

DIPLOMARBEIT

Zum leistbaren Wohnbau in Holzmischbauweise

ausgeführt zum Zwecke der Erlangung des akademischen Grades einer Diplom-Ingenieurin unter der Leitung von

Associate Prof. Dipl.-Ing. Dr. techn. Alireza Fadai E 259.2

Institut für Architekturwissenschaften
Forschungsbereich für Tragwerksplanung und Ingenieurholzbau
eingereicht an der Technischen Universität Wien

Fakultät für Architektur und Raumplanung

von

Patrícia Pozsgai

Mat.-Nr.: 01226444

	Ich	hahe zur Kenntnis genommen	dass ich zur Drucklegung meir	ner Arbeit unter der Bezeichnun
--	-----	----------------------------	-------------------------------	---------------------------------

DIPLOMARREIT

DIPLOMARBEII
nur mit Bewilligung der Prüfungskommission berechtigt bin.
Ich erkläre weiters an Eides statt, dass ich meine Diplomarbeit nach den anerkannten Grundsätzen für wissenschaftliche Abhandlungen selbständig ausgeführt habe und alle verwendeten Hilfsmittel, insbesondere die zugrunde gelegte Literatur genannt habe.
Datum Unterschrift

Danksagung

An dieser Stelle möchte ich mich allen voran bei Herrn Associate Professor Dipl.-Ing. Dr.techn. Alireza Fadai für die Bereitstellung des Themas und seine fachliche Unterstützung während der Erstellung der wissenschaftlichen Arbeit bedanken.

Ebenfalls möchte ich mich bei meinen Eltern bedanken, die mir das Studium durch finanzielle und moralische Unterstützung ermöglicht haben.

Ganz besonderer Dank gilt meinen Freund Thomas, der mich im Alltag unterstützt und motiviert hat.

Kurzfassung

Wohnen ist ein menschliches Grundbedürfnis, das gegenwärtig aber zum Luxusgut geworden ist, da der Wohnraum in vielen Städten Mangelware ist. Die Wohnkosten haben mittlerweile ein Niveau erreicht, das früher unvorstellbar war.

In dieser Arbeit wird die Frage behandelt, inwiefern eine kostenbewusste Planung die treibenden Baukosten senken kann. Die Schwerpunkte der Arbeit bestehen darin, die optimale Bauweise zu finden und Einsparungsmöglichkeiten aufzuzeigen.

Um dieses Ziel zu erreichen, werden zuerst die Grundlagen und die Entwicklungsperioden des sozialen Wohnbaus definiert. Nachfolgend werden die bautechnischen, bauphysikalischen und ökologischen Anforderungen der Errichtung eines Wohnobjektes vorgestellt. Die Ergebnisse sind durch eine wirtschaftliche und bauphysikalische Analyse von vier Referenzobjekten entstanden. Der Fokus liegt neben dem allgemeinen Konzept auf der Bauweise. Um die optimale Bauweise zu finden, werden während der Studie neben den verwendeten Bauteilen alternative Konstruktionen vorschlagen, die bessere bauphysikalische, ökologische und wirtschaftliche Eigenschaften aufweisen.

Durch die Studie konnte gezeigt werden, dass die bewusste Planung und die optimale Wahl der Bauweise Kosten reduzieren kann. Deswegen ist es notwendig, die zweckmäßige, flexible und wirtschaftliche Gebäude- und Grundrissgestaltung möglichst früh in der Planungsphase zu berücksichtigen. Die Herstellungskosten der Holzmassiv- und der Holzrahmenbauweise liegen nicht wesentlich höher als die der Massivbauweise. Allerdings zeigt die ökologische Bewertung, dass die eingesetzten Baustoffe der Holzbauweise niedrigere Bewertungspunkte als die der Massivbauweise aufweisen, sodass erstere aus ökologischer Sicht die beste Lösung sind.

Abstract

Housing is a basic human need. However, it has become a luxury due to lack of space in most cities. Housing prices have reached an unimaginable level.

This thesis discusses how the process of designing housing, followed by an architect who is aware of the required construction costs, can reduce the cost of the housing to consumers. The focus of this thesis is to find the optimal method of construction that also maintains a low budget.

To reach this goal, the stages in the development of social housing are first defined. The structural engineering, building physics and ecological requirements of construction are then discussed. The results are evaluated according to the economic and physical analysis of four reference projects, which focus on the method of construction in addition to the overall design of the project. To find the optimal low-budget method of construction, alternative components with better specifications are proposed.

This thesis shows that conscious design and the correct choice of construction method can reduce the overall cost of construction. It is therefore crucial to consider these aspects in the early phase of design. The cost of solid-wood construction and wood-frame construction is not much higher than that of construction with heavy materials such as concrete. Furthermore, an ecological evaluation showed which building materials provide the best alternative. The applied materials show lower ratings than massive construction.

Inhaltsverzeichnis

1.Einleitung	11
2. Die Entwicklungsperioden und die Grundbegriffe des sozialen Wohnbaus	13
2.1 Die Entwicklungsperioden des sozialen Wohnbaus	13
2.1.1 Die Ära der Bassenawohnungen	13
2.1.2 Wohnsituation nach dem Ersten Weltkrieg	14
2.1.3 Wilde Siedlerbewegung	14
2.1.4 Finanzpolitik des Roten Wien	15
2.1.5 Leistbare Wohnungen	15
2.1.6 Wohnungsnot nach dem Zweiten Weltkrieg	17
2.2 Grundbegriffe des sozialen Wohnbaus	18
2.2.1 Geförderter Wohnbausektor Österreich	18
2.2.2 Wohnbauförderung	19
2.2.3 Bauträgerwettbewerb	21
2.3 Zahlen und Statistiken	23
2.3.1 Demographische Veränderungen	23
2.3.2 Wohnungsmarkt	24
2.3.3 Wohnkostenbelastung	25
3.Rahmenbedingungen der Gebäudeerrichtung	28
3.1 Rechtliche Rahmenbedingungen	28
3.1.1. Die Wiener Bauordnung	28
3.1.2 Flächenwidmungs- und Bebauungsplan	29
3.2 Bauliche Rahmenbedingungen	30
3.2.1 Brandschutz	30
3.2.2 Schallschutz	35
3.2.3 Wärmeschutz	37
3.2.4 Bauweise	39
3.2.5 Ökologie	46
3.2.6 Begriff Passivhaus	47
4.Projektanalyse	51
4.1 Referenzobjekte	51
4.1.1 Referenzobjekt	53
4.1.2 Referenzobjekt II	75
4.1.3 Referenzobjekt III	96
4.1.4 Referenzobjekt IV	119
4.2 Bewertung die Ergebnisse	137

5. Schlussfolgerung und Ausblick	162
Literaturverzeichnis	167
Abbildungsverzeichnis	179
Anhang	182
REFERENZOBJEKT I	
REFERENZOBJEKT II	197
REFERENTOBJEKT III	211
REFERENZOBJEKT IV	226

1. Einleitung

Was bedeutet es, zu wohnen?

Die österreichische Bevölkerung wächst stetig, deswegen besteht ein großer Bedarf an bezahlbarem Wohnraum. Wohnen ist gegenwärtig nicht für alle Bevölkerungsschichten erschwinglich da die Wohnkosten äußerst hoch liegen. Wien ist die Bundeshauptstadt und mit über 1,91¹ Millionen Einwohnern die bevölkerungsreichste Stadt Österreichs.

Aufgrund der wachsenden Bevölkerung steigt die Nachfrage nach bezahlbarem Wohnraum. Gleichzeitig nimmt die Anzahl bebaubarer Flächen ab. Darüber hinaus verteuern sich die Grundstückskosten, dies verursacht höhere Wohnkosten. Für die steigenden Kosten sind nicht nur die Baulandverknappung, sondern auch die steigenden Materialkosten, die Erhöhung der Energieeffizienz, die neuen Bauvorschriften, Richtlinien und gebäudetechnischen Voraussetzungen verantwortlich. Die bautechnischen Vorschriften wurden modernisiert, deswegen verschärften sich die bauphysikalischen Anforderungen, die erforderliche CO₂-Ersparnis und die Vorgaben hinsichtlich barrierefreier Planung, sodass höhere Errichtungskosten entstehen.

In Rahmen dieser Arbeit soll analysiert werden, inwiefern eine kostenoptimierte Planung die treibenden Baukosten senken kann. Die Schwerpunkte der Arbeit bestehen darin, die optimale Bauweise zu finden und Einsparungsmöglichkeiten aufzuzeigen.

Im ersten Teil der Arbeit werden die Entwicklungsperioden des sozialen Wohnbaus in Wien vorgestellt. Nach dem Überblick zur sozialen Wohnsituation werden die Rahmenbedingungen des Wiener Wohnens definiert. Die gebäude- und bautechnischen Anforderungen sind bei der Analyse unerlässlich. Um die Forschungsfrage beantworten zu können, werden vier Wohnbauprojekte untersucht. Davon wurden zwei Objekte in Holzund zwei in Massivbauweise errichtet. Die vier Objekte werden für soziale Wohnbauzwecke nach Passivhaus-Standard gebaut. Das architektonische Konzept und die Art der Bauweise stehen im Mittelpunkt der Analyse.

_

¹Magistratsabteilung 23, Bevölkerungsstand-Statistiken

Daneben erfolgen kriterienbasierte Bauteilberechnungen. Diese Berechnungen dienen als Grundlage, um die optimale Bauweise in bauphysikalischer, ökologischer und wirtschaftlicher Hinsicht vorschlagen zu können. Danach werden die Ergebnisse auf Basis der Untersuchung und der Berechnungen ausgewertet und gegenübergestellt. Abschließend werden die Resultate anhand der bauphysikalischen und technischen Analyse der Referenzobjekte zusammengefasst.

2. Die Entwicklungsperioden und die Grundbegriffe des sozialen Wohnbaus

Der soziale Wohnungsbau in Wien hat eine lange Tradition, die bis zum Anfang des 20. Jahrhunderts zurückreicht. Das Rote Wien ist ein Ausgangspunkt der heutigen Wohnsituation.

2.1 Die Entwicklungsperioden des sozialen Wohnbaus

Leistbares Wohnen ist nicht nur eine idyllische Vorstellung. Wien hat bereits in den 1920er Jahren bezahlbare, qualitativ hochwertige und soziale Wohnungen für breite Bevölkerungsschichten zur Verfügung gestellt.

Im Zeitalter des roten Wiens wurden Tausende von Wohnungen für einkommensschwache Haushalte errichtet. Die soziale Wohnbautätigkeit des Roten Wien war einzigartig und weltweit bedeutungsvoll.

Seit Beginn dieses kommunalen Wohnbauprogramms wurden bis heute ca. 200 000 geförderte und 220 000 Gemeindewohnungen² gebaut. Das primäre Ziel des sozialen Wohnbaus war die Schaffung kostengünstigen Wohnraums.

2.1.1 Die Ära der Bassenawohnungen

Der Auslöser war die im Jahr 1840 entstandene Wohnungsnot. Der Grund dafür war die explosionsartige Steigerung der Einwohnerzahl. Zwischen 1840 und 1918 stieg die Bevölkerung in Wien von 440 000 auf mehr als zwei Millionen Menschen an.³ Dadurch wurde die Wohnraumversorgung besonders problematisch. Für Menschen aus wohlhabenden Gesellschaftsschichten war es einfach, eine Wohnung zu finanzieren, aber die ärmere Arbeiterklasse konnte sich kaum Wohnungen leisten. Aufgrund dessen lebte die untere Schicht der Bevölkerung in prekären Wohnverhältnissen in sogenannten Bassenawohnungen. Dieser Wohnungstyp wurde um die Jahrhundertwende zum 20. Jahrhundert für Arbeiter und andere arme Bevölkerungsklassen errichtet. Diese Wohnungen waren Ein- oder Zweizimmerwohnungen mit Küche, wobei die Küche sich nach

³ Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH,2014, S.50.

 $^{^2}$ Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH,2014, S. 4.

Gangseite orientierte. Die Wohnungen waren nicht mit Wasser erschlossen, sondern es gab eine Wasserstelle, die sogenannte Bassena, und eine Toilette pro Etage am Gang für Gesamtverbrauch. Um die Mietkosten bezahlen zu können, wohnten mehrere Familien in einer Wohnung zusammen oder es wurden 'Bettgeher' aufgenommen. Die dadurch entstehende extrem hohe Menschendichte führte zu schlechten hygienischen Zuständen. Aufgrund dessen traten Krankheiten wie Tuberkulose auf, und die Arbeitslosen- und Obdachlosenzahlen stiegen weiter. Ab dem Jahr 1910 kam es zunehmend zu Mieterstreiks.⁴

2.1.2 Wohnsituation nach dem Ersten Weltkrieg

Nach dem Ersten Weltkrieg ging die Bevölkerungszahl in der Stadt Wien zurück und viele Wohnhäuser waren während des Kriegs zerstört worden. Die Situation war generell konfliktgeladen, deswegen wurde von der Regierung im Jahr 1917 einen Mietzinsstopp ('Friedezins') eingeführt, um Unruhen zu vermeiden. Jedoch wurde die vor dem Ersten Weltkrieg entstandene Wohnungsnot danach noch drastischer. Um sie lindern zu können, musste die Stadt weitere kommunale Wohnbauten errichten. Nach dem Ersten Weltkrieg waren ca. 90 000 Einwohner obdachlos und benötigten daher dringend eine Wohnmöglichkeit. Um die bestehende Wohnsituation zu verbessern, gab es zwei Lösungsmöglichkeiten: den kommunalen Wohnbau und die 'wilde Siedlerbewegung'.5

2.1.3 Wilde Siedlerbewegung

Im Jahr 1918 begann die wilde Siedlerbewegung: Unbebaute Grundstücke am Stadtrand wurden in Anspruch genommen, um Wohnunterkünfte und Kleingärten zu errichten.⁶ Ab dem Jahr 1921 wurden Siedlungsgenossenschaften wie die "Gemeinwirtschaftliche Siedlungs- und Baustoffanstalt" und der "Österreichische Verband für Siedlungs- und Kleingartenwesen" gegründet. Noch im selben Jahr wurde das "Bundes-Wohn- und Siedlungsfondsgesetz" beschlossen, das eine finanzielle Unterstützung bedeutete. Aufgrund dessen wurden die ersten Gemeinschaftsbauten errichtet.⁷

_

⁴Vgl. Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH, 2014, S. 50.

⁵ Vgl. Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH, 2014, S. 52.

⁶ Vgl. Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH, 2014, S. 52.

⁷ Peter Eigner / Herbert Markus/ Andreas Resch, Sozialer Wohnbau in Wien, Eine historische Bestandsaufnahme, S. 9.

2.1.4 Finanzpolitik des Roten Wien

Im Jahr 1919 wurde Jakob Reumann zum ersten sozialdemokratischen Bürgermeister gewählt. Mit seiner Regierungszeit begann eine moderne soziale Wohnbaupolitik. Deren Ziele waren Arbeitslosenunterstützung, Mieterschutz, Beheben der Wohnungsnot, Abschaffung Errichten leistbarer Wohnungen und gleichzeitig die Grundstückspekulation. Um die dafür nötigen umfangreichen Investition tätigen zu können, brauchte die Stadt einen stabilen Finanzstatus. Im Jahr 1921 wurde vom Parlament beschlossen, dass für Wien eine Abtrennung von Niederösterreich möglich ist, damit Wien als ein selbstständiges Bundesland funktionieren kann. Diese Unabhängigkeit hatte viele Vorteile, einer davon war die völlige Steuerhoheit. Um die neu entstandene Situation bewältigen zu können, wurde eine neue Steuerreform durch den Finanzstadtrat eingeführt.8

"...Unbeirrt von all dem Geschrei der steuerscheuen besitzenden Klassen holen wir uns das zur Erfüllung der vielfachen Gemeindeaufgaben notwendige Geld dort, wo es sich wirklich befindet!"

Die von Hugo Breitner eingeführte Reform war wirkungsvoll und führte zu einem sozialen Ausgleich. Hugo Breitner schaffte die alte Mietzinssteuer ab. Er führte stattdessen eine Wohnbausteuer ein, die progressiv und zweckgebunden war. Das ausgeklügelte System war so eingerichtet, dass die Bewohner einer Arbeiterwohnung geringer und die Besitzer von Luxusobjekten wie Villen oder Stadtpalais hoch besteuert wurden. Die Wohnbausteuer führte zur Reduzierung der Grundstücksspekulation und zu sinkenden Grundstückspreisen. So war es für die Gemeinde möglich, günstige Grundstücke zu erwerben. 10

2.1.5 Leistbare Wohnungen

Das erste kommunale Wohnbauprogramm wurde 1923 beschlossen, um 25 000 Wohnungen innerhalb von fünf Jahren zu errichten. Dieses Wohnbauprogramm war erfolgreich, sodass 1927 beschlossen wurde, weitere 30 000 Wohnungen zu bauen. Dies

⁸ Vgl. Helmut Weihsmann, Das Rote Wien, Sozialdemokratische Architektur und Kommunalpolitik 1919-1934, 2. Ausgabe, Wien, Promedia, 2002, S. 25-26.

⁹ Helmut Weihsmann, Das Rote Wien, Sozialdemokratische Architektur und Kommunalpolitik 1919-1934, 2. Ausgabe, Wien, Promedia, 2002, S.28.

¹⁰ Vgl. Helmut Weihsmann, Das Rote Wien, Sozialdemokratische Architektur und Kommunalpolitik 1919-1934, 2. Ausgabe, Wien, Promedia, 2002, S. 31-33.

bedeutete eine Errichtung von ca. 9000 Wohnungen pro Jahr. ¹¹ Die Vergabe der Wohnungen erfolgte nicht nach Einkommen, sondern nach Bedarf der Wohnungssuchende. Die Zuteilung der Wohnungen geschah nach einem Punktesystem, in dem die damaligen Lebenszustände und das Einkommen der Wohnungswerber zusammengefasst wurden. Die Wohnungssuchenden wurden in besondere Kategorien eingereiht, wie 'in Wien geboren', 'Wohnungshygiene' oder 'heimatberechtigt in Wien'. So konnte das Wohnungsamt die neu errichteten Wohnungen leichter nach Bedarf zuteilen. ¹²

Staatsbürger	1	Invalidität 66-99%	2
In Wien geboren	4	Halbinvalidität weniger als 66%	1
Heimatberechtigt in Wien	1	Kündigung	5
In Wien seit 1. August 1914 ansässig	3	Untermieter	2
In Wien erst seit einem Jahr ansässig	1	Bettgeher	2
Jung vermählt	1	Wohnungshygiene	1-2
Mehr als 1 Jahr vermählt	2	Unbewohnbarkeit	5
Lebensgemeinschaft	1	Obdachlosigkeit	5
Pro Kind unter 14 Jahren	1	Küchenmangel	1
Pro Kind über 14 Jahren	2	Überbelegung der Wohnung	1
Getrennter Haushalt	2	Krankheit im Zusammenhang mit Wohnverhältnissen	1
Schwangerschaft	1		
Kriegsbeschädigt	5		

Abbildung 1.Punktesystem zur Vergabe von Gemeindewohnungen zur Zeit des "Roten Wien"¹³

Die Bebauungsdichte in der Gründerzeit betrug 85 Prozent, bei Neubauten waren nur 50 Prozent zulässig. Die Wohnungen wurden nach einem neuen architektonischen Vorstellungen gebaut, um ein verbessertes Lebensniveau und Wohnqualität gewährleisten zu können. Um gesunde Lebensbedingungen zu schaffen erhielten direkte Besonnung und Belüftung eine große Bedeutung. Die neuen Wohnungen wurden mit eigenen Nasszellen und Toiletten ausgestattet, in jede Küche wurde Wasser eingeleitet.¹⁴ 75 Prozent der neu

_

¹¹ Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH,2014, S. 56

¹² Vgl. Helmut Weihsmann, Das Rote Wien, Sozialdemokratische Architektur und Kommunalpolitik 1919-1934, 2. Ausgabe, Wien, Promedia, 2002, S. 37

¹³ Eigene Darstellung mit Daten von http://www.demokratiezentrum.org/themen/wien/wiengemeindebau/historische-entwicklung.html?type=98 Zugriff am 10.11.2019

¹⁴ Vgl. Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH,2014, S. 58-62

errichteten Gemeindewohnungen hatten eine 38 m² große Nutzfläche und 25 Prozent der Wohnungen hatten eine 48 m² betragende Nutzfläche.¹5

Die monatlichen Kosten der Gemeindewohnung waren sozialverträglich günstig. Für die Ermittlung des optimalen Mietzinses wurden die Verkehrslage und die Ausstattung der Wohnung berücksichtigt. Die Miete betrug für die kleinere Wohnung mit ca. 38 m² monatlich 7,60 Schilling (ca. 0,55 €) und für die größere Wohnung waren es 9,60 Schilling (ca. 0,70 €). Diese Mietkosten waren für die Arbeiterklasse leistbar, sie betrugen ca. 4–5 Prozent eines Arbeiterlohns. Mit den Mietpreisregulierungen wurde eine deutliche Senkung der Mietkosten erreicht, die vor dem Ersten Weltkrieg ca. 20–25 Prozent eines monatlichen Einkommens ausmachten.¹6

Eine Krise des kommunalen Wohnbaus entstand in den frühen dreißiger Jahren des 20. Jahrhunderts. Die Finanzierung des kommunalen Wohnbaus wurde aufgrund der Wirtschaftskrise schwieriger, deswegen musste die Bauphase eingestellt werden.

2.1.6 Wohnungsnot nach dem Zweiten Weltkrieg

Nach dem Zweiten Weltkrieg waren fast 87 000 Wohnungen zerstört, viele Menschen waren obdachlos. Das Ziel der Stadt Wien war ein möglichst rascher Wiederaufbau und die Schaffung weiterer Wohnmöglichkeiten. Die neue Bauphase begann im Jahr 1947, womit die Stadtverwaltung versuchte, die entstandene Wohnungsnot zu lindern. Es sollten nicht nur neue Wohnungen errichtet, sondern viele bestehende Wohnprojekte umgebaut werden. Im Zuge dessen wurden Wohnungen zusammengelegt, um der Bevölkerung größere Wohnflächen anzubieten. Von 1951 bis 1970 wurden weitere 96 000 Wohneinheiten gebaut. Mit Hilfe von Vorfertigung und Montagebauweise erhöhte sich die Wohnbaukapazität und die Bauzeiten konnten verkürzt werden. ¹⁷

Im Rahmen der Wohnbauförderung wurden in den Jahren 1973 bis 1982 insgesamt 67 428 neue Wohnungen fertiggestellt. Diese Wohnungen wurden von verschiedenen gemeinnützigen Baugesellschaften errichtet. Diese Baugesellschaften und Genossenschaften übernahmen ab den 1980er Jahren die Bautätigkeit in Wien. Im Jahr

¹⁵ Vgl. Helmut Weihsmann, Das Rote Wien, Sozialdemokratische Architektur und Kommunalpolitik 1919-1934, 2. Ausgabe, Wien, Promedia, 2002, S. 40

¹⁶ Vgl. Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH,2014, S. 60

¹⁷ Vgl. Stadt Wien-Wiener Wohnen, Wiener Wohnbau 1920-2020, 1. Auflage, Wien, Verlag Holzhausen GmbH,2014, S. 64

1984 wurde vom Gemeinderat der Wiener Bodenbereitstellungs- und Stadterneuerungsfonds gegründet. Seit 1995 erfolgt die Wohnungsvergabe durch Bauträgerwettbewerbe. ¹⁸

2.2 Grundbegriffe des sozialen Wohnbaus

Im folgenden Kapitel werden die Grundbegriffe des Wohnbausektors erläutert. Im zweiten Teil des Kapitels wird mit Hilfe aktueller Statistiken die heutige Wohnbausituation analysiert.

2.2.1 Geförderter Wohnbausektor Österreich

Die soziale Wohnbaupolitik und die kommunale Wohnbautätigkeit in Österreich gehen auf die 1920er Jahre zurück. Das Ziel war es damals, qualitativ hochwertige Wohnungen für alle Bevölkerungsschichten zur Verfügung zu stellen. Dieses Ziel der sozialen Wohnbaupolitik ist während der nachfolgenden Jahrzehnte gleichgeblieben, um optimale Wohnungsmöglichkeiten für sozial schwächere Haushalte zu schaffen. Das relevanteste Merkmal dieser Wohnungen war die Leistbarkeit. Die Wiener Wohnbauförderung hat eine langjährige Tradition und gilt auch heute als ein zentrales Instrument der Wohnbaupolitik, damit die gegenwärtig steigende Bevölkerungszahl mit neuerrichteten Wohnungen versorgt werden kann. Das soziale Wohnbausegment lässt sich in Genossenschafts- und Gemeindewohnungen differenzieren.

Gemeindewohnung

Die Wiener Gemeindewohnung ist ein gut funktionierendes System, das weltweit als Vorbild gilt. Die Gemeindewohnungen werden von der Gemeinde errichtet und mit ihnen dürfen keine Gewinne erzielt werden, deswegen ist die Mietpreissteigerung geregelt und beschränkt. Für die Wohnungsvergabe müssen einige Voraussetzungen erfüllt werden, damit eine Zuteilung erfolgen kann. Für Gemeindewohnungen muss ein "begründeter Wohnbedarf nachgewiesen werden".¹⁹

https://wien.arbeiterkammer.at/beratung/Wohnen/jungeswohnen/Gemeindewohnungen.html Zugriff vom 10.11.2019

¹⁸ Peter Eigner / Herbert Markus/ Andreas Resch, Sozialer Wohnbau in Wien, Eine historische Bestandsaufnahme, S. 16-29.

¹⁹ vgl. Arbeiterkammer Wien

Die Anzahl der Gemeindewohnungen in Wien beträgt insgesamt 220 000 und es besteht das Ziel, mit dem Projekt "Gemeinde Neu" bis 2020 weitere 4000 Gemeindewohnungen zu schaffen. ²⁰

Genossenschaftswohnung

Ein Teilsegment des geförderten Wohnbaus ist der Genossenschaftswohnbau. Der Gewinn ist bei gemeinnützigen Bauvereinen durch Bundesgesetze geregelt. Das Wohnungsgemeinnützigkeitsgesetz legt fest, dass die gemeinnützigen Bauvereinigungen nur einen beschränkten Gewinn erzielen dürfen, der wieder in Wohnbaumaßnahmen investiert werden muss.²¹ "So wird ein Teil der Mieten etwa dafür aufgewendet, um die Kredite zurückzuzahlen, die für die Errichtung der Wohngebäude entstanden sind. Dieser Teil der Miete wird als 'Annuitäten' bezeichnet."²²

Die gemeinnützigen Bauvereinigungen legen einen Finanzierungsbeitrag fest. Dieser Finanzierungsbeitrag ist einmalig und muss bei Vertragsabschluss geleistet werden. "Derzeit beträgt er in Wien 12,5 % der Baukosten plus meistens 100 % der Grundkosten. Diese Summe wird anteilsmäßig, entweder nach Nutzfläche oder Nutzwert, auf alle Mieterinnen des Gebäudes verteilt."²³

2.2.2 Wohnbauförderung

Die Wohnbauförderung ist eine sozialpolitische Maßnahme und ein Hilfsmittel zur Errichtung von Wohnbauten in Österreich. Es gibt keine einheitlichen Wohnbauförderungsbestimmungen, diese unterscheiden sich je nach Bundesland.

Wien ist weltweit als die Stadt mit hoher Lebensqualität bekannt ²⁴Um diese hohe Lebensqualität bereitstellen zu können, benötigt die Stadt eine gut funktionierende

https://wien.arbeiterkammer.at/beratung/Wohnen/jungeswohnen/Genossenschaftswohnungen.html Zugriff vom 10.11.2019

https://wien.arbeiterkammer.at/beratung/Wohnen/jungeswohnen/Genossenschaftswohnungen.html Zugriff vom 10.11.2019

²⁰ Wiener Wohnbau, Jahresbericht 2018/2019, Wien, Geschäftsgruppe Wohnen, Magistratsabteilung 50, S. 10.

²¹ Arbeiterkammer Wien Genossenschaftswohnungen

²² https://www.stadt-wien.at/immobilien-wohnen/genossenschaftswohnung-wien-guenstig-wohnen-kaufen-od-mieten.html Zugriff vom 10.11.2019

²³Arbeiterkammer Wien Genossenschaftswohnungen

²⁴ Im internationalen Vergleich kann sich Wien zum neunten Mal als "Stadt der höchsten Lebensqualität" bezeichnen und wurde bereits vom Beratungsunternehmen Mercer ausgezeichnet. Es wird jährlich eine Rangliste "Worldwide Quality of Living Surveys" von Mercer veröffentlich, bei der die Lebensqualität von Städten miteinander verglichen und eingestuft wird. Die Beurteilung der Lebensqualität erfolgt nach

Wohnbaupolitik. Die Schaffung von Wohnraum wird von der Stadt Wien gefördert, um ein breites Angebot an leistbarem, nachhaltigem und hochwertigem Wohnraum zur Verfügung zu stellen.

Die Wiener Wohnbau ist ein Vorzeigemodell im internationalen Vergleich und die Wiener Wohnbauförderung stellt ein zentrales Instrument dar, um dem Bevölkerungswachstum und dem steigenden Bedarf an Wohnungen durch ein ausreichendes Angebot an bezahlbarem Wohnraum begegnen zu können.

Im Jahr 2018 betrug das Investitionsvolumen der Stadt Wien 600 Millionen Euro.²⁵ Diese Investitionssumme teilt sich in drei Kategorien, 'drei grundlegende Säulen der Wohnbaupolitik', auf.

Diese drei Säulen der Wohnbaupolitik sind²⁶:

- die Neuerrichtung von Wohnraum (Objektförderung),
- die Sanierung bestehender Altbauten (Objektförderung) und
- die direkte finanzielle Unterstützung von Menschen mit niedrigem Einkommen (Subjektförderung, Wohnbeihilfe, Eigenmittelersatzdarlehen).

Die Förderung neuerrichteter und sanierter Wohnobjekte wird als "Objektförderung" Die Objektförderung ist eine bezeichnet. Förderung der Errichtung Eigentumswohnungen.

Die geförderten Neubauprojekte werden im Rahmen eines öffentlichen Bauträgerwettbewerbs oder durch den Grundstücksbeirat des wohnfonds_wien kontrolliert. Die Qualitätssicherung liegt im Fokus; deshalb werden die Projekte anhand der Kriterien Ökologie, Ökonomie, Architektur und sozialer Nachhaltigkeit bewertet.

https://www.sozialbau.at/aktuelles/kundenmagazin-hauspost/alle-ausgaben/hauspostansicht/news/detail/vorreiterin-im-gefoerderten-wohnbau/ Zugriff vom 11.11.2019

https://wohnberatung-wien.at/wohnberatung/wohnbaufoerderung/ Zugriff am 11.11.2019

bestimmten Kriterien, wie sozialen, wirtschaftlichen, politischen und ökonomischen Aspekte. Zusätzlich werden bestehende Bildungs- und Gesundheitsangebote analysiert.

https://www.wien.gv.at/politik/international/vergleich/mercerstudie.html Zugriff am 18.11.2019

²⁵ Vorreiterin im geförderten Wohnbau

²⁶ Vgl. Wohnberatung Wien

Die Förderung von Familien mit niedrigerem Einkommen wird als "Subjektförderung"

bezeichnet.

Personen mit schwächerem Einkommen werden durch die Wohnbeihilfe unterstützt. Sie

haben einen Anspruch auf gefördert errichtete und sanierte Wohnungen. Menschen, die

nicht über die erforderlichen finanziellen Mittel verfügen, können für die Aufbringung der

Eigenmittel das sogenannte ,Eigenmittelersatzdarlehen' oder ,Ein-Prozent-

Landesdarlehen' in Anspruch nehmen.²⁷

2.2.3 Bauträgerwettbewerb

Die geförderten Wohnprojekte in Wien werden im Rahmen eines Bauträgerwettbewerbs

oder des Grundstücksbeirats beurteilt. Die Bauträgerwettbewerbe werden seit 1995 vom

wohnfonds_wien (damals ,Wiener Bodenbereitsstellungs- und Stadterneuerungsfonds')

öffentlich ausgeschrieben.²⁸

Das Ziel des Bauträgerwettbewerbs ist es, ein optimales und leistbares Nutzungskonzept

für das ausgeschriebene Grundstück auszuarbeiten und mit Hilfe der

Wohnbauförderungsmittel umzusetzen.

Die Projekte werden während des Verfahrens nach bestimmten Qualitätskriterien

überprüft und nach architektonischen, ökologischen und ökonomischen Aspekten

beurteilt. Die Wettbewerbe können nicht nur für Liegenschaften des wohnfonds_wien,

sondern auch für Projektgebiete ausgeschrieben werden. Diese Projektgebiete befinden

sich nicht im Eigentum des wohnfonds_wien, können aber ab 500 Wohneinheiten mit

Mitteln der Wohnbauförderung errichtet werden.²⁹

Der Verfahren beginnt mit der Veröffentlichung im Amtsblatt der Stadt Wien, in der Wiener

Zeitung oder auf der Homepage des wohnfonds_wien. Die eingereichten Beiträge werden

²⁷Vgl. Wohnberatung Wien

https://wohnberatung-wien.at/wohnberatung/wohnbaufoerderung/ Zugriff am 11.11.2019

²⁸ Wohnfonds Wien

https://www.wohnfonds.wien.at/articles/nav/118 Zugriff am 11.11.2019

²⁹ Vgl. Wohnfonds Wien Bauträgerwettbewerb

https://www.wohnfonds.wien.at/articles/nav/137 Zugriff am 11.11.2019

durch ein externes Ziviltechnikbüro, falls notwendig von weiteren Spezialisten, anhand folgender Kriterien vorab geprüft:

- Einhaltung der formalen Bedingungen
- Vollständigkeit der eingereichten Unterlagen
- Einhaltung der Ausschreibungsunterlagen und Vereinbarkeit mit dem Flächenwidmungs- und Bebauungsplan
- Plausibilität und Nachvollziehbarkeit der Angaben des Datenblattes

Nach der erfolgreichen Prüfung werden die Ergebnisse in einem schriftlichen Vorprüfbericht zusammengefasst und bestätigt.

Die Bewertung der Projekte erfolgt durch eine Fachjury, bestehend aus Experten der Fachbereiche Ökologie, Ökonomie, Architektur, Städtebau, Bautechnik, Bauphysik, Wohnrecht und soziale Wohnbauforschung. Bei der Beurteilung werden als Kriterien die Architektur, die Ökonomie, die soziale Nachhaltigkeit und die Ökologie betrachtet. ³⁰

Die folgenden Kriterienliste in den vier Bewertungskategorien dienen 'als Anregung zu einer vertiefenden Auseinandersetzung':³¹

1. Architektur

- Stadtstruktur
- Gebäudestruktur
- Wohnstruktur
- Gestaltung

2. Ökonomie

- Grundstückskosten
- Gesamtbaukosten
- Nutzerkosten und Vertragsbedingungen

https://www.wohnfonds.wien.at/media/neubau/4SaulenModell wfw 2019.pdf Zugriff am 29.02.2020

³⁰ Vgl. Wohnfonds Wien Bauträgerwettbewerb

https://www.wohnfonds.wien.at/articles/nav/137 Zugriff am 11.11.2019

³¹ Beurteilungsblatt 4-Säulen Modell

Kostenrelevanz der Bauausstattung

3. Ökologie

- Klima und Ressourcenschonendes Bauen
- Gesundes und Umweltbewusstes Wohnen
- Stadträumlich wirksame Qualität im Grün- und Freiraum
- Differenzierte Nutzungsangebote im Grün- und Freiraum

4. Soziale Nachhaltigkeit

- Alltagstauglichkeit
- Kostenreduktion durch Planung
- Wohnen in Gemeinschaft
- Wohnen für wechselnde Bedürfnisse

2.3 Zahlen und Statistiken

2.3.1 Demographische Veränderungen

Die österreichische Bevölkerung wächst kontinuierlich. Die Bevölkerungsanzahl hat durch ansteigende Geburten – knapp 90 000 pro Jahr³² – und Migration deutlich zugenommen.

Die Bevölkerungsentwicklung und die Änderung der Haushalte sind für den Wohnungsmarkt entscheidend. Der Wandel der Familienstruktur ist hierbei bedeutungsvoll. Das traditionelle Familienmodell 'Ehepaar mit Kindern' hat an Bedeutung verloren und die Zahl dieser Familienstruktur ist eher rückläufig.

Dagegen haben Single- und Alleinerziehendenhaushalte an Bedeutung gewonnen. Aufgrund des geänderten Familienstandards steigt die Zahl der Haushalte deutlich schneller als die Bevölkerungszahl. Die Haushaltsentwicklung wird durch Zuwanderung, Scheidungsrate sowie geänderte Lebens- und Altersstruktur beeinflusst. 33

Laut Statistik Austria wurden 3,92 Mio. Hauptwohnsitzwohnungen in Österreich im Jahr 2018 gezählt, knapp die Hälfte davon sind Wohneigentum und bei 43 Prozent besteht

³² Österreich Zahlen Daten Fakten 2018/2019, Statistik Austria, 14. Auflage, Wien, Statistik Austria Wien, 2019, S.17

³³ Österreichisches Wohnhandbuch 2019, Amann Wolfgang, Neunte Auflage, Studienverlag, 2019, S.9-12

Haupt- oder Untermiete. Innerhalb der Hauptmietwohnungen wird nach Gemeinde- und Genossenschafts- sowie Privatwohnungen differenziert. ³⁴

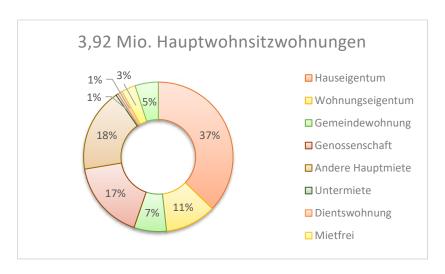


Abbildung 2: Rechtsverhältnis der Hauptwohnsitzwohnungen³⁵

2.3.2 Wohnungsmarkt

Die Wohnsituation in Österreich weist je nach Bundesland Unterschiede auf. Die verfügbare Fläche, die Bauordnungen und die Bebauungsdichten sind bundeslandspezifisch unterschiedlich und diese Einschränkungen beeinflussen die Siedlungsstruktur. Burgenland hat mit 69 Prozent den höchsten Anteil an Wohnungen in Einfamilienhäusern. Die Mietquote in Wien ist besonders hoch ca. 78 Prozent³⁶, mehr als 43 Prozent der Wienerinnen und Wiener leben in Genossenschafts- oder Gemeindewohnungen.

_

³⁴ Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S 11

³⁵ Eigene Darstellung mit Daten von: Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.22

³⁶ Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.22.

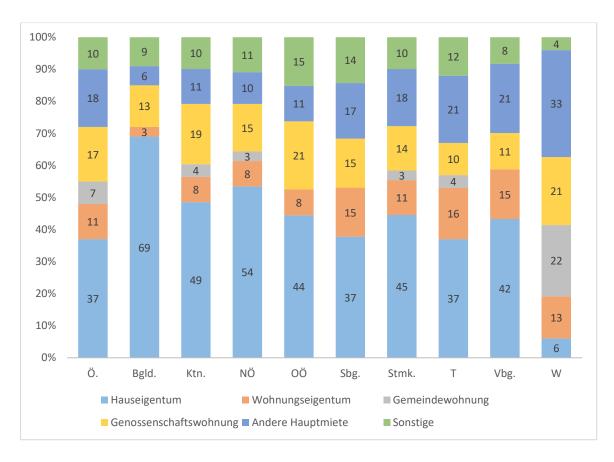


Abbildung 3: Rechtsverhältnis der Hauptwohnsitzwohnungen nach Bundesland³⁷

2.3.3 Wohnkostenbelastung

Die Art, wie Menschen wohnen, hängt von ihren materiellen Ressourcen ab, da Wohlstand und Lebensqualität von materiellen Ressourcen beeinflusst werden. Die Wohnkosten sind überproportional gestiegen. Aufgrund dieser Steigerung wird ein immer größerer Anteil des monatlichen Einkommens für Wohnkosten verwendet. Laut neuer Statistiken übersteigt bei einem Teil der Bevölkerung der monatliche Wohnungsaufwand 40 Prozent des Haushaltseinkommens. Der monatliche Wohnungsaufwand beinhaltet Mietkosten, Betriebskosten, Heiz- und Energiekosten, Kreditzahlungen, Instandhaltungskosten sowie Kosten für die Schaffung und die Sanierung von Wohnraum. Die Höhe der Wohnkosten fällt in jedem Rechtverhältnis anders aus. Beispielsweise liegen die Kosten bei einem Gemeindebau niedriger als im privaten Mietsektor. Der Anteil der Personen mit Wohnkostenüberlastung ist angestiegen; diese Wohnkostenbelastung betrifft am meisten die Bevölkerungsgruppe mit den niedrigsten monatlichen Einkommen. ³⁸

_

³⁷ Eigene Darstellung mit Daten von: Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.22

³⁸Vgl. Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.35-41.

Die auf Basis der Mikrozensus-Wohnungserhebung analysierten Wohnkosten differenzieren sich nach Miete mit Betriebskosten und ohne diese Kosten. Die Bezeichnung "Miete inklusive Betriebskosten" beinhaltet den reinen Mietzins mit Umsatzsteuer und die Betriebskosten. Die Betriebskosten bestehen aus Reinigungs- und Energiekosten in allgemeinen Teilbereichen der Gebäude (Abstellraum, Gemeinschaftsraum, Treppenhaus, Waschküche), Verwaltungskosten, Müllentsorgung und Aufzugskosten. Die "Miete ohne Betriebskosten" umfasst nur den Mietzins und wird auch als "Nettomiete" bezeichnet. 39

	Hauptmiet- wohnungen			(Netto-)Miete ohne Betriebskosten in Euro		Betriebskosten in Euro		Betriebs- kostenanteil an der	Garagen-/ Abstellplatz- kosten
	in 1.000	pro Wohnung	pro m²	pro Wohnung	pro m²	pro Wohnung	pro m²	Miete in %	in Euro pro Wohnung
2009	1.412,5	393,3	5,9	280,3	4,2	114,6	1,7	31,8	36,6
2010	1.438,9		6,0	*					
2011	1.457,3	419,5	6,2						36,4
2012	1.475,1	435,4	6,4						
2013	1,499,1	449,3	6,7	325,1	4,8	125,7	1,9	30,9	
2014	1.522,1	465,3	6,9	338,0					39,7
2015	1.560,0	474,6	7,1	345,2	5,1	130,6	2,0	30,4	39,6
2016	1.598,9	488,5	7,4	358,6	5,4	130,8	2,0	29,6	39,5
2017	1.632,1	505,9	7,6	373,5	5,6	133,4	2,1	29,1	41,0
2018	1.636,1	517,6	7,8	384,8	5,8	133,4	2,1	28,4	42,0
				Prozentuelle	Veränderun	g zum Vorjahr			
2010		3,0	2,2				1,5	-0,3	-1,7
2011		3,6	3,2	4,5	4,2	1,2			1,2
2012		3,8	3,7	3,3	3,3	5,0	4,8	1,1	2,4
2013		3,2	3,3	4,0	3,9	1,1	1,6	-1,7	
2014		3,6	4,1	4,0	4,5	2,2	2,7	-1,2	4,2
2015		2,0	3,0	2,1	3,2	1,7	2,5	-0,5	-0,1
2016		2,9	3,2	3,9	4,2	0,2	0,4	-2,5	-0,4
2017		3,6	3,6	4,2	4,3	2,0	1,7		
2018		2,3	2,8	3,0	3,6	0,0	0,4	-2,2	2,5

Abbildung 4: Durchschnittliche Wohnkosten von Hauptmietwohnungen (2009-2018)⁴⁰

Die Tabelle von Statistik Austria fasst die durchschnittlichen Wohnkosten zusammen, wobei eine Steigerung der Kosten von 2009 bis 2018 ersichtlich ist. Genauer betrachtet sind die Steigerungsraten bei der Nettomiete deutlich höher und die Betriebskosten stagnieren.

