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Abstract: Accurate specification of spatiotemporal errors of remotely sensed soil 10 

moisture (SM) data is essential for a correct assessment of their utility and optimally 11 

integrating multiple SM products or assimilating them into hydrological models. 12 

Although Triple Collocation Analysis (TCA) has been widely used to provide SM 13 

errors, the impact of rescaling technique on the TCA error estimates has not received 14 

major attention, which can lead to biased and inaccurate error estimates. Moreover, 15 

current knowledge about time-variant SM errors derived from TCA is still very 16 

limited, which hampers the advance of applying time-variant errors in data merging 17 

and data assimilation studies efficiently. Based on these considerations, this work 18 

aims to advance the use of the TCA for characterizing errors with a focus on the 19 

rescaling techniques, and validating TCA-based time-variant errors using global 20 

ground measurements in 759 grid cells. To this end, the Advanced Scatterometer 21 

(ASCAT) and four passive-based SM products, including Soil Moisture and Ocean 22 

Salinity Level-3 (SMOSL3), SMOS INRA-CESBIO (SMOSIC), Soil Moisture Active 23 

Passive Level-3 (SMAPL3), and SMAP INRAE BORDEAUX (SMAPIB) SM 24 

products were considered. The time-variant error term here denotes an aggregate error 25 

magnitude over a 101-day moving-time-window. It is found that different selection of 26 

the rescaling technique considered in TCA led to TCA error estimates with 27 

significantly different accuracy when ground-based errors are regarded as the 28 

benchmark. The optimal combination strategy to implement TCA is applying TCA to 29 

SM anomalies and rescaling the errors by coefficients derived from the TCA model. 30 

Pearson’s correlation with ground-based time-variant errors is 0.62, 0.72, 0.83, 0.89, 31 
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and 0.93 for SMAPIB, SMAPL3, SMOSIC, SMOSL3, and ASCAT SM, respectively. 32 

Considering time-variant errors in applications is necessary since time-variant errors 33 

deviate from time-invariant errors by 50% when errors are rescaled by TCA model 34 

parameters. Time-invariant errors are greater than time-variant errors when SM 35 

products are rescaled against a reference dataset while the opposite conclusion can be 36 

drawn when errors are rescaled by the TCA coefficients. TCA- and ground-based 37 

methods provide consistent evaluations in 74.7% (77.3%), 75.8% (79.8%), 79.6% 38 

(81.1%), and 78.6% (79.7%) of the analysis period on average (median) for the TCA 39 

implementations with SMAPL3, SMAPIB, SMOSL3, and SMOSIC SM, respectively. 40 

The error analysis reveals that TCA typically underestimated ASCAT errors while 41 

overestimated passive SM errors when considering ground-based evaluation as the 42 

benchmark. Moreover, TCA was found to have relatively less power to efficiently 43 

characterize SM errors in croplands when compared with other land cover types. This 44 

study validated TCA time-variant errors using ground measurements and compared 45 

TCA- and ground-based evaluation performances on a global scale. Our work arouses 46 

particular attention to the rescaling technique selection considered in TCA, which is 47 

crucial for accurately characterizing SM errors and efficiently using them in various 48 

hydrometeorological applications. 49 

Keywords: soil moisture; rescaling technique; Triple Collocation Analysis; time-50 

variant error 51 

  52 
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1 Introduction 53 

 Soil moisture (SM) plays an important role in modeling hydrological processes 54 

such as runoff and evapotranspiration, and links water, energy, and carbon cycles 55 

(Jackson, 1993; Houser et al., 1998; Western et al., 2002; Daly and Porporato, 2005). 56 

SM data can be applied in many disciplines such as drought monitoring, flood 57 

prediction, crop productivity forecasts, irrigation planning, and weather forecasting 58 

(Sims et al., 2002; Narasimhan and Srinivasan, 2005; Bolten et al., 2010; Wanders et 59 

al., 2014). SM observations can be obtained from ground measurements, hydrological 60 

modeling, and satellite observations, and each of them has its distinctive error 61 

characteristic. Learning about the error characteristics of various SM products is 62 

important as it significantly influences the uncertainties of the hydrological models 63 

driven by the SM content and therefore has a great impact on the interpretation of the 64 

model simulation. Furthermore, stochastic data assimilation relies on accurate error 65 

specifications for the observations and model predictions (Reichle, 2008). Data fusion 66 

studies also require accurate error specifications (Crow et al., 2015; Gruber et al., 67 

2017) or signal-to-noise ratio information (Kim et al., 2022) to optimally integrate 68 

multiple SM products. An accurate specification of SM error variability in space 69 

(such as Gruber et al., 2015 and Wu et al., 2018) and in time (such as Loew and 70 

Schlenz, 2011; Zwieback et al., 2012; Su et al., 2014a; Wu et al., 2021) may lead to 71 

further improvements for data assimilation and data fusion studies. 72 

 Triple Collocation Analysis (TCA) is a popular evaluation method to provide 73 

relative errors for SM products derived from different platforms without requiring an 74 
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absolute ‘truth’ (Dorigo et al., 2010). It was initially proposed by Stoffelen (1998) to 75 

solve the issue of error estimation for sea wind and wave height and was introduced to 76 

provide SM error estimates by Scipal et al. in 2008a. Besides, SM uncertainty can be 77 

obtained by a three-corned hat method, which was recently applied by Liu et al. (2021) 78 

to evaluate eleven SM products in the Qinghai-Tibet Plateau. Many studies have 79 

applied TCA to evaluate remotely sensed SM retrievals (such as Leroux et al., 2013; 80 

Su et al., 2014a; Su et al., 2014b; Chakravorty et al., 2016; Kim et al., 2018), model 81 

simulations (such as Dorigo et al., 2010; Al-Yaari et al., 2014), reanalysis SM (such 82 

as Scipal et al., 2008a; Scipal et al., 2010; Yilmaz and Crow 2014; Miyaoka et al., 83 

2017), or ground-based SM measurements (Miralles et al., 2010; Chen et al., 2018; 84 

Wu et al., 2021). Currently, TCA-based SM error estimates have already been widely 85 

used in SM validation (Dorigo et al., 2010; Miyaoka et al., 2017; Kim et al., 2021), 86 

data assimilation (Gruber et al., 2019), and data fusion (Gruber et al., 2017; Peng et 87 

al., 2021) studies. 88 

TCA has been typically applied to provide time-invariant errors in the whole 89 

investigation period. However, SM retrieval errors are known to vary with time due to 90 

vegetation phenology, changes in surface roughness, and variable environmental 91 

conditions (Ulaby et al., 1983; Famiglietti et al., 2008; Zwieback et al., 2018). To 92 

account for the time-variant feature of SM products, Loew and Schlenz (2011), 93 

Zwieback et al. (2012), Su et al. (2014a), and Wu et al. (2021) proposed various time-94 

window-based TCA schemes to estimate time-variant errors at different timescales by 95 

relaxing the stationary assumption underlying the TCA. Several studies tried to 96 
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consider and include time-variant error characteristics in applications. For example, 97 

Khan et al. (2014) proposed a multi-model data merging approach that considers 98 

monthly covariance matrix of the forecast errors, which was successfully applied to 99 

the sea surface temperature forecasts and achieved better performance than time-100 

invariant forecasts. In addition, Kim et al. (2016) combined multiple satellite-based 101 

SM datasets by taking time-variant weights into account and reported this method 102 

outperforms the time-invariant approach. Therefore, an extension of TCA to temporal 103 

domain may greatly benefit many applications. Nevertheless, accuracy of the time-104 

variant errors derived from window-based TCA scheme is not well known by the SM 105 

community, which should be investigated before applying time-variant SM errors in 106 

actual applications. 107 

As increasing number of applications use TCA to characterize errors for large 108 

spatial and temporal datasets, the reliability of TCA has drawn attention from several 109 

fields, such as soil freeze/thaw (Li et al., 2022), root zone SM (Xu et al., 2021), and 110 

satellite-based surface albedo (Wu et al., 2019). However, more work is still needed 111 

to verify TCA-based SM spatiotemporal errors using ground measurements as such 112 

validation on a global scale has not been fully investigated in previous studies. We 113 

argue that this validation is important as it helps researchers learn about the accuracy 114 

and reliability of the TCA, and better interprets the TCA error estimates. Previous 115 

work on this topic had mostly a regional focus or did not consider time-variant errors. 116 

For example, Brocca et al. (2011) and Chen et al. (2016) reported that TCA- and 117 

ground-based estimates, i.e., error and satellite-versus-truth correlation coefficient, are 118 
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strongly consistent in Europe and USA, respectively. By comparing the TCA- and 119 

ground-based errors, Loew and Schlenz (2011) investigated the point-to-area 120 

sampling error in Southern Germany. Notably, Kim et al. (2020) compared TCA-121 

based fMSE (fractional Mean-Square-Error) with the conventional fMSE derived 122 

from ground measurements and showed these two kinds of methods yielded 123 

consistent evaluation results. Similarly, Zhang et al. (2021) investigated the TCA- and 124 

ground-based satellite-versus-truth correlation coefficients and reported that they 125 

yielded consistent spatial distribution. However, studies by Kim et al. (2020) and 126 

Zhang et al. (2021) only focus on the spatial domain, i.e., error metrics are assumed to 127 

be constant over time. The performance of TCA in the temporal domain remains 128 

unclear currently. Moreover, Yilmaz and Crow (2014) presented numerical and 129 

analytical comparisons for ground- and TCA-based SM errors and found that ground-130 

based errors are often higher than TCA-based errors. A similar result was also 131 

confirmed by Dorigo et al. (2015) who pointed out that TCA errors were consistently 132 

lower than ground-based errors. Based on current studies, a global-scale 133 

intercomparison of TCA- and ground-based SM errors is highly needed to advance 134 

the TCA applications, especially for time-variant errors as they have great potential to 135 

improve the performance of data merging and data assimilation systems. 136 

 To accurately estimate time-variant SM errors using the TCA method, two key 137 

issues are typically ignored in current TCA studies, which may lead to inaccurate and 138 

biased SM error estimates. The first issue is the rescaling technique selection 139 

considered in TCA. The rescaling process is an essential step in TCA as it removes 140 
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relative differences between the considered datasets and makes the resulting error 141 

estimates comparable for the statistical comparison purpose. The rescaling technique 142 

applied in TCA not only can minimize the impact of representativeness errors derived 143 

from different spatial resolution, spatiotemporal mis-alignment, and different vertical 144 

measurement support (Gruber et al., 2013; Chen et al., 2017; Molero et al., 2018) but 145 

also can implicitly compensate for different units used in the considered datasets 146 

(Gruber et al., 2020). The rescaling techniques applied in TCA can be divided into 147 

two categories: methods that rescale SM inputs against a selected reference dataset 148 

prior to TCA implementation (Scipal et al., 2008a), and methods that rescale errors by 149 

parameters derived from the TCA model after the TCA implementation (Gruber et al., 150 

2016a). There are several statistical techniques to rescale SM observations prior to 151 

TCA, such as variance and mean matching (Dorigo et al., 2010; Miralles et al., 2010; 152 

Kim et al., 2020), normalization (Fascetti et al., 2016; Pierdicca et al., 2015; Wu et al., 153 

2021), CDF (Cumulative Distribution Function) matching (Doubkova et al., 2012; 154 

Gruber et al., 2014; An et al., 2016; Zhuang et al., 2020), and linear regression 155 

method (Scipal et al., 2008a). Or normalizing all datasets into a common observation 156 

space prior to TCA by calculating their z-scores. Generally, both these two kinds of 157 

rescaling techniques can address the first-order (additive) biases for the considered 158 

datasets. However, Gruber et al. (2020) reported that the statistical matching cannot 159 

address the second-order (multiplicative) biases while the method that rescales errors 160 

using the TCA model parameters can. Most current studies ignored the impact of 161 

second-order (multiplicative) biases on validation and error characterization. Such 162 
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impact of second-order (multiplicative) biases resulted from the rescaling technique 163 

selection on the TCA error characterization remain unclear and needs further 164 

investigation (Gruber et al., 2020). Nevertheless, selection of the rescaling technique 165 

has not received major attention in current TCA studies. Recently, both Kim et al. 166 

(2020) and Gruber et al. (2020) pointed out the necessity to investigate the impact of 167 

rescaling technique selection on the final TCA error estimates. 168 

The other important issue that influences TCA is the selection of SM inputs. 169 

There are two options for the SM inputs. One uses the original SM measurements 170 

directly (such as Dorigo et al., 2015; Gruber et al., 2017; Wu et al., 2018; Wu et al., 171 

2021) while the other one uses SM anomalies (such as Dorigo et al., 2010; Draper et 172 

al., 2013; Su et al., 2014a; Miralles et al., 2010; Chakravorty et al., 2016; Kim et al., 173 

2020). In practice, a popular technique to obtain short-term anomalies relies on 174 

moving-window-based averages over the investigation period, carried out by Miralles 175 

et al. (2010), Crow et al. (2012), and Draper et al. (2013). The anomaly-based 176 

approach removes the seasonal effects underlying SM time-series that can artificially 177 

enhance the correlations between two SM time-series (Scipal et al., 2005; Scipal et al., 178 

2008b) and therefore, reveals the ability of the SM products to capture the short-term 179 

events of drying and wetting (Dorigo et al., 2010; Al-Yaari et al., 2014). Working on 180 

the original time series also makes sense as it captures other properties of the data sets, 181 

even though the errors cross-correlations may be higher (Miralles et al., 2010; Draper 182 

et al., 2013). These two methods are complementary as both are needed to describe 183 

the quality of the SM data. However, no study to date makes a quantitative 184 
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comparison for the final TCA error estimates derived from these two input selections. 185 

If TCA errors have small differences for the two methods, absolute-based approach is 186 

more favorable given its simplicity in practice. 187 

 Based on the considerations above, we first explored the impact of temporal 188 

interpolation on the accuracy of TCA error estimates in Section 3.1. Second, the 189 

impacts of rescaling technique and SM inputs selection on the accuracy of TCA time-190 

invariant and time-variant errors were investigated in Section 3.2. Correlations and 191 

RMSE (Root Mean Squared Error) between TCA- and ground-based time-variant 192 

errors were also compared for the ASCAT and four passive-based SM data, i.e., 193 

SMOSL3, SMOSIC, SMAPL3, and SMAPIB SM products, in six land cover types. 194 

Third, the relative difference between time-invariant and time-variant errors was 195 

quantified in Section 3.3. Then, the evaluation consistency between TCA- and 196 

ground-based methods is explored in Section 3.4. Finally, time-variant errors were 197 

compared for ASCAT and the four passive SM products based on the TCA- and 198 

ground-based methods in Section 3.5, along with TCA- vs. ground-based evaluations 199 

over six land cover types. 200 

2 Data and Methodology 201 

This section introduces SM products and methods used. Sections 2.1 and 2.2 202 

provide information about Soil Moisture and Ocean Salinity (SMOS), Soil Moisture 203 

Active Passive (SMAP), ASCAT SWI (Soil Water Index), Global Land Data 204 

Assimilation System Version 2.1 (GLDAS2), and ERA-Interim SM products, along 205 

with International Soil Moisture Network (ISMN) ground measurements. After briefly 206 
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describing TCA and Quadruple Collocation Analysis (QCA) methods in Section 2.3, 207 

Section 2.4 details four rescaling techniques used in TCA implementation. 208 

Conventional ground-based method to estimate SM errors is presented in Section 2.5 209 

and the approach to test the robustness of temporal interpolation applied in the TCA 210 

time-variant scheme is described in Section 2.6. Finally, Section 2.7 defines the 211 

evaluation metrics used in our work: Overall Relative Difference (ORD), Relative 212 

Difference (RD), RMSE, and Root Mean Squared Difference (RMSD). 213 

2.1 SMOS, SMAP, ASCAT, GLDAS2, and ERA-Interim SM products 214 

 The Soil Moisture and Ocean Salinity (SMOS) mission is designed to observe 215 

SM content in the global landmass surface (0-5 cm) and salinity over the oceans based 216 

on multi-angular brightness temperature data observed by a radiometer operating at L-217 

band (Kerr et al., 2012). It was launched by European Space Agency (ESA) in 218 

November 2009 and contributes to improving our understanding of the global water 219 

cycle and weather/seasonal climate forecasting. SMOS collects brightness 220 

temperature data at a local overpass time of 06:00 PM for descending pass and 06:00 221 

AM for ascending pass, respectively. Here, the SMOS Level-3 (SMOSL3) SM 222 

product with version 3.3 was used (Al Bitar et al., 2017). This product was developed 223 

by CATDS-PDC (Centre Aval de Traitement des Données SMOS - Production & 224 

Dissemination Center) and provides SM observations projected on Equal-Area 225 

Scalable Earth Grid (Version 2) with a spatial resolution of 40 km. 226 

 Data screening for SMOSL3 SM was based on the DQX (data quality index) 227 

affiliated with the CATDS-PDC SMOSL3 product and SM observations were filtered 228 



12 

 

out in our work when its associated DQX value is greater than 0.007 (Chen et al., 229 

2018; Wang et al., 2021). The DQX value quantifies the error in SM observations in 230 

volumetric SM units (Al-Yaari et al., 2014). The RFI (Radio Frequency Interference) 231 

issue was not taken into consideration for SMOSL3 data screening as we expect more 232 

SM observations participated in the time-variant error estimation, especially in 233 

regions such as Eurasian. 234 

 Besides SMOSL3, SMOS INRA-CESBIO (SMOSIC) SM product of version 2 235 

was also considered in our work. The SMOSIC SM product was constructed by INRA 236 

(Institute National de la Recherche Agronomique) and provides SM values derived 237 

from the SMOS L3 brightness temperature data with a spatial resolution of 25 km. 238 

One of the main characteristics of the SMOSIC SM is the maximal independence of 239 

auxiliary data during its retrieval process, which is different from the SMOSL3 SM 240 

that strongly relies on auxiliary data (Wigneron et al., 2021). The SMOSIC SM 241 

product was used here to increase the robustness of our TCA conclusions since the 242 

SMOSL3 SM product is not independent with model-based or reanalysis SM data and 243 

therefore may hinder the independence assumption required by the TCA and may 244 

have potential influence on the final intercomparison and validation. To guarantee the 245 

data quality of SMOSIC SM data, only SM values associated with scene flags ≤ 1 246 

were retained in the following analyses. The scene flags were affiliated with the 247 

SMOSIC product and can be used as an indicator to detect events that influence the 248 

SMOS L3 brightness temperature observations used in the retrieval process, such as 249 

strong topography, frozen condition, and water body contamination. Similar to the 250 
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data filtering of the SMOSL3, the RFI problem was not considered for the SMOSIC 251 

SM in our analysis. Readers are recommended to refer to Wigneron et al. (2021) to 252 

find out more information about the SMOSIC SM product. 253 

The SMOSL3 and SMOSIC SM datasets were reconstructed from local time-254 

based into UTC time-based to match the ASCAT, GLDAS2, and ISMN ground 255 

measurements. This reconstruction was completed by considering the navigational 256 

time zones based on longitude values and local statutory deviation was not considered 257 

in such transformation (Kim et al., 2018). After the transformation, SM values at 258 

ascending and descending orbits were averaged when they are found on the same day. 259 

Consequently, SMOSL3 and SMOSIC SM daily datasets with UTC stamps were 260 

constructed and used here. Readers can find the conceptual map (Fig. S1) of UTC 261 

zones for converting the local time, i.e., ascending for 06:00 AM and descending for 262 

06:00 PM, of SMOS dataset to match other SM data. 263 

The Soil Moisture Active Passive (SMAP) satellite is designed by NASA 264 

(National Aeronautics and Space Administration) to provide global surface (0-5 cm) 265 

SM observations with a spatial resolution of 40 km (Entekhabi et al., 2010). Since a 266 

malfunction was found in the SMAP radar system, only the L-band radiometer 267 

onboard SMAP satellite collects observations at a local overpass time of 06:00 AM 268 

for descending pass and 06:00 PM for ascending pass, respectively (Wu et al., 2020). 269 

The SMAP Level-3 SM product in version 8 (SMAPL3) was used here (O'Neill et al., 270 

2021). Begin with this version, the Dual Channel Algorithm (DCA) is applied as a 271 

new baseline algorithm in the retrieval process, which departs from prior versions that 272 
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used the Single Channel Algorithm-Vertical Polarization (SCA-V) as the baseline 273 

algorithm. Data screening for the SMAPL3 SM product was implemented using the 274 

retrieval quality flag affiliated with the SMAPL3 product. Only SM observations with 275 

recommended quality were considered in our analysis. The quality flag indicates 276 

whether unfavorable environmental conditions, such as frozen soil, snow cover, flood, 277 

steeply sloped topography, urban area, and dense vegetation, occurred during the SM 278 

retrievals. 279 

Besides SMAPL3, a recently developed SM product by INRAE Bordeaux (Li et 280 

al., 2022), i.e., SMAP INRAE BORDEAUX (SMAPIB) SM data, was also 281 

considered in our analysis. The SMAPIB SM product applied a new 2-Parameter 282 

retrieval algorithm, i.e., SM and vegetation optical depth, to the dual-polarized 283 

brightness temperature observations collected from SMAP satellite during its SM 284 

retrieval process. Currently, only SM observations acquired from the descending 285 

(06:00, local overpass time) orbits are available and can be freely accessed from 286 

https://ib.remote-sensing.inrae.fr/. Similar to the SMOSIC data, this SM product was 287 

used here as it does not use any modeled or reanalysis SM data as input in its retrieval 288 

algorithm, which makes it a favorable SM dataset to be applied to the TCA method 289 

that requires a strong independence assumption. As suggested by Li et al. (2022), only 290 

SM observations with scene flag value ≤ 1 were kept in the following analyses as 291 

corresponding SM values are less affected by the frozen soil, strong topography, and 292 

water body contamination. To match with other SM data, the SMAPL3 and SMAPIB 293 

SM datasets were reconstructed from local time-based to UTC time-based using the 294 
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same method applied in the SMOSL3 and SMOSIC data preprocessing. 295 

 The Advanced Scatterometer (ASCAT) is a C-band (5.2 GHz) active sensor 296 

onboard the MetOp satellite (Bartalis et al., 2007). The ASCAT SWI (Soil Water 297 

Index) product (Wagner et al., 1999) with T=1 was used here, which describes SM 298 

content in the top soil layer (Albergel et al., 2008; Paulik et al., 2014). This product 299 

was obtained from CGLS (Copernicus Global Land Service, 300 

https://land.copernicus.eu/global/products/swi), which provides SM observations 301 

projected on a regular latitude/longitude grid with a spatial resolution of 0.1°×0.1° 302 

in units of percentage. The ASCAT SWI is a daily product with a time stamp at 12:00 303 

UTC regardless of the actual observation time (Paulik et al., 2014). Previous studies 304 

have validated this SM product using remotely sensed SM or ground measurements, 305 

such as Albergel et al. (2009), Brocca et al. (2010), Brocca et al. (2011), and Paulik et 306 

al. (2014). 307 

 The ASCAT SWI values were masked out in our work when its surface state flag 308 

indicates frozen soil conditions. The surface state flag contains three different soil 309 

conditions, namely frozen, unfrozen, and melting states of the soil surface based on 310 

the temperature observations. Moreover, the SWI product provides a quality flag 311 

(QFLAG) that describes the number of available ASCAT SM observations considered 312 

during the SWI calculation. Here, SWI values were filtered out when the 313 

corresponding QFLAG value is smaller than 10% as these SWI values become 314 

unreliable due to limited ASCAT SM inputs (Wu et al., 2021). 315 

 SM product simulated from the GLDAS2 was used as a third independent 316 
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estimate of SM applied in our TCA. GLDAS2 SM product was created by the Noah 317 

land surface model that uses a combination of model and observation data (excluding 318 

SM products) as its forcing data (Rodell et al., 2004). Only SM simulations in the top 319 

soil layer (0-10 cm) were used here since ASCAT and SMOS/SMAP SM 320 

observations only represent SM content of the topsoil layer in several centimeters. 321 

The GLDAS2 provides 3-hourly SM simulations projected on a regular 322 

latitude/longitude grid of 0.25°×0.25°. Here, a daily GLDAS2 SM product was 323 

constructed by averaging all available SM simulations within the same day. To 324 

exclude SM values simulated under frozen soil conditions, GLDAS2 SM values were 325 

screened if the corresponding GLDAS2 soil temperature value is lower than 0℃. 326 

 The ERA-Interim SM product is a global reanalysis dataset derived from an 327 

advanced data assimilation system (Balsamo et al., 2015). It was used as an 328 

independent SM here to test the spatial representativeness of the ground 329 

measurements following Dorigo et al. (2015). This dataset is projected on a regular 330 

latitude/longitude grid with a spatial resolution of 0.25°×0.25° and provides SM 331 

analysis values with UTC stamps in the four soil layers, i.e., 0-7 cm, 7-28 cm, 28-100 332 

cm, and 100-289 cm. Here, only SM data in the soil layer of 0-7 cm were considered. 333 

A daily ERA-Interim SM dataset was reconstructed by averaging all available SM 334 

values within the same day. Given that the ERA-Interim product is only available 335 

until 31 August, 2019, ERA-Interim SM data from July 3, 2012 to 31 August, 2019 336 

were used in our analysis. The ERA-Interim SM values were screened when the 337 

associated GLDAS2 soil temperature value is lower than 0℃ to exclude SM values 338 
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simulated under frozen soil conditions. 339 

In our work, the projection grid of the GLDAS2 SM product was selected as the 340 

reference projection. ASCAT, SMOS, SMAP, and ERA-Interim SM observations 341 

were resampled on the GLDAS2 grid using the nearest neighbor interpolation. Since 342 

multiple SM products were considered here, their different overpass time stamps were 343 

accounted for by binning all SM products to a regularized time step (Gruber et al., 344 

2020), i.e., daily UTC time here. A summary of the SM datasets used in our work is 345 

provided in Table 1. The timeframe of our analysis starts from July 3, 2012 to August 346 

31, 2020 with a total of 2982 days. Although the discrepancy in measurement depth is 347 

considerable for ASCAT, SMOS, SMAP, GLDAS2, and ERA-Interim, Albergel et al. 348 

(2008) and Brocca et al. (2011) pointed out that SM in the upper 10 cm is strongly 349 

correlated with surface SM (e.g., 0-5 cm). 350 

Table 1 A summary of the SM products used in this work 351 

SM 

products 

Spatial 

resolution 

Temporal 

resolution 

Nominal 

observation 

depth 

Temporal 

coverage 
Version 

Projection 

grid 

GLDAS2 0.25°×0.25° 3-hourly, UTC 0-10 cm 
January 2000 to 

present 
2.1 

regular lat/lon 

grid 

ASCAT 

SWI 
0.1°×0.1° 

daily at 12:00, 

UTC 
0-5 cm 

January 2007 to 

present 
3.0 

regular lat/lon 

grid 

SMOSL3 40 km 
6 AM and 6 PM 

local time 
0-5 cm 

January 2010 to 

present 
3.3 EASE-Grid 2.0 

SMOSIC 25 km 
6 AM and 6 PM 

local time 
0-5 cm 

January 2010 to 

present 
2.0 EASE-Grid 2.0 

ERA-

Interim 
0.25°×0.25° 3-hourly, UTC 0-7 cm 

January 1979 to 

August 2019 
2.0 

regular lat/lon 

grid 

SMAPL3 36 km 
6 AM and 6 PM 

local time 
0-5 cm 

March 2015 to 

present 
8 EASE-Grid 2.0 

SMAPIB 36 km 6 AM local time 0-5 cm 
March 2015 to 

present 
1.0 EASE-Grid 2.0 

Note: Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) 352 

In addition, SMOS and SMAP SM data were temporally interpolated here by 353 
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filling the gaps existed in their time series with the average of neighboring SM values 354 

included in a 3-day time window. This will significantly increase the statistical power 355 

of the TCA method since more SM triplet samples can participate in the TCA 356 

calculation (Leroux et al., 2013; Wu et al., 2021). Limited samples, e.g., 30 samples, 357 

can lead to many error estimates that are not convergent, which reduces the robustness 358 

of the moving-window-based TCA method. However, the temporal interpolation 359 

influences the final TCA errors inevitably due to the additional interpolation errors 360 

and such impact should be investigated before applying the TCA time-variant scheme 361 

to the temporally interpolated SM datasets (detailed in Sec. 2.6 and Sec. 3.1). 362 

2.2 ISMN ground measurements 363 

 Ground-based SM measurements are often considered to be the most accurate 364 

representation of the true SM content even though their spatial support is very small. 365 

The ISMN ground measurements from 759 stations belonging to 25 sparse networks 366 

(Dorigo et al., 2011) were used here to validate the TCA evaluation performance. To 367 

be consistent with the UTC time of other SM datasets, we took an average of all 368 

available SM values on the same day. 369 

Stations were selected using several criteria. First, only stations of which the 370 

measurement interval was restricted within the upper 10 cm of the top soil layer were 371 

considered. Station with the shallowest depth was selected when stations with 372 

multiple depths are available in the same location (e.g., one taken at 5 cm and one 373 

taken at 10 cm). Second, only stations where the number of available SM values is 374 

greater than 500 were selected to guarantee sufficient data samples applied in the 375 
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TCA. Third, an areal representative station (Dorigo et al., 2015) was selected using a 376 

3rd independent dataset, i.e., the ERA-Interim SM product, if more than one station 377 

was found in the experimental grid cell. Correlation coefficients between ground 378 

measurements and ERA-Interim, GLDAS2, SMOS/SMAP, and ASCAT SM data 379 

were calculated and the station with the highest correlation average was selected in 380 

the following analysis. Finally, ISMN ground measurements were screened by the 381 

ISMN quality flags (Dorigo et al., 2013) to guarantee their data quality. After filtering 382 

ISMN stations in the top soil, 759 stations remained available in our work. Fig. 1 383 

shows the 759 experimental pixels that include these selected ISMN stations and 384 

Table 2 summarizes the ISMN sparse networks, number of stations used, and 385 

associated references. 386 

Referring to the classification scheme of the MODIS IGBP dataset (Friedl et al., 387 

2002), land cover types associated with the experimental grid cells mainly include 388 

grasslands (47.4%), croplands (15.0%), woody savannas (12.1%), savannas (8.8%), 389 

forests (7.5%), and open shrublands (4.9%). These six land cover types are used to 390 

categorize our results in the following analyses. 391 
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 392 

Fig. 1 Spatial distribution of 759 grid cells that include selected ISMN stations. 393 

 394 

Table 2 ISMN ground stations from sparse networks 395 

Network 
Number of 

stations 
Reference 

AMMA-CATCH 3 

Pellarin et al. (2009), Mougin et al. (2009), 

Cappelaere et al. (2009), de Rosnay et al. 

(2009) 
ARM 4  http://www.arm.gov/ 

BIEBRZA_S-1 1 http://www.igik.edu.pl/en 
COSMOS 5 Zreda et al. (2012) 

CTP_SMTMN 1 Yang et al. (2013) 
DAHRA 1 Tagesson et al. (2015) 

FMI 3 http://fmiarc.fmi.fi/ 
FR_Aqui 3  Institute of Agricultural Research 
GROW 7 https://growobservatory.org/index.html 
HOBE 5 Bircher et al. (2012) 

IMA_CAN1 1 Biddoccu et al. (2016) 
IPE 2 Instituto Pirenaico de Ecologia (IPE-CSIC) 

iRON 3 Osenga et al. (2019) 
LAB-net 2 Mattar et al. (2016) 

MySMNet 1 University Technology Malaysia 
OZNET 13 Smith et al. (2012) 

PBO_H2O 123 Larson et al. (2008) 
REMEDHUS 5 http://campus.usal.es/~hidrus/ 

RSMN 19 http://assimo.meteoromania.ro/ 
SCAN 174  http://www.wcc.nrcs.usda.gov/ 

SMOSMANIA 19 Calvet et al. (2007), Albergel et al. (2008) 
SNOTEL 256 http://www.wcc.nrcs.usda.gov/ 

SOILSCAPE 6 Moghaddam et al. (2010) 
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TERENO 3 Zacharias et al. (2011) 
USCRN 99 Bell et al. (2013) 

 396 

2.3 Triple/Quadruple Collocation Analysis 397 

 This section briefly introduces two Collocation-based Analyses, i.e., TCA and 398 

QCA, and the approach to estimate time-variant errors that have the same meaning of 399 

the TCA errors using ground measurements. TCA provides SM error estimates for 400 

three SM datasets without requiring an absolute truth. It assumes a linear relationship 401 

between SM observation 𝜃𝑖  and hypothetical unknown SM truth 𝜃 , which can be 402 

written as follows: 403 

𝜃𝑖 = 𝛼𝑖 + 𝛽𝑖𝜃 + 𝜀𝑖    𝑖 ∈ {GLDAS2, ASCAT, passive SM} (1) 

where the 𝜀𝑖 represents zero-mean random noise in 𝜃𝑖, the 𝛼𝑖 and 𝛽𝑖 are additive and 404 

multiplicative coefficients that represent systematic errors in 𝜃𝑖 . The passive SM 405 

includes SMOSL3, SMOSIC, SMAPL3, and SMAPIB SM products. Based on this 406 

error model, SM errors can be obtained by calculating corresponding (co-)variances 407 

of the three SM datasets and simplifying with the other two assumptions, i.e., error 408 

orthogonality and zero Error Cross Correlation (ECC). Detailed formula derivation 409 

can be found in Gruber et al. (2016a). 410 

Rescaling coefficients can be obtained through TCA along with error estimates. 411 

They can be used to make errors comparable after TCA or rescale SM data into a 412 

preselected reference dataset (Yilmaz and Crow, 2014; Gruber et al., 2017). Here, 413 

GLDAS2 was regarded as the reference dataset that was already perfectly calibrated. 414 

Therefore, the rescaling coefficients can be written as 415 
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{
 
 

 
 𝛽ASCAT

GLDAS2 =
Cov(𝑆𝑀GLDAS2, 𝑆𝑀passive)

Cov(𝑆𝑀ASCAT, 𝑆𝑀passive)

𝛽passive
GLDAS2 =

Cov(𝑆𝑀GLDAS2, 𝑆𝑀ASCAT)

Cov(𝑆𝑀passive, 𝑆𝑀ASCAT)

 (2) 

where 𝛽ASCAT
GLDAS2  and 𝛽passive

GLDAS2  are used to linearly rescale the ASCAT and passive-416 

based SM errors against the GLDAS2 errors; Cov(𝑋, 𝑌)  represents covariance 417 

between 𝑋 and 𝑌 time series. 418 

 The QCA extends TCA to four SM products and can account for the existence of 419 

non-zero ECC within a certain pair of collocated SM datasets. The QCA was used 420 

here to provide ECC values between GLDAS2, ASCAT, and SMOS/SMAP SM 421 

products and serve as an alternative error estimate method. The formulation reported 422 

in Gruber et al. (2016b) was conducted at the 759 sparse ground observation sites 423 

where ground measurements can serve as the fourth SM product. The least square 424 

solution for the QCA problem is given by 425 

𝒚 =
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      𝑨 =

[
 
 
 
 
 
 
 
 
 
 
 
 
1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0]
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  (3) 426 

where a, b, c, and d denote ASCAT, passive-based, GLDAS2, and ground SM, 427 
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respectively. To ensure the robustness of error estimates, TCA and QCA values were 428 

used only when Pearson’s correlation coefficients between the triplet in TCA or 429 

quadruplet in QCA are greater than 0.2 and passed a t-test (𝛼 < 0.05) (Scipal et al., 430 

2008a, Su et al., 2014a). The least squares solution for the parameter 𝒙 is given as 431 

𝒙̂ = (𝑨T𝑨)−1𝑨T𝒚 (4) 

Ideally, ECC values between the SM triplet should be zero, which is a strong 432 

assumption in TCA method. In practice, researchers try to solve this problem by 433 

choosing three independent SM datasets, e.g., one active microwave, one passive 434 

microwave, and one model-based SM (Scipal et al., 2008a; Gruber et al., 2015; 435 

Gruber et al., 2016a; Wu et al., 2018). However, a certain level of ECC is inevitable 436 

in practice, especially for active and passive SM retrievals as reported in Gruber et al. 437 

(2016b) and Pierdicca et al. (2017). Therefore, it is necessary to inspect ECC values 438 

between these two kinds of SM datasets prior to TCA to guarantee reliable results. 439 

As reported in Gruber et al. (2016b) and Chen et al. (2018), the ECC values can 440 

be obtained by the QCA. In particular, a selected data pair (e.g., ASCAT and passive-441 

based SM here) is allowed to be correlated during the QCA while ECC between other 442 

data pairs are still required to be zero. Consequently, ECC value between the selected 443 

data pair can be obtained via their error covariance (i.e., 𝜎𝜀𝑎𝜀𝑏 ) and their error 444 

variance (i.e., 𝜎𝜀𝑎
2  and 𝜎𝜀𝑏

2 ) values derived from the Eq. (3). Alternatively, ECC values 445 

can be calculated based on the ground measurements directly. The boxplots of ECC 446 

values between ASCAT and passive SM datasets derived from QCA and ground 447 

measurements were shown in Fig. S2. For the QCA implementations consider 448 
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SMOSL3, SMOSIC, SMAPL3, and SMAPIB as the passive SM in the quadruplet, the 449 

interquartile range is [-0.08, 0.34] and [-0.16, 0.35] for ECC values derived from 450 

QCA and ground measurements, respectively, and the associated median values are 451 

0.16 and 0.20 for these two cases. The small ECC values suggest that the strong 452 

assumption in TCA is generally fulfilled in our analysis. It is notable that ECC values 453 

can also be obtained by an extended double instrumental variable algorithm using 454 

only two independent products, which was recently proposed by Dong et al. (2020). 455 

TCA can provide time-variant errors by relaxing the stationary assumption. For 456 

example, the time-variant errors can be obtained by applying TCA to SM time series 457 

for a 30-day moving window advancing by 15-day steps over the experimental 458 

periods (Loew and Schlenz, 2011). However, we argue that a moving-time-window 459 

advancing by daily step can better capture the temporal variability of SM errors and 460 

provide more inherent information about time-variant errors. Moreover, Su et al. 461 

(2014) proposed an approach of estimating multi-annual window-based errors for 462 

each day of the year. But this may overlook subtle temporal variability in SM errors 463 

as the interannual variation of environmental conditions, such as vegetation and 464 

rainfall, may change a lot in different years. Based on these considerations, a moving-465 

window-based TCA scheme was considered here. 466 

Following the scheme proposed by Wu et al. (2021), we obtained ASCAT and 467 

SMOS/SMAP time-variant daily errors by applying TCA to SM time series with a 468 

sliding 101-day moving window advancing by daily step over the whole experimental 469 

period. The 101-day time window was used here to estimate time-variant errors with 470 
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sufficient statistical power while keeping the kernel size of the window short enough 471 

to capture the seasonal variability of SM errors. Since temporal interpolation was 472 

considered for the SMOS and SMAP SM datasets here, the number of available triplet 473 

samples used in the 101-day window is typically large enough to obtain reliable time-474 

variant errors. To avoid unreliable error estimates derived from limited samples (e.g., 475 

5 triplets), the minimum sample requirement was defined as 100 (Scipal et al., 2008a) 476 

and 90 (Wu et al., 2021) for the time-invariant and time-variant error estimates, 477 

respectively. 478 

2.4 Rescaling techniques and input selection in TCA 479 

 Rescaling is an essential technique included in TCA as it eliminates bias between 480 

different SM datasets prior to the TCA or adjusts the TCA error estimates into a 481 

preselected reference space for a comparison purpose after the TCA implementation. 482 

Here, we investigated four popular rescaling techniques generally applied in TCA: 483 

three rescaling techniques applied prior to TCA, including variance and mean 484 

matching (VAR), normalization (NORM), and CDF matching (CDF), and one 485 

rescaling technique considers coefficients derived from TCA (TCA_Self). For 486 

convenience, these abbreviations will be used to refer to the four rescaling techniques 487 

described above. Since Section 2.3 has described the TCA_Self in equation (2), we 488 

briefly introduced the other three rescaling techniques here. 489 

 VAR is a linear rescaling technique that forces SM time series to have the same 490 

mean and standard deviation as the reference SM time series (Draper et al., 2009; 491 

Brocca et al., 2010; Dorigo et al., 2010). Equation (5) describes this rescaling 492 
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approach. 493 

𝑆𝑀rescaled =
𝑆𝑀 − 𝜇(𝑆𝑀)

𝜎(𝑆𝑀)
𝜎(𝑆𝑀GLDAS2) + 𝜇(𝑆𝑀GLDAS2) 

(5) 

where 𝑆𝑀  and 𝑆𝑀rescaled  denote SM time series before and after rescaling, 494 

respectively, 𝜇(·) and 𝜎(·) represent mean and standard deviation. 495 

 NORM is a standardization method that forces SM time series to have the same 496 

maximum and minimum as the reference SM time series (Rüdiger et al., 2009; 497 

Albergel et al., 2010; Albergel et al., 2012; Su et al., 2014a; Wu et al., 2021). This 498 

transformation can be written as the following equation (6). 499 

𝑆𝑀rescaled =
𝑆𝑀 −min (𝑆𝑀)

max(𝑆𝑀) − min (𝑆𝑀)
[max(𝑆𝑀GLDAS2)

− min(𝑆𝑀GLDAS2)] + min(𝑆𝑀GLDAS2) 

(6) 

where 𝑆𝑀 and 𝑆𝑀rescaled have the same meaning as those in equation (6), min(·) and 500 

max(·)  represent minimum and maximum values in corresponding time series, 501 

respectively. 502 

 CDF can be considered as an enhanced nonlinear rescaling technique, which is 503 

rescaled in such a way that the cumulative distribution function of SM time series is 504 

matched with that of reference SM data (Reichle and Koster, 2004; Drusch et al. 2005; 505 

Brocca et al. 2011; Brocca et al., 2013; Su et al., 2013). Equation (7) describes this 506 

transformation. 507 

𝐶𝐷𝐹(𝑆𝑀rescaled) = 𝐶𝐷𝐹(𝑆𝑀) (7) 

where 𝐶𝐷𝐹(·)  represents cumulative distribution function, 𝑆𝑀  and 𝑆𝑀rescaled  have 508 

the same meaning as those in equation (5). Following Brocca et al. (2013), a fifth-509 
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order polynomial function was considered in our CDF rescaling to match the two 510 

cumulative distribution functions. 511 

Besides the aforementioned four rescaling techniques, QCA errors were also 512 

considered to make a comparison with the TCA errors. The ASCAT and 513 

SMOS/SMAP errors estimated by QCA were linearly rescaled against GLDAS2 514 

errors using the following equation 515 

{
 
 

 
 𝜎𝐴𝑆𝐶𝐴𝑇after =

𝛽𝐺𝐿𝐷𝐴𝑆2
𝛽𝐴𝑆𝐶𝐴𝑇

× 𝜎𝐴𝑆𝐶𝐴𝑇before

𝜎𝑝𝑎𝑠𝑠𝑖𝑣𝑒after =
𝛽𝐺𝐿𝐷𝐴𝑆2
𝛽𝑝𝑎𝑠𝑠𝑖𝑣𝑒

× 𝜎𝑝𝑎𝑠𝑠𝑖𝑣𝑒before    𝑝𝑎𝑠𝑠𝑖𝑣𝑒 ∈ {𝑆𝑀𝑂𝑆, 𝑆𝑀𝐴𝑃}

 (8) 

where 𝜎𝐴𝑆𝐶𝐴𝑇after and 𝜎𝑝𝑎𝑠𝑠𝑖𝑣𝑒after denote rescaled errors for ASCAT and passive SM 516 

data, i.e., SMOSL3, SMOSIC, SMAPL3, and SMAPIB SM products, 𝜎𝐴𝑆𝐶𝐴𝑇before and 517 

𝜎𝑝𝑎𝑠𝑠𝑖𝑣𝑒before represent ASCAT and passive SM errors before rescaling. The rescaling 518 

coefficients, 
𝛽𝐺𝐿𝐷𝐴𝑆2

𝛽𝐴𝑆𝐶𝐴𝑇
 and 

𝛽𝐺𝐿𝐷𝐴𝑆2

𝛽𝑝𝑎𝑠𝑠𝑖𝑣𝑒
, can be obtained from equation (3). 519 

TCA can be applied to original SM values or anomalies. Here, following Dorigo 520 

et al. (2010) and Albergel et al. (2012), anomalies were obtained by subtracting 521 

averages of SM values in a sliding time window from original SM values. The sliding 522 

window has a kernel size of 35-day and advances by daily step over the whole 523 

investigation period. 524 

2.5 Conventional ground-based approach to estimate SM errors 525 

 To assess the evaluation power of TCA, TCA errors derived from the four 526 

rescaling techniques were validated by conventional SM errors obtained from ground 527 

measurements that are considered as the benchmark during the validation. As reported 528 

in Yilmaz and Crow (2014), ground-based error variance (regarded as the error term 529 
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in our work) can be obtained by equation (9), which has the same meaning as the 530 

TCA errors. 531 

𝜎𝜀𝑋
2 =

1

𝑁
∑(𝑋𝑡 − 𝑆𝑀Ground2𝑡

)2
𝑁

𝑡=1

     𝑋 ∈ {𝑆𝑀SMOS, 𝑆𝑀SMAP, 𝑆𝑀ASCAT} (9) 

where 𝜎𝜀𝑋
2  denotes ground-based error variance for the given dataset 𝑋 , 𝑋𝑡  and 532 

𝑆𝑀Ground𝑡
 represent SM values of dataset X and ground measurement at time step t, 533 

respectively, N is the number of whole investigation days. 534 

In Eq. (9), the pre-processing of the ground measurements is different for each 535 

rescaling technique. For VAR, NORM, and CDF applied prior to TCA, ground 536 

measurements and other SM products were jointly rescaled by the same rescaling 537 

technique. By contrast, ground measurements were directly used without further 538 

process in TCA_Self and QCA_Self, and the resulting ground-based errors were 539 

rescaled by the same parameter and the same way as in the rescaling of TCA- and 540 

