
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=tcim20

International Journal of Computer Integrated
Manufacturing

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/tcim20

Programming cobots by voice: a pragmatic, web-
based approach

Tudor B. Ionescu & Sebastian Schlund

To cite this article: Tudor B. Ionescu & Sebastian Schlund (2022): Programming cobots by voice:
a pragmatic, web-based approach, International Journal of Computer Integrated Manufacturing,
DOI: 10.1080/0951192X.2022.2148754

To link to this article: https://doi.org/10.1080/0951192X.2022.2148754

© 2022 The Author(s). Published by Informa
UK Limited, trading as Taylor & Francis
Group.

Published online: 26 Nov 2022.

Submit your article to this journal

View related articles

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=tcim20
https://www.tandfonline.com/loi/tcim20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/0951192X.2022.2148754
https://doi.org/10.1080/0951192X.2022.2148754
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=tcim20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2022.2148754
https://www.tandfonline.com/doi/mlt/10.1080/0951192X.2022.2148754
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2022.2148754&domain=pdf&date_stamp=2022-11-26
http://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2022.2148754&domain=pdf&date_stamp=2022-11-26

Programming cobots by voice: a pragmatic, web-based approach
Tudor B. Ionescu and Sebastian Schlund

Human-Machine Interaction, TU Wien, Vienna, Austria

ABSTRACT
This paper introduces a novel voice-based programming approach and software framework for
collaborative robots (cobots) based on the Web Speech API, which is now supported by most
modern browsers. The framework targets human programmable interfaces and human-machine
interfaces, which can be used by people with little or no programming experience. The framework
follows a meta-programming approach by enabling users to program cobots by voice in addition
to using a mouse, tablet, or keyboard. Upon a voice instruction, the framework automates the
manual tasks required to manipulate the vendor-provided interfaces. The main advantages of this
approach are simplified, guided programming, which only requires the knowledge of 5–10 voice
instructions; increased programming speed compared to the manual approach; and the possibility
of sharing programs as videos. The approach is generalized to other kinds of robots and robot
programming tools using so-called meta-controllers, which leverage the power of graphical user
interface automation tools and techniques.

ARTICLE HISTORY
Received 17 July 2021
Accepted 13 November 2022

KEYWORDS
Voice-based programming;
GUI automation; cobots;
plugins; meta-programming;
speech recognition

1. Introduction

Assembly automation has increasingly developed
over the last decades also thanks to the introduction
of collaborative robotic arms (short, cobots), which
can work in close proximity to humans without requir-
ing a safety fence. Cobots are currently used to auto-
mate repetitive manual tasks, such as loading/
unloading of machines, pick & place operations,
screwing tasks, or quality inspection. Cobots can
help to accomplish some of these tasks more cost
effectively than humans in productive industrial con-
texts. Nevertheless, the field of hybrid automation –
i.e. where humans and machines work together in
direct interaction has not been realized to the extent
projected by the industrial automation community
and cobot vendors.

Currently, a number of factors sum up to prevent
the wide-scale adoption of cobots in Europe. First,
current robot programming environments are usually
considered counterintuitive because they build upon
older expert programming models, such as function
blocks, textual programming, and combinations of
visual and textual programming modes. At the same
time, newer robot programming environments, which
draw upon design patterns used for smartphone user
interfaces and other commonly used day-to-day

technologies, provide opportunities for non-experts
to engage with programming cobots more easily
(Ionescu and Schlund 2019). Yet, while the barriers
are lowered, these environments often lack the versa-
tility of textual programming and are subjected to
app-oriented business models, which foresee the
acquisition of additional robot apps (or skills) at pro-
hibitive costs. Second, while robot vendors strive for
targeting new markets and users, in the industrial
domain, robot programming is still regarded as
being a task for experts. This leads to a gap concern-
ing a learner’s transition from multi-model, intuitive
robot programming towards the more versatile, tex-
tual programming environments. Such a transition
would, for example, allow assembly workers to pro-
gram robots using increasingly complex program-
ming models.

In response to this situation, this paper considers
a scenario in which robot programming is certified as
an assembly application instead. This would allow for
workers to design applications in collaboration with
assembly planners without the need for recertifica-
tion. In this context, the collaboration between
humans and robots occurs at the cognitive level,
with workers and other non-experts designing and
programming applications. This would not only
empower shop floor employees to take over more

CONTACT Tudor B. Ionescu tudor.ionescu@tuwien.ac.at Human-Machine Interaction, TU Wien, Thresianumgasse 27, Vienna 1040, Austria

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING
https://doi.org/10.1080/0951192X.2022.2148754

© 2022 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives License (http://creativecommons.org/licenses/by-nc-
nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited, and is not altered, transformed, or built
upon in any way.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/0951192X.2022.2148754&domain=pdf&date_stamp=2022-11-26

cognitive tasks but also provide robot programmers
with access to the tacit knowledge of assembly work-
ers (Ionescu 2019).

Drawing on the assumption that the notion of
intuitive user interfaces is contingent on the user’s
prior knowledge and experience with technologies
having similar user interfaces as well as with
analogous day-to-day activities (i.e. conversations,
text chatting, web searching, interactions with smart-
phones and tablets, etc.) it is hypothesized that intui-
tive robot programming is not a holy grail to be
attained by one human-programmable interface
(HPI) but a matter of providing diverse supports for
that which is already known and experienced by the
projected users. These supports may include app-
oriented drag-and-drop features, voice-based pro-
gramming, and other multimodal interactions.

This paper focuses on voice-based programming as
one natural modality for supporting a more intuitive
interaction with cobots. The proposed approach aims
to close a gap in the commercial and research
approaches to end-user robot programming by pro-
posing a novel way of creating robot programs using
voice commands. The main purpose of the proposed
approach is to speed-up existing modalities of pro-
gramming robots by (1) freeing the user’s hands
when teaching and finetuning cobot poses, and (2)
endowing existing robot programming environments
with programming by voice capabilities. In addition,
the paper shows that the WSAPI provides a pragmatic,
highly accurate (over 95% command recognition
rate), zero-cost solution to voice command recogni-
tion for robot programming and provide a proof-of-
concept, open-source implementation for speech-
based robot programming, which is available online
(https://assembly.comemak.at). The proposed
approach thus aligns with current state of the art
approaches in voice-based computer programming,
which reduce conditions cause by physical strains
(e.g. repetitive strain injury – RSI) and enable people
with various disabilities to write code (Nowogrodzki
2018).

The novel contribution of this paper is threefold.
First, it argues and demonstrates that programming
cobots by voice has become more feasible and useful
than ten or twenty years ago, when speech recogni-
tion systems did only reach an accuracy of around
80% in lab conditions. Second, it introduces a novel
architecture for retrofitting existing robot

programming environments by speech-based pro-
gramming capabilities. Third, it provides an open-
source implementation of the approach for a web-
based, generic robot programming tool called
Assembly. The novelty of the contribution consists in
tackling speech-based robot programming rather
than robot control – a domain, which has received
relatively little attention in the multimodal and end-
user robot programming literature in the past decade,
as also noted by Villani et al. (2018). The significance
of the contribution is represented by the pragmatic
approach taken to implement speech-based cobot
programming. The architecture introduced in section
2.3. can be used to endow existing robot program-
ming tools with additional programming modalities,
which are not limited to programming by voice. From
an architectural perspective, the paper is significant
because it introduces a novel way of connecting nat-
ural programming interfaces with existing robot pro-
gramming environments event if those environments
do not provide APIs or other means for supporting
plugins and functional extensions.

The paper is structured as follows: It begins with
a literature review of existing programming by voice
approaches and principles for ‘democratizing’ cobot
technology using simplified programming and multi-
modal human-robot interaction. Then, it introduces
the programming by voice approach for a robot that
provides a web-based HMI. This approach is then
generalized to robots which provide conventional
teach pendants and to a generic, web-based robot
programming tool. Finally, the approach is evaluated
based on three different implementations and
selected usage scenarios.

1.1. Democratization of cobot programming and
natural user interfaces

The use of cobots in industrial applications still falls
short of enthusiastic expectations and forecasts.
Whereas market surveys of the last years predicted
an exponential growth and a vast distribution in
industry, official cobot statistics of the International
Federation of Robotics (IFR) note a total volume of
18.000 units, less than four percent of 2018’s industrial
robot sales worldwide (IFR 2019). Today’s state of the
art cobots largely rely on legacy programming con-
cepts and user interfaces (UI) or started the imple-
mentation of function-block oriented graphical UI’s

2 T. B. IONESCU AND S. SCHLUND

https://assembly.comemak.at

that still do not fulfil users’ expectations
(Schmidbauer et al. 2020; Ionescu 2021; Piacun et al.
2021). Furthermore, most industrial UI concepts for
cobot programming do not take into consideration
enlarged user groups that span far beyond robot
expert programmers and system integrators towards
bystanders, industrial workers and laypersons who
operate cobots in direct (safety-critical) interaction.
That need is intensified by approaches to share tasks
dynamically between cobots and workers
(Schmidbauer et al. 2020a). Consequently, the notion
of a cobot changes from an experts’ system towards
a manufacturing tool that can be used by literally
everyone (Ionescu 2020b, Komenda et al. 2021).
Therefore, one of the main motivations is to ease
industrial engineering and manufacturing processes
towards improved productivity and user-friendliness
for an extended scope of potential users. In this con-
text, democratizing cobot programming aims to pro-
vide a broader range of non-expert users with access
to resources that empower them to use cobots effec-
tively for their own (productive) purposes.

Human-machine interaction requires adequate
interfaces to account for communication between
human and artificial agents. The interaction usually
covers both directions, from humans towards
machines and vice versa. It also covers functionality,
usability and user experience as core concepts. Since
at least the latter largely refers to users’ subjective
feelings about the interactions with a system, the
notion of intuitiveness currently guides the design
and development of user interfaces. Intuitiveness
within that context describes the ability that “[. . .]
the users’ unconscious application of prior knowledge
leads to effective interaction” (Mohs et al. 2006). It
usually refers to the individual, thus the ‘particular
user’ and to the context of a ‘certain task’ (Naumann
et al. 2007). The concept of interactive multi-modal
robot programming refers to the combination of dif-
ferent interaction modes that can be combined seam-
lessly depending on their effectiveness as well as on
user and task-specific criteria. Robot user interfaces
evolved from Command Line Interfaces (CLI) over
Graphical User Interfaces (GUI) towards Natural User
Interfaces (NUI). Frameworks to combine gesture and
speech control date back to the early 2000s

(Perzanowski et al. 2001; Soshi, Paredis, and Khosla
2005) and are considered to be more favorable to the
perception and evaluation of the robot (Salem et al.
2011).

