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Programming cobots by voice: a pragmatic, web-based approach
Tudor B. Ionescu and Sebastian Schlund

Human-Machine Interaction, TU Wien, Vienna, Austria

ABSTRACT
This paper introduces a novel voice-based programming approach and software framework for 
collaborative robots (cobots) based on the Web Speech API, which is now supported by most 
modern browsers. The framework targets human programmable interfaces and human-machine 
interfaces, which can be used by people with little or no programming experience. The framework 
follows a meta-programming approach by enabling users to program cobots by voice in addition 
to using a mouse, tablet, or keyboard. Upon a voice instruction, the framework automates the 
manual tasks required to manipulate the vendor-provided interfaces. The main advantages of this 
approach are simplified, guided programming, which only requires the knowledge of 5–10 voice 
instructions; increased programming speed compared to the manual approach; and the possibility 
of sharing programs as videos. The approach is generalized to other kinds of robots and robot 
programming tools using so-called meta-controllers, which leverage the power of graphical user 
interface automation tools and techniques.
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1. Introduction

Assembly automation has increasingly developed 
over the last decades also thanks to the introduction 
of collaborative robotic arms (short, cobots), which 
can work in close proximity to humans without requir-
ing a safety fence. Cobots are currently used to auto-
mate repetitive manual tasks, such as loading/ 
unloading of machines, pick & place operations, 
screwing tasks, or quality inspection. Cobots can 
help to accomplish some of these tasks more cost 
effectively than humans in productive industrial con-
texts. Nevertheless, the field of hybrid automation – 
i.e. where humans and machines work together in 
direct interaction has not been realized to the extent 
projected by the industrial automation community 
and cobot vendors.

Currently, a number of factors sum up to prevent 
the wide-scale adoption of cobots in Europe. First, 
current robot programming environments are usually 
considered counterintuitive because they build upon 
older expert programming models, such as function 
blocks, textual programming, and combinations of 
visual and textual programming modes. At the same 
time, newer robot programming environments, which 
draw upon design patterns used for smartphone user 
interfaces and other commonly used day-to-day 

technologies, provide opportunities for non-experts 
to engage with programming cobots more easily 
(Ionescu and Schlund 2019). Yet, while the barriers 
are lowered, these environments often lack the versa-
tility of textual programming and are subjected to 
app-oriented business models, which foresee the 
acquisition of additional robot apps (or skills) at pro-
hibitive costs. Second, while robot vendors strive for 
targeting new markets and users, in the industrial 
domain, robot programming is still regarded as 
being a task for experts. This leads to a gap concern-
ing a learner’s transition from multi-model, intuitive 
robot programming towards the more versatile, tex-
tual programming environments. Such a transition 
would, for example, allow assembly workers to pro-
gram robots using increasingly complex program-
ming models.

In response to this situation, this paper considers 
a scenario in which robot programming is certified as 
an assembly application instead. This would allow for 
workers to design applications in collaboration with 
assembly planners without the need for recertifica-
tion. In this context, the collaboration between 
humans and robots occurs at the cognitive level, 
with workers and other non-experts designing and 
programming applications. This would not only 
empower shop floor employees to take over more 
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cognitive tasks but also provide robot programmers 
with access to the tacit knowledge of assembly work-
ers (Ionescu 2019).

Drawing on the assumption that the notion of 
intuitive user interfaces is contingent on the user’s 
prior knowledge and experience with technologies 
having similar user interfaces as well as with 
analogous day-to-day activities (i.e. conversations, 
text chatting, web searching, interactions with smart-
phones and tablets, etc.) it is hypothesized that intui-
tive robot programming is not a holy grail to be 
attained by one human-programmable interface 
(HPI) but a matter of providing diverse supports for 
that which is already known and experienced by the 
projected users. These supports may include app- 
oriented drag-and-drop features, voice-based pro-
gramming, and other multimodal interactions.

This paper focuses on voice-based programming as 
one natural modality for supporting a more intuitive 
interaction with cobots. The proposed approach aims 
to close a gap in the commercial and research 
approaches to end-user robot programming by pro-
posing a novel way of creating robot programs using 
voice commands. The main purpose of the proposed 
approach is to speed-up existing modalities of pro-
gramming robots by (1) freeing the user’s hands 
when teaching and finetuning cobot poses, and (2) 
endowing existing robot programming environments 
with programming by voice capabilities. In addition, 
the paper shows that the WSAPI provides a pragmatic, 
highly accurate (over 95% command recognition 
rate), zero-cost solution to voice command recogni-
tion for robot programming and provide a proof-of- 
concept, open-source implementation for speech- 
based robot programming, which is available online 
(https://assembly.comemak.at). The proposed 
approach thus aligns with current state of the art 
approaches in voice-based computer programming, 
which reduce conditions cause by physical strains 
(e.g. repetitive strain injury – RSI) and enable people 
with various disabilities to write code (Nowogrodzki  
2018).

The novel contribution of this paper is threefold. 
First, it argues and demonstrates that programming 
cobots by voice has become more feasible and useful 
than ten or twenty years ago, when speech recogni-
tion systems did only reach an accuracy of around 
80% in lab conditions. Second, it introduces a novel 
architecture for retrofitting existing robot 

programming environments by speech-based pro-
gramming capabilities. Third, it provides an open- 
source implementation of the approach for a web- 
based, generic robot programming tool called 
Assembly. The novelty of the contribution consists in 
tackling speech-based robot programming rather 
than robot control – a domain, which has received 
relatively little attention in the multimodal and end- 
user robot programming literature in the past decade, 
as also noted by Villani et al. (2018). The significance 
of the contribution is represented by the pragmatic 
approach taken to implement speech-based cobot 
programming. The architecture introduced in section 
2.3. can be used to endow existing robot program-
ming tools with additional programming modalities, 
which are not limited to programming by voice. From 
an architectural perspective, the paper is significant 
because it introduces a novel way of connecting nat-
ural programming interfaces with existing robot pro-
gramming environments event if those environments 
do not provide APIs or other means for supporting 
plugins and functional extensions.

The paper is structured as follows: It begins with 
a literature review of existing programming by voice 
approaches and principles for ‘democratizing’ cobot 
technology using simplified programming and multi- 
modal human-robot interaction. Then, it introduces 
the programming by voice approach for a robot that 
provides a web-based HMI. This approach is then 
generalized to robots which provide conventional 
teach pendants and to a generic, web-based robot 
programming tool. Finally, the approach is evaluated 
based on three different implementations and 
selected usage scenarios.

1.1. Democratization of cobot programming and 
natural user interfaces

The use of cobots in industrial applications still falls 
short of enthusiastic expectations and forecasts. 
Whereas market surveys of the last years predicted 
an exponential growth and a vast distribution in 
industry, official cobot statistics of the International 
Federation of Robotics (IFR) note a total volume of 
18.000 units, less than four percent of 2018’s industrial 
robot sales worldwide (IFR 2019). Today’s state of the 
art cobots largely rely on legacy programming con-
cepts and user interfaces (UI) or started the imple-
mentation of function-block oriented graphical UI’s 
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that still do not fulfil users’ expectations 
(Schmidbauer et al. 2020; Ionescu 2021; Piacun et al.  
2021). Furthermore, most industrial UI concepts for 
cobot programming do not take into consideration 
enlarged user groups that span far beyond robot 
expert programmers and system integrators towards 
bystanders, industrial workers and laypersons who 
operate cobots in direct (safety-critical) interaction. 
That need is intensified by approaches to share tasks 
dynamically between cobots and workers 
(Schmidbauer et al. 2020a). Consequently, the notion 
of a cobot changes from an experts’ system towards 
a manufacturing tool that can be used by literally 
everyone (Ionescu 2020b, Komenda et al. 2021). 
Therefore, one of the main motivations is to ease 
industrial engineering and manufacturing processes 
towards improved productivity and user-friendliness 
for an extended scope of potential users. In this con-
text, democratizing cobot programming aims to pro-
vide a broader range of non-expert users with access 
to resources that empower them to use cobots effec-
tively for their own (productive) purposes.