-

³⁹ Vgl. Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.36.

⁴⁰ Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.36.

	Miete inkl. Betriebskosten in Euro		(Netto-)Miete ohne Betriebskosten in Euro		Betriebskosten in Euro		Betriebs- kostenanteil an der Miete	Garagen-/ Abstellplatz- kosten
	pro Wohnung	pro m²	pro Wohnung	pro m²	pro Wohnung	pro m²	in %	in Euro pro Wohnung
Insgesamt	517,6	7,8	384,8	5,8	133,4	2,1	28,4	42,0
Art der Hauptmiete								
Gemeindewohnung	395,2	6,6	256,9	4,3	138,9	2,3	36,9	40,1
Genossenschaftswohnung	479,2	7,0	349,8	5,1	129,7	1,9	28,4	39,4
andere Hauptmiete	600,8	9,1	467,0	7,1	134,8	2,1	25,1	50,2
Bundesland								
Burgenland	455,7	5,9	350,1	4,5	107,4	1,4	25,3	22,4
Kärnten	421,7	6,2	312,6	4,5	109,6	1,6	27,6	35,0
Niederösterreich	485,9	6,9	354,4	5,0	132,3	1,9	29,2	26,7
Oberösterreich	490,7	7,4	369,5	5,5	121,6	1,9	26,5	38,4
Salzburg	579,2	9,2	449,0	7,1	131,3	2,2	24,4	35,8
Steiermark	465,4	7,4	350,0	5,6	116,4	1,9	26,6	33,6
Tirol	577,8	8,7	460,8	6,9	117,5	1,8	22,4	40,8
Vorarlberg	613,1	9,0	494,9	7,2	118,9	1,8	20,8	40,9
Wien	537,8	8,3	388,5	5,9	149,6	2,3	31,5	62,7

Abbildung 5: Durchschnittliche Wohnkosten von Hauptmietwohnungen nach Art der Hauptmiete und Bundesland⁴¹

Die jährliche Mietpreissteigerung wird auf Basis von Durchschnittspreisen berechnet. Die Arten der Hauptmiete weisen Unterschiede auf. Im Vergleich haben die Gemeindewohnungen die günstigsten Quadratmeterkosten, danach folgen die Kosten der Genossenschaftswohnungen und die Mietkosten der privaten Mietwohnungen liegen am höchsten. Die durchschnittliche Bruttomiete des privaten Sektors lag im Jahr 2018 bei 600,8 € inkl. Betriebskosten, für Genossenschaftswohnungen wurden 479,2 € ermittelt und für Gemeindewohnungen 395,2 €.

Die monatlichen Wohnkosten des geförderten Mietsektors liegen damit niedriger als bei den privaten Mietwohnungen. Die Kosten unterscheiden sich in Österreich je nach Bundesland. Im Jahr 2018 wurden die höchsten durchschnittlichen Bruttomietkosten in Salzburg mit einer Höhe von 9,2 Euro pro Quadratmeter gemessen, gefolgt von Vorarlberg mit 9,0 Euro und von Tirol mit 8,7 Euro. Auf dem vierten Platz lag Wien mit 8,3 Euro pro Quadratmeter. Die höchsten monatlichen Betriebskosten fanden sich mit 2,3 Euro in Wien.

⁴¹ Wohnen 2018, Zahlen Daten und Indikatoren der Wohnbaustatistik, Wien, Verlag Österreich GmbH,2019, S.39.

3.Rahmenbedingungen der Gebäudeerrichtung

In diesem Kapitel der wissenschaftlichen Arbeit werden die rechtlichen und technischen Rahmenbedingungen der Gebäudeerrichtung erläutert. Der Bau eines Wohnobjektes ist eine äußerst komplexe Aufgabe, bei der alle Bauordnungen und Richtlinien erfüllt werden müssen. Die Vorschriften sind am bestens schon in der Entwurfsphase zu beachten, damit keine späteren Umbaukosten anfallen.

3.1 Rechtliche Rahmenbedingungen

3.1.1. Die Wiener Bauordnung

Eine Bauordnung bestimmt alle rechtlichen und bautechnischen Anforderungen, wie und wo ein Bauobjekt errichtet werden darf. Die Bauordnungen werden von der Gesetzgebung der Länder festgelegt, weshalb in Österreich neun verschiedene Bauordnungen existieren. Bauordnungen werden fortlaufend überarbeitet und auf den neusten Stand gebracht

Die für diese Arbeit relevante letzte Novellierung der Wiener Bauordnung wurde am 21.12.2018 veröffentlicht. Die Bestimmungen sind Ende März 2019 in Kraft getreten.

Umweltschutz, Verringerung der Treibhausgasemissionen und Energieersparnis haben in dieser Novellierung eine besondere Bedeutung erhalten.

"§ 118. (1) Bauwerke und all ihre Teile müssen so geplant und ausgeführt sein, dass die bei der Verwendung benötigte Energiemenge nach dem Stand der Technik begrenzt wird. Auszugehen ist von der bestimmungsgemäßen Verwendung des Bauwerks; die damit verbundenen Bedürfnisse (insbesondere Heizung, Warmwasserbereitung, Kühlung, Lüftung, Beleuchtung) sind zu berücksichtigen."⁴²

"§ 118. (3) Bei Neu-, Zu- und Umbauten sowie bei Änderungen und Instandsetzungen von mindestens 25 vH der Oberfläche der Gebäudehülle müssen hocheffiziente alternative Systeme eingesetzt werden, sofern dies technisch, ökologisch und wirtschaftlich realisierbar ist."⁴³

 43 § 118. Absatz 3 Satz,7 Abschnitt Energieeinsparung und Wärmeschutz, Bauordnung für Wien

⁴² § 118. Absatz 1 Satz,7 Abschnitt Energieeinsparung und Wärmeschutz, Bauordnung für Wien

3.1.2 Flächenwidmungs- und Bebauungsplan

Der Flächenwidmung- und Bebauungsplan ist einen Teil der Wiener Bauordnung, in dem die zulässigen Nutzungsbestimmungen eines Baugrundes zusammengefasst sind. Ein Bauland kann für unterschiedliche Nutzungsformen genutzt werden, wie Büro, Einkauf oder Wohnbau. Für diese Nutzungsansprüche kann der Flächenwidmungsplan als Hilfsmittel dienen. Jedes einzelne Grundstück ist in Widmungsarten unterteilt. 44

Im Flächenwidmungsplan können die folgenden Widmungsarten ausgewiesen werden⁴⁵:

- Grünland
- Verkehrsbänder
- Bauland
- Sondergebiete

Die Definition des Flächenwidmungs- und Bebauungsplans lautet gemäß Bauordnung folgendermaßen:

"§ 1. (1) Die Flächenwidmungspläne und die Bebauungspläne dienen der geordneten und nachhaltigen Gestaltung und Entwicklung des Stadtgebietes. Sie sind Verordnungen."⁴⁶

Der Bebauungsplan bestimmt die Bebaubarkeit eines Baulandes; die Ausnutzbarkeit der baulichen Anlage ist durch Bauweisen, Bauklassen und Baufluchtlinien definiert.

Ein großer Anteil der Bevölkerung Wiens lebt in sozialen Wohnbauten. Die Baulandverknappung, die erhöhten Grundstückspreise und die hohen technischen Anforderungen haben negative Auswirkungen auf die Baukosten. Leistbares Wohnen ist derzeit nicht für jede Bevölkerungsschicht erreichbar. Aufgrund dessen hat die Stadt Wien eine neue Widmung "geförderter Wohnbau" beschlossen, die am 21. Mai 2019 in Kraft getreten ist. ⁴⁷

⁴⁴ Vgl. Stadtentwicklung Flächenwidmungsplan

https://www.wien.gv.at/stadtentwicklung/flaechenwidmung/planzeigen/zeichen-flaewid.html Zugriff am 15.11.2019

⁴⁵ Vgl. Stadtentwicklung Flächenwidmungsplan

https://www.wien.gv.at/stadtentwicklung/flaechenwidmung/planzeigen/zeichen-flaewid.html Zugriff am

⁴⁶ § 1. Absatz 1 Satz,1 Abschnitt Stadtplanung, Bauordnung für Wien

⁴⁷ Vgl. Neue Flächenwidmung für geförderten Wohnbau

Das Ziel der neuen Regelung ist es, weitere leistbare Wohnungen für breitere Bevölkerungsschichten zur Verfügung zu stellen. Die neue Widmung setzt einen Mindestanteil geförderter Wohnungen an der gesamten Wohnnutzfläche voraus, sodass zwei Drittel eines zu errichtenden Wohnobjektes geförderte Wohnungen sein sollen. Die neue Widmungsregel "Gebiete für geförderten Wohnbau" ist keine autonome Widmungskategorie, sondern wird in bestehenden Baulandwidmungen wie 'gemischtes Baugebiet' und 'Wohngebiet' angewendet. 48

3.2 Bauliche Rahmenbedingungen

3.2.1 Brandschutz

Um die richtige Bauweise zu finden, müssen die brandschutztechnischen Regelungen und Bestimmungen beachtet werden. Diese Reglungen sind in den letzten Jahren detaillierter und komplexer geworden. Dies ist nicht nur bei der Dimensionierung eines Bauteiles bedeutungsvoll, sondern kann auch kostenbeeinflussend wirken. Es ist von zentraler Bedeutung, die brandschutztechnischen Maßnahmen schon im Planungsprozess einbeziehen. Die frühzeitige Berücksichtigung des Brandschutzes kann einerseits kostensenkend wirken, anderseits ist die Nachrüstung meist komplizierter und mit mehr Aufwand verbunden. ⁴⁹

Die brandschutztechnischen Anforderungen sind in Österreich je nach Art der baulichen Nutzung und der Gebäudeklasse eingeordnet. Sie sind detailliert in OIB-Richtlinie 2 (Richtlinien des Österreichischen Instituts für Bautechnik), in den Bauordnungen und in "Technische Richtlinien Vorbeugender Brandschutz" festgesetzt.

"§ 3. Bauwerke müssen so geplant und ausgeführt sein, dass der Gefährdung von Leben und Gesundheit von Personen durch Brand vorgebeugt sowie die Brandausbreitung wirksam eingeschränkt wird."⁵⁰

https://www.wien.gv.at/bauen-wohnen/bauordnungsnovelle-gefoerderter-wohnbau.html Zugriff am 16.11.2019

⁴⁸ Vgl. Neue Flächenwidmung für geförderten Wohnbau

https://www.wien.gv.at/bauen-wohnen/bauordnungsnovelle-gefoerderter-wohnbau.html Zugriff am 16.11.2019

⁴⁹ Vgl. https://www.baunetzwissen.de/brandschutz/fachwissen/grundlagen/was-ein-architekt-ueber-brandschutz-wissen-sollte-3535023 Zugriff am 16.11.2019

⁵⁰ § 3. Absatz 1 Satz,2 Abschnitt Brandschutz, Bauordnung für Wien

Die Arten des Brandschutzes sind in folgende Kategorien unterteilt:

1. Vorbeugender Brandschutz

Anlagentechnischer Brandschutz

- Organisatorischer Brandschutz

Baulicher Brandschutz

2. Abwehrender Brandschutz

1. Vorbeugender Brandschutz

Anlagentechnischer Brandschutz

Der anlagentechnische Brandschutz regelt die Funktionsfähigkeit der eingesetzten technischen Schutzmaßnahmen, die bei Ausbruch eines Brandfalls normgemäß funktionieren sollen. Es geht hier um rechtzeitige Alarmierung, um Freihaltung der Rettungswege und um die Brandabschnitte, die eine Brandausbreitung verhindern

können. 51

Organisatorischer Brandschutz

Der organisatorische Brandschutz umfasst alle Maßnahmen, die zu einer reibungslosen Evakuierung beitragen. Dafür ist es relevant, dass die Fluchtwege definiert werden und die Nutzer eines Gebäudes sich damit auskennen, wie sie sich in einem Brandfall verhalten können, um eine erfolgreiche Rettung

durchzuführen.⁵²

Baulicher Brandschutz

Der bauliche Brandschutz regelt die planungstechnischen Anforderungen, dass die Bauteile normgerecht dimensioniert werden. Das Ziel ist es, die Ausbreitung eines

Brandes und die Rauchentwicklung zu verhindern sowie die Fluchtwege von Feuer

⁵¹ Vgl. Arten des Brandschutzes

https://www.baunetzwissen.de/brandschutz/fachwissen/grundlagen/arten-des-brandschutzes-3107643 Zugriff am 18.11.2019

⁵² Vgl. Arten des Brandschutzes

https://www.baunetzwissen.de/brandschutz/fachwissen/grundlagen/arten-des-brandschutzes-3107643 Zugriff am 18.11.2019

und Rauch abzuschirmen, damit eine Rettung erfolgreich durchgeführt werden

kann. 53

2.Abwehrender Brandschutz

Der abwehrende Brandschutz enthält alle Maßnahmen, die im Brandfall einsetzen sollen.

Die Zugänglichkeit der Gebäude ist sicherzustellen, damit die Rettungsarbeiten der

Feuerwehr reibungslos funktionieren können. Das Ziel ist es, den Brand zu löschen und die

Schäden zu reduzieren. 54

Jeder Baustoff weist unterschiedliche Reaktion im Brandfall auf, deswegen werden die

Baustoffe gemäß ÖNORM EN 13501-1 hinsichtlich folgender Eigenschaften geprüft und

kategorisiert:

1.Brennbarkeit "Beitrag zum Brand"

Die Kategorisierung erfolgt in den Brennbarkeitsklassen:

■ A1 – kein Beitrag zum Brand, ohne brennbare Bestandteile

■ A2 – kein Beitrag zum Brand, geringe Anteile von brennbaren Stoffen

■ **B** – sehr begrenzter Beitrag zum Brand

■ C - begrenzter Beitrag zum Brand

■ **D** – hinnehmbarer Beitrag zum Brand

■ E – hinnehmbares Brandverhalten

■ F – keine Leistung im Hinblick auf Flammwidrigkeit feststellbar

2. Rauchentwicklung (s = smoke)

s1: gering

s2: normal oder mittel

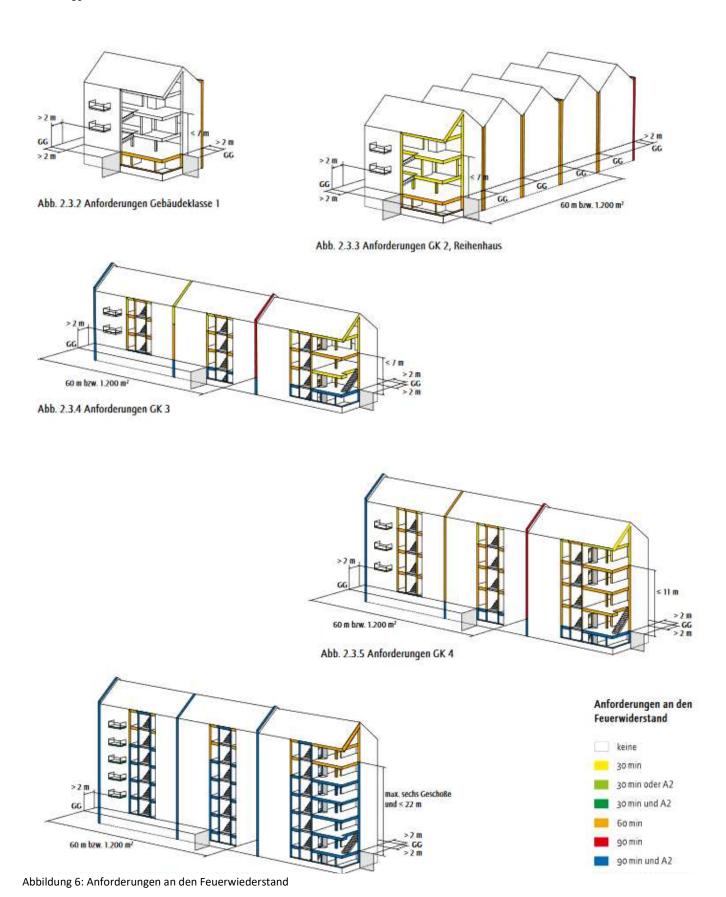
s3: starke Rauchentwicklung

⁵³ Vgl. Arten des Brandschutzes

 $https://www.baunetzwissen.de/brandschutz/fachwissen/grundlagen/arten-des-brandschutzes-3107643 \ Zugriff am 18.11.2019$

⁵⁴ Vgl. Arten des Brandschutzes

https://www.baunetzwissen.de/brandschutz/fachwissen/grundlagen/arten-des-brandschutzes-3107643 Zugriff am 18.11.2019


3. Tropfenbildung (d = droplets)

■ d0: nicht tropfend

d1: tropfend

d2: zündend tropfend⁵⁵

⁵⁵ ÖNORM EN 13501-1: Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten, S.1.

⁵⁶ Bauen mit Holz in Oberösterreich, Pro-Holz, 1. Auflage, Linz, 2011 Pro Holz, S. 22.

"Wir können in Österreich sechs Geschosse in Holzbau errichten, ohne besondere Anforderungen erfüllen zu müssen. [...] Erst ab einem gewissen Stadium in der Brandentwicklung spielt es eine Rolle, dass Holz ein brennbarer Baustoff ist. Ein Raumvollbrand in der Größe von einer Wohnung ist für die Feuerwehr beherrschbar, unabhängig davon, ob das Gebäude aus Holz oder einem anderen Material errichtet wurde. [...] Derzeit haben wir eine klare Trennlinie: Erst bei mehr als sechs Geschossen in Holzbauweise brauchein wir ein Brandschutzkonzept, in dem wir begründen, dass wir das gleiche Sicherheitsniveau wie mit mineralischen Baustoffen erreichen. "57

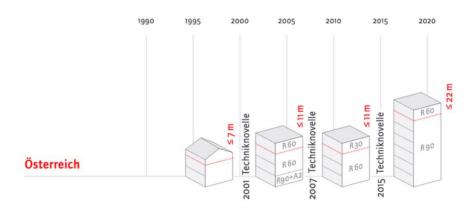


Abbildung 7: Entwicklung der Brandschutzvorschriften in Österreich58

3.2.2 Schallschutz

Die Errichtung von Wohnobjekten ist durch hohe schallschutztechnische Anforderungen geregelt. Diese Regelungen erhöhen in dicht besiedelten Städten den Wohnkomfort.

Wie bei der Mikrozensus-Befragung von Statistik Austria ersichtlich, fühlen sich 60,1 Prozent der Bevölkerung in dicht bebauten Gebieten mit mehrgeschossigen Wohnobjekten durch Lärm gestört. Die öffentlichen Verkehrssektoren verursachen bei dicht bebauten Wohngebieten einen großen Teil der Lärmstörungen. Die Art der Lärmbelastung ist von den örtlichen Gegebenheiten abhängig.⁵⁹

⁵⁷ Gespräch mit Frank Peter, Drei Brandschutzexperten im Gespräch, Brandrede für Holz, proHolz Austria, März 2020, Nr.77, ISBN 978-3-902926-35-7

⁵⁸ Drei Brandschutzexperten in Gespräch, https://www.proholz.at/zuschnitt/77/drei-brandschutzexperten-im-gespraech Zugriff am 23.03.2020

⁵⁹ Vgl. Umweltbedingungen, Umweltverhalten 2015, Ergebnisse des Mikrozensus, Statistik Austria, Wien 2017 S.37

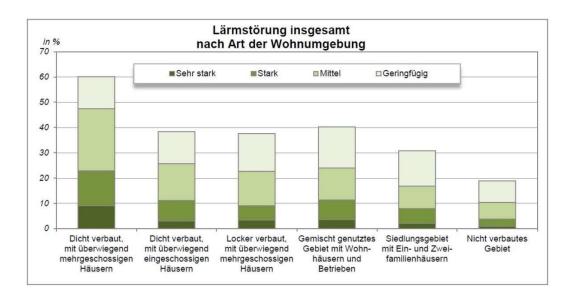


Abbildung 8: Lärmstörung insgesamt nach Art der Wohnumgebung⁶⁰

Die Mindestanforderungen sind in der OIB-Richtlinie 5 definiert. Demnach dürfen im Rahmen "der Gebäudenutzung die Werte für das bewertete resultierende Bauschalldämm-Maß R $'_{res,w}$ der Außenbauteile gesamt von 33 dB und das bewertete Schalldämm-Maß R $_w$ der opaken Außenbauteile von 43 dB nicht unterschritten werden." 61

_

⁶⁰ Vgl. Umweltbedingungen, Umweltverhalten 2015, Ergebnisse des Mikrozensus, Statistik Austria, Wien 2017 S 37

⁶¹ OIB Richtlinie 5, Richtlinien des Österreichischen Institut für Bautechnik, Ausgabe März 2015, S.2

Mindesterforderliche Schalldämmung von Außenbauteilen für Wohngebäude, -heime, Hotels, Schulen, Kindergärten, Krankenhäuser, Kurgebäude u. dgl.								
Maßgeblicher Außenlärmpegel [dB]		Außen- bauteile gesamt [dB]	Außen- bauteile opak [dB]	Fenst Außer	er und ntüren B]	Decken und Wände gegen nicht ausge- baute Dachräume [dB]	Decken und Wände gegen Durchfahr- ten und Garagen [dB]	Gebäude- trennwände (je Wand) [dB]
Tag	Nacht	R'rea,w	R_w	R _w	R _w +C _{tr}	R'w	R' _w	R_w
≤ 45	≤ 35	33	43	28	23	42	60	52
46 - 50	36 - 40	33	43	28	23	42	60	52
51 - 60	41 - 50	38	43	33	28	42	60	52
61	51	38,5	43,5	33,5	28,5	47	60	52
62	52	39	44	34	29	47	60	52
63	53	39,5	44,5	34,5	29,5	47	60	52
64	54	40	45	35	30	47	60	52
65	55	40,5	45,5	35,5	30,5	47	60	52
66	56	41	46	36	31	47	60	52
67	57	41,5	46,5	36,5	31,5	47	60	52
68	58	42	47	37	32	47	60	52
69	59	42,5	47,5	37,5	32,5	47	60	52
70	60	43	48	38	33	47	60	52
71	61	44	49	39	34	47	60	52
72	62	45	50	40	35	47	60	52
73	63	46	51	41	36	47	60	52
74	64	47	52	42	37	47	60	52
75	65	48	53	43	38	47	60	52
76	66	49	54	44	39	47	60	52
77	67	50	55	45	40	47	60	52
78	68	51	56	46	41	47	60	52
79	69	52	57	47	42	47	60	52
≥ 80	≥ 70	53	58	48	43	47	60	52

Abbildung 9: Mindesterforderliche Schalldämmung⁶²

3.2.3 Wärmeschutz

Die primäre Zielsetzung des Wärmeschutzes ist es, einerseits die erforderliche Heizenergie zu senken, die Baukonstruktionen zu schützen und gleichzeitig ein optimales und behagliches Raumklima zu erreichen. Darüber hinaus kann die Energieeffizienz gesteigert und die Schadstoffemission (besonders CO₂) reduziert werden. Mit Reduzierung der erforderlichen Heizenergie werden im Zusammenhang mit den Heizkosten eventuell die Betriebskosten gesenkt. ⁶³

_

⁶² OIB Richtlinie 5, Richtlinien des Österreichischen Institut für Bautechnik, Ausgabe März 2015, S.2.

⁶³ Allgemeines zum Wärmeschutz

https://www.baunetzwissen.de/flachdach/fachwissen/waermeschutz/allgemeines-zum-waermeschutz-155985 Zugriff am 16.11.2019

Abbildung 10: Ziele des baulichen Wärmeschutzes⁶⁴

Das Raumklima ist von vielen Faktoren abhängig, wie Lufttemperatur, Bewegungsgeschwindigkeit der Luft, Feuchtigkeit und Oberflächentemperatur.

Der Wärmeschutz wird vorwiegend vom Wärmedurchlasswiderstand der Gebäudehülle, von den Wärmestrahlungsverlusten und der Luftdichtheit beeinflusst.

Ein Gebäude muss nicht nur in Winterzeiten vor Temperatureinfluss geschützt werden, sondern auch im Sommer vor Überwärmung. Da die Außentemperatur in Sommermonaten besonders hoch ist, gelangt eine erhöhte Wärmelast in die Räumlichkeiten. Eine sommerliche Überhitzung ist von vielen Faktoren abhängig, beispielsweise von der Art der Wärmedämmung der Außenhülle, von der Orientierung der Räume, der Größe und Ausrichtung der Fenster, von der Art des Sonnenschutzes, von Lüftungsmöglichkeiten, von der Wärmespeicherfähigkeit der Bauteile und der Speichermasse.⁶⁵

Gegenwärtig gibt es ein breites und vielfältiges Angebot von Dämmstoffen, die unterschiedliche Eigenschaften aufweisen. Grundsätzlich sind die Eigenschaften des Brandverhaltens, der Wärmeleitung, der Umweltverträglichkeit und des Feuchteschutzes sowie Kostenfaktoren zu betrachten, damit die Dämmstoffe bedarfsgerecht eingesetzt

⁶⁵ Vgl. Dr. Adolf Merl/Prof. Jochen Pfau/DI Dr. Margit Pfeiffer-Rudy/Prof. DDI Wolfgang Winter, Schwerpunkt bauphysikalische Eigenschaften von Leichtbauweisen, Eigenschaften und Potentiale des Leichtbaus, Bau Genial, Stand 2007,S.10-19

⁶⁴ Eigene Darstellung mit Daten von: Dr. Adolf Merl/Prof. Jochen Pfau/DI Dr. Margit Pfeiffer-Rudy/Prof. DDI Wolfgang Winter, Schwerpunkt bauphysikalische Eigenschaften von Leichtbauweisen, Eigenschaften und Potentiale des Leichtbaus, Bau Genial, Stand 2007,S.10

werden können. Bei Dämmstoffen lassen sich je nach Herstellung drei Arten unterscheiden: organische, synthetische und mineralische Dämmstoffe. Die organischen Dämmstoffe werden aus nachwachsenden Rohstoffen hergestellt. Sie sind sehr umweltfreundlich und können überall eingesetzt werden. Die mineralischen Dämmstoffe sind aus anorganischen Stoffen hergestellt, häufig aus Sand, Kalk oder Stein. Synthetische Dämmstoffe werden häufig verwendet, weil sie langlebig und kostengünstig sind. Diese Dämmstoffe basieren auf Erdölderivaten, aufgrund dessen sind sie weniger nachhaltig und umweltfreundlich als die anderen Dämmstoffarten. ⁶⁶

Die Energieeinsparung der entsprechenden Wärmeschutzmaßnahmen ist durch Bauordnung und OIB-Richtlinie 6 geregelt.

3.2.4 Bauweise

Es stellt sich die Frage, welches das am besten geeigneten Material zum Bauen ist. Gerade beim sozialen Wohnbau ist dabei abzuwägen, wie Kosten und Qualität zu gewichten sind. Es gibt kein "schlechtes" oder "gutes" Baumaterial, sondern es gibt Materialen, die besser für eine bestimmte Bauweise geeignet sind oder die hinsichtlich eines Kriteriums eine bessere Qualität aufweisen. Die Entscheidung für eine Bauweise ist von vielen Faktoren abhängig. Dabei müssen nicht nur die bautechnischen und bauphysikalischen Anforderungen betrachtet werden, sondern gleichzeitig sind Energieeffizienz, Nachhaltigkeit und die ökonomische Seite zu berücksichtigen. Der Umweltschutz, die Nachhaltigkeit und das energieeffiziente Bauen haben in der letzten Zeit an Bedeutung gewonnen. Deswegen müssen viele Faktoren und Aspekte untersucht und gegenübergestellt werden, um das geeignetste Baumaterial zu finden.

Holzbauweise

Holz ist ein natürlicher und nachwachsender Rohstoff, der als Baustoff schon seit Jahrhunderten in Verwendung ist.

-

⁶⁶ Vgl. Ausgangsmaterialien für Dämmstoffe

Im Rahmen einer Studie der Universität für Bodenkultur Wien wurde im Frühjahr 2019 der Anteil des Holzbaus im Gesamtraum Österreich untersucht. Dabei wurde festgestellt, dass sich der Holzbauanteil in der Betrachtungszeit 1998–2018 um 10 Prozent erhöht hat.⁶⁷

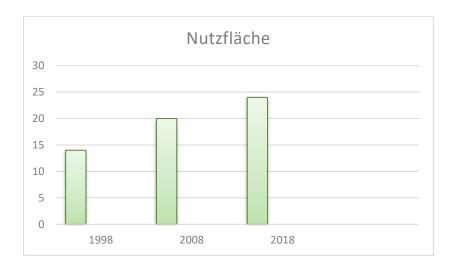


Abbildung 11:Holzbauanteil im Wohnbau in Österreich⁶⁸

Davon entfallen 53 Prozent auf neu errichtete Wohnbauten. Die prozentuelle Verteilung weicht bei den einzelnen Bundesländern ab, weil in ländlichen Gebieten traditionsgemäß viele Wohnobjekte aus Holz errichtet wurden. In den Städten und ihrem großräumigen Umfeld war aufgrund der technischen und brandschutztechnischen Anforderungen nicht möglich, Holz in mehrgeschossigen Projekten zu verwenden. ⁶⁹

 $https://www.holzkurier.com/holzbau/2019/07/holzbauanteil-steigt-in-oesterreich-kontinuierlich.html\ Zugriff\ am\ 03.01.2020$

 $^{^{67}\}mbox{Vgl.}$ Holzbauanteil steigt in Österreich kontinuierlich

⁶⁸ Eigene Darstellung mit Daten von: Holzbauanteil steigt in Österreich kontinuierlich https://www.holzkurier.com/holzbau/2019/07/holzbauanteil-steigt-in-oesterreich-kontinuierlich.html Zugriff am 03.01.2020

⁶⁹ Vgl. Holzbauanteil steigt in Österreich kontinuierlich https://www.holzkurier.com/holzbau/2019/07/holzbauanteil-steigt-in-oesterreich-kontinuierlich.html Zugriff am 03.01.2020

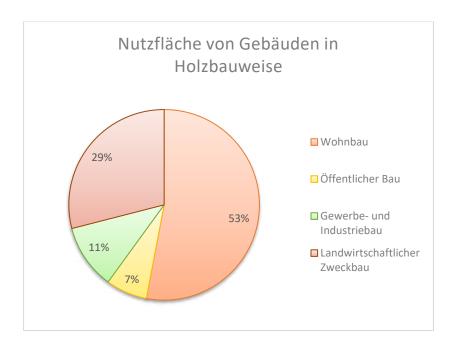


Abbildung 12:Holzbauanteil gesamt in Österreich, Verteilung nach Kategorien⁷⁰

Die Verwendung von Holzbaustoffen im mehrgeschossigen Wohnungsbau ist seit der Novellierung der Bauordnung zulässig. Die detaillierten Anforderungen sind in OIB-Richtlinien und Bauordnungen definiert.

Holz ist ein ökologisches Baumaterial, aufgrund dessen haben Holzbauten einer gute Ökobilanz. Die Verwendung von heimischen Holzprodukte ist ein relevanter nachhaltiger Aspekt, damit das Material ist nicht nur natürlich, sondern auch die Reduktion von CO₂-Emissionen eine Rolle spielt. ⁷¹

_

⁷⁰ Eigene Darstellung mit Daten von: Holzbauanteil steigt in Österreich kontinuierlich https://www.holzkurier.com/holzbau/2019/07/holzbauanteil-steigt-in-oesterreich-kontinuierlich.html Zugriff am 03.01.2020

⁷¹ Vgl. Holzbauanteil steigt in Österreich kontinuierlich https://www.holzkurier.com/holzbau/2019/07/holzbauanteil-steigt-in-oesterreich-kontinuierlich.html Zugriff am 03.01.2020

Die Konstruktionen der Holzbauweise lassen sich in die folgenden Kategorien einordnen:

Abbildung 13: Überblick der Holzbauweisen im Wohnbau⁷²

Massivbauweise

Blockbauweise

Die Blockbauweise ist die älteste Holzbauweise. Der Wandaufbau besteht aus aufeinandergeschichteten liegenden Hölzern, die durch Nut- und Federverbindung aufeinandergesetzt werden. Die liegenden Balken haben eine tragende und eine aussteifende Funktion. Stabilität wird durch die Eckverbindungen erreicht.⁷³

Brettstapelbauweise

Die Bauteile bestehen aus Brettern, Pfosten und Kanthölzern, die als ein- oder mehrschichtige Aufbauten durch Vernageln und Verleimen produziert werden. Diese Elemente werden vorproduziert und danach auf die Baustelle geliefert. Die Vorfertigung

https://moser-holzbau.de/ueber-uns/holzbauweisen/blockbau/ Zugriff am 03.01.2020

⁷² Eigene Darstellung mit Daten von: Wolfgang Winter/Helmut Schöberl/Thomas Bednar, Holzbauweisen im verdichteten Wohnungsbau, Fraunhofer IRB Verlag 2005, Stuttgart, S.15.

⁷³ Vgl. Blockbauweise

erfolgt in Werkstätten, wo einzelne Schichten und eventuell Bauteile zusammengebaut werden. Je nach Bedarf und Bauweise werden die Fenster- und Türöffnungen schon im Werk eingebaut. Die präzise Vorfertigung erfolgt maschinell, sodass Fehlerquellen ausgeschlossen werden können. Die Bauelemente werden wiederholt im Rahmen von Qualitätskontrollen geprüft. Die Bauzeit vor Ort ist kürzer als bei den anderen Bauweisen, weil die fertigen Bauelemente nur an den Baustellen zusammenmontiert werden müssen. Die Bauelemente sind bis zur Lieferung vor Witterung und allen schädlichen Einwirkungen zu schützen. Als am häufigsten verwendete Vollholzprodukte sind zum Beispiel das keilgezinkte Konstruktionsvollholz (KVH) und das Brettschichtholz (BSH) zu erwähnen. Konstruktionsvollholz ist ein Bauschnittholz, das für alle tragenden Konstruktionen eingesetzt werden darf. Die einzelnen Teile werden technisch getrocknet. Mit Hilfe der Trocknung wird eine hohe Formstabilität erreicht und Rissbildung minimiert. Brettschichtholz besteht aus getrockneten und in der gleichen Faserrichtung verklebten Nadelholz Lamellen, die 3,2 aus meist cm dickem hergestellt sind. Brettschichtholzelemente können in vielen Bereichen als tragende Konstruktion und auch aus optischen Gründen eingesetzt werden. 74

Skelettbauweise

Bei der Skelettbauweise sind die Tragstruktur bildenden Stützen und Träger in bestimmten Abständen im Rastersystem angeordnet, damit die Fassaden und die Innenwände beliebig ausgeführt werden können. Die Skelettbauweise ermöglicht eine flexible Grundrissgestaltung, weil das tragende Skelett von den nicht tragenden Innenwänden unabhängig ist. Darüber hinaus ist die Innenraumstruktur eines Objektes einfach zu ändern. Aufgrund der Rasterstruktur besteht eine große Gestaltungsfreiheit.⁷⁵

Rahmenbauweise

Das Tragsystem der Rahmenbauweise besteht aus tragenden Rippen und beidseitigen dünnen Beplankungen. Die Rahmenbauweise kann in unterschiedlichen Vorfertigungsgraden hergestellt werden. Die Wände können komplett oder nur teilweise

-

⁷⁴ Vgl. Holz im Hochbau, Theorie und Praxis, Birkenhäuser Verlag BmbH,2016, Basel Schweiz, S. 53-61

⁷⁵ Holz im Hochbau, Theorie und Praxis, Birkenhäuser Verlag BmbH,2016, Basel Schweiz, S. 53-61

vorgefertigt sein. Aufgrund der Flexibilität und der Verwendbarkeit hoher Dämmstoffstärken kommt diese Bauweise häufig zum Einsatz.⁷⁶

Massivbauweise

Vor dem 19. Jahrhundert wurde das Material Beton ohne zusätzliche Verstärkung im Bauwesen verwendet. Nach dem 19. Jahrhundert wurden Experimente zur Kombination von Eisen und Beton als Verbundbaustoff durchgeführt. Dabei wurde entdeckt, dass diese Kombination höhere statische und brandtechnische Anforderungen erfüllt. ⁷⁷

Ortbeton

Der Ortbeton wird mit Betonmischwagen auf die Baustelle geliefert. Die Herstellung des Betons erfolgt durch definierte Prozesse. Der Beton wird auf der Baustelle weiterverarbeitet. Die Eigenschaften des Betons können mit Zusatzmitteln an die Erfordernisse angepasst werden.

⁷⁶ Holz im Hochbau, Theorie und Praxis, Birkenhäuser Verlag BmbH,2016, Basel Schweiz, S. 53-61

⁷⁷ Beton Atlas,Entwerfen mit Stahlbeton im Hochbau, Friedbert Kind-Barkauskas/Bruno Kauhsen/Stefan Polonyi/Jörg Brandt,Birkenhäuser Verlag,Baser,2002 zweite Auflage, S.47-77

Die statischen Anforderungen des Transportbetons können unterschiedlichen Festigkeitsund Expositionsklassen entsprechen.

Bez.	Beschreibung der	Beispiele
	Umgebung	
X0	Für Beton ohne Bewehrung,	Unbewehrte
	wenn kein Frost bzw. kein	Fundamente ohne
	mechanischer oder	Frost.
	chemischer Angriff vorliegt.	Füll- und
		Ausgleichsbeton
		ohne Frost
XC1	Trocken und ständig nass	Beton in Gebäuden
		(Wohn- und Bürobau)
		einschl. Küche, Bad;
		Fundamente im
		Grundwasser
XC2	Nass, selten trocken, nicht	Innenräume mit
	drückendes Grundwasser	hoher
		Luftfeuchtigkeit;
		Bauwerke in nicht
		drückendem
		Grundwasser

Abbildung 14: Bewehrungskorrosion durch Karbonatisierung⁷⁸

_

 $^{^{78}}$ Eigene Darstellung mit Daten von Betontechnische Daten, Heidelberg Cement, Ausgabe 2017

Festigkeitsklassen	Charakteristische Mindestdruckfestigkeit von
	Würfeln
C 8/10	10 N/mm²
C 12/15	15 N/mm²
C 16/20	20 N/mm²
C 20/25	25 N/mm²
C 25/30	30 N/mm²
C 30/37	37 N/mm²
C 35/45	45 N/mm²

Abbildung 15: Druckfestigkeitsklassen für Normal- und Schwerbeton⁷⁹

3.2.5 Ökologie

Mit einer OI3-Berechnung können die Werte zum Versauerungspotenzial, zum Treibhauspotenzial und zur nicht erneuerbaren Primärenergie auf der Baustoffebene aufgezeigt werden. Dabei werden die folgenden Umweltkategorien berücksichtigt:

- Beitrag zur globalen Erwärmung (GWP)
- Versauerungspotential von Boden und Wasser (AP)
- Bedarf an nicht erneuerbarer Primärenergie, total (PENRT)

Folgende OI3 Basisindikatoren sind definiert:

- -Ökoindex ΔOI3 einer Baustoffschicht
- -Ökoindex OI3 KON einer Konstruktion
- -Ökoindex OI3 eines Gebäudes
- -Ökoindex OI3 eines Gebäudes über den Lebenszyklus
- -Ökoindex OI3S für sanierte Gebäude⁸⁰

Der Δ OI3-Wert bestimmt, wie die einzelnen Baustoffschichten einer Konstruktion der Umwelt beeinflussen können.

⁷⁹ Eigene Darstellung mit Daten von Betontechnische Daten, Heidelberg Cement, Ausgabe 2017

⁸⁰ Leitfaden zur Berechnung des Ökoindex OI3 für Bauteile und Gebäude, Österreichisches Institut für Bauen und Ökologie GmbH,2018, 4 Version, Wien

"Der Delta OI3 einer Baustoffschicht gibt an, um wie viele OI3-Punkte diese Baustoffschicht den Wert OI3 $_{KON}$ der Konstruktion erhöht bzw. senkt." 81

$$\Delta OI3 = \frac{1}{3} \cdot \left[\frac{0.1}{MJ} \cdot \left(PERNT \right) + \frac{0.5}{kgCO_2 \ddot{a}quiv.} \left(GWP \right) + \frac{400}{kgSO_2 \ddot{a}quiv.} \left(AP \right) \right]$$

PENRT ist dabei der Primärenergieaufwand nicht erneuerbar der Bauteilschicht in MJ/m², GWP das Treibhauspotential der Bauteilschicht in kg CO₂ äquiv./m² und AP das Versäuerungspotential der Bauteilschicht in kg SO₂ äquiv./m².

Abbildung 16: Berechnungsformel Delta OI382

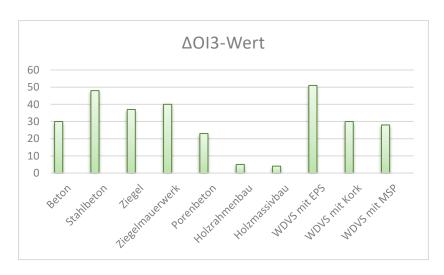


Abbildung 17: Delta OI3 Werte⁸³

3.2.6 Begriff Passivhaus

Passivhausstandard bedeutet, dass Nachhaltigkeit und Energieeffizienz im Mittelpunkt stehen. Gegenwärtig liegt die Betriebs- und Wohnkostenüberlastung über dem Durchschnitt, deshalb ist es erforderlich vermehr Gebäude mit Passivhausstandard zu errichten.