1.2. Related work

This section reviews the relevant end-user robot pro-
gramming tools and research results. First, it discusses
state-of-the-art tools that are already on the market
and current research approaches that are likely to be
adopted by the industry in the coming years. Then, it
discusses relevant speech-based programming
approaches for industrial robots and computers,
more generally.

1.2.1. End-user robot programming
End-user programming can be understood as pro-
gramming by non-experts. To enable non-experts to
program robots, suitable simplified programming
models that depart from traditional text-based pro-
gramming are required. Ko et al. (2004) note that, for
end-users to be able to overcome learning barriers,
simplified programming models should be more user-
centric rather than computer centric, while fostering
analogical reasoning and balancing abstraction and
concreteness. In this sense, the same authors note
that in a human-centric model, programs should be
more similar to flowcharts and widgets (i.e. apps)
rather than instructions, data, and lists (Ko et al.
2004). Drawing on these principles, current state-of-
the-art end-user programming tools divide programs
into primitives (sometimes called behaviors), skills (a
specific combination of behaviors), tasks (programs or
subroutines), and groups of other program elements
(Pedersen et al. 2016). A primitive is a basic software
function that controls a behavior of the robot, such as
a joint or linear movement, an action of its end effec-
tor, and I/O communication. Skills are reusable auto-
mated handling functions that are built on
a foundation of primitives. Skills are available from
the tool vendor or third-party developers as plugins
or apps that the user can customize. A robot task or
program is composed of several primitives and skills
that are organized in various ways based on visual
representation, control flow, and data flow. Groups
are program structures that correspond to loops,

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 3

conditionals, and other generic control structures.
Some of the programming models that are commonly
used in graphical end-user robot programming tools
include list-based, tree-based, flow-based, and block-
based programming. In the following, a review of the
relevant commercial end-user programming tools
that are currently available on the cobot market are
reviewed. Then, the relevant research approaches to
end-user, multimodal robot programming are dis-
cussed. More comprehensive systematic surveys on
end-user programming approaches can be found in
(Ajaykumar, Steele, and Huang 2021) and (Villani et al.
2018).

1.2.1.1. Commercial end-user robot programming
tools. Drag&Bot (2020) is a commercial, simplified,
list-based, generic robot programming tool, which
can be used from a web browser. Drag&Bot provides
robot drivers for the following robot brands: ABB,
Epson, KUKA, Yaskawa, Fanuc, Stäubli, Denso, and
Nachi, and Universal Robots (both the CB and
E-series). The tool integrates a web-based robot simu-
lator in which entire robot stations can be modelled.
The programming is performed by dragging, drop-
ping, and configuring apps, called function blocks,
with the help of configuration wizards. Drag&Bot pro-
vides a series of configurable program templates,
which can be regarded as robot skills. Drag&Bot is
the first web-based generic robot programming UI
which can be used with an online, cloud-based
account.

ABB Wizard is a simplified graphical programming
UI, which builds on Blockly – the open-source block-
based programming environment from Google.
Several commercial industrial and non-industrial
robots use Scratch and Blockly as their programming
environment. The precursor of ABB Wizard is
a research tool called CoBlox (Weintrop et al. 2018),
which also uses Blockly as its main programming
model. Wizard can be used with robots from the one-
armed collaborative Yumi robot and the non-
collaborative IRB 1100 robot. Wizard provides
a block (i.e. app) library which can be used to program
robots by dragging and dropping blocks onto the
program canvas. Each block can be configured
directly using inline parameters, or – in the case of
motion blocks – by moving the robot with the joystick

attached to the robot’s teach pendant or by manually
moving the robot. Users can also create their own
custom blocks, called skills. A skill is a block-based
program which contains several blocks, that are
already available the library. The skill library can thus
be extended by users or third-party developers by
new skills through block composition.

ArtiMinds (Pieskä, Kaarela, and Mäkelä 2018) is
a graphical, workflow-based, generic robot pro-
gramming environment that borrows some fea-
tures of block-based programming environments.
ArtiMinds support different robot models from
a series of vendors (currently, Universal Robots,
KUKA, FANUC, ABB, DENSO, and Mecademic).
ArtiMinds also provides templates and extensions
for additional hardware like end effectors and cam-
eras. ArtiMinds offers software modules that help
to create a robot system composed of a specific
robot, end effector, torque sensor, and camera. The
functions of these systems can then be accessed
and configured directly from corresponding
ArtiMinds templates (i.e. predefined blocks that
behave like apps or skills). To create a program,
the user drags and drops blocks from a template
library and then connects then via ports. Ports are
assigned to input and output variables so that the
outputs of one block can be connected to one or
several other blocks. ArtiMinds also provides
a simulation environment, which occupies the bet-
ter part of the screen. Users can configure station
layouts from predefined machine and part models,
and test programs in simulation. ArtiMinds uses
code generation to translate programs in robot-
specific languages.

Wandelbots (Fitzek et al. 2021) developed
a generic robot programming tool which provides
a physical robot toolpath generation device, called
‘TracePen’. This device allows users to teach robot
motions by drawing paths in 3D space. Paths may
follow the contour of parts that need to be treated
in some way. The software uses machine learning to
optimize the path and allows the users to adjust the
manually generated path in an intuitive app.

1.2.1.2. Research approaches to end-user robot
programming. RAZER (Steinmetz, Wollschläger, and
Weitschat 2018) is a web-based generic robot pro-
gramming tool, which supports programming by

4 T. B. IONESCU AND S. SCHLUND

demonstration (through manual guidance of the
robot) and skill-oriented programming. RAZER uses
a list-based programming model that is similar to
that of Drag&Bot. In RAZER, it is possible to program
several robots with a single program. Programming is
performed by adding and configuring skills in
a similar fashion as with Franka Emika Desk. The pro-
vided skills support a limited number of different tool
sizes and materials. RAZER also offers an expert mode,
in which new, configurable skills can be added by
experts to the tool either by implementing a state
machine model called RAFCON or a custom interface.
The skill model of RAZER thus resembles that of
Franka Emika Desk.

The newest version of the tool (Steinmetz, Nitsch,
and Stulp 2019) implements a semantic model for
automatically detecting, instantiating, and configur-
ing skills from the human-robot interactions per-
formed by a user who programs the robot by
demonstration—i.e. by guiding the robot to desired
positions and manipulating the end effector. This
reduces the time needed to program and configure
tasks and skills since the user does not have to switch
back and forth between the robot and the program-
ming UI. The user’s interactions with the robot are
associated with a certain skill by using a time series of
the robot’s pose. A so-called semantic skill recognizer
then matches this time series to a particular skill that
is available in the tool’s library and to also configure it
automatically by extracting the position and rotation
information from the time series data. To support skill
matching, the skills are described using a so-called
planning domain-definition language (PDDL).

iTaSC (Halt et al. 2018) leverages the process defi-
nition artefacts (symbols, notations, workflow lan-
guage) from the VDI 2869 guideline. This guideline
specifies a taxonomy of automating handling func-
tions organized in three main categories: joining,
handling, checking, adjusting, and special operations.
Within each category, the guideline specifies
a comprehensive set of operations, which are charac-
terized by a symbol and description of the respective
operation, including the parameters that are relevant
to that operation. Production cells and processes can
thus be specified symbolically as workflows of stan-
dardized operations. iTaSC uses constraint-based rea-
soning to generate a robot program consisting of
a sequence of VDI 2860-conforming operations, called

skills, from CAD models. These generated programs
can then be further adjusted by non-experts.

Human Factory Interface (HFI) (Schäfer et al. 2021)
is an experimental robot programming tool that pro-
vides CAD models of entire production cells in addi-
tion to robot and product models. These models are
represented as a knowledge graph in a graph data-
base and can be queried using SPARQL (an RDF query
language). The resulting knowledge base, which is
called ‘world interface’, can be used to comprehen-
sively schedule, plan, execute, and reconfigure
robotic production processes in a semi-automated
fashion. HFI provides an intuitive web-based user
interface in which users can define tasks in terms of
their goals, which can be assigned to a robotic assem-
bly cell. The UI provides information about the pro-
gress of running tasks and allows users to control the
execution.

Semantic Mates is another ontology-based
approach to semi-automated robot programming
(Wildgrube et al. 2019). This constraint-based
approach starts with CAD models of parts and uses
a simple OntoBREP ontology that defines geometric
entities and constraints. The ontological representa-
tion of Semantic Mates, which is stored in the knowl-
edge base, is used to augment object models with
additional information that is relevant to robotic
assembly. Annotated object models can be used to
program a robot to perform assembly tasks through
simple drag-and-drop operations in the UI. Using the
ontology, the UI supports the user in mating different
work pieces together thanks to predefined geometric
constraints. Once mated, the parts are forwarded to
a component that maps the task of joining the parts
together to the skills that are provided by the robotic
work cell.

Robot telekinesis (Lee et al. 2020) is an approach
that takes advantage of virtual object manipulation
techniques that are used, for example, with 6 degrees
of freedom virtual reality gaming controllers. The
approach allows users to control and program robots
by demonstration in a way that is not limited to
collaborative robots. The telekinesis approach to pro-
gramming by demonstration proved to be 4 times
faster than using the teach pendant and just as fast
as, yet physically less demanding than manual teach-
in of the robot. Since the latter technique can only be
used with collaborative robots, the telekinesis

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 5

approach promises to make conventional robot pro-
gramming by demonstration much more efficient.

Gadre et al. (2019) propose an end-user program-
ming approach based on a VR headset connected to
a Baxter collaborative robot. The user can define way-
points and end effector actions using their hands and
fingers in space. The advantage of the mixed reality
approach over the telekinesis approach is that the
actions recorded in the program are displayed in an
overlayed list, which can be edited by the user.

MEGURU is a tool that enables hand gesture-based
end-user robot programming (Nuzzi et al. 2021). The
tool provides support for an extensive set of one or
two-hand gestures that can be used to control and
program the robot. The system uses an off-the-shelf
2D camera. The authors argue that the gestures are
easy to learn and that the system overall is easy to
use. However, it is not clear what level of precision can
be achieved using this modality of programming
a robot. It is reasonable to assume that the achievable
precision is below that obtained by using manual
teach-in.

1.2.2. (Robot) programming by voice
Programming by voice or speech is a compelling idea,
which received some attention by the software engi-
neering and robotics communities in the past 25
years. Speech-based programming arguably helps to
overcome so-called use barriers in end-user program-
ming. According to Ko et al. (2004), use barriers ‘are
properties of a programming interface that obscure
(1) in what ways it can be used, (2) how to use it, and
(3) what effect such uses will have’ (p. 3). Natural
speech commands provide an alternative to manipu-
lating non-intuitive interfaces, while enabling analo-
gical reasoning.