Human-machine interaction requires adequate 
interfaces to account for communication between 
human and artificial agents. The interaction usually 
covers both directions, from humans towards 
machines and vice versa. It also covers functionality, 
usability and user experience as core concepts. Since 
at least the latter largely refers to users’ subjective 
feelings about the interactions with a system, the 
notion of intuitiveness currently guides the design 
and development of user interfaces. Intuitiveness 
within that context describes the ability that “[. . .] 
the users’ unconscious application of prior knowledge 
leads to effective interaction” (Mohs et al. 2006). It 
usually refers to the individual, thus the ‘particular 
user’ and to the context of a ‘certain task’ (Naumann 
et al. 2007). The concept of interactive multi-modal 
robot programming refers to the combination of dif-
ferent interaction modes that can be combined seam-
lessly depending on their effectiveness as well as on 
user and task-specific criteria. Robot user interfaces 
evolved from Command Line Interfaces (CLI) over 
Graphical User Interfaces (GUI) towards Natural User 
Interfaces (NUI). Frameworks to combine gesture and 
speech control date back to the early 2000s 

(Perzanowski et al. 2001; Soshi, Paredis, and Khosla  
2005) and are considered to be more favorable to the 
perception and evaluation of the robot (Salem et al.  
2011).

1.2. Related work

This section reviews the relevant end-user robot pro-
gramming tools and research results. First, it discusses 
state-of-the-art tools that are already on the market 
and current research approaches that are likely to be 
adopted by the industry in the coming years. Then, it 
discusses relevant speech-based programming 
approaches for industrial robots and computers, 
more generally.

1.2.1. End-user robot programming
End-user programming can be understood as pro-
gramming by non-experts. To enable non-experts to 
program robots, suitable simplified programming 
models that depart from traditional text-based pro-
gramming are required. Ko et al. (2004) note that, for 
end-users to be able to overcome learning barriers, 
simplified programming models should be more user- 
centric rather than computer centric, while fostering 
analogical reasoning and balancing abstraction and 
concreteness. In this sense, the same authors note 
that in a human-centric model, programs should be 
more similar to flowcharts and widgets (i.e. apps) 
rather than instructions, data, and lists (Ko et al.  
2004). Drawing on these principles, current state-of- 
the-art end-user programming tools divide programs 
into primitives (sometimes called behaviors), skills (a 
specific combination of behaviors), tasks (programs or 
subroutines), and groups of other program elements 
(Pedersen et al. 2016). A primitive is a basic software 
function that controls a behavior of the robot, such as 
a joint or linear movement, an action of its end effec-
tor, and I/O communication. Skills are reusable auto-
mated handling functions that are built on 
a foundation of primitives. Skills are available from 
the tool vendor or third-party developers as plugins 
or apps that the user can customize. A robot task or 
program is composed of several primitives and skills 
that are organized in various ways based on visual 
representation, control flow, and data flow. Groups 
are program structures that correspond to loops, 
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conditionals, and other generic control structures. 
Some of the programming models that are commonly 
used in graphical end-user robot programming tools 
include list-based, tree-based, flow-based, and block- 
based programming. In the following, a review of the 
relevant commercial end-user programming tools 
that are currently available on the cobot market are 
reviewed. Then, the relevant research approaches to 
end-user, multimodal robot programming are dis-
cussed. More comprehensive systematic surveys on 
end-user programming approaches can be found in 
(Ajaykumar, Steele, and Huang 2021) and (Villani et al.  
2018).

1.2.1.1. Commercial end-user robot programming 
tools. Drag&Bot (2020) is a commercial, simplified, 
list-based, generic robot programming tool, which 
can be used from a web browser. Drag&Bot provides 
robot drivers for the following robot brands: ABB, 
Epson, KUKA, Yaskawa, Fanuc, Stäubli, Denso, and 
Nachi, and Universal Robots (both the CB and 
E-series). The tool integrates a web-based robot simu-
lator in which entire robot stations can be modelled. 
The programming is performed by dragging, drop-
ping, and configuring apps, called function blocks, 
with the help of configuration wizards. Drag&Bot pro-
vides a series of configurable program templates, 
which can be regarded as robot skills. Drag&Bot is 
the first web-based generic robot programming UI 
which can be used with an online, cloud-based 
account.

ABB Wizard is a simplified graphical programming 
UI, which builds on Blockly – the open-source block- 
based programming environment from Google. 
Several commercial industrial and non-industrial 
robots use Scratch and Blockly as their programming 
environment. The precursor of ABB Wizard is 
a research tool called CoBlox (Weintrop et al. 2018), 
which also uses Blockly as its main programming 
model. Wizard can be used with robots from the one- 
armed collaborative Yumi robot and the non- 
collaborative IRB 1100 robot. Wizard provides 
a block (i.e. app) library which can be used to program 
robots by dragging and dropping blocks onto the 
program canvas. Each block can be configured 
directly using inline parameters, or – in the case of 
motion blocks – by moving the robot with the joystick 

attached to the robot’s teach pendant or by manually 
moving the robot. Users can also create their own 
custom blocks, called skills. A skill is a block-based 
program which contains several blocks, that are 
already available the library. The skill library can thus 
be extended by users or third-party developers by 
new skills through block composition.

ArtiMinds (Pieskä, Kaarela, and Mäkelä 2018) is 
a graphical, workflow-based, generic robot pro-
gramming environment that borrows some fea-
tures of block-based programming environments. 
ArtiMinds support different robot models from 
a series of vendors (currently, Universal Robots, 
KUKA, FANUC, ABB, DENSO, and Mecademic). 
ArtiMinds also provides templates and extensions 
for additional hardware like end effectors and cam-
eras. ArtiMinds offers software modules that help 
to create a robot system composed of a specific 
robot, end effector, torque sensor, and camera. The 
functions of these systems can then be accessed 
and configured directly from corresponding 
ArtiMinds templates (i.e. predefined blocks that 
behave like apps or skills). To create a program, 
the user drags and drops blocks from a template 
library and then connects then via ports. Ports are 
assigned to input and output variables so that the 
outputs of one block can be connected to one or 
several other blocks. ArtiMinds also provides 
a simulation environment, which occupies the bet-
ter part of the screen. Users can configure station 
layouts from predefined machine and part models, 
and test programs in simulation. ArtiMinds uses 
code generation to translate programs in robot- 
specific languages.

Wandelbots (Fitzek et al. 2021) developed 
a generic robot programming tool which provides 
a physical robot toolpath generation device, called 
‘TracePen’. This device allows users to teach robot 
motions by drawing paths in 3D space. Paths may 
follow the contour of parts that need to be treated 
in some way. The software uses machine learning to 
optimize the path and allows the users to adjust the 
manually generated path in an intuitive app.

1.2.1.2. Research approaches to end-user robot 
programming. RAZER (Steinmetz, Wollschläger, and 
Weitschat 2018) is a web-based generic robot pro-
gramming tool, which supports programming by 
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demonstration (through manual guidance of the 
robot) and skill-oriented programming. RAZER uses 
a list-based programming model that is similar to 
that of Drag&Bot. In RAZER, it is possible to program 
several robots with a single program. Programming is 
performed by adding and configuring skills in 
a similar fashion as with Franka Emika Desk. The pro-
vided skills support a limited number of different tool 
sizes and materials. RAZER also offers an expert mode, 
in which new, configurable skills can be added by 
experts to the tool either by implementing a state 
machine model called RAFCON or a custom interface. 
The skill model of RAZER thus resembles that of 
Franka Emika Desk.

The newest version of the tool (Steinmetz, Nitsch, 
and Stulp 2019) implements a semantic model for 
automatically detecting, instantiating, and configur-
ing skills from the human-robot interactions per-
formed by a user who programs the robot by 
demonstration—i.e. by guiding the robot to desired 
positions and manipulating the end effector. This 
reduces the time needed to program and configure 
tasks and skills since the user does not have to switch 
back and forth between the robot and the program-
ming UI. The user’s interactions with the robot are 
associated with a certain skill by using a time series of 
the robot’s pose. A so-called semantic skill recognizer 
then matches this time series to a particular skill that 
is available in the tool’s library and to also configure it 
automatically by extracting the position and rotation 
information from the time series data. To support skill 
matching, the skills are described using a so-called 
planning domain-definition language (PDDL).

iTaSC (Halt et al. 2018) leverages the process defi-
nition artefacts (symbols, notations, workflow lan-
guage) from the VDI 2869 guideline. This guideline 
specifies a taxonomy of automating handling func-
tions organized in three main categories: joining, 
handling, checking, adjusting, and special operations. 
Within each category, the guideline specifies 
a comprehensive set of operations, which are charac-
terized by a symbol and description of the respective 
operation, including the parameters that are relevant 
to that operation. Production cells and processes can 
thus be specified symbolically as workflows of stan-
dardized operations. iTaSC uses constraint-based rea-
soning to generate a robot program consisting of 
a sequence of VDI 2860-conforming operations, called 

skills, from CAD models. These generated programs 
can then be further adjusted by non-experts.