⁸¹ Leitfaden zur Berechnung des Ökoindex OI3 für Bauteile und Gebäude, Österreichisches Institut für Bauen und Ökologie GmbH,2018, 4 Version, Wien, S. 12

⁸² Leitfaden zur Berechnung des Ökoindex OI3 für Bauteile und Gebäude, Österreichisches Institut für Bauen und Ökologie GmbH,2018, 4 Version, Wien, S. 12

⁸³ Eigene Darstellung mit Daten von Ökoindex3, Anwendung Grundlagen Berechnungsergebnisse Optimierung, Österreichisches Institut für Bauen und Ökologie GmbH, Version 7, 2013, Wien

Der Passivhausstandard ist ein ausgeklügeltes System, bei dem Klimaschutz, Behaglichkeit und Energieersparnis von zentraler Bedeutung sind. Dafür ist ein präziser Planungsprozess erforderlich, damit das Hauskonzept extrem niedrige Energiekosten mit Wohnen und Behaglichkeit verbindet. Das System 'Passivhaus' wurde im Jahr 1991 von deutschen und dänischen Wissenschaftlern entwickelt, wobei ein großer Teil der Heizenergie durch entsprechende Wärmedämmung, Wärmerückgewinnung und passive Sonnenenergienutzung reduziert werden soll. Das erste deutsche Passivhaus wurde 1991 gebaut und das erste österreichische Passivhaus ist seit 1996 bewohnt. Um einen Passivhausstandard zu entwickeln, müssen einige Kriterien eingehalten werden. Diese Kriterien wurden durch das Passivhaus Institut Darmstadt zusammengefasst und definiert.⁸⁴

Passivhauskriterien	
1. Heizwärmebedarf	<15 kWh/m²EBF.a
2. Heizlast	≤10 W/m²m²EBF
3. Luftdichtheit	n ₅₀ ≤ 0,6 1/h
4. Primärenergiebedarf	<120 kWh/m²EBF.a

Abbildung 18:Definition der Passivhauskriterien gemäß Passivhaus Institut⁸⁵

-

⁸⁴ Vgl. Passivhaus Institut

https://passiv.de/ Zugriff am 10.12.2019

⁸⁵ Passivhaus Institut

https://passiv.de/ Zugriff am 10.12.2019

Bauteilgruppe	U-Wert	Bewertetes	Bewerteter Standard-
	(W/m²K)	Schalldämmaß R _w	Normtrittschallpegel
		(dB)	L _{n,w} ,
			(dB)
Erdberührte Fußböden	0,15	-	-
Erdberührte Außenwände	0,12 bis <1m	-	-
	Unter		
	Erdoberfläche		
	0,16 > 1m		
Außenwände	0,12	>= 47	-
Kellerdecken	0,15	>=58	-
Zwischendecken	-	>=58	<=48
Decken über Außenluft	0,10	>= 47	-
Dächer	0,10	>= 47	

Abbildung 19: Richtwerte Bauteile⁸⁶

Das Ziel des Passivhausstandards ist es, den Energieverbrauch möglichst zu reduzieren und auf einem niedrigen Niveau zu halten. Darüber hinaus muss eine hocheffiziente Haustechnik für Lüftung, Heizung und Warmwasser eingesetzt werden. Eine wärmebrückenfreie und gut gedämmte Gebäudehülle muss luftdicht sein und mit entsprechend qualitativ hochwertigen Fenstern ausgestattet werden. Passivhausprojekte basieren auf einem Niedrigenergiekonzept; um den Energiebedarf niedrig halten zu können, muss ein geeignetes Haustechniksystem gewählt werden. Die gut gedämmte Gebäudehülle und die Haustechnik sorgen dafür, dass der Energieverbrauch niedrig gehalten wird. Aufgrund der Hygiene und um die Bauteile zu schützen, müssen die Gebäude regelmäßig gelüftet werden. Die erhöhte Dämmstärke sorgt für eine hohe Luftdichtheit, aufgrund dessen sind die natürlichen Lüftungsmöglichkeiten bei einem Passivbau nicht ausreichend und es muss eine Lüftungsanlage eingebaut werden. Mit einer Lüftungsanlage kann die Heizenergie beibehalten werden; zusätzlich kann eine Wärmerückgewinnung erfolgen. Die Ab- und die Zuluft sind voneinander getrennt und unabhängig, deswegen ist eine Mischung der beiden Luftarten unmöglich. Die Außenluft

⁸⁶ Eigene Darstellung mit Daten von IBO Passivhaus-Bauteilkatalog, DI Dr. Bernhard Lipp, DI Thomas Zelger, IBO GmbH, Wien

wird angesaugt und in einem sauberen Zustand den Wohnräumen zugeführt. Außerdem ist eine Solaranlage nötig, damit über eine Wärmepumpe warmes Wasser für das Haus erzeugt werden kann.⁸⁷

-

⁸⁷ Vgl. Aktiv für mehr Behaglichkeit: Das Passivhaus, Passivhaus Institut Innsbruck PHI, 5. Aktualisierte und erweiterte Auflage 2017, Innsbruck

4. Projektanalyse

Nach der Erläuterung der sozialen Wohnbauformen sowie der technischen und baulichen Rahmenbedingungen des Wohnbaus werden in diesem Kapitel der Arbeit vier konkrete Projekte anhand bestimmter Kriterien analysiert.

4.1 Referenzobjekte

Die vier Projekte wurden aus den Wohnprojekten der letzten fünfzehn Jahre ausgewählt und analysiert. Diese Projekte befinden sich in Wien und bieten qualitativ hochwertige Wohnmöglichkeiten im Rahmen des sozialen Wohnungsbaus an.

Alle ausgewählten Bauobjekte wurden nach Passivhausstandard gebaut, jeweils zwei Projekte sind der Holzmisch- und der Massivbauweise zuzuordnen.

Die abweichenden Bauperioden können als Grundlage dienen, bautechnische und baurechtliche Änderungen sowie eventuelle Umstrukturierungen im Wiener Wohnbau aufzeigen zu können.

Die Bauweise und die bautechnischen sowie baurechtlichen Änderungen können sich auf die Baukosten auswirken. Bei den Bauteilen wird insbesondere der Bauteilaufbau untersucht. Die einzelnen Bauteile werden nicht nur ökonomisch, sondern auch ökologisch betrachtet.

Die Analyse erfolgt nach bestimmten Kriterien, die im Folgenden vorgestellt werden.

- Architektur

In den Kapiteln zur Architektur werden die architektonischen Qualitäten der ausgewählten Projekte analysiert. Die Gebäudenutzung, die Lage des Grundstücks, die Ausrichtung des Gebäudes, die Geometrie, die Form der Erschließung, die Möglichkeit der unterschiedlichen Erdgeschossnutzungen, die Nutzungsflexibilität und die Bauweise sind nicht nur bei der Auswertung der architektonischen Qualität relevant, sondern diese Punkte spielen auch bei den Baukosten eine zentrale Rolle. Die Kosten wirken sich auf die Gestaltung eines Wohnobjektes aus, daher ist es erforderlich, diese bereits im Planungsprozess zu beachten, um ein optimales und kostengünstiges Gebäude zu planen.

- Bauweise

In den Kapiteln zur Bauweise wird die Bauweise des Wohnobjektes beschrieben.

- Haustechnik

Die richtige Haustechnik ist bei einem Passivhaus von großer Bedeutung, weil die Heizung gleichzeitig als Lüftung fungiert. Die Lüftungsanlage besteht aus Zu- und Abluft sowie aus Wärmerückgewinnung. Die Wärmerückgewinnung dient zur Minimierung des Wärmeverlusts. Es gibt drei Arten von Lüftungsanlagen: zentrale, dezentrale und semizentrale.

- Bei einer zentralen Lüftungsanlage werden mehrere Wohneinheiten von einem gemeinsamen Wärmeüberträger versorgt.
- Die dezentrale Lüftungsanlage funktioniert wohnungsweise getrennt, weil die Wohnungen von einem separaten Wärmeüberträger versorgt werden.
- Die semizentrale Anlage ist eine Kombination von dezentralem und zentralem System. Diese Anlage ist einerseits eine zentrale Anlage, weil die Wärmeübertragung für mehrere Wohnungen gemeinsam erfolgt. Anderseits ist die Anlage dezentral, weil die Volumenstromregelung mit Hilfe von Einzelventilatoren wohnungsweise individuell steuerbar ist. 88

Bauteilberechnung

Die Bauteile werd

Die Bauteile werden je nach Aufbau aufgelistet und nach bauphysikalischen und ökonomischen Aspekten analysiert. Es werden eventuell alternative Bauteile mit günstigeren Werten vorgeschlagen.

⁸⁸ Vgl. Kostengünstige mehrgeschossige Passivwohnhäuser, Kosten, Technik, Lösungen, Nutzererfahrungen, Helmut Schöberl, Fraunhofer IRB Verlag, 2013 Stuttgart, S.75-80

4.1.1 Referenzobjekt WOHNHAUSANLAGE UNTENDORFGASSE

1. Objektdaten

Adresse:

Utendorfgasse 7, 1140 Wien

Bauträger:

Heimat Österreich gemeinnützige Wohnungs- und Siedlungsgesellschaft mbH, Salzburg

Planung:

Schöberl & Pöll OEG, Wien, Kooperation mit Arch.

DI Franz Kuzmich

Bauphysik:

Eboek Ingenieurbüro, Tuebingen

Haustechnik:

Technisches Büro DI Christian Steininger, Wien

Bauweise:

Massivbauweise

Gebäudetyp:

Mehrfamilienhaus

Aufgeteilt auf drei Baukörper

Anzahl Wohneinheiten:

39 Wohnungen

Fertigstellung:

Oktober 2006

Abbildung 20: Utendorfgasse © Bruno Klomfar

Abbildung 21: Grundriss⁸⁹

PASSIVHAUS UTENDORFGASSE; 1140 WIEN

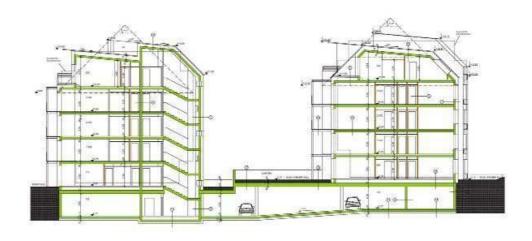


Abbildung 22: Schnitt⁹⁰

⁸⁹ Arch. Di Kuzmich, http://www.architekt-kuzmich.com/Projektgalerie/ Zugriff am 11.10.2019

 $^{^{90}}$ Arch. Di Kuzmich, http://www.architekt-kuzmich.com/Projektgalerie/ Zugriff am 11.10.2019

2. Architektur und Gebäudekonzept

Das Wohngebäude Unterdorfgasse befindet sich im 14. Wiener Gemeindebezirk. Das Projekt ist ein Vorzeigemodell für die Anwendung des Passivhausstandards im sozialen Wohnbau.

Das Wohnobjekt wurde von der Fachjury des Forschungsprojektes "Haus der Zukunft" nominiert, weil es eine Umsetzung des Passivhausstandards im kostengünstigen Sozialbau verwirklicht hat.

Die Anlage besteht aus mehreren südseitig orientierten Baukörpern mit insgesamt 39 Wohneinheiten. Die Wohneinheiten teilen sich auf drei Wohnobjekte auf, von denen eines ein freistehendes Gebäude ist. Die beiden weiteren Objekte grenzen direkt an die bestehenden Feuermauern der Nachbarhäuser an. Die Freiflächen, in Form von Balkonen, Loggien und Dachterrassen, sind nach Süden ausgerichtet. Die Baukörper haben jeweils 13 Wohneinheiten und eine gemeinsame Tiefgarage.

Die Wohngebäude beinhalten eine Erdgeschosszone, drei Obergeschosse und eine Dachgeschossebene. Die Wohnungen und ihre Freiflächen sind südseitig ausgerichtet und die Erschließung erfolgt durch ein nordseitiges Treppenhaus. Die drei Aufzüge der drei Baukörper ermöglichen eine Erschließung von der Tiefgarage bis zum Dachgeschoss. Die meisten Wohnungen sind durchgesteckte Wohnungen, das heißt, sie sind von zwei Seiten belichtet und eine Querlüftung ist möglich.

Die Nutzung des Erdgeschosses ist wirtschaftlich geplant, weil außer dem Fahrrad- und Kinderwagenabstellraum nur weitere Wohnungsmöglichkeiten untergebracht wurden. Diese Wohnungen haben eine Freifläche in Form eines Gartens und die Terrassen öffnen sich nach Süden.

Es steht eine Tiefgarage mit 39 Parkplätzen für die Bewohnerinnen und Bewohner zur Verfügung. Die Tiefgarage ist vom Stiegenhaus einfach erreichbar, zudem bieten die Kellerräume Lagerungsmöglichkeiten je Wohneinheit an. Aus wirtschaftlichen Gründen wurde die Tiefgarage zentral für alle drei Baublöcke geplant. Das heißt, es gibt nur eine gemeinsame Tiefgarage für alle Bewohnerinnen und Bewohner, die über jedes Stiegenhaus vom Kellergeschoss aus erreichbar ist. Die Garage wurde nach Wiener Garagengesetz

geplant und besteht aus einem Brandabschnitt. Die Tiefgarage besitzt eine mechanische CO-Abluftanlage und die Brandentrauchung erfolgt durch Frischluftbrunnen. ⁹¹

Auf Wirtschaftlichkeit und Nutzungsflexibilität wurde besonders achtgegeben, deswegen bilden die querliegenden Scheibenwände die tragende Konstruktion.

2. Bauweise

Die Außenhülle ist als Massivkonstruktion aus Stahlbeton ausgeführt und beträgt jeweils 27 cm und 35 cm.

Die oberirdischen Bauteile sind vom unterirdischen Kellerteil thermisch getrennt, das heißt, die oberen Geschosse gehören zur "warmen Zone" und der Keller zur "kalten Zone". Nicht nur der Keller, sondern auch die auskragenden Balkone sind thermisch getrennt.⁹²

Das Stiegenhaus befindet sich innerhalb der warmen Gebäudehülle.

Die Tragkonstruktion basiert auf Scheibenbauweise, die eine große Gestaltungsfreiheit und eine Spannweite von 7,5 m ermöglicht.

Die Fenster- und Türrahmen wurden überall aus PVC-freiem Material ausgeführt. Die Fensterrahmen wurden entsprechend dem Passivhausstandard als Holz-Aluminium-Rahmen mit Isolierglas und die Türen als Alu-Hausportale und Holzwerkstoff-Innentüren ausgeführt. Aus brandtechnischen Gründen wurden bei den Fensterrahmen Brandschutzriegel eingesetzt.⁹³

3. Haustechnik

Für die Lüftungsanlage wurde eine semizentrale Anlage gewählt, die aus Stützventilatoren, Wärmerückgewinnungseinheit und einer zentralen Luftfilterung besteht. Die Lüftungsanlage umfasst 13 Wohnungen, zwei Abluftauslässe im Stiegenhaus und einen für den Aufzugsschacht.

⁹¹ Vgl. Energetische und baubiologische Begleituntersuchung Passivhausanlage Utendorfgasse, Waldemar Wagner, Andreas Prein, Franz Mauthner, Haus der Zukunft, Bundesministerium für Verkehr, Innovation und Technologie, Wien,2008

⁹² Vgl. Energetische und baubiologische Begleituntersuchung Passivhausanlage Utendorfgasse, Waldemar Wagner, Andreas Prein, Franz Mauthner, Haus der Zukunft, Bundesministerium für Verkehr, Innovation und Technologie, Wien, 2008

⁹³ Vgl. Kostengünstige mehrgeschossige Passivwohnhäuser, Kosten Technik Lösungen Nutzererfahrungen, Helmut Schöberl, Fraunhofer IRB Verlag, 2013

Die Wärmeerzeugung erfolgt durch einen Gas-Brennwertkessel mit einem 1500-Liter-Pufferspeicher, die im Untergeschoss des ersten Hauses montiert sind. Das Wasser wird durch zwei getrennte Leitungen verteilt, ein Leitungsnetz für Warm- und eines für Heizungswasser. Die Wärmeversorgung der Wohnungen erfolgt durch ein Frischluftsystem. Das Heizsystem wurde nach Passivhausstandard geplant, sodass die Beheizung des Wohnraumes durch eine kontrollierte Lüftungsanlage geschieht, die aus vertikalen Schächten besteht. Die maximale Heizlast ist sehr niedrig, weshalb ein konventionelles Heizsystem weggelassen werden konnte.

Die semizentrale Lüftungsanlage ist eine Kombination aus zentralem und dezentralem System. Die Regelung der Wohnungstemperatur erfolgt durch ein dezentrales System. Darüber hinaus ist jede Wohnung mit einem individuell steuerbaren Raumthermostat ausgestattet. Die Wohnungen werden mit Hilfe der Stützventilatoren mit vorgewärmter Luft versorgt. Diese Ventilatoren können je nach Wohnung und je nach Bedarf individuell geregelt werden. Deshalb wurden die dezentralen Einheiten in den Zwischendecken der Wohnungen montiert.

Die Zentraleinheit ist mit Schalldämpfer ausgestattet und wurde auf dem Dach montiert. Die Positionierung der Zentraleinheit ist besonders optimal und platzsparend.

Die Lüftung die Stiegenhäuser erfolgt über die Zentraleinheit der Wohneinheiten. Die Zuluft wird im Erdgeschoss eingebracht und im Dachgeschoss ausgeführt. 94

4. Bauteilberechnung

Auf Basis der Untersuchungen soll ermittelt werden, inwieweit Holzrahmen- und Massivholzbauweise eine Alternative zur bestehenden Stahlbetonbauweise sein können. Während der Untersuchung werden die Bauteile nicht nur wirtschaftlich betrachtet, sondern es werden auch der Brand-, der Schall- und der Wärmeschutz sowie die ökologischen Werte untersucht und miteinander verglichen.

Außenwandsysteme:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise
- Massivbauweise (Stahlbeton)

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes ohne Berücksichtigung der Öffnungen von Türen und Fenstern.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Bauklasse II⁹⁵

1. Tragende Bauteile	-im obersten Geschoss R 30
	-in sonst. Oberirdischen Geschoßen
	R 30
	-in unterirdischen Geschoßen R 60
2. Trennwände	-im obersten Geschoss REI 30
	-in sonst. Oberirdischen Geschoßen
	REI 30
	-in unterirdischen Geschoßen REI 60
3. Brandabschnittsbildende	-brandabschnittsbildende Wände an
Wände und Decken	der Nachbargrundstücks- bzw.
	Bauplatzgrenze REI 90
	-sonstige brandabschnittsbildende
	Wände oder Decken REI 90
4. Decken und	-Decken über dem obersten
Dachschrägen mit einer	Geschoß R 30
Neigung ≤60°	-Trenndecken über dem obersten
	Geschoß REI 30
	-Trenndecken über sonstigen
	oberirdischen Geschoßen REI 30
	-Decken über unterirdischen
	Geschoßen REI 60

Abbildung 23: Bauklasse II⁹⁶

- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der ΔOI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

95 OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

 $^{^{96}}$ Eigene Darstellung mit Daten von OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

1. Bestehendes Außenwandsystem des Referenzobjektes

Als Baumaterial der Außenwände wurde Stahlbeton gewählt. Die Wandstärke beträgt insgesamt 46,8 cm, davon sind 18,00 cm Stahlbeton und 28,00 cm dickes Wärmedämmverbundsystem mit einer aufgebrachten Putzschicht.

Bauteildicke: 46,80 cm

max. Wandhöhe = 2,95 m;

Wärmeschutz⁹⁷
0,12 W/(m²K)

Brandschutz REI_i 90

Ökologie (ΔΟΙ3)⁹⁸ **90 Pkt./m²** Bewertetes
Schalldämmaß
(Rw)⁹⁹
≥47dB

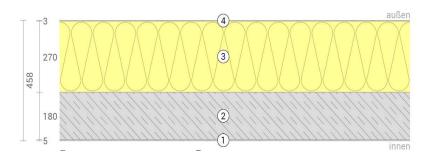


Abbildung 24:Außenwand Bestand¹⁰⁰

Schicht	Material	Dicke (cm)
1	Gipsputz	0,5
2	Stahlbeton	18,0
3	EPS-WDVS	28,0
4	Oberputz	0,3

_

⁹⁷ Eigene Darstellung: Berechnung durch IBO Bauteilkatalog, Berechnung im Anhang hinterleg

⁹⁸ Eigene Darstellung: Berechnung durch IBO, Berechnung im Anhang hinterlegt

⁹⁹ Eigene Darstellung: Berechnung durch Archiphysik, Berechnung im Anhang hinterleg

¹⁰⁰ Eigene Darstellung durch Ubakus

 $\Delta \text{OI3}_{\text{BS}}\text{: Stahlbeton-Außenwand}$

ΔΟΙ3	90	[Pkt./m²]
PENRT	1274	MJ/m²
GWP100	87,2	kg CO2/m²
AP	0,250	kg SO2/m²

Herstellkosten Stahlbetonwand¹⁰¹

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
WDVS-EPS d=280mm	35,15 €/m²
Sichtbeton Wand 25/30	29,50 €/m²
Betonstahlmatten	1,38 €/kg
Bst500M/500B	
Betonstabstahl	1,45 €/kg
Bewehrungszubehör	3,2€/kg
Schalung rau	33,00 €/m²
Kalk-Gipsputz, Innenwand	2,04 €/m²
Grundierung	1,40 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	112,28€/m²

 101 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

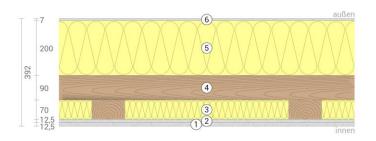
2. Alternativer Wandaufbau - Massivholzwand

Ein alternativer Wandaufbau in Massivholzbauweise wurde aus dem Holz-Bauteilkatalog ausgewählt: tragende Holzmassivwand aus einer 9-cm-KLH-Platte mit Holzfaserdämmplatte und Mineralwolle.

Bauteildicke: 39,20 cm

max. Wandhöhe = 2,95 m;

max. einwirkende Last Ed,fi = 14,95 kN/lfm


Wärmeschutz¹⁰²
0,12 W/(m²K)

Brandschutz¹⁰³ **REI**_i **60**

Ökologie
(ΔΟΙ3)¹⁰⁴ **70 Pkt./m²**

Bewertetes
Schalldämmaß¹⁰⁵
(Rw)

48dB

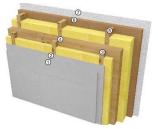


Abbildung 25: Außenwand Massivholz¹⁰⁶

Schicht	Material	Dicke (cm)
1	Gipsfaserplatte	1,25
2	Gipsfaserplatte	1,25
3	KVH mit Mineralwolle	5,0
4	Brettsperrholz	9,0
5	Glaswolle	20,0
6	Putzfassade	0,7

 $^{^{102}}$ Eigene Darstellung: Berechnung durch Ubakus, Berechnung im Anhang hinterleg

¹⁰⁵ Eigene Darstellung: Berechnung durch ift Rosenheim

¹⁰³ Eigene Darstellung: Beurteilung durch MFPA Leipzig

¹⁰⁴ Eigene Darstellung: Berechnung durch IBO,

¹⁰⁶ Eigene Darstellung mit Daten von Massivholzhandbuch Bauteilkatalog, AW29

 $\Delta OI3_{BS}$: Massivholzwand

ΔΟΙ3	70	[Pkt./m²]
PENRT	965	MJ/m²
GWP100	-13,3	kg CO2/m²
AP	0,303	kg SO2/m²

Herstellkosten Holzmassivwand 107

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
KVH mit Glaswolle d=20cm	50,10 €/m²
KLH-Platte d=90	58,00 €/m²
Mineralwolle zw. KVH	11,54 €/m²
Gipsfaserplatte	11,50 €/m²
Gipsfaserplatte	11,50 €/m²
Grundierung	1,40 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	149,20 €/m²

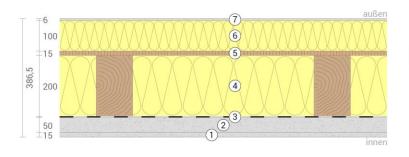
 107 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Alternativer Wandaufbau - Holzleichtbauweise

Ein alternativer Wandaufbau in Holzleichtbauweise wurde aus dem Holz-Bauteilkatalog ausgewählt. Die Außenwand besteht aus 24 cm Glaswolle zwischen Latten und aus OSB-Platte.

Bauteildicke: 38,65 cm

max. Wandhöhe = 2,95 m;


max. einwirkende Last Ed,fi = 19,2 kN/m

Wärmeschutz¹⁰⁸
0,12 W/(m²K)

Brandschutz¹⁰⁹ **REI_i 90**

Ökologie
(ΔΟΙ3)¹¹⁰ **74 Pkt./m²**

Bewertetes
Schalldämmaß¹¹¹
(Rw)
52dB

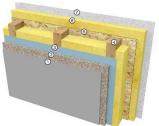


Abbildung 26: Außenwand Holzrahmenbauweise¹¹²

Schicht	Material	Dicke (cm)
1	Kalk-Gipsputz	1,50
2	HolzwolleDämmplatte	5,0
3	Dampfbremse	-
4	KVH mit Glaswolle	20,0
5	OSB Platte	1,50
6	Mineralwolle	10,0
7	Oberputz	0,6

¹⁰⁸ Eigene Darstellung: Berechnung durch Ubakus, Berechnung im Anhang hinterleg

¹⁰⁹ Eigene Darstellung: Beurteilung durch DataHolz

¹¹⁰ Eigene Darstellung: Berechnung durch IBO,

¹¹¹ Eigene Darstellung: Berechnung durch Dataholz

¹¹² Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, awropi23a-01

ΔOI3_{BS}: Holzleichtbau

ΔΟΙ3	74	[Pkt./m²]
PENRT	715	MJ/m²
GWP100	24,4	kg CO2/m²
AP	0,345	kg SO2/m²

Herstellkosten Holzleichtbau¹¹³

Leistungsbereich	Einheitspreis
Silikatputz	3,90 €/m²
Mineralwolle	19,90€/m²
OSB-Platte	5,69 €/m²
KVH mit Glaswolle	50,10 €/m²
OSB-Platte d = 18 mm	10,28 €/m²
Dampfbremse	4,18 €/m²
Heraklith BM Holzfaserdämmplatte	26,20 €/m²
Kalk-Gipsputz	7,0 €/m²
Herstellkosten pro m²	116,97 €/m²

 113 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für das Außenwandsystem zeigt:

- Die Herstellungskosten der Holzmassiv- und Holzrahmenbauweise(116,97-149,20€/m²) liegen nicht wesentlich höher als die Herstellungskosten der Massivbauweise(112,28€/m²).
- Auf Basis der wirtschaftlichen Berechnung ist ersichtlich, dass die Holzmassivbauweise in diesem Fall die teuerste Bauweise ist.
- Die geringsten Wandstärken lassen sich bei Holzrahmenwände erzielen (38,65 cm).
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Massivholzbauweise liegen mit 70 ΔOI3-Punkten an erster Stelle, danach folgt die Holzrahmenbauweise mit 74 ΔOI3-Punkten und die Stahlbauweise stellt sich mit 90 ΔOI3-Punkten am schlechtesten dar.

Geschossdecke:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise
- Massivbauweise (Stahlbeton)

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Feuerwiederstand nach Bauklasse II
- Höchst zulässiger bewerteter Standard-Trittschallpegel¹¹⁴

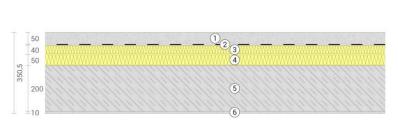
in	aus		L _{nTw} (dB)
Aufenthaltsräumen	Räumen	anderer	48
	Nutzungseinh	eiten	
Nebenräumen	Räumen	anderer	53
	Nutzungseinh	eiten	

- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der ΔOI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

-

 $^{^{114}}$ OIB Richtlinie 5 Schallschutz, Institut für Bautechnik, April 2019, OIB-330.5-002/19

1. Bestehende Geschossdecke des Referenzprojektes- Massivbauweise


Als Baumaterial der Geschossdecke wurde Stahlbeton gewählt. Die Deckenstärke beträgt insgesamt 50,0 cm, davon 25,00 cm Stahlbeton und 35,00 cm dicke EPS-Wärmedämmung.

Bauteildicke: 35,00 cm

max. einwirkende Last Ed,fi = 19 kN/m

Brandschutz REI_i 90 Ökologie $(\Delta OI3)^{115}$ 71 Pkt./m²

Bewerteter Standard-Normtrittschallpegel¹¹⁶ (L_{n,w}) **48,00dB**

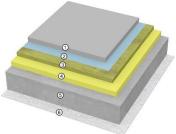


Abbildung 27: Geschossdecke Bestand¹¹⁷

Schicht	Material	Dicke (cm)
1	Estrich	5,0
2	Dampfbremse	-
3	Trittschalldämmung	4,0
4	Schüttung	5,0
5	Stahlbeton	20,0

¹¹⁷ Eigene Darstellung durch Ubakus

¹¹⁵ Eigene Darstellung: Berechnung durch IBO,

¹¹⁶ Eigene Darstellung

 $\Delta OI3_{BS}$: Stahlbetondecke

ΔΟΙ3	71	[Pkt./m²]
PENRT	781	MJ/m²
GWP100	77,3	kg CO2/m²
AP	0,240	kg SO2/m²

Herstellkosten Stahlbetondecke¹¹⁸

Leistungsbereich	Einheitspreis
Estrich d = 50 mm	14 €/m²
Dampfbremse	4,18 €/m²
Trittschalldämmung	7,38 €/m²
Schüttung	7,9 €/m²
Stahlbeton C25/30	22,12 €/m²
Betonstahlmatten Bst500M/B500	1,38 €/kg
Betonstabstahl	1,45 €/kg
Bewehrungszubehör	3,2 €/kg
Deckenschalung	38 €/m²
Randschalung	12,70 €/m²
Dämmung Deckenrand	5,0 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	118,57 €/m²

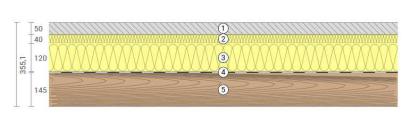
 $^{\rm 118}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

2. Geschossdecke alternativ: Massivholzdecke

Eine alternative Lösung der Geschossdecke in Massivholzbauweise wurde aus dem Holz-Bauteilkatalog gewählt.

Bauteildicke: 35,50 cm

Brandschutz: REI 90


max. einwirkende Last Ed,fi = 5,06 kN/m²

Brandschutz¹¹⁹

REI_i90

Ökologie $(\Delta OI3)^{120}$ 48 Pkt./m²

Bewerteter Standard-Normtrittschallpegel 121 ($L_{n,w}$) 38,00dB

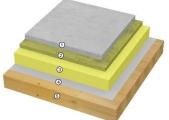


Abbildung 28: Geschossdecke Massivholz¹²²

Schicht	Material	Dicke (cm)
1	Zementestrich	5,0
2	Trittschalldämmung	4,0
3	Splitschüttung	12,0
4	Rieselschutz	-
5	Brettsperrholz	14,50

¹¹⁹ Eigene Darstellung: Beurteilung durch DataHolz

¹²⁰ Eigene Darstellung: Berechnung durch IBO,

¹²¹ Eigene Darstellung: Berechnung durch Dataholz

¹²² Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, tdmnxs01-01

ΔOI3_{BS}: Massivholzdecke

ΔΟΙ3	48	[Pkt./m²]
PENRT	767	MJ/m²
GWP100	-52,6	kg CO2/m²
AP	0,237	kg SO2/m²

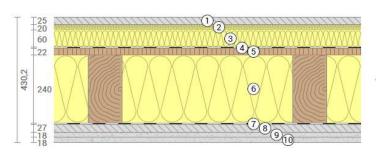
Herstellkosten Massivholzdecke¹²³

Leistungsbereich	Einheitspreis
Estrich	21 €/m²
Trittschalldämmung	12,89 €/m²
Schüttung d = 30 mm	7,9 €/m²
Rieselschutz	0,54 €/m²
KLH Geschossdecke	74 €/m²
Oberflächenbehandlung Wohnsicht	16€/m²
Herstellkosten pro m²	132,33 €/m²

 $^{^{\}rm 123}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Geschossdecke alternativ: Holzrahmen

Als alternative Lösung der Geschossdecke in Holzrahmenbauweise wurde die Geschossdecke aus dem Dataholz-Bauteilkatalog gewählt.


Bauteildicke: 43,02 cm

max. einwirkende Last Ed,fi = 3,66 kN/m²

Brandschutz¹²⁴ **REI**i **60**

Ökologie $(\Delta OI3)^{125}$ 35 Pkt./m²

Bewerteter Standard-Normtrittschallpegel 126 ($L_{n,w}$) 38,00dB

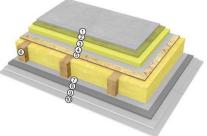


Abbildung 29: Geschossdecke Holzrahmen¹²⁷

Schicht	Material	Dicke (cm)
1	Trockenestrich	2,5
2	Trittschalldämmung	2,0
3	Schüttung	6,0
4	Rieselschutz	-
5	OSB-Platte	2,2
6	KVH mit Mineralwolle	24,0
7	Rieselschutz	-
8	Federschiene	2,7
9	Gipsplatte	3,6

¹²⁶ Eigene Darstellung: Berechnung durch Dataholz

¹²⁴ Eigene Darstellung: Beurteilung durch DataHolz

¹²⁵ Eigene Darstellung: Berechnung durch IBO

¹²⁷ Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, gdrtxa02b-05

ΔOI3_{BS}: Holzrahmen

ΔΟΙ3	35	[Pkt./m²]
PENRT	545	MJ/m²
GWP100	-10,40	kg CO2/m²
AP	0,139	kg SO2/m²

Herstellkosten Holzrahmen¹²⁸

Leistungsbereich	Einheitspreis
Trockenestrich	16,40 €/m²
Trittschalldämmung MW	5,52 €/m²
Schüttung	7,9 €/m²
Rieselschutz	0,54 €/m²
OSB-Platte	7,49 €/m²
Mineralwolle zw. KVH	52,26 €/m²
Rieselschutz	0,54 €/m²
Federschiene 60/27	6,79 €/m²
GKF d = 36 mm	31,88 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	131,90 €/m²

 $^{^{\}rm 128}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für die Geschossdecke zeigt:

- Die Herstellungskosten der Holzmassiv- und Holzrahmendecke(131,90-132,33€/m²) liegen nicht wesentlich höher als die der Stahlbetondecke (118,97€/m²)
- Auf Basis der wirtschaftlichen Berechnung ist ersichtlich, dass die Holzmassivdecke in diesem Fall die teuerste Bauweise ist.
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Holzrahmenbauweise liegen mit 35 ΔΟΙ3-Punkten an erster Stelle, danach folgt Holzmassivbauweise mit 48 ΔΟΙ3-Punkten und die Stahlbauweise mit 71 ΔΟΙ3-Punkten stellt sich am schlechtesten dar.

4.1.2 Referenzobjekt II WOHNHAUSANLAGE Mühlweg Bauteil C

1.Objektdaten

Adresse:

Fritz-Kandl-Gasse 1

Bauträger:

BAI Bauträger Austria Immobilien GmbH

Planung:

Dietrich/Untertrifaller Architekten

Bauphysik:

IBO Institut für Baubiologie und -ökologie GmbH

Haustechnik:

Allplan GmbH

Bauweise:

Holzmassiv-Mischbauweise

Gebäudetyp:

Mehrfamilienwohnhausanlage

Auf vier Wohnhäuser aufgeteilt

Anzahl Wohneinheiten:

70 Wohneinheiten

Fertigstellung:

November 2006

Abbildung 31: WHA Mühlweg Bauteil C © Bruno Klomfar

Abbildung 30: WHA Mühlweg Bauteil C © Bruno Klomfar

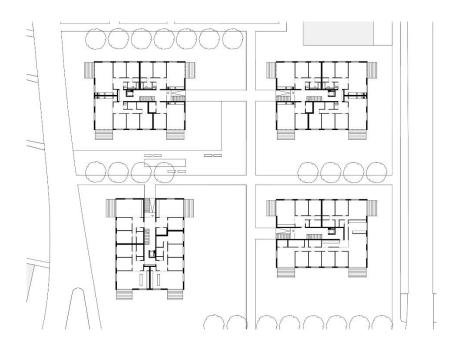


Abbildung 32: Grundriss Mühlweg Bauteil C129

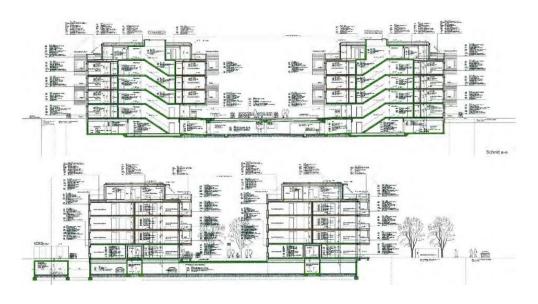


Abbildung 33:Schnitt¹³⁰

-

Bautechnische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg,
 W.Wagner/A.Prein/M. Spörk-Dür/J.Suschek-Berger, 80/2010, Haus der Zukunft, Gleisdorf 2010
 Bautechnische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg,
 W.Wagner/A.Prein/M. Spörk-Dür/J.Suschek-Berger, 80/2010, Haus der Zukunft, Gleisdorf 2010

2. Architektur und Gebäudekonzept

Das Wohnungsprojekt Mühlweg wurde im Rahmen von Bauträgerwettbewerben des sozialen Wohnbaus entworfen. Das Projekt liegt in Wien-Floridsdorf im 21. Gemeindebezirk. Das Baufeld ist auf drei Bauplätze aufgeteilt, wo von drei Bauträgern soziale Wohnungen errichtet wurden.

Die ausgewählte Wohnanlage liegt auf dem Bauplatz C. Das Mehrfamilienhaus wurde in Passivhausstandard errichtet und wurde von "Haus der Zukunft" gefördert. Das Projekt ist das erste in Holzmischbauweise im sozialen Wohnbau. Im Jahr 2001 wurde eine Novellierung der Wiener Bauordnung eingeführt, seitdem ist die Verwendung der Holzmischbauweise im sozialen Wohnungsbau erlaubt.

Die Wohnanlage besteht aus vier freistehenden Baukörpern, die 70 Wohneinheiten umfassen. Die rechteckigen Baublöcke sind um eine gemeinsame Grünfläche herum angeordnet. Der Bauplatz ist großzügig gestaltet und die Wohnblöcke wurden sehr offen, mit genügend Abstand gruppiert.

Die Wohnblöcke sind mit Balkonen, Loggien sowie Terrassen ausgestattet und orientieren sich Richtung Süd-West.

Drei Bauteile haben jeweils 18 Wohneinheiten und in Bauteil 4 sind weitere 15 Wohnungen. Die Wohnobjekte bestehen aus drei Regelgeschossen und zusätzlich aus einem Dach- und einem Kellergeschoss. Die Wohnungen sind in den vier Himmelsrichtungen angeordnet, die Erschließung erfolgt durch ein mittig liegendes Stiegenhaus.

Die Wohnungen wurden so entworfen, dass sie von zwei Seiten belichtet und belüftet werden können. Die Sanitärbereiche der Wohnungen wurden um das Stiegenhaus herum angeordnet und durch die Aufenthaltsräume sind die Freiflächen (Garten, Terrasse, Loggia) zugänglich.

Die Erdgeschosse wurden zu Wohnzweck gestaltet, sodass es dort weitere Wohnmöglichkeiten gibt. Die gemeinsame Grünfläche ist von den Erdgeschosswohnungen aus erreichbar.

Eine Tiefgarage wurde unter den vier Wohnblöcken errichtet, die insgesamt 72 Stellplätze für die Bewohnerinnen und Bewohner bietet. Die Tiefgarage liegt zentral unter den vier Wohnobjekten. Sowohl die gemeinsame Tiefgarage als auch die Gemeinschaftswaschküche und die Lagerräume sind von jedem Stiegenhaus der Wohnanlage aus erreichbar. 131

2. Bauweise

Das Wohnprojekt wurde in Passivhausstandard und in Holzmischbauweise errichtet. Damals war es laut Wiener Bauordnung aus brandtechnischen Gründen nicht erlaubt, fünfgeschossige Holzmischbauweise im Sozialbau zu verwenden. Deswegen wurden hier die Tiefgarage, der Keller und das Fundament aus Stahlbeton gebaut, die oberen Geschosse dagegen sind reiner Holzbau.

Die tragenden Außenwände wurden aus KLH-Kreuzlagenholz-Elementen mit 95 Prozent Fichtenanteil und 5 Prozent Tannenanteil vorgefertigt.

Die Fenster und Türen wurden aus PVC-freiem Material, aus Holz-Aluminium-Verbund mit Drei-Scheiben-Isolierglas, konstruiert. Der Einbau der Fenster und der Anschluss zur Wand wurden in der Vorfertigungsphase durchgeführt. In der Fabrik war eine problemlose Montierung der Fenster und Anschlüsse möglich. ¹³²

3.Haustechnik

Für die Lüftungsanlage wurde eine zentrale Anlage mit Wärmetauscher zur Wärmerückgewinnung gewählt. Die Lüftungsanlage wurde je Baublock platzsparend auf dem Dach montiert.

Die Frischluft wird von außen am Dach angesaugt und vorgewärmt. Die erwärmte Luft wird über vertikal liegende Schächte geführt. Die Verteilung der Frischluft erfolgt durch einzelne Auslässe, die je Wohneinheit in der Zwischendecke montiert wurden. Die Abluft aus Badezimmer, WC und Küche wird abgesaugt und mit Hilfe der vertikal liegenden Schächte

¹³¹ Bautechnische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg, W.Wagner/A.Prein/M. Spörk-Dür/J.Suschek-Berger, 80/2010, Haus der Zukunft, Gleisdorf 2010

¹³² Bautechnische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg, W.Wagner/A.Prein/M. Spörk-Dür/J.Suschek-Berger, 80/2010, Haus der Zukunft, Gleisdorf 2010

über dem Dach ins Freie geführt. Ein Schalldämpfer wurde eingebaut, um die Schallübertragung vom Lüftungsgerät zu reduzieren. 133

Die Beheizung erfolgt je Baukörper durch ein zentrales Gasbrennwertgerät, das im Keller positioniert ist. Die Warmwasserbereitung geschieht zentral. Die Wohnungen sind mit einer Heizkörperheizung und einer Wohnraumlüftung ausgestattet. Die Steuerung der Raumtemperatur kann individuell raumweise über Thermostate erfolgen.

Zusätzlich wurde eine thermische Solaranlage auf dem Dach montiert. Die 60-m²-Solaranlage wurde mit südseitiger Orientierung in einem Winkel von 45° auf dem Dach montiert und mit einem 1000-Liter-Pufferspeicher ausgestattet.

Die Brandrauchentlüftung der Garage erfolgt über Entlüftungsöffnungen. Die Absaugung der Abgase wurde mechanisch gelöst, die Luft wird durch Schächte bis zum Dach hinausgeführt. Ein Schalldämpfer wurde in die Abluftkanäle eingebaut, um die Geräusche zu reduzieren.¹³⁴

4.Bauteilberechnung

Auf Basis der Untersuchungen soll ermittelt werden, inwieweit Holzbauweise eine Alternative zur bestehenden Bauweise darstellen kann. Während der Untersuchung werden die Bauteile nicht nur wirtschaftlich betrachtet, sondern es werden auch der Brand, der Schall- und der Wärmeschutz sowie die ökologischen Werte untersucht und miteinander verglichen.

Außenwandsysteme:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise

-

¹³³ Bautechnische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg, W.Wagner/A.Prein/M. Spörk-Dür/J.Suschek-Berger, 80/2010, Haus der Zukunft, Gleisdorf 2010 ¹³⁴ Bautechnische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg, W.Wagner/A.Prein/M. Spörk-Dür/J.Suschek-Berger, 80/2010, Haus der Zukunft, Gleisdorf 2010

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes ohne Berücksichtigung der Öffnungen von Türen und Fenstern.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Bauklasse II¹³⁵

5. Tragen	de Bauteile	-im obersten Geschoss R 30
		-in sonst. Oberirdischen Geschoßen
		R 30
		-in unterirdischen Geschoßen R 60
6. Trennw	<i>v</i> ände	-im obersten Geschoss REI 30
		-in sonst. Oberirdischen Geschoßen
		REI 30
		-in unterirdischen Geschoßen REI 60
7. Branda	bschnittsbildende	-brandabschnittsbildende Wände an
Wände	und Decken	der Nachbargrundstücks- bzw.
		Bauplatzgrenze REI 90
		-sonstige brandabschnittsbildende
		Wände oder Decken REI 90
8. Decken	und	-Decken über dem obersten
Dachsc	hrägen mit einer	Geschoß R 30
Neigun	g ≤60°	-Trenndecken über dem obersten
		Geschoß REI 30
		-Trenndecken über sonstigen
		oberirdischen Geschoßen REI 30
		-Decken über unterirdischen
		Geschoßen REI 60

Abbildung 34: Bauklasse II¹³⁶

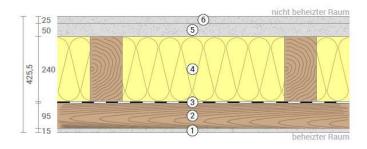
- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der ΔOI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

 135 OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

¹³⁶ Eigene Darstellung mit Daten von OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

1. Bestehendes Außenwandsystem des Referenzobjektes

Der bestehende Wandaufbau beim Projekt Mühlweg ist eine Holzmassivkonstruktion. Die Außenwandstärke beträgt 42,55 cm, davon entfallen 24,00 cm auf die Rahmenkonstruktion, zwischen den Latten wurde Mineralwolle eingesetzt und 9,5 cm KLH-Holzplatte.