From a technical perspective, while during the
2000s the main problem appeared to be the lack of
reliable speech recognition techniques, owing to the
recent advances in machine learning, today research-
ers are confronted with other problems, such as how
to structure voice commands in order to produce
code while minimizing the necessary corrections
(Begel and Graham 2006; Arnold, Mark, and
Goldthwaite 2000). In this sense, to reduce the speech
recognition error, some researchers use code words
instead of 1-to-1 mappings between what is being
said/recognized and what is being coded. In the
industrial robotics domain, programming by voice

(i.e. producing program code rather than controlling
or guiding a robot by voice) has received relatively
little attention compared to other programming tech-
niques, such as block-based (Weintrop et al. 2017),
automated (Heimann and Krüger 2018) program-
ming, or multimodal teach-in (Beschi, Fogli, and
Tampalini 2019). More work appears to have been
invested in controlling or guiding a robot using
voice commands (Makris et al. 2014), whereby these
commands are used to immediately call some pre-
programmed function of the robot (e.g. different
movements or more complex robotic skills).

By contrast, voice-based robot control is a well-
known and researched problem in the industrial auto-
mation domain. In the 2000s the focus of this research
was on the technology used to reliably recognize
voice commands from users with applications in con-
trolling mobile robots (Rogalla et al. 2002; Liu et al.
2005; Lv, Zhang, and Li 2008; Bugmann and Pires
2005). Thanks to the advances in the machine learn-
ing domain which helped to overcome the challenge
of recognition accuracy, more recent approaches to
voice-based robot control are focused on how to
integrate wearable devices capable of speech recog-
nition (e.g. Android smart watches (Gkournelos et al.
2018)) and how to interface voice-based control with
existing robot application development environ-
ments (e.g. ABB Robot Studio (Pires and Azar 2018;
Kumar et al. 2016)). Some of the newest approaches
from the domain of human-robot interaction com-
bine gesture and speech (Meng, Feng, and Xu 2020;
Liu et al. 2018) or haptic and speech (Gustavsson et al.
2017) control into one systems while showing that
a combination of the two yields better results in terms
of accuracy and acceptance by users. Speech-based
robot control has also been identified as one of the
drivers of a new paradigm of ‘symbiotic’ human-robot
interaction (Wang et al. 2019). In addition to these
scholarly articles, a multitude of patents dealing with
diverse aspects of robot control by voice have been
published since around 2015, which shows that
speech recognition has started to play an important
role in industrial robot control and programming.
Rogowski, 2013 presents a web-based remote voice
control approach for robot cells, which allows the user
to remotely issue complex commands which tell the
robot to perform certain pre-programmed tasks (e.g.
lifting, loading, unloading, picking, placing, etc.). The
focus in Rogowski (2013) is on the grammar

6 T. B. IONESCU AND S. SCHLUND

supporting the recognition of complex commands.
The approach does not qualify as programming
because voice commands are not used to generate
robot code. Rather, they are used to parameterize and
invoke pre-programmed tasks, while the user must
engage continuously in a ‘conversation’ with the
robot.

More recent approaches include a plugin for
extending ABB’s RobotStudio by speech-based robot
control capabilities (Pires and Azar 2018). The plugin
leverages the American English speech recognition
and text-to-speech engines (TTS) provided with
Windows 10 Pro. The system supports commands
for controlling motors, running programs, and setting
configuration options. However, it does not support
commands for instantiating robot behaviors and skills
within the text-based programs that can be created
using RobotStudio.

As part of its RoboMaker service (Liu and Xu 2019),
Amazon provides a service interface for connecting
Alexa with robots through a ROS instance hosted in
the cloud (i.e. robotic middleware as a service). The
user triggers an Alexa skill using a voice command. If
the command is recognized, it is converted into
a machine-readable command, like a move com-
mand. The capabilities of the robot that can be con-
trolled through voice commands are specific to each
applications. Typically, users can trigger robot skills
that are implemented in ROS.

Bingol and Aydogmus (2020) present a speech-
based approach to controlling industrial robots
based on voice commands, which trigger the
execution of skills, such as drilling. The aim is to
enable human-robot interaction with non-
collaborative robots. In this approach, the robot
provides feedback as to whether the command
was successfully recognized and whether the
robot is available to receive such commands. To
enable speech recognition in the Turkish language,
the authors developed a deep neural network,
which is able to recognize commands with an
accuracy of over 90%.

Kaczmarek et al. (2020) present an interesting
approach to adjusting the cartesian position of a non-
collaborative industrial robot arm using commands
such as ‘plus x’, ‘minus y’, etc. This approach uses
a C# library for speech recognition and qualifies as
voice-based robot control rather than programming.

2. Cobot Programming by Voice: A Web
Framework

This section describes a novel lightweight cobot pro-
gramming by voice framework based on the new
Web Speech API (WSAPI)—a W3C specification pub-
lished and maintained by the Speech API Community
Group supported by modern web browsers, such as
Google Chrome, Mozilla Firefox, or Microsoft Edge.
The framework explicitly targets the assembly appli-
cation development phase, which usually requires
many rounds of repetitive trial and error until robots
reach the necessary precision, especially in small part
assembly, such as PCB assembly. In this context, pro-
gramming and testing cobot applications by voice
can be more effective in terms of speed and difficulty.
This would also empower shop floor employees to
participate in the application development activities,
as a growing body of work has called for (e.g. (Ionescu
and Schlund 2019; Wilhelm et al., 2017)).

The proposed framework uses the WSAPI to wrap
the programming structures used by a cobot pro-
duced by the Franka Emika company, which already
offers a simplified web-based human programmable
interface (HPI). In this environment, non-experts can
program the robot by dragging, dropping, and con-
figuring predefined apps in a sequence or according
to simple patterns, such as repetitions of the same
action or more complex composite apps, which can
be acquired in an app store. This app-oriented way of
programming cobots appears to be more intuitive
than other industrial cobot HPIs because it draws on
known patterns of interactions (e.g. with smart
phones and tablets). This provides non-programmers
with the opportunity of a fast and easy initiation into
cobot programming. Nevertheless, the same pro-
gramming technique becomes rather annoying and
slow once a person is initiated into the craft of cobot
programming. In this context, programming by voice
can help to bridge the potential interest gap, which
may arise when a person finds something to be too
easy and limited. Also, and perhaps more importantly
from an economic point of view, programming
cobots by voice can boost the productivity of both
beginner and expert programmers by allowing them
to use their hands for guiding the robotic arm rather
than inputting text or dragging apps and functions.
The framework introduced in this paper thus aims to
augment the multimodal programming capabilities of

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 7

existing cobots rather than providing a definitive
replacement for any of them.

2.1. Programming the Panda Cobot: Features &
Limitations

The Franka Emika Panda collaborative, industrial-
grade robotic arm is one of the first of its kind to
provide a web-based HPI. As depicted in Figure 1,
The design of this HPI closely follows the model-
view-controller (MVC) pattern (Leff and Rayfield
2001), with a REST and Websockets backend and
a dynamic HTML5 & JavaScript web interface. The
REST service components of Panda’s HPI control and
maintain the robot’s state by processing sensor sig-
nals and actuating robot moves. The backend appli-
cation, which implements the model in the MVC
pattern, wraps the robot’s native C++ API, called lib-
franka. This model maintains the current state of the
robot (i.e. joint positions, applied forces, sensor
values, actuation history, etc.) in memory. The web
application, shown in Figure 1, is updated via web
sockets to reflect the current state of the model. In
this web environment, users can create new robot
applications by dragging and dropping so-called
robot apps from an app collection to a workflow
pane to form a sequence of basic actions, whereby

each app in the sequence represents a configurable
instance of a movement or behaviour of the robot
(e.g. taught-in or relative moves, grip-per actions,
waiting for user input, etc.). In addition, there exist so-
called pattern apps, which implement predefined
applications patterns (e.g. picking and/or placing
parts in a tray, or more advanced program structures).
Named app sequences, which are called tasks, are
persisted in the model, whereby all user interactions
generate calls to the REST services. This app-oriented
HPI is coupled with a series of buttons available on
the robot’s head, as shown in Figure 1. Two of these
buttons are used to move the arm in free-drive mode.
The other ones are used within the wizard-like con-
figuration of each app, which is activated by clicking
on the respective app, as shown in Figure 1. This way
the user only needs to interact with the laptop or
tablet when dragging and dropping a new app into
the workflow. For most of the available apps, all other
parameters can be configured using the buttons from
the robot’s head. In practice, however, users prefer to
set certain parameters and click through the wizards
using the mouse or touch screen of the laptop of
tablet because the buttons are relatively hard to
press and thus induce physical strains into the wrist
when used repeatedly for a long time. Also, configur-
ing the apps using the buttons is usually slower than

Figure 1. Architecture and screenshot of the Franka Emika Panda HPI.

8 T. B. IONESCU AND S. SCHLUND

using the mouse and keyboard. Hence, while Panda’s
HPI arguably represented a leap in intuitive robot
programming, it has some obvious limitations when
it comes to ergonomics and speed.

In our experience with using this robot in research
and teaching activities, these limitations not only
reduce the productivity of users, who need to switch
back and forth between the robot’s head and the
computer but may also pose a safety hazard when
more than one individual works with the robot.
Students, for example, tend to divide tasks so that
one person will move the robot, while another one
configures the apps. At times, however, both persons
may stare at the computer screen, whereby one of
them (the one who guided the robot’s head) may be
in close proximity to the robot, which – on occasion –
may perform unexpected moves (e.g. in case of
a software or hardware error) and thus potentially
harm users. When working in teams of two, only one
person should program the robot, while the other one
should watch that all safety-related rules are being
followed (Ionescu and Schlund 2019). These roles
should be switched periodically.

2.2. Using the Web Speech API for Programming by
Voice

The WSAPI is a collection of client-sided JavaScript
functions embedded in modern web browsers (nota-
bly Chrome and Firefox), which allows web develo-
pers to leverage the newest machine-learning based
speech recognition technologies. Common use cases
include voice web search, speech command interface,
speech translation, dialog systems, multi-modal inter-
action and search, etc. The WSAPI can access the
computer’s microphone (or any other microphone
connected to it) via the browser. To ensure privacy,
the user is asked for permission before listening is
enabled. As opposed to older speech recognition
frameworks, the WSAPI supports a wide variety of
languages and has a very high recognition success
rate. This makes corrections only necessary in the
presence of external acoustic interferences, provided
that the user is a fluent speaker in his/her language of
choice.

Once enabled, the WSAPI listens to what is being
said and converts spoken sequences into words
placed, for example, in an array. To implement cobot
programming by voice, a script that can be injected

into Panda’s web-based HPI using the ‘bookmarklet’
technique was developed. A bookmarklet is
a bookmark containing JS commands stored in the
browser’s ‘favorites’ bar, which adds ‘one-click’ func-
tionalities to the currently displayed web page. This
technique has been effectively used to embed or
extend programming environments in existing web-
pages. The current approach uses the same mechan-
ism to inject JavaScript code into Panda’s HPI, which
automates the instantiation, loading, configuration,
and execution of apps and tasks in the robot’s native
HPI according to the user’s voice commands.