Human Factory Interface (HFI) (Schäfer et al. 2021) 
is an experimental robot programming tool that pro-
vides CAD models of entire production cells in addi-
tion to robot and product models. These models are 
represented as a knowledge graph in a graph data-
base and can be queried using SPARQL (an RDF query 
language). The resulting knowledge base, which is 
called ‘world interface’, can be used to comprehen-
sively schedule, plan, execute, and reconfigure 
robotic production processes in a semi-automated 
fashion. HFI provides an intuitive web-based user 
interface in which users can define tasks in terms of 
their goals, which can be assigned to a robotic assem-
bly cell. The UI provides information about the pro-
gress of running tasks and allows users to control the 
execution.

Semantic Mates is another ontology-based 
approach to semi-automated robot programming 
(Wildgrube et al. 2019). This constraint-based 
approach starts with CAD models of parts and uses 
a simple OntoBREP ontology that defines geometric 
entities and constraints. The ontological representa-
tion of Semantic Mates, which is stored in the knowl-
edge base, is used to augment object models with 
additional information that is relevant to robotic 
assembly. Annotated object models can be used to 
program a robot to perform assembly tasks through 
simple drag-and-drop operations in the UI. Using the 
ontology, the UI supports the user in mating different 
work pieces together thanks to predefined geometric 
constraints. Once mated, the parts are forwarded to 
a component that maps the task of joining the parts 
together to the skills that are provided by the robotic 
work cell.

Robot telekinesis (Lee et al. 2020) is an approach 
that takes advantage of virtual object manipulation 
techniques that are used, for example, with 6 degrees 
of freedom virtual reality gaming controllers. The 
approach allows users to control and program robots 
by demonstration in a way that is not limited to 
collaborative robots. The telekinesis approach to pro-
gramming by demonstration proved to be 4 times 
faster than using the teach pendant and just as fast 
as, yet physically less demanding than manual teach- 
in of the robot. Since the latter technique can only be 
used with collaborative robots, the telekinesis 
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approach promises to make conventional robot pro-
gramming by demonstration much more efficient.

Gadre et al. (2019) propose an end-user program-
ming approach based on a VR headset connected to 
a Baxter collaborative robot. The user can define way-
points and end effector actions using their hands and 
fingers in space. The advantage of the mixed reality 
approach over the telekinesis approach is that the 
actions recorded in the program are displayed in an 
overlayed list, which can be edited by the user.

MEGURU is a tool that enables hand gesture-based 
end-user robot programming (Nuzzi et al. 2021). The 
tool provides support for an extensive set of one or 
two-hand gestures that can be used to control and 
program the robot. The system uses an off-the-shelf 
2D camera. The authors argue that the gestures are 
easy to learn and that the system overall is easy to 
use. However, it is not clear what level of precision can 
be achieved using this modality of programming 
a robot. It is reasonable to assume that the achievable 
precision is below that obtained by using manual 
teach-in.

1.2.2. (Robot) programming by voice
Programming by voice or speech is a compelling idea, 
which received some attention by the software engi-
neering and robotics communities in the past 25  
years. Speech-based programming arguably helps to 
overcome so-called use barriers in end-user program-
ming. According to Ko et al. (2004), use barriers ‘are 
properties of a programming interface that obscure 
(1) in what ways it can be used, (2) how to use it, and 
(3) what effect such uses will have’ (p. 3). Natural 
speech commands provide an alternative to manipu-
lating non-intuitive interfaces, while enabling analo-
gical reasoning.

From a technical perspective, while during the 
2000s the main problem appeared to be the lack of 
reliable speech recognition techniques, owing to the 
recent advances in machine learning, today research-
ers are confronted with other problems, such as how 
to structure voice commands in order to produce 
code while minimizing the necessary corrections 
(Begel and Graham 2006; Arnold, Mark, and 
Goldthwaite 2000). In this sense, to reduce the speech 
recognition error, some researchers use code words 
instead of 1-to-1 mappings between what is being 
said/recognized and what is being coded. In the 
industrial robotics domain, programming by voice 

(i.e. producing program code rather than controlling 
or guiding a robot by voice) has received relatively 
little attention compared to other programming tech-
niques, such as block-based (Weintrop et al. 2017), 
automated (Heimann and Krüger 2018) program-
ming, or multimodal teach-in (Beschi, Fogli, and 
Tampalini 2019). More work appears to have been 
invested in controlling or guiding a robot using 
voice commands (Makris et al. 2014), whereby these 
commands are used to immediately call some pre- 
programmed function of the robot (e.g. different 
movements or more complex robotic skills).

By contrast, voice-based robot control is a well- 
known and researched problem in the industrial auto-
mation domain. In the 2000s the focus of this research 
was on the technology used to reliably recognize 
voice commands from users with applications in con-
trolling mobile robots (Rogalla et al. 2002; Liu et al.  
2005; Lv, Zhang, and Li 2008; Bugmann and Pires  
2005). Thanks to the advances in the machine learn-
ing domain which helped to overcome the challenge 
of recognition accuracy, more recent approaches to 
voice-based robot control are focused on how to 
integrate wearable devices capable of speech recog-
nition (e.g. Android smart watches (Gkournelos et al.  
2018)) and how to interface voice-based control with 
existing robot application development environ-
ments (e.g. ABB Robot Studio (Pires and Azar 2018; 
Kumar et al. 2016)). Some of the newest approaches 
from the domain of human-robot interaction com-
bine gesture and speech (Meng, Feng, and Xu 2020; 
Liu et al. 2018) or haptic and speech (Gustavsson et al.  
2017) control into one systems while showing that 
a combination of the two yields better results in terms 
of accuracy and acceptance by users. Speech-based 
robot control has also been identified as one of the 
drivers of a new paradigm of ‘symbiotic’ human-robot 
interaction (Wang et al. 2019). In addition to these 
scholarly articles, a multitude of patents dealing with 
diverse aspects of robot control by voice have been 
published since around 2015, which shows that 
speech recognition has started to play an important 
role in industrial robot control and programming. 
Rogowski, 2013 presents a web-based remote voice 
control approach for robot cells, which allows the user 
to remotely issue complex commands which tell the 
robot to perform certain pre-programmed tasks (e.g. 
lifting, loading, unloading, picking, placing, etc.). The 
focus in Rogowski (2013) is on the grammar 
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supporting the recognition of complex commands. 
The approach does not qualify as programming 
because voice commands are not used to generate 
robot code. Rather, they are used to parameterize and 
invoke pre-programmed tasks, while the user must 
engage continuously in a ‘conversation’ with the 
robot.

More recent approaches include a plugin for 
extending ABB’s RobotStudio by speech-based robot 
control capabilities (Pires and Azar 2018). The plugin 
leverages the American English speech recognition 
and text-to-speech engines (TTS) provided with 
Windows 10 Pro. The system supports commands 
for controlling motors, running programs, and setting 
configuration options. However, it does not support 
commands for instantiating robot behaviors and skills 
within the text-based programs that can be created 
using RobotStudio.

As part of its RoboMaker service (Liu and Xu 2019), 
Amazon provides a service interface for connecting 
Alexa with robots through a ROS instance hosted in 
the cloud (i.e. robotic middleware as a service). The 
user triggers an Alexa skill using a voice command. If 
the command is recognized, it is converted into 
a machine-readable command, like a move com-
mand. The capabilities of the robot that can be con-
trolled through voice commands are specific to each 
applications. Typically, users can trigger robot skills 
that are implemented in ROS.

Bingol and Aydogmus (2020) present a speech- 
based approach to controlling industrial robots 
based on voice commands, which trigger the 
execution of skills, such as drilling. The aim is to 
enable human-robot interaction with non- 
collaborative robots. In this approach, the robot 
provides feedback as to whether the command 
was successfully recognized and whether the 
robot is available to receive such commands. To 
enable speech recognition in the Turkish language, 
the authors developed a deep neural network, 
which is able to recognize commands with an 
accuracy of over 90%.

Kaczmarek et al. (2020) present an interesting 
approach to adjusting the cartesian position of a non- 
collaborative industrial robot arm using commands 
such as ‘plus x’, ‘minus y’, etc. This approach uses 
a C# library for speech recognition and qualifies as 
voice-based robot control rather than programming.

