing and validation. Specifically,

he framework is considered data-driven for two reasons: first, the in-

uts directly utilize state-of-the-art highly disaggregated behavior data

rom smartcard users, as well as the standardized and widely available

eneral Transit Feed Specifications (GTFS) data. This feature benefits

rom the increasing availability of disaggregated or standardized data

nputs and overcomes previous barriers where inputs need to be gener-

ted from aggregated sources (e.g., zonal level travel demand or stated

reference surveys). Second, it is also possible for the framework to sup-

ort data-driven model calibration. As briefly demonstrated in the later

ection 5.1, certain parameters such as service intervals and train ca-

acity parameters can be tuned in an iterative manner to minimize the

ifferences in the simulation results and the data-revealed travel time

etrics. These are the characteristics of the current data-driven ABM

ramework. 

The behavior modeling is the first step to generate the relevant inputs

or the subsequent agent-based subway traffic simulation. The overall

oal is to capture the individual- and system-level changes in passen-

er origin, destination, departure time, routes, etc., given the relevant

ooding scenario and network damage data. Specifically, the individual-

evel behavior changes reflect various levels of interruptions including

ntrance/exit stations, routes and cancellation of trips. On the system-

evel, the goal of conducting behavior modeling is to capture system-

evel changes particularly on the demand side, such as the overall re-

uction in numbers of trips and the new spatial distribution of the trip

rigins and destinations. Four categories of data are utilized in the be-

avior model, including i) the baseline passenger-level travel informa-

ion (e.g., from the smartcard data), such as the departure time, the

rigin and destination stations; ii) metro service schedules such as the

nitial departure time and interval of the trains; iii) infrastructure for

he static environments for the urban rail transit system, such as the

apacity of the platform and the elevation of the station entrance; iv)
15 
etwork for the connectivity of the key infrastructure pieces, such as

he link between platforms, the walking path, and the routes. The flood-

ng scenarios (exogenous inputs to the ABM framework) will alter the

vailability of some stations and transfer options underneath the water

evel, including the changes in passengers’ origins, destinations, depar-

ure times, and routes. The distributions of the demand on route choices

ithin each OD pair are then obtained through the discrete choice model

s introduced in Section 3.1 . For example, upon the closure of a station,

assengers seek to utilize a nearby station within 1km and may have

ultiple station and route choices. For each option, the probability that

 passenger will choose can be derived by Eq. (4) based on the trip

osts of each option, Hence the distributions of the total demand on

hese choices will be based on the probabilities derived in the discrete

hoice model as indicated in Eq. (5) . Through the behavioral models,

pdated origin, destination, departure time, and route information for

ach passenger will be generated and used in subsequent simulations.

n a more disruptive scenario, the flooding scenario inputs also affect

he metro service schedule if water enters the subway tunnel. However,

uch severe flooding scenarios are less common and would require dras-

ic changes in travel demand patterns and thus are not the focus of this

tudy. 

Three types of agents are used in the data-driven ABM simulation,

nd they are the platform agents, the passenger agents, and the vehicle

service run) agents, respectively. Each agent has various static and dy-

amic attributes, such as the capacity of the train (static), passenger lo-

ation (dynamic), or the number of passengers on a platform (dynamic).

t each simulation time step (usually no longer than 20 seconds), the

rain location is first updated according to the metro schedule inputs. A

rain or service run can either be running between two stations or dwell

t a platform for boarding and alighting. When a train dwells at a plat-

orm, passengers who have reached the destination station or transfer

tation will leave the train and move to the platform, while those who

re waiting at the platform can board the train on a first-come-first-

erve basis. Passengers will not be able to board the train if the capacity

f the train has already been reached. The simulation continues until

ll passengers have reached their destination or the end time has been

eached. At each step, the dynamic attributes of the platform, train, and

assenger agents will be updated. Detailed as well as aggregated out-

uts, such as the platform crowdedness at every time step, or passenger

ocations at every 5 min, are saved for postprocessing analysis. 

The output module can generate results at different aggregation lev-

ls, from travel times for individual travelers and crowdedness at each
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Fig. 3. Categorization of impacts of metro station closure on passengers’ travel outcomes. 
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H  
latform to the overall system-level trip completion rate under flooding

isruptions. This varied level of resolution is one advantage of agent-

ased models. The individual-level travel times output can be compared

ith smart card tap-out times for validation purposes. Specifically, we

ocused on the mean and standard deviations of travel time differences

o verify the consistency and quantify the discrepancy between the sim-

lation results and real-world observations. 