The bookmarklet technique was used to extend
Panda’s HPI by voice programming falls into the
broader category of graphical user interface (GUI)
automation, which is primarily used in software test-
ing (see (Ionescu and Schlund 2019) for details). Yet,
with the increasing diversity and complexity of soft-
ware used in companies and privately, more GUI
automation use cases emerged in the past few
years. In this spirit, the proposed framework aims to
bring this new philosophy of interfacing with existing
software GUIs to the world of collaborative robotics
programming to the end of boosting productivity.

In the following, some technical details about the
implementation of the framework before turning to
the empirical evaluation and discussion of the
approach are discussed.

2.3. Framework Design and Features

Figure 2 illustrates the architecture of the
‘Programming by Voice’ extension to the Panda
robot’s HPI.

Building on the robot’s HPI, which implements the
MVC design pattern, the user injects a so-called
‘Programming by Voice’ (PBV) controller into the cur-
rent browser page (i.e. the robot’s HPI shown in
Figure 1). Once injected, the PBV controller activates
and maintains an open connection to the Web
Speech API embedded in the browser, which enables
it to listen for voice commands from the user. Upon
recognizing one of the commands listed in Table 1,
the PBV controller may use the visual controls avail-
able to users by automating the user actions needed
to accomplish certain tasks (e.g. to drag, drop, or
configure different robot behavior apps). The PBV
controller can also directly manipulate the server-
side components of the system by sending REST

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 9

service calls. On the server side, the application model
(which contains the robot’s state, programmed tasks,
and app implementations) is maintained and per-
sisted in a database. The robot’s HPI is thus augmen-
ted by a new programming mode, which enables
users to create tasks while keeping their hands free
(e.g. for teaching positions by guiding the robot and
configuring the gripper using both hands). This elim-
inates the need for switching back and forth between
the robot and the laptop or tablet running its HPI. The
following commands are currently supported:

The first group of commands can be issued at any
time while working with the robot’s native HPI. These
commands save time and clicks by allowing users to
set reusable parameters before configuring specific
apps. While configuring an app, which requires cer-
tain parameters, issuing the ‘Okay’ command will

automatically set the values of the app-specific para-
meters to those of the matching global parameters. If
users forget to set these global parameters to the
desired value, they can still be changed manually at
a later time using the app’s configuration wizard.

The second group of commands instantiate apps
for actuating the robot’s arm and tool (e.g. grip-
per). In the robot’s native HPI, these off-the-shelf
apps need to be dragged from the app library and
dropped in the workflow pane of the currently
active task. The task of instantiating apps, which
can take 5–10 s per app, can be automated using
voice commands. This saves time because, while
the robot’s HPI performs the initialization of a task,
the user can already drive the robot into the
desired pose for the first waypoint of the motion
or set the width of the gripper fingers. After all

Figure 2. Architecture of the “Programming by Voice” extension.

Table 1. List of supported voice commands (GRP=Group, CMD=Command).
GRP CMD Functionality

1 Speed/Force/
Load/Speed-up
<#>

Sets the velocity/grasping force/gripper load/acceleration of the arm for all subsequent apps to the specified integer value <#>.
A subset of these parameters are required by the movement and gripper apps.

2 Grasp Initializes the “Gripper Grasp” app which allows users to manually set the opening of the gripper so as to grasp a certain object.
After triggering this app, the users are able to use the buttons on the robot’s head or to manually set the gripper fingers to
the desired position.

Hand Initializes the “Gripper Move” app which allows users to set the opening of the gripper using the buttons on the robot’s head or
by manually moving the gripper fingers.

Motion Initializes the “Cart Motion” app, which allows users to teach in a movement of the arm using several waypoints. Waypoints are
set by driving the robot’s arm to the desired pose and then pushing the OK button on its head.

3 Okay After having set all the parameters of an app by using the buttons on the robot’s head and/or manually moving the robot’s arm
and fingers, this command will auto-complete all the information requested in the subsequent dialogues of the app-specific
wizard (e.g. velocity, force, acceleration, load).

Start This command starts the execution of the task being programmed.
Stop This command stops the execution of a task.

10 T. B. IONESCU AND S. SCHLUND

waypoints are configured using the buttons on the
robot’s head and/or the gripper width is manually
set by moving its fingers, the user can issue the
‘Okay’ command to trigger the auto-completion of
the remaining app parameters, such as the velocity
and acceleration of a movement and the force and
load for pick and place operations.

The commands from the third group are used to
trigger actions, which would require one or several
mouse clicks or tapping the touch screen of the
device running the robot’s HPI (e.g. laptop, tabled,
etc.). The ‘Okay’ command triggers a context-
dependent series of actions so as to autocomplete
the parameters of the app being configured and to
automatically click-through all remaining dialogues
of the respective app configuration wizard. The
‘Start’ and ‘Stop’ commands will simply start and
stop the current active task. By using voice com-
mands the user can focus on interacting with the
robot through haptic means. To switch from the
task programming into the task testing and run-
ning mode, the user needs to pull up the robot’s
safety stop button, which is pushed down during
teaching and programming. Hence, using the start/
stop commands, users can save time, for example,
by being able to focus on the robot’s actions dur-
ing testing while keeping the safety stop button at
hand. This also contributes to a safer interaction
with the robot during testing, since the user’s
attention is not distributed between the robot
and the programming interface.

3. Generalization of the approach

This section discusses two approaches to general-
izing the proposed speech-based programming
approach by (1) adapting it to the case of human-
machine interfaces (HMIs) that are hosted on con-
ventional robot teach pendants, and (2) integrating
it into an open-source, block-based generic robot
programming tool, called Assembly (https://assem
bly.comemak.at). The aim of this section is to lay
the groundwork for the evaluation of the approach
and to show that the WSAPI is a versatile tool for
speech-based programming that can be integrated
into multiple, existing cobot programming environ-
ments with relatively little efforts. The generaliza-
tion of the approach also substantiates the claim

that it helps to democratize cobot programming
more generally.

3.1. A generic meta-controller architecture for
supporting additional human-robot interaction
modalities

Currently, teach pendant software can only be
extended through officially supported channels,
such as plugins or APIs. Some robot vendors have
created software ecosystems and app stores (e.g.
Franka World, UR+, ABB Robot Apps, etc.), where
third party developers can develop and offer their
plugins. Plugin interfaces, however, are still limited
to integrating new features into existing HMIs, such
as new function buttons or apps for various end
effectors and sensors. Plugin interfaces do not pro-
vide support for extending the programming modal-
ities of a robot by third party developers. One way of
extending the programming modalities of a robot
without losing the existing features of the vendor-
provided teach pendant and HMI is to implement
a meta-controller, such as the PBV controller for
Desk, which emulates the interactions of a user with
the HMI that are required to program the robot. Such
a meta-controller can be implemented using tools
and techniques from the domain of GUI automation
(Yeh, Chang, and Miller 2009).

The overarching goal of the meta-controller
approach can be expressed as follows: When devel-
oping new features for the HMI of an industrial robot,
which go beyond the functionalities supported by
official APIs and plugin (eco)systems, it is desirable
to implement and deploy the new features on top of
the vendor-provided HMI of the robot in a non-
intrusive way without blocking, overwriting, repla-
cing, or otherwise interfering in a nonbeneficial way
with the vendor-provided features of the HMI. To
achieve this goal, the HMI of the industrial machine
can be extended by a meta-controller consisting of
a remote view, a condition monitor, and an HMI
object (see Figure 3). The remote view connects
through a remote connection interface provided by
the HMI to enable remote viewing and control of the
HMI by the condition monitor and the HMI object. The
condition monitor observes the graphical elements of
the HMI in the remote view and sends an interaction
command to the HMI object whenever a visual state,

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 11

https://assembly.comemak.at
https://assembly.comemak.at

which is designated to trigger such an interaction is
detected. Upon receiving a command, the HMI object
performs a corresponding interaction in the remote
view, which changes the state of the HMI. A command
interface is provided to facilitate user interactions
with the HMI through natural interfaces, such as
speech or gesture recognition. To prevent tampering
with the command interface and the meta-controller
device, in the case of robots, physical protections can
be used. The meta-controller must prevent deadlocks
in the condition monitor by maintaining the state of
the HMI. Also, concurrent accesses to the HMI object
must be prevented by queueing commands. The
meta-controller must maintain the connection to the
HMI using a watchdog.

Figure 4 provides a detailed view of the compo-
nents of a generic meta-controller. The condition
monitor is multi-threaded, with each thread monitor-
ing a specific condition in the replicated HMI. The
conditions are defined using graphical patterns that
are recognizable in the HMI. Conditions can be
defined based on the appearance and disappearance
of various graphical and textual elements in the HMI.

To prevent deadlocks, the condition monitor main-
tains a consistent state of the HMI, which is updated
by the corresponding thread whenever a condition is
met. In addition, the conditions must be defined in
a mutually exclusive way such that only one condition
can be met at a time. Whenever a condition is met
one or several commands are issued by the con-
cerned monitoring thread and sent to the HMI object.

The HMI object uses the same means as the opera-
tor to interact with the machine at the human-
machine interface, for example, pointer devices, key-
board inputs, or tapping. One condition change
detected by the condition monitor can lead to one
or several interactions being automatically performed
by the HMI object. The HMI object is similar to a Page
Object (Leotta et al. 2013), which is used in the UI
testing domain. In addition to the Page Object, which
provides page or panel wrappers, the HMI object
provides a concurrent command queue to prevent
concurrent access to the input devices if commands
are received from the condition monitor and the
command interface at the same time. The HMI object

Figure 3. Generic meta-controller architecture.

12 T. B. IONESCU AND S. SCHLUND

wraps the HMI with an application-specific API, which
allows clients to manipulate the HMI without expli-
citly issuing click, type, and other low-level input
commands. The wrapper provides interaction meth-
ods that correspond to commands received from the
condition monitor or through the command interface.
The scope of the interaction methods should be small
enough to facilitate reusability and broad enough to
encompass a number of cohesive interactions (i.e.
click on a button, then input some numbers, and
then click ok to finalize the interaction). The interac-
tion methods provided by the HMI object are atomic
in the sense that they either complete successfully or
they rollback the state of the HMI before issuing an
error. Ensuring atomicity and handling errors are
responsibilities of the HMI object.

The remote view replicates the HMI of the indus-
trial automation system in a virtual screen which is
accessible only to the condition monitor and the HMI

object. The remote view manages the remote connec-
tion to the HMI to ensure maximum availability, e.g.
using a watchdog that monitors the connection and
attempts to reconnect in the case of a breakdown.