2. Cobot Programming by Voice: A Web 
Framework

This section describes a novel lightweight cobot pro-
gramming by voice framework based on the new 
Web Speech API (WSAPI)—a W3C specification pub-
lished and maintained by the Speech API Community 
Group supported by modern web browsers, such as 
Google Chrome, Mozilla Firefox, or Microsoft Edge. 
The framework explicitly targets the assembly appli-
cation development phase, which usually requires 
many rounds of repetitive trial and error until robots 
reach the necessary precision, especially in small part 
assembly, such as PCB assembly. In this context, pro-
gramming and testing cobot applications by voice 
can be more effective in terms of speed and difficulty. 
This would also empower shop floor employees to 
participate in the application development activities, 
as a growing body of work has called for (e.g. (Ionescu 
and Schlund 2019; Wilhelm et al., 2017)).

The proposed framework uses the WSAPI to wrap 
the programming structures used by a cobot pro-
duced by the Franka Emika company, which already 
offers a simplified web-based human programmable 
interface (HPI). In this environment, non-experts can 
program the robot by dragging, dropping, and con-
figuring predefined apps in a sequence or according 
to simple patterns, such as repetitions of the same 
action or more complex composite apps, which can 
be acquired in an app store. This app-oriented way of 
programming cobots appears to be more intuitive 
than other industrial cobot HPIs because it draws on 
known patterns of interactions (e.g. with smart 
phones and tablets). This provides non-programmers 
with the opportunity of a fast and easy initiation into 
cobot programming. Nevertheless, the same pro-
gramming technique becomes rather annoying and 
slow once a person is initiated into the craft of cobot 
programming. In this context, programming by voice 
can help to bridge the potential interest gap, which 
may arise when a person finds something to be too 
easy and limited. Also, and perhaps more importantly 
from an economic point of view, programming 
cobots by voice can boost the productivity of both 
beginner and expert programmers by allowing them 
to use their hands for guiding the robotic arm rather 
than inputting text or dragging apps and functions. 
The framework introduced in this paper thus aims to 
augment the multimodal programming capabilities of 
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existing cobots rather than providing a definitive 
replacement for any of them.

2.1. Programming the Panda Cobot: Features & 
Limitations

The Franka Emika Panda collaborative, industrial- 
grade robotic arm is one of the first of its kind to 
provide a web-based HPI. As depicted in Figure 1, 
The design of this HPI closely follows the model- 
view-controller (MVC) pattern (Leff and Rayfield  
2001), with a REST and Websockets backend and 
a dynamic HTML5 & JavaScript web interface. The 
REST service components of Panda’s HPI control and 
maintain the robot’s state by processing sensor sig-
nals and actuating robot moves. The backend appli-
cation, which implements the model in the MVC 
pattern, wraps the robot’s native C++ API, called lib-
franka. This model maintains the current state of the 
robot (i.e. joint positions, applied forces, sensor 
values, actuation history, etc.) in memory. The web 
application, shown in Figure 1, is updated via web 
sockets to reflect the current state of the model. In 
this web environment, users can create new robot 
applications by dragging and dropping so-called 
robot apps from an app collection to a workflow 
pane to form a sequence of basic actions, whereby 

each app in the sequence represents a configurable 
instance of a movement or behaviour of the robot 
(e.g. taught-in or relative moves, grip-per actions, 
waiting for user input, etc.). In addition, there exist so- 
called pattern apps, which implement predefined 
applications patterns (e.g. picking and/or placing 
parts in a tray, or more advanced program structures). 
Named app sequences, which are called tasks, are 
persisted in the model, whereby all user interactions 
generate calls to the REST services. This app-oriented 
HPI is coupled with a series of buttons available on 
the robot’s head, as shown in Figure 1. Two of these 
buttons are used to move the arm in free-drive mode. 
The other ones are used within the wizard-like con-
figuration of each app, which is activated by clicking 
on the respective app, as shown in Figure 1. This way 
the user only needs to interact with the laptop or 
tablet when dragging and dropping a new app into 
the workflow. For most of the available apps, all other 
parameters can be configured using the buttons from 
the robot’s head. In practice, however, users prefer to 
set certain parameters and click through the wizards 
using the mouse or touch screen of the laptop of 
tablet because the buttons are relatively hard to 
press and thus induce physical strains into the wrist 
when used repeatedly for a long time. Also, configur-
ing the apps using the buttons is usually slower than 

Figure 1. Architecture and screenshot of the Franka Emika Panda HPI.
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using the mouse and keyboard. Hence, while Panda’s 
HPI arguably represented a leap in intuitive robot 
programming, it has some obvious limitations when 
it comes to ergonomics and speed.

In our experience with using this robot in research 
and teaching activities, these limitations not only 
reduce the productivity of users, who need to switch 
back and forth between the robot’s head and the 
computer but may also pose a safety hazard when 
more than one individual works with the robot. 
Students, for example, tend to divide tasks so that 
one person will move the robot, while another one 
configures the apps. At times, however, both persons 
may stare at the computer screen, whereby one of 
them (the one who guided the robot’s head) may be 
in close proximity to the robot, which – on occasion – 
may perform unexpected moves (e.g. in case of 
a software or hardware error) and thus potentially 
harm users. When working in teams of two, only one 
person should program the robot, while the other one 
should watch that all safety-related rules are being 
followed (Ionescu and Schlund 2019). These roles 
should be switched periodically.

2.2. Using the Web Speech API for Programming by 
Voice

The WSAPI is a collection of client-sided JavaScript 
functions embedded in modern web browsers (nota-
bly Chrome and Firefox), which allows web develo-
pers to leverage the newest machine-learning based 
speech recognition technologies. Common use cases 
include voice web search, speech command interface, 
speech translation, dialog systems, multi-modal inter-
action and search, etc. The WSAPI can access the 
computer’s microphone (or any other microphone 
connected to it) via the browser. To ensure privacy, 
the user is asked for permission before listening is 
enabled. As opposed to older speech recognition 
frameworks, the WSAPI supports a wide variety of 
languages and has a very high recognition success 
rate. This makes corrections only necessary in the 
presence of external acoustic interferences, provided 
that the user is a fluent speaker in his/her language of 
choice.

Once enabled, the WSAPI listens to what is being 
said and converts spoken sequences into words 
placed, for example, in an array. To implement cobot 
programming by voice, a script that can be injected 

into Panda’s web-based HPI using the ‘bookmarklet’ 
technique was developed. A bookmarklet is 
a bookmark containing JS commands stored in the 
browser’s ‘favorites’ bar, which adds ‘one-click’ func-
tionalities to the currently displayed web page. This 
technique has been effectively used to embed or 
extend programming environments in existing web-
pages. The current approach uses the same mechan-
ism to inject JavaScript code into Panda’s HPI, which 
automates the instantiation, loading, configuration, 
and execution of apps and tasks in the robot’s native 
HPI according to the user’s voice commands.

The bookmarklet technique was used to extend 
Panda’s HPI by voice programming falls into the 
broader category of graphical user interface (GUI) 
automation, which is primarily used in software test-
ing (see (Ionescu and Schlund 2019) for details). Yet, 
with the increasing diversity and complexity of soft-
ware used in companies and privately, more GUI 
automation use cases emerged in the past few 
years. In this spirit, the proposed framework aims to 
bring this new philosophy of interfacing with existing 
software GUIs to the world of collaborative robotics 
programming to the end of boosting productivity.

In the following, some technical details about the 
implementation of the framework before turning to 
the empirical evaluation and discussion of the 
approach are discussed.

2.3. Framework Design and Features

Figure 2 illustrates the architecture of the 
‘Programming by Voice’ extension to the Panda 
robot’s HPI.

Building on the robot’s HPI, which implements the 
MVC design pattern, the user injects a so-called 
‘Programming by Voice’ (PBV) controller into the cur-
rent browser page (i.e. the robot’s HPI shown in 
Figure 1). Once injected, the PBV controller activates 
and maintains an open connection to the Web 
Speech API embedded in the browser, which enables 
it to listen for voice commands from the user. Upon 
recognizing one of the commands listed in Table 1, 
the PBV controller may use the visual controls avail-
able to users by automating the user actions needed 
to accomplish certain tasks (e.g. to drag, drop, or 
configure different robot behavior apps). The PBV 
controller can also directly manipulate the server- 
side components of the system by sending REST 
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service calls. On the server side, the application model 
(which contains the robot’s state, programmed tasks, 
and app implementations) is maintained and per-
sisted in a database. The robot’s HPI is thus augmen-
ted by a new programming mode, which enables 
users to create tasks while keeping their hands free 
(e.g. for teaching positions by guiding the robot and 
configuring the gripper using both hands). This elim-
inates the need for switching back and forth between 
the robot and the laptop or tablet running its HPI. The 
following commands are currently supported:

The first group of commands can be issued at any 
time while working with the robot’s native HPI. These 
commands save time and clicks by allowing users to 
set reusable parameters before configuring specific 
apps. While configuring an app, which requires cer-
tain parameters, issuing the ‘Okay’ command will 

automatically set the values of the app-specific para-
meters to those of the matching global parameters. If 
users forget to set these global parameters to the 
desired value, they can still be changed manually at 
a later time using the app’s configuration wizard.

The second group of commands instantiate apps 
for actuating the robot’s arm and tool (e.g. grip-
per). In the robot’s native HPI, these off-the-shelf 
apps need to be dragged from the app library and 
dropped in the workflow pane of the currently 
active task. The task of instantiating apps, which 
can take 5–10 s per app, can be automated using 
voice commands. This saves time because, while 
the robot’s HPI performs the initialization of a task, 
the user can already drive the robot into the 
desired pose for the first waypoint of the motion 
or set the width of the gripper fingers. After all 

Figure 2. Architecture of the “Programming by Voice” extension.

Table 1. List of supported voice commands (GRP=Group, CMD=Command).
GRP CMD Functionality

1 Speed/Force/ 
Load/Speed-up 
<#>

Sets the velocity/grasping force/gripper load/acceleration of the arm for all subsequent apps to the specified integer value <#>. 
A subset of these parameters are required by the movement and gripper apps.

2 Grasp Initializes the “Gripper Grasp” app which allows users to manually set the opening of the gripper so as to grasp a certain object. 
After triggering this app, the users are able to use the buttons on the robot’s head or to manually set the gripper fingers to 
the desired position.

Hand Initializes the “Gripper Move” app which allows users to set the opening of the gripper using the buttons on the robot’s head or 
by manually moving the gripper fingers.

Motion Initializes the “Cart Motion” app, which allows users to teach in a movement of the arm using several waypoints. Waypoints are 
set by driving the robot’s arm to the desired pose and then pushing the OK button on its head.

3 Okay After having set all the parameters of an app by using the buttons on the robot’s head and/or manually moving the robot’s arm 
and fingers, this command will auto-complete all the information requested in the subsequent dialogues of the app-specific 
wizard (e.g. velocity, force, acceleration, load).

Start This command starts the execution of the task being programmed.
Stop This command stops the execution of a task.
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waypoints are configured using the buttons on the 
robot’s head and/or the gripper width is manually 
set by moving its fingers, the user can issue the 
‘Okay’ command to trigger the auto-completion of 
the remaining app parameters, such as the velocity 
and acceleration of a movement and the force and 
load for pick and place operations.

The commands from the third group are used to 
trigger actions, which would require one or several 
mouse clicks or tapping the touch screen of the 
device running the robot’s HPI (e.g. laptop, tabled, 
etc.). The ‘Okay’ command triggers a context- 
dependent series of actions so as to autocomplete 
the parameters of the app being configured and to 
automatically click-through all remaining dialogues 
of the respective app configuration wizard. The 
‘Start’ and ‘Stop’ commands will simply start and 
stop the current active task. By using voice com-
mands the user can focus on interacting with the 
robot through haptic means. To switch from the 
task programming into the task testing and run-
ning mode, the user needs to pull up the robot’s 
safety stop button, which is pushed down during 
teaching and programming. Hence, using the start/ 
stop commands, users can save time, for example, 
by being able to focus on the robot’s actions dur-
ing testing while keeping the safety stop button at 
hand. This also contributes to a safer interaction 
with the robot during testing, since the user’s 
attention is not distributed between the robot 
and the programming interface.

3. Generalization of the approach

This section discusses two approaches to general-
izing the proposed speech-based programming 
approach by (1) adapting it to the case of human- 
machine interfaces (HMIs) that are hosted on con-
ventional robot teach pendants, and (2) integrating 
it into an open-source, block-based generic robot 
programming tool, called Assembly (https://assem 
bly.comemak.at). The aim of this section is to lay 
the groundwork for the evaluation of the approach 
and to show that the WSAPI is a versatile tool for 
speech-based programming that can be integrated 
into multiple, existing cobot programming environ-
ments with relatively little efforts. The generaliza-
tion of the approach also substantiates the claim 

that it helps to democratize cobot programming 
more generally.

3.1. A generic meta-controller architecture for 
supporting additional human-robot interaction 
modalities

Currently, teach pendant software can only be 
extended through officially supported channels, 
such as plugins or APIs. Some robot vendors have 
created software ecosystems and app stores (e.g. 
Franka World, UR+, ABB Robot Apps, etc.), where 
third party developers can develop and offer their 
plugins. Plugin interfaces, however, are still limited 
to integrating new features into existing HMIs, such 
as new function buttons or apps for various end 
effectors and sensors. Plugin interfaces do not pro-
vide support for extending the programming modal-
ities of a robot by third party developers. One way of 
extending the programming modalities of a robot 
without losing the existing features of the vendor- 
provided teach pendant and HMI is to implement 
a meta-controller, such as the PBV controller for 
Desk, which emulates the interactions of a user with 
the HMI that are required to program the robot. Such 
a meta-controller can be implemented using tools 
and techniques from the domain of GUI automation 
(Yeh, Chang, and Miller 2009).

The overarching goal of the meta-controller 
approach can be expressed as follows: When devel-
oping new features for the HMI of an industrial robot, 
which go beyond the functionalities supported by 
official APIs and plugin (eco)systems, it is desirable 
to implement and deploy the new features on top of 
the vendor-provided HMI of the robot in a non- 
intrusive way without blocking, overwriting, repla-
cing, or otherwise interfering in a nonbeneficial way 
with the vendor-provided features of the HMI. To 
achieve this goal, the HMI of the industrial machine 
can be extended by a meta-controller consisting of 
a remote view, a condition monitor, and an HMI 
object (see Figure 3). The remote view connects 
through a remote connection interface provided by 
the HMI to enable remote viewing and control of the 
HMI by the condition monitor and the HMI object. The 
condition monitor observes the graphical elements of 
the HMI in the remote view and sends an interaction 
command to the HMI object whenever a visual state, 
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which is designated to trigger such an interaction is 
detected. Upon receiving a command, the HMI object 
performs a corresponding interaction in the remote 
view, which changes the state of the HMI. A command 
interface is provided to facilitate user interactions 
with the HMI through natural interfaces, such as 
speech or gesture recognition. To prevent tampering 
with the command interface and the meta-controller 
device, in the case of robots, physical protections can 
be used. The meta-controller must prevent deadlocks 
in the condition monitor by maintaining the state of 
the HMI. Also, concurrent accesses to the HMI object 
must be prevented by queueing commands. The 
meta-controller must maintain the connection to the 
HMI using a watchdog.

Figure 4 provides a detailed view of the compo-
nents of a generic meta-controller. The condition 
monitor is multi-threaded, with each thread monitor-
ing a specific condition in the replicated HMI. The 
conditions are defined using graphical patterns that 
are recognizable in the HMI. Conditions can be 
defined based on the appearance and disappearance 
of various graphical and textual elements in the HMI. 

To prevent deadlocks, the condition monitor main-
tains a consistent state of the HMI, which is updated 
by the corresponding thread whenever a condition is 
met. In addition, the conditions must be defined in 
a mutually exclusive way such that only one condition 
can be met at a time. Whenever a condition is met 
one or several commands are issued by the con-
cerned monitoring thread and sent to the HMI object.

The HMI object uses the same means as the opera-
tor to interact with the machine at the human- 
machine interface, for example, pointer devices, key-
board inputs, or tapping. One condition change 
detected by the condition monitor can lead to one 
or several interactions being automatically performed 
by the HMI object. The HMI object is similar to a Page 
Object (Leotta et al. 2013), which is used in the UI 
testing domain. In addition to the Page Object, which 
provides page or panel wrappers, the HMI object 
provides a concurrent command queue to prevent 
concurrent access to the input devices if commands 
are received from the condition monitor and the 
command interface at the same time. The HMI object 

Figure 3. Generic meta-controller architecture.
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wraps the HMI with an application-specific API, which 
allows clients to manipulate the HMI without expli-
citly issuing click, type, and other low-level input 
commands. The wrapper provides interaction meth-
ods that correspond to commands received from the 
condition monitor or through the command interface. 
The scope of the interaction methods should be small 
enough to facilitate reusability and broad enough to 
encompass a number of cohesive interactions (i.e. 
click on a button, then input some numbers, and 
then click ok to finalize the interaction). The interac-
tion methods provided by the HMI object are atomic 
in the sense that they either complete successfully or 
they rollback the state of the HMI before issuing an 
error. Ensuring atomicity and handling errors are 
responsibilities of the HMI object.