.3. The impacts of flooding levels on urban rail transit networks 

To analyze the flooding level impacts, the system performance of

he metro networks will be compared at different flooding levels using

he developed ABM as described above, including a benchmark case

ith normal station access, and a number of flooding cases. Each case

epresents a separate ABM simulation run. Specifically, we focused on

he performance at passenger and system levels as follows: 

.3.1. Impacts on passengers’ trips 

Quantifying the changes to passengers’ travels is fundamental to un-

erstanding the flooding impacts. The impacts of flooding levels on pas-

engers’ travels are categorized using the tree-like structure in Fig. 3 .

pecifically, we define the “not impacted ” category as those whose

ravel times increase by no more than 10%, or 10 min, compared to

he base travel times (e.g., no flooding-induced station closures). Other

ypes of impacts include: trips unfulfilled due to the lack of alternative

ntrance, exit, or transfer stations; trips that are fulfilled but require

alking to a new entrance or exit stations, trips taking a longer detour,

r longer time queuing on the platform. 

.3.2. Impacts on system operations 

Apart from individual passengers’ travel outcomes, the ABM will also

apture the changing interactions and dynamics between the passenger,

ervice run, and platform agents, which are crucial to derive the system

peration performance from evaluating flooding impacts on the metro

ystem. Specifically, we focused on: 

Affected stations : number of stations that are closed due to certain

ooding levels. The affected stations depend on the difference in station

levation height and flooding levels. Depending on the geography and

ity planning, the affected stations may increase exponentially with the

ooding level. 

Passenger volume on service line segments : number of travelers passing

hrough each service line segment (between two stations). This indi-

ates the changes in traffic distribution on a network level due to the

naccessibility of some stations due to flooding-induced closures. 

Platform crowdedness and waiting time : the total number of passengers

r time spent waiting at each platform during the examined periods. This
16 
eflects the changes in passenger loads to be handled by other stations

ue to the flooding station closures. 

.4. Applications of the ABM framework to other common disruptions and 

isasters 

The proposed ABM framework is also applicable to other disasters or

cenarios involving the metros or other types of public transport oper-

ting on rather fixed routes and schedules. Closely related to flooding,

oastal cities also suffer from strong winds from typhoons or hurricanes,

hen the surface and elevated portions of the networks are impacted the

ost. In such disaster scenarios, the surface and elevated portion of the

etwork will be closed, and the service runs will be shortened to only

over the underground part. The resulting passenger volume and trip

ulfillment ratio can thus be obtained under the same framework. 

Depending on the magnitudes of the disaster, the modeling consid-

rations are also different. First, the disaster impacts are reflected in

he behavior model in Fig. 2 . For example, for smaller disruptions and

isasters (e.g., flooding, wind incidents), it is believed that the over-

ll travel demand patterns only need localized modifications, such as

witching to a nearby station or rerouting. For major disasters (e.g.,

atastrophic earthquakes), the travel demand pattern will be drastically

ifferent, as people’s daily lives will be greatly affected. An estimation

f travel demand patterns in emergency scenarios is thus needed. The

gent-based transit passenger simulation logic can be regarded as gen-

rally applicable. The proposed framework can be combined with op-

imization framework to identify the most suitable schedule and stop

ocations as a disaster response tool. 

. Case study 

The proposed methodology is applied to the metro network of Shang-

ai to analyze the system outcomes and impacts on travelers under

eavy rainfall-induced metro station closing scenarios. Like many large

ities, Shanghai heavily depends on the metros for passenger transport.

ccording to the smartcard data used for this study ( Section 4.2 ), in

015, the system carried nearly 5 million trips daily. On the other hand,

s a coastal city subjected to land subsidence, Shanghai is also vulnera-

le to inland flooding under adverse weather events. Extreme weather

vents affect the metro system in various ways, such as the closure of

he elevated sections under typhoon weather or service interruption if

ater accumulates in the subway tunnels. Here we choose to explore

he impacts of flooding-induced station closures. Compared to major

ooding events that require a whole system shutdown for days (such as

urricanes in New York), station closures represent a moderate flooding
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Table 1 

Network and service-related inputs. 