Bauteildicke: 42,55 cm

max. Wandhöhe = 2,50 m;

Wärmeschutz¹³⁷
0,15 W/(m²K)

Brandschutz¹³⁸ **REI_i 60**

Ökologie (ΔΟΙ3)¹³⁹ **54 Pkt./m²** Bewertetes
Schalldämmaß¹⁴⁰
(Rw)
51dB

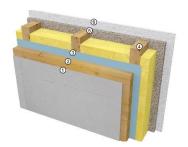


Abbildung 35: Außenwand Massivholz Bestand¹⁴¹

Schicht	Material	Dicke (cm)
1	Gipsfaserplatte	1,50
2	KLH-Holzwand	9,5
3	Strömungsdichte Folie	-
4	Mineralwolle zw. Latten	24,0
5	Holzwolle	5,0
	Leichtbauplatte	
6	Dünnputz	0,25

¹³⁷ Eigene Darstellung: mit Daten von W. Wagner/ A. Prein/M. Spörk-Dür/J. Suschek-Berger, Energietechnische und Baubiologische Begleituntersuchung Mühlweg,2010, S.1

81

¹³⁸ Eigene Darstellung: mit Daten von W. Wagner/ A. Prein/M. Spörk-Dür/J. Suschek-Berger, Energietechnische und Baubiologische Begleituntersuchung Mühlweg,2010, S.1

¹³⁹ Eigene Darstellung: Berechnung durch IBO,

¹⁴⁰ Eigene Darstellung: W. Wagner/ A. Prein/M. Spörk-Dür/J. Suschek-Berger, Energietechnische und Baubiologische Begleituntersuchung Mühlweg,2010

¹⁴¹ Eigene Darstellung durch Ubakus

ΔΟΙ3_{BS}: Massivholz-Außenwand

ΔΟΙ3	54	[Pkt./m²]
PENRT	876	MJ/m²
GWP100	-49,1	kg CO2/m²
AP	0,244	kg SO2/m²

Herstellkosten Massivholz-Außenwand¹⁴²

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
Holzwolle-Dämmplatte	50,40 €/m²
Mineralwolle zw. Latten	57,72 €/m²
Dampfbremse	2,7 €/m²
KLH d = 94 mm	50,50 €/m²
GKF d = 15 mm	10,80 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	178,68 €/m²

 $^{^{142}}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

2. Außenwand alternativ: Holzmassivbauweise

Als alternative Möglichkeit wird die Massivholzbauweise betrachtet, bei der die Außenwandstärke 41,7 cm beträgt. Davon entfallen 10,00 cm auf die tragende KLH-Holzwand und 16,00 cm auf die Mineralwolldämmung.

Bauteildicke: 41,70 cm

max. Wandhöhe = 2,50 m;

max. einwirkende Last Ed,fi = 35 kN/lfm

Wärmeschutz¹⁴³
0,12 W/(m²K)

Brandschutz¹⁴⁴ **REI**_i **90**

Ökologie (ΔΟΙ3)¹⁴⁵ **44 Pkt./m²** Bewertetes
Schalldämmaß¹⁴⁶
(Rw) **56dB**

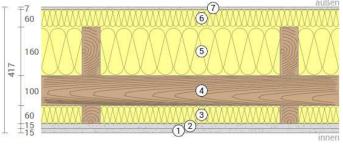


Abbildung 36: Außenwand Massivholz¹⁴⁷

Schicht	Material	Dicke (cm)
1	Gipsfaserplatte	1,50
2	Gipsfaserplatte	1,50
3	Mineralwolle zw. Latten	5,0
4	KLH	10,0
5	Mineralwolle zw. Latten	16,0
6	Holzfaserdämmplatte	6,0
7	Oberputz	0,7

¹⁴³ Eigene Darstellung Berechnung durch Ubakus, Berechnung im Anhang hinterlegt

¹⁴⁴ Eigene Darstellung: Beurteilung durch DataHolz

¹⁴⁵ Eigene Darstellung: Berechnung durch IBO,

¹⁴⁶ Eigene Darstellung: Berechnung durch DataHolz

¹⁴⁷ Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, awmopi05a-00

ΔOI3_{BS}: Holzmassiv-Außenwand

ΔΟΙ3	44	[Pkt./m²]
PENRT	752	MJ/m²
GWP100	-57,2	kg CO2/m²
AP	0,216	kg SO2/m²

Herstellkosten Holzmassivbauweise-Außenwand 148

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
Holzfaserdämmplatte	6,32 €/m²
KVH mit Mineralwolle	46,11 €/m²
KLH-Holzplatte	52 €/kg
KVH mit Mineralwolle	10,26 €/kg
GKF-Platte	10,80 €/kg
GKF-Platte	10,80 €/m²
Grundierung	1,4 €/m²
Herstellkosten pro m²	140,19 €/m²

 $^{\rm 148}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Außenwand alternativ: Holzrahmenbauweise

Ein alternativer Wandaufbau in Holzrahmenbauweise wurde aus dem Holz-Bauteilkatalog ausgewählt: tragende Rahmenkonstruktion mit Glaswolle

Bauteildicke: 41,15 cm

max. Wandhöhe = 2,50 m;

max. einwirkende Last Ed,fi = 19 kN/m

Wärmeschutz¹⁴⁹ **0,11 W/(m²K)**

Brandschutz¹⁵⁰
REI_i 90

Ökologie
(ΔΟΙ3)¹⁵¹ **46 Pkt./m²**

Bewertetes
Schalldämmaß¹⁵²
(Rw)
51dB

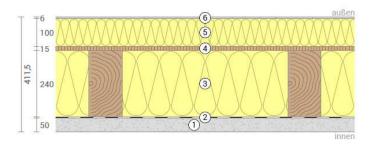


Abbildung 37: Außenwand Holzrahmen¹⁵³

Schicht	Material	Dicke (cm)
1	Holzfaserplatte	5,0
2	Dampfbremse	-
3	Glaswolle zw. Latten	24,0
4	OSB	1,50
5	Mineralwolldämmplatte	10,0
6	Oberputz	0,6

¹⁴⁹ Eigene Darstellung: Berechnung durch IBO Bauteilkatalog, Berechnung im Anhang hinterlegt

¹⁵⁰ Eigene Darstellung: Beurteilung durch DataHolz

¹⁵¹ Eigene Darstellung: Berechnung durch IBO,

¹⁵² Eigene Darstellung: Berechnung durch DataHolz

¹⁵³Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, awropi22a-02

ΔOI3_{BS}: Holzrahmenbau

ΔΟΙ3	46	[Pkt./m²]
PENRT	569	MJ/m²
GWP100	0,752	kg CO2/m²
AP	0,203	kg SO2/m²

Herstellkosten Holzrahmenbau¹⁵⁴

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
Mineralwolle Dämmplatte	19,00 €/m²
OSB-Platte	5,69 €/m²
KVH zw. Glaswolle	60,31 €/m²
Dampfbremse	4,18 €/m²
Heraklith BM-W	31,50€/m²
Grundierung	1,4 €/m²
Herstellkosten pro m²	125,84 €/m²

 154 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für das Außenwandsystem zeigt:

- Die Herstellungskosten der Holzmassiv- und Holzrahmenbauweise (125,84-140,19 €/m²) liegen niedriger als die Herstellungskosten der Bestandsbauweise(178,68€/m²).
- Die geringsten Wandstärken lassen sich bei Holzrahmenwänden erzielen (41,15 cm).
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Holzmassivbauweise liegen mit 44 ΔΟΙ3-Punkten an erster Stelle, danach folgt die alternative Holzrahmenbauweise mit 46 ΔΟΙ3-Punkten und die Bestandsaufbau mit 54 ΔΟΙ3-Punkten stellt sich am schlechtesten dar.

Geschossdecke:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Feuerwiederstand nach Bauklasse II
- Höchst zulässiger bewerteter Standard-Trittschallpegel¹⁵⁵

in	aus		L _{nTw} (dB)
Aufenthaltsräumen	Räumen	anderer	48
	Nutzungseinhe	eiten	
Nebenräumen	Räumen	anderer	53
	Nutzungseinhe	eiten	

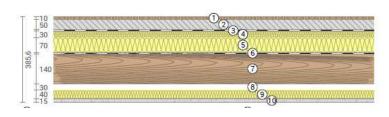
- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der ΔOI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

-

¹⁵⁵ OIB Richtlinie 5 Schallschutz, Institut für Bautechnik, April 2019, OIB-330.5-002/19

1. Bestehende Geschossdecke des Referenzobjektes – Massivholz

Die bestehende Geschossdecke des Referenzobjektes ist eine Massivholzdecke mit einer Bauteilstärke von 38,56 cm. Der Deckenaufbau besteht aus Zementestrich, Trittschalldämmplatte auf Trockenschüttung und Massivholzplatte. Die Stärke der KLH-Massivholzplatte beträgt laut Einreichplan 14,00 cm.


Bauteildicke: 38,56 cm

max. einwirkende Last Ed,fi = 3,66 kN/m²

Brandschutz¹⁵⁶ REI_i90

Ökologie $(\Delta OI3)^{157}$ 78 Pkt./m²

Bewerteter Standard-Normtrittschallpegel¹⁵⁸ $(L_{n,w})$ 38,00dB

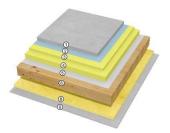


Abbildung 38: Geschossdecke Massivholz Bestand¹⁵⁹

Schicht	Material	Dicke (cm)
1	Zementestrich	5,0
2	Dampfsperre	-
3	Trittschalldämmung	3,0
4	Splitschüttung	7,0
5	Rieselschutz	-
6	KLH-Deckenelement	14,0
7	Deckenabhängung	7,0
8	Mineralfaserdämmung	4,0
9	Gipsfaserplatte	1,5

¹⁵⁶ Eigene Darstellung: mit Daten von W. Wagner/ A. Prein/M. Spörk-Dür/J. Suschek-Berger, Energietechnische und Baubiologische Begleituntersuchung Mühlweg,2010

¹⁵⁷ Eigene Darstellung: Berechnung durch IBO,

¹⁵⁸ Eigene Darstellung

¹⁵⁹ Eigene Darstellung durch Ubakus

ΔOI3_{BS}: Massivholz

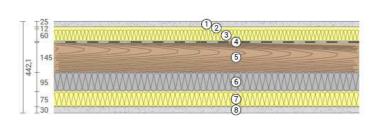
ΔΟΙ3	78	[Pkt./m²]
PENRT	973	MJ/m²
GWP100	-37,2	kg CO2/m²
AP	0,386	kg SO2/m²

Herstellkosten Holzmassivdecke¹⁶⁰

Leistungsbereich	Einheitspreis
Estrich d = 50 mm	21,00 €/m²
Dampfsperre	4,18 €/m²
Trittschalldämmung	5 €/m²
Schüttung	8,8 €/m²
Rieselschutz	0,54 €/m²
KLH-Platte	72,00 €/m²
Deckenabhängung	13,4 €/m²
Mineralfaserdämmung	1,89 €/m²
Gipsfaserplatte	10,80 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	140,27 €/m²

 $^{\rm 160}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

2. Geschossdecke alternativ: Massivholzdecke


Eine alternative Bauweise für die Geschossdecke wäre eine angehängte Holzmassivdecke. Die Deckenstärke beträgt dabei 44,20 cm.

Bauteildicke: 44,20 cm

max. einwirkende Last Ed,fi = 8,81 kN/m²

Brandschutz¹⁶¹ **REI**i **90**

Ökologie (ΔΟΙ3)¹⁶² **62 Pkt./m²** Bewerteter Standard-Normtrittschallpegel 163 ($L_{n,w}$) 36,00dB

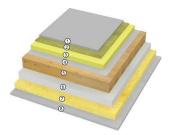


Abbildung 39: Geschossdecke Massivholz¹⁶⁴

Schicht	Material	Dicke (cm)
1	Rigidurestrich	2,5
2	Trittschalldämmung	1,2
3	Splitschüttung	6,0
4	Rieselschutz	-
5	KLH-Decke	14,5
6	Rigips mit Abhänger	9,5
7	Mineralwolle	7,5
8	GKF-Platte	3,0

¹⁶¹ Eigene Darstellung: Beurteilung durch DataHolz

¹⁶² Eigene Darstellung: Berechnung durch IBO,

¹⁶³ Eigene Darstellung: Beurteilung durch DataHolz

¹⁶⁴ Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, tdmtxa01b-05

ΔOI3_{BS}: Massivdecke

ΔΟΙ3	62	[Pkt./m²]
PENRT	880	MJ/m²
GWP100	-52,6	kg CO2/m²
AP	0,312	kg SO2/m²

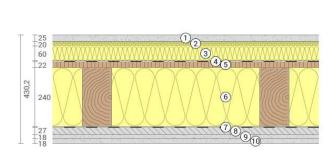
Herstellkosten Holzmassivdecke¹⁶⁵

Leistungsbereich	Einheitspreis
Rigips Rigidur	16,40 €/m²
Trittschalldämmplatte	3,43 €/m²
Schüttung	8,80 €/m²
Rieselschutz	0,54 €/m²
KLH	74,0 €/kg
Rigips 9,5 mit abhänger	1,79 €/kg
Mineralwolle	3,49 €/kg
Feuerschutzplatte	16,14€/m²
Feuerschutzplatte	16,14€/m²
Herstellkosten pro m²	141,53 €/m²

 165 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Geschossdecke alternativ: Holzrahmen

Als alternative Lösung der Geschossdecke in Holzrahmenbauweise wurde aus dem Dataholz-Bauteilkatalog gewählt.


Bauteildicke: 43,02 cm

max. einwirkende Last Ed,fi = 3,66 kN/m²

Brandschutz¹⁶⁶
REI_i 60

Ökologie $(\Delta OI3)^{167}$ 42 Pkt./m²

Bewerteter Standard-Normtrittschallpegel 168 ($L_{n,w}$) 38,00dB

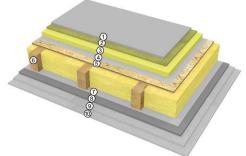


Abbildung 40: Geschossdecke Holzrahmenbau¹⁶⁹

Schicht	Material	Dicke (cm)
1	Trockenesrich	2,5
2	Trittschalldämmung	2,0
3	Splitschüttung	6,0
4	Rieselschutz	-
5	OSB Platte	2,2
6	KVH mit Mineralwolle	24,0
7	Rieselschutz	-
8	Federschiene	2,7
9	GKF-Platte	1,8
10	GKF-Platte	1,8

¹⁶⁶ Eigene Darstellung: Beurteilung durch DataHolz

¹⁶⁷ Eigene Darstellung: Berechnung durch IBO,

¹⁶⁸ Eigene Darstellung: Beurteilung durch DataHolz

¹⁶⁹ Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, gdrtxa02b-05

ΔOI3_{BS}: Holzrahmen

ΔΟΙ3	42	[Pkt./m²]
PENRT	568	MJ/m²
GWP100	-1,60	kg CO2/m²
AP	0,177	kg SO2/m²

Herstellkosten Holzrahmen¹⁷⁰

Leistungsbereich	Einheitspreis
Trockenestrich	16,40 €/m²
Ausgleichschicht	3,9 €/m²
Trittschalldämmung	4,60 €/m²
Schüttung	8,8 €/m²
Rieselschutz	0,54 €/m²
OSB-Platte d = 22 mm	10,28 €/m²
Mineralwolle zw. KVH	56,37 €/m²
Rieselschutz	0,54 €/m²
Federschiene 60/27	6,79 €/m²
GKF d = 36mm	31,88 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	142,76 €/m²

 $^{^{170}}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für die Geschossdecke zeigt:

- Die Herstellungskosten der Massivholzbauweise (141,53 €/m²) sind niedriger als die der Holzrahmenbauweise (142,76 €/m²).
- Auf Basis der wirtschaftlichen Berechnung ist ersichtlich, dass die Holzrahmendecke in diesem Fall die teuerste Bauweise ist (142,76 €/m²).
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Holzrahmenbauweise liegen mit 42 ΔOI3-Punkten an erster Stelle, danach folgt die Massivholzbauweise mit 62 ΔOI3-Punkten.

4.1.3 Referenzobjekt III **BAUGRUPPE JASPERN**

Adresse:

Hannah-Arendt-Platz 10,1220 Aspern Wien

Bauträger:

Baugruppe JAspern Gbr

Planung:

Pos Sustainable Architecture

Bauphysik:

IBO Institut für Baubiologie und -ökologie GmbH

Abbildung 42: Jaspern Markus Kaiser©

Haustechnik:

Teamgmi Ingenieurbüro GmbH

Bauweise:

Massivbauweise

Gebäudetyp:

Mehrfamilienhaus

1 Baukörper

Anzahl Wohneinheiten:

18 Wohneinheiten

Fertigstellung:

Juli 2014

Abbildung 41: Jaspern Markus Kaiser©

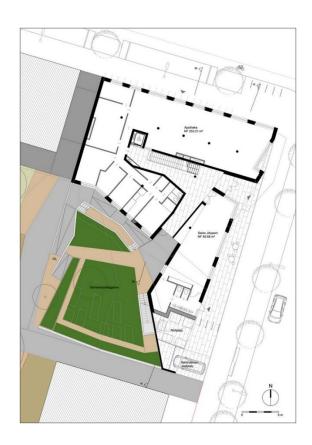


Abbildung 43: Grundriss EG, POS Architecture¹⁷¹

Abbildung 44: Schnitt und Belichtungskonzept, POS Architecture 172

 $^{^{171}}$ Grundriss, POS Architecture, http://www.pos-architecture.com/projects/cohousing-jaspern/ Zugriff am 10.12.2019

 $^{^{172}}$ Schnitt, POS Architecture, http://www.pos-architecture.com/projects/cohousing-jaspern/ Zugriff am 10.12.2019

1. Architektur und Gebäudekonzept

Das Projekt JAspern wurde im Rahmen einer Baugruppe entworfen. Das Konzept einer Baugruppe war im Zeitraum 2012–2013 in Wien nicht besonders bekannt. Deswegen zählt dieses Projekt, das durch eine Baugruppe errichtet wurde, zu den Neuerscheinungen im Umfeld Wien. Eine Baugruppe besteht aus mehreren Parteien, die in Eigenregie ein Projekt gemeinsam entwickeln und umsetzen.

Dieses Projekt befindet sich im 22. Gemeindebezirk Wiens. Die Stadt Wien hat ein freies Baufeld für Baugruppen in Seestadt Aspern freigegeben, auf dem Baugruppenprojekte umgesetzt werden können. Aufgrund der Wohnbauförderung mussten einige Vorgaben in der Planungsphase beachtet werden, außerdem war es ein freier Entwurf. Die Beteiligten konnten sich über den Wiener Wohnservice bewerben.

Die Baugruppe JAspern besteht aus 18 Familien/Parteien, die dieses Projekt gemeinsam mit Architekten entworfen und umgesetzt haben. Das Ziel war es, ein nachhaltiges Modell zu entwickeln, bei dem sich Leben und Arbeiten in einem Gebäude verbinden lassen. Vor der Planungsphase wurden mehrere Treffen organisiert, bei denen die zukünftigen Bewohnerinnen und Bewohner einander kennenlernen konnten und gemeinsam Bedürfnisse, Wünsche und Ziele festgesetzt wurden.

"Mit einer Baugruppe unser Haus geplant zu haben bedeutet für mich, alle künftigen NachbarInnen zu kennen. Das ist nicht konfliktfrei, aber lebendig, demokratisch und Wohngemeinschaftsmäßig."¹⁷³ vertraut.

Das Wohnobjekt JAspern liegt mit weiteren vier Baugruppen auf dem Baufeld D13. Die Freiraumgestaltung wurde durch die fünf Baugruppen gemeinsam durchgeführt.

Das Projekt bietet den Bewohnerinnen und Bewohnern einen hohen Raumkomfort mit Passivhausstandard. 174

¹⁷³ Barbara Goesch, Haus JAspern, Seestadt Wien, POS architecture

¹⁷⁴ Wohnqualität gemeinsam erleben

Das Gebäude liegt in der Nordostecke des Bauplatzes und umfasst einen Baukörper mit 18 Wohneinheiten. Die Wohnungen sind nach drei Seiten ausgerichtet, an der Nordseite befindet sich die Straße, im Osten ein Park und im Südwesten der gemeinsame Hof. Das Wohnobjekt wurde direkt an die Feuermauer des Nachbarhauses angebaut. Die Wohnungen sind mit Freiflächen und Balkonen ausgestattet. Die polygonal geformten

Balkonplatten kragen bis zu 2,3 m weit aus und bieten einen Sonnenschutz im Sommer. 175

Das Wohnobjekt besteht aus fünf Geschossen, zusätzlich gibt es ein Dach- und ein Kellergeschoss. Für die Erdgeschosszone ist eine öffentliche Nutzung angedacht. Sie bietet eine großräumige Fläche von 253 m² und weitere Büroräumlichkeiten und die großräumige Gewerbefläche von der Apotheke genutzt werden. Parkseitig ist außerdem ein multifunktionaler Raum zugänglich. Dieser "Salon" ist ein klimatisch und akustisch optimierter Raum zur gemeinschaftlichen Verwendung. Dieser Raum ist mit Gemeinschaftsküche und Sanitäranlagen ausgestattet und die Raumhöhe beträgt 4 m. Die Fläche bietet Platz für ca. 60 Personen und ist für Seminare und Events geeignet. Die Nutzung des multifunktionalen Raumes ist nicht nur für Bewohnerinnen möglich, auch Externe sind willkommen. Die Erdgeschosszone ist barrierefrei zugänglich und wurde sehr offen mit viel Glasfläche gestaltet.¹⁷⁶

Das Treppenhaus kann von der Straßen- und der Parkseite aus betreten werden. Die Zugänglichkeit der Wohnungen ist durch ein punktuelles Erschließungssystem gestaltet: Das Stiegenhaus mit einem Aufzug ist mittig positioniert; durch diesen Erschließungskern ist jedes Geschoss vom Keller bis zum Dach erreichbar. Das Treppenhaus wurde attraktiv gestaltet. Die unteren Geschosse erhalten aufgrund der "geschossweise zurückspringenden Plattformen" direktes Sonnenlicht. ¹⁷⁷

Im Keller liegt die Haustechnik, die Abstellräume, ein großer Fahrrad- und Kinderwagenabstellraum und eine Werkstatt für kreative Aktivitäten.

Die Grundrisstypologie ist geschossweise unterschiedlich, die Wohnungen wurden flexibel gestaltet und eine Nutzungsänderung der Wohnungen ist aufgrund der wenigen tragenden

-

¹⁷⁵ Wohnqualität gemeinsam erleben

https://www.gat.st/news/wohnqualitaet-gemeinsam-erleben Zugriff am 10.01.2020

¹⁷⁶ Wohnqualität gemeinsam erleben

https://www.gat.st/news/wohnqualitaet-gemeinsam-erleben Zugriff am 10.01.2020

¹⁷⁷ POS Architecture

Elementen möglich. Die Sanitärräume wurden um das Stiegenhaus herum angeordnet, um

helle und optimale Räume zu ermöglichen.

Das Dachgeschoss wurde für eine gemeinsame Nutzung entworfen. Im Dachgeschoss sind

ein Gemeinschaftsraum mit Sanitärbereich und eine kleine Küche eingerichtet. Dieses

Geschoss eignet sich insbesondere für Veranstaltungen und für gemeinsame Feiern. Die

Gestaltung der Freifläche weist ökologische Qualitäten auf: Ein großer Anteil des

Dachgeschosses und des ersten Obergeschosses wurde als extensiv begrüntes Dach

gestaltet.178

Auf dem Dach wurden Hochbeete eingerichtet, die eine Möglichkeit für Urban Gardening

bieten.

Eine Tiefgarage unter dem Haus ist nicht zur Ausführung gekommen, weil aufgrund der

Nachhaltigkeit Seestadt-Aspern als ,autofreie' Stadt entworfen ist. Das Parken ist in

Sammelgaragen möglich. 179

2.Bauweise

In einem partizipativen Wohnprojekt ist es besonders relevant, dass das errichtete

Gebäude allen Nutzungsbedürfnissen entspricht. Die Grundrisstypologie muss sorgfältig

überlegt werden und Flexibilität gewährleisten. Es muss möglich sein, die Raumaufteilung

zu einem späteren Zeitpunkt einfach und kostengünstig umzustrukturieren.

Ein gehobener Wohnkomfort wurde durch optimale Raumhöhe, Beleuchtung und durch

den Passivhausstandard erreicht. Das Gebäude wurde in Massivbauweise mit einer flexibel

gestaltbaren Tragstruktur gebaut. Ziele waren die zukunftsorientierte Raumaufteilung und

eine Nutzungsflexibilität für die Bewohnerinnen und Bewohner. Die Tragstruktur besteht

aus einem massiven Kern und punktförmig gestützten Stahlbetondecken. 180

¹⁷⁸ Wohnqualität gemeinsam erleben

https://www.gat.st/news/wohnqualitaet-gemeinsam-erleben Zugriff am 10.01.2020

¹⁷⁹ Wohnqualität gemeinsam erleben

https://www.gat.st/news/wohnqualitaet-gemeinsam-erleben Zugriff am 10.01.2020

¹⁸⁰ Wohnqualität gemeinsam erleben

3.Haustechnik

Für das Lüftungssystem wurde eine zentrale Anlage gewählt. Die Frischluft wird durch ein solegeführtes Fundamentabsorber-System vorgewärmt und durch die Abwärme der Abluft nachgewärmt. So entsteht eine Wärmerückgewinnung von mindestens 85 Prozent. Die vorgewärmte Frischluft wird in die vertikal liegenden Lüftungsschächte eingeführt. Jede Wohnung ist mit einem Volumenstromregler ausgestattet, um die einzuführende Luftmenge nach Bedarf steuern zu können. Die Zuluftschächte führen die Frischluft in abgehängten Decken im Gang und im Vorzimmer ein.

Die Wohneinheiten sind mit individuell steuerbaren Komfortlüftungsanlagen ausgestattet. Der Gemeinschaftraum in Erdgeschoss kann mit Komfortlüftung und zusätzlich mit manueller Fensterlüftung belüftet werden. Die unterirdischen Räume, bei denen eine manuelle Fensterlüftung nicht möglich ist, werden statisch be- und entlüftet.

Die Energieerzeugung für Heizung und Warmwasserbereitung erfolgt durch die Leitungen der Fernwärme Wien. Bei der Positionierung des Gebäudes wurden die natürliche Belichtung und die Sonneneinfallswinkel beachtet. Mit diesem solaren Konzept ist eine natürliche Besonnung zur Winterzeit möglich und die auskragenden Balkonplatten bieten eine Beschattung in Sommermonaten. Damit sind die Wohnungen vor Überhitzung geschützt und die Bewohnerinnen und Bewohner können die Freiflächen im Sommer auch tagsüber benutzen. Mit diesem System ist nicht nur eine ganzjährige Verwendung der Freiflächen möglich, sondern es kann viele Energie gespart werden.¹⁸¹

⁻

4.Bauteilberechnung

Auf Basis der Untersuchungen soll ermittelt werden, inwieweit Holzrahmen- und Massivholzbauweise eine Alternative zur bestehenden Stahlbetonbauweise darstellen können. Während der Untersuchung werden die Bauteile nicht nur wirtschaftlich betrachtet, sondern es werden zudem der Brand-, der Schall- und der Wärmeschutz sowie die ökologischen Werte untersucht und miteinander verglichen.

Außenwandsysteme:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise
- Massivbauweise (Stahlbeton)

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes ohne Berücksichtigung der Öffnungen von Türen und Fenstern.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

Bauklasse IV¹⁸²

9. Tragende Bauteile	-im obersten Geschoss R 30	
	-in sonst. Oberirdischen Geschoßen	
	R 60	
	-in unterirdischen Geschoßen R 90	
10. Trennwände	-im obersten Geschoss REI 60	
	-in sonst. Oberirdischen Geschoßen	
	REI 60	
	-in unterirdischen Geschoßen REI 90	
11. Brandabschnittsbildende	-brandabschnittsbildende Wände an	
Wände und Decken	der Nachbargrundstücks- bzw.	
	Bauplatzgrenze REI 90	
	-sonstige brandabschnittsbildende	
	Wände oder Decken REI 90	
12. Decken und	-Decken über dem obersten	
Dachschrägen mit einer	Geschoß R 30	
Neigung ≤60°	-Trenndecken über dem obersten	
	Geschoß REI 60	
	-Trenndecken über sonstigen	
	oberirdischen Geschoßen REI 60	
	-Decken über unterirdischen	
	Geschoßen REI 90	

Abbildung 45: Bauklasse IV¹⁸³

- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der Δ OI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

 182 OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

¹⁸³ Eigene Darstellung mit Daten von OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

1. Bestehende Außenwand des Referenzobjektes - Massivbauweise

Als Baumaterial der Außenwände wurde Stahlbeton gewählt. Die Wandstärke beträgt insgesamt 43,0 cm, davon entfallen 20,00 cm auf armierten Beton und es gibt ein 22,00 cm dickes Wärmedämmverbundsystem mit einer aufgebrachten Putzschicht.

Bauteildicke: 43,00 cm

max. Wandhöhe = 2,80 m;

max. einwirkende Last Ed,fi = 19 kN/m

Wärmeschutz¹⁸⁴ 0,136 W/(m²K)

Brandschutz¹⁸⁵ REI_i90

Ökologie $(\Delta OI3)^{186}$ 77 Pkt./m²

Bewertetes Schalldämmaß¹⁸⁷ (Rw) 61dB

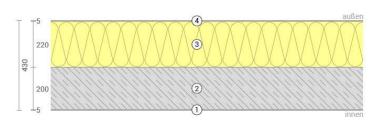


Abbildung 46: Außenwand Massiv Bestand 188

Schicht	Material	Dicke (cm)
1	Spachtelung	-
2	Stahlbeton	20,
3	EPS-Dämmplatte	22,0
4	Dünnputz	0,5

https://passivehouse-database.org/index.php?lang=de#d_4505 Zugriff 04.01.2020

https://passivehouse-database.org/index.php?lang=de#d_4505 Zugriff 04.01.2020

¹⁸⁴ Eigene Darstellung: mit Daten von Passivhaus Datenbank

¹⁸⁵ Eigene Darstellung: mit Daten von Passivhaus Datenbank

¹⁸⁶ Eigene Darstellung: Berechnung durch IBO,

¹⁸⁷ Eigene Darstellung

¹⁸⁸ Eigene Darstellung durch Ubakus

ΔΟΙ3_{BS}: Stahlbeton-Außenwand

ΔΟΙ3	78	[Pkt./m²]
PENRT	1006	MJ/m²
GWP100	81,3	kg CO2/m²
AP	0,225	kg SO2/m²

Herstellkosten Stahlbetonwand 189

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,9 €/m²
WDVS-EPS 035 d = 220 mm	34,64 €/m²
Sichtbeton Wand 25/30	31,60 €/m²
Betonstahlmatten	1,38 €/kg
Betonstabstahl	1,45 €/kg
Bewehrungszubehör	3,2 €/m²
Schalung rau	33,00 €/m²
Kalk-Gipsputz, Innenwand	2,04 €/m²
Grundierung	1,40 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	113,87 €/m²

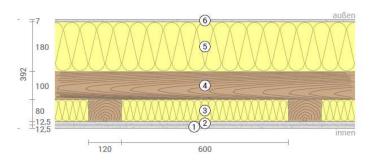
¹⁸⁹ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

2. Wandaufbau alternativ: Massivholzwand

Ein alternativer Wandaufbau in Massivholzbauweise wurde aus dem Holz-Bauteilkatalog ausgewählt: tragende Holzmassivwand aus einer 10-cm-KLH-Platte mit Steinwolle.

Bauteildicke: 39,2 cm

max. Wandhöhe = 2,80 m;


max. einwirkende Last Ed,fi = 35 kN/lfm

Wärmeschutz¹⁹⁰
0,12 W/(m²K)

Brandschutz¹⁹¹
REI_i 90

Ökologie $(\Delta OI3)^{192}$ **51 Pkt./m²**

Bewertetes
Schalldämmaß¹⁹³
(Rw) **51dB**

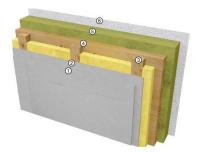


Abbildung 47: Außenwand Massivholz194

Schicht	Material		Dicke (cm)
1	Gipsfaserplatte		1,25
2	Gipsfaserplatte		1,25
3	Mineralwolle m	it	8,0
	Lattung		
4	KLH-Platte		10,0
5	Steinwolle		18,0
6	Putzsystem		0,7

¹⁹⁰ Eigene Darstellung: Berechnung durch Ubakus, Berechnung im Anhang hinterlegt

¹⁹¹ Eigene Darstellung: Beurteilung durch Dataholz

¹⁹² Eigene Darstellung: Berechnung durch IBO,

¹⁹³ Eigene Darstellung: Berechnung durch Dataholz

¹⁹⁴ Eigene Darstellung mit Daten von Dataholz Bauteilkatalog awmopi01a-09

ΔOI3_{BS}: Massivholzwand

ΔΟΙ3	51	[Pkt./m²]
PENRT	799	MJ/m²
GWP100	-39,30	kg CO2/m²
AP	0,233	kg SO2/m²

Herstellkosten Holzmassivwand 195

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
Steinwolle	47,78 €/m²
KLH	52 €/m²
Mineralwolle mit Lattung	20,15 €/m²
Gipsfaserplatte	11,50 €/m²
Gipsfaserplatte	11,50 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	146,49 €/m²

_

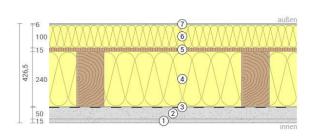
 $^{^{195}}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Wandaufbau alternativ: Holzrahmenbau

Ein alternativer Wandaufbau in Holzleichtbauweise wurde aus dem Holzbau-Bauteilkatalog ausgewählt. Die Außenwand besteht aus Holzfaserplatte, 24 cm Mineralwolle zwischen Latten sowie OSB-Platte.

Bauteildicke: 42,65 cm

max. Wandhöhe = 2,80 m;


max. einwirkende Last Ed,fi = 19,20 kN/lfm

Wärmeschutz¹⁹⁶
0,107 W/(m²K)

Brandschutz¹⁹⁷ **REI_i 90**

Ökologie $(\Delta OI3)^{198}$ 45 Pkt./m²

Bewertetes
Schalldämmaß¹⁹⁹
(Rw)
52dB

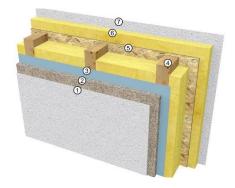


Abbildung 48: Außenwand Holzrahmenbau²⁰⁰

Schicht	Material	Dicke (cm)
1	Kalk-Gipsputz	1,5
2	Holzfaserdämmplatte	5,0
3	Dampfbremse	-
4	KVH mit Glaswolle	24,0
5	OSB Platte	1,50
6	Mineralwolle	10,0
7	Oberputz	0,6

¹⁹⁶ Eigene Darstellung: Berechnung durch Ubakus, Berechnung im Anhang hinterlegt

¹⁹⁷ Eigene Darstellung: Beurteilung durch Dataholz

¹⁹⁸ Eigene Darstellung: Berechnung durch IBO,

¹⁹⁹ Eigene Darstellung: Berechnung durch Dataholz

²⁰⁰ Eigene Darstellung mit Daten von Dataholz Bauteilkatalog awropi23a-02

ΔOI3_{BS}: Holzrahmenbau

ΔΟΙ3	45	[Pkt./m²]
PENRT	554	MJ/m²
GWP100	0,322	kg CO2/m²
AP	0,195	kg SO2/m²

Herstellkosten Holzrahmenbau²⁰¹

Leistungsbereich	Einheitspreis
Silikatputz	3,90 €/m²
Mineralwolledämmplatte	19,90 €/m²
OSB Platte	5,69 €/m²
KVH mit Glaswolle	60,31 €/m²
Dampfbremse	4,18 €/m²
Heraklith BM	26,20 €/m²
Kalk-Gipsputz	7,0 €/m²
Herstellkosten pro m²	127,18 €/m²

 201 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für das Außenwandsystem zeigt:

- Die Herstellungskosten der Holzrahmenbauweise mit 127,18€/m² fallen nicht wesentlich höher als die Herstellungskosten der Massivbauweise mit 113,87 €/m².
- Auf Basis der wirtschaftlichen Berechnung ist ersichtlich, dass die
 Massivholzbauweise in diesem Fall die teuerste Bauweise ist (146,49 €/m²).
- Die geringsten Wandstärken lassen sich bei Holzwänden (42,65 cm) erzielen.
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Holzrahmenbauweise liegen mit 45 ΔOI3-Punkten an erster Stelle, danach folgt die Massivholzbauweise mit 51 ΔOI3-Punkten und die Stahlbauweise mit 77 ΔOI3-Punkten stellt sich am schlechtesten dar.

Geschossdecke:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise
- Massivbauweise (Stahlbeton)

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Feuerwiederstand nach Bauklasse IV
- Höchst zulässiger bewerteter Standard-Trittschallpegel²⁰²

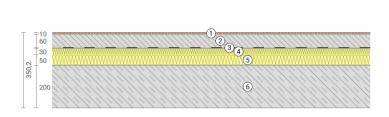
in	aus		L _{nTw} (dB)
Aufenthaltsräumen	Räumen	anderer	48
	Nutzungseinh	eiten	
Nebenräumen	Räumen	anderer	53
	Nutzungseinheiten		

- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der ΔOI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

-

²⁰² OIB Richtlinie 5 Schallschutz, Institut für Bautechnik, April 2019, OIB-330.5-002/19

1. Geschossdecke des Referenzobjektes – Massivbauweise


Als Baumaterial der Geschossdecke wurde Stahlbeton gewählt. Die Deckenstärke beträgt insgesamt 35,00 cm, davon sind 20,00 cm Stahlbeton und es gibt eine 3,00 cm dicke Trittschalldämmplatte.

Bauteildicke: 35,0 cm

max. einwirkende Last Ed,fi = 3,66 kN/m²

Brandschutz²⁰³ **REI**_i **60**

Ökologie (ΔΟΙ3)²⁰⁴ **78 Pkt./m²** Bewerteter Standard-Normtrittschallpegel 205 ($L_{n,w}$) 38,00dB

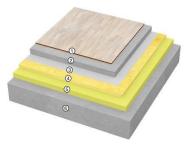


Abbildung 49: Geschossdecke Massiv Bestand²⁰⁶

Schicht	Material	Dicke (cm)
1	Bodenbelag	1,0
2	Estrich	6,0
3	PE-Folie	-
4	Trittschalldämmung	3,0
5	Dämmschüttung	5,0
6	Stahlbeton	20,0
7	Spachtelung	-

²⁰³ Eigene Darstellung

²⁰⁴ Eigene Darstellung: Berechnung durch IBO Bauteilkatalog

²⁰⁵ Eigene Darstellung

²⁰⁶ Eigene Darstellung durch Ubakus

ΔOI3: Massivdecke

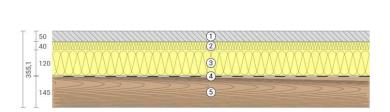
ΔΟΙ3	78	[Pkt./m²]
PENRT	959	MJ/m²
GWP100	82,2	kg CO2/m²
AP	0,246	kg SO2/m²

Herstellkosten Massivdecke²⁰⁷

Leistungsbereich	Einheitspreis
Bodenbelag	7,5 €/m²
Estrich d = 50 mm	21,00 €/m²
PE-Folie	2,8 €/m²
Trittschalldämmung d = 30 mm	5,00 €/m²
Schüttung d = 50 mm	11,70 €/m²
Stahlbetondecke d = 200 mm	17,7 €/m²
Betonstahlmatten Bst500M/B500	1,38 €/kg
Betonstabstahl	1,45 €/kg
Bewehrungszubehör	3,2 €/kg
Deckenschalung	20,00 €/m²
Randschalung	2,40 €/m²
Dämmung Deckenrand	5,0 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	100,39 €/m²

 207 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

2. Geschossdecke alternativ: Massivholzdecke


Eine alternative Lösung der Geschossdecke in Massivholzbauweise wurde aus dem Dataholz-Bauteilkatalog gewählt. Die tragende Brettsperrholzdecke ist nach KLH-Bauteilkatalog dimensioniert.

Bauteildicke: 35,51 cm

max. einwirkende Last Ed,fi = 5,06 kN/m²

Brandschutz²⁰⁸
REI_i 90

Ökologie (ΔΟΙ3)²⁰⁹ **44 Pkt./m²** Bewerteter Standard-Normtrittschallpegel²¹⁰ (L_{n,w}) **38,00dB**

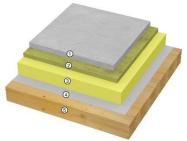


Abbildung 50: Geschossdecke Massivholz²¹¹

Schicht	Material	Dicke (cm)
1	Zementestrich	5,0
2	Trittschalldämmung	4,0
3	Splitschüttung	12,0
4	Rieselschutz	-
5	KLH-Decke	14,5

114

²⁰⁸ Eigene Darstellung: Beurteilung durch Dataholz

²⁰⁹ Eigene Darstellung: Berechnung durch IBO,

²¹⁰ Eigene Darstellung: Beurteilung durch Dataholz

²¹¹ Eigene Darstellung: mit Daten von Dataholz Bauteilkatalog tdnbxs01-01

ΔOI3_{BS}: Massivholz

ΔΟΙ3	44	[Pkt./m²]
PENRT	732	MJ/m²
GWP100	-62,7	kg CO2/m²
AP	0,222	kg SO2/m²

Herstellkosten Massivholzdecke²¹²

Leistungsbereich	Einheitspreis
Zementestrich	21,00 €/m²
Trittschalldämmung SW	12,89 €/m²
Splitschüttung	7,90 €/m²
Rieselschutz	0,54 €/m²
KLH-Platte	74,00 €/m²
Oberflächenbehandlung	16,00 €/m²
Herstellkosten pro m²	132,39 €/m²

 $^{^{\}rm 212}$ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Geschossdecke alternativ: Holzrahmenbau

Als alternative Lösung der Geschossdecke in Holzrahmenbauweise wurde die Geschossdecke aus dem Holzbau-Bauteilkatalog gewählt.

Bauteildicke: 39,22 cm

max. einwirkende Last Ed,fi = 3,66 kN/m²

Brandschutz²¹³ **REI**_i **60**

Ökologie $(\Delta O13)^{214}$ 49 Pkt./m²

Bewerteter Standard-Normtrittschallpegel 215 ($L_{n,w}$) 42,00dB

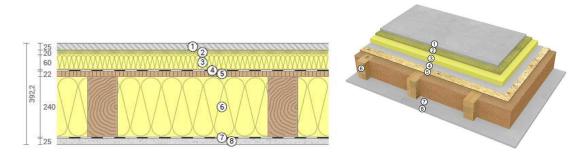


Abbildung 51: Geschossdecke Holzrahmen²¹⁶

Schicht	Material	Dicke (cm)
1	Trockenestrich	2,5
2	Trittschalldämmung	2,0
3	Splitschüttung	6,0
4	Rieselschutz	-
5	OSB	2,2
6	KVH mit	24,0
	Holzfaserdämmung	
7	Rieselschutz	-
8	Federschiene	
9	Gipsfaserplatte	2,5

²¹³ Eigene Darstellung: Beurteilung durch Dataholz

116

²¹⁴ Eigene Darstellung: Berechnung durch IBO,

²¹⁵ Eigene Darstellung: Beurteilung durch Dataholz

²¹⁶ Eigene Darstellung mit Daten von Dataholz Bauteilkatalog gdrtxa02b-04

ΔOI3_{BS}: Holzrahmen

ΔΟΙ3	49	[Pkt./m²]
PENRT	801	MJ/m²
GWP100	-40,1	kg CO2/m²
AP	0,219	kg SO2/m²

Herstellkosten Holzrahmen²¹⁷

Leistungsbereich	Einheitspreis
Trockenestrich	16,40 €/m²
Trittschalldämmung	4,60 €/m²
Ausgleichschicht	3,90 €/m²
Schüttung	8,80 €/m²
Rieselschutz	0,54 €/m²
OSB-Platte	10,28 €/m²
KVH mit Holzfaserdämmung	69,91 €/m²
Rieselschutz	0,54 €/m²
Federschiene 60/27	6,79 €/m²
Gipsplatte	9,17 €/m²
Gipsplatte	9,17 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	142,76 €/m²

²¹⁷ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für die Geschossdecke zeigt:

- Die Herstellungskosten der Massivholzbauweise mit 132,39 €/m² fallen nicht wesentlich höher als die Herstellungskosten der Massivbauweise mit 100,39 €/m².
- Auf Basis der wirtschaftlichen Berechnung ist ersichtlich, dass die Holzrahmendecke in diesem Fall die teuerste Bauweise ist 142,76 €/m².
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Massivholzbauweise liegen mit 44 ΔOI3-Punkten an erster Stelle, danach folgt die Holzrahmenbauweise mit 49 ΔOI3-Punkten und die Stahlbauweise mit 78 ΔOI3-Punkten erzielt im Vergleich das schlechteste Ergebnis.

4.1.4 Referenzobjekt IV BIKES AND RAILS

1. Objektdaten

Adresse:

Emilie-Flöge-Weg 4, 1100 Wien

Bauträger:

Familienwohnbau gen. Bau- und Siedlungsges. m. b. H

Planung:

Büro Reinberg ZT GmbH

Bauphysik:

IBO Institut für Baubiologie und -ökologie GmbH

Haustechnik:

Familienwohnbau gen. Bau- und Siedlungsges. m. b. H

Bauweise:

Mischbauweise

Gebäudetyp:

Mehrfamilienhaus

1 Baukörper

Anzahl Wohneinheiten:

17 Wohneinheiten

Fertigstellung:

Voraussichtlich Frühjahr 2020

Abbildung 52 Bikes and Rails, Familienwohnbau

2. Architektur und Gebäudekonzept

Bikes and Rails ist ein neues ökologisches Wohnprojekt im 10. Gemeindebezirk Wiens; das Projekt befindet sich momentan in der Bauphase. Das Wohngebäude wird als Passivhaus in Holzriegelbauweise mit Photovoltaik errichtet. Wie der Name des Gebäudes besagt, ist es ein nachhaltiges Projekt, bei dem die Verwendung der öffentlichen Verkehrsmittel und die Nutzung des Fahrrads im Mittelpunkt stehen. Ein relevanter Ansatz ist neben Ökologie und Nachhaltigkeit die Unverkäuflichkeit der Wohnungen. Das Ziel ist es, dass die Wohnungen nicht als Ware behandelt werden sollen, weil Wohnen ein menschliches Grundbedürfnis ist. Die Bewohnerinnen sind ein Teil des habiTAT, des Mietshäusersyndikats in Österreich. Damit wird das Haus für alle Zeiten dem Markt entzogen.²¹⁸

Das Erdgeschoss ist öffentlich zugänglich; dort stehen ein Fahrrad-Café, eine Fahrradwerkstatt und ein Gemeinschaftsraum für Bewohnerinnen und Bewohner sowie für Fahrrad-Interessierte zur Verfügung. Im Kellergeschoss befinden sich sowohl die Lager-, Sanitär- und Nebenräume als auch die Fahrrad- und Kinderwagenabstellräume. Das Projekt umfasst insgesamt 18 unterschiedlich große Wohneinheiten und eine gemeinsame Dachterrasse.

Das Wohnkonzept teilt die Wohnungen auf drei Zonen auf. Die nördliche Zone ist ein Individualraum innerhalb einer Wohnung, die mittlere Zone eine Sanitäreinheit und die südliche Zone ein Wohnraum. Die Südfassade orientiert sich zum Stadtraum und die Westfassade Richtung Helmut-Zilk-Park. ²¹⁹

-

²¹⁸ Vgl. Bikes and Rails, https://www.bikesandrails.org/wp/ Zugriff am 02.01.2020

²¹⁹ Vgl. Passivhaus-Datenbank, https://passivehouse-database.org/index.php#d_5738 Zugriff am 03.01.2020

Abbildung 54: Grundriss Erdgeschoss²²⁰

Abbildung 55: Visualisierung von Familienwohnbau²²¹

 $^{^{220}\,}https://www.derstandard.at/story/2000058228977/bikes-rails-wohnbau-nicht-von-der-stange$ Zugriff vom 15.01.2020 ²²¹ https://www.derstandard.at/story/2000058228977/bikes-rails-wohnbau-nicht-von-der-stange

Zugriff vom 15.01.2020

2.Bauteilberechnung

Auf Basis der Untersuchungen soll ermittelt werden, inwieweit Holzbauweise eine Alternative zur bestehenden Bauweise kann. Während der Untersuchung werden die Bauteile nicht nur wirtschaftlich betrachtet, sondern es werden der Brand-, der Schall- und der Wärmeschutz sowie ökologische Werte untersucht und miteinander verglichen.

Außenwandsysteme:

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes ohne Berücksichtigung der Öffnungen von Türen und Fenstern.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Bauklasse III²²²

13. Tragende Bauteile	-im obersten Geschoss R 30		
	-in sonst. Oberirdischen Geschoßen		
	R 60		
	-in unterirdischen Geschoßen R 90		
14. Trennwände	-im obersten Geschoss REI 30		
	-in oberirdischen Geschoßen REI 30		
	-in unterirdischen Geschoßen REI 90		
15. Brandabschnittsbildende	-brandabschnittsbildende Wände an		
Wände und Decken	der Nachbargrundstücks- bzw.		
	Bauplatzgrenze REI 90		
	-sonstige brandabschnittsbildende		
	Wände oder Decken REI 90		
16. Decken und	-Decken über dem obersten		
Dachschrägen mit einer	r Geschoß R 30		
Neigung ≤60°	-Trenndecken über dem obersten		
	Geschoß REI 30		
	-Trenndecken über sonstigen		
	oberirdischen Geschoßen REI 60		
	-Decken über unterirdischen		
	Geschoßen REI 90		

Abbildung 56: Bauklasse III²²³

- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der Δ OI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

 222 OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

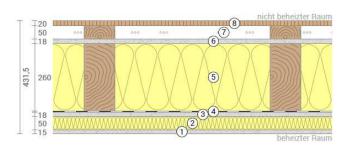
²²³ Eigene Darstellung mit Daten von OIB Richtlinie 2, Instituts für Bautechnik, Brandschutz, April 2019, OIB-330.2-012/19

1. Bestehender Wandaufbau des Referenzobjektes: Holzrahmenbau

Als Außenwandkonstruktion des Objektes wurde ursprünglich eine hinterlüftete Holzrahmenwand gewählt. Die Rahmenkonstruktion besteht aus einer Lattenkonstruktion, wobei zwischen den Latten eine Mineralwolldämmung eingesetzt ist.

Bauteildicke: 43,15

max. Wandhöhe = 2,50 m;


max. einwirkende Last Ed,fi = 19,20 kN/lfm

Wärmeschutz²²⁴
0,12 W/(m²K)

Brandschutz²²⁵ **REI**_i **90**

Ökologie
(ΔΟΙ3)²²⁶ **48 Pkt./m²**

Bewertetes
Schalldämmaß²²⁷
(Rw)
58dB

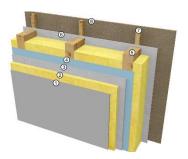


Abbildung 57 Außenwand Holzrahmen Bestand²²⁸

Material	Dicke (cm)
Gipskartonplatte	1,5
Mineralwolle	5,0
Gipsfaserplatte	1,8
Dampfbremse	-
Mineralwolle mit	26,0
Riegel	
Gipsfaserplatte	1,8
Hinterlüftung	5
Holzschalung	2
	Gipskartonplatte Mineralwolle Gipsfaserplatte Dampfbremse Mineralwolle mit Riegel Gipsfaserplatte Hinterlüftung

²²⁴ Eigene Darstellung: Berechnung durch Ubakus, Berechnung im Anhang hinterlegt

124

²²⁵ Eigene Darstellung: Beurteilung durch Dataholz

²²⁶ Eigene Darstellung: Berechnung durch IBO,

²²⁷ Eigene Darstellung: Berechnung durch Dataholz

²²⁸ Eigene Darstellung durch Ubakus

 $\Delta OI3_{BS}$: Holzrahmen

ΔΟΙ3	48	[Pkt./m²]
PENRT	697	MJ/m²
GWP100	-16,6	kg CO2/m²
AP	0,210	kg SO2/m²

Herstellkosten Holzrahmen²²⁹

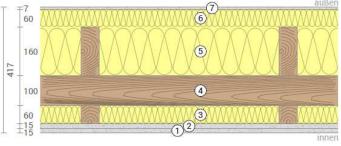
Leistungsbereich	Einheitspreis
Holzschalung d = 20 mm	70,00 €/m²
Hinterlüftung zw. Latten	8,40 €/m²
Gipsfaserplatte d = 18 mm	15,94 €/m²
Mineralwolle zw. Riegelkonst.	58,80 €/m²
Dampfbremse	4,18 €/m²
Gipsfaserplatte d = 18 mm	15,94 €/m²
Mineralwolle d = 50 mm	8,30 €/m²
GFF-Platte d = 15 mm	10,80 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	195,02 €/m²

²²⁹ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

2. Außenwand alternativ: Holzmassivbauweise

Als alternative Möglichkeit wird die Massivholzbauweise betrachtet, bei der die Außenwandstärke 41,7 cm beträgt. Davon entfallen 10,00 cm auf die tragende KLH-Holzwand und 16,00 cm auf die Mineralwolldämmung.

Bauteildicke: 41,70 cm


max. Wandhöhe = 2,50 m;

max. einwirkende Last Ed,fi = 35 kN/lfm

Wärmeschutz²³⁰
0,12 W/(m²K)

Brandschutz²³¹ **REI_i 90**

Ökologie (∆OI3)²³² **44 Pkt./m²** Bewertetes
Schalldämmaß²³³
(Rw)
56dB



Abbildung 58: Außenwand Massivholz²³⁴

/laterial	Dicke (cm)
Sipsfaserplatte	1,50
Gipsfaserplatte	1,50
Aineralwolle zw. Latten	5,0
ILH .	10,0
⁄lineralwolle zw. Latten	16,0
lolzfaserdämmplatte	6,0
Oberputz	0,7
	Sipsfaserplatte Sipsfaserplatte Mineralwolle zw. Latten LH Mineralwolle zw. Latten Iolzfaserdämmplatte

126

²³⁰ Eigene Darstellung Berechnung durch IBO Bauteilkatalog, Berechnung im Anhang hinterlegt

²³¹ Eigene Darstellung: Beurteilung durch DataHolz

²³² Eigene Darstellung: Berechnung durch IBO,

²³³ Eigene Darstellung: Berechnung durch DataHolz

²³⁴ Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, awmopi05a-00

ΔOI3_{BS}: Holzmassiv-Außenwand

ΔΟΙ3	44	[Pkt./m²]
PENRT	752	MJ/m²
GWP100	-57,2	kg CO2/m²
AP	0,216	kg SO2/m²

Herstellkosten Holzmassivbauweise-Außenwand²³⁵

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
Holzfaserdämmplatte	6,32 €/m²
KVH mit Mineralwolle	46,11 €/m²
KLH-Holzplatte	52 €/kg
KVH mit Mineralwolle	10,26 €/kg
GKF-Platte	10,80 €/kg
GKF-Platte	10,80 €/m²
Grundierung	1,4 €/m²
Herstellkosten pro m²	140,19 €/m²

 235 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Wandaufbau alternativ: Holzrahmenbauweise

Ein alternativer Wandaufbau in Holzrahmenbauweise wurde aus dem Holzbau-Bauteilkatalog ausgewählt: Die Außenwand besteht aus Mineralwolle-Dämmplatte, 24 cm Mineralwolle zwischen Latten sowie OSB-Platte.

Bauteildicke: 42,65

max. Wandhöhe = 2,50 m;

max. einwirkende Last Ed,fi = 19,20 kN/m

Wärmeschutz²³⁶
0,105 W/(m²K)

Brandschutz²³⁷ **REI**_i **60**

Ökologie
(ΔΟΙ3)²³⁸ **45 Pkt./m²**

Bewertetes
Schalldämmaß²³⁹
(Rw) **52dB**

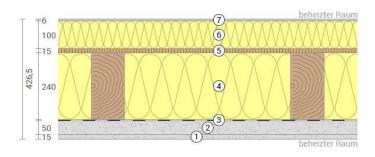


Abbildung 59: Außenwand Holzrahmenbau²⁴⁰

Schicht	Material	Dicke (cm)
1	Kalk-Gipsputz	1,50
2	Holzfaserdämmplatte	5,0
3	Dampfbremse	-
4	Glaswolle mit Latten	24,0
5	OSB-Platte	1,50
6	Mineralwolle-	10,0
	Dämmplatte	
7	Oberputz	0,6

²³⁶ Eigene Darstellung Berechnung durch IBO Bauteilkatalog, Berechnung im Anhang hinterlegt

128

²³⁷ Eigene Darstellung: Beurteilung durch DataHolz

²³⁸ Eigene Darstellung: Berechnung durch IBO,

²³⁹ Eigene Darstellung: Berechnung durch DataHolz

²⁴⁰ Eigene Darstellung mit Daten von Dataholz Bauteilkatalog awropi23a-02

ΔOI3_{BS}: Holzrahmenbauweise

ΔΟΙ3	45	[Pkt./m²]
PENRT	554	MJ/m²
GWP100	0,322	kg CO2/m²
AP	0,195	kg SO2/m²

Herstellkosten Holzmassivwand²⁴¹

Leistungsbereich	Einheitspreis
Mineralischer Oberputz	3,90 €/m²
Mineralwolle	19,00 €/m²
OSB-Platte	5,69 €/m²
Glaswolle mit Latten	60,31 €/m²
Dampfbremse	4,18 €/m²
Holzfaserdämmplatte	26,20 €/m²
Heraklith BM	
Kalk-Gipsputz	2,04 €/m²
Herstellkosten pro m²	121,32 €/m²

 241 Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für das Außenwandsystem zeigt:

- Die Herstellungskosten der Holzmassivbauweise mit 140,19 €/m² liegen nicht wesentlich höher als der Herstellungskosten der vorgeschlagenen Holzrahmenbauweise mit 121,32 €/m².
- Auf Basis der wirtschaftlichen Berechnung ist ersichtlich, dass die
 Massivholzbauweise in diesem Fall die teuerste Bauweise ist (140,19 €/m²).
- Die geringsten Wandstärken lassen sich bei Holzmassivwänden erzielen.
- Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Massivholzbauweise liegen mit 44 ΔOI3-Punkten an erster Stelle, danach folgt die Holzrahmenbauweise mit 45 ΔOI3-Punkten und die Bestandsaufbau mit 48 ΔOI3-Punkten schneidet im Vergleich am schlechtesten ab.

Geschossdecke:

Das Referenzprojekt Bikes and Rails befindet sich momentan noch in der Bauphase, daher sind keine Angaben zur Konstruktionsart der Geschossdecke veröffentlicht. Daher erfolgt die wirtschaftliche Analyse auf Basis eines Standardaufbaus.

Die Herstellkosten der unterschiedlichen Bausysteme werden anhand der folgenden Aufbauten berechnet und miteinander verglichen:

- Holzmassivbauweise
- Holzriegelbauweise

Die Berechnung erfolgt auf Bauteilebene des Referenzobjektes.

Die folgenden Rahmenbedingungen gelten für das Referenzobjekt:

- Feuerwiederstand nach Bauklasse III
- Höchst zulässiger bewerteter Standard-Trittschallpegel²⁴²

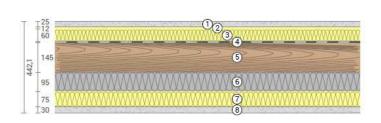
in	aus		L _{nTw} (dB)
Aufenthaltsräumen	Räumen	anderer	48
	Nutzungseinhe	eiten	
Nebenräumen	Räumen	anderer	53
	Nutzungseinheiten		

- Ein ökologischer Vergleich der Bauteile erfolgt auf Basis der ΔOI3BS-Punkte. Die Berechnungen sind im Anhang hinterlegt.

-

²⁴² OIB Richtlinie 5 Schallschutz, Institut für Bautechnik, April 2019, OIB-330.5-002/19

2. Geschossdecke alternativ: Massivholzdecke


Eine alternative Bauweise für die Geschossdecke wäre eine angehängte Holzmassivdecke. Die Deckenstärke beträgt dabei 44,20 cm.

Bauteildicke: 44,20 cm

max. einwirkende Last Ed,fi = 8,81 kN/m²

Brandschutz²⁴³ **REI**_i **90**

Ökologie (ΔΟΙ3)²⁴⁴ **62 Pkt./m²** Bewerteter Standard-Normtrittschallpegel 245 ($L_{n,w}$) 36,00dB

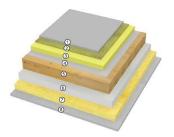


Abbildung 60: Geschossdecke Massivholz²⁴⁶

Schicht	Material	Dicke (cm)
1	Rigidurestrich	2,5
2	Trittschalldämmung	1,2
3	Splitschüttung	6,0
4	Rieselschutz	-
5	KLH-Decke	14,5
6	Rigips mit Abhänger	9,5
7	Mineralwolle	7,5
8	GKF-Platte	3,0

²⁴³ Eigene Darstellung: Beurteilung durch DataHolz

²⁴⁴ Eigene Darstellung: Berechnung durch IBO,

²⁴⁵ Eigene Darstellung: Beurteilung durch DataHolz

²⁴⁶ Eigene Darstellung mit Daten von DataHolz Bauteilkatalog, tdmtxa01b-05

ΔOI3_{BS}: Massivdecke

ΔΟΙ3	62	[Pkt./m²]
PENRT	880	MJ/m²
GWP100	-52,6	kg CO2/m²
AP	0,312	kg SO2/m²

Herstellkosten Holzmassivdecke²⁴⁷

Leistungsbereich	Einheitspreis
Rigips Rigidur	16,40 €/m²
Trittschalldämmplatte	3,43 €/m²
Schüttung	8,80 €/m²
Rieselschutz	0,54 €/m²
KLH	74,0 €/kg
Rigips 9,5 mit abhänger	1,79 €/kg
Mineralwolle	3,49 €/kg
Feuerschutzplatte	16,14€/m²
Feuerschutzplatte	16,14€/m²
Herstellkosten pro m²	140,73 €/m²

²⁴⁷ Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

3. Geschossdecke alternativ: Holzrahmenbau

Als alternative Lösung der Geschossdecke in Holzrahmenbauweise wurde die Geschossdecke aus dem Holzbau-Bauteilkatalog gewählt.

Bauteildicke: 39,22 cm

max. einwirkende Last Ed,fi = 3,66 kN/m²

Brandschutz²⁴⁸ **REI**i **60**

Ökologie
(ΔΟΙ3)²⁴⁹ **49 Pkt./m²**

Bewerteter Standard-Normtrittschallpegel²⁵⁰ (L_{n,w}) **42,00dB**

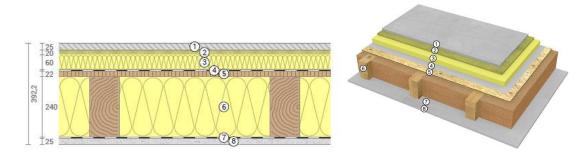


Abbildung 61: Geschossdecke Holzrahmen²⁵¹

Schicht	Material		Dicke (cm)
1	Trockenestrich		2,5
2	Trittschalldämmung		2,0
3	Splitschüttung		6,0
4	Rieselschutz		-
5	OSB		2,2
6	KVH m	nit	24,0
	Holzfaserdämmung		
7	Rieselschutz		-
8	Federschiene		
9	Gipsfaserplatte		2,5

²⁴⁸ Eigene Darstellung: Beurteilung durch Dataholz

134

²⁴⁹ Eigene Darstellung: Berechnung durch IBO,

²⁵⁰ Eigene Darstellung: Beurteilung durch Dataholz

²⁵¹ Eigene Darstellung mit Daten von Dataholz Bauteilkatalog gdrtxa02b-04

ΔOI3_{BS}: Holzrahmen

ΔΟΙ3	49	[Pkt./m²]
PENRT	801	MJ/m²
GWP100	-40,1	kg CO2/m²
AP	0,219	kg SO2/m²

Herstellkosten Holzrahmen²⁵²

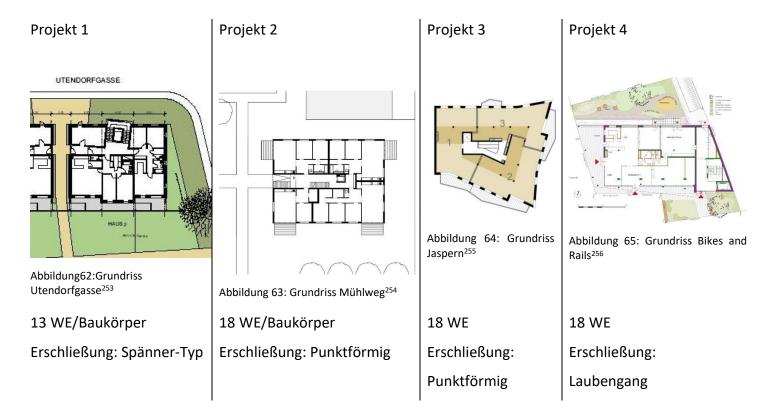
Leistungsbereich	Einheitspreis
Trockenestrich	16,40 €/m²
Trittschalldämmung	4,60 €/m²
Ausgleichschicht	3,90 €/m²
Schüttung	8,80 €/m²
Rieselschutz	0,54 €/m²
OSB-Platte	10,28 €/m²
KVH mit Holzfaserdämmung	69,91 €/m²
Rieselschutz	0,54 €/m²
Federschiene 60/27	6,79 €/m²
Gipsplatte	9,17 €/m²
Gipsplatte	9,17 €/m²
Grundierung	1,4 €/m²
Beschichtung	1,26 €/m²
Herstellkosten pro m²	142,76 €/m²

²⁵² Die detaillierten Kostennachweise der Aufbauten sind im Anhang hinterlegt.

Auswertung:

Die Auswertung der Kostenberechnung für die Geschossdecke zeigt:

 Die eingesetzten Baustoffe bei der ökologischen Bewertung zeigen, welche Materialien aus ökologischer Sicht die beste Lösung sind. Die eingesetzten Baustoffe der Holzrahmenbauweise liegen mit 49 ΔOI3-Punkten an erster Stelle, danach folgt die Massivholzbauweise mit 62 ΔOI3-Punkten. In diesem Kapitel werden die Ergebnisse der Analyse aufgezeigt und gegenübergestellt. Dabei werden die Auswertungen der einzelnen Wohnobjekte nach bestimmten Indikatoren verstärkt und miteinander verglichen. Die Untersuchungsergebnisse der Studie zeigen, welche Gebäude- und Erschließungsform und welche Bauweise die Kriterien bestmöglich erfüllen.


4.2 Bewertung die Ergebnisse

Das Ziel der vorliegenden Arbeit ist es, die an der besten geeigneten Bauweise für soziale Wohnbauten zu finden. Deswegen wurden in den vorigen Kapiteln verschiedene Bauweisen detailliert untersucht und gegenübergestellt. Das Ziel war es, mit Hilfe von bestehenden sozialen Wohnprojekten im Umfeld von Wien die an den häufigsten verwendeten Baumaterialien ökologisch und ökonomisch zu analysieren.

Eine wichtige Ansatz der wissenschaftlichen Arbeit ist es, die Entwicklung der sozialen Wohnsituation im Umfeld Wien zu skizzieren und die Veränderungen der vergangenen Jahrzehnte hervorzuheben.

Eine Steigerung der Kosten im Bauwesen ist eindeutig spürbar, darüber hinaus sind die Baukosten und die Lebenszykluskosten von Bauobjekten deutlich angestiegen. Für diese Steigerung sind nicht nur baurechtliche oder bautechnische Änderungen verantwortlich, sondern auch die Wandlungsprozesse der sozialen und der familiären Strukturen.

-Architektonisches Konzept

Die vier Bauprojekte sind unterschiedliche Siegerprojekte von Bauträgerwettbewerben, bei denen gegebene Voraussetzungen erfüllt werden mussten. Deshalb haben sie nicht idente Gebäudekonzepte und architektonische Qualität. Bei zwei der vier Projekte besteht die Anlage aus mehreren Baukörpern. Bei diesen Projekten wird jeweils nur ein Baukörper betrachtet.

Gebäudeform

Die Gebäudeform weist bei jedem Projekt Qualitäten auf: Die Form des Grundkörpers ist eine klare geometrische Form, bei der keine Vor- oder Rücksprünge geplant wurden. Mit dieser vereinfachten Gebäudeform können qualitätvolle und optimale Wohnungen geplant werden. Die Gestaltung der Außenhülle ist bei diesen Projekten von besonderer

²⁵³ Energietechnische und Baubiologische Begleituntersuchung der Bauprojekte, Waldemar Wagner, Institut für Nachhaltige Technologien, Gleisdorf,2008

Mehrgeschossiger geförderter Wohnbau für 70 WE Holzmassivbauweise, Passivstandard, Haus am
 Mühlweg, Institut für Nachhaltige Technologien, Projektenwicklung Stand 2006
 POS Architecture

http://www.pos-architecture.com/projects/cohousing-jaspern/ Zugriff am 15.01.2020

https://www.derstandard.at/story/2000058228977/bikes-rails-wohnbau-nicht-von-der-stange Zugriff am 15.01.2020

Bedeutung, weil nach Passivhausstandard gebaut wurde. Dabei muss besonders darauf geachtet werden, wie die warme Gebäudehülle gestaltet wird, um möglichst eine wärmebrückenfreie Konstruktion zu gewährleisten. Jede Wohnung hat eine zusätzliche Freifläche, z. B. Balkone, Terrassen oder Loggien, die den Wohnkomfort erhöht. Die Wohnanlagen sind um einen Gemeinschaftsgarten oder eine Grünfläche herum angeordnet.

Erschließungskonzept

Die Form der Erschließung weist Unterschiede auf, da diese nach Gebäudekonzept entwickelt wurden. Trotzdem wurden die Stiegenhäuser bestmögliche positioniert. Die nordseitige Orientierung des Stiegenhauses und eventuell das punktförmig mittig liegende Stiegenhaus haben entsprechende Qualität, weil diese Ausrichtungen der Treppenhäuser eine optimale Orientierung der Wohnungen ermöglicht. Ein Vorteil ist bei diesen Projekten, dass eine zweiseitige Belichtung und Belüftung jeder Wohneinheit möglich ist.

Erdgeschosszone

Die Nutzung des Erdgeschosses weicht projektbezogen ab: Die Erdgeschosszone wurde bei der Hälfte der Projekte öffentlich (Projekt Jaspern, Bikes and Rails) und bei anderen Hälfte (Projekt Utendorfgasse, Mühlweg Bauteil C) privat gestaltet. Private Erdgeschosszone heißt dabei, dass dort weitere Wohnmöglichkeiten untergebracht werden. Darüber hinaus wird die verfügbare Fläche ausgenutzt und es können möglichst viel Wohnungen entworfen werden. Die öffentliche Gestaltung der Erdgeschosszone weist andere Qualitäten auf, da die Fläche nicht zu Wohnzwecken, sondern für Gewerbefläche und Gemeinschaftsräume genutzt wird. Mit dieser Art der Nutzung geht viel Fläche – die als Wohnfläche verwendet werden könnte – verloren; jedoch ergibt sich mit den zusätzlichen Funktionen ein erhöhter Wohnkomfort für das Objekt. Die Entwurfsphase eines Baugruppenprojektes bietet weitere Vorteile, da die zukünftigen Bewohnerinnen und Bewohner schon in der Planungsphase einbezogen sind und deren Nutzungsbedürfnisse umgesetzt werden können.

Nutzungsflexibilität

Jedes Konzept basiert auf einer flexiblen Rasterstruktur des Tragkonzeptes oder auf einem Fassadenraster, damit die Grundrisse flexible gestaltet und zu einem späteren Zeitpunkt bei Bedarf umgestaltet werden können. Die Sanitärräume sind meist innen angeordnet, damit die Zusammenlegung der Aufenthaltsräume möglich ist

Tiefgarage/Kellergeschoss

Das Kellergeschoss wurde bei den zwei großen Wohnanlagen (Projekt Utendorfgasse, Mühlweg Bauteil C) als Tiefgarage verwendet, in der für jede Wohnung ein Stellplatz zur Verfügung steht. Außerdem wurden noch Lagerräume und eine Gemeinschaftswaschküche entworfen. Die beiden Baugruppenprojekte (Projekt Jaspern, Bikes and Rails) haben auf den Bau einer Tiefgarage verzichtet, entsprechend wurde das Kellergeschoss je nach Bedarf anders gestaltet.

-Bauweise

Bei der Bauteilberechnung wurde zuerst eine Berechnung mit den ursprünglich verwendeten Baumaterialien erstellt. Danach folgten noch zwei weitere Berechnungen mit alternativem Wandaufbau, um feststellen zu können, welche Konstruktion in ökologischer und wirtschaftlicher Sicht, die am besten geeignete Lösung ist.

Auf Basis der Berechnungen ergeben sich folgende Auswertungen:

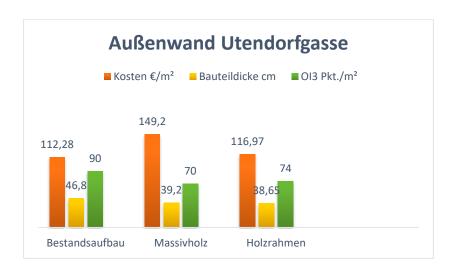


Abbildung 66: Außenwandsysteme Utendorfgasse

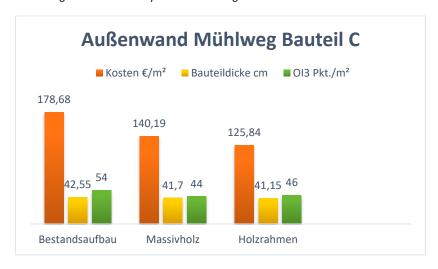


Abbildung 67: Außenwand Mühlweg Bauteil C

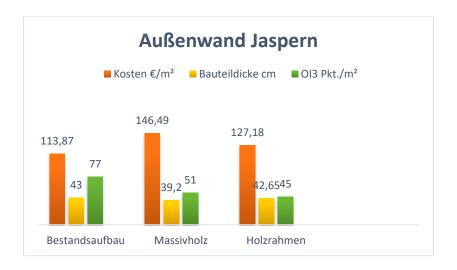


Abbildung 68: Außenwand Jaspern

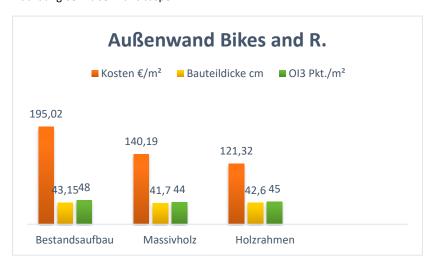


Abbildung 69: Außenwand Bikes and Rails

- Die Herstellungskosten der Holzbauweise unterscheiden sich kaum von den Herstellungskosten der Bestandsaufbau.
- Die geringsten Wandstärken lassen sich bei Holzrahmenkonstruktion erzielen, damit ist die Nutzfläche gegenüber Massivkonstruktion größer ist.
- Die eingesetzten Baustoffe der Holzbauweise liegen niedriger als die eingesetzten Baustoffe der Bestandsbauweise.

Auf Basis der Berechnungen ergeben sich folgende Auswertungen:

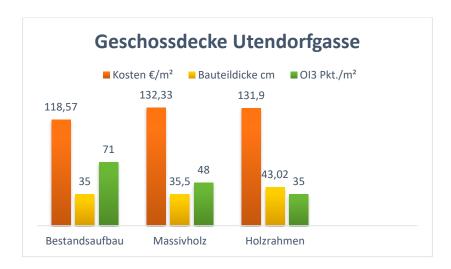


Abbildung 70: Geschossdecke Utendorfgasse

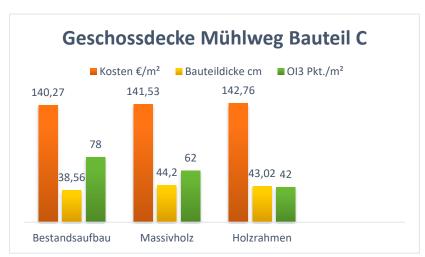


Abbildung 71: Geschossdecke Mühlweg Bauteil C

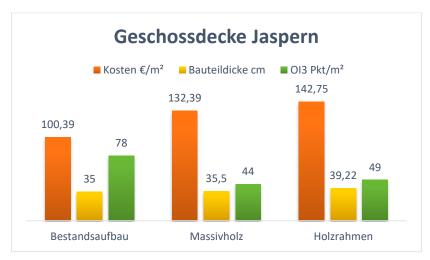


Abbildung 72: Geschossdecke Jaspern

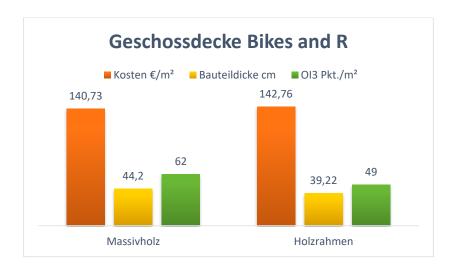


Abbildung 73: Geschossdecke Bikes and Rails

Baukostenanteile

Auf Basis der wirtschaftlichen Bauteilbewertung kann festgestellt werden, welchen prozentuellen Anteil die verwendeten Baustoffe an den Gesamtkosten haben. Dieser prozentuelle Anteil ist bauweiseabhängig.

Diese Ergebnisse werden in den folgenden Diagrammen dargestellt:

1. Referenzprojekt: bestehendes Außenwandsystem Utendorfgasse 112,28 €/m²

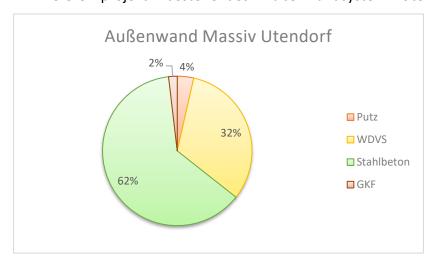


Abbildung 74: Baukostenanteil Massivkonstruktion Utendorfgasse

1.Referenzprojekt: alternatives Außenwandsystem Holzmassivbauweise Utendorfgasse 149,20€/m²

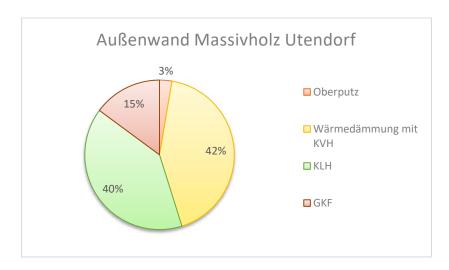


Abbildung 75:Baukostenanteil Massivholzkonstruktion Utendorfgasse

Referenzprojekt: alternatives Außenwandsystem Holzrahmenbauweise Utendorfgasse
 116,97€/m²

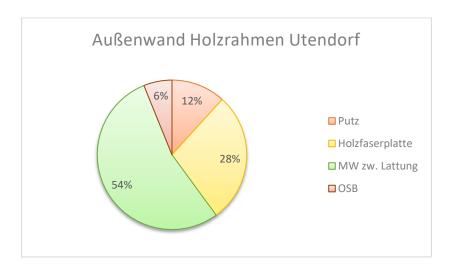


Abbildung 76:Baukostenanteil Holzrahmenkonstruktion Utendorfgasse

1. Referenzprojekt: bestehendes Geschossdeckensystem Utendorfgasse 118,57 €/m²

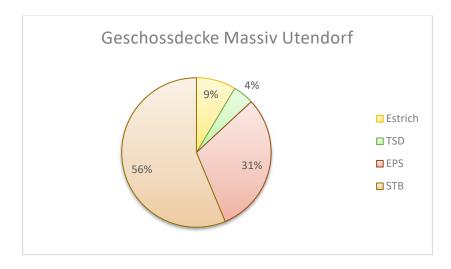


Abbildung 77:Baukostenanteil Geschossdecke Massivkonstruktion Utendorf

Referenzprojekt: alternatives Geschossdeckensystem Holzmassivbauweise Utendorfgasse 132,33 €/m²

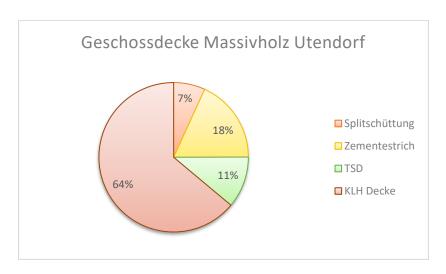


Abbildung 78: Baukostenanteil Geschossdecke Massivholzkonstruktion Utendorf

Referenzprojekt: alternatives Geschossdeckensystem Holzrahmenbauweise Utendorfgasse 131,98 €/m²

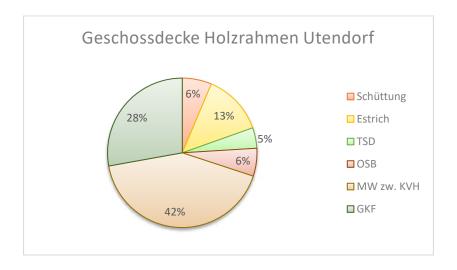


Abbildung 79:Baukostenanteil Geschossdecke Holzrahmenkonstruktion Utendorf

2. Referenzprojekt: bestehendes Außenwandsystem Mühlweg 178,68 €/m²

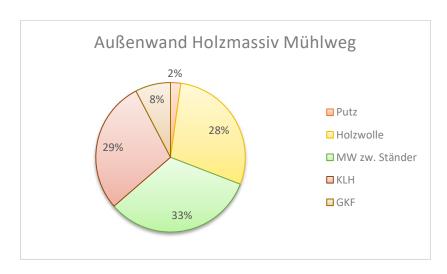


Abbildung 80: Baukostenanteil Massivholzkonstruktion Mühlweg

Referenzprojekt: alternatives Außenwandsystem Holzrahmenbauweise Mühlweg
 125,84 €/m²

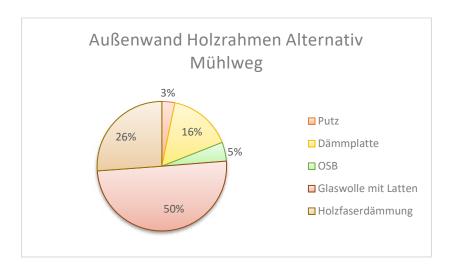


Abbildung 81: Baukostenanteil Holzrahmenkonstruktion Mühlweg

Referenzprojekt: alternatives Außenwandsystem Massivholzbauweise Mühlweg
 140,19 €/m²