The remote view replicates the HMI of the indus-
trial automation system in a virtual screen which is 
accessible only to the condition monitor and the HMI 

object. The remote view manages the remote connec-
tion to the HMI to ensure maximum availability, e.g. 
using a watchdog that monitors the connection and 
attempts to reconnect in the case of a breakdown.

A meta-controller maintains relations both to the 
human operator and to the HMI, thus acting as 
a second operator who assists the human operator. 
A Meta-controller assists the human user of the sys-
tem in an intuitive way, without creating confusion. 
For example, it can provide additional features, which 
the native HMI of the system does not, e.g. a role- 
based access model, error handling, execution mon-
itoring and logging, programming and configuration 
wizards, etc. A Meta-controller reports back to the 
user either silently by performing as instructed or 
through popup and other kinds of messages in the 
HMI. In addition, a Meta-controller facilitates the non- 
intrusive integration of natural interfaces, such as 
speech and gesture recognition, which can be 
instructed by the human operator to perform 

Figure 4. Detailed view of the meta-controller architecture.
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interactions in the HMI that would have otherwise 
required manual inputs by the operator. The com-
mand interface can also be used by other applications 
to control and configure the machine in the absence 
of a human user.

Currently, all major robot vendors provide com-
mercial solutions for remotely viewing the HMI of 
the teach pendant, e.g.: 

● KUKA – Virtual Remote Pendant (VRP)
● ABB – FlexPendant (RobotStudio® provides us 

a virtual teach pendant)
● Universal Robots – RealVNC over an Ethernet 

connection
● YASKAWA – Remote Pendant Display
● FANUC – Remote iPendant

3.1.1. Speech-based programming for universal 
robots
In this example, the Universal Robot 5 (UR5) from the 
CB series is considered. The UR5 is a cobot that pro-
vides a conventional teach pendant that implements 
a tree-based simplified programming model. UR5’s 
HMI is easy to use but the programming is ineffective 
because of the need to continuously switch between 
menus and between the teach pendant and the 
robot, when teaching waypoints (Ionescu et al. 2020; 
Ionescu 2020a). The vendor provides an API, which 
can be used to develop plugins for UR5’s HMI. 
However, these plugins can, for example, extend the 
existing function library by adding a new configura-
tion window. Existing features, such as teaching 

waypoints, cannot be extended, or otherwise modi-
fied by third-party developers through plugins. 
Hence, in Universal Robots’ software ecosystem, 
called UR+, there are no plugins that enable the 
extension of the programming and interaction mod-
alities that the cobot currently offers (i.e. via the teach 
pendant and direct manipulation of the robot’s pose). 
This example demonstrates how UR5’s HMI, called 
Polyscope, can be extended by voice-based program-
ming using the meta-controller approach. The 
required system architecture corresponds to that 
from Figure 5.

To implement the voice-based programming 
extension, the SikuliX (http://sikulix.com) GUI automa-
tion tool was used. SikuliX is a Java-based tool for 
performing automated software tests of graphical 
user interfaces (GUIs) using screenshots of the soft-
ware to be tested. SikuliX provides a simple IDE (inte-
grated development environment), in which the 
visual patterns that are used to identify the key ele-
ments of a GUI are displayed in line with Python code. 
SikuliX is comparable to GUI automation software 
such as Selenium or AutoHotkey and like these can 
be used to meta-control websites or application soft-
ware in any operating system. Testing and remote 
control of other devices are also possible via 
a simulator or Virtual Network Computing (VNC). In 
the context of the architecture from Figure 5, SikuliX 
was used to implement the meta-controller, which 
operates on the replicated HMI of the UR5 robot. 
The replication or mirroring of the HMI was realized 
using the RealVNC (https://www.realvnc.com) remote 

Figure 5. Speech-based robot control and programming for a Universal Robot using a meta-controller hosted on an edge device.
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viewing and control software. A prerequisite for using 
this architecture is for the robot to support such 
a remote connection to the teach pendant. This fea-
ture is provided by many robot vendors because it is 
useful in the context of remote support. The COVID- 
19 crisis also increased the use of remote robot con-
trol due to the access restrictions imposed by govern-
ments. To enable the remote connection to UR5’s 
teach pendant, the RealVNC server component 
needs to be installed on the teach pendant by con-
necting to it via SSH over an Ethernet connection. 
Once installed, it is possible to replicate the robot’s 
HMI on another computer in a window. A tool like 
SikuliX is capable of monitoring and controlling the 
replicated HMI by emulating the user interactions 
with the HMI that are required to perform any task 
that is supported by Polyscope.

The UR5 robot teach pendant provides a ‘Freedrive’ 
button that enables the user to manually drag the 
robot to a desired position. However, the user must 
keep the button pressed while moving the robot, 
which occupies one hand all the time. In addition, 
many users complain that keeping the Freedrive but-
ton pressed all the time with one hand, while manip-
ulating the robot using the other hand is 
cumbersome and induces physical strains in the 
wrist. More ergonomic solutions include, for example, 
a mountable flange ring having a button, which acti-
vates the robot’s Freedrive mode. Using the meta- 
controller approach, a simpler and inexpensive 

alternative can be implemented using speech-based 
commands. To demonstrate this, the web-speech API 
was used to recognize the following commands: 
‘Waypoint’ – adds a new waypoint to the current 
program by emulating the necessary HMI user inter-
action workflow and activates the free drive mode 
until the ‘Okay’ voice command is issued by the 
user, upon which the free drive mode is deactivated 
and the waypoint is set.

Figure 6 illustrates the implementation of this 
mechanism in SikuliX. The SikuliX program monitors 
these commands in separate threads and performs 
the necessary user interaction workflows for creating 
a waypoint, activating the free drive mode by keeping 
the corresponding button pressed and for deactivat-
ing it and storing the waypoint. When the free drive 
mode is activated, the user can move the robot to the 
desired position. This position is stored when the 
‘Okay’ command is issued. Hence, the user can store 
multiple waypoints by repeating a simple three-step 
workflow, which saves about 50% of the time needed 
to accomplish the same operations manually.

Like in the case of the Franka Emika Desk HPI, in the 
case of the Universal Robot, the WSAPI was used to 
implement a simple speech enabled web page, which 
recognizes the two commands. At the same time, 
a remote connection to the UR5 robot’s HMI is main-
tained on the same screen next to a browser window 
in which the WSAPI listens for commands, as shown in 
Figure 5. The WSAPI is configured to match the two 

Figure 6. Speech-based robot control and programming for a Universal Robot using a meta-controller hosted on an edge device.
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commands and to display a large banner with the 
matched command for three seconds. To handle the 
speech commands, a condition monitor called 
‘monitorWaypoint’ in Figure 5 was created. When 
this pattern is recognized on the screen region of 
the HMI, the condition monitor calls the 
‘createWaypoint’ function, which emulates the user 
interactions that are necessary to create the waypoint 
in the UR5 program. At the end of this function, the 
meta-controller is instructed to keep the freedrive 
button pressed, until the user issues the ‘Okay’ com-
mand. During this time, the user can use both hands 
to move the robot to the desired position.

Note that in this case, the HMI automation engine 
concomitantly monitors two different GUIs (i.e. the 
browser window and the UR5 HMI). The meta- 
controller, which was implemented using SikuliX, 
uses 22 code lines to recognize the labels correspond-
ing to the voice commands in the browser window 
and to emulate the corresponding user interactions in 
the HMI. Additional voice commands can be imple-
mented in a similar way, e.g. for speeding up robot 
programming and enabling people with different 
forms of impairment to operate robots.