A meta-controller maintains relations both to the
human operator and to the HMI, thus acting as
a second operator who assists the human operator.
A Meta-controller assists the human user of the sys-
tem in an intuitive way, without creating confusion.
For example, it can provide additional features, which
the native HMI of the system does not, e.g. a role-
based access model, error handling, execution mon-
itoring and logging, programming and configuration
wizards, etc. A Meta-controller reports back to the
user either silently by performing as instructed or
through popup and other kinds of messages in the
HMI. In addition, a Meta-controller facilitates the non-
intrusive integration of natural interfaces, such as
speech and gesture recognition, which can be
instructed by the human operator to perform

Figure 4. Detailed view of the meta-controller architecture.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 13

interactions in the HMI that would have otherwise
required manual inputs by the operator. The com-
mand interface can also be used by other applications
to control and configure the machine in the absence
of a human user.

Currently, all major robot vendors provide com-
mercial solutions for remotely viewing the HMI of
the teach pendant, e.g.:

● KUKA – Virtual Remote Pendant (VRP)
● ABB – FlexPendant (RobotStudio® provides us

a virtual teach pendant)
● Universal Robots – RealVNC over an Ethernet

connection
● YASKAWA – Remote Pendant Display
● FANUC – Remote iPendant

3.1.1. Speech-based programming for universal
robots
In this example, the Universal Robot 5 (UR5) from the
CB series is considered. The UR5 is a cobot that pro-
vides a conventional teach pendant that implements
a tree-based simplified programming model. UR5’s
HMI is easy to use but the programming is ineffective
because of the need to continuously switch between
menus and between the teach pendant and the
robot, when teaching waypoints (Ionescu et al. 2020;
Ionescu 2020a). The vendor provides an API, which
can be used to develop plugins for UR5’s HMI.
However, these plugins can, for example, extend the
existing function library by adding a new configura-
tion window. Existing features, such as teaching

waypoints, cannot be extended, or otherwise modi-
fied by third-party developers through plugins.
Hence, in Universal Robots’ software ecosystem,
called UR+, there are no plugins that enable the
extension of the programming and interaction mod-
alities that the cobot currently offers (i.e. via the teach
pendant and direct manipulation of the robot’s pose).
This example demonstrates how UR5’s HMI, called
Polyscope, can be extended by voice-based program-
ming using the meta-controller approach. The
required system architecture corresponds to that
from Figure 5.

To implement the voice-based programming
extension, the SikuliX (http://sikulix.com) GUI automa-
tion tool was used. SikuliX is a Java-based tool for
performing automated software tests of graphical
user interfaces (GUIs) using screenshots of the soft-
ware to be tested. SikuliX provides a simple IDE (inte-
grated development environment), in which the
visual patterns that are used to identify the key ele-
ments of a GUI are displayed in line with Python code.
SikuliX is comparable to GUI automation software
such as Selenium or AutoHotkey and like these can
be used to meta-control websites or application soft-
ware in any operating system. Testing and remote
control of other devices are also possible via
a simulator or Virtual Network Computing (VNC). In
the context of the architecture from Figure 5, SikuliX
was used to implement the meta-controller, which
operates on the replicated HMI of the UR5 robot.
The replication or mirroring of the HMI was realized
using the RealVNC (https://www.realvnc.com) remote

Figure 5. Speech-based robot control and programming for a Universal Robot using a meta-controller hosted on an edge device.

14 T. B. IONESCU AND S. SCHLUND

http://sikulix.com
https://www.realvnc.com

viewing and control software. A prerequisite for using
this architecture is for the robot to support such
a remote connection to the teach pendant. This fea-
ture is provided by many robot vendors because it is
useful in the context of remote support. The COVID-
19 crisis also increased the use of remote robot con-
trol due to the access restrictions imposed by govern-
ments. To enable the remote connection to UR5’s
teach pendant, the RealVNC server component
needs to be installed on the teach pendant by con-
necting to it via SSH over an Ethernet connection.
Once installed, it is possible to replicate the robot’s
HMI on another computer in a window. A tool like
SikuliX is capable of monitoring and controlling the
replicated HMI by emulating the user interactions
with the HMI that are required to perform any task
that is supported by Polyscope.

The UR5 robot teach pendant provides a ‘Freedrive’
button that enables the user to manually drag the
robot to a desired position. However, the user must
keep the button pressed while moving the robot,
which occupies one hand all the time. In addition,
many users complain that keeping the Freedrive but-
ton pressed all the time with one hand, while manip-
ulating the robot using the other hand is
cumbersome and induces physical strains in the
wrist. More ergonomic solutions include, for example,
a mountable flange ring having a button, which acti-
vates the robot’s Freedrive mode. Using the meta-
controller approach, a simpler and inexpensive

alternative can be implemented using speech-based
commands. To demonstrate this, the web-speech API
was used to recognize the following commands:
‘Waypoint’ – adds a new waypoint to the current
program by emulating the necessary HMI user inter-
action workflow and activates the free drive mode
until the ‘Okay’ voice command is issued by the
user, upon which the free drive mode is deactivated
and the waypoint is set.

Figure 6 illustrates the implementation of this
mechanism in SikuliX. The SikuliX program monitors
these commands in separate threads and performs
the necessary user interaction workflows for creating
a waypoint, activating the free drive mode by keeping
the corresponding button pressed and for deactivat-
ing it and storing the waypoint. When the free drive
mode is activated, the user can move the robot to the
desired position. This position is stored when the
‘Okay’ command is issued. Hence, the user can store
multiple waypoints by repeating a simple three-step
workflow, which saves about 50% of the time needed
to accomplish the same operations manually.

Like in the case of the Franka Emika Desk HPI, in the
case of the Universal Robot, the WSAPI was used to
implement a simple speech enabled web page, which
recognizes the two commands. At the same time,
a remote connection to the UR5 robot’s HMI is main-
tained on the same screen next to a browser window
in which the WSAPI listens for commands, as shown in
Figure 5. The WSAPI is configured to match the two

Figure 6. Speech-based robot control and programming for a Universal Robot using a meta-controller hosted on an edge device.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 15

commands and to display a large banner with the
matched command for three seconds. To handle the
speech commands, a condition monitor called
‘monitorWaypoint’ in Figure 5 was created. When
this pattern is recognized on the screen region of
the HMI, the condition monitor calls the
‘createWaypoint’ function, which emulates the user
interactions that are necessary to create the waypoint
in the UR5 program. At the end of this function, the
meta-controller is instructed to keep the freedrive
button pressed, until the user issues the ‘Okay’ com-
mand. During this time, the user can use both hands
to move the robot to the desired position.

Note that in this case, the HMI automation engine
concomitantly monitors two different GUIs (i.e. the
browser window and the UR5 HMI). The meta-
controller, which was implemented using SikuliX,
uses 22 code lines to recognize the labels correspond-
ing to the voice commands in the browser window
and to emulate the corresponding user interactions in
the HMI. Additional voice commands can be imple-
mented in a similar way, e.g. for speeding up robot
programming and enabling people with different
forms of impairment to operate robots.

3.2. Integrating speech commands into
block-based robot programming environments

Assembly is a web-based, block-oriented generic
robot programing environment, which was conceived
as a combination between Franka Emika Desk and
Blockly. From Desk it adopts the idea of modeling
robot programs as a sequence of configurable blocks
or apps (which in Assembly are called actors) in a way
that (1) reflects the sequential nature of robot actions
and (2) does challenge novice users, who have little or
no programming experience. From Blockly, it adopts
the idea that a simplified programming environment
should also enable users to write complex programs,
which include conditionals and other control struc-
tures, which is currently not possible in Desk.
Providing all the features of a textual programming
language in a simplified way also amounts to what
the developers of Blockly call an ‘exit strategy’ (Fraser
2015) from the world of simplified programming to
that of text-based programming.

Assembly uses the approach described in section
3.1. to enable generic robot programming by gener-
ating code in third-party robot programming environ-
ments, like Polyscope, using so-called code

Figure 7. Assembly tool with voice commands enabled.

16 T. B. IONESCU AND S. SCHLUND

generators, which build on GUI automation tools like
SikuliX. The approach to generating robot programs
from Assembly is described in more detail in (Ionescu
et al. 2020).

To enable voice commands in Assembly, the WSAPI
was integrated into it and the range of supported com-
mands was extended compared to the Desk implemen-
tation. Figure 7 illustrates the Assembly environment, in
which voice commands have been enabled.
Programming in Assembly is straightforward: just like in
Desk and Blockly, the user drags and drops actors from
the ‘Actor and Task Library’ into the program workflow
anywhere between the Start and Stop blocks. At the
same time, the user can position the generic 6-DOF
robot by dragging its end effector (a simulated suction
gripper) or by adjusting the coordinates using the input
fields from the top of the program workflow. To speed
up the programming task, the user can enable voice
commands, which frees the mouse and keyboard and
allows the user to position the robot and focus on the
next task. Table 2 explains the supported commands.

As opposed to Franka Emika Desk, Assembly also
supports instantiating more complex program
structures like loops and conditionals using voice
commands. Assembly’s blackboard architecture
allows the user to configure the actors using the
Parameters and Variables panes. This architecture
allows users and services to post all information
that is relevant to the successful execution of the
program (i.e. parameter and variables) onto
a centralized so-called blackboard, which is imple-
mented as a JSON object. This contrasts Desk’s

approach, in which each app maintains its own
set of parameters. In Assembly, all available vari-
ables and parameters can be set using the so-
called ‘set parameters’ and ‘set variables’ actors.
Once set this way, all subsequent actors in the
program workflow will use the snapshot of the
values of the variables or parameters that were
previously set using one of the set parameters/
variables actors. This allows reusing some of the
parameters across multiple actors as well as setting
the values of parameters and variables using voice
commands. Concerning program control structures,
Assembly uses a C-style rather than a Python-style
model, which requires closing control structures
using a terminator (i.e. an accolade in the case of
C/C++ and other C-style languages). In Assembly,
terminators are control structure specific and can
be added using the ‘end <control structure>’; com-
mands (e.g. ‘end while’).

4. Evaluation of the approach

This section presents an evaluation of the WSAPI-
based cobot programming by voice approach based
on the three different implementations introduced in
this paper. The ability to generalize the approach to
various third-party robot programming tools also
speaks for its validity. In this context, this section
provides some concrete usage scenarios in which
programming by voice can help to speed up pro-
gramming while improving concentration and redu-
cing physical strains.

Table 2. List of supported voice commands in Assembly.
Command Functionality

move to/waypoint Adds a “move to” actor to the workflow, which memorizes the current pose of the simulated robot. When running the program,
the robot will move to the specified waypoint.

open/close Adds an “open”/“close” actor, which opens or closes the gripper, respectively.
set variables/set

parameters
Adds a “set variables”/“set parameters” actor to the workflow, which captures the current values of the variables or parameters,

respectively. These values will be used by all subsequent actors in the workflow until another set variables/set parameters
changes them.

if/else if/end if Adds an “if”/“else if”/“endif” actor to the workflow. This enables users to program conditional execution.
repeat/end repeat Adds a “repeat”/“end repeat” actor to the workflow.
while/end while Adds a “while”/“end while” actor to the workflow.
break Adds a break actor that—when used inside of a repeat or while loop—breaks the respective loop.
robot Opens the robot pane, which shows the cartesian position and joint angles corresponding to the current pose and model of the

simulated robot.
parameters Opens the “Parameters” pane, which allows users to set various actor and task parameters.
set <parameter name>

<value>
Sets the value of the specified parameter.

variables Opens the “Variables” pane, which allows users to create and set the values of various parameters, which are used with control
structures and other actors.

set <variable name>
<value>

Sets the value of the specified parameter.

delete Removes the last actor in the sequence.
run program Executes the current program.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 17

4.1. Franka Emika desk

The evaluation of the programming by voice exten-
sion of the Franka Emika Desk tool was conducted on
the basis of two application scenarios. In these sce-
narios it is assumed that shop floor employees (e.g.
assembly workers and planners) engage in program-
ming the robot in the following situations: (1) Fast
programming of pick and place operations for small
lot sizes using a basic teach-in procedure. (2) Limited
modifications brought to a robot program in the
context of an advanced robotic automation applica-
tion, which already provides means for autonomous
manipulation of work pieces and error recovery in
case of collisions, whereby the envisioned error recov-
ery process partly requires human intervention.

Whereas in the first scenario, the focus will be on
the ease and speed of programming a cobot,
the second scenario illustrates how already pro-
grammed and possibly certified applications can be
modified during productive use by shop floor
employees without interrupting production for
a long time.

4.1.1. Scenario 1: faster cobot programming
Figure 8 shows the setup of the simple pick-and-place
application. The evaluation was conducted with the
help of four human participants, who did not know
how to program the Panda robot before. The partici-
pants were first introduced in how to use Panda’s
native HPI and then asked to manually program the
pick-and-place task depicted in Figure 9 using the
robot’s HPI, which was running on a laptop. The par-
ticipants used a mouse and the laptop’s keyboard to
program the task, which consisted in picking and
placing four screws. Then, the same participants
were introduced to the programming by voice exten-
sion to the robot’s HPI and asked to program the
same task without using the mouse and keyboard.
Video 2 linked from this webpage (https://blockly-
desk.comemak.at/demos/code/speech.html) demon-
strates how this task is performed using voice pro-
gramming. Figure 10 shows a breakdown of the
operation durations with respect to the three groups
of supported voice commands and their mouse and
keyboard equivalents. In addition, the time spent
manipulating the robot and waiting for the robot’s
HPI to react were also considered in the evaluation.
These results show that, for the tested scenario, pro-
gramming by voice combined with the haptic manip-
ulation of the robot was around 46% faster than using
the robot’s native HPI, whereby most of the time was
saved by not having to manually set app parameters
and to click through the app configuration wizards.

This scenario arguably demonstrates the benefits
of using programming by voice instead of manual
wizard-based configuration of apps for teaching pick
and place tasks. The main benefits are in terms of time
savings, safety, and ergonomics.

4.1.2. Scenario 2: error recovery through human
intervention
The second application scenario consists of a chess-
playing program, which is able to recover from an
error by requesting human intervention. If the robot

Figure 8. Setup of the pick-and-place application used in the
evaluation in the TU Wien Industrie 4.0 pilot factory in Vienna,
Austria.

Figure 9. Setup of the pick-and-place application used in the
evaluation in the TU Wien Industrie 4.0 pilot factory in Vienna,
Austria.

18 T. B. IONESCU AND S. SCHLUND

https://blockly-desk.comemak.at/demos/code/speech.html
https://blockly-desk.comemak.at/demos/code/speech.html

fails to grasp a piece due to a collision, the program
stops and waits for human intervention. In prepara-
tion of this intervention, the program automatically
creates a new task, which opens the gripper wider in
order for the robot to grasp the piece correctly. The
human is only required to set the width of the gripper
so that it will be able to grasp the piece without
disturbing any other pieces on the board. Video 2
linked from this webpage (https://blockly-desk.come
mak.at/demos/code/speech.html) demonstrates this
scenario. To accomplish this task, the user first

switches the mode from operational to teach-in by
pulling out the safety stop button. Then the user
repositions the gripper fingers and issues the ‘Okay’
command, which autocompletes the remaining
wizard steps and resumes the program. Hence, the
only interactions between the human and the robot
are voice-based and haptic. This enables a safety-
certified application to allow minor program changes,
which do not affect the results of the risk analysis of
the application. This scenario arguably demonstrates
the benefits of allowing shop floor employees to

Figure 10. Breakdown of operation durations in scenario 1.

Figure 11. Experimental setup: A UR5 robot, its teach pendant and a laptop connected through Ethernet to the robot’s control
computer.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 19

https://blockly-desk.comemak.at/demos/code/speech.html
https://blockly-desk.comemak.at/demos/code/speech.html

change existing robot programs so as to improve
their reliability, which is one of the most important
production system qualities.

4.2. UR polyscope

The validation of robot pose teach-in by voice was
conducted in the Aspern Industry 4.0 Pilot Factory in
Vienna using a UR5 CB series robot. The voice com-
mands ‘waypoint’ and ‘okay’ were used to trigger the
creation of waypoints in Polyscope (UR’s proprietary
programming environment installed on the robot’s
teach pendant). The robot’s HMI was replicated on
a computer running the voice recognition in the back-
ground using a tool called VNC Viewer. On the robot’s
control computer, a VNC server was installed.
Figure 11 illustrates the experimental setup.

The replicated HMI is displayed on a laptop, which
is connected to the robot’s control computer through
Ethernet. The VNC software instantly replicates the
display (from the physical to virtual teach pendant)
and the emulated user actions (from the virtual to the
physical teach pendant). This allows the GUI automa-
tion script, which is running in the background, to
click through the menus of Polyscope so as to create
a new waypoint and to keep the ‘freedrive’ button
pressed. When the manual positioning of the robot is
complete, the user issues to command ‘okay’ to safe
the waypoint. Video number eight on the demo web-
site (https://blockly-desk.comemak.at/demos/code/
speech.html) demonstrates this procedure.

The experiment shows that the voice commands
allow the user to position the robot with one or both

hands since there is no need to perform any manual
actions in the robot’s HMI – neither on the physical
nor on the virtual teach pendant. In the experiment,
the user is able to capture the scene using a smart
phone while teaching robot poses without having to
switch from one device to another.

4.3. Assembly

The evaluation of the programming by voice feature
that was added to Assembly was performed by mea-
suring the time it takes to create a simple pick-and-
place task in two variants. The task consisted in pick-
ing and placing a cube from one place to another and
then back. As shown in Figure 12, in the first variant,
the task was implemented using a high number of
‘move to’ actors, which corresponds to a naïve imple-
mentation. In addition, a repeat actor was used to
repeat the task for five times. In the second variant,
an if-else clause was used to control program execu-
tion, depending on the blue cube’s position. The
experiment was performed by an experienced user
of the tool. The tasks are depicted in videos 3–6 linked
from the demo web page (https://blockly-desk.come
mak.at/demos/code/speech.html).

The measurements show that programming the
first task variant by voice is almost twice as fast as
programming it using the mouse alone. By contrast,
programming the second task variant using voice
commands is only 16% faster than programming it
using the mouse alone. This contrast is likely due to
the varying complexity of the implementations, with
the second variant requiring seven different actors as

Figure 12. Assemblytest programs and statistics.

20 T. B. IONESCU AND S. SCHLUND

https://blockly-desk.comemak.at/demos/code/speech.html
https://blockly-desk.comemak.at/demos/code/speech.html
https://blockly-desk.comemak.at/demos/code/speech.html
https://blockly-desk.comemak.at/demos/code/speech.html

opposed to only five for the first one. In addition,
the second variant uses more complex logic, which
requires longer reflection times. Another difference
between the speech/no speech implementations is
that in the former case, the user has to specifically
add the ‘end repeat’/‘end if’ actors, whereas in the
latter case, these actors are added automatically
when adding the ‘repeat’/‘if’ actors by dragging
them from the library and dropping them into the
task workflow. One limitation of the current imple-
mentation of the speech-based approach is that it
only allows adding actors at the end of the current
sequence. If the user makes a mistake, the ‘delete’
command can be used to remove the last actor in
the sequence. Another limitation is that setting para-
meter and variable values using the ‘set <parameter/
variable name> <value>’; command cannot reliably
recognize abbreviated parameter/variable names
and complex values, such as strings or expressions.
This means that in order to use all features of the
Assembly tool, the use of a mouse and keyboard
cannot be entirely replaced by voice commands. The
recent literature on speech-based computer program-
ming (Nowogrodzki 2018), however, provides syntac-
tic solutions for creating variables and setting there
values through voice commands. The complexity of
the required commands, however, does not justify an
implementation for simplified robot programming
tools, such as Assembly, which specifically target
novice programmers. Overall, the evaluation results
suggest that programming in Assembly by voice sig-
nificantly increases productivity and improves user
experience, since the dragging and dropping of
actors can eventually induce physical strains and
become annoying. The Assembly tool, including the
speech-based programming features, can be used
online at: https://assembly.comemak.at.

5. Conclusion

This paper introduced a new method and tool for
programming cobots by voice. This provides an addi-
tional mode of programming cobots, which currently
offer multi-modal programming environments based
on haptic, mouse, and keyboard interactions. The
main benefit of this approach is an increase in the
productivity of cobot programmers in scenarios that
require a high number of teach-in operations. In addi-
tion, a scenario in which shop floor employees can

perform small modifications to existing programs
without requiring re-certification is explored.
Another benefit of the approach is the possibility of
communicating cobot programs by demonstration
through videos – a feature that may prove useful in
training and education contexts.

The first two meta-programming approaches pre-
sented in this paper use the same basic principle,
namely that of emulating use interaction in the ven-
dor-provided HPI/HMI. This enables the extensions of
the respective HMIs by features that the vendor has
not foreseen. Moreover, these extensions can go
beyond that which is technically feasible by following
the plugin approach. While the bookmarklet
approach can be applied to extend the interaction
modalities of any robot or cobot that provides a web-
based HMI, the meta-controller approach can be used
with any robot that allows a remote connection to its
HMI. The meta-programming approach thus provides
an additional means for integrating heterogeneous
robotic systems and extending their interaction mod-
alities, which is simpler than the middleware
approach or integration via the OPC UA and other
protocols. The unique capability of GUI automation
applied to robotics consists in allowing extensions of
robot HMIs that go beyond what the vendor has
imagined and without losing any of the useful fea-
tures of the vendor-provided HMI. The meta-
controller approach eliminates the limitations of the
bookmarklet approach, which is only applicable to
web-based robot HMIs.

The third approach, which was implemented as an
extension to the Assembly tool, uses the native cap-
abilities of the browser’s document object model
(DOM) as well as the jQuery library to endow the
tool with speech-based programming capabilities.
This approach can be easily adopted by existing com-
mercial web-based robot programming tools, such as
Drag & Bot and Blockly-based tools. This paper
showed that programming by voice speeds up the
programming task considerably, while reducing phy-
sical strains and improving the programmer’s ability
to focus on the task. As opposed to the other two
approaches introduced in this paper as well as other
approaches from the literature, in Assembly, voice
commands were successfully used to also instantiate
program blocks that go beyond mere robot motions
and configurations (e.g. loops and conditions). This
aligns the current approach with state-of-the-art

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 21

https://assembly.comemak.at

speech-based computer programming approaches,
such as (Nowogrodzki 2018).

The common aspects between the three
approaches include the facts that speech-based pro-
gramming can be implemented on top of existing
tools in a non-intrusive way by automating the user
interactions that are necessary to achieve a certain
programming goal. In some cases, programming by
voice indeed provides a third hand, notably when
teaching robot motions either on the screen or
through physical manipulation. The results of the
evaluation suggest that voice commands are espe-
cially useful for replacing repetitive drag and drop
tasks, for short-circuiting complex manual operations
in various robot programming tools, and for speeding
up teach-in tasks. In addition, the user experience is
improved by reducing physical strains and annoyance
when performing repetitive tasks.

When using the meta-programming approach (be
it using a bookmarklet or a meta-controller), some
precautions need to be taken, notably concerning
safety. The extensions to the original HMI need to be
clearly understood by users before interacting with
the robot, otherwise they might come as a surprise.
From a technical point of view, meta-controller must
ensure that interactions with the HMI are mutually
exclusive in order to prevent unexpected robot beha-
viors. Whereas in the case of bookmarklets, it is pos-
sible to display warnings and additional information
in the original HMI, in the case of meta-controller,
such information should be displayed using pop-up
messages in the robot’s HMI or on a separate screen
that is connected to the meta-controller device.

As part of our future work, the programming by
voice framework will be evaluated using
a crowdsourced user study with 30–40 participants
following the methodology introduced by Daria et al.,
2021202. In addition, the speech-based programming
capabilities in Assembly will be further extended to
cover all features of the tool. An industrial evaluation
in an Austrian engine factory is also planned.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

The work was supported by the Österreichische
Forschungsförderungsgesellschaft [871459].

References

Ajaykumar, G., M. Steele, and C.-M. Huang. 2021. “A Survey on
End-User Robot Programming.” ACM Computing Surveys
54 (8): 1–36. doi:10.1145/3466819.

Arnold, S. C., L. Mark, and J. Goldthwaite. 2000. “Programming
by Voice, Vocal Programming.” Proceedings of the fourth
international ACM conference on Assistive technologies.
Arlington, Virginia, USA.

Begel, A., and S. L. Graham. 2006. “An Assessment of a Speech-
Based Programming Environment.” In Visual LAnguages and
Human-Centric Computing (VL/HCC’06). Brighton, UK: IEEE.

Beschi, S., D. Fogli, and F. Tampalini. 2019. “CAPIRCI: A Multi-Modal
System for Collaborative Robot Programming.” In International
Symposium on End User Development. Cham: Springer.

Bingol, M. C., and O. Aydogmus. 2020. “Performing Predefined
Tasks Using the Human–Robot Interaction on Speech
Recognition for an Industrial Robot.” Engineering
Applications of Artificial Intelligence 95: 103903. doi:10.
1016/j.engappai.2020.103903.

Bugmann, G., and J. N. Pires. 2005. “Robot-By-Voice:
Experiments on Commanding an Industrial Robot Using
the Human Voice.” Industrial Robot: An International Journal
32 (6): 505–511. doi:10.1108/01439910510629244.

Daria, P., T. B. Ionescu, and S. Schlund. 2021. “Crowdsourced
Evaluation of Robot Programming Environments:
Methodology and Application.” Applied Sciences 11 (22):
10903. doi:10.3390/app112210903.

Drag and Bot GmbH. 2020. “Flexible Produktionsplanung dank
einfacher Roboterprogrammierung.” JOT Journal für
Oberflächentechnik 60 (5–6): 32–33. doi:10.1007/s35144-
020-0550-2.

Fitzek, F. H., S.-C. Li, S. Speidel, and T. Strufe. 2021. Tactile
Internet with Human-In-The-Loop: New Frontiers of
Transdisciplinary Research. Tactile Internet, 1–19.
Cambridge, Massachusetts: Academic Press.

Fraser, N. 2015. “Ten Things We’ve Learned from Blockly.” In
2015 IEEE Blocks and Beyond Workshop (Blocks and
Beyond). Atlanta, GA, USA: IEEE.

Gadre, S. Y., E. Rosen, G. Chien, E. Phillips, S. Tellex, and
G. Konidaris. 2019. “End-User Robot Programming Using
Mixed Reality.” in 2019 International Conference on
Robotics and Automation (ICRA). Montreal, Canada: IEEE.

Gkournelos, C., P. Karagiannis, N. Kousi, G. Michalos, S. Koukas,
and S. Makris. 2018. “Application of Wearable Devices for
Supporting Operators in Human-Robot Cooperative
Assembly Tasks.” Procedia CIRP 76: 177–182. doi:10.1016/j.
procir.2018.01.019.

22 T. B. IONESCU AND S. SCHLUND

https://doi.org/10.1145/3466819
https://doi.org/10.1016/j.engappai.2020.103903
https://doi.org/10.1016/j.engappai.2020.103903
https://doi.org/10.1108/01439910510629244
https://doi.org/10.3390/app112210903
https://doi.org/10.1007/s35144-020-0550-2
https://doi.org/10.1007/s35144-020-0550-2
https://doi.org/10.1016/j.procir.2018.01.019
https://doi.org/10.1016/j.procir.2018.01.019

Gustavsson, P., A. Syberfeldt, R. Brewster, and L. Wang. 2017.
“Human-Robot Collaboration Demonstrator Combining
Speech Recognition and Haptic Control.” Procedia CIRP 63:
396–401. doi:10.1016/j.procir.2017.03.126.

Halt, L., F. Nagele, P. Tenbrock, and A. Pott. 2018. “Intuitive
Constraint-Based Robot Programming for Robotic Assembly
Tasks.” In 2018 IEEE International Conference on Robotics
and Automation (ICRA). Brisbane, Australia: IEEE.

Heimann, O., and J. Krüger. 2018. “Affordance Based Approach
to Automatic Program Generation for Industrial Robots in
Manufacturing.” Procedia CIRP 76: 133–137. doi:10.1016/j.
procir.2018.01.033.

International Federation of Robotics (IFR). 2019. “Demystifying
Collaborative Robotics.” Positioning Paper.

Ionescu, T. B. 2020a. “Leveraging Graphical User Interface
Automation for Generic Robot Programming.” Robotics
10 (1): 3. doi:10.3390/robotics10010003.

Ionescu, T. B. 2020b. “Meet Your Personal Cobot, but Don’t Touch
It Just Yet.” In 2020 29th IEEE International Conference on
Robot and Human Interactive Communication (RO-MAN).
Virtual Conference: IEEE.

Ionescu should beIonescu, T. B. (2021). Ionescu 2021 should be.
Sensors, 21(8), 2589. doi:10.3390/s21082589.

Ionescu, T. B., J. Fröhlich, and M. Lachenmayr (2020).
“Improving Safeguards and Functionality in Industrial
Collaborative Robot HMIs Through GUI Automation.” In
2020 25th IEEE International Conference on Emerging
Technologies and Factory Automation (ETFA). (Vol. 1),
557–564. Vienna, Austria: IEEE.

Ionescu, T. B., and S. Schlund. 2019. “A Participatory
Programming Model for Democratizing Cobot Technology
in Public and Industrial Fablabs.” Procedia CIRP 81: 93–98.
doi:10.1016/j.procir.2019.03.017.

Kaczmarek, W., J. Panasiuk, S. Borys, and P. Banach. 2020.
“Industrial Robot Control by Means of Gestures and Voice
Commands in Off-Line and On-Line Mode.” Sensors 20 (21):
6358. doi:10.3390/s20216358.

Komenda, T., C. Schmidbauer, D. Kames, and S. Schlund. 2021.
”Learning to Share-Teaching the Impact of Flexible Task
Allocation in Human-Cobot Teams.” SSRN Electronic Journal.
Available at SSRN 3869551. doi:10.2139/ssrn.3869551.

Ko, A. J., Myers, B. A., & Aung, H. H. (2004). Six learning barriers in
end-user programming systems. In 2004 IEEE Symposium on
Visual Languages-Human Centric Computing, IEEE, 199–206.

Kumar, A. S., K. Mallikarjuna, A. B. Krishna, P. V. R. D. Prasad, and
M. S. V. S. B. Raju 2016.” Parametric Studies on Motion
Intensity Factors in a Robotic Welding Using Speech
Recognition.” In 2016 IEEE 6th International Conference on
Advanced Computing (IACC) (pp. 415–420). Bhimavaram,
India: IEEE.

Lee, J. H., Y. Kim, A. Sang-Gyun, and S.-H. Bae. 2020. “Robot
Telekinesis: Application of a Unimanual and Bimanual
Object Manipulation Technique to Robot Control.” In 2020
IEEE International Conference on Robotics and Automation
(ICRA). Paris, France: IEEE.

Leff, A., and J. T. Rayfield 2001. “Web-Application Development
Using the Model/View/Controller Design Pattern.” In

Proceedings Fifth IEEE International Enterprise Distributed
Object Computing Conference (pp. 118–127). Seattle, WA,
USA: IEEE.

Leotta, M., D. Clerissi, F. Ricca, and C. Spadaro 2013. “Improving
Test Suites Maintainability with the Page Object Pattern: An
Industrial Case Study.” In 2013 IEEE Sixth International
Conference on Software Testing, Verification and Validation
Workshops (pp. 108–113). Luxembourg, Luxembourg: IEEE.

Liu, P. X., A. D. C. Chan, R. Chen, K. Wang, and Y. Zhu. 2005.
“Voice Based Robot Control,” 2005 IEEE International
Conference on Information Acquisition, Hong Kong, China,
pp. 5.

Liu, H., T. Fang, T. Zhou, Y. Wang, and L. Wang. 2018. “Deep
Learning-Based Multimodal Control Interface for
Human-Robot Collaboration.” Procedia CIRP 72: 3–8. doi:10.
1016/j.procir.2018.03.224.

Liu, Y., and Y. Xu. 2019. “Summary of Cloud Robot Research.” In
2019 25th International Conference on Automation and
Computing (ICAC). Lancaster, UK: IEEE.

Lv, X., M. Zhang, and H. Li 2008. “Robot Control Based on Voice
Command.” In 2008 IEEE International Conference on
Automation and Logistics (pp. 2490–2494). Qingdao,
China: IEEE.

Makris, S., P. Tsarouchi, D. Surdilovic, and J. Krüger. 2014.
“Intuitive Dual Arm Robot Programming for Assembly
Operations.” CIRP Annals 63 (1): 13–16. doi:10.1016/j.cirp.
2014.03.017.

Meng, J., Z. Feng, and T. Xu 2020. “A Method of Fusing Gesture
and Speech for Human-Robot Interaction.” Proceedings of
2020 the 6th International Conference on Computing and
Data Engineering. Sanya, China (pp. 265–269).

Mohs, C., Hurtienne, J. , Kindsmüller, M. C. , Israel, J. H. , Meyer, H. A.
& die IUUI Research Group (2006). IUUI – Intuitive Use of User
Interfaces: Auf dem Weg zu einer wissenschaftlichen Basis für
das Schlagwort “Intuitivit t”. MMI-Interaktiv, 11: 75–84.

Naumann, A., J. Hurtienne, J. H. Israel, C. Mohs,
M. C. Kindsmüller, H. A. Meyer, and S. Hußlein 2007.
“Intuitive Use of User Interfaces: Defining a Vague
Concept.” In International Conference on Engineering
Psychology and Cognitive Ergonomics (pp. 128–136).
Berlin, Heidelberg: Springer.

Nowogrodzki, A. 2018. “Speaking in Code: How to Program by
Voice.” Nature 559 (7712): 141–143. doi:10.1038/d41586-
018-05588-x.

Nuzzi, C., S. Pasinetti, R. Pagani, S. Ghidini, M. Beschi, G. Coffetti,
and G. Sansoni. 2021. “MEGURU: A Gesture-Based Robot
Program Builder for Meta-Collaborative Workstations.”
Robotics and Computer-Integrated Manufacturing 68:
102085. doi:10.1016/j.rcim.2020.102085.

Pedersen, M. R., Nalpantidis, L., Andersen, R. S., Schou, C., Bøgh,
S., Krüger, V., & Madsen, O. (2016). Robot skills for manufac-
turing: From concept to industrial deployment. Robotics and
Computer-Integrated Manufacturing, 37, 282–291.

Perzanowski, D., A. C. Schultz, W. Adams, E. Marsh, and
M. Bugajska. 2001. “Building a Multimodal Human-Robot
Interface.” IEEE intelligent systems 16 (1): 16–21. doi:10.
1109/MIS.2001.1183338.

INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING 23

https://doi.org/10.1016/j.procir.2017.03.126
https://doi.org/10.1016/j.procir.2018.01.033
https://doi.org/10.1016/j.procir.2018.01.033
https://doi.org/10.3390/robotics10010003
https://doi.org/10.3390/s21082589
https://doi.org/10.1016/j.procir.2019.03.017
https://doi.org/10.3390/s20216358
https://doi.org/10.2139/ssrn.3869551
https://doi.org/10.1016/j.procir.2018.03.224
https://doi.org/10.1016/j.procir.2018.03.224
https://doi.org/10.1016/j.cirp.2014.03.017
https://doi.org/10.1016/j.cirp.2014.03.017
https://doi.org/10.1038/d41586-018-05588-x
https://doi.org/10.1038/d41586-018-05588-x
https://doi.org/10.1016/j.rcim.2020.102085
https://doi.org/10.1109/MIS.2001.1183338
https://doi.org/10.1109/MIS.2001.1183338

Piacun, D., Ionescu, T. B., & Schlund, S. (2021). Crowdsourced
Evaluation of Robot Programming Environments:
Methodology and Application. Applied Sciences, 11(22),
10903. doi:10.3390/app112210903.

Pieskä, S., J. Kaarela, and J. Mäkelä. 2018. “Simulation and
Programming Experiences of Collaborative Robots for Small-
Scale Manufacturing.” In 2018 2nd International Symposium on
Small-scale Intelligent Manufacturing Systems (SIMS). Cavan,
Ireland: IEEE.

Pires, J. N., and A. S. Azar. 2018. “Advances in Robotics for
Additive/Hybrid Manufacturing: Robot Control, Speech
Interface and Path Planning.” Industrial Robot: An International
Journal 45 (3): 311–327. doi:10.1108/IR-01-2018-0017.

Rogalla, O., M. Ehrenmann, R. Zollner, R. Becher, and
R. Dillmann 2002. “Using Gesture and Speech Control for
Commanding a Robot Assistant.” in Proceedings of IEEE
International Workshop on Robot and Human Interactive
Communication Berlin, Germany, 454–459.

Rogowski, A. 2013. “Web-Based Remote Voice Control of
Robotized Cells.” Robotics and Computer-Integrated
Manufacturing 29 (4): 77–89. doi:10.1016/j.rcim.2012.11.002.

Salem, M., K. Rohlfing, S. Kopp, and F. Joublin 2011. “A Friendly
Gesture: Investigating the Effect of Multimodal Robot
Behavior in Human-Robot Interaction.” In 2011 RO-MAN,
Atlanta, GA, USA, (pp. 247–252). IEEE.

Schäfer, P. M., F. Steinmetz, S. Schneyer, T. Bachmann,
T. Eiband, F. Samuel Lay, A. Padalkar, C. Sürig, F. Stulp, and
K. Nottensteiner. 2021. “Flexible Robotic Assembly Based on
Ontological Representation of Tasks, Skills, and Resources.”
Proceedings of the International Conference on Principles of
Knowledge Representation and Reasoning 18 (1): 702–706.

Schmidbauer, C., S. Schlund, T. B. Ionescu, and B. Hader 2020.”
Adaptive Task Sharing in Human-Robot Interaction in
Assembly.” In 2020 IEEE International Conference on
Industrial Engineering and Engineering Management
(IEEM) (pp. 546–550). Marina Bay Sands, Singapore: IEEE.

Soshi, I., C. J. Paredis, and P. K. Khosla. 2005. “Interactive
Multimodal Robot Programming.” The International Journal
of Robotics Research 24 (1): 83–104. doi:10.1177/
0278364904049250.

Steinmetz, F., V. Nitsch, and F. Stulp. 2019. “Intuitive Task-Level
Programming by Demonstration Through Semantic Skill

Recognition.” IEEE Robotics and Automation Letters 4 (4):
3742–3749. doi:10.1109/LRA.2019.2928782.

Steinmetz, F., A. Wollschläger, and R. Weitschat. 2018. “Razer—
a Hri for Visual Task-Level Programming and Intuitive Skill
Parameterization.” IEEE Robotics and Automation Letters 3 (3):
1362–1369. doi:10.1109/LRA.2018.2798300.

Villani, V., F. Pini, F. Leali, C. Secchi, and C. Fantuzzi. 2018.
“Survey on Human-Robot Interaction for Robot
Programming in Industrial Applications.” Ifac-PapersOnline
51 (11): 66–71. doi:10.1016/j.ifacol.2018.08.236.

Wang, L., R. Gao, J. Váncza, J. Krüger, X. V. Wang, S. Makris, and
G. Chryssolouris. 2019. “Symbiotic Human-Robot
Collaborative Assembly.” CIRP Annals 68 (2): 701–726.
doi:10.1016/j.cirp.2019.05.002.

Weintrop, D., A. Afzal, J. Salac, P. Francis, B. Li, D. C. Shepherd,
and D. Franklin. 2018. “Evaluating CoBlox: A Comparative
Study of Robotics Programming Environments for Adult
Novices.” Proceedings of the 2018 CHI Conference on
Human Factors in Computing Systems. Montreal, QC,
Canada.

Weintrop, D., D. C. Shepherd, P. Francis, and D. Franklin 2017.
“Blockly Goes to Work: Block-Based Programming for
Industrial Robots.” In 2017 IEEE Blocks and Beyond
Workshop (B&B) (pp. 29–36). Raleigh, North Carolina: IEEE.

Wildgrube, F., A. Perzylo, M. Rickert, and A. Knoll. 2019.
“Semantic Mates: Intuitive Geometric Constraints for
Efficient Assembly Specifications.” In 2019 IEEE/RSJ
International Conference on Intelligent Robots and
Systems (IROS). Macau, China: IEEE.

Wilhelm, B., S. Schlund, and C. Vocke. 2017. “Working Life Within
a Hybrid World–How Digital Transformation and Agile
Structures Affect Human Functions and Increase Quality of
Work and Business Performance.” In Advances in Human
Factors, Business Management and Leadership. AHFE 2017.
Advances in Intelligent Systems and Computing, edited by
J. Kantola, T. Barath, and S. Nazir. Vol. 594. Cham: Springer.
3–10.

Yeh, T., T. H. Chang, and R. C. Miller 2009. “Sikuli: Using GUI
Screenshots for Search and Automation.” In Proceedings of
the 22nd Annual ACM Symposium on User Interface
Software and Technology.(Victoria, BC, Canada: ACM. (pp.
183–192).

24 T. B. IONESCU AND S. SCHLUND

https://doi.org/10.3390/app112210903
https://doi.org/10.1108/IR-01-2018-0017
https://doi.org/10.1016/j.rcim.2012.11.002
https://doi.org/10.1177/0278364904049250
https://doi.org/10.1177/0278364904049250
https://doi.org/10.1109/LRA.2019.2928782
https://doi.org/10.1109/LRA.2018.2798300
https://doi.org/10.1016/j.ifacol.2018.08.236
https://doi.org/10.1016/j.cirp.2019.05.002

	Abstract
	1. Introduction
	1.1. Democratization of cobot programming and natural user interfaces
	1.2. Related work
	1.2.1. End-user robot programming
	1.2.1.1. Commercial end-user robot programming tools
	1.2.1.2. Research approaches to end-user robot programming

	1.2.2. (Robot) programming by voice

	2. Cobot Programming by Voice: A Web Framework
	2.1. Programming the Panda Cobot: Features & Limitations
	2.2. Using the Web Speech API for Programming by Voice
	2.3. Framework Design and Features

	3. Generalization of the approach
	3.1. A generic meta-controller architecture for supporting additional human-robot interaction modalities
	3.1.1. Speech-based programming for universal robots

	3.2. Integrating speech commands into block-based robot programming environments

	4. Evaluation of the approach
	4.1. Franka Emika desk
	4.1.1. Scenario 1: faster cobot programming
	4.1.2. Scenario 2: error recovery through human intervention

	4.2. UR polyscope
	4.3. Assembly

	5. Conclusion
	Disclosure statement
	Funding
	References