QCA-based errors. 541 

2.6 Robustness of temporal interpolation applied in TCA time-variant scheme 542 

 Here, the TCA time-variant scheme was applied to passive-based SM datasets, 543 

i.e., SMOSL3, SMOSIC, SMAPL3, and SMAPIB, with temporal interpolation. The 544 

temporal interpolation introduces additional errors into SM time series and therefore 545 

may have potential impacts on the final TCA error estimates. Before applying TCA to 546 

temporally interpolated SM data, it is necessary to investigate such impact on the 547 

TCA time-variant errors. 548 

To this end, first, we found a few pixels that have enough SM samples without 549 
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interpolation to calculate the TCA time-variant errors using a 101-day moving-time-550 

window. Since multiple passive SM datasets were considered in our work, the pixels 551 

were separately selected for each TCA implementation that uses SMOSL3, SMOSIC, 552 

SMAPL3, and SMAPIB SM as one of the triplet inputs. Second, the passive SM time 553 

series were resampled without replacement using a different percentage of the original 554 

data amount, i.e., 95%, 90%, 80%, 70%, 60%, and 50%. The passive SM time series 555 

were then temporally interpolated and time-variant TCA errors were calculated based 556 

on the resampled and interpolated SM datasets. The resulting time-variant errors were 557 

compared with the time-variant errors derived from the original SM data (without 558 

interpolation) using the Pearson’s correlation and RMSD metrics. To guarantee 559 

reliable conclusions, the resampling was repeated 1000 times and we took an average 560 

of the resulting correlation coefficients and RMSD values to represent the overall 561 

performance of interpolation on TCA error estimates. Finally, correlations and RMSD 562 

values between time-variant errors calculated from original SM data and SM time 563 

series resampled by different percentage values can be obtained for each selected 564 

pixel. Based on the correlation and RMSD results, the impact of temporal 565 

interpolation on TCA errors can be quantified. 566 

2.7 Evaluation metrics 567 

The Relative Difference (RD) and Overall Relative Difference (ORD) metrics 568 

were used here to evaluate the relative difference between time-invariant and time-569 

variant errors. In a given pixel, the ORD is defined as: 570 
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ORD = √
1

𝑁
∑(

𝑇𝑉𝐸𝑡 − 𝑇𝐼𝐸

𝑇𝐼𝐸
)
2𝑁

𝑡=1

× 100% (10) 

where 𝑇𝐼𝐸 denotes time-invariant error and 𝑇𝑉𝐸𝑡 represents time-variant error at time 571 

step 𝑡, N denotes the actual number of available common pairs of 𝑇𝐼𝐸 and 𝑇𝑉𝐸 in the 572 

given pixel. ORD quantifies the overall relative difference between time-invariant and 573 

time-variant errors. But it fails to provide intuitive information about the positive or 574 

negative sign of the relative difference between these two kinds of errors. Therefore, 575 

the RD metric was constructed to address this issue. For a given pixel, the RD is 576 

defined as follows: 577 

RD =
1

𝑁
∑

𝑇𝑉𝐸𝑡 − 𝑇𝐼𝐸

𝑇𝐼𝐸

𝑁

𝑡=1

× 100% (11) 

where symbols in equation (11) are the same as those in equation (10). 578 

Pearson’s correlation and RMSE metrics were used to evaluate the accuracy of 579 

TCA-based error estimates and ground-based errors were regarded as the benchmark. 580 

The RMSE is defined as follows: 581 

RMSE = √
1

𝑁
∑(𝜎TCA𝑡 − 𝜎ground𝑡

)2
𝑁

𝑡=1

 (12) 

where 𝜎ground  is ground-based errors and 𝜎TCA  represents TCA-based errors, 𝑁 582 

denotes the number of associated common pairs of 𝜎ground  and 𝜎TCA  during the 583 

investigation period. 584 

The calculation of RMSD metric is similar to RMSE and is defined as: 585 
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RMSD = √
1

𝑁
∑(𝜎resampled𝑡

− 𝜎original𝑡
)2

𝑁

𝑡=1

 (13) 

where 𝜎resampled  denotes TCA time-variant errors derived from SM time series 586 

resampled by the different percentage values whereas 𝜎original represents TCA time-587 

variant errors estimated from original SM data without interpolation. 588 

3 Results 589 

3.1 Impact of temporal interpolation on TCA error estimates 590 

 As noted in Sec. 2.6, a potential error source of the TCA estimates in our work is 591 

the temporal interpolation applied to the passive SM datasets, which may lead to a 592 

potential impact on the final TCA error estimates. Fig. 2 explores such impact using 593 

the method described in Sec. 2.6. SMAPIB results are not included here as limited 594 

available samples (< 30) were found. Three ASCAT results are expected from the 595 

TCA implementations with SMOSL3, SMAPL3, and SMOSIC, and all of them are 596 

used to construct the boxplots in Fig. 2 (d). 597 
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 598 

Fig. 2 Boxplots of correlation coefficients (red) and RMSD values (blue) between 599 

time-variant errors derived from the original SM data without interpolation and the 600 

SM time series resampled by different percentage values of the original data. (a-d) 601 

exhibits the results of applying interpolation to SMOSL3, SMAPL3, SMOSIC, and 602 

ASCAT SM data, respectively. The x-axis denotes the percentage values of the 603 

original data considered in the resampling. The y-axes on the left (red color) and right 604 

(blue color) describe correlation coefficients and RMSD, respectively. The ‘N’ above 605 

each subfigure denotes the number of available samples included in the corresponding 606 

boxplot. 607 

 Boxplots in Fig. 2 demonstrate that the temporal interpolation has a small impact 608 

on the final TCA error estimates. In line with expectations, for all cases shown in Fig. 609 

2 (a-d), correlation displays a decreasing trend while RMSD yields an increasing 610 
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trend as the sampling percentage of the original dataset decreases, which indicates the 611 

temporal interpolation indeed introduces additional errors into SM time series and 612 

consequently degenerates the accuracy of the final TCA error estimates. However, it 613 

is worthwhile mentioning that this degeneration is relatively small as correlation 614 

coefficients were typically high (> 0.9) and RMSD values were generally small (< 615 

0.004 m3/m3) for all the cases. Moreover, as the sampling percentage decreases from 616 

95% to 50%, the correlation decreased by a value smaller than 0.04 and the RMSD 617 

typically increased by a value smaller than 0.001 m3/m3 regarding their average and 618 

median values. These results demonstrate that the temporal interpolation applied in 619 

our work has a small impact on TCA error estimates and it is an efficient way to 620 

address the limited sample issue lies in the TCA time-variant scheme. 621 

3.2 Accuracy of TCA errors derived from different rescaling techniques 622 

 Pearson’s correlation coefficients and RMSE values between ground- and TCA-623 

based time-invariant errors for ASCAT and multiple passive SM products are 624 

summarized in Table 3 and Table 4, respectively. The impacts of the four rescaling 625 

techniques (i.e., VAR, NORM, CDF, and TCA_Self) and the two input selections (i.e., 626 

original values or anomalies) on the final TCA time-invariant errors are compared in 627 

these two tables. Moreover, QCA error estimates (marked as QCA_Self) were also 628 

considered to make a comparison with the TCA errors. The correlation and RMSE 629 

values of ASCAT are averaged from multiple ASCAT results that are obtained from 630 

the TCA implementations with multiple passive SM data used here. 631 

Table 3 Pearson’s correlation coefficients between ground- and TCA-based time-632 
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invariant errors for SMOSL3, SMOSIC, SMAPL3, SMAPIB, and ASCAT SM 633 

products. The time-invariant errors are derived from multiple rescaling techniques. 634 

The first and second recommendation strategies (excluding QCA_Self) to implement 635 

TCA are highlighted with green and yellow colors, respectively. All the 𝜌  values 636 

passed a t-test (𝛼 < 0.05) 637 

 NORM VAR CDF TCA_Self QCA_Self 

original 

values 

SMOSL3 0.25 0.39 0.42 0.65 0.92 

SMOSIC 0.15 0.31 0.40 0.54 0.97 

SMAPL3 0.19 0.20 0.34 0.38 0.96 

SMAPIB 0.21 0.19 0.16 0.50 0.74 

ASCAT 0.49 0.70 0.73 0.86 0.89 

anomalies 

SMOSL3 0.69 0.75 0.74 0.95 0.96 

SMOSIC 0.64 0.66 0.63 0.89 0.90 

SMAPL3 0.56 0.58 0.60 0.70 0.79 

SMAPIB 0.47 0.58 0.54 0.70 0.67 

ASCAT 0.74 0.79 0.79 0.93 0.90 

 638 

Table 4. The same as Table 3 but for the RMSE values 639 

 NORM VAR CDF TCA_Self QCA_Self 

original 

values 

SMOSL3 0.0256 0.0191 0.0176 0.0178 0.0220 

SMOSIC 0.0295 0.0188 0.0178 0.0276 0.2208 

SMAPL3 0.0265 0.0227 0.0214 0.0263 0.0575 

SMAPIB 0.0265 0.0207 0.0203 0.0241 0.0266 

ASCAT 0.0231 0.0156 0.0147 0.0194 0.0217 

anomalies 

SMOSL3 0.0086 0.0072 0.0074 0.0047 0.0046 

SMOSIC 0.0099 0.0075 0.0077 0.0062 0.0062 

SMAPL3 0.0102 0.0085 0.0087 0.0083 0.0086 

SMAPIB 0.0163 0.0184 0.0214 0.0158 0.0157 

ASCAT 0.0079 0.0075 0.0077 0.0060 0.0070 

 Tables 3 and 4 jointly show that the highest correlation and the smallest RMSE 640 

values between ground- and TCA-based time-invariant errors are obtained by 641 

applying TCA to SM anomalies and rescaling the resulting errors using TCA_Self. 642 
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Table 3 shows the correlations between these two kinds of errors were 0.95, 0.89, 643 

0.70, 0.70, and 0.93 for the SMOSL3, SMOSIC, SMAPL3, SMAPIB, and ASCAT 644 

SM products, respectively. This combination strategy of applying anomalies and 645 

TCA_Self was also recommended based on the RMSE results shown in Table 4, as 646 

the smallest RMSE value was typically observed when considering this combination 647 

strategy. Furthermore, Tables 3 and 4 indicate that there is a small difference between 648 

errors derived from TCA_Self and QCA_Self when considering anomalies as the SM 649 

inputs. By contrast, errors estimated from TCA_Self and QCA_Self exhibited evident 650 

discrepancies for the correlation and RMSE metrics when considering absolute values 651 

as inputs. In particular, as shown in Table 3, errors derived from QCA_Self appeared 652 

higher correlation coefficient than those derived from TCA_Self when using absolutes 653 

as SM inputs. 654 

The validation of TCA time-variant errors derived from different rescaling 655 

techniques using ground-based errors are revealed in Fig. 3. Specifically, TCA- and 656 

ground-based time-variant errors are compared using Pearson’s correlation and 657 

RMSE metrics for each experimental grid cell. The correlation coefficients and 658 

RMSE values were gleaned and construct the boxplots shown in Fig. 3. Since 659 

correlation and RMSE values of ASCAT SM product can be obtained for each TCA 660 

implementation that applied multiple passive SM datasets, all the ASCAT results are 661 

considered in Fig. 3 (e). 662 
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 663 

Fig. 3 Boxplots of the Pearson’s correlation coefficients (red) and RMSE values (blue) 664 

between ground- and TCA-based time-variant errors for the TCA implementations 665 

that consider (a) SMOSL3, (b) SMOSIC, (c) SMAPL3, (d) SMAPIB, and (e) ASCAT 666 

as the triplet inputs. In each subfigure, results derived from absolutes and anomalies 667 

are shown in the white and grey areas, respectively. The x-axis is the multiple 668 

rescaling techniques considered in the TCA. The y-axes on the left (red color) and 669 
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right (blue color) describe correlation coefficients and RMSE, respectively. 670 

 Similar to the conclusion of time-invariant errors drawn from Tables 3 and 4, 671 

boxplots in Fig. 3 also demonstrate that the highest correlation and the smallest 672 

RMSE values between ground- and TCA-based time-variant errors are typically 673 

obtained by the combination strategy that considers SM anomalies as TCA inputs and 674 

rescaling the resulting errors with TCA_Self. Based on this optimal combination 675 

strategy, TCA errors were strongly correlated with ground-based errors as associated 676 

correlation coefficients were 0.88 (0.92), 0.83 (0.87), 0.86 (0.91), 0.73 (0.79), and 677 

0.72 (0.79) for the ASCAT, SMOSIC, SMOSL3, SMAPIB, and SMAPL3 cases 678 

regarding the average (median) values. Corresponding scatterplots are illustrated in 679 

Fig. 4 and all available samples were included in such comparison. 680 

In contrast with the correlation metric, RMSE values derived from TCA_Self 681 

were significantly smaller than those obtained from the other three rescaling 682 

techniques (excluding QCA_Self) only for the SMOSL3 and SMAPIB cases. 683 

However, it has to be stressed that TCA_Self RMSE values were generally small for 684 

all cases, i.e., typically smaller than 0.015 m3/m3 for SMAPIB and smaller than 0.01 685 

m3/m3 for SMOSL3, SMOSIC, and SMAPL3. Furthermore, Fig. 3 implies that 686 

ground-based errors had a stronger correlation with QCA_Self errors than TCA_Self 687 

errors for all cases except for the ASCAT case. However, one can see that the 688 

discrepancies were relatively small for the TCA_Self and QCA_Self RMSE values. 689 
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 690 

Fig. 4 Scatterplots of ground- and TCA-based time-variant errors for (a) SMAPIB, (b) 691 

SMAPL3, (c) SMOSIC, (d) SMOSL3, and (e) ASCAT SM data. The original scatter 692 

points are binned in the increase of x-axis for ground-based error and y-axis for TCA-693 

based error, respectively, and colored based on the number of points included in the 694 

bin. All the 𝜌  values passed a t-test ( 𝛼 < 0.05 ). N describes the number of 695 

experimental grid cells considered in each scatterplot. 696 
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The scatterplots in Fig. 4 exhibit that TCA-based errors are strongly correlated 697 

with ground-based errors as their 𝜌  values were in the range from 0.62 to 0.93. 698 

However, it is notable that TCA- and ground-based errors had a relatively weak 699 

correlation ( 𝜌 = 0.62 ) for the SMAPIB case, and considerable points with an 700 

underestimation of the TCA-based errors were observed in Fig. 4 (a). Moreover, Fig. 701 

4 demonstrates that ground-based errors were generally greater than TCA-based 702 

errors. Given the above results, only TCA errors obtained from the optimal 703 

combination strategy, i.e., applying TCA to SM anomalies with TCA_Self, were 704 

considered in the following Sections 3.4 and 3.5. 705 

At the end of this section, the correlation and RMSE values between TCA- and 706 

ground-based time-variant errors are further investigated in Fig. 5 by a classification 707 

with six land cover types, which explores the TCA performance in different land 708 

covers. Since multiple passive SM data were applied in TCA, all the resulting 709 

correlation and RMSE values of ASCAT SM data were considered in Fig. 5. 710 

 711 

Fig. 5 Boxplots of (a) correlation coefficients and (b) RMSE between TCA- and 712 

ground-based errors classified by six land cover types for ASCAT and multiple 713 

passive SM products. Boxplots with limited available samples (< 30) are not 714 
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considered in such comparisons. 715 

 In general, Fig. 5 reveals that TCA can accurately estimate ASCAT and 716 

SMOS/SMAP time-variant errors in all the six land cover types as associated 717 

correlations are typically greater than 0.6 and the RMSE values are mostly smaller 718 

than 0.01 m3/m3. Nevertheless, Fig. 5 (a) shows relatively weak correlations between 719 

TCA- and ground-based errors in croplands for all SM datasets except for SMOSL3 720 

SM, which implies TCA method has relatively less power to efficiently characterize 721 

errors of satellite-based SM products in croplands. 722 

In comparison, TCA provides more accurate error estimates for SMOS SM than 723 

SMAP SM when considering ground-based errors as the benchmark. Even though 724 

several boxplots were not included in Fig. 5 due to their limited sample issue, it 725 

appears that the correlations presented a decreasing trend and the RMSE gave an 726 

increasing trend for SM products in the order of SMOSL3, SMOSIC, SMAPL3, and 727 

SMAPIB. Notably, the discrepancy between TCA- and ground-based errors is evident 728 

for SMAPIB SM, especially in woody savannas. 729 

3.3 Relative difference between time-variant and time-invariant errors 730 

This section identifies the relative difference between time-variant and time-731 

invariant SM errors derived from different rescaling techniques to find out (i) the 732 

necessity to consider and include time-variant SM errors in applications and (ii) which 733 

one is larger, time-variant or time-invariant error? To these ends, the ORD and RD 734 

metrics were used to address these two issues. For a given combination of passive SM 735 

dataset and rescaling technique, the ORD value can be calculated for each 736 
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experimental grid cell. Mean and median of the ORD values collected from all 737 

experimental pixels were used to describe the overall deviation between time-738 

invariant and time-variant errors. Note that only TCA errors obtained from SM 739 

anomalies were considered in this section. 740 

 741 

Fig. 6 Mean and median of the ORD values derived from the NORM, VAR, CDF, 742 

TCA_Self, and QCA_Self rescaling techniques for SMAPL3, SMAPIB, SMOSL3, 743 

SMOSIC, and ASCAT SM datasets. (a) and (b) represent ORD values obtained from 744 

the TCA- and ground-based evaluations, respectively. 745 

 The bar charts in Fig. 6 demonstrate that it is necessary to consider and include 746 

time-variant errors in actual applications. The ORD average and median values 747 

derived from different rescaling techniques were typically greater than 25% and 20% 748 

for the TCA-based and ground-based errors, respectively. In particular, ORD average 749 

and median values derived from the TCA_Self and QCA_Self methods were mostly 750 

greater than 50% and 40% for errors obtained from TCA and ground measurements, 751 

respectively. Comparing Fig. 6 (a) and (b), one can see that TCA-based ORD values 752 

were typically smaller than the ground-based ORD values, which implies TCA-based 753 
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time-variant errors have a larger variance than ground-based time-variant errors. 754 

 The first question proposed at the beginning of this section is explored using the 755 

ORD metric in the above analysis. However, the ORD metric only explores overall 756 

magnitude of the relative differences between time-variant and time-invariant errors. 757 

The RD metric is adopted here to answer the second question put forward in this 758 

section. 759 

 760 

Fig. 7 Fractions of the RD values that are greater (red) or smaller (blue) than 0 for the 761 

combination of five SM datasets, i.e., ASCAT, SMOSIC, SMOSL3, SMAPIB, and 762 

SMAPL3, and five rescaling techniques, i.e., QCA_Self, TCA_Self, CDF, VAR, and 763 

NORM. (a) and (b) present associated results based on the RD values derived from 764 

the TCA- and ground-based evaluations, respectively. 765 

 The RD results in Fig. 7 reveal that the relative magnitude relationship between 766 

time-invariant and time-variant errors is varied with the selection of rescaling 767 

technique used in TCA. In general, negative RD values were observed for the CDF, 768 

VAR, and NORM rescaling techniques, implying time-variant errors were smaller 769 
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than time-invariant errors. By contrast, positive RD values were found for the 770 

TCA_Self and QCA_Self rescaling techniques, which indicates time-variant errors 771 

were greater than time-invariant errors. It is worth mentioning that the RD results of 772 

SMAPIB SM are different from other cases, especially for the ground-based RD 773 

values shown in Fig. 7 (b). 774 

 The noticeable difference between time-variant and time-invariant errors 775 

demonstrated in Fig. 6 suggests that considering time-variant errors rather than time-776 

invariant errors in applications is necessary. Time-variant error better characterizes 777 

the temporal variability of SM errors and consequently, a more accurate output is 778 

expected from applications that strongly rely on an accurate error specification, such 779 

as data merging and data assimilation studies. Contrary to the expectation, time-780 

invariant errors do not provide an average reference for time-variant errors derived 781 

from TCA and their relative magnitude depends on the rescaling technique used. 782 

Simple rescaling techniques, such as VAR, CDF, and NORM, tend to underestimate 783 

SM time-variant errors when window-based TCA was applied. 784 

3.4 Evaluation consistency between TCA- and ground-based methods 785 

This section assesses the evaluation consistency between TCA- and ground-based 786 

methods regarding the time-variant errors of ASCAT and multiple passive SM data 787 

used in our work. For each experimental grid cell, the evaluation consistency was 788 

quantified as a percentage value, which represents the fraction of days that TCA- and 789 

ground-based methods provide consistent evaluation results. Four assessment results 790 

can be obtained for the four TCA implementations that consider SMOSL3, SMOSIC, 791 
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SMAPL3, and SMAPIB as the passive SM in the triplet. In each TCA implementation, 792 

the consistent evaluation includes two cases: both TCA and ground-based methods 793 

suggest (i) ASCAT or (ii) the given passive SM dataset has the smallest time-variant 794 

error. 795 

 796 

Fig. 8 Boxplots of a binary assessment of the evaluation consistency between TCA- 797 

and ground-based methods for ASCAT and four passive-based SM time-variant errors. 798 

The four columns illustrated in this figure denote the four TCA implementations that 799 

consider [GLDAS2, ASCAT, SMAPL3], [GLDAS2, ASCAT, SMAPIB], [GLDAS2, 800 

ASCAT, SMOSL3], and [GLDAS2, ASCAT, SMOSIC] as the triplet. 801 

 Boxplots in Fig. 8 show that there is a high consistency between TCA- and 802 

ground-based evaluations. These two kinds of methods provided consistent 803 
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evaluations in 74.7% (77.3%), 75.8% (79.8%), 79.6% (81.1%), and 78.6% (79.7%) of 804 

the investigation days on the global average (median) for the TCA implementations 805 

with SMAPL3, SMAPIB, SMOSL3, and SMOSIC SM, respectively. However, the 806 

boxplots with dark blue and cyan in Fig. 8 also exhibit that the TCA- and ground-807 

based evaluations provided inconsistent evaluation results in certain periods. Notably, 808 

TCA more or less underestimated ASCAT errors and overestimated passive-based 809 

SM errors and this phenomenon was more pronounced for the SMOS data than the 810 

SMAP data. 811 

3.5 Comparisons of time-variant errors by land cover classification for ASCAT 812 

and four passive SM products 813 

This section is an extensive analysis of the evaluation consistency shown in Sec. 814 

3.4 by pairwise comparing TCA- and ground-based time-variant errors for ASCAT 815 

and the four passive SM products, i.e., SMOSL3, SMOSIC, SMAPL3, and SMAPIB. 816 

However, this section focuses on the error comparison while Sec. 3.4 aims at 817 

quantifying the evaluation consistency between TCA- and ground-based methods. 818 

Also, this section provides insights into the relative strengths of ASCAT and the four 819 

passive SM products in different land cover types regarding their time-variant errors. 820 

Four comparison results are expected as TCA was applied to the four above passive 821 

SM products. In such comparisons, three cases were considered: (i) ASCAT or (ii) 822 

passive-based SM has the smallest time-variant error, and (iii) ASCAT has similar 823 

performance with passive SM as the difference between their errors is smaller than 824 

0.001 m3/m3. For a given TCA implementation that uses SMOS or SMAP SM as the 825 



46 

 

triplet, three percentage values corresponding to the above three cases can be 826 

calculated for each grid cell. The percentage values were collected from all pixels and 827 

were further categorized by six land cover types including grasslands (grass), open 828 

shrublands (OS), croplands (crop), savannas, woody savannas (WS), and forests. 829 

 830 

Fig. 9 Boxplots of the percentage values classified by six land cover types for the 831 

three cases: ASCAT (green boxes) or passive SM (blue boxes) has the smallest time-832 
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variant error and the difference between their errors is smaller than 0.001 m3/m3 833 

(yellow boxes). (a-d) represent the TCA- (white areas) and ground-based (grey areas) 834 

assessments that consider SMOSL3, SMOSIC, SMAPL3, and SMAPIB SM data, 835 

respectively. To guarantee reliable results, boxplots associated with limited available 836 

samples (< 30) are excluded. The two pies below each subfigure exhibit the overall 837 

performance of the three cases that include all available samples for the TCA- (on the 838 

left) and ground-based (on the right) assessments. 839 

 Overall, both TCA- and ground-based comparisons demonstrate that ASCAT 840 

provides more and more reliable SM observations as vegetation cover increases while 841 

passive-based SM provides more and more reliable observations as vegetation cover 842 

decreases. The boxplots in Fig. 9 exhibit that the percentage value typically becomes 843 

smaller for passive SM while getting larger for ASCAT SM as vegetation cover 844 

increases. For all the four cases illustrated in Fig. 9 (a-d), percentage values of the 845 

case that ASCAT provided similar performance with passive SM (the yellow boxes) 846 

had relatively small differences in the six land cover types, and associated percentage 847 

values were mostly smaller than 20%. 848 

 The pie charts in Fig. 9 confirm that TCA underestimated ASCAT errors and 849 

overestimated SMOS errors when considering ground-based evaluation as the 850 

benchmark. Comparing the pie charts on the left and right sides, the fraction value 851 

that ASCAT had better performance decreased by 16.6%, 9.1%, 7.1%, and 0.9% for 852 

the SMOSL3, SMOSIC, SMAPL3, and SMAPIB cases, respectively. Conversely, 853 

fraction value that passive-based SM provided smaller time-variant error increased by 854 
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15.8%, 8.9%, 8%, and 1.5% for the above four cases, respectively. However, this 855 

phenomenon is not evident for SMAPIB when compared with the SMOSL3, 856 

SMOSIC, and SMAPL3. 857 

Based on the land cover analysis in Fig. 9, we can further investigate the land 858 

cover types where TCA was found to underestimate ASCAT errors whereas 859 

overestimate passive SM errors. As shown in Fig. 9 (a), this phenomenon was 860 

observed in all the six land cover types for the SMOSL3 SM. However, this mismatch 861 

phenomenon was only evident in open shrublands and croplands for the SMOSIC SM 862 

illustrated in Fig. 9 (b). Although the available samples are relatively few for 863 

SMAPL3 in Fig. 9 (c), one can still see that the mismatch phenomenon was obvious 864 

in croplands. Compared with the above three SM products, the TCA performance is 865 

more complex for the SMAPIB SM. Fig. 9 (d) shows this mismatch phenomenon was 866 

prominent in croplands for the SMAPIB case. However, TCA was found to 867 

overestimate ASCAT errors and underestimate SMOS errors for the SMAPIB in 868 

savannas, woody savannas, and forests when considering ground-based errors as the 869 

benchmark. 870 

4 Discussion 871 

It is necessary to consider the rescaling technique used in TCA as the selection of 872 

rescaling method has a great impact on the accuracy of the final TCA error estimates, 873 

which is generally ignored in current TCA studies. Ground- and TCA-based errors 874 

achieve the highest correlation and the smallest RMSE when TCA is applied to SM 875 

anomalies with the TCA_Self rescaling technique. Rescaling the inputs against a 876 
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reference prior to TCA can implant the distribution information of the reference 877 

dataset to all TCA inputs. Consequently, the input SM products to TCA may show 878 

spurious large cross-correlation and make the resulting TCA errors smaller as well. 879 

By contrast, TCA_Self does not affect the original SM observations during the TCA 880 

calculation. It provides optimal rescaling parameters as it considers the individual 881 

random error properties and matches the variability of the jointly observed signal 882 

(Gruber et al., 2017). Although TCA_Self and other suboptimal rescaling techniques 883 

can address the first-order (additive) biases for considered datasets. However, the 884 

TCA_Self can address the second-order (multiplicative) biases while other suboptimal 885 

rescaling techniques cannot (Gruber et al., 2020). This can explain the better 886 

performance of TCA_Self than other rescaling techniques. 887 

TCA_Self was also recommended to use in data assimilation to remove the 888 

systematic bias between model simulation and observations when compared with 889 

VAR and CDF rescaling techniques (Yilmaz and Crow, 2013). However, TCA_Self 890 

was applied prior to TCA to rescale SM inputs in Yilmaz and Crow (2013) and error 891 

estimates were derived from the rescaled SM time-series. By contrast, the optimal 892 

strategy proposed in our work applied TCA_Self after the TCA implementation to 893 

rescale the error estimates. These two kinds of approaches are supposed to lead to the 894 

same error estimates (Gruber et al., 2016a). Our result is complementary to the study 895 

by Yilmaz and Crow (2013) and a synergy result can be drawn that TCA_Self is an 896 

optimal rescaling technique not only for removing systematic bias between SM 897 

datasets but also for estimating errors using the TCA method. 898 
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The ORD results suggest considering and including time-variant SM errors in 899 

applications as time-variant errors deviate from time-invariant errors by over 50% 900 

when TCA_Self is used. Distinct temporal variability of SM errors at short time scales 901 

such as seasonally, monthly, or daily time scales was confirmed in Loew and Schlenz 902 

(2011), Zwieback et al. (2012), Su et al. (2014a), and Wu et al. (2021). However, we 903 

found the relative magnitude relationship between time-invariant and time-variant 904 

errors is not the same for different rescaling techniques used in TCA, which has not 905 

been fully addressed by previous studies. Loew and Schlenz (2011) and Wu et al. 906 

(2021) found time-invariant errors are greater than time-variant errors. Our results 907 

confirmed this conclusion when SM products are rescaled against a reference dataset 908 

prior to TCA. However, time-invariant errors are smaller than time-variant errors 909 

when error estimates are rescaled by TCA_Self. This result indicates that simple 910 

matching technique, including NORM, VAR, and CDF, tends to underestimate time-911 

variant errors when less and less data pairs are considered in the moving-window-912 

based TCA. Moreover, SM inputs are rescaled against a reference dataset in the 913 

simple matching techniques, which can significantly influence the magnitude of the 914 

final TCA errors (Draper et al., 2013; Dorigo et al., 2015). 915 

 Even though we found a strong consistency between TCA- and ground-based 916 

evaluations, these two evaluations have distinct differences in two aspects. First, 917 

ground-based errors are larger than TCA-based errors for both time-invariant and 918 

time-variant cases, which is in line with Yilmaz and Crow (2014) and Dorigo et al. 919 

(2015). Second, TCA typically overestimates passive-based SM errors and 920 
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underestimates ASCAT errors when considering ground-based errors as the 921 

benchmark. The better TCA results for ASCAT SM could be due to its relatively 922 

better match with GLDAS2 SM as they have more consistent spatial 923 

representativeness in grid cells. The spatial representativeness of ASCAT and passive 924 

SM datasets is kept since we used the nearest neighbor resampling. This resampling 925 

method can preserve original SM values in an unaltered way but may introduce the 926 

difference of spatial representativeness between ASCAT and passive SM data in the 927 

resampling grid cells. 928 

Moreover, errors derived from SM anomalies instead of raw values were 929 

considered in our analysis. The anomalies are more sensitive to capture single events 930 

of drying and wetting resulting from rainfall (Dorigo et al., 2010). The coarser spatial 931 

resolution of passive-based SM data can act as a lowpass filtering and may make the 932 

passive SM datasets less sensitive to the drying and wetting events. By contrast, the 933 

finer spatial resolution of ASCAT allows to better capture drying and wetting, and 934 

this leads to a better consistency to GLDAS2. This is a plus point for the ASCAT, and 935 

consequently TCA deems GLDAS2 and ASCAT SM to provide more consistent 936 

observations, which may make the above phenomenon more obvious. It is worth 937 

noting that ASCAT is now moving to a 6.25 km grid, and then this comparative 938 

advantage of ASCAT may become even more prominent. Considering careful 939 

upscaling strategy, such as studies in Albergel et al. (2010), Crow et al. (2012), and 940 

Colliander et al. (2017), for ASCAT observations overlapping the GLDAS2 grids 941 

may account for this problem. However, the impact of spatial resampling approaches 942 
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on the TCA error estimates are not reported in current literature and this point of view 943 

needs further investigation in future studies. Recently, Gruber et al. (2020) also 944 

proposed this concern. This result also reminds researchers to carefully process SM 945 

datasets prior to TCA and prudently interpret the resulting errors in their studies. 946 

It is worth mentioning that SMAPIB is a newly developed SM product and it was 947 

applied in TCA only in a few studies, such as Zheng et al. (2022). Our analysis 948 

suggests that TCA errors derived from SMAPIB have relatively different 949 

performances compared with SMOSL3, SMOSIC, and SMAPL3 SM products, such 950 

as the relatively low correlations with ground-based errors in the scatterplot of Fig. 4 951 

(a), the correlation and RMSE comparisons in Fig. 5, the RD analysis in Fig. 7, and 952 

the binary assessments in Fig. 9. The discrepancy between SMAPIB and other three 953 

L-band SM products results from the fact that currently SMAPIB only provides SM 954 

observations acquired from the descending (06:00 AM) orbits whereas other SM 955 

products are reprocessed and binned into daily observations in our analysis. TCA 956 

requires the inputs to describe the same physical quantity (Scipal et al. 2008a) and 957 

therefore TCA deems SMAPIB SM to provide larger and distinctive error 958 

characterizations when compared with other SM products. 959 

The land cover analysis in Fig. 9 suggests that TCA has relatively less power to 960 

efficiently characterize SM errors in croplands. The anthropogenic activities, such as 961 

agricultural burning and harvesting, make it challenging to efficiently retrieve SM 962 

content in croplands due to the noticeable temporal variability in canopy structure, 963 

surface roughness, and diversity of crop types (Lawrence et al., 2014; Momen et al., 964 
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2017; Colliander et al., 2017). This leads to uncorrected time-variant errors for SMOS 965 

(Patton and Hornbuckle, 2013) and SMAP (Colliander et al., 2017) SM products, and 966 

increases the difficulty of decoupling SM content from other environmental 967 

information in the backscatter measurements for the ASCAT data. The imperfect 968 

description of vegetation cover variability and anthropogenic activities is also a 969 

concern for GLDAS2 SM data in croplands. Consequently, TCA- and ground-based 970 

errors exhibit less consistency in croplands. Considering more accurate temporal 971 

information of ancillary data in SM retrieval algorithms, such as irrigation and 972 

harvesting activities, may reduce time-variant SM errors and improve the TCA 973 

performance in the croplands. 974 

Both TCA- and ground-based evaluations suggest ASCAT provides more and 975 

more reliable observations as vegetation cover increases while passive-based SM has 976 

more reliable observations in land cover types featured with a relatively thin 977 

vegetation cover. The relatively poor performance of ASCAT data in sparsely 978 

vegetated areas may be explained by the fact that ASCAT observations are sensitive 979 

to subsurface scatterers during dry soil conditions and this phenomenon can extend 980 

into semi-arid environments with sparse to low vegetation cover, which is recently 981 

revealed by Wagner et al. (2022). The better performance of SMOS/SMAP than 982 

ASCAT data regarding the time-variant errors in our analysis may be explained by the 983 

fact that the L-band sensor makes SMOS/SMAP less sensitive to atmospheric effects 984 

such as rainfall events (Reul et al., 2012), which is a key variable that influences time-985 

variant errors in SM products (Wu et al., 2021). However, it must be mentioned that 986 
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47% of the investigation pixels belong to grasslands in our study and the associated 987 

ranking conclusions may not hold true when global landmass pixels are investigated. 988 

Different choices in the geographical area, processing, and data screening can lead to 989 

different conclusions and rankings of SM products. Besides, it is notable that SMOS 990 

and SMAP SM products are up to the latest standard in this work. By contrast, this is 991 

not the case for ASCAT SWI data as the Copernicus service did not invest in updating 992 

the algorithm recently. 993 

The robustness of applying TCA to temporally interpolated SM inputs was 994 

validated and we found this interpolation has a small impact on the final TCA error 995 

estimates. This is encouraging as one of the problems in the TCA time-variant scheme 996 

is the limited available samples that can be used in a moving-time-window. A small 997 

sample size used in TCA would underestimate the true value of random uncertainties 998 

(Tsamalis, 2022) and therefore makes the resulting errors unreliable. Our results filled 999 

this gap and the temporal interpolation is recommended to be applied in the moving-1000 

window-based TCA scheme to address the limited sample issue. Moreover, Chen et al. 1001 

(2018) applied the bootstrap method to guarantee reliable TCA estimates, and this 1002 

may be another way to solve the sample issue in TCA. 1003 

There are two limitations in this study. First, the value of 0.001 m3/m3 was 1004 

selected as the threshold to distinguish the case that ASCAT and passive-based SM 1005 

provide comparable errors from other possible cases. This threshold is significantly 1006 

smaller than the value of 0.005 m3/m3 used in Al-Yaari et al. (2014). The evaluation 1007 

results will change as the threshold value varies. Second, the depth discrepancy is 1008 
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considerable as satellite-based SM products generally present SM content in the 1009 

topsoil layer of several centimeters whereas the GLDAS2 SM data represent SM 1010 

simulations in a soil layer depth of 0-10 cm. During the ground-based evaluation, 1011 

passive SM observations retrieved from L-band brightness temperature data are more 1012 

consistent with the deeper sub-surface ground measurements (typically deeper than 5 1013 

cm) regarding the soil layer. This may make the ground-based evaluation put more 1014 

trust in the passive SM data compared with the ASCAT data. 1015 

5 Conclusions 1016 

In this study, we aimed at optimizing and validating the TCA technique with a 1017 

focus on the rescaling approaches and applied it to compare time-variant errors for 1018 

ASCAT and four passive-based SM products, i.e., SMOSL3, SMOSIC, SMAPL3, 1019 

and SMAPIB. Based on the obtained results the following conclusions can be drawn: 1020 

(1) Temporal interpolation introduces additional errors in the TCA error estimates. 1021 

Nevertheless, it has a relatively small impact on the accuracy of the final TCA error 1022 

estimates. 1023 

(2) Rescaling technique has a great impact on the final TCA error estimates. The 1024 

optimal combination strategy to implement TCA is applying TCA to SM anomalies 1025 

with the TCA_Self rescaling technique. Errors derived from this optimal combination 1026 

strategy achieve the highest correlation and the smallest RMSE when considering 1027 

conventional ground-based errors as the benchmark. 1028 

(3) Based on the optimal combination strategy, TCA-based errors are strongly 1029 

correlated with ground-based errors and their Pearson’s correlation coefficients are 1030 
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0.62, 0.72, 0.83, 0.89, and 0.93 for SMAPIB, SMAPL3, SMOSIC, SMOSL3, and 1031 

ASCAT SM data, respectively. The RMSE values are typically smaller than 0.01 1032 

m3/m3 for the above five SM products. 1033 

(4) Considering and including time-variant errors in applications is necessary as time-1034 

variant errors typically deviate from time-invariant errors by a value greater than 50%. 1035 

The relative magnitude between time-invariant and time-variant errors relies on the 1036 

rescaling technique used in TCA. Time-invariant errors are greater than time-variant 1037 

errors when SM products are rescaled against a reference dataset prior to TCA. By 1038 

contrast, time-invariant errors are smaller than time-variant errors when error 1039 

estimates are rescaled by the TCA_Self after the TCA implementation. 1040 

(5) The evaluation performances are strongly consistent for the TCA- and ground-1041 

based methods. They provide consistent evaluation results in 74.7% (77.3%), 75.8% 1042 

(79.8%), 79.6% (81.1%), and 78.6% (79.7%) of the investigation period on global 1043 

average (median) for the TCA implementations with SMAPL3, SMAPIB, SMOSL3, 1044 

and SMOSIC SM, respectively. However, they have two evident differences. First, 1045 

TCA-based errors are mostly smaller than ground-based errors. Second, TCA 1046 

generally underestimates ASCAT errors and overestimates passive-based SM errors 1047 

when considering ground-based errors as the benchmark. 1048 

(6) Both TCA- and ground-based methods suggest that ASCAT provides more and 1049 

more reliable SM observations with smaller time-variant errors as vegetation cover 1050 

increases while passive-based SM, i.e., SMAP and SMOS data here, provides more 1051 

and more reliable observations with smaller time-variant errors in land cover types 1052 
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featured with a relatively thin vegetation cover. 1053 

(7) Compared with other land cover types, TCA has relatively less power to 1054 

efficiently characterize SM errors in croplands. 1055 

 Error characterization is crucial for correctly interpreting and efficiently using 1056 

SM observations obtained from satellites, hydrological modeling, and ground 1057 

measurements. Our results reveal that the selection of rescaling techniques has a great 1058 

impact on the TCA error estimates, which did not receive much attention in current 1059 

TCA studies. TCA can accurately evaluate SM products only when TCA is properly 1060 

implemented. Our study is a strong reaffirmation of previous work in related studies 1061 

that uses TCA and our study is crucial for communities who want to use TCA (and 1062 

extends) for error estimation, data merging and data assimilation of satellite-based SM 1063 

data. 1064 
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Supplementary 1538 

Matlab codes with an example to estimate time-variant errors based on the TCA_Self 1539 

rescaling technique is provided along with this manuscript. Please cite this manuscript 1540 

if you intend to use the provided Matlab codes. 1541 
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List of Figure Captions 1543 

Fig. 1 Spatial distribution of 759 grid cells that include selected ISMN stations. 1544 

Fig. 2 Boxplots of correlation coefficients (red) and RMSD values (blue) between time-1545 

variant errors derived from the original SM data without interpolation and the SM time series 1546 

resampled by different percentage values of the original data. (a-d) exhibits the results of 1547 

applying interpolation to SMOSL3, SMAPL3, SMOSIC, and ASCAT SM data, respectively. 1548 

The x-axis denotes the percentage values of the original data considered in the resampling. 1549 

The y-axes on the left (red color) and right (blue color) describe correlation coefficients and 1550 

RMSD, respectively. The ‘N’ above each subfigure denotes the number of available samples 1551 

included in the corresponding boxplot. 1552 

Fig. 3 Boxplots of the Pearson’s correlation coefficients (red) and RMSE values (blue) 1553 

between ground- and TCA-based time-variant errors for the TCA implementations that 1554 

consider (a) SMOSL3, (b) SMOSIC, (c) SMAPL3, (d) SMAPIB, and (e) ASCAT as the triplet 1555 

inputs. In each subfigure, results derived from absolutes and anomalies are shown in the white 1556 

and grey areas, respectively. The x-axis is the multiple rescaling techniques considered in the 1557 

TCA. The y-axes on the left (red color) and right (blue color) describe correlation coefficients 1558 

and RMSE, respectively. 1559 

Fig. 4 Scatterplots of ground- and TCA-based time-variant errors for (a) SMAPIB, (b) 1560 

SMAPL3, (c) SMOSIC, (d) SMOSL3, and (e) ASCAT SM data. The original scatter points 1561 

are binned in the increase of x-axis for ground-based error and y-axis for TCA-based error, 1562 

respectively, and colored based on the number of points included in the bin. All the ρ values 1563 

passed a t-test (𝛼 < 0.05). N describes the number of experimental grid cells considered in 1564 

each scatterplot. 1565 

Fig. 5 Boxplots of (a) correlation coefficients and (b) RMSE between TCA- and ground-1566 

based errors classified by six land cover types for ASCAT and multiple passive SM products. 1567 

Boxplots with limited available samples (< 30) are not considered in such comparisons. 1568 

Fig. 6 Mean and median of the ORD values derived from the NORM, VAR, CDF, TCA_Self, 1569 

and QCA_Self rescaling techniques for SMAPL3, SMAPIB, SMOSL3, SMOSIC, and 1570 

ASCAT SM datasets. (a) and (b) represent ORD values obtained from the TCA- and ground-1571 
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based evaluations, respectively. 1572 

Fig. 7 Fractions of the RD values that are greater (red) or smaller (blue) than 0 for the 1573 

combination of five SM datasets, i.e., ASCAT, SMOSIC, SMOSL3, SMAPIB, and SMAPL3, 1574 

and five rescaling techniques, i.e., QCA_Self, TCA_Self, CDF, VAR, and NORM. (a) and (b) 1575 

present associated results based on the RD values derived from the TCA- and ground-based 1576 

evaluations, respectively. 1577 

Fig. 8 Boxplots of a binary assessment of the evaluation consistency between TCA- and 1578 

ground-based methods for ASCAT and four passive-based SM time-variant errors. The four 1579 

columns illustrated in this figure denote the four TCA implementations that consider 1580 

[GLDAS2, ASCAT, SMAPL3], [GLDAS2, ASCAT, SMAPIB], [GLDAS2, ASCAT, 1581 

SMOSL3], and [GLDAS2, ASCAT, SMOSIC] as the triplet. 1582 

Fig. 9 Boxplots of the percentage values classified by six land cover types for the three cases: 1583 

ASCAT (green boxes) or passive SM (blue boxes) has the smallest time-variant error and the 1584 

difference between their errors is smaller than 0.001 m3/m3 (yellow boxes). (a-d) represent the 1585 

TCA- (white areas) and ground-based (grey areas) assessments that consider SMOSL3, 1586 

SMOSIC, SMAPL3, and SMAPIB SM data, respectively. To guarantee reliable results, 1587 

boxplots associated with limited available samples (< 30) are excluded. The two pies below 1588 

each subfigure exhibit the overall performance of the three cases that include all available 1589 

samples for the TCA- (on the left) and ground-based (on the right) assessments. 1590 
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List of Table Captions 1592 

Table 1 A summary of the SM products used in this work 1593 

Table 2 ISMN ground stations from sparse networks 1594 

Table 3 Pearson’s correlation coefficients between ground- and TCA-based time-invariant errors 1595 

for SMOSL3, SMOSIC, SMAPL3, SMAPIB, and ASCAT SM products. The time-invariant errors 1596 

are derived from multiple rescaling techniques. The first and second recommendation strategies 1597 

(excluding QCA_Self) to implement TCA are highlighted with green and yellow colors, 1598 

respectively. All the ρ values passed a t-test (𝛼 < 0.05) 1599 

Table 4 The same as Table 3 but for the RMSE values 1600 