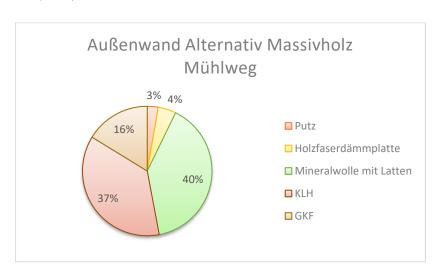


Abbildung 82: Baukostenanteil Massivholzkonstruktion Mühlweg

2. Referenzprojekt: bestehendes Geschossdeckensystem Massivholz 140,27 €/m²

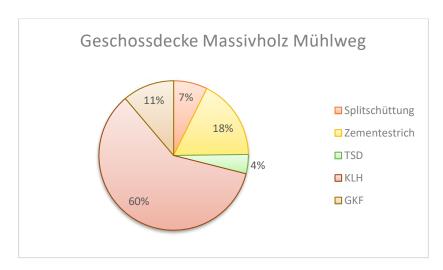


Abbildung 83: Baukostenanteil Massivholzkonstruktion Mühlweg

2. Referenzprojekt: alternatives Geschossdeckensystem Massivholzbauweise Mühlweg 141,53€/m²

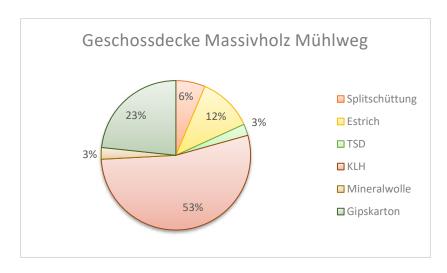


Abbildung 84: Baukostenanteil Massivholzkonstruktion Mühlweg

2. Referenzprojekt: alternatives Geschossdeckensystem Holzrahmenbauweise Mühlweg 142,76 €/m²

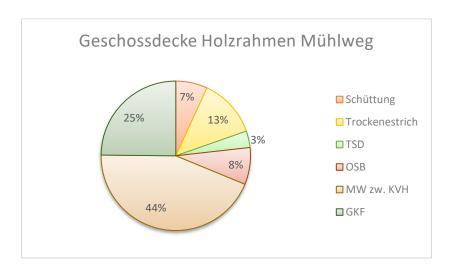


Abbildung 85: Baukostenanteil Holzrahmenkonstruktion Mühlweg

3. Referenzprojekt: bestehendes Außenwandsystem Jaspern 113,87 €/m²

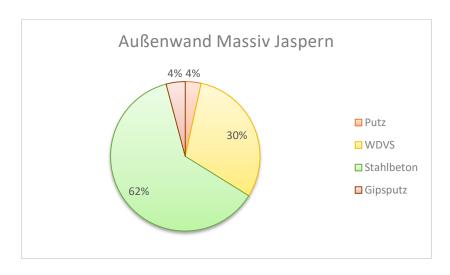


Abbildung 86: Baukostenanteil Massivkonstruktion Jaspern

3. Referenzprojekt: alternatives Außenwandsystem Massivholzbauweise Jaspern 146,49 €/m²

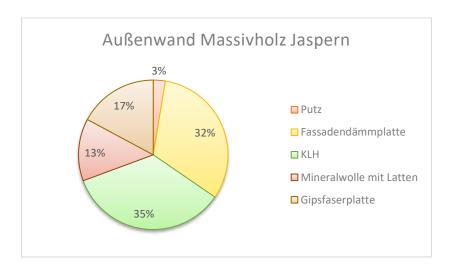


Abbildung 87: Baukostenanteil Massivholzkonstruktion Jaspern

3. Referenzprojekt: alternatives Außenwandsystem Holzrahmenbauweise Jaspern 127,18 €/m²

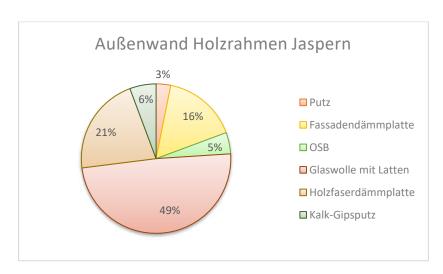


Abbildung 88: Baukostenanteil Holzrahmenkonstruktion Jaspern

3. Referenzprojekt: bestehendes Geschossdeckensystem Jaspern 100,39 $\mbox{\em \epsilon}/m^2$

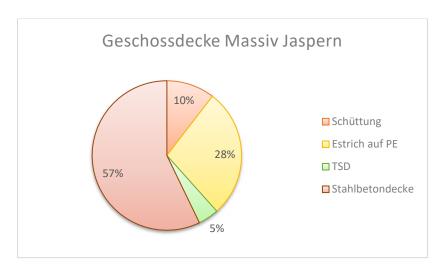


Abbildung 89: Baukostenanteil Massivkonstruktion Jaspern

3. Referenzprojekt: alternatives Geschossdeckensystem Holzmassivbauweise Jaspern 132,39 €/m²

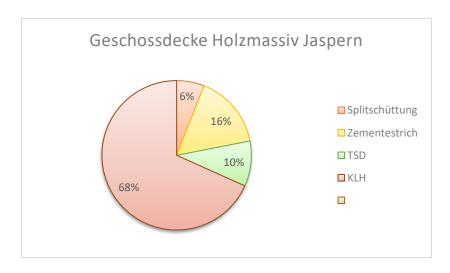


Abbildung 90: Baukostenanteil Massivholzkonstruktion Jaspern

3. Referenzprojekt: alternatives Geschossdeckensystem Holzrahmenbauweise Jaspern 142,76 €/m²

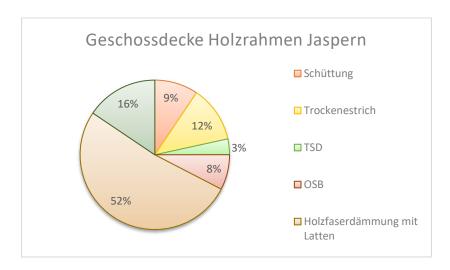


Abbildung 91: Baukostenanteil Holzrahmenkonstruktion Jaspern

4. Referenzprojekt: bestehendes Außenwandsystem Bikes and R. 195,02 €/m²

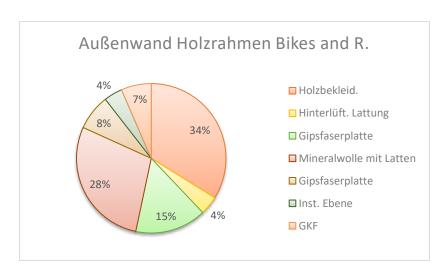


Abbildung 92: Baukostenanteil Holzrahmenkonstruktion Bikes and Rails

4. Referenzprojekt: alternatives Außenwandsystem Holzmassivbauweise Bikes and R. 140,19 €/m²

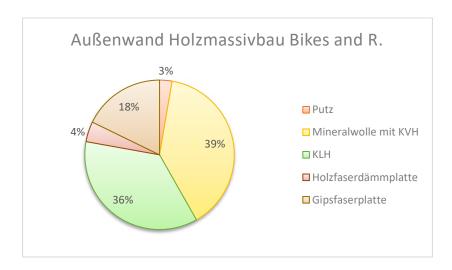


Abbildung 93: Baukostenanteil Massivholzkonstruktion Bikes and Rails

Referenzprojekt: alternatives Außenwandsystem Holzrahmenbauweise Bikes and R.
 121,32 €/m²

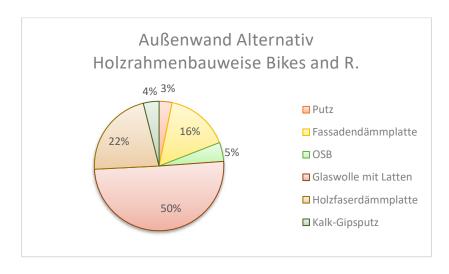


Abbildung 94: Baukostenanteil Holzrahmenkonstruktion Bikes and Rails

4. Referenzprojekt: alternativ Geschossdeckensystem Massivholz Bikes and R. 140,73 €/m²

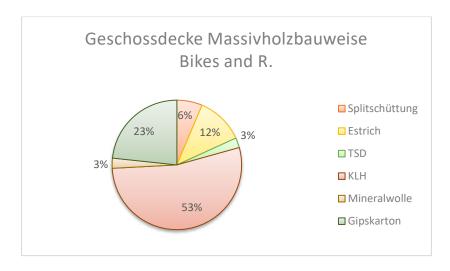


Abbildung 95: Baukostenanteil Holzmassivkonstruktion Bikes and Rails

4.Referenzprojekt: alternatives Geschossdeckensystem Holzrahmenbauweise Bikes and R. 142,76 €/m²

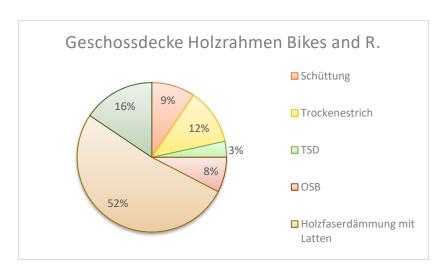


Abbildung 96: Baukostenanteil Holzrahmenkonstruktion Bikes and Rails

- Zusammenfassend kann festgestellt werden, dass die tragenden Schichten der Konstruktion mehr als 50 % der Gesamtkosten ausmachen.
- Die Wärmedämmung hat ebenfalls einen großen Anteil an den Gesamtkosten.
- Wenn nur die Herstellkosten betrachtet werden, kann festgestellt werden, dass die Massivbauweise die günstigste Bauweise ist. Es sind jedoch die folgenden bisher nicht berücksichtigten Aufschläge hinzuzurechnen:
 - Lieferzone je zu fahrendem km €/m³

- Besondere Eigenschaft €/m²
- Sonderleistung (z. B. Konsistenzklasse, Zemente und Zusätze)
- Wintererschwerniszuschlag von 01.11–31.03
- Lieferzeit außerhalb der Normalzeiten
- Mindermengenzuschlag €/m³
- Entladezeit €/5min.
- Restbetonentsorgung €/m³
- Schneekettenpauschale
- Zuschlag, falls eine Autobetonpumpe angefordert wird
- Betontechnische Prüfung
- Zuschlag für Faserbeton²⁵⁷

-Ökologische Kennwerte

Mit Hilfe der Datenbank *baubook* können die ökologischen Kennwerte von Baustoffen bestimmt werden. Im Rahmen einer OI3-Berechnung können die Werte zum Versauerungspotenzial, zum Treibhauspotenzial und zur nicht erneuerbaren Primärenergie auf der Baustoffebene aufgezeigt werden. Dabei werden die folgenden Umweltkategorien berücksichtigt:

- Beitrag zur globalen Erwärmung (GWP)
- Versauerungspotential von Boden und Wasser (AP)
- Bedarf an nicht erneuerbarer Primärenergie, total (PENRT)

Hier werden nur die Δ OI3-Punkte der Bauteile berücksichtigt und miteinander verglichen. Je niedriger die Punktzahl ist, desto bessere ökologische Eigenschaften weisen die Bauteile auf.

²⁵⁷ Rohrdorfer Transportbeton – Preisliste 2020 Transportbeton für Wien, NÖ-Nord, NÖ-süd, Burgenland-Nord, Rohrdorfer Transportbeton GmbH, A-2103 Langenzersdorf, 2020

Diese Ergebnisse werden in den folgenden Balkendiagrammen dargestellt:

1. Referenzprojekt: ökologische Kennwerte Außenwandsystem für Utendorfgasse

Abbildung 97: Delta OI3 Punkte

1. Referenzprojekt: ökologische Kennwerte Geschossdeckensystem für Utenforgasse

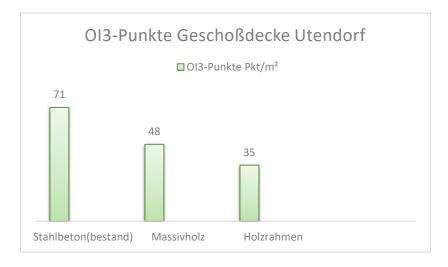


Abbildung 98: Delta OI3 Punkte

2. Referenzprojekt: ökologische Kennwerte Außenwandsystem für Mühlweg Bauteil C

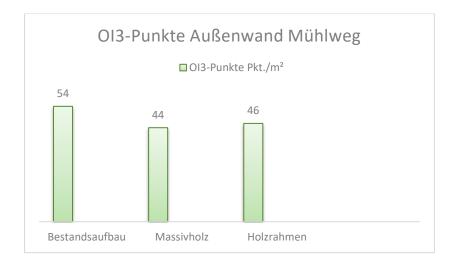


Abbildung 99: Delta OI3 Punkte

2. Referenzprojekt: ökologische Kennwerte Geschossdeckensystem für Mühlweg Bauteil C

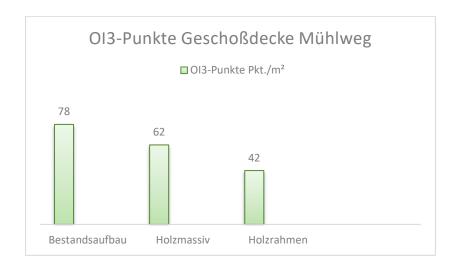


Abbildung 100: Delta OI3 Punkte

3. Referenzprojekt: ökologische Kennwerte Außenwandsystem für Jaspern

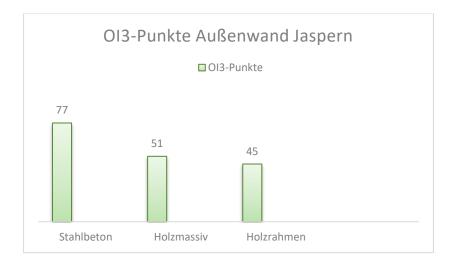


Abbildung 101: Delta OI3 Punkte

3. Referenzprojekt: ökologische Kennwerte Geschossdeckensystem für Jaspern

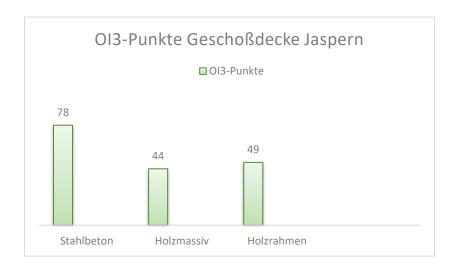


Abbildung 102: Delta OI3 Punkte

4. Referenzprojekt: ökologische Kennwerte Außenwandsystem für Bikes and R.

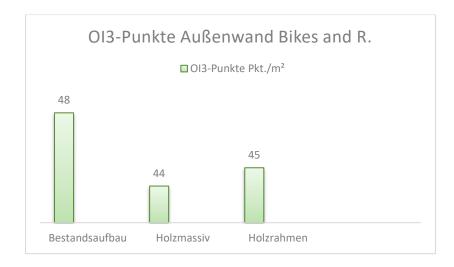


Abbildung 103: Delta OI3 Punkte

4. Referenzprojekt: ökologische Kennwerte Geschossdeckensystem für Bikes and R.

Abbildung 104: Delta OI3 Punkte

- Mit Hilfe einer Berechnung kann festgestellt werden, dass die ΔOI3-Punkte der Stahlbetonbauweise bei jedem Referenzprojekt am höchsten liegen. Dieser Punktestand liegt durchschnittlich zwischen 70 und 90 ΔOI3-Punkten. Die verwendeten Baustoffe der Massivbauweise wirken sich stark negativ auf die Umwelt aus.
- Die ökologischen Kennzahlen der Holzbauweise liegen sehr niedrig im Vergleich zur Massivbauweise.
- Die Holzrahmenbauweise erzielt bei allen Fällen die niedrigste Punktzahl und damit die beste ökologische Bewertung. Grund dafür sind die nachwachsenden Rohstoffe, wie Holz als Tragsystem und Mineralwolle zur Wärmedämmung.
- Die Mineralwolle hat eine gute Dämmeigenschaft und wird als nicht brennbares Material eingestuft. Aus ökologischer Perspektive betrachtet, enthält Mineralwolle keine giftigen Stoffe und kann recycelt werden.
- In den meisten Fällen wird zur Wärmedämmung einer Stahlbetonwand EPS-Dämmung als Wärmeverbundsystem genutzt. Die EPS-Wärmedämmung hat ziemlich gute bauphysikalische Werte, aber die ökologischen Kennzahlen des Dämmstoffes liegen sehr hoch.
- Polystyrol ist ein konventioneller Baustoff, er wird auf Erdöl-Basis hergestellt und kann überall eingesetzt werden. Außerdem ist dieser Dämmstoff sehr günstig und weist trotzdem eine gute Dämmeigenschaft auf. Aus ökologischer Sicht ist die Herstellung dieses Materials schädlich und umweltbelastend.

5. Schlussfolgerung und Ausblick

Das Ziel vor der Diplomarbeit war es, diverse sozialen Wohnbauten in Wien zu untersuchen, um herauszufinden, wo die Kostentreiber des Wohnbaus liegen. Während der Untersuchung ist deutlich geworden, dass das Ermitteln der Kostentreiber eine äußerst komplexe Aufgabe ist, da dies von vielen Faktoren abhängt.

Bei der Recherche wurde ein besonderer Fokus auf die soziale Wohnsituation in Wien gesetzt und die Entwicklung der Wiener sozialen Wohnsituation seit 1900 wurde gründlich untersucht. Deswegen war bei der Auswahl der Wohnobjekte von Bedeutung, dass die Projekte eine Aufgabe der sozialen Wohnformen erfüllen mussten. Um die Auswahl der Wohnobjekte zu reduzieren, wurden weitere Voraussetzungen definiert. Diese Projekte wurden aus mehreren Perspektiven untersucht. Die architektonische, bauphysikalische, ökologische und wirtschaftliche Seite des Objektes wurden detailliert analysiert, um feststellen zu können, inwieweit die Architektur, bautechnische und bauphysikalische Regelungen sowie die gewählte Bauweise für die Baukosten verantwortlich sind.

Auf Basis dieser Untersuchung können folgende Evaluierung und Einsparungsmöglichkeiten aufgezeigt werden:

1. Rolle der Architektur

Die Architektur spielt bei der Entwicklung der Baukosten eine zentrale Rolle. Jedes Detail müsste schon in der Entwurfsphase festgelegt werden, damit zukünftig entstehende Kosten für Umbauarbeiten eingespart werden können. Dazu gehören eine durchdachte Grundrissgestaltung und ein Gebäudekonzept. Die Grundrisse müssen möglichst flexibel mit viel Spielraum gestaltet werden. Sowohl die Gebäudeform als auch die Ausrichtung des Gebäudes auf dem Grundstück können kostensenkend wirken. Die Gebäudeform muss möglichst einfach gestaltet sein, eine vereinfachte quadratische oder rechteckige Gebäudeform ist besonders optimal (wie Projekt Utendorfgasse, oder Mühlweg Bauteil C). Je mehr Vor- und Rücksprünge ein Gebäude hat, desto schwieriger sind die bauphysikalischen und bautechnischen Voraussetzungen zu erfüllen. Die Vor- und Rücksprünge eines Gebäudes verursachen Mehrkosten bei der Ausführung. Die Positionierung und Orientierung des Wohnobjektes können sich wirtschaftlich auswirken. Wenn eine

Wohnung eine bestmögliche Orientierung an den Himmelsrichtungen aufweist, können Energiekosten eingespart werden.

2. Stellplatzverpflichtung

Ein großer Teil der Baukosten entsteht durch die Errichtung einer Tiefgarage. Mit Verzicht auf die Tiefgarage kann ein großer Teil der Gesamtausgaben eingespart werden. Alternative Nutzungsmöglichkeiten wie die Verwendung der öffentlichen Verkehrsmittel, Car2go oder Carsharing stehen zur Verfügung. Zwei Referenzobjekte (Projekt Bikes and Rails, Jaspern) basieren auf diesem Gedanken.

3. Gebäudekonzept und Erschließung

Die Kompaktheit des Gebäudes hängt mit den Baukosten zusammen. Je besser die Beschaffenheit der Wohnanlage ist, umso weniger Erschließungsfläche und Aufzüge werden benötigt. Darüber hinaus können die reduzierten Erschließungsflächen baukostensenkend wirken. Durch ein punktförmiges Erschließungssystem können mehrere Wohnungen erreicht werden, weil das Stiegenhaus mittig liegt (wie Projekt Utendorfgasse, Mühlweg, Jaspern). Damit können die Wohnungen von mehreren Seiten belichtet und belüftet werden. Das am besten geeigneten Konzept ist das spännerförmige Erschließungssystem. Mit Verzicht auf eine Laubengangerschließung können viele später nicht ausgenutzte Flächen und damit verbundene Errichtungskosten eingespart werden.

4. Reduzierung der Gemeinschaftsfläche

Die Bedeutung von Gemeinschaftsflächen hat in den letzten zehn Jahren deutlich zugenommen. Immer mehr Gemeinschaftsflächen werden innerhalb einer Wohnanlage zur Verfügung gestellt. Die Errichtung der Gemeinschaftsflächen verursacht weitere Baukosten. Mit Reduzierung der Gemeinschaftsflächen können diese Ausgaben eingespart werden.

5. <u>Bauweise</u>

Mit Hilfe der Referenzobjekte wurden mehrere Bauteilaufbauten in unterschiedlichen Bauweisen betrachtet und untersucht. Dabei kann festgestellt werden, dass die Herstellkosten der Holzbauweise und der Massivbauweise nahe beieinander liegen. Nach Auswertung der Bewertungsergebnisse lässt sich sagen, dass Massivholzkonstruktion als potentielle Bauweise in sozialen Wohnbauten eingesetzt werden kann. Außerdem kann auf Basis der Berechnungen festgestellt

werden, dass die Bauteilaufbauten der Holzbauweise bessere bauphysikalische und ökologische Werte als die der Massivbauweise erzielen. Die ökologischen Kennzahlen des Baustoffes sind in Bezug auf Umweltschutz besonders relevant, durch die Wahl nachhaltiger Baustoffe langfristig weniger starke schädliche Auswirkungen auf Umwelt und Klima zu erhoffen sind.

Die bautechnischen Normen und Regelungen, OIB- und Förderungsrichtlinien beeinflussen die Kosten stark. Die erhöhten Gebäudestandards und die bauphysikalischen, bautechnischen, baurechtlichen und brandschutztechnischen Vorgaben sowie die Regelungen zur Barrierefreiheit verursachen eine stetige Kostensteigerung.

Die Ergebnisse der Studie lassen den Schluss zu, dass die Schaffung von bezahlbarem Wohnraum von vielen Faktoren abhängig ist. Die Marktverhältnisse und Marktpreise der Bauabwicklung haben sich deutlich verändert und die Kosten sind gestiegen. Diese Änderungen sind nicht nur vor dem Hintergrund der Marktbedingungen zu verstehen, sondern auch neue und höhere Baustandards wie die neuen Richtlinien, Normen und Bauordnungen lösen eine Preisentwicklung aus.

Anhand der Resultate ergeben sich folgende weiterführende Fragen: Wie wird sich die gegenwärtige Wohnsituation auf die Zukunft auswirken? Welche Wohnmöglichkeiten wird es in der Zukunft geben? Werden sich die steigenden Wohnkosten auf der Größe der Wohnungen auswirken?

Wohnen der Zukunft ist ein aktuelles Thema. Laut Studie des Zukunftsinstituts wird diese zukünftige Gestaltung des Wohnens von vielen Faktoren beeinflusst. Faktoren wie steigende Bevölkerungszahl, fortschreitende Urbanisierung, Änderung der Familien- und Haushaltsmodelle, Vielfalt an Lebensstilen, Wohnraumverknappung, Globalisierung, Digitalisierung und digitale Vernetzung tragen dazu bei, bestehende Wohngepflogenheiten zu verändern. Mit der Digitalisierung werden die Grenzen zwischen privat und öffentlich sowie zwischen wohnen und arbeiten verschwimmen. Mit neuen Wohnkonzepten müssen zukunftsorientiere, innovative Wohnmöglichkeiten entstehen, bei denen die neuen Lebensformen, Flexibilität und Mobilität bereits integriert sind. Funktionen wie Wohnen-Arbeiten, Arbeiten-Konsum, Wohnen-Bildung müssen miteinander verknüpft werden. Nutzungsneutrale Wohn-, Grundriss- und Gebäudegestaltungen erhalten hier Vorrang,

damit die Konzepte multifunktional gestaltet und an alle Bedürfnisse angepasst werden können. Diese Multifunktionalität und nutzungsneutrale Verwendung wird einen 'Rundum-Versorgung' ermöglichen. Material der Zukunft: Holz. Die Bedeutung nachhaltiger und ökologischer Baumaterialen wird in Zukunft zunehmen. Auf der Suche nach klimaneutralen und umweltfreundlichen Materialen werden natürliche und nachwachsende Rohstoffe als Baumaterial eingesetzt. Klimaneutralität, Passivhausstandard, Plus-Energiehaus und höhere Energieeffizienz werden bestimmende Begriffe für die Architektur der Zukunft sein. Als natürlicher Baustoff und dank zahlreicher positiver Eigenschaften wird Holz als Baumaterial immer öfter eingesetzt. Es wurde mehrfach nachgewiesen, dass Holz in der Gesamtbewertung (Bauzeit, Vorfertigung, Lebensdauer des Gebäudes, CO₂-Speicherung, Nachhaltigkeit, ökologische Kennzahlen) ein vorteilhaftes und wirtschaftliches Baumaterial ist. Immer mehr Machbarkeitsstudien wurden erstellt und belegen, dass Holz alle Anforderungen, wie Brandschutz, Schallschutz oder Tragfähigkeit, erfüllen kann. Damit lässt sich Holz im städtischen Umfeld für sozialen Wohnungsbau einsetzen.

Zusammenfassend lässt sich bei den Ergebnissen der Recherche herausstellen, dass die Preisentwicklung der Wohnkosten ein Thema der Zukunft sein wird. Die Baukosten können durch optimierte Gebäudegestaltung, durchdachte Konzepte, gut organisierten Bauablauf und mit einer geeigneten Bauweise reduziert werden. Die Wohntrends der Zukunft zeigen, dass die Anzahl der kompakten Stadt- bzw. Wohnstrukturen deutlich ansteigen wird. Die innovativen Grundrissgestaltungen verdeutlichen, dass das Leben auf wenig Nutzfläche dennoch qualitativ hochwertig sein kann.

Die Ergebnisse der Bauteilberechnungen der Referenzobjekte und die Recherche der zukunftsorientierten Wohntrends zeigen, dass Holz die Bauressource der Zukunft ist. Holz ist nicht nur ein nachwachsender, natürlicher Rohstoff, sondern kann in Kombination mit Zusatzmaterialien überall eingesetzt werden. Darüber hinaus kann Herausforderungen wie steigenden Baukosten durch Verwendung natürlicher und nachwachsender Rohstoffe sowie durch Nutzung erneuerbarer Energien begegnet werden.

"Das Ziel des Lebens ist ein Leben im Einklang mit der Natur"

Zenon von Kition

Literaturverzeichnis

Gedruckte Quellen:

Amann Wolfgang, Struber Christian, österreichisches Wohnhandbuch 2019, Neunte Auflage, 2019 Studienverlag Innsbruck Wien Bozen, ISBN 978-3-7065-1791-1

Baupreise kompakt, Statistische Berechnung für Positionen mit Kurztexten, 2018 Stuttgart, BKI Baukosteninformationszentrum, ISBN 978-3-481-03789-5

Brandt, Jörg; Kauhsen, Bruno; Kind-Barkauskas, Friedbert; Polónyi Stefan; 2002; Beton Atlas, Birkäuser Verlag, 2. Auflage, Basel, ISBN 3-7643-6685-0

Brehmer Ernst, Beckmann Heinz, Baukosten Senken, Sparkonzepte für Bauherren,5. Auflage aktualisierte Auflage 2000, Verlag Vieweg, Braunschweig/Wiesbaden, ISBN 3-528-48838-7

Gonzalo Roberto, Vallentin Rainer, Passivhäuser Entwerfen, Planung und Gestaltung hocheffizienter Gebäude,1. Auflage 2013, Institut für internationale Architektur-Dokumentation u. Co KG, München, ISBN 978-3-920034-97-3

Möller Dietrich-Alexander, Planungs- und Bauökonomie, Band 1: Grundlagen der wirtschaftlichen Bauplanung, 5. Auflage, 2007 Oldenburg Wissenschaftsverlag GmbH München, ISBN 978-3-486-58171-3

Pecht Anton, Holz im Hochbau, Theorie und Praxis,2016 Birkhäuser Verlag GmbH Basel, IBSN 978-3-0356-0936-3

proHolz Austria, Brandschutzvorschriften in Österreich, Anforderungen nach OIB-Richtlinie 2,3.veränderte Auflage 2015, ISBN 978-3-902320-59-9

proHolz Austria, Bauen mit Holz in Oberösterreich, 1. Auflage 2011, proHolz Oberösterreich,Linz

proHolz Austria, Gespräch mit Frank Peter, Drei Brandschutzexperten im Gespräch, Brandrede für Holz, März 2020, Nr.77, ISBN 978-3-902926-35-7

Schöberl Helmut, Kostengünstige mehrgeschossige Passivwohnhäuser, Kosten, Technik, Lösungen, Nutzererfahrungen, 2013 Fraunhofer IRB Verlag, Stuttgart, ISBN 978-3-8167-8742-6

Statistik Austria, Österreich Zahlen Daten Fakten, 14. Auflage, 2019 Wien, ISBN 978-3-903264-00-7

Statistik Austria, Wohnen 2018, Zahlen Daten und Indikatoren der Wohnstatistik, 2019 Wien, Verlag Österreich GmbH, ISBN 978-3-903264-16-8

Walberg Dietmar, Brosius Oliver, Schulze Thorsten, Cramer Antje, Massiv- und Holzbau bei Wohngebäuden, Vergleich von massiven Bauweisen mit Holzfertigbauten aus kostenseitiger, bautechnischer und nachhaltiger Sicht, Deutsche Gesellschaft für Mauerwerks- und Wohnungsbau e.V. DGfM, Arbeitgemeinschaft für zeitgemäßes Bauen, Kiel, 2015, ISBN 978-3-939268-30-7

Weihsmann Helmut, Das rote Wien, Sozialdemokratische Architektur und Kommunalpolitik 1919-1934, 2.volkommen überarbeitete Ausgabe, 2002 Promedia, Wien, ISBN 3-85371-181-2

Wiener Wohnbau, Gemeinde Baut, Wiener Wohnbau 1920-2020, 1. Auflage, 2014, Verlag Holzhausen GmbH, Wien, ISBN 978-3-902976-24-6

Winter Wolfgang, Schöberl Helmut, Bednar Thomas, Holzbauweise im verdichteten Wohnungsbau, Konstruktion, Bauphysik, Kosten, 2005 Franhofer IRB Verlag, Stuttgart, ISBN 3-8167-6437-1

Werner Gerhardt, Zimmer Karlheinz, Holzbau 1, Grundlagen DIN 1052 (neu 2008) und Eurocode 5, 4., neu bearbeitete Auflage, 2009, Verlag Berlin Heidelberg, ISBN 978-3-540-95858-1

Richtlinien und Normen

Österreichisches Institut für Bautechnik: OIB Richtlinie 2 Brandschutz, OIB-330.2-012/19, Wien, 2019

Österreichisches Institut für Bautechnik: OIB Richtlinie 4 Nutzungssicherheit und Barrierefreiheit, OIB-330.4-020/15, Wien, 2015

Österreichisches Institut für Bautechnik: OIB Richtlinie 5 Schallschutz, OIB-330.5-002/19, Wien, 2019

Österreichisches Institut für Bautechnik: OIB Richtlinie 6 Energieeinsparung und Wärmeschutz, OIB-330.6-009/15, Wien , 2015

ÖNORM B 1800, Ermittlung von Flächen und Rauminhalten von Bauwerken und zugehörigen Außenanlagen, 2013

ÖNORM B 1801-1, Bauprojekt- und Objektmanagement, Teil 1 Objekterrichtung, 2015

ÖNORM B 1801-2, Bauprojekt- und Objektmanagement, Teil 2 Objekt-Folgekosten, 2011

ÖNORM B 1801-3, Bauprojekt- und Objektmanagement, Teil 3 Objekt- und Nutzungstypologie,2011

ÖNORM B 1801-4, Bauprojekt- und Objektmanagement, Teil 4 Berechnung von Lebenszykluskosten ,2014

ÖNORM EN 13501-1, Klassifizierung von Bauprodukten und Bauarten zu ihrem Brandverhalten

Online Quellen

Amann Wolfgang, Mundt Alexis, Lesitbares Wohnen, Bestandsaufnahme von monetären Leistungen für untere Einkommensgruppen zur Deckung des Wohnbedarfs,Endbericht 2015, Institut für Immobilien, Bauen und Wohnen GmbH, Verfügbar: http://www.iibw.at/index.php/de-de/component/sobipro/83-leistbares-wohnen-bestandsaufnahme-von-monetaeren-leistungen-fuer-untere-einkommensgruppen-zur-deckung-des-wohnbedarfs?Itemid=0 Zugriff am 06.10.2019

Amann Wolfgang, Jodl Hans Georg, Maier Christian, Mundt Alexis, Pöhn Christian, Pommer Georg, Massiv-Bauweise im sozialen Wohnbau in Wien, 2007, WKO http://iibw.at/documents/2007%20Amann_Jodl_Poehn_Mundt.%20FV%20Steine.%20Massiv-Bauweise%20im%20sozialen.pdf Zugriff am 10.11.2019

Amann Wolfgang, Mundt Alexis, Rahmenbedingungen und Handlungsoptionen für qualitätsvolles ,dauerhaftes, leistbares und inklusives Wohnen, Bundesministerium, Arbeit, Soziales, Gesundheit und Konsumentenschutz, Verfügbar: www.sozialministerium.at Zugriff am 06.10.2019

Attic Adapt 2050, Ein sysematischer Ansatz für Dachgeschossausbauen in Holzbauweise. Weiterbauen! Nachverdichten des Gebäudebestands der Nachkriegszeit am Beispiel der Wohnhausanlagen der Gemiende Wien, Verfügbar: https://www.isover.at/dokument/attic-adapt-2050 Zugriff am 15.11.2019

Baunetzwissen: Brandschutz, https://www.baunetzwissen.de/brandschutz Zugriff am 18.11.2019

Baunetzwissen: Dämmstoffe, https://www.baunetzwissen.de/daemmstoffe Zugriff am 20.11.2019

Bayerisches Landesamt für Umwelt, Lebenszyklusanalyse von Wohngebäuden, Lebenszyklusanalyse mit Berechnung der Ökobilanz und Lebenszykluskosten, 2019 Gröbenzell, https://www.lbb-bayern.de/fileadmin/quicklinks/Quick-Link-Nr-98300000-LfU-Gesamtstudie_Lebenszyklusanalyse.pdf Zugriff am 10.01.2020

Bikes and Rails, https://www.derstandard.at/story/2000058228977/bikes-rails-wohnbaunicht-von-der-stange Zugriff am 15.01.2020

Bikes and Rail, https://www.bikesandrails.org/wp/architektur/ Zugriff am 02.01.2020

Bikes and Rails, https://passivehouse-database.org/index.php?lang=de#d_5738 Zugriff am 15.01.2020

Donner Christian, Aktuere der Objektförderung im Mietwohnungssektor, Verfügbar: www.sozialministerium.at

Dungl Leopold, Entwurfs- und Planungsparameter für kostengünstigen Wohnbau in Wien, Studie im Rahmen der Wiener Wohnbauforschung, 2012 Wien, Verfügbar: https://www.wohnbauforschung.at/index.php?id=429 Zugriff am 16.11.2019

Eigner Peter, Matis Herbert, Resch Andreas, Sozialer Wohnbau in Wien Eine historische Bestandsaufnahme, Verfügbar:

http://www.demokratiezentrum.org/fileadmin/media/pdf/matis_wohnbau.pdf Zugriff am 08.10.2019

Friedler Claudia, Planerische Anforderungen-an die Architektur-bei der Vergabe von Wohnbauförderungsmitteln in Wien seit 1995, Verfügbar: https://diplomarbeit.wkimmo.info/FH-Wien/Diplomarbeitanhaenge/1658/1658KF.pdf Zugriff am 10.10.2019

Gemeinnütziger Bauvereinigungen- https://www.gbv.at/Page/View/4182 Zugriff am 14.11.2019

Geschäftsgruppe Wohnen, Wohnbau und Stadterneuerung, Wiener Wohnbau Jahresbericht 2018/2019, verfügbar: https://www.wohnbauforschung.at/ Zugriff am 12.11.2019

Hameter Josef, Kooperationspotentiale in der Stadtregion Wien, Grundlagen, Rahmenbedingungen und Anknüpfungspunkte für die Initialisierung stadtregionaler Kooperationen, Ein Forschungsprojekt im Rahmen der Wiener Wohnbauforschung, Endbericht 2017, Baden, Verfügbar: https://www.wohnbauforschung.at/ Zugriff am 01.11.2019

Herdin Isabella, Lehner Ursula, Prammer-Waldhör Michaela, Städtner Karin, Wagner-Pinter Michael, Die städtische Bevölkerung und ihre Wohnversorgung, Städtebericht Wohnungpolitisches Monitoring, Synthesis Forschung, 2010 Wien, Verfügbar: https://www.wohnbauforschung.at/Zugriff am 07.11.2019

Historischer Rückblick: Der soziale Wohnungsbau des "Roten Wien", http://www.demokratiezentrum.org/themen/wien-gemeindebau/historischeentwicklung.html?type=98 Zugriff am 10.11.2019

IBO Wien, Leitfaden zur Berechnung des Ökoindex OI3 für Bauteile und Gebäude, https://www.ibo.at/fileadmin/ibo/materialoekologie/OI3_Berechnungsleitfaden_V4.0_20 181025.pdf Zugriff am 16.01.2020

IBO Passivhaus Bauteilkatalog, https://nachhaltigwirtschaften.at/resources/hdz_pdf/060512_nbs2_4_lipp.pdf?m=14679 01009 Zugriff am 10.01.2020

Jaspern Wien, Wohnqualität gemeinsam erleben, Verfügbar: http://www.steiermarkarchitektur.at/news/wohnqualitaet-gemeinsam-erleben Zugriff am 10.01.2020

Jaspern, Passivhausdatenbank, https://passivehouse-database.org/index.php?lang=de#d_4505 Zugriff am 04.01.2020

Jaspern, POS Architecture, http://www.pos-architecture.com/projects/cohousing-jaspern/Zugriff am 15.01.2020

Karnutsch Markus, Weiß Tobias, Reiter Thomas, Kostenoptimale Umsetzung von Niedrigstenenergiegebäuden im geförderten Wohnbau in Salzburg, 2015 Salzburg, Verfügbar:

https://www.salzburg.gv.at/bauenwohnen_/Documents/Endbericht_Kostenoptimale_Umsetzung_NEB_im_gef%C3%B6rderten_Wohnbau_in_Salzburg.pdf Zugriff am 02.12.2019

Keul Alexander, Bericht zur Evaluation 2007 in der Passivhaus-Wohnanlage Haus am Mühlweg, Demonstrativbauvorhaben im Rahmen von Haus der Zukunft KLEA Wohnbau GmbH, http://docplayer.org/63608262-Bericht-zur-evaluation-2007-in-der-passivhaus-wohnanlage-haus-am-muehlweg.html Zugriff am 04.11.2019

Keul Alexander, Mehrgeschossiger geförderter Wohnbau für 70 Wohneinheiten Holzmassivbauweise, Passivstandard, 1210 Wien, Haus am Mühlweg,Projektentwicklung, 2006,https://nachhaltigwirtschaften.at/resources/hdz_pdf/mw_1_1_projektentwicklung.pdf?m=1469659666 Zugriff am 14.12.2019

Knaus Ulrike, Holzbauaneil steigt in Österreich kontinuierlich, Verfügbar: https://www.holzkurier.com/holzbau/2019/07/holzbauanteil-steigt-in-oesterreich-kontinuierlich.html Zugriff am 03.01.2020

Korab Robert, Romm Thomas, Schönfeld Annika, Einfach sozialer Wohnbau, Aktuelle Herausforderungen an den geförderten Wiener Wohnbau und Eckpfeiler eines Programms einfach sozialer Wohnbau, Endbericht 2010, Wien, Raum und Kommunikation GmbH, Verfügbar: https://www.wohnbauforschung.at/ Zugriff am 17.11.2019

Kreuzlagenholz- KLH, https://www.klh.at/download/public/Kreuzlagenholz/KLH_Kreuzlagenholz.pdf Zugriff am 18.12.2019

Kunnert Andrea, Leistbarkeit von Wohnen in Östrerreich, Operationalisierung und demograpische Komponenten, Österreichisches Institut für Wirtschaftsforschung,2016 verfügbar: https://www.wifo.ac.at/jart/prj3/wifo/main.jart?content-id=1454619331110&publikation id=58932&detail-view=yes Zugriff am 29.10.2019

Liske Herbert, Der Bauträgerwettbewerb als Instrument des geförderten sozialen Wohnbaus in Wien, verfahrenstechnische und inhaltliche Evaluierung, 2008 Baden bei Wien, Verfügbar: https://www.wohnbauforschung.at Zugriff am 25.10.2019

Massivholzhandbuch, https://www.massivholzhandbuch.com/ Zugriff am 02.01.2020

Mikrowohnungen, Verfügbar: https://kurier.at/chronik/wien/wohnkurier/so-wohnt-essich-mikromaessig-in-der-grossstadt/400510621 Zugriff am 15.01.2020

Müller Daniel, Eichenberger Michael, Stenz Michael, Holzbau vs. Massivbau- Ein umfassender vergleich zweier Bauweisen im Zusammenhang mit dem SNBS Standard, Bundesamt für Umwelt BAFU, Bern 2015, Schlussbericht, Verfügbar: www.bafu.admin.ch > bafu > dokumente > wald-holz > fachinfo-daten Zugriff am 10.12.2019

Müllner Alex, Entwicklung eines ganzheitlichen Bewertungssystems für Deckenkonstruktionen bei Holzhochhäusern, Verfügbar: http://repositum.tuwien.ac.at/obvutwhs/download/pdf/2744139?originalFilename=true Zugriff am 02.01.2020

Neue Flächenwidmungsplan für geförderten Wohnbau, https://www.wien.gv.at/bauen-wohnen/bauordnungsnovelle-gefoerderter-wohnbau.html Zugriff am 16.11.2019

Objekt des Monats 06/2015: Jaspern, 1220 Wien, https://www.klimaaktiv.at/bauensanieren/gebaeude-in-oesterreich/odm 2015-06.html Zugriff am 11.01.2020

Passivhaus: Information für Bauherren Planer und Architekten, Passivhaus Austria, https://passivhaus-austria.org/sites/passivhaus-austria.org/files/Downloads/Broschueren/Broschuere_Austria_2017.pdf Zugriff am 10.12.2019

Passivhaus, https://www.propassivhaus.de/was-ist-ein-passivhaus/architektur.html Zugriff am 10.12.2019

Pipoh Marcus-Alexander, Holzleichtbeton-Verbundelemente: Wirtschaftliche Studien, Verfügbar:

http://repositum.tuwien.ac.at/obvutwhs/download/pdf/1642385?originalFilename=true Zugriff am 10.01.2020

Planungsgrundlagen zur Widmung, Gebiete für geförderten Wohnbau Verfügbar: https://www.wien.gv.at/stadtentwicklung/flaechenwidmung/pdf/widmung-grundlagen.pdf Zugriff am 15.11.2019

Potyka Hugo, Kostengünstiger Wohnungbau, verfügbar: https://www.wohnbauforschung.at/ Zugriff am 18.12.2019

Schöberl Helmut, Christoph Lang, Fechner Johannes, Handbuch für Einfamilien-Passivhäuser in Massivbauweise, Energie der Zukunft, Verfügbar: https://www.17und4.at/wp-content/uploads/2016/07/Forschungsbericht_Handbuch_fuer_Einfamilien-Passivhaeuser.pdf Zugriff am 05.12.2019

Schöberl Helmut, Hutter Stefan, Bednar Thomas, Anwendung der Passivtechnologie im sozialen Wohnbau, Zwischenbericht, Haus der Zukunft, Wien, 2002, Verfügbar: https://nachhaltigwirtschaften.at/resources/hdz_pdf/zwischenbericht_schoeberl.pdf Zugriff am 17.12.2019

Schöberl Helmut,Lang Christop, Ist ökologisches Bauen in der Masse kostengünstig umsetzbar?, Mehrkosten für ökologisches Bauen am typischen mehrgeschossigen sozialen Wohnbau Wien 1140, Utendorfgasse7, 2008 Wien, Haus der Zukunft, Verfügbar:

https://nachhaltigwirtschaften.at/de/hdz/projekte/ist-oekologisches-bauen-in-dermasse-kostenguenstig-umsetzbar.php Zugriff am 05.12.2019

Schöberl Helmut, Lang Christian, Handler Simon, Ermittlung und Evaluierung der baulichen Mehrkosten von Passivhausprojekten, Wien 2011, Haus der Zukunft, Verfügbar: https://nachhaltigwirtschaften.at/resources/hdz_pdf/berichte/endbericht_1163_ermittlung evaluierung passivhausprojekte.pdf Zugriff am 12.12.2019

Schönbäck Wilfried, Lang Judith, Pierrard Roger, Schallschutz im Wohnungsbau, Endbericht im Auftrag der Saint-Gobain-ISOVER, Wien, 2006, http://www.ifip.tuwien.ac.at/forschung/SCHALL/SCHALL_Endbericht.pdf Zugriff am 17.12.2019

Soziale Wohnungsvergabe- https://wohnberatung-wien.at/wohnberatung/soziale-wohnungsvergabe/ Zugriff am 11.11.2019

Stanzel Manuel, Holzleichtbeton-Verbundbauweise-eine wirtschaftliche Vergleichsbetrachtung zu herkömmlichen Deckensystemen, Verfügbar: http://repositum.tuwien.ac.at/obvutwhs/download/pdf/1517118?originalFilename=true Zugriff am 06.01.2020

Stumpf Wolfgang, Radinger Gregor, Floegl Helmut, Lebenszykluskostenbewusses Planen und Bauen bei Ein- und Zweifamilienhäusern, 2017 Krems, Verfügbar: https://www.ecoplus.at/media/6260/handbuch-lebenszykluskostenbewusstes-planen-und-bauen.pdf Zugriff am 20.12.2019

Streissler-Führer Agnes, Kon Daniel, Krainhöfner Clara, Picler Andrea, Leistbare Mieten Leistbares Leben, 2015 Wien, Verfügbar:

www.hausbesitzer.at > presse > news > leistbare-mieten-leistbares-leben Zugriff am 14.11.2019

Tockner Lukas, Wohnungsmieten und Wohnungspreise in Wien 2015, 2017 Februar, AK Wien, Verfügbar:

https://www.arbeiterkammer.at/infopool/wien/Wohnungsmieten_und_Wohnungspreise in Wien 2015.pdf Zugriff am 18.11.2019

Treberspurg Martin, Smuthny Roman, Nachhaltigkeits-monitoring ausgewählter Passivhaus-Wohnanlagen in Wien, Endbericht, 2009, Verfügbar: https://www.wohnbauforschung.at/ Zugriff am 11.11.2019

Unterdorfer Dario, Erbaut von Gemeinde Wien, Die Geschichte des sozialen Wohnbaus in Wien aus regulationstheoretischer Perspektive, 2015 Wien, Verfügbar: http://othes.univie.ac.at/36989/1/2015-03-05_0709737.pdf Zugriff am 10.11.2019

Vikydal Johannes, Ressourceneffizienter Einsatz von Holz-Beton-Verbunddecken bei Hochhäusern-Wirtschaftliche Analyse, Verfügbar: https://repositum.tuwien.ac.at/obvutwhs/download/pdf/3577750?originalFilename=true Zugriff am 10.01.2020

Wachter Simon, Leistbares Wohnen- Eine Analyse der Kostenfaktoren in Wiener Wohnbau unter Berücksichtigung der Wiener Bauordnungsnovelle 2014 , Verfügbar: https://diplomarbeit.wkimmo.info/FH-Wien/Diplomarbeitanhaenge/2F05D2G0J1/Wachter Simon.pdf Zugriff am 13.11.2019

Wagner Waldemar, Prein Andreas, Spörk-Dür Monika, Suschek-Berger Jürgen, Energetische und baubiologische Begleituntersuchung Passivmehrfamilienhaus Mühlweg,Institut für Nachhaltige Technologien, 2010 https://nachhaltigwirtschaften.at/de/hdz/publikationen/biblio/energietechnische-und-baubiologische-begleituntersuchung-passivmehrfamilienhaus-muehlweg.php Zugriff am 10.11.2019

Wagner Waldemar, Mauthner Franz, Energietechnische und Baubiologische Begleituntersuchung der Bauprojekte, Berichtsteil Passivwohnhausanlage Utendorfgasse, Institut für Nachhaltige Technologien,2008, https://nachhaltigwirtschaften.at/de/hdz/projekte/anwendung-derpassivhaustechnologie-im-sozialen-wohnbau-1140-wien-utendorfgasse-7-phaseerrichtung.php Zugriff am 10.11.2019

Wagner Waldemar, Prein Andreas, Mauthner Franz, Energietechnische und baubiologische Begleituntersuchung Passivhausanlage Utendorfgasse, Institut für Nachhaltige Technologien, Gleisdorf,2008, https://nachhaltigwirtschaften.at/resources/hdz_pdf/endbericht_0966_ibk_utendorfgass e.pdf Zugriff am 15.11.2019

Wärmeschutz,

https://www.baunetzwissen.de/flachdach/fachwissen/waermeschutz/allgemeines-zumwaermeschutz-155985 Zugriff am 16.11.2019

Wiener Bauordnungsnovelle 2018 http://www.bkp.at/news-detail-en/die-wiener-bauordnungsnovelle-2018-bringt-neuerungen-und-verfahrenserleichterungen.html Zugriff am 16.11.2019 und https://www.wien.gv.at/bauen-wohnen/bauordnungsnovellegefoerderter-wohnbau.html Zugriff am 16.11.2019

Wiener Wohnbauförderung

https://wohnberatung-wien.at/wohnberatung/wohnbaufoerderung/ Zugriff am 11.11.2019

Wiener Wohnbauförderungs- und Wohnhaussanierungsgesetz https://www.wohnfonds.wien.at/media/file/Publikationen/WWFSG-Stand_Oktober_2018.pdf Zugriff am 11.11.2019

Winter Wolfgang, Pfeiffer-Rudy Margit, Tichelmann Karsten, Merl Adolf, Pfau Jochen, Schwerpunkt Bauphysikalische Eigenschaften von Leichtbauweisen, Eigenschaften und Potentiale des Leichtbaus, Auftrag vom BAU. GENIAL, Stand 2007, Wien, Verfügbar: https://baugenial.at/wp-content/uploads/2019/03/BAU. GENIAL_Schwerpunkt-Bauphysik.pdf Zugriff am 03.12.2019

Wittrich Judith, Wien Wächst Wien Baut, Neue Wege oder Sackgassen?,2017, AK Wien, Verfügbar:

https://wien.arbeiterkammer.at/interessenvertretung/meinestadt/wohnen/Wien_waech st Wien baut.html Zugriff am 14.11.2019

Wirtschaftskammer Tirol, Vorschläge zur Kostenreduktion im geförderten Tiroler Wohnbau,3. Version,2012, Verfügbar: https://www.wko.at/branchen/gewerbehandwerk/bau/Baukostenstudie0212.pdf Zugriff am 12.11.2019

Wohnbau ohne Spekulation, Bikes and Rails, Verfügbar: https://www.meinbezirk.at/favoriten/c-lokales/wohnbau-ohne-spekulation_a3188349?fbclid=IwAR1PX3vJAAFC2Lo2MjhCou1gcZVhFbW73naZVnErpBDe KpXGOtDsHobq0gA Zugriff am 15.01.2020

Wohnbauförderung, https://www.baustoffindustrie.at/newsentry/wohnbaufoerderungs-und-baubewilligungsstatistik-2018-foerderungen-und-neubau-driften-immer-weiter-auseinander/ Zugriff am 16.11.2019

Wohnbauförderung- Projekt und Schwerpunktüberblick 2018, https://www.wien.gv.at/statistik/leistungsbericht/ma50/index.html Zugriff am 16.11.2019

Wohnfonds Wien- http://www.wohnfonds.wien.at/article/nav/135 Zugriff am 11.11.2019

Wohnungsneubau, Gebäudesanierung, Infrastruktur, Umwelt Bauen, 2019, Verfügbar: http://iibw.at/documents/2019%20Umwelt+Bauen%20Postionspapier.pdf Zugriff am 19.11.2019

Wohntrends der Zukunft, Verfügbar: https://www.sparkasse.de/gemeinsamallemgewachsen/wohntrends-zukunft.html Zugriff am 16.01.2020

Wohnqualität gemeinsam erleben, https://www.gat.st/news/wohnqualitaet-gemeinsam-erleben Zugriff am 10.01.2020

Zechner Wilhelm, Kostentreiber im geförderten Wohnbau, Qualitäten, Normen, Ökologisierung, 2018, Verfügbar: https://www.vwbf.at/wp-content/uploads/2018/08/Zechner.pdf Zugriff am 16.11.2019

Zukunftsfähige Wohngebäudemodernisierung, Integrierte Konzepte und Lösungen zu Wirtschaftlichkeit, Nutzerzufriedenheit, Praxistauglichkeit, Blue Globe Foresight Studie,2009 https://www.klimafonds.gv.at/wp-content/uploads/sites/6/BGR22009KB07EZ1F44266FSZUWOG.pdf Zugriff am 12.12.2019

Abbildungsverzeichnis

Abbildung 1.Punktesystem zur Vergabe von Gemeindewohnungen zur Zeit des "Roten Wien"	16
Abbildung 2: Rechtsverhältnis der Hauptwohnsitzwohnungen	24
Abbildung 3: Rechtsverhältnis der Hauptwohnsitzwohnungen nach Bundesland	25
Abbildung 4: Durchschnittliche Wohnkosten von Hauptmietwohnungen (2009-2018)	26
Abbildung 5: Durchschnittliche Wohnkosten von Hauptmietwohnungen nach Art der Hauptmie	ete
und Bundesland	27
Abbildung 6: Anforderungen an den Feuerwiederstand	34
Abbildung 7: Entwicklung der Brandschutzvorschriften in Österreich	35
Abbildung 8: Lärmstörung insgesamt nach Art der Wohnumgebung	36
Abbildung 9: Mindesterforderliche Schalldämmung	37
Abbildung 10: Ziele des baulichen Wärmeschutzes	38
Abbildung 11:Holzbauanteil im Wohnbau in Österreich	40
Abbildung 12:Holzbauanteil gesamt in Österreich, Verteilung nach Kategorien	41
Abbildung 13:Überblick der Holzbauweisen im Wohnbau	42
Abbildung 14: Bewehrungskorrosion durch Karbonatisierung	45
Abbildung 15: Druckfestigkeitsklassen für Normal- und Schwerbeton	46
Abbildung 16: Berechnungsformel Delta OI3	47
Abbildung 17: Delta OI3 Werte	47
Abbildung 18:Definition der Passivhauskriterien gemäß Passivhaus Institut	48
Abbildung 19: Richtwerte Bauteile	49
Abbildung 20: Utendorfgasse © Bruno Klomfar	53
Abbildung 21: Grundriss	54
Abbildung 22: Schnitt	54
Abbildung 23: Bauklasse II	59
Abbildung 24:Außenwand Bestand	60
Abbildung 25: Außenwand Massivholz	62
Abbildung 26: Außenwand Holzrahmenbauweise	64
Abbildung 27: Geschossdecke Bestand	68
Abbildung 28: Geschossdecke Massivholz	
Abbildung 29: Geschossdecke Holzrahmen	
Abbildung 30: WHA Mühlweg Bauteil C © Bruno Klomfar	75
Abbildung 31: WHA Mühlweg Bauteil C © Bruno Klomfar	75
Abbildung 32: Grundriss Mühlweg Bauteil C	76
Abbildung 33:Schnitt	
Abbildung 34: Bauklasse II	
Abbildung 35: Außenwand Massivholz Bestand	
Abbildung 36: Außenwand Massivholz	83
Abbildung 37: Außenwand Holzrahmen	
Abbildung 38: Geschossdecke Massivholz Bestand	89
Abbildung 39: Geschossdecke Massivholz	
Abbildung 40: Geschossdecke Holzrahmenbau	
Abbildung 41: Jaspern Markus Kaiser©	
Abbildung 42: Jaspern Markus Kaiser©	
Abbildung 43: Grundriss EG, POS Architecture	
Abbildung 44: Schnitt und Belichtungskonzept, POS Architecture	
Abbildung 45: Bauklasse IV	
Abbildung 46: Außenwand Massiv Bestand	104

Abbildung 47: Außenwand Massivholz	
Abbildung 48: Außenwand Holzrahmenbau	
Abbildung 49: Geschossdecke Massiv Bestand	. 112
Abbildung 50: Geschossdecke Massivholz	. 114
Abbildung 51: Geschossdecke Holzrahmen	. 116
Abbildung 52 Bikes and Rails, Familienwohnbau	. 119
Abbildung 53: Bikes and Rails, © Mobilitätsagentur Wien GmbH	
Abbildung 54: Grundriss Erdgeschoss	
Abbildung 55: Visualisierung von Familienwohnbau	
Abbildung 56: Bauklasse III	
Abbildung 57 Außenwand Holzrahmen Bestand	
Abbildung 58: Außenwand Massivholz	
Abbildung 59: Außenwand Holzrahmenbau	
Abbildung 60: Geschossdecke Massivholz	
Abbildung 61: Geschossdecke Holzrahmen	
Abbildung62:Grundriss Utendorfgasse	
Abbildung 63: Grundriss Mühlweg	
Abbildung 64: Grundriss Jaspern	
Abbildung 65: Grundriss Bikes and Rails	
Abbildung 66: Außenwandsysteme Utendorfgasse	
Abbildung 67: Außenwand Mühlweg Bauteil C	
Abbildung 68: Außenwand Jaspern	
Abbildung 69: Außenwand Bikes and Rails	
Abbildung 70: Geschossdecke Utendorfgasse	
Abbildung 71: Geschossdecke Mühlweg Bauteil C	
Abbildung 72: Geschossdecke Jaspern	
Abbildung 73: Geschossdecke Bikes and Rails	
Abbildung 74: Baukostenanteil Massivkonstruktion Utendorfgasse	
Abbildung 75:Baukostenanteil Massivholzkonstruktion Utendorfgasse	
Abbildung 76:Baukostenanteil Holzrahmenkonstruktion Utendorfgasse	
Abbildung 77:Baukostenanteil Geschossdecke Massivkonstruktion Utendorf	
Abbildung 78:Baukostenanteil Geschossdecke Massivholzkonstruktion Utendorf	. 146
Abbildung 79:Baukostenanteil Geschossdecke Holzrahmenkonstruktion Utendorf	. 147
Abbildung 80: Baukostenanteil Massivholzkonstruktion Mühlweg	. 147
Abbildung 81: Baukostenanteil Holzrahmenkonstruktion Mühlweg	. 148
Abbildung 82: Baukostenanteil Massivholzkonstruktion Mühlweg	. 148
Abbildung 83: Baukostenanteil Massivholzkonstruktion Mühlweg	. 149
Abbildung 84: Baukostenanteil Massivholzkonstruktion Mühlweg	. 149
Abbildung 85: Baukostenanteil Holzrahmenkonstruktion Mühlweg	. 150
Abbildung 86: Baukostenanteil Massivkonstruktion Jaspern	. 150
Abbildung 87: Baukostenanteil Massivholzkonstruktion Jaspern	. 151
Abbildung 88: Baukostenanteil Holzrahmenkonstruktion Jaspern	
Abbildung 89: Baukostenanteil Massivkonstruktion Jaspern	
Abbildung 90: Baukostenanteil Massivholzkonstruktion Jaspern	
Abbildung 91: Baukostenanteil Holzrahmenkonstruktion Jaspern	
Abbildung 92: Baukostenanteil Holzrahmenkonstruktion Bikes and Rails	
Abbildung 93: Baukostenanteil Massivholzkonstruktion Bikes and Rails	
Abbildung 94: Baukostenanteil Holzrahmenkonstruktion Bikes and Rails	

Abbildung 95: Baukostenanteil Holzmassivkonstruktion Bikes and Rails	155
Abbildung 96: Baukostenanteil Holzrahmenkonstruktion Bikes and Rails	155
Abbildung 97: Delta OI3 Punkte	157
Abbildung 98: Delta OI3 Punkte	157
Abbildung 99: Delta OI3 Punkte	158
Abbildung 100: Delta OI3 Punkte	158
Abbildung 101: Delta OI3 Punkte	159
Abbildung 102: Delta OI3 Punkte	159
Abbildung 103: Delta OI3 Punkte	160
Abbildung 104: Delta OI3 Punkte	160
Abbildung 105 KLH Preisliste	244
Abbildung 106: KLH Preisliste	245

Anhang

Kostenberechnung

REFERENZOBJEKT I

1.Bauteil Außenwand

1.Außenwand Stahlbeton

-Mineralischer Oberputz:

Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-WDVS EPS035

Wärmedämmverbundsystem, Polystyrol-Hartschaumplatte, im Verband, kleben, press gestoßen und offene Fugen ausschäumen

Durchschnittspreis 35,15 €/m² Austrotherm

-Wand Ortbeton

Festigkeitsklasse C25/30, Höhe bis 3,0 m

Wopfinger Beton C25/30 29,50/m2

-Betonstahlmatten, Bst500M/500B

Bewehrung aus Betonstahlmatten, unterschied. Abmessungen

Durchscnittspreis 1,38 €/kg netto BKI Preisstand 2019 S.93

-Betonstabstahl

Betonstabstahl inkl. Anpassarbeiten

Durchschnittspreis 1,45 €/kg netto BKI S.94

-Bewehrungszubehör

Bewehrungszubehör aus Stahl, Kunststoff und Abstandhalter

Durchschnittspreis 3,2€/kg S.94

-Schalung Wand

Raue Schalung bis 3,00 m Höhe

33€/m² netto BKI 2019 S.83

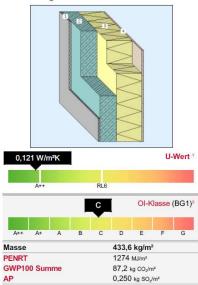
-Kalk-Gipsputz

KNAUF Gipsputz Innenwand, Dünnlagenputz, Dicke Q3-geglättet

Preis 2,04,3€/m² Preis von Bauhaus

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246


-Beschichtung

Durchschnittspreis 1,26 €/m² netto S.246

Utendorfgasse Außenwand Bestand

Nr. T	yp Schicht (von innen nach aussen)	d	λ W/mK	R m ² K/W	∆OI3
1	Spachtel - Gipsspachtel	0,50	0,800	0,01	1
2	Normalbeton mit Bewehrung 1 % (2300 kg/m³)	18,00	2,300	0,08	41
3	AUSTROTHERM EPS W30	28,00	0,035	8,00	46
4	Silikatputz (ohne Kunstharzzusatz)	0,30	0,800	0,00	2
		R _{si} / R _{se} =	0,130 /	0,040	
	R' / R" (max. relativer Fehle	r: 0,0%) =	8,258 /	8,258	
	Bauteil	46.80		8.258	90

2. Außenwand Massivholz

-Mineralischer Oberputz :

Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Glaswolle mit KVH

Glaswolle d= 20 cm KNAUF Dämmrolle Naturoll D035

Durchschnittspreis 39,30 €/m² Netto

KVH 10,80 €/m² Holzbau Sulzer

-KLH Platte

KLH Platte, 95mm, 5s, DQ

58,00€/m² netto nicht sichtqualität Preisstand 2014 KLH-Preisangebot

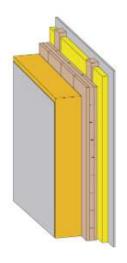
-Gipsfaserplatte

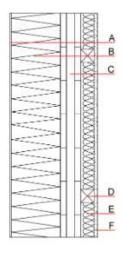
Gipsfaserplatte d 1,25 cm,

Knauf-Gipskartonplatte 11,50 €/m² Netto

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246


-Beschichtung


Durchschnittspreis 1,26€/m² netto BKI S.246

Außenwand – Massivholzbau mit Installationsebene: AW29

Bauphysikalische und ökologische Bewertung Brandschutz REI i → 0 60 max. Knicklänge I = 3 m; max. Last ($q_{fi, d}$) = 14,95 [kN/m] Wärmeschutz U [W/m²K] 0,121 Schallschutz Rw [dB] 48 Ökologie Δ Ol3 70

Baustoffangaben zur Konstruktion, Schichtaufbau I von außen nach innen

	Dicke [mm]	Baustoff	Wärmeleitfähigkeit >. [W/(m - K)]	Rohdichte o [kg/m²]	Brennbarkeitsklasse EN 13501-1
A	7	Putzfassade, z.B. weberpas topdry	0,45	1.600	A2
В	200	Glaswolle, z.B. Isover Isocompact	0,034	60	A2
C	90	Brettsperrholz BBS, 3-schichtig	0,12	450	D
D	60	Holzlattung (60/60; e = 625) direkt aufgeschraubt	0,13	475	D
E	50	Mineralwolle, z.B. Isover Kontur KP 1-035	0,034	24	A1
F	12,5	Rigips Feuerschutzplatte RF*	0,25	800	A2
Gesamt	36,95 cm			77,64 kg/m ²	

Ökologische Bewertung im Detail I www.baubook.info/massivholzhandbuch

PENRT [MJ/m²]	GWP100 Summe [kg CO ₂ /m²]	AP [kg SO ₂ /m ²]
965	-13,3	0,303

3. Außenwand Holzrahmenbau

Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Mineralwolle

Mineralwolle d 10 cm, Knauf Mineral Plus 19,90 €/m² Netto

-OSB-Platte

Agepan OSB 3 PUR d=18mm Preis 11,16 CHF/m² - Währungsrechner Stand 31.12.19

10,28 €/m² Netto

-Mineralwolle zw. Latten d 20 cm

KNAUF-Glaswolle mit ECOSE-Technologie, A1-Euroklasse, Holzrahmenbau-Dämmrolle Naturoll d 20 cm 39,30 €/m² Netto

KVH 10,80 €/m² Holzbau Sulzer

-Dampfbremse

Rockwool RockTec Dasatop, 4,18 €/m² Netto

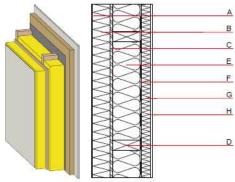
-Holzfaserdämmplatte

Heraklith BM Knauf, d 5 cm, 26,20 €/m² Netto

-Kalk Giptzputz

Knauf, Giptsputz 7,00 €/m² Netto Preis OBI

awropi23a-01 13.03.17 Knauf Insulation GmbH HFA, PLB Bezeichnung: Stand: Quelle:

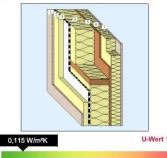

Bearbeiter.

Aussenwand - awropi23a-01

Aussenwand, Holzrahmen/Holztafel, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche

Bauphysikalische Bewertung

Brandschutz	REI von innen REI von außen	60 90
max. Wandhöhe = 3 m; ma Klassifizierung durch HFA	ux. Last E _{d,fi} = 19,2 kN/m;	REI 90 von außen
Wärmeschutz	U Diffusionsverhalten	0,12 W/(m ² K) geeignet
Berechnung durch HFA		The section is
Schallschutz	R _w (C;C _{tr}) L _{r,w} (C _i)	52 dB
Beurteilung durch TGM		
Flächenbezogene Masse	m	79,50 kg/m ²


Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Warmeschut	Brandverhaltensklass			
		the grade with	λ	μ min – max	ρ	c	EN
Α	6,0	Putzsystem	1,000	10 - 35	2000	1,130	A1
В	100,0	MW-PT FKD-5 C2 [036; R=110]	0,036	1	110	1,030	A1
C	15,0	OSB	0,130	200	600	1,700	D
D	200,0	Konstruktionsholz (60/; e=625)	0,120	50	450	1,600	D
E	200,0	Glaswolle UNIFIT [037; R=14]	0,037	1	14	1,030	Al
F		Dampfbremse sd ≥ 14m					
G	50,0	Heraklith BM	0,090	2 - 5	370	2,000	В
Н	15,0	Kalk-Gipsputz	0,700	10	1300	1,000	A1

1. 3. 2020 Patricia Pozsgai (P22704)

Utendorf Holzrahmenbau

Wand: gegen Außenluft - nicht hinterlüftet (BG1)

. +	Cabiabt (inner and)	d	λ.		ΔΟΙ3
<u>au</u>		cm	W/mK	m*K/W	Pkt/m²
1	RÖFIX 150 Gips-Kalk-Innenputz	1,50	0,470	0,03	3
2	KI Tektalan A2-E-21, A2-E21-LP	5,00	0,050	1,00	19
3	Timbertex Dampfbremse	0,05	0,220	0,00	1
4	Inhomogen (Elemente horizontal)	20,00			
	56,5 cm (90%) Glaswolle MW(GW)-W (18 kg/m³)	20,00	0,038	5,26	13
	6 cm (10%) Nutzholz (425 kg/m³) - gehobelt, techn. getrocknet	20,00	0,110	1,82	0
5	AGEPAN® OSB/3 PUR	1,50	0,130	0,12	3
6	Sto-Steinwolleplatte 036 Typ I	10,00	0,036	2,78	34
7	Baumit GlättPutz	0,60	0,600	0,01	1
	$R_{si}/R_{so} =$		0,130 /	0,040	
	R' / R" (max. relativer Fehler: 1,8%) =		8,875 /	8,561	
	Bauteil	38,65		8,718	74
	1 2 3 4 5	KI Tektalan A2-E-21, A2-E21-LP Timbertex Dampfbremse Il Inhomogen (Elemente horizontal) 56,5 cm (90%) Glaswolle MW(GW)-W (18 kg/m²) 6 cm (10%) Nutzholz (425 kg/m²) - gehobelt, techn. getrocknet AGEPAN® OSB/3 PUR Sto-Steinwolleplatte 036 Typ I Baumit GlättPutz R_g/R_m R'/R'' (max. relativer Fehler: 1.8%) =	Typ Schicht (von innen nach aussen) cm KÖFIX 150 Gips-Kalk-Innenputz 1,50 KI Tektalan A2-E-21, A2-E21-LP 5,00 Timbertex Dampfbremse 0,05 I Inhomogen (Elemente horizontal) 20,00 56,5 cm (90%) Glaswolle MW(GW)-W (18 kg/m³) 20,00 6 cm (10%) Nutzhotz (425 kg/m²) - gehobelt, techn. getrocknet 20,00 5 AGEPAN® OSB/3 PUR 1,50 6 Sto-Steinwolleplatte 036 Typ I 10,00 7 Baumit GlättPutz 0,60 R _w /R _{sw} R _w /R _{sw} R'/R" (max. relativer Fehler: 1,8%) =	Typ Schicht (von innen nach aussen) cm Wrinkt 1 RÖFIX 150 Gips-Kalk-Innenputz 1,50 0,470 2 KI Tektalan A2-E-21, A2-E21-LP 5,00 0,050 3 Timbertex Dampfbremse 0,05 0,220 4 I Inhomogen (Elemente horizontal) 20,00 56,5 cm (90%) Glaswolle MW(GW)-W (18 kg/m³) 20,00 0,038 6 cm (10%) Nutzhotz (425 kg/m²) - gehobelt, techn. getrocknet 20,00 0,110 5 AGEPAN® OSB/3 PUR 1,50 0,130 6 Sto-Steinwolleplatte 036 Typ I 10,00 0,60 0,600 7 Baumit GlättPutz Rg / R _{se} 0,130 / 0,800 0,600 R' / R" (max. relativer Fehler: 1,8%) = 8,875 / 0,875 / 0,875 / 0,875 /	Typ Schicht (von innen nach aussen) cm Wirk m-WOW A RÖFIX 150 Gips-Kalk-Innenputz 1,50 0,470 0,05 1,00 2 KI Tektalan A2-E-21, A2-E21-LP 5,00 0,05 0,220 0,00 3 Timbertex Dampfbremse 0,05 2,00 0 0,03 5,26 4 II (nhomogen (Elemente horizontal) 20,00 0,038 5,26 6 cm (10%) Nutzhotz (425 kg/m²) - gehobelt, techn. getrocknet 20,00 0,011 1,82 5 AGEPAN® OSB/3 PUR 1,50 0,130 0,12 6 Sto-Steinwolleplatte 036 Typ I 10,00 0,60 0,60 0,01 7 Baumit GlättPutz 8,675 8,875 / 8,561 8,875 / 8,561

1. Geschossdecke Massiv Bestand

-Estrich, Calciumsulfat

Fließestrich C25, F4, S50, d=5,00, Durchschnittspreis 14 €/m² netto BKI S.195

-Dampfsbremse

Rockwool RockTec Dasatop, 4,18 €/m² Netto

-Trittschalldämmung

Austhotherm Trittschallrolle Plus, Plus 650, d=50mm, 7,38 €/m² netto

-Schüttung

Durchschnittspreis 7,9 €/m² netto BKI S. 192

-Beton armiert

Wopfinger Beton C25/30 d 20 cm, 22,12 €/m2

-Betonstahlmatten, Bst500M/500B

Bewehrung aus Betonstahlmatten, unterschied. Abmessungen

Durchschnittspreis 1,38 €/kg netto BKI Preisstand 2019 S.93

-Betonstabstahl

Betonstabstahl inkl. Anpassarbeiten

Durchschnittspreis 1,45 €/kg netto BKI S.94

-Bewehrungszubehör

Bewehrungszubehör aus Stahl, Kunststoff und Abstandhalter

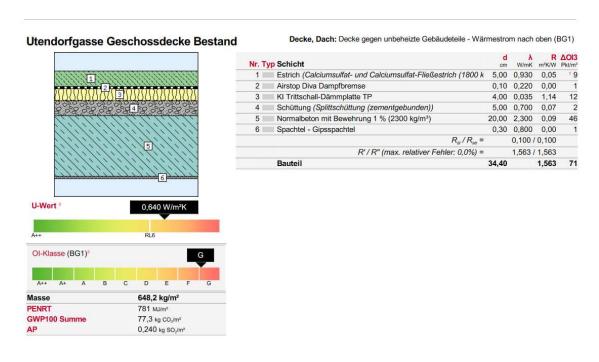
Durchschnittspreis 3,2€/kg S.94

-Deckenschalung

Schalung, Decke, Schalungsplatten,

Durchschnittspreis 38€/m² netto BKI S.94

-Randschalung


Durchschnittspreis 12,70 €/m² netto BKI S.88

-Dämmung Deckenrand

Durchschnittspreis 5,0 €/m² netto BKI S.88

-Beschichtung

Durchschnittspreis 1,26 €/m² netto BKI S.246

2. Geschossdecke Massivholzdecke

-Estrich, Zementestrich

CT, C25, schwimmend,

Durchschnittspreis 21 €/m² netto BKI S.194

-PE-Folie

Durchschnittspreis 2,8 €/m² netto BKI S.80

-Trittschalldämmung

Rockwool Trittschalldämmplatte Floorrock , d=45 cm , 12,89 €/m² netto

-Schüttung

Trockenschüttung bis 30mm, gebundene Form auf Rohdecke

Durchschnittspreis 7,9 €/m² netto S. 192

-KLH Platte

KLH Platte, 145mm, 5s, DL

74,00€/m² netto nicht sichtqualität Preisstand 2014 KLH-Preisangebot

Oberflächenbehandlung für Wohnsicht 16 €/m²

dataholz.eu

Bezeichnung: tdmnxs01-01 Stand: 30.08.17

Quelle: Saint-Gobain Rigips Austria GesmbH

Bearbeiter: HFA, PLB

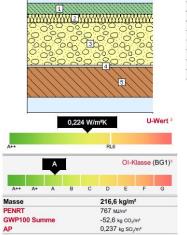
Geschossdecke - tdmnxs01-01

Geschossdecke, Holzmassivbau, ohne, nass, mit Schüttung, Holz sichtbar

Bauphysikalische Bewertung

Berechnet mit GKF

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)


	Dicke	Baustoff	Wärmeschut	Brandverhaltensklasse			
			λ	μ min – max	ρ	c	EN
Α	50,0	Zementestrich	1,330	50 - 100	2000	1,080	A1
В	40,0	Trittschalldämmung MW-T [s' = 6 MN/m³]	0,035	1	80	1,030	A2
C	120,0	Splittschüttung gebunden Splitt 5/8 dauerelastisch gebunden	0,700	1	1500	1,000	A1
D		Rieselschutz					E
E	147,0	Brettsperrholz BBS 125 5-lagig	0,130	50	470	1,600	D

3. 3. 2020 Patricia Pozsgai (P22704)

Geschossdecke Massivholz Utendorfgasse

Nr. 1	Typ Schicht	d	W/mK	m ² K/W	∆OI3 Pkt/m²
1	Zement- und Zementfließestrich (1800 kg/m³)	5,00	1,100	0,05	8
2	Trittschalldämmung (Glaswolle MW(GW)-W (32 kg/m³))	4,00	0,035	1,14	5
3	Blähton-Trockenschüttung (275 kg/m³)	20,00	0,100	2,00	7
4	Rieselschutz (Lantor 3103 M)	0,10	0,500	0,00	12
5	KLH®-Massivholzplatte	14,00	0,130	1,08	26
	$R_{si}/R_{se} =$		0,100	0,100	
	R' / R" (max. relativer Fehler: 0,0%) =		4,467	4,467	
	Bauteil	43,10		4,467	48

3. Geschossdecke Holzrahmen

-Trockenestrich d=25mm

Trockenestrich, A2, Estrich 1 lagig

Durchschnittspreis 16,40 €/m² netto BKI 196

-Trittschalldämmung d=20mm

Rockwool Trittschalldämmplatte Floorrock 5,52 €/m² netto

-Trockenschüttung

d=30mm 7,9 €/m² netto BKI S. 192

-Rieselschutz

Fermacell 0,54 €/m²

-OSB Platte

Agepan Pur OSB 3 Platte

11,16 CHF/m² - 10,28€/m² Währung 31.12.19

-Mineralwolle zw. Latten

KNAUF Glaswolle mit Ecose Technology, A1-Euroklasse,

d=240mm,k 46,00 €/m² netto

-KVH

Gehobelt, getrocknet

Holzbau Sulzer 80 x 240 10,37 €/lfm

--Rieselschutz

Fermacell 0,54 €/m²

-Federschiene

KNAUF Federschiene 60/27

6,79 €/m²

-GKF

KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-GKF

KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26€/m² netto BKI S.246

gdrtxa02b-05 03.09.19 Bezeichnung: Stand: Quelle:

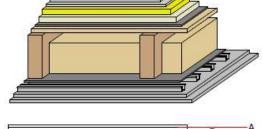
Holzforschung Austria

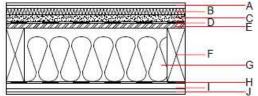
HFA, SP Bearbeiter.

Geschossdecke - gdrtxa02b-05

Geschossdecke, Holzrahmen/Holztafel, mit Abhängung, trocken, mit Schüttung, andere Oberfläche

Bauphysikalische Bewertung

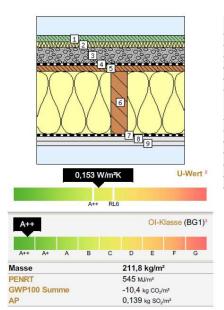

RE160: max. Spannweite = 5 m; max. Last $E_{d,h}$ = 3,66 kN/m² Klassifizierung durch HFA


Deutschland

Last E_{difi} gemäß des deutschen Verwendbarkeitsnachweises

Nachweis: abP P-SAC-02/III-393 (Knauf Gips KG)

Wärmeschutz	U Diffusionsverhalt	en
Schallschutz	R_w (C;C _{tr}) $L_{r,w}$ (C _f)	78(-1;-7) dB 38(3)
Beurteilung durch M	üller-BBM	
Flächenbezogene M	asse m	190,70 kg/m²



Bemerkung: C:Kalksplit m'=90 kg/m²

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Wärmeschut	Brandverhaltensklasse			
			λ	μ min – max	ρ	c	EN
A	25,0	Trockenestrich	0,210	8	900	1,050	A1
В	20,0	Trittschalldämmung MW-T [s'=10 MN/m³].	0,035	1	68	1,030	Al
C	60,0	Schüttung	0,700	1	1500	1,000	A1
D	0,2	Rieselschutz					E
E	22,0	OSB	0,130	200	600	1,700	D
F	240,0	Konstruktionsholz (80/; e=838)	0,120	50	450	1,600	D
G	200,0	Mineralwolle [040; 30; ≥1000°C]	0,040	1	30	1,030	A1
Н	0,2	Rieselschutz					E
1	27,0	Federschiene					
1	36,0	Gipsplatte Typ DF (GKF) (2xmm)	0,250	10	800	1,050	A2

Nr. Tv	/p Schicht	d	W/mK	R m²K/W	∆OI3 Pkt/m²
1	Trockenestrich (Zement- und Zementfließestrich (1800 kg/m³)	2,50	1,100	0,02	4
2	Trittschalldämmung (AUSTROTHERM EPS T650 PLUS)	2,00	0,033	0,61	1
3	Schüttung (Splittschüttung (leicht zementgebunden))	6,00	0,700	0,09	2
4	Rieselschutz (TenCate Polyfelt TS)	0,09	0,220	0,00	0
5	OSB-Platten (650 kg/m³)	2,20	0,130	0,17	1 5
6	IIII Inhomogen (Elemente quer) 56,3 cm (90%) Glaswolle MW(GW)-W (18 kg/m³) 6,3 cm (10%) Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, tr	24,00 24,00 24,00	0,038 0,120	6,32 2,00	16
7	Rieselschutz (TenCate Polyfelt TS)	0,09	0,220	0,00	10
8	Knauf Gipskarton Feuerschutzplatte	1,80	0,250	0,07	3
9	Knauf Gipskarton Feuerschutzplatte	1,80	0,250	0,07	3
	$R_{si}/R_{se} =$		0,130	0,040	
	R' / R" (max. relativer Fehler: 1,8%) =		6,629	6,401	
	Bauteil	40,48		6,515	35

REFERENZOBJEKT II

1. Außenwand Holzmassivbauweise

-Oberputz

Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Holzwolle-Dämmplatte

KNAUF Heraklith

Holzwolle-Dämmplatte Tektalan, A2, E21, Brandverhalten A2 für Außenwand

d= 50mm Preis: 50,40 €/m² netto

-Mineralwolle zw. Latten

d=240mm

KNAUF-Glaswolle mit ECOSE Technology für Holzrahmenbau, Brandverhalten A1, Dämmung zwischen Konstruktion

Preis 47,35 €/m²

-Konstruktionvollholz

d=240mm

HolzBau Sulzer, Keilverzinktes Fichteholz, getrocknet und gefast, nicht sicht qualität

80x240mm 10,37€/lfm

-Strömungsdichte Folie

Dampfbremsbahn, Klasse E

Durchschnittspreis 1,4 €/m² netto BKI S. 114

-KLH-Holzmassivwand

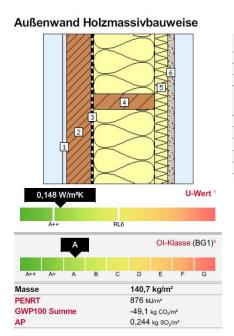
KLH d=94mm, 3s, DQ

50,50 €/m² netto nicht sichtqualität Preisstand 2014

-Gipskartonplatte

KNAUF Diamant d=15mm 10,80€/m²

-Gipskartonplatte


KNAUF Diamant d=15mm 10,80€/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26€/m² netto BKI S.246

Wand: gegen Außenluft - nicht hinterlüftet (BG1) d λ R ΔΟΙ3 cm W/mK m²K/W Pkt/m² Nr. Typ Schicht (von innen nach aussen) Knauf Diamant-Hartgipsplatte 1,50 0,250 0,06 5 17 KLH®-Massivholzplatte 9.50 0.130 0.73 0,10 0,220 0,00 1 13 2,00 5 Holzwolle-Leichtbauplatte LP (50 mm)
6 Oberputz (Silikatputz (ohne Kunstharzzusatz)) 5,00 0,080 0.63 2.50 0.800 0.03 14 $R_{si}/R_{so} =$ 0,130 / 0,040 R' / R" (max. relativer Fehler: 1,7%) = 6,891 / 6,655 6,773

2.Holzrahmenbauweise

-Oberputz

Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Holzfaserdämmplatte

Steico Flex 6,32 €/m² Netto

-Mineralwolle mit KVH d 16 cm

Knauf Holzrahmen Dämmrolle Naturoll 31,36 €/m² Netto

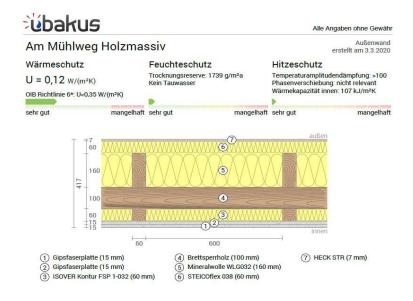
KVH Holzbau Sulzer 16 cm 14,75 €/m² Netto

-KLH-Platte

100mm, 3s, DQ KLH Preiskatalog 52 € /m2 Netto

-Mineralwolle mit KVH d 5 cm

KNAUF Mineralplus 9,35 €/m² Netto


KVH Holzbau Sulzer 0,91 € Netto

-GKF d 1,5 cm

KNAUF Diamant 10,80 €/m²

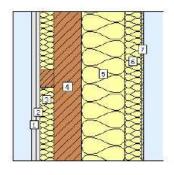
-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

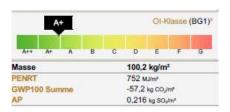
Bezeichnung: Stand: Quelle:

awmopi05a-00 21.06.18 Holzforschung Austria HFA, PLB Bearbeiter.

Aussenwand - awmopi05a-00


Aussenwand, Holzmassivbau, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche

Bauphysikalische Bewertung


Described to	REI von innen	90	
Brandschutz	REI von innen	60	
max. Wandhöhe = 3 Klassifizierung durch	m; max. einwirkende Last E _d i HFA	₆ = 35 kN/lfm	
Deutschland			
REI 60 (von innen/\ 2x12,5mm GKF/GF	on au8en); ACHTUNG: REI 9	O (von innen) möglich mit	
Last E _{d,fi} gemäß des	deutschen Verwendbarkeitsn	achweises	
Nachweis: herstellers	spezifisch		
Schallschutz	R _w (C;C _{tr}) L _{r,w} (C _i)	56(-3;-9) dB	Bernerkung: ACHTUNG: REI 90 (von innen) in Deutschland nur mit 2x12,5mi
Beurteilung durch M	lütler-BBM		GKF/GF
Flächenbezogene M	lasse m	97,30 kg/m ²	
Berechnet mit GKF			

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Warmeschut	Warmeschutz				
			λ	µ min – max	р	c	EN	
Α	7,0	Putzsystem	1,000	10 - 35	2000	1,130	A1	
В	60,0	Holzfaserdämmplatte [046; 200]	0,046	3 - 7	200	2,100	E	
C	160,0	Konstruktionsholz (60/160; e=625)	0,120	50	450	1,600	D	
D	160,0	Mineralwolle [040; 11; <1000°C]	0,040	1	11	1,030	A1	
E	100,0	Brettsperrholz	0,130	50	500	1,600	D	
F	50,0	Holz Fichte Lattung horizontal ≥50	0,120	50	450	1,600	D	
G	50,0	Mineralwolle [040; 11; <1000°C] ≥50	0,040	1	11	1,030	A1	
Н	15,0	Gipsfaserplatte oder	0,320	21	1000	1,100	A2	
Н	15,0	Gipsplatte Typ DF (GKF)	0,250	10	800	1,050	A2	

Nr. Ty	Schicht (von innen nach aussen)	cm	W/mK	R m*K/W	∆Ol3 Pkt/m
1	Gipskartonplatte (700 kg/m³)	1,50	0,210	0,07	- 2
2	Gipskartonplatte (700 kg/m²)	1,50	0,210	0,07	- 3
3	Inhomogen (Elemente horizontal) 56,5 cm (90%) Mineral Plus KP 034 6 cm (10%) Nutzholz (525 kg/m² - zB Lärche) - rauh, luftgetroc	5,00 5,00 5.00	0,034	1,47 0,38	
4	KLH®-Massivholzplatte	-	0,130	0,77	18
5	Mineralwolleplatten zw. horizontalen Latten (Installationsebene 56,3 cm (90%) Glaswolle MW(GW)-W (18 kg/m²) 6,3 cm (10%) Nutzholz (475 kg/m² - zB Fichte/Tanne) - rauh, te	16,00	17,500,000	4,21 1,33	10
6	best wood FLEX 50	6,00	0,041	1,46	:
7	Silikatputz (ohne Kunstharzzusatz)	0,70	0,800	0,01	- 4
	$R_{u}/R_{\infty} =$		0,130	0,040	
	R' / R" (max. relativer Fehler: 3,5%) =		7,692	7,174	
	Bauteil	40,70		7,433	44

3. Außenwand- Holzrahmenkonstruktion

-Silikatputz ohne Kunstharzzusatz

Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Mineralwolle Dämmplatte d 10 cm

KNAUF Mineral Plus KP, d 10 cm, 19,00 €/m² Netto

-OSB-Platte d 1,5 cm

OSB -3 Verlegeplatte 15 mm mit Nut und Feder 5,69 €/m² Netto, Preis von OBI

-Mineralwolle zw. Latten

d=240mm

KNAUF-Glaswolle mit ECOSE Technology für Holzrahmenbau, Brandverhalten A1, Dämmung zwischen Konstruktion

Preis 47,35 €/m²

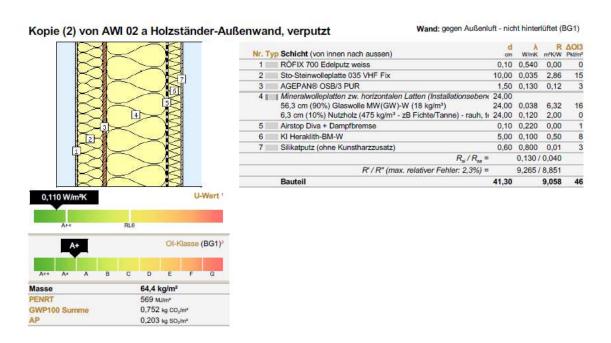
-Konstruktionvollholz

d=240mm

HolzBau Sulzer, Keilverzinktes Fichteholz, getrocknet und gefast, nicht sicht qualität

80x240mm 10,37€/lfm

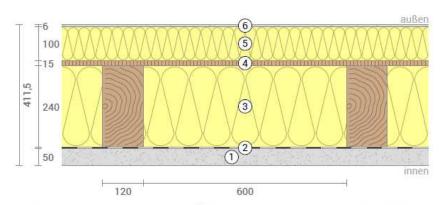
- Dampfsbremse


Rockwool RockTec Dasatop, 4,18 €/m² Netto

-Holzwolledämmplatte

Holzfaserdämmplatte d 5 cm, KNAUF Heraklith BM-W 31,50 €/m² Netto

-Beschichtung


Durchschnittspreis 1,26 €/m² netto BKI S.246

Am Mühlweg Holzrahmen

Außenwand erstellt am 11.2.2020

- 1 Heraklith BM (50 mm)
- (2) Dampfbremse sd= 2,3
- (3) Glaswolle WLG032 (240 mm)
- (4) AGEPAN OSB 3 PUR (15 mm)
- (5) Mineralwolle WLG032 (100 mm)
- (6) HECK STR (6 mm)

awropi22a-02 13.03.17 Knauf Insulation GmbH HFA, PLB Bezeichnung: Stand:

Quelle:

Bearbeiter.

Aussenwand - awropi22a-02

Aussenwand, Holzrahmen/Holztafel, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche

Bauphysikalische Bewertung

Brandschutz	REI von innen REI von außen	90 90		
max. Wandhöhe = 3 m; ma außen klassifiziert Klassifizierung durch HFA	ıx. Last E _{d,fi} = 19,0 kN/m;	REI 90; von innen und von		
Warmeschutz Berechnung durch HFA	U Diffusionsverhalten	0,11 W/(m ² K) geeignet		
Schallschutz	R_w (C;C _{tr}) $L_{n,w}$ (C ₁)	51 dB		
Beurteilung durch TGM	Tinos	NE-200820 = 43		
Flächenbezogene Masse	m	69,30 kg/m ²	4-4-4	

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff Warmeschutz						Baustoff Wärmeschutz		Brandverhaltensklasse
	Î		λ	μ min – max	ρ	c	EN			
Α	6,0	Putzsystem	1,000	10 - 35	2000	1,130	Al			
В	100,0	MW-PT FKD-S C2 [036; R=110]	0,036	1	110	1,030	Al			
C	15,0	OSB	0,130	200	600	1,700	D			
D	240,0	Konstruktionsholz (60/; e=625)	0,120	50	450	1,600	D			
E	240,0	Glaswolle UNIFIT [037; R=14]	0,037	1	14	1,030	A1			
F		Dampfbremse sd ≥ 14m								
G	50,0	Heraklith BM-W mit 5 mm EPV-Beschichtung	0,100	15	480	1,470	В			

1 Geschossdecke Holzmassiv

-Estrich

D=5mm, Zementestrich, CT, C25, schwimmend

Durchschnittspreis 21 €/m² netto BKI S. 194

-Dampfsperre

Rockwool RockTec Dasatop, 4,18 €/m² Netto

-Trittschalldämmung

Austhotherm Trittschallrolle Plus, Plus 650, d=50mm, 5 €/m² netto

-Schüttung

Trockenschüttung d=70mm, gebundene Form auf Rohdecke

Durchschnittspreis 8,8 €/m² netto S. 192

--Rieselschutz

Fermacell 0,54 €/m²

-KLH Deckenelement

KLH Platte, 140mm, 5s, DQ

72,00€/m² netto nicht sichtqualität Preisstand 2014 KLH-Preisangebot

-Abgehängte Decke

Abgehängte Decke mit Gipskartonplatte, Typ A, Metallkonst.

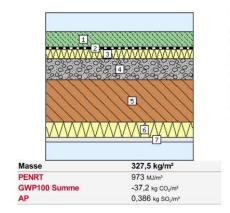
Platte 12,50mm, Brandschutz F90

Durchschnittspreis 13,4€/m² BKI S. 274

-Mineralfaserdämung

Isover Ultimate Platte WLG 04, d 4 cm, 1,89 €/m², Preis von OBI

-Gipskartonplatte


KNAUF Diamant d=15mm 10,80€/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26 €/m² netto BKI S.246

Nr. Ty	yp Schicht	d cm	W/mK	m²K/W	ΔOI3 Pkt/m²
1	RÖFIX 970 Zementestrich	5,00	1,600	0,03	10
2	Dampfsperre (Rockfol SK 18234 II)	0,012	21,000	0,00	13
3	ROCKWOOL Trittschalldämmplatte Floorrock HP	3,00	0,035	0,86	7
4	Splittschüttung (leicht zementgebunden)	7,00	0,700	0,10	2
5	KLH®-Massivholzplatte	14,00	0,120	1,17	17
6	Würth Mineralfaserplatte	5,00	0,041	1,22	23
7	FERMACELL Gipsfaser-Platte	1,50	0,320	0,05	7
	Bauteil	35,51			78

2. Geschossdecke Massiv

-Estrich

Rigips Rigidur Estrichelement, Gipsfaserelement d 2,5 cm , 16,40 €/m² Netto

www.bausep.de

-Trittschalldämmung

Austhotherm EPS-T 650 Plus, 3,43 €/m² netto

-Schüttung zementgebunden

d=60mm 8,80 €/m² netto S.192

-Rieselschuz

Rieselschutz 0,54 €/m²

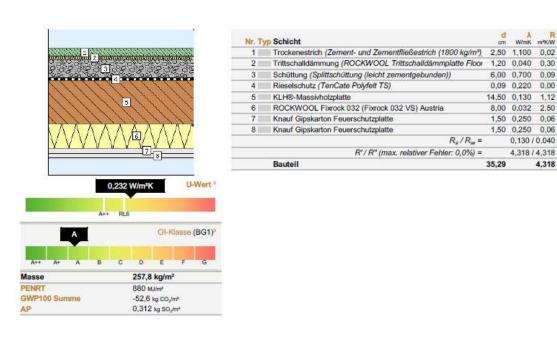
-KLH Platte d 14,5 cm

KLH 145 mm, 5s, DL, 74 €/ m²

-Rigips mit CD 60/27 abhänger

Rigips d 9,50 1,79 €/m²

-Mineralwolle


Rockwool Sonorock d 8 cm, Steinwolle , 3,49 €/m²

-Feuerschutzplatte

KNAUF Feuerschutzplatte 18,40 CHF/ m² Netto ca. 16,14 €/m² Netto Währungswechsel am 02.02.2020

-Feuerschutzplatte

KNAUF Feuerschutzplatte 18,40 CHF/ m² Netto ca. 16,14 €/m² Netto Währungswechsel am 02.02.2020

1,20 0,040

0,09 0,220

6,00 0,700 0,09

14,50 0,130 1,12

8,00 0,032 2,50

1,50 0,250 0,06

1,50 0,250 0,06

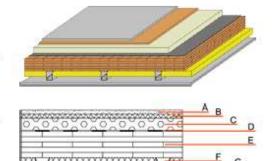
0,130 / 0,040

4,318 / 4,318

Bezeichnung: tdmtxa01b-05 Stand: 28.09.17

Quelle: Saint-Gobain Rigips Austria GesmbH

Bearbeiter: HFA, PLB


Geschossdecke - tdmtxa01b-05

Geschossdecke, Holzmassivbau, mit Abhängung, trocken, mit Schüttung, andere Oberfläche

Bauphysikalische Bewertung

Berechnet mit GKF

Brandschutz 90 mux. Spannweite = 5 m; max. Last $E_{d,h}$ = 8,81 kN/m² Klassifizierung durch IBS Wärmeschutz U 0,25 W/(m²K) Diffusionsverhalten geeignet speichewirksame Masse oben: 48,2 kg/m² Berechmung durch HFA R_w (C;C_{tr}) Schallschutz 78(-5;-12) dB 36(2) Lnu (Ci) Beurteitung durch IFT Flächenbezogene Masse m 219,50 kg/m²

Bemerkung: Schüttung: Kalksplitt lose

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Warmeschutz	Warmeschutz				
			λ	μ min – max	p	2	EN	
A	25,0	Rigidur Estrichelement	0,200	19	1200	1,100	Al	
8	12,0	Trittschalldammung MW-T [s'=40 MN/m²]	0,040	1	160	0,840	A2	
C	60,0	Spilttschüttung gebunden bzw. lose bei Var. 02 und 05	0,700	1	1500	1,000	AT	
D		Rieselschutz	0				E	
E	147,0	Brettsperiholz BBS 125 5-lagig	0,130	50	470	1,500	D	
F	95,0	Rigips Direktabhänger mit CD 60/27						
G	75,0	Mineralwolle [040; 18]x	0,040	1	18	1,030	A1	
H	30,0	Rigips Feuerschutzplatte RF (2x15 mm) oder	0,250	10	900	1,050	A2	
н	30,0	Gipsfaserplatte Rigidur H (2x15 mm)	0,350	19	1200	1,100	A2	

3. Geschossdecke Holzrahmen

-Trockenestrich d=25mm

Trockenestrich, A2, Estrich 1 lagig

Durchschnittspreis 16,40 €/m² netto BKI 196

-Ausgleichsschicht

Durchschnittspreis 3,9 €/m² netto BKI S.192

-Trittschalldämmung d=20mm

Austrotherm Trittschallrolle Plus 650 4,60 €/m² netto

-Trockenschüttung

d=30mm 8,80 €/m² netto BKI S. 192

-Rieselschutz

Fermacell 0,54 €/m²

-OSB Platte

Agepan Pur OSB 3 Platte

11,16 CHF/m² - 10,28€/m² Währung 31.12.19

-Mineralwolle zw. Latten

KNAUF Glaswolle mit Ecose Technology, A1-Euroklasse,

d=240mm,k 46,00 €/m² netto

-KVH

Gehobelt, getrocknet

Holzbau Sulzer 80 x 240 10,37 €/lfm

-Rieselschutz

Fermacell 0,54 €/m²

-Federschiene

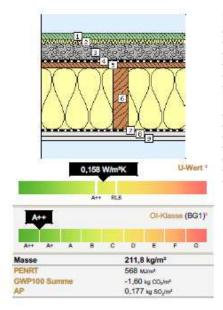
KNAUF Federschiene 60/27

6,79 €/m²

-GKF

KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-GKF


KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26€/m² netto BKI S.246

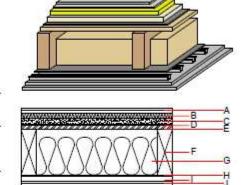
Nr. Typ	Schicht	d	Wins	R	AOI3
1	Trockenestrich (Zement- und Zementfließestrich (1800 kg/m²),	2,50	1,100	0,02	- 4
2	Trittschalldämmung (ROCKWOOL Trittschalldämmplatte Floor	2,00	0,040	0,50	- 11
3	Schüttung (Splittschüttung (leicht zementgebunden))	6,00	0,700	0,09	2
4	Rieselschutz (TenCate Polyfelt TS)	0,09	0,220	0,00	0
5	AGEPAN® OSB/3 PUR	2,20	0,130	0,17	1.5
6111	Inhomogen (Elemente quer) 56,5 cm (90%) Glaswolle MW(GW)-W (15 kg/m²) 6 cm (10%) Nutzhotz (425 kg/m²) - gehobelt, techn. getrocknet	24,00 24,00 24,00	SEDERAR .	6,00 2,18	13
7	TenCate Polyfelt TS	0,09	0,220	0,00	0
В	Knauf Gipskarton Feuerschutzplatte	1,80	0,250	0,07	3
9	Knauf Gipskarton Feuerschutzplatte	1,80	0,250	0,07	3
	$R_{s}/R_{ss} \approx$		0,130	0,040	
	R" / R" (max. relativer Fehler: 1,2%) =		6,387	6,237	
	Bauteil	40,48		6,312	42

Bezeichnung: Stand: Quelle: Bearbeiter:

gdrbxa02b-05 03.09.19 Holdforschung Austria HFA, SP

Geschossdecke - gdrtxa02b-05

Geschossdecke, Holzrahmen/Holztafel, mit Abhängung, trocken, mit Schüttung, andere Oberfläche


Bauphysikalische Bewertung

Brandschutz MEHBO: max. Spannweids = 5 m; max. Last E_{ED} = 3,65 kM/m² Klassifications durch HFA Doutschland

RESEC \$250

Last E_{git} genätil des deutschen Verwendbakerbrachweises Nachweis abP F-SAC-02/11I-303 (Krauf Gips KG)

Wärmeschurtz	U Diffusionsverhalt	
Schalbschutz	R _e (C;C _E) L _{ερ} (Cj)	78(-1;-7) d8 38(3)
Beurtillang durch M	Ulw-HBM	
Flächenbezogene M	2550 M	190,70 kg/m²

Bemerkung: C:Kalksplit m'=90 kg/m²

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen rach ihnen, Maße in mm)

	Dicke	Basistoff	Wärmeschut	Witmeschutz				
		10.00	λ	µ min – max	p	c	EN	
Α	25,0	Trockenistrich	0,210	8	900	1,050	A1	
8	200	Tittschalldammung MW-T [s'=10 MN/m*].	0,035	- 1	68	1,030	Al	
C	6Q0	Schäftung	0,700	1	1500	1,000	Al	
D	Q2	Rieselschutz	(a)			. 9	E	
E	22,0	OSB	0,130	200	B00	1,700	D	
E	2400	Konstruktionsholz (80/ _ a= H38)	0,120	50	450	1,600	D	
G	2000	Mineralwolle (040; 30; ≥1000°C)	0,040	1.4	30	1,030	Al	
Н	0.2	Rieselschutz					€:	
1	27,0	Faderschiene					3	
1	360	Gipsplatte Typ DF (GKF) (2xmm)	0,250	10	800	1,050	A2	

REFERENTOBJEKT III

1. Außenwand Stahlbeton

- Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-WDVS EPS035

Wärmedämmverbundsystem, Polystyrol-Hartschaumplatte, im Verband, kleben, press gestoßen und offene Fugen ausschäumen

Austrotherm EPS-F 34,64 €/m² netto d=220mm

-Wand Ortbeton

Festigkeitsklasse C25/30, Höhe bis 2,5 m

Wopfinger Beton C25/30 31,60 €/m²

-Betonstahlmatten, Bst500M/500B

Bewehrung aus Betonstahlmatten, unterschied. Abmessungen

Durchschnittspreis 1,38 €/kg netto BKI Preisstand 2019 S.93

-Betonstabstahl

Betonstabstahl inkl. Anpassarbeiten

Durchschnittspreis 1,45 €/kg netto BKI S.94

-Bewehrungszubehör

Bewehrungszubehör aus Stahl, Kunststoff und Abstandhalter

Durchschnittspreis 3,2€/kg S.94

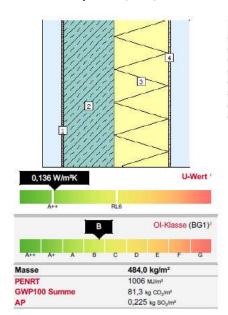
-Schalung Wand

Raue Schalung bis 3,00 m Höhe

33€/m² netto BKI 2019 S.83

-Kalk-Gipsputz

Gipsputz Innenwand, Dünnlagenputz, Dicke bis 5mm, Q3-geglättet


2,04 €/ m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26€/m² netto S.246

Nr. T	yp Schicht (von innen nach aussen)	d	W/mK	R m²K/W	∆OI3 PkVm²
1	Mineralischer Putz (Spachtel - Gipsspachtel)	0,50	0,800	0,01	1
2	Stahlbeton 100 kg/m³ Armierungsstahl (1,25 Vol.%)	20,00	2,300	0,09	52
3	WDVS EPS (AUSTROTHERM EPS F PLUS)	22,00	0,031	7,10	21
4	Gipsputz (Silikatputz (ohne Kunstharzzusatz))	0,50	0,800	0,01	3
	R _{al} / F	₹50 =	0,130	0,040	
	R' / R" (max. relativer Fehler: 0,09	%) =	7,366	7,366	
	Bauteil	43,00		7,366	77

2. Außenwand Massivholz

-Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Steinwolle d 18 cm

Steinwolle Rockwool Fixrock d 18 cm, 47,78 €/m² Netto

-KLH Platte

KLH Platte, 100mm, 5s, DQ

52,00€/m² netto nicht sichtqualität Preisstand 2014 KLH-Preisangebot

-Mineralwolle mit Lattung 7 cm

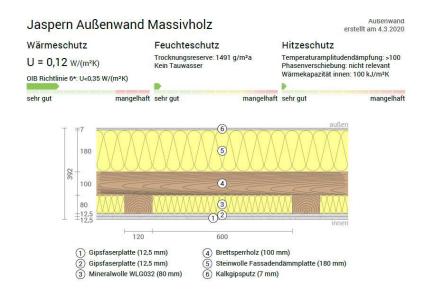
Lattung auf Schwingbügel 10,80 €/m² Netto

Knauf Mineralwolle 9,35 €/m² Netto

-Gipskartonplatte

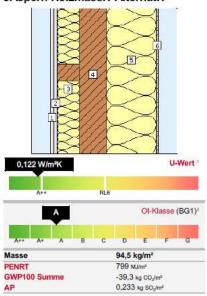
KNAUF VidiWall 4 SK d 1,25 cm, 11,50 €/m2 Netto

-Gipskartonplatte


KNAUF VidiWall 4 SK d 1,25 cm, 11,50 €/m2 Netto

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246


-Beschichtung

Durchschnittspreis 1,26 €/m² netto BKI S.246

JAspern Holzmassiv Alternativ

Wand: gegen Außenluft - nicht hinterlüftet (BG1)

Nr. Ty	p Schicht (von innen nach aussen)	d	W/mK	R m²K/W	ΔOI3 Pkt/m²
1	Gipskartonplatte (900 kg/m³)	1,25	0,250	0,05	3
2	Gipskartonplatte (900 kg/m³)	1,25	0,250	0,05	3
3 📗	Mineralwolleplatten zw. KVH 56,3 cm (90%) Glaswolle MW(GW)-W (18 kg/m²) 6,3 cm (10%) Nutzholz (475 kg/m² - zB Fichte/Tanne) - rauh, tr	8,00 8,00 8,00	7577700	2,11 0,67	5
4	KLH®-Massivholzplatte	10,00	0,130	0,77	18
5	URSA Fassadendämmplatte FDP 3/Vr	18,00	0,034	5,29	17
6	Silikatputz (ohne Kunstharzzusatz)	0,70	0,800	0,01	4
	$R_{\rm si}/R_{\rm so}$ =		0,130	0,040	-
	R' / R" (max. relativer Fehler: 1,2%) =		8,277	8,074	
	Bauteil	39,20		8,176	51

Bezeichnung: awmopi01a-09 Stand: 28.08.18 Quelle: Holzforschung Austria Bearbeiter: HFA, PLB

Aussenwand - awmopi01a-09

Aussenwand, Holzmassivbau, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche

Bauphysikalische Bewertung

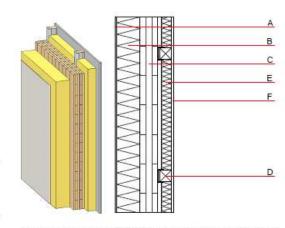
Brandschutz REI von innen 90 REI von außen 60 max. Wandhöhe = 3 m; max. einwirkende Last E_{difi} = 35 kN/Ifm Klassifizierung innen durch MA39/HFA

Deutschland

REI60 (von innen/von außen); ACHTUNG:REI90 (von innen) in Deutschland möglich mit 2x12,5mm GKE/GF

Last E_{d,fi} gemäß des deutschen Verwendbarkeitsnachweises

Nachweis: herstellerspezifisch


Klassifizierung außen durch HFA

Wärmeschutz	U Diffusionsverhalten	0,15 W/(m ² K) geeignet		
Berechnung durch T	UM			
Schallschutz	R_w (C;C _{tr}) $L_{r,w}$ (C _i)	51(-3;-9) dB		
Bei Verwendung von Rw= 49dB.	leichteren WDVS-Dämmplatter	i (ę ca. 90kg/m³) ergibt sich		

Bearteilung durch Müller-BBM

Flächenbezogene Masse m 103,40 kg/m²

Berechnet mit GKF

Bemerkung: ACHTUNG: REI 90 (von innen) in Deutschland nur mit 2x12,5mm

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Dicke Baustoff	Warmeschutz				Brandverhaltensklasse
			λ	μ min – max	ρ	c	EN
Α	7,0	Putzsystem	1,000	10 - 35	2000	1,130	A1
В	180,0	Steinwolle MW-PT [040; 155] WDVS Wärmedämmplatte	0,040	1	155	1,030	A1
C	100,0	Brettsperrholz	0,130	50	500	1,600	D
D	70,0	Holz Fichte Lattung (60/60) auf Schwingbügel; e=660	0,120	50	450	1,600	D
E	50,0	Mineralwolle [040; 11; <1000°C]	0,040	1	11	1,030	A1
F	12,5	Gipsplatte Typ DF (GKF) oder	0,250	10	800	1,050	A2
F	12,5	Gipsfaserplatte	0,320	21	1000	1,100	A2

3. Außenwand- Holzrahmenkonstruktion

--Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Mineralwolledämnmplatte

KNAUF Mineral Plus d= 100mm Mineralwolle Preis: 19,90 €/m² Netto

- OSB Platte

OSB Platte 1,50 cm , 5,69 €/m² Netto, Preis von OBI

-Mineralwolle zw. Latten

d=240mm

KNAUF-Glaswolle mit ECOSE Technology für Holzrahmenbau, Brandverhalten A1, Dämmung zwischen Konstruktion

Preis 47,35 €/m²

-Konstruktionvollholz

d=240mm

HolzBau Sulzer, Keilverzinktes Fichteholz, getrocknet und gefast, nicht sicht qualität

100x240mm 12,96€/lfm

-Dampfbremse

Dampfsperre

Rockwool RockTec Dasatop, 4,18 €/m² Netto

-Holzfaserdämmplatte

KNAUF Heraklith BM d 5 cm, 26,20 €/m² Netto

-Kalk-Gipsputz

Kalk Gipsputz 7€/m² Netto

Außenwand erstellt am 11.2.2020

Jaspern Außenwand Holzrahmen

mangelhaft sehr gut

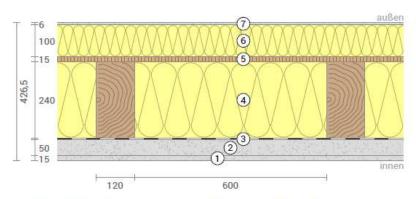
Wärmeschutz

sehr gut

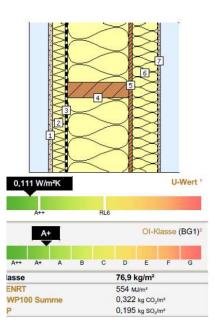
 $U = 0.107 \text{ W/(m}^2\text{K)}$

OIB Richtlinie 6*: U<0,35 W/(m²K)

Feuchteschutz


Trocknungsreserve: 436 g/m²a Trocknet 9 Tage

Feuchtegehalt Holz: +0,4%


Hitzeschutz

Temperaturamplitudendämpfung: >100 Phasenverschiebung: nicht relevant Wärmekapazität innen: 88 kJ/m²K

mangelhaft sehr gut mangelhaft

- (1) Kalkgipsputz (15 mm)
- Heraklith BM (50 mm)
- Dampfbremse sd= 2,3
- (4) Glaswolle WLG032 (240 mm)
- (5) AGEPAN OSB 3 PUR (15 mm)
- 6 Mineralwolle WLG032 (100 mm)
- (7) HASIT SE 210 MINERAL Silikat-Strukturputz außen (6 mm)

Nr. Typ	Schicht (von innen nach aussen)	d	W/mK	R m ² K/W	∆Ol3 Pkt/m²
1	RÖFIX 190 Gips-Kalk-Innenputz	1,50	0,470	0,03	3
2	KI Heraklith-BM	5,00	0,090	0,56	6
3	Airstop Diva + Dampfbremse	0,10	0,220	0,00	1
4	Inhomogen (Elemente horizontal)	24,00		1000	1724
	56,5 cm (90%) Glaswolle MW(GW)-W (15 kg/m³) 6 cm (10%) Nutzholz (425 kg/m³) - rauh, luftgetrocknet	24,00 24,00		6,00	13 -1
5	AGEPAN® OSB/3 PUR	1,50	0,130	0,12	3
6	Sto-Steinwolleplatte 035 VHF Fix	10,00	0,035	2,86	15
7	Silikatputz (ohne Kunstharzzusatz)	0,70	0,800	0,01	4
	$R_{si}/R_{se} =$		0,130 /	0,040	
	R' / R" (max. relativer Fehler: 1,6%) =		9,176 /	8,880	
	Bauteil	42,80		9,028	45

awropi23a-02 13.03.17 Knauf Insulation GmbH HFA, PLB Stand: Quelle:

Bearbeiter.

Aussenwand - awropi23a-02

Aussenwand, Holzrahmen/Holztafel, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche

Bauphysikalische Bewertung

Brandschutz	REI von innen REI von außen	60 90	
max. Wandhöhe = 3 m; m Klassifizierung durch HEA	ax. Last E _{d.fi} = 19,2 kN/m;	REI 90 von außen	
Wärmeschutz	U Diffusionsverhalten	0,11 W/(m ² K) geeignet	
Berechnung durch HFA			
Schallschutz	R _w (C;C _{tr}) L _{t,w} (C _l)	52 dB	
Beurteilung durch TGM			
Flächenbezogene Masse	m	81,80 kg/m ²	

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Wärmeschut	z			Brandverhaltensklasse
			λ	μ min – max	ρ	c	EN
Α	6,0	Putzsystem	1,000	10 - 35	2000	1,130	A1
В	100,0	MW-PT FKD-S C2 [036; R=110]	0,036	1	110	1,030	Al
C	15,0	OSB	0,130	200	600	1,700	D
D	240,0	Konstruktionsholz (60/; e=625)	0,120	50	450	1,600	D
E	240,0	Glaswolle UNIFIT [037; R=14]	0,037	1	14	1,030	Al
F		Dampfbremse sd ≥ 14m					
G	50,0	Heraklith BM	0,090	2 - 5	370	2,000	В
Н	15,0	Kalk-Gipsputz	0,700	10	1300	1,000	A1

1. Geschossdecke Massiv

-Bodenbelag

Parkettboden Laminat, für Wohnraum geeignet, Brandklasse E, mit Klickverbindung auf Zementestrich,

Durchschnittspreis 7,5 €/m² netto Preis von Hornbach

-Estrich, CT

Fließestrich C25, F4, S50, d=5,00, Durchschnittspreis 21 €/m² netto BKI S.195

-PE-Folie

Durchschnittspreis 2,8 €/m² netto BKI S.114

-Trittschalldämmung MW

Austhotherm Trittschallrolle Plus, Plus 650, d=30mm, 5 €/m² netto

-Schüttung zementgebunden

d=50mm 11,7 €7M² netto S.192

-Beton armiert

Festigkeitsklasse C25/30, Decke Höhe 20 cm

Wopfinger Beton C25/30 17,70 €/m²

-Betonstahlmatten, Bst500M/500B

Bewehrung aus Betonstahlmatten, unterschied. Abmessungen

Durchschnittspreis 1,38 €/kg netto BKI Preisstand 2019 S.93

-Betonstabstahl

Betonstabstahl inkl. Anpassarbeiten

Durchschnittspreis 1,45 €/kg netto BKI S.94

-Bewehrungszubehör

Bewehrungszubehör aus Stahl, Kunststoff und Abstandhalter

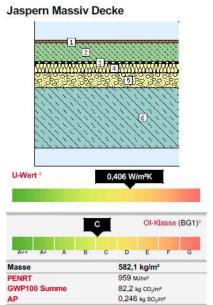
Durchschnittspreis 3,2€/kg S.94

-Deckenschalung

Schalung, Decke, Schalungsplatten,

Durchschnittspreis 20,00 €/m² netto BKI S.94

-Randschalung


Durchschnittspreis 2,40 €/m² netto BKI S.88

-Dämmung Deckenrand

Durchschnittspreis 5,00 €/m² netto S.88

-Beschichtung

Durchschnittspreis 1,26 €/m² netto BKI S.246

Nr.	Typ Schicht	d	W/mK	R m²K/W	∆OI:
1	Massivparkett	1,00	0,160	0,06	1 10
2	Zement- und Zementfließestrich (1800 kg/m³)	6,00	1,100	0,05	10
3	Dampfsperre (Dichtungsbahn Polyethylen (PE))	0,02	0,500	0,00	9.4
4	Trittschalldämmung (Glaswolle MW(GW)-W (32 kg/m³))	3,00	0,035	0,86	4
5	Dämmschüttung (ISOPLUS100 gebundene Wärmedämmschi.	5,00	0,047	1,06	9
6	Normalbeton mit Bewehrung 1 % (2300 kg/m³)	20,00	2,300	0,09	46
	$R_{si}/R_{so} =$		0,170 /	0,170	
	R' / R" (max. relativer Fehler: 0,0%) =		2,465/	2,465	
	Bauteil	35.02		2,465	78

Boden: gegen getrennte u. beheizte Wohn- und Betriebseinheiten - Wärmestrom nach unten (BG1)

2.Geschossdecke- Holzmassiv

-Estrich-Zementestrich

d=5mm, Zementestrich, CT, C25, schwimmend

Durchschnittspreis 21 €/m² netto BKI S. 194

-Trittschalldämmung

Trittschalldämmung MW, d 4cm, Rockwool Steinwolle 12,89 €/m² Netto

-Schüttung

Trockenschüttung d=30mm, gebundene Form auf Rohdecke

Durchschnittspreis 7,9 €/m² netto BKI S. 192

-Rieselschutz

Rieselschutz Fermacell 0,54 €/m² Netto

-KLH Deckenelement

KLH Platte, 145mm, 5s, DQ

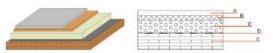
74,00€/m² netto nicht sichtqualität Preisstand 2014 KLH-Preisangebot

Oberflächebehandlung für Sichtqualität 16 €/m²

Bezeichnung: tdmnxs01-01 30.08.17

Stand:

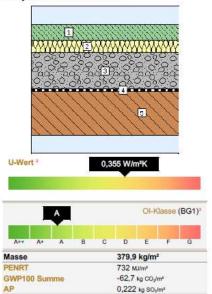
Saint-Gobain Rigips Austria GesmbH Quelle:


HFA, PLB Bearbeiter:

Geschossdecke - tdmnxs01-01

Geschossdecke, Holzmassivbau, ohne, nass, mit Schüttung, Holz sichtbar

Bauphysikalische Bewertung



Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Wärmeschut	Brandverhaltensklass			
			λ	μ min – max	ρ	c	EN
Α	50,0	Zementestrich	1,330	50 - 100	2000	1,080	A1
В	40,0	Trittschalldämmung MW-T [s'=6 MN/m²]	0,035	4	80	1,030	A2
C	120,0	Splittschüttung gebunden Splitt 5/8 dauerelastisch gebunden	0,700	1	1500	1,000	Al
D		Rieselschutz					E
E	147,0	Brettsperrholz BBS 125 5-lagig	0,130	50	470	1,600	D

Jaspern Massiv Decke

Boden: gegen getrennte u. beheizte Wohn- und Betriebseinheiten - Wärmestrom nach unten (BG1)

Nr. Tyr	Schicht	d	W/mK	R m²K/W	AOI3
1	Zement- und Zementfließestrich (1800 kg/m³)	5,00	1,100	0,05	8
2	Trittschalldämmung (Glaswolle MW(GW)-W (32 kg/m³))	4,00	0,035	1,14	
3	Splittschüttung (leicht zementgebunden)	12,00	0,700	0,17	3
4	TenCate Polyfelt TS	0,09	0,220	0,00	. (
5	KLH®-Massivholzplatte	14,50	0,130	1,12	27
	$R_{si}/R_{so} =$		0,170	0,170	
	R' / R" (max. relativer Fehler: 0,0%) =		2,819	2,819	
	Bauteil	35,59	-	2,819	44

3. Geschossdecke Holzrahmen

-Trockenestrich d=25mm

Trockenestrich, A2, Estrich 1 lagig

Durchschnittspreis 16,40 €/m² netto BKI 196

-Ausgleichsschicht

Durchschnittspreis 3,9 €/m² netto BKI S.192

-Trittschalldämmung d=20mm

Austrotherm Trittschallrolle Plus 650 4,60 €/m² netto

-Trockenschüttung

d=30mm 8,8 €/m² netto BKI S. 192

-Rieselschutz

Fermacell 0,54 €/m² Netto

-OSB Platte

Agepan Pur OSB 3 Platte

11,16 CHF/m² - 10,28€/m² Währung 31.12.19 Netto

-Mineralwolle zw. Latten

KNAUF Glaswolle mit Ecose Technology, A1-Euroklasse,

d=240mm,k 46,00 €/m² netto

-KVH

Gehobelt, getrocknet

Holzbau Sulzer 80 x 240 10,37 €/lfm Netto

-Rieselschutz

Fermacell 0,54 €/m² Netto

-Federschiene

KNAUF Federschiene 60/27

6,79 €/m² Netto

-GKF

KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-GKF


KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26 €/m² netto BKI S.246

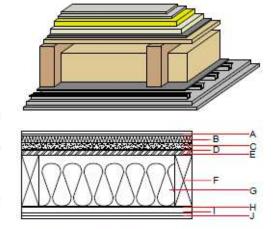
Nr. Ty	yp Schicht	d	W/mK	m ² K/W	ΔOI3 Pkt/m²
1	Zement- und Zementfließestrich (1800 kg/m³)	2,50	1,100	0,02	4
2	■ Trittschalldämmung (Glaswolle MW(GW)-W (32 kg/m³))	2,00	0,035	0,57	3
3	Splittschüttung (leicht zementgebunden)	6,00	0,700	0,09	2
4	TenCate Polyfelt TS	0,09	0,220	0,00	' 0
5	AGEPAN® OSB/3 PUR	2,20	0,130	0,17	5
6	Il Inhomogen (Elemente quer) 56,5 cm (90%) Holzfaser WF-T (130 kg/m³) 6 cm (10%) Nutzholz (425 kg/m³) - rauh, luftgetrocknet	24,00 24,00 24,00	0,046 0,110	5,22 2,18	25 -1
7	TenCate Polyfelt TS	0,09	0,220	0,00	0
8	FERMACELL Gipsfaser-Platte	1,25	0,320	0,04	6
9	FERMACELL Gipsfaser-Platte	1,25	0,320	0,04	6
	$R_{si}/R_{so} =$		0,170	0,170	
	R' / R" (max. relativer Fehler: 0,9%) =		5,988	5,878	
	Bauteil	39,38		5,933	49

Bezeichnung: Stand: Quelle: Bearbeiter: gdrtxa02b-04 03.09.19 Holzforschung Austria HFA, SP

Geschossdecke - gdrtxa02b-04

Geschossdecke, Holzrahmen/Holztafel, mit Abhängung, trocken, mit Schüttung, andere Oberfläche

Bauphysikalische Bewertung


Brandschutz REI 60 max. Spannweite = 5 m; max. Last E_{stA} = 3,66 kN/ m² Krassifizierung durch HEA

Deutschland

F60

Last E_{dri} gentäß des deutschen Verwendbarkeitsrachweises Nachweis: DN 4102-4:2016-05, Tabelle 10.12, Zeile 4

Wärmeschutz	U Diffusionsverhalt	
Schallschutz	R_ (C;C _b) L _{r,w} (C;)	76(-1;-7) dB 42(3)
Bearteilung durch Mi		34421
Flächenbezogene M	asse m	186,00 kg/m²

Bemerkung: C:Kalksplit m'=90 kg/m2

Baustoffangaben zur Konstruktion, Schichtaufbau wor außen nach innen, Maße in mm)

	Dicke	Baustoff Warmeschutz B					Brandverhaltensklasse
	PRIORES VI	-CC50.00%	λ	μ min – max	p	c	EN
Α	25,0	Trockenestrich	0,210	8	900	1,050	A1
8	20,0	Trittschalldammung WFT [s' <30 MN/m²]	0,038	5 - 7	135	2,100	E
C	50,0	Schüttung	0,700	1	1500	1,000	A1
D	0,2	Rieselschutz			X X		E
E	22,0	OSB	0,130	200	600	1,700	D
F	240,0	Konstruktionsholz (80/J e=838)	0,120	50	450	1,600	D
G	200,0	Holzfaserdammung [039; 45]	0,039	1 . 2	45	2,100	E
Н	0,2	Rieselschutz					E
1	27,0	Federschiene					33
1	25,0	Gipsplatte Typ DF (GKF) (2xmm)	0,250	10	800	1,050	A2

REFERENZOBJEKT IV

1.Außenwand- Holzrahmenkonstruktion

-Holzschalung d=20mm

Fassadenbekleidung, Nadelholz, dreiseitig gehobelt, natur

Durchschnittspreis 70 €/m² netto BKI S.269

-Hinterlüftung zw. Latten

Traglattung, Nadelholz, S10, 30x50 mm, für Außenwandbekleidung,

d= 50mm Preis: 8,4 €/m² netto BKI S. 268

-Gipsfaserplatte

d=18mm KNAUF Feuerschutzplatte 17,30 CHF/m²

Währung 31.12.19 15,94 €/m² netto

-Mineralwolle zw. Latten

d=260mm

Brandverhalten A1, ISOVER Fassadenplatte

Preis 46,70 €/m² netto

-Konstruktionvollholz

d=280mm

HolzBau Sulzer, Keilverzinktes Fichteholz, getrocknet und gefast, nicht sichtqualität

80x280mm 12,10€/lfm

-Dampfbremse

Dampfsperre

Rockwool RockTec Dasatop, 4,18 €/m² Netto

-Gipsfaserplatte

d=18mm

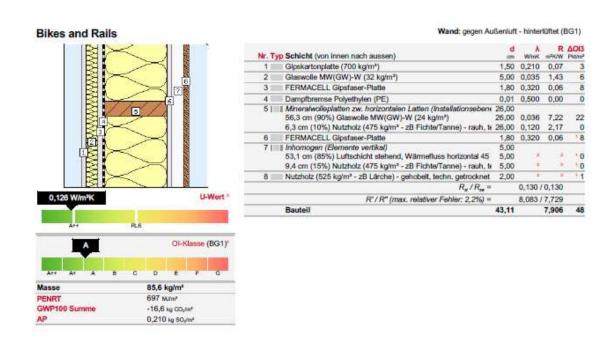
KNAUF Feuerschutzplatte 15,94 €/m²

-Mineralwolle

KNAUF-Glaswolle mit ECOSE-Technologie, A1-Euroklasse,

d=50mmm Preis 8,30 €/m²

-Gipskartonplatte


KNAUF Diamant d=15mm 10,80€/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26€/m² netto BKI S.246

2. Außenwand Holzmassiv

-Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Holzfaserdämmplatte d 6cm

Holzfaserdämmplatte Steico Flex 036 6,32 €/m² Netto

-Mineralwolle mit Latten 16 cm

Knauf Mineralwolle mit Latten 16 cm 46,11 €/m² Netto

-KLH Platte

KLH Platte, 100mm, 5s, DQ

52,00€/m² netto nicht sichtqualität Preisstand 2014 KLH-Preisangebot

-Mineralwolle mit Lattung 5 cm

Knauf Mineralwolle 10,26 €/m² Netto

-Gipskartonplatte

KNAUF Diamant 1,5 cm 10,80 €/m² Netto

-Gipskartonplatte

KNAUF Diamant 1,5 cm 10,80 € /m²Netto

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

Bezeichnung: Stand: Quelle: Bearbeiter:

awmopi05a-00 21.06.18 Holzforschung Austria HFA, PLB

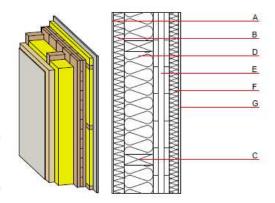
Aussenwand - awmopi05a-00

Aussenwand, Holzmassivbau, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche

Bauphysikalische Bewertung

Brandschutz REI von innen 90 REI von außen 60 max. Wandhöhe = 3 m; max. einwirkende Last Edis = 35 kN/Ifm Klassifizierung durch HFA

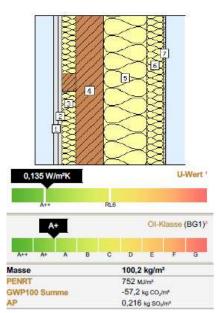
Deutschland


REI 60 (von innen/von außen); ACHTUNG: REI 90 (von innen) möglich mit 2x12.5mm GKE/GE

Last E_{d.5} gemäß des deutschen Verwendbarkeitsnachweises

Nachweis: herstellerspezifisch

Berechnet mit GKF


Wärmeschutz	U Diffusionsverhalten	0,15 W/(m ² K) geeignet
Berechnung durch TI	UM	
Schallschutz	R _w (C;C _{tr}) L _{r,w} (C _l)	56(-3;-9) dB
Beurteilung durch M	üller-BBM	
Flächenbezogene M	lasse m	97,30 kg/m ²

Bemerkung: ACHTUNG: REI 90 (von innen) in Deutschland nur mit 2x12,5mm GKF/GF

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Warmeschut	Brandverhaltensklasse			
			λ	µ min – max	p	c	EN
Α	7,0	Putzsystem	1,000	10 - 35	2000	1,130	A1
В	60,0	Holzfaserdämmplatte [046; 200]	0,046	3 - 7	200	2,100	E
C	160,0	Konstruktionsholz (60/160; e=625)	0,120	50	450	1,600	D
D	160,0	Mineralwolle [040; 11; <1000°C]	0,040	1	11	1,030	A1
E	100,0	Brettsperrholz	0,130	50	500	1,600	D
F	50,0	Holz Fichte Lattung horizontal ≥50	0,120	50	450	1,600	D
G	50,0	Mineralwolle [040; 11; <1000°C] ≥50	0,040	1	11	1,030	A1
Н	15,0	Gipsfaserplatte oder	0,320	21	1000	1,100	A2
Н	15,0	Gipsplatte Typ DF (GKF)	0,250	10	800	1,050	A2

Nr. T	yp Schicht (von innen nach aussen)	cm	W/mK	m ² K/W	∆Ol3 Pkt/m
1	Gipskartonplatte (700 kg/m²)	1,50	0,210	0,07	3
2	Gipskartonplatte (700 kg/m²)	1,50	0,210	0,07	3
3	Inhomogen (Elemente horizontal) 56,5 cm (90%) Mineral Plus KP 034	5,00 5,00	0,034	1,47	4
4	6 cm (10%) Nutzhotz (525 kg/m³ - zB Lärche) - rauh, luftgetroc KLH®-Massivholzplatte	5,00	0,130	0,38	18
5	Mineralwolleplatten zw. horizontalen Latten (installationsebena 56,3 cm (90%) Glaswolle MW(GW)-W (18 kg/m³) 6,3 cm (10%) Nutzholz (475 kg/m³ - zB Fichte/Tanne) - rauh, ta	16,00	0,038	4,21 1,33	10
6	best wood FLEX 50	6,00	0,041	1,46	3
7	Silikatputz (ohne Kunstharzzusatz)	0,70	0,800	0,01	4
	R _u /R _w =		0,130	0,040	
	R' / R" (max. relativer Fehler: 3,5%) =		7,692	7,174	
	Bauteil	40,70		7,433	44

3. Außenwand- