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—— Abstract

Tree-child networks are one of the most prominent network classes for modeling evolutionary processes
which contain reticulation events. Several recent studies have addressed counting questions for
bicombining tree-child networks which are tree-child networks with every reticulation node having
exactly two parents. In this paper, we extend these studies to d-combining tree-child networks where
every reticulation node has now d > 2 parents. Moreover, we also give results and conjectures on the
distributional behavior of the number of reticulation nodes of a network which is drawn uniformly
at random from the set of all tree-child networks with the same number of leaves.
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1 Introduction and Results

The evolutionary process of, e.g., chromosomes, species, and populations is not always
tree-like due to the occurrence of reticulation events caused by meiotic recombination on
the chromosome level, specification and horizontal gene transfer on the species level, and
sexual recombination on the population level. Because of this, phylogenetic networks have
been introduced as appropriate models for reticulate evolution. Studying the properties of
these networks is at the moment one of the most active areas of research in phylogenetics;
see [10,13].

While algorithmic and combinatorial aspects of phylogenetic networks have been invest-
igated now for a few decades, enumerating and counting phylogenetic networks as well as
understanding their “typical shape” are relatively recent areas of research; see [13, page 253]
where such questions are only discussed in one short paragraph. However, the last couple of
years have seen a lot of progress on these questions, in particular for the class of tree-child
networks, which is one of the most prominent subclasses amongst the many subclasses of
phylogenetic networks; see [1,5-9,11,12].
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Figure 1 (a) A 3-combining phylogenetic network which is not a tree-child network (because
both children of the tree node x are reticulation nodes and the only child of the reticulation node y
is also a reticulation node); (b) a 3-combining tree-child network; (c) a 3-combining one-component
tree-child network.

Most of the studies on tree-child networks have focused on bicombining tree-child networks
which are tree-child networks where every reticulation event involves exactly two individuals.
The purpose of this extended abstract is to discuss extensions of previous results to multicom-
bining tree-child networks. More precisely, we will focus on d-combining tree-child networks
which are tree-child networks whose reticulation events involve exactly d > 2 individuals. We
will highlight similarities and differences between the two cases d = 2 and d > 2.

Before explaining our results, we will first give precise definitions and fix some notation.
We start with the definition of phylogenetic networks.

» Definition 1 (Phylogenetic network). A (rooted) phylogenetic network with n leaves is a
rooted, simple, directed acyclic graph (DAG) with no nodes of in- and outdegree 1 and exactly
n nodes of indegree 1 and outdegree 0 (i.e., leaves) which are bijectively labeled with labels
from the set {1,...,n}.

In this work, we will only consider phylogenetic networks whose nodes all have either
indegree 1 or outdegree 1 and whose internal nodes (i.e., nodes that are neither leaves nor the
root) with indegree 1 all have outdegree 2 (bifurcating case); the latter nodes will be called
tree nodes. Finally, we will assume that all internal nodes with outdegree 1 have indegree
d > 2 and these nodes will be called reticulation nodes; see Figure 1 for examples with d = 3.
Note that d = 2 is the above mentioned bicombining case.

We next recall the definition of tree-child networks.

» Definition 2 (Tree-child network). A phylogenetic network is called a tree-child network if
every non-leaf node has at least one child which is not a reticulation node.

In other words, a phylogenetic network is a tree-child network if (a) the root is not
followed by a reticulation node; (b) a reticulation node is not followed by another reticulation
node; and (c) a tree node has at least one child which is not a reticulation node; see Figure 1,
(b) for an example. A simple and important subclass of tree-child networks is the class of
one-component tree-child networks; see the definition below and Figure 1, (¢) for an example.

» Definition 3 (One-component tree-child network). A tree-child network is called a one-
component tree-child network if every reticulation node is directly followed by a leaf.
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One-component networks are more “tree-like” than general tree-child networks. Moreover,
they constitute an important building block in the construction of general tree-child networks;
see [1] for the bicombining case.

In the following, we denote by OTCS?C and TC%€ the number of one-component and

general d-combining tree-child networks with n leaves and k reticulation nodes, respectively.

Note that the tree-child property implies that & < n — 1. Thus, the total numbers of
one-component and general d-combining tree-child networks, denoted by OT C;d) and TC;‘”7
satisfy

n—1 n—1
orct” =Y orcY)  and  TCY =3 TCY).
k=0 k=0

Now, we are ready to present our results.
First, for one-component tree-child networks, we have the following formula which extends
the one for d = 2 from Theorem 13 in [1].

» Theorem 4. The numbers of one-component d-combining tree-child networks with n leaves
and k reticulation nodes for 0 < k <n —1 are given by

@ (n\ (20t (d—2)k—2)
OTC = (k;) (@) 2 T (n—k— 1)

and equal to 0 otherwise.

Using this formula, we obtain the following limit law result, where (here and throughout
the work) we use — to denote weak convergence.

» Corollary 5. Let Rﬁ{” be the number of reticulation nodes of a one-component d-combining
tree-child network picked uniformly at random from the set of all one-component d-combining
tree-child networks with n leaves. Then, we have the following limit behavior of R%d).

(i) For d =2 (bicombining case), we have

Rg)—nJr\/ﬁ&)N(

0,1).
vn/4

(ii) For d =3, we have
n—1-R® % Bessel(1,2),

where Bessel(v,a) denotes the Bessel distribution, i.e.,

1

P(Bessel(1,2) = k) = L@+ D

(k > 0).

Here, I,(a) = (%)U oo m% is the modified Bessel function of the first kind.

iii ord > the limit law of n — 1 — R,,” is degenerate, 1i.e.
(iii) For d > 4, the limit law of n — 1 — R\ is deg e,
n—1-R® 0.

» Remark 6. If ¢t denotes the number of tree nodes and N the total number of nodes, then
by the handshaking lemma, we have

t=n+(d-1k—-1 and N =2n+dk. (1)

Therefore, we have similar limit distribution results for these numbers as well.
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Note that the above result for d = 2 is already contained in the proof of Theorem 3 in [9]
where even a local limit theorem was proved; see also [8]. Using the above corollary, we now
obtain the first order asymptotics of the total number of one-component tree-child networks.

» Corollary 7.

(i) For d =2 (bicombining case), we have

1
OTCY) ~ ——=(nl)?2"e2Vrn /4,
" 47y/e

(ii) For d = 3, we have

OTCY ~ 1(2)- OTCY),_, ~ VS ()3 (9> "

n

where I,(«) is as in Corollary 5, (ii).
(iii) For d > 4, we have

d n
(d) (d) d! afd 3(1—d)/2
OTCn ~ Orer,nyni1 ~ dd—l/Q(Qﬂ-)(d—l)/Q (n') (d' n ( )/ .

Again, the result for the case d = 2 is already contained in [9]; this is also the only case
of the three above in which we find a stretched exponential in the asymptotics (see [3]).

We next turn to general tree-child networks. Here, in contrast to one-component tree-child
networks, we only understand the behavior of TC%c for fixed k and for k =n — 1 (i.e., for
maximally reticulated networks).

First, for fixed k, the first order asymptotics in the bicombining case (d = 2) was derived
in [5,6] and with a different method in [7]; see also [12] where the result was re-derived with
yet another method which is however based on a (yet) unproven conjecture. The approach
from [7] can also be used in the d-combining case leading to the following result.

» Theorem 8. For the number of d-combining tree-child networks with n leaves and k
reticulation nodes, we have for fixed k, as n — oo,

2(4—d)k—1
Ak

» Remark 9. Our approach can also be used to compute tables of TC%L for small values

TijL ~ nl2np(A-dk=3/2

of n, k, and d; see the Appendix. Moreover, the approach is also capable of giving exact
formulas for TCEﬁL and small values of k; see [1,6] for such formulas in the bicombining case.

Note that the asymptotic order in the above theorem is much smaller than the one
obtained for one-component tree-child networks. Thus, the majority of tree-child networks
do not have a bounded number of reticulation nodes. In fact, the number of reticulation
nodes of a “typical” tree-child network is close to the maximum n — 1. More precisely, the
following result holds.

» Theorem 10. For the number of d-combining tree-child networks with n leaves, we have

TC) = 0 (TCY),_,) = 0 (0 5(d)" ¥ #m pe@))

n—1

where a1 = —2.33810741. .. is the largest root of the Airy function of the first kind and

_d(3d—1) C(d—1\*? ~ (d+ 1)t
05 0= () 0-G
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For the bicombining case, this result was proved in [9] by encoding tree-child networks
with n leaves and n — 1 reticulation nodes by certain words and (asymptotically) counting
these words with the method from [3]. In the more general d-combining case, we will use
a similar strategy, however, details will be more demanding due to the dependence on the
parameter d.

As for the stochastic behavior of the number of reticulation nodes for general tree-child

networks, we have a conjecture for the limit laws which we are going to present in Section 4.

Note that even for d = 2, no limit law for any shape parameter of random tree-child networks
has been established yet.
Our conjecture will clarify the behavior of TC%f for k close to n. Thus, the behavior

of TC%C for small and large k is clear. For the remaining range, there is an interesting
recent conjecture for the bicombining case in [12], which has been proved for the special case
of one-component tree-child networks in [8]. Whether this conjecture can be extended to
d-combining tree-child networks is not clear yet; see the comments in Section 4.

We conclude the introduction with an outline of this extended abstract. In the next
section, we will consider one-component networks and prove Theorem 4 and Corollaries 5
and 7. In Section 3, we will discuss our results for general networks. Finally, Section 4 will
contain the above mentioned conjecture for the limit laws of the number of reticulation nodes
of a random d-combining tree-child network and some concluding remarks.

2  One-Component Networks

In this section, we will prove our results for one-component tree-child networks. We start
with Theorem 4.

Proof of Theorem 4. Suppose N is a one-component d-combining tree-child network with
n — 1 leaves and k — 1 reticulation nodes.

Then, we can construct one-component d-combining tree-child networks with n leaves
and k reticulation nodes from N by the following three steps: (i) put d new nodes into the
candidate edges where we call an edge of N a candidate edge if it is not incident to any
reticulation node; (ii) create a new reticulation node which is adjacent to the d new nodes;
and (iii) add a new leaf as a child of this reticulation node; moreover, label it with a label
from {1,...,n} and increase all (old) labels in N which are at least as large as the new label
by +1 (if there are any).

Now, note that in step (i), we have

n-1+d-1Dk-1) -1+ n-1 — (k—1) =2n+(d-2)(k-1)—3
—— . ,
# edges leading to # edges leading 4 edges below
a tree node; see (1) to a leaf ret. nodes

candidate edges and thus there are

<2n+ (d;2)k—2)

choices of the d nodes. Moreover, in step (iii), there are n choices of the label. Finally, note
that the above construction gives each network exactly k times.
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Overall, the above arguments give

OTC(d) n<2n+(d2)k2

d)
n,k = k d >OTC£L—17]€—1’

and by iteration,

n\ (20 + (d — 2)k — 2)
k;> d'*(2n — k — 2)!

!
orc?) = < -0TC?, .
The result follows now by the fact that

@ oy ey (20— 2k —2)!
OTCY?, o = (2(n — k) - 3)! e eyl

since OTCEld_)k o s the number of phylogenetic trees with n—Fk leaves; see, e.g., [13, Section 2.1].
<

Now, we can prove the two corollaries from above.

Proof of Corollaries 5 and 7. Since the results for d = 2 are already contained in [9] (see
also [8]), we can focus on the cases d > 3.
We start with the case d = 3. Note that

n 2n+k—2)!
k) 3k 1(n—k — 1)’

omﬂ:( O0<k<n-—1)
and this sequence is increasing in k. (This is in contrast to d = 2 where this sequence has
a maximum at k = n —+/n+ 1; see [9].) By replacing k by n — 1 — k and using Stirling’s
formula, we obtain that

3) _ 1 . n(3n — 3)! 1+ k2
OTC"’n_l_k N Elk + 1)! 6n—1 1+0 n 2)

uniformly for k with k& = o(y/n). Thus, by a standard application of the Laplace method:

. 1 n(3n — 3)! n(3n — 3)!
(3) _ _ L nldn = 9)
OTCx ; kl(k +1)! e
>0

which is the first claim from Corollary 7, (ii); the second follows from this by another
application of Stirling’s formula. Moreover, since

orc®
(3) _ o n,n—1—k
P(R® =n—1—k) = o

the result from Corollary 5, (ii) follows from the above two expansions too.
Next, we consider the case d > 4. The details of the proof are the same as above, with
the main difference that the expansion (2) now becomes

2 1 k _ | 2
(d) d?d! 1 3-ayr n(dn —d)! 1+k
oT - . . ]
Crn-1-t ( 244 ) Kk + 1) " din1 o\

uniformly for k& with & = o(y/n). This expansion, for d > 4, contains the (non-trivial decreas-

ing) factor n®®~9* which is responsible for OTCSld) being now asymptotically dominated by
orc? (proving Corollary 7, (iii)) and the limiting distribution of n — 1 — R being

n,n—1

degenerate (proving Corollary 5, (iii)). <
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3 General Networks

In this section, we will discuss the asymptotic enumeration of general d-combining tree-child

networks with a fixed (Theorem 8) and a maximal number of reticulation nodes (Theorem 10).

Note that the latter dominates asymptotically all networks of a given size.

We start with Theorem 8 on d-combining networks with a fixed number of reticulation
nodes. It can be proved by generalizing the approach from [7], which was based on the
classification of tree-child networks via component graphs from [1]. Component graphs can
also be defined for d-combining tree-child networks and then be used to prove Theorem 8;
details will be given in the journal version of this work. Moreover, component graphs can
also be used as in [1] to (a) compute TCE{?C for small values of n, k, and d (see the Appendix);
and (b) give explicit formulas for small values of k.

The remainder of this section is devoted to the proof of Theorem 10, which extends
the approaches from [3,9]. We start with some lemmas which are generalizations of the
corresponding results from [9] (and are proved with similar arguments).

The first lemma shows that the asymptotic growth of TC;d) is, up to a constant, determined
by the asymptotics of TC@

n,n—1"

» Lemma 11. For n — oo, we have

TCW = 0 (Tcﬁjf;_l) .

Proof. Let N be a d-combining tree-child network with n leaves and k reticulation nodes.

A free tree node is a tree node whose children are both not reticulation nodes; the edges to
these children are called free edges. Using a simple counting argument, it is easy to see that
N has 2(n — k — 1) free edges; see [9, Lemma 1] for the case d = 2.

Next, we can construct d-combining tree-child networks with n leaves and k+1 reticulation
nodes by (i) inserting d tree nodes into the root edge of N and a reticulation node into a
free edge and (ii) connecting the d new tree nodes to the new reticulation node. Note that
each network built in this way is different. Thus,

2(n — k—1)TCY) <TCY), .

Iterating this construction yields

1

(d) (d)
TCn,k S 2n_k_1(n _k— 1)!Tcn,n—1 (3)
and thus,

d d 1 d d
Tel) <o < (5 ) Tel = ve e,
j=0 '

which proves the claim. |

Next, we define a generalization of the class of words from [9] which is used to encode
d-combining tree-child networks with a maximal number of reticulation nodes.

» Definition 12. Let C\" denote the class of words built from n letters {w1,...,ws} in which
each letter occurs exactly d + 1 times such that in every prefix the letter w; has either not yet
occurred more than d — 2 times, or, if it has, then the number of occurrences of w; is at least
as large as the number of occurrences of w; for all j > i.

5:7
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In [9], a bijection between bicombining tree-child networks with n leaves and k reticulationd
nodes whose labels are removed and Cr(i)l was proved. In fact, this bijection can be extended
to d-combining networks. Then, because the networks are all different when labeling the
(now empty) leaves by a random permutation, we obtain the following lemma.

> Lemma 13. Let ¢\ be the cardinality of Y. Then

TCYD = p1e@

nn—1 " n—1-

Now the recursive nature of this encoding allows us to derive the following counting
result.

» Lemma 14. We have

e = b, (4)

m>1
d .
where bﬁﬁn satisfies the recurrence

d -2 d -2
py — _entm=—2 @ < ntm )b(d) (n>2,0<m<n) (5)

T it m—d— 1 mmel d—1 n-lm
with b(l(? =1 and bﬁffin =0 for (i))n>2andm=—1; (ii)n=1 and m = 0; and (i) n < m.

Proof. First, note that any word in C,(,d) has a suffix wy,WmWmt1 - Wp—1w, With 1 <m < n.
Denote by bef?n the number of these words. Removing the d occurrences of w,, from these words
gives a word of Cfl(ijl with suffix wpwmy1 - -wn—1, i.e., it has a suflix w,_1wWjwj41 ... wWp—1

for j =1,...,m. Reversing this procedure gives
dn+m — 2\ —
(d) _— (d)
bn,m - ( d—1 ) an—l,ﬁ (6)
j=1

where the binomial coefficient counts the number of ways of adding back the d — 1 occurrences
of w,, after two w,,’s have been added, one before the last w,, and one at the end of the word.
By Definition 12 these first d — 1 occurrences of w,, may be anywhere. Differencing yields

d d
bgl;n bi,in_l _ @
dn+m—2\  (dn+tm—-3\  ‘n—1lm:"
(") ()
This gives the claimed recurrence and the initial conditions are easily checked. |

The advantage of the recurrence for bﬁf?n is that we are actually only interested in the

asymptotics of bgfle as by (4) and (6) we have

b — <(d +1)n— 2) @)

n,n d—1 n—1-

Now we are ready to use the method from [3]. Due to the similarities, we will only
discuss the main differences. We start with the following transformation of (by, m)o<m<n t0

(egf?) 0<i<j , which changes the indices and captures the exponential and superexponential
1—j even

terms coming from the binomial coefficient in (5).
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» Lemma 15. We have

d _ (o pyd—1(d) - _ (d+1)*!
bgz,Zn = )\(d) (n') 1€n+m,n7m ’U}Zth )\(d) = W,
where eﬁ{on satisfies the following recurrence
egffm = /Lﬁglnegld—)l,m+1 + V”(llyjznestd—)l,m—l (7)
with
d .
2(d-1) 2(m +1)
d -1+ d v\ = (1 S -
Fin,m d+Dn+(d—Dm—2d+1) % Ynm 1;[2 d+ D)(n+m)

forn >3 and m > 0, where egj)_l = eg”f,{ =0 except for eg,i()) =1/\(d).

bietn

Note that we are interested in eé‘fl)’o = Y@ T because by the previous lemmas we
have

TCW =0 (Tc;%;_l) e (n!cﬁf_)l) -0 (m nl—dbgff;) e ((n!)dA(d)"nl—degﬁo). 8)

Moreover, observe that for the Theta-result the initial value of 6(2?% is irrelevant, as it creates

only a constant factor. So we may set it to eg?) = 1, or any convenient constant. Note

that this recurrence is very similar to that of relaxed trees [3, Equation (2)], yet with more

complicated factors. Observe also that this is exactly recurrence [9, Equation (10)] for d = 2.

Motivated by experiments for large n, we use the following ansatz
@ m+1
en,m ~ h(n)f < n1/3 )

where h and f are some “regular” functions. Next, we substitute s(n) = h(n)/h(n — 1) and
m = kn'/3 — 1 into (7). Then, for n — oo we get the expansion

2(d — 1)

Fe)stm) = 2509+ ( 170) — 20

ﬁf(n)) n23 40 (nt).

Hence, we may assume that s(n) = 2+ c¢;n=2/3 4 con~! 4 ... and this implies that f(x)
satisfies the differential equation

709 = (er+ 202 1)

that is solved by the Airy function Ai of the first kind. Additionally, the boundary conditions
allow to compute ¢; and we get that
2(d—-1
f(k) = CAi (al + Bl/3/$) where B := %,

a1 =~ 2.338 is the largest root of the Airy function Ai, and C is an arbitrary constant. From

this we get that ¢; = a1 B'/3. These heuristic arguments guide us to the following results.

The proofs are analogous to [3,4,9]; for the details we refer to the accompanying Maple
worksheet [2].

5:9
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» Proposition 16. For all n,m >0 let

. _ 2 2 _ 1/3
f <1_ 2d—1 m*  3d° +12 11m>Ai<a1+B (m+1)> and
n

3(d+1) n 6(d+1) nt/3
s ol a B3 3d®-5d+4 1
Sn = n2/3 3(d+1)n n7/6’

Then, for any € > 0, there exists an ng such that

Xn mSn < /,[,( ) Xn 1, +1+V(d) Xn—l,m—l

n,m

for all n > ng and for all0 < m < n2/3’5, where usl 271 and V,(L 7)71 are as in Lemma 15.

» Proposition 17. Choose 1 > 1(8(d+1 s fized and for all n,m >0 let
5 2d—1 m*> 3d®+12-11m BY3(m +1)
Xom:=[1- A _— d
7 ( 3d+1) n 6d+1) n " 2) 1(“1+ ni/3 ) an
B2/3 2 4 1
§n —924 aq _ 3d 5d+ + -
n2/3 3(d+1)n n?/6

Then, for any € > 0, there exists a constant fig such that

Xn,mgn = M( ) Xn—l,m+1+l/(d) Xn—l,m—l

n,m n,m
for alln > g and all 0 < m < n'¢.

Proof of Theorem 10. Let us start with the lower bound. We first define a sequence
Xnm = max{Xn m, 0} which satisfies the inequality of PrOpOblthH 16 for all m < n. Then,
we define an explicit sequence A, := §,h,_1 for n > 0 and hg = 5o. From this, we show by
induction that e;‘ﬁn > C’oiNann,m for some constant Cy > 0 and alln > g and all 0 < m < n.
Hence,

egg,o > CohanXan,o

2n 2/3 2 1/3
a1 B 3d° —b5d+4 1 . B
= Coil;[l (2 TTERT T T30 ﬂ/ﬁ) Al (al * n1/3)

_ - 2/3,1/3 d?td—2
> Cy(n!)d7gneda By Sty

Finally, combining this with (8) we get the lower bound.

The upper bound is similar, yet more technical. The starting point is Proposition 17 and
a function X, ,, that is valid for all 0 < m < n. For this purpose we define a sequence égff,)n
such that é;dzn = esldzn for 0 <m < n'"¢and é%dzn := 0 otherwise; compare with [3,4]. Then,
using tools from lattice path theory and computer algebra, we show that egflo = O(égi),o)

and that

2
R d A _ 2/3.1/3 d°4+d—2
eén < Cy(nh)d-tgneda By Sty

For more details, see the journal version of this work. <
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4 Conjectures and Remarks

The main purpose of this paper was to extend recent results on bicombining tree-child
networks to d-combining tree-child networks. We did this for both one-component tree-
child networks as well as general tree-child networks. For one-component d-combining
tree-child networks, we proved an exact counting formula for their number with n leaves
and k reticulation nodes. As a consequence of this formula, we obtained limit laws for the
number of reticulation nodes of a random network and (asymptotic) counting results for their
total number. For general d-combining tree-child networks, our knowledge of their counts is
less complete. We derived (asymptotic) results for a fixed number of reticulation nodes and
the maximal number of reticulation nodes. The latter implied also an (asymptotic) counting
result for their total number.

How about limit laws for the number of reticulation nodes of general d-combining tree-
child networks? We think that the upper bound (3) is sharp for d = 2 and far away from
being sharp for d > 3. More precisely, we believe that the following conjecture holds.

» Conjecture 18. Let T,(Ld) be the number of reticulation nodes of a d-combining tree-child
network picked uniformly at random from the set of all d-combining tree-child networks with
n leaves. Then, we have the following limit behavior of Ty(Ld).

(i) For d =2 (bicombining case), we have the weak convergence result:
n—1-T% 5 Poisson(1/2),

where Poisson(«) denotes the Poisson distribution.
(ii) For d > 3, the limit distribution of n — 1 — T\ 4s degenerate.

Moreover, the proof of this conjecture should also give the following result.

» Corollary 19.
(i) For d =2 (bicombining case), we have TC? ~ (/e - TCgl_l.
(i) For d >3, we have TCY ~ TC?

n,n—1-

» Remark 20. Note that even with the above result, it is still not possible to give the first-order
asymptotics of TC,(ld) since the approach of [3] is only capable of giving a Theta-result.

In fact, we recently found a method which should allow us to prove these results; details
are currently checked. The proofs (if correct) will be presented in the journal version of this
paper.

The above limit distribution result would clarify the behavior of the number of general
d-combining tree-child networks for a large number, i.e., a number close to n, of reticulation
nodes. So, how about the remaining range? (Recall that the number of networks for a small
number of reticulation nodes is covered by Theorem 8.)

In this regard, there is a recent interesting conjecture for the bicombining case; see [12].

To give details, denote by ij,)c a class of words which is similar defined as in Definition 12
but with the difference that only k letters appear 3 times while the remaining n — k letters
appear 2 times. Let ch be their number. Then, it was conjectured in [12], together with
some striking consequences, that

(2 _
TCn,k - (n _ k)!cn,k:'
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Can this be extended to d-combining networks? (The obvious generalization by replacing 2
by d does not work.) We do not know the answer to this question yet. However, we have
recently managed to define a modification of Cf:_i,)c which can be used to encode d-combining
tree-child networks. This encoding seems to be useful for the proof of Conjecture 18 and
might also shed further light on [12]. Details will be again discussed in the journal version.

Finally, how about extension of our results to multicombining tree-child networks, i.e.,
tree-child networks where different reticulation nodes may have different number of parents?
We think that many of the results of this extended abstract can be generalized to this case,
however, notation becomes more cumbersome. We might also include a discussion on this in
the journal version of the current paper.
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A Appendix

Table 1 TCS,L for 2<mn <8and 0 <k < n; see also [1].

n\k 0 2 3 4 5 [§ 7

2 1 2

3 3 21 42

4 15 228 1272 2544

5 105 2805 30300 154500 309000

6 945 39330 696600 6494400 31534200 63068400

7 10395 623385 16418430 241204950 2068516800 9737380800 19474761600

8 135135 11055240 405755280 8609378400 113376463200 920900131200 4242782275200 8485564550400

Table 2 TC”) for 2<n <7and 0<k < n.

n\k | 0 1 2 3 4 5 6

2 1 2

3 3 33 150

4 15 492 7908 55320

5 | 105 7725 291420 6179940 57939000

6 | 945 132030 9603270 430105320 11292075000 132120450000

7 | 10395 2471805 307525050 24586633890 1284266876760 40079165452200  560319972030000

Table3TC$iLfor2§n§6and0§k<n.

n\k | 0 1 2 3 4 5
2 2
3 | 3 48 546
4 | 15 942 45132 1243704
5 | 105 18375 2394360 227116260 11351644920
6 | 945 375705 107314200 23919407460 3724353682560 291451508298720

Table 4 TC?) for 2<n <5and 0 <k < n.

n\k | 0 1 2 3 4
2 2
3 3 66 2016
4 | 15 1650 242496 28710864
5 | 105 39135 17566470 7876446840 2307919133520

Table 5 TC®) for 2 <n <5and 0 <k < n.

n\k | 0 1 2 3 4
2 2
3 3 87 7524
4 | 15 2700 1246740 676431360
5 | 105 76515 118491090 262058953860  483098464854720
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