Category Item Source Usage 

Network topology Network connectivity 2015 map of Shanghai Metro Construction of the network environment 

Station coordinates Gaode Map geocoding API Convert into stop information with GTFS format; used for route 

planning, visualization, distance calculation 

Train operation 

schedules 

Between-station travel time Bendibao Shanghai metro timetable Convert into stop and route information with GTFS format; 

used for construction and simulation of the service run agent. Service frequency 

Train capacity # carriages Wikipedia Used for populating the service run agent properties. 

Station elevation Elevation by meter Zhang et al., 2019 Determine closed stations under different water level scenarios. 

Fig. 4. Metro network and elevation data, with a zoomed-in view of station and platform representations. 
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cenario where the service runs are not significantly impacted. Never-

heless, it is worth investigating as such scenarios are more commonly

een in real cases, and it is reasonable to assume the normal travel de-

and (e.g., commuting trips) still holds. Due to data availability, the

ase study scenarios are mostly built on the 2015 metro network and

ravel demand data. The preparation of the case study data will be in-

roduced in the next two subsections. 

.1. Supply-side data inputs: metro network and service timetable 

The ABM simulator requires basic inputs for building and running

he agent-based simulation for the metro network. These include the

etro network topology and train operation schedules in the format of

he General Transit Feed Specification (GTFS) [39] . In addition, some

ptional inputs are also needed for the flooding analysis of this study,

ncluding the station entrance elevation and train capacity. These data

nputs are sourced from various open data sources and summarized in

able 1 below. 

First, a list of all lines and stations is obtained based on a 2015 map

f the Shanghai Metro. The station coordinates are subsequently queried

rom the GaoDe Map Geocoding API [40] . This information is processed

nto the stop information with GTFS format, which is a required input by

BM for the network environment construction, as well as for distance

alculation and Geographical Information System (GIS) visualization re-

ated tasks in pre- and post-processing of the analysis. The network has

03 stations, 742 platform nodes, and 3,772 links connecting the plat-

orms and stations. The network map is shown in Fig. 4 . 

Built on the base map of network topology, the service run-related

nputs are sourced from a local information website, including the time

or the first trains at each station and the service intervals [41] . Dur-
17 
ng the morning peak hours, the service interval is mostly 2.5-4 min,

ith the maximum being 9 min for the suburban sections of Line 10.

hile for off-peak hours, the service interval is between 4-12 min. To

implify the data processing, a metro line with bifurcations (or the circle

ine) or differences in service intervals is broken into sub-line segments.

ach segment is a simple line without branches and has uniform ser-

ice intervals. The timetable-related inputs are converted into the stop

nformation and route information with GTFS format They are the re-

uired inputs for ABM to construct and simulate the train movements

n the network, such as dwelling on a platform or running between two

tations. 

Furthermore, the number of carriages for each metro line is obtained

nd used to calculate the design capacity based on the line planning. For

ost of the lines, six carriages are used, and each train has a design ca-

acity of 1,470 passengers per service run. Lines 1, 2, and 14 use eight

arriages per train, leading to a capacity of 1,960 passengers per service

un. Line 6 uses four carriages per train, giving it a slightly lower capac-

ty of 980 passengers per service run. As shown in a recent validation

ffort of ABM, the inclusion of accurate capacity information helps to

etter capture the crowding phenomenon on the platforms [ 32 , 42 ]. 

An additional piece of information needed in this study is the ele-

ation data. Visual inspection shows that elevation data obtained from

pen sources such as Google Maps are not accurate. As a result, we

anually add the station entrance elevation, referring to the figures in

hang et al. (2019) [38] . The elevation data reveals that, except for two

tations near the inner-city Huangpu River in lower-lying areas, most

ther stations affected by the water rise scenario for up to 5m are in

he suburban areas. It indicates that the passenger journeys in the city

enter may be less impacted under a uniform water level increase. The

levation map is shown together with the network map in Fig. 4 . 
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Fig. 5. Numbers of entrance and exit trips by station and analysis time periods. 
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Table 2 

Numbers of affected metro stations under different water level rise scenarios. 

Scenario/ water 

level rise 

Base 

(0m) 

1m 2m 3m 4m 5m 

# affected stations 0 1 1 2 24 53 
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.2. Demand-side inputs: traveler origin, destination, and departure time 

The trip information inputs for running ABM agent-based simulation

an come from multiple sources, such as behavior models informed by

ravel surveys, or smartcard data. For the Shanghai metro, anonymized

raveler data for April 2015 have been made open through the 2015

hanghai Open Data Applications (SODA) competition. This smartcard

ata is chosen to be used in this case study. 

The smartcard data contains transaction information for the metro

nd buses, taxis, ferries, and park-and-ride parking. In general, nearly

0 million trip transaction records are available on a typical weekday

ssociated with the metro system. The estimated daily metro trips are 5

illion, as each trip consists of two transactions (tap-in at the entrance,

ap-out at the exit). The transactions for a typical working day, April 3,

015, are extracted for further analysis. Trip entrance and exit data are

e-organized as a list of (origin, destination, departure time) format re-

uired by ABM. There are 1.3 million OD trips from 7:00-9:00 (labeled

s the “AM ” analysis period in the subsequent analysis) and 0.47 mil-

ion trips from 12:00-14:00 (labeled as the “OP, ” or off-peak, analysis

eriod). The stations colored by the numbers of passenger entrances and

xits are shown in Fig. 5 for the AM and OP analysis periods. It is clearly

isualized that in the morning peak, trips come from the suburban area

oward the city center. Comparatively, in the off-peak period, the de-

and is significantly less and does not have a clear spatial pattern of

ovement. 

.3. Study scenarios 

Based on a survey in the news, expert opinions, and previous studies,

t is understood that the metro system is impacted differently during ex-

reme weather. In typhoon weather, the surface and elevated portions of

he network are at the most significant risk, and trains usually stop run-

ing. However, if water accumulates from the extreme rainfall and can-
18 
ot be drained fast enough, one or several stations may be flooded and

losed. Trains normally won’t stop running but usually, skip boarding

nd alighting at the affected stations. Under extreme cases, the flood-

ng into the station cannot be pumped out and would enter the subway

unnel, in which case the metro will stop operating for safety reasons.

ach scenario is worth further exploration, but this study focuses on the

ore common scenario where stations are closed, but the metro oper-

tions are not affected. Apart from being the most likely scenario, this

elatively lower impact case also means the regular travel demand is

east impacted, and the proposed behavior model is still applicable. In

ddition, two analysis periods, “AM ” and “OP ” are considered, as the

ooding events are expected to cause different levels of impact depend-

ng on the time of the interruptions. 

Following the scenarios in Zhang et al., 2019, a base case with no sta-

ion closure and five additional water level rise scenarios (1m-5m) are

nvestigated. Stations with entrance elevation below the water level rise

re assumed to be affected under each scenario, and no entrance, exit, or

ransfer is allowed. Travelers either choose to take another nearby sta-

ion as described in the behavior model in Section 3.1 , or they will need

o cancel their trips if no nearby station within 1km is available. The

umbers of affected stations under each scenario are given in Table 2 .

pecifically, as there is no station with an entrance elevation between

-2m, the scenario with a water level rise of 1m and 2m will produce

he same results. 
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Fig. 6. Passenger volume by Metro sections and travel time distribution. 
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. Results and discussion 

.1. Base scenario and validation 

Simulated results for the two base scenarios (AM and OP period, no

tation closure) are plotted in Fig. 6 , where Fig. 6 (a) shows the numbers

f trips per segment (between two stations) for the AM period. Trip

olumes from the two directions are added together in Fig. 6 (a) due

o the difficulty of distinguishing two opposite directions of the same

etro line in the plot. Based on the knowledge of the traffic patterns as

hown in Fig. 5 (a) and (b), more trips are going towards the city center

uring the AM period, thus a heavier contribution from the trips going

nto the city is expected. The estimated total trip distance for the AM

eriod under the base scenario is 17.2 million kilometers (13.2 km per

rip on average). Distributions of travel time under the AM base scenario

re shown in Fig. 6 (b). The median travel time is slightly over 30 min.

mong all the AM trips, 28.8% have travel times over 40 min and 5.8%

ave travel times over 1 hour. A similar set of plots for the OP base

cenario are shown in Fig. 6 (c) and (d). Compared with the AM base

cenario, the trip volume in the OP time period reduces significantly,

arked by the lighter color of the trip volume map in Fig. 6 (c). The total

rip distance is 6.2 million kilometers, with an average trip distance of

3.1 km per trip. The median travel time is 30.2 min, which is similar

o the AM period. However, there is a higher proportion of longer trips

n the OP period, with 30.9% trips having travel times over 40 min and

.6% over 1 hour. 

The simulated travel times are validated against the smartcard tap-

ut data. For the AM period, the mean difference in travel time is

.5 min. The standard deviation is 6 min. 50% of the trips are within

 /- 3 min compared to the smartcard data, and 90% of trips are within
19 
10 ∼ + 8 min. For the OP period, a larger validation variation is ex-

ected due to the long train service interval. The mean difference in

ravel time is 0.3 min with a standard deviation of 7.2 min. 50% of the

rips are within + /- 3.5 min compared to the smartcard data, and 90%

f trips are within -13 ∼ + 9 min. During the validation process, it was

ound that the service frequency has the biggest impact on the result.

or busy lines such as Line 3, where the scheduled peak hour interval

s 2.5 min, a simulation with the service interval of 4 min would mean

 nearly 40% reduction in metro services. Setting larger train intervals

n the simulation than in the real schedule leads to insufficient service

apability and can potentially result in significant overcrowdedness on

latforms and slowdowns of passenger travel times in the simulation.

ue to the longer service interval in the OP period, a traveler could eas-

ly save or miss 5-15 min of waiting time if they catch or miss a train,

hus bigger variations (in terms of standard deviation or interquartile

nterval) in the validation are expected for the OP period. 

.2. Large scale flooding 

The analyses of the flood-induced station closure scenarios are pre-

ented in this section. For individual travelers, the impacts of station

losures on their trips and travel times are classified following the tree

tructure introduced in Fig. 3 . In the first layer, the trips under the sta-

ion scenarios are either finished (fulfilled trips) or not finished (unful-

lled trips). Moreover, the unfulfilled trips can be further distinguished

y their causes: trips are unfulfilled either because there are no alter-

ative stations available within walking distance or because the loss of

ransfer stations leaves no other routes to reach the destination. On the

ther hand, for trips that are still able to be fulfilled under station closure

cenarios, two outcomes are expected: the travelers either complete the
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Table 3 

Impacts on travelers under different water level rise scenarios and analysis time periods. 

AM (7:00-9:00) OP (12:00-14:00) 

Water level 0m 1m/2m 3m 4m 5m 0m 1m/2m 3m 4m 5m 

Total OD 1,296,934 468,649 

(a) Unfulfilled trips (absolute value and percentage) 

(a1) No alternative station 0 0 0 165,082 290,291 0 0 0 58,185 98,202 

- - - 12.7% 22.4% - - - 12.4% 21.0% 

(a2) Lack of transfer 0 0 0 0 22,946 0 0 0 0 7,812 

- - - - 1.8% - - - - 1.7% 

(b) Fulfilled trips (absolute value and percentage) 

(b1) Change OD 0 4,901 16,948 30,720 36,091 0 958 4,285 8,274 10,349 

- 0.4% 1.3% 2.4% 2.8% - 0.2% 0.9% 1.8% 2.2% 

(b2) Same OD 1,296,934 1,292,033 1,279,986 1,101,132 947,606 468,649 467,691 464,364 402,190 352,286 

100% 99.6% 98.7% 84.9% 73.1% 100% 99.8% 99.1% 85.8% 75.2% 

(b2.1) Detour 0 0 0 213 11,771 0 0 0 74 3,255 

- - - - 0.9% - - - - 0.7% 

(b2.2) Queue 0 2,631 1,103 438 440 0 94 119 114 189 

- 0.2% 0.1% - - - - - - 

(b2.3) Not impacted 1,296,934 1,289,402 1,278,883 1,100,481 935,395 468,649 467,597 464,245 402,002 348,842 

100% 99.4% 98.6% 84.9% 72.1% 100% 99.8% 99.1% 85.8% 74.4% 
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rips from the original entrance or exit station if both are not affected by

he flooding (same OD), or they may need to switch to a nearby entrance

r exit station with some additional time spent on walking (changed

D). Furthermore, in the former case, three sub-situations can be iden-

ified: even if their origin and destination stations stay the same, they

ay need to take longer routes due to the closures of transfer stations

r spend longer time queuing on the platform due to the increase in de-

and migrated from nearby stations. The last portion of travelers are

hose minimally affected by station closures, and their travel times do

ncrease significantly. 

The percentages of travelers falling into each category in Fig. 3 under

arious water level rise and time period scenarios are given in Table 3 .

hen the water level is below 3m, only 1 or 2 individual stations are

ffected. Both stations are located near the Huangpu River in the city

enter and have several stations nearby ( Fig. 4 ). As a result, no trips fall

nto the unfulfilled or significantly delayed categories. Around 1% of

he trips changed to a different origin or destination. Most trips did not

hange the origin or destination or experienced significant delays. The

esults indicate that impacts on travelers are almost negligible when the

ater level rises below 3m. Given the uncertainty of flooding locations

n reality that is opposed to the uniform increase assumed in this study,

ifferent results may be expected if the affected stations are distributed

ifferently spatially. For example, suppose the closed station is in a res-

dential area without nearby stations within walking distance. In that

ase, many travelers will not be able to enter the metro in the morn-

ng peak hours unless alternative modes of transport (e.g., replacement

uses) are available to cover the distance to other unaffected stations. 

Under the 4m water level rise, 24 stations are closed for entrance,

xit, or transfer. For the 1.3 million trips in the AM period, 165,082

12.7%) are not able to take place because the original entrance or exit

tations are closed, with no alternative stations within 1km walking dis-

ance. 30,720 (2.4%) trips change the entrance or exit (or both) to an

lternative station within 1km walking distance. The entrances and ex-

ts are not affected for the remaining 1.1 million trips (84.9%). The per-

entage statistics are similar in the OP period, except for a slightly lower

umber of trips needing to change the origin and destination. This can

e explained by comparing the locations of the affected stations and de-

and patterns in Figs. 4 and 5 . Under the 4m water level rise scenario,

ost of the affected are in the suburban area, which coincides with the

rigins of trips in the AM period, but less so with the trip origins or

estinations in the OP period. 

The affected trips almost doubled when the water level rise is 5m,

s 54 stations are closed. In the AM period, 290,291 (22.4%) trips are

anceled, or 98,202 (21.0%) in the OP period, primarily due to the lack
20 
f nearby stations as an alternative. For trips that can still be fulfilled,

here are 36,091 (2.8%) trips in the AM period, or 10,349 (2.2%) in

he OP period that need to switch to a different origin or destination.

mong the trips that are impacted, the lack of alternative stations is the

ain factor. 

Results in Table 3 indicate an overall reduction in the number of

rips by up to 25% under the 5m water level rise scenario. However,

urther exploration shows an increase in congestion on specific lines

r increased crowdedness on certain platforms despite the overall re-

uction of travelers. These locations are shown in Fig. 7 and Fig. 8 .

ig. 7 shows the passenger volumes by line segments (total passengers

assing a link). The blue color indicates segments with reduced passen-

er volumes and the red color highlights line segments with increased

assenger volumes. Due to the overall reduction in unfulfilled trips, most

ine segments serve reduced numbers of passengers under the 5m water

evel rise scenario both in the AM and the OP periods. The increased

olume on the red segments is primarily associated with the changes of

he entrance/exit stations (b1 in Table 3 ), or detours (b2.1 in Table 3 ):

or example, by breaking down the passenger volume of the red seg-

ents in Fig. 7 (a) by traveler status, it was found that the increase in

assenger volume of Line 6 and Line 12 are predominantly due to the

hanges in the OD, while the increase in Line 4 is caused by detoured

ravelers with unchanged OD. 

The overall reduction in traffic levels is also reflected on the platform

evel. Fig. 8 shows the changes in the cumulative platform waiting time,

here blue indicates less total waiting time compared to the baseline,

hile red means increased platform waiting time. Typically, two types of

latforms have increased waiting time under station closure scenarios:

hey are either the alternative stations that travelers choose to replace

 closed station (e.g., Shangnan Lu Station in Fig. 8 ), or interchange

tations along the segments of increased passenger volume shown in

ig. 7 (e.g., Dalian Road Station after the segments of increased vol-

me on Line 12, and South Xizang Road Station after the segments of

ncreased volume on Line 4). The platform with the longest increase in

aiting time is the northbound platform of the Shangnan Lu Station.

he crowdedness on this platform in the baseline and 5m water level

ise scenarios are shown in Fig. 9 . The increased crowdedness is evident,

s shown by the orange line (station closure scenario). In addition, the

lot also shows the arrival time of the trains marked by the gray ver-

ical lines. The number of passengers waiting on the platform reduces

hen a train comes, as some passengers board the train. In the baseline

cenario, most of the waited passengers can board the train each time,

hown by the low values of the blue curve at each gray line. In the road

losure scenario, however, the orange curve does not fall back to zero,
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Fig. 7. Link volume changes at 5m water level rise scenarios. (a) AM; (b) OP. 

Fig. 8. Platform waiting time changes at 5m water level rise scenarios. (a) AM; (b) OP. 

Fig. 9. Increase in platform crowdedness at Shangnan Lu station. 
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ndicating some travelers cannot board the train and must wait for the

ext one. 

. Conclusions 

With growing public awareness and concerns of the disruptions by

etro service under heavy rainfall and flooding events reported in re-

ent years, a more thorough understanding and detailed plan for such

mergency situations is called for from the metro operators. On the

ther hand, knowledge of the system is becoming increasingly available

ith the standardization of key information such as the metro operation

chedules, and travel demand smart card data. Based on these standard
21 
ata products available to the metro operators, we propose a data-driven

gent-based model (ABM) to study the outcomes of the system across

omponents and scales under various flooding scenarios. Specifically,

e demonstrate the flexibility of the proposed ABM to incorporate real-

stic behaviors and constraints, such as traveler origin and destination

edistribution behaviors, route updates, service schedules, and train ca-

acity constraints. 

A case study is presented for the Shanghai Metro based on the 2015

etwork and travel demand, as well as the previously published station

levation data and flooding scenarios. The smart card data shows spa-

iotemporal patterns of travel demand, with more trips going from the

uburban area to the city center during the morning peak ( “AM ”) hours
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nd fewer trips with no obvious direction of movements in the mid-

ay off-peak period ( “OP ”). The elevation data reveals that apart from

wo stations located in the city center near the Huangpu River that are

ubject to water level increase, most other stations under the threat of

ood-induced closures are in the suburban areas, coinciding with the

rigins of the AM trips. The baseline simulation results are validated

gainst the smart card tap-in, tap-out data. The validation shows a good

atch in the mean travel time, but larger variations of the simulation

esults compared to the smart card data when the train service intervals

re large. 

On the individual level, the impacts of flood-induced station closures

an be categorized depending on the interruptions exerted on individ-

al travelers, such as trip cancellation, change of origins/destinations,

erouting, delay, or low impact. It was found that all scenarios can be

istinguished into two categories based on the locations of the closed

tations: either with minimum impact if the closed stations are in the

nner city with many alternative stations nearby (water level < 3m)

r resulting in up to 25% of trip cancellations in the suburban areas

ith few stations within walking distance (water level is 4-5m). On the

ystem level, from a spatial perspective, large amounts of trip cance-

ations under the most extreme water level rise scenario (5m) lead to

n expected overall reduction in passenger volume on most lines and

horter waiting time on most platforms. However, at specific lines and

latforms, the passenger loads increase locally, mainly due to the redis-

ribution of the origin and destinations of some passengers. 

Admittedly, the scenarios studied in this paper cover a common but

ess disruptive type of flooding emergency, where some stations are

kipped, but the train service remains functional otherwise. The spa-

ial and sub-system perspective of the data-driven ABM offers a more

ntuitive tool for asset managers in designing the emergency plans, such

s providing replacement buses or increasing the personnel at the illus-

rated locations. In addition, the framework is also flexible to be used in

ther emergency scenarios, such as coupling with other civil infrastruc-

ures to facilitate the design of co-operational plans in reducing infras-

ructure vulnerability and improving urban resilience. The framework

s also capable of quantifying uncertainties in the system if combined

ith forward propagation techniques such as Monte Carlo simulation.

uture studies can also incorporate operational strategies and network

esigns for emergency responses and evaluate the system performances

nd impacts of the common or natural disasters. 
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