3.2. Integrating speech commands into 
block-based robot programming environments

Assembly is a web-based, block-oriented generic 
robot programing environment, which was conceived 
as a combination between Franka Emika Desk and 
Blockly. From Desk it adopts the idea of modeling 
robot programs as a sequence of configurable blocks 
or apps (which in Assembly are called actors) in a way 
that (1) reflects the sequential nature of robot actions 
and (2) does challenge novice users, who have little or 
no programming experience. From Blockly, it adopts 
the idea that a simplified programming environment 
should also enable users to write complex programs, 
which include conditionals and other control struc-
tures, which is currently not possible in Desk. 
Providing all the features of a textual programming 
language in a simplified way also amounts to what 
the developers of Blockly call an ‘exit strategy’ (Fraser  
2015) from the world of simplified programming to 
that of text-based programming.

Assembly uses the approach described in section 
3.1. to enable generic robot programming by gener-
ating code in third-party robot programming environ-
ments, like Polyscope, using so-called code 

Figure 7. Assembly tool with voice commands enabled.
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generators, which build on GUI automation tools like 
SikuliX. The approach to generating robot programs 
from Assembly is described in more detail in (Ionescu 
et al. 2020).

To enable voice commands in Assembly, the WSAPI 
was integrated into it and the range of supported com-
mands was extended compared to the Desk implemen-
tation. Figure 7 illustrates the Assembly environment, in 
which voice commands have been enabled. 
Programming in Assembly is straightforward: just like in 
Desk and Blockly, the user drags and drops actors from 
the ‘Actor and Task Library’ into the program workflow 
anywhere between the Start and Stop blocks. At the 
same time, the user can position the generic 6-DOF 
robot by dragging its end effector (a simulated suction 
gripper) or by adjusting the coordinates using the input 
fields from the top of the program workflow. To speed 
up the programming task, the user can enable voice 
commands, which frees the mouse and keyboard and 
allows the user to position the robot and focus on the 
next task. Table 2 explains the supported commands.

As opposed to Franka Emika Desk, Assembly also 
supports instantiating more complex program 
structures like loops and conditionals using voice 
commands. Assembly’s blackboard architecture 
allows the user to configure the actors using the 
Parameters and Variables panes. This architecture 
allows users and services to post all information 
that is relevant to the successful execution of the 
program (i.e. parameter and variables) onto 
a centralized so-called blackboard, which is imple-
mented as a JSON object. This contrasts Desk’s 

approach, in which each app maintains its own 
set of parameters. In Assembly, all available vari-
ables and parameters can be set using the so- 
called ‘set parameters’ and ‘set variables’ actors. 
Once set this way, all subsequent actors in the 
program workflow will use the snapshot of the 
values of the variables or parameters that were 
previously set using one of the set parameters/ 
variables actors. This allows reusing some of the 
parameters across multiple actors as well as setting 
the values of parameters and variables using voice 
commands. Concerning program control structures, 
Assembly uses a C-style rather than a Python-style 
model, which requires closing control structures 
using a terminator (i.e. an accolade in the case of 
C/C++ and other C-style languages). In Assembly, 
terminators are control structure specific and can 
be added using the ‘end <control structure>’; com-
mands (e.g. ‘end while’).

4. Evaluation of the approach

This section presents an evaluation of the WSAPI- 
based cobot programming by voice approach based 
on the three different implementations introduced in 
this paper. The ability to generalize the approach to 
various third-party robot programming tools also 
speaks for its validity. In this context, this section 
provides some concrete usage scenarios in which 
programming by voice can help to speed up pro-
gramming while improving concentration and redu-
cing physical strains.

Table 2. List of supported voice commands in Assembly.
Command Functionality

move to/waypoint Adds a “move to” actor to the workflow, which memorizes the current pose of the simulated robot. When running the program, 
the robot will move to the specified waypoint.

open/close Adds an “open”/“close” actor, which opens or closes the gripper, respectively.
set variables/set 

parameters
Adds a “set variables”/“set parameters” actor to the workflow, which captures the current values of the variables or parameters, 

respectively. These values will be used by all subsequent actors in the workflow until another set variables/set parameters 
changes them.

if/else if/end if Adds an “if”/“else if”/“endif” actor to the workflow. This enables users to program conditional execution.
repeat/end repeat Adds a “repeat”/“end repeat” actor to the workflow.
while/end while Adds a “while”/“end while” actor to the workflow.
break Adds a break actor that—when used inside of a repeat or while loop—breaks the respective loop.
robot Opens the robot pane, which shows the cartesian position and joint angles corresponding to the current pose and model of the 

simulated robot.
parameters Opens the “Parameters” pane, which allows users to set various actor and task parameters.
set <parameter name> 

<value>
Sets the value of the specified parameter.

variables Opens the “Variables” pane, which allows users to create and set the values of various parameters, which are used with control 
structures and other actors.

set <variable name> 
<value>

Sets the value of the specified parameter.

delete Removes the last actor in the sequence.
run program Executes the current program.
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4.1. Franka Emika desk

The evaluation of the programming by voice exten-
sion of the Franka Emika Desk tool was conducted on 
the basis of two application scenarios. In these sce-
narios it is assumed that shop floor employees (e.g. 
assembly workers and planners) engage in program-
ming the robot in the following situations: (1) Fast 
programming of pick and place operations for small 
lot sizes using a basic teach-in procedure. (2) Limited 
modifications brought to a robot program in the 
context of an advanced robotic automation applica-
tion, which already provides means for autonomous 
manipulation of work pieces and error recovery in 
case of collisions, whereby the envisioned error recov-
ery process partly requires human intervention. 

Whereas in the first scenario, the focus will be on 
the ease and speed of programming a cobot, 
the second scenario illustrates how already pro-
grammed and possibly certified applications can be 
modified during productive use by shop floor 
employees without interrupting production for 
a long time.

4.1.1. Scenario 1: faster cobot programming
Figure 8 shows the setup of the simple pick-and-place 
application. The evaluation was conducted with the 
help of four human participants, who did not know 
how to program the Panda robot before. The partici-
pants were first introduced in how to use Panda’s 
native HPI and then asked to manually program the 
pick-and-place task depicted in Figure 9 using the 
robot’s HPI, which was running on a laptop. The par-
ticipants used a mouse and the laptop’s keyboard to 
program the task, which consisted in picking and 
placing four screws. Then, the same participants 
were introduced to the programming by voice exten-
sion to the robot’s HPI and asked to program the 
same task without using the mouse and keyboard. 
Video 2 linked from this webpage (https://blockly- 
desk.comemak.at/demos/code/speech.html) demon-
strates how this task is performed using voice pro-
gramming. Figure 10 shows a breakdown of the 
operation durations with respect to the three groups 
of supported voice commands and their mouse and 
keyboard equivalents. In addition, the time spent 
manipulating the robot and waiting for the robot’s 
HPI to react were also considered in the evaluation. 
These results show that, for the tested scenario, pro-
gramming by voice combined with the haptic manip-
ulation of the robot was around 46% faster than using 
the robot’s native HPI, whereby most of the time was 
saved by not having to manually set app parameters 
and to click through the app configuration wizards.

This scenario arguably demonstrates the benefits 
of using programming by voice instead of manual 
wizard-based configuration of apps for teaching pick 
and place tasks. The main benefits are in terms of time 
savings, safety, and ergonomics.

4.1.2. Scenario 2: error recovery through human 
intervention
The second application scenario consists of a chess- 
playing program, which is able to recover from an 
error by requesting human intervention. If the robot 

Figure 8. Setup of the pick-and-place application used in the 
evaluation in the TU Wien Industrie 4.0 pilot factory in Vienna, 
Austria.

Figure 9. Setup of the pick-and-place application used in the 
evaluation in the TU Wien Industrie 4.0 pilot factory in Vienna, 
Austria.
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fails to grasp a piece due to a collision, the program 
stops and waits for human intervention. In prepara-
tion of this intervention, the program automatically 
creates a new task, which opens the gripper wider in 
order for the robot to grasp the piece correctly. The 
human is only required to set the width of the gripper 
so that it will be able to grasp the piece without 
disturbing any other pieces on the board. Video 2 
linked from this webpage (https://blockly-desk.come 
mak.at/demos/code/speech.html) demonstrates this 
scenario. To accomplish this task, the user first 

switches the mode from operational to teach-in by 
pulling out the safety stop button. Then the user 
repositions the gripper fingers and issues the ‘Okay’ 
command, which autocompletes the remaining 
wizard steps and resumes the program. Hence, the 
only interactions between the human and the robot 
are voice-based and haptic. This enables a safety- 
certified application to allow minor program changes, 
which do not affect the results of the risk analysis of 
the application. This scenario arguably demonstrates 
the benefits of allowing shop floor employees to 

Figure 10. Breakdown of operation durations in scenario 1.

Figure 11. Experimental setup: A UR5 robot, its teach pendant and a laptop connected through Ethernet to the robot’s control 
computer.
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change existing robot programs so as to improve 
their reliability, which is one of the most important 
production system qualities.

4.2. UR polyscope

The validation of robot pose teach-in by voice was 
conducted in the Aspern Industry 4.0 Pilot Factory in 
Vienna using a UR5 CB series robot. The voice com-
mands ‘waypoint’ and ‘okay’ were used to trigger the 
creation of waypoints in Polyscope (UR’s proprietary 
programming environment installed on the robot’s 
teach pendant). The robot’s HMI was replicated on 
a computer running the voice recognition in the back-
ground using a tool called VNC Viewer. On the robot’s 
control computer, a VNC server was installed. 
Figure 11 illustrates the experimental setup.

The replicated HMI is displayed on a laptop, which 
is connected to the robot’s control computer through 
Ethernet. The VNC software instantly replicates the 
display (from the physical to virtual teach pendant) 
and the emulated user actions (from the virtual to the 
physical teach pendant). This allows the GUI automa-
tion script, which is running in the background, to 
click through the menus of Polyscope so as to create 
a new waypoint and to keep the ‘freedrive’ button 
pressed. When the manual positioning of the robot is 
complete, the user issues to command ‘okay’ to safe 
the waypoint. Video number eight on the demo web-
site (https://blockly-desk.comemak.at/demos/code/ 
speech.html) demonstrates this procedure.

The experiment shows that the voice commands 
allow the user to position the robot with one or both 

hands since there is no need to perform any manual 
actions in the robot’s HMI – neither on the physical 
nor on the virtual teach pendant. In the experiment, 
the user is able to capture the scene using a smart 
phone while teaching robot poses without having to 
switch from one device to another.

4.3. Assembly

The evaluation of the programming by voice feature 
that was added to Assembly was performed by mea-
suring the time it takes to create a simple pick-and- 
place task in two variants. The task consisted in pick-
ing and placing a cube from one place to another and 
then back. As shown in Figure 12, in the first variant, 
the task was implemented using a high number of 
‘move to’ actors, which corresponds to a naïve imple-
mentation. In addition, a repeat actor was used to 
repeat the task for five times. In the second variant, 
an if-else clause was used to control program execu-
tion, depending on the blue cube’s position. The 
experiment was performed by an experienced user 
of the tool. The tasks are depicted in videos 3–6 linked 
from the demo web page (https://blockly-desk.come 
mak.at/demos/code/speech.html).

The measurements show that programming the 
first task variant by voice is almost twice as fast as 
programming it using the mouse alone. By contrast, 
programming the second task variant using voice 
commands is only 16% faster than programming it 
using the mouse alone. This contrast is likely due to 
the varying complexity of the implementations, with 
the second variant requiring seven different actors as 

Figure 12. Assemblytest programs and statistics.
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opposed to only five for the first one. In addition, 
the second variant uses more complex logic, which 
requires longer reflection times. Another difference 
between the speech/no speech implementations is 
that in the former case, the user has to specifically 
add the ‘end repeat’/‘end if’ actors, whereas in the 
latter case, these actors are added automatically 
when adding the ‘repeat’/‘if’ actors by dragging 
them from the library and dropping them into the 
task workflow. One limitation of the current imple-
mentation of the speech-based approach is that it 
only allows adding actors at the end of the current 
sequence. If the user makes a mistake, the ‘delete’ 
command can be used to remove the last actor in 
the sequence. Another limitation is that setting para-
meter and variable values using the ‘set <parameter/ 
variable name> <value>’; command cannot reliably 
recognize abbreviated parameter/variable names 
and complex values, such as strings or expressions. 
This means that in order to use all features of the 
Assembly tool, the use of a mouse and keyboard 
cannot be entirely replaced by voice commands. The 
recent literature on speech-based computer program-
ming (Nowogrodzki 2018), however, provides syntac-
tic solutions for creating variables and setting there 
values through voice commands. The complexity of 
the required commands, however, does not justify an 
implementation for simplified robot programming 
tools, such as Assembly, which specifically target 
novice programmers. Overall, the evaluation results 
suggest that programming in Assembly by voice sig-
nificantly increases productivity and improves user 
experience, since the dragging and dropping of 
actors can eventually induce physical strains and 
become annoying. The Assembly tool, including the 
speech-based programming features, can be used 
online at: https://assembly.comemak.at.

5. Conclusion

This paper introduced a new method and tool for 
programming cobots by voice. This provides an addi-
tional mode of programming cobots, which currently 
offer multi-modal programming environments based 
on haptic, mouse, and keyboard interactions. The 
main benefit of this approach is an increase in the 
productivity of cobot programmers in scenarios that 
require a high number of teach-in operations. In addi-
tion, a scenario in which shop floor employees can 

perform small modifications to existing programs 
without requiring re-certification is explored. 
Another benefit of the approach is the possibility of 
communicating cobot programs by demonstration 
through videos – a feature that may prove useful in 
training and education contexts.

The first two meta-programming approaches pre-
sented in this paper use the same basic principle, 
namely that of emulating use interaction in the ven-
dor-provided HPI/HMI. This enables the extensions of 
the respective HMIs by features that the vendor has 
not foreseen. Moreover, these extensions can go 
beyond that which is technically feasible by following 
the plugin approach. While the bookmarklet 
approach can be applied to extend the interaction 
modalities of any robot or cobot that provides a web- 
based HMI, the meta-controller approach can be used 
with any robot that allows a remote connection to its 
HMI. The meta-programming approach thus provides 
an additional means for integrating heterogeneous 
robotic systems and extending their interaction mod-
alities, which is simpler than the middleware 
approach or integration via the OPC UA and other 
protocols. The unique capability of GUI automation 
applied to robotics consists in allowing extensions of 
robot HMIs that go beyond what the vendor has 
imagined and without losing any of the useful fea-
tures of the vendor-provided HMI. The meta- 
controller approach eliminates the limitations of the 
bookmarklet approach, which is only applicable to 
web-based robot HMIs.

The third approach, which was implemented as an 
extension to the Assembly tool, uses the native cap-
abilities of the browser’s document object model 
(DOM) as well as the jQuery library to endow the 
tool with speech-based programming capabilities. 
This approach can be easily adopted by existing com-
mercial web-based robot programming tools, such as 
Drag & Bot and Blockly-based tools. This paper 
showed that programming by voice speeds up the 
programming task considerably, while reducing phy-
sical strains and improving the programmer’s ability 
to focus on the task. As opposed to the other two 
approaches introduced in this paper as well as other 
approaches from the literature, in Assembly, voice 
commands were successfully used to also instantiate 
program blocks that go beyond mere robot motions 
and configurations (e.g. loops and conditions). This 
aligns the current approach with state-of-the-art 
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speech-based computer programming approaches, 
such as (Nowogrodzki 2018).

The common aspects between the three 
approaches include the facts that speech-based pro-
gramming can be implemented on top of existing 
tools in a non-intrusive way by automating the user 
interactions that are necessary to achieve a certain 
programming goal. In some cases, programming by 
voice indeed provides a third hand, notably when 
teaching robot motions either on the screen or 
through physical manipulation. The results of the 
evaluation suggest that voice commands are espe-
cially useful for replacing repetitive drag and drop 
tasks, for short-circuiting complex manual operations 
in various robot programming tools, and for speeding 
up teach-in tasks. In addition, the user experience is 
improved by reducing physical strains and annoyance 
when performing repetitive tasks.

When using the meta-programming approach (be 
it using a bookmarklet or a meta-controller), some 
precautions need to be taken, notably concerning 
safety. The extensions to the original HMI need to be 
clearly understood by users before interacting with 
the robot, otherwise they might come as a surprise. 
From a technical point of view, meta-controller must 
ensure that interactions with the HMI are mutually 
exclusive in order to prevent unexpected robot beha-
viors. Whereas in the case of bookmarklets, it is pos-
sible to display warnings and additional information 
in the original HMI, in the case of meta-controller, 
such information should be displayed using pop-up 
messages in the robot’s HMI or on a separate screen 
that is connected to the meta-controller device.

As part of our future work, the programming by 
voice framework will be evaluated using 
a crowdsourced user study with 30–40 participants 
following the methodology introduced by Daria et al.,  
2021202. In addition, the speech-based programming 
capabilities in Assembly will be further extended to 
cover all features of the tool. An industrial evaluation 
in an Austrian engine factory is also planned.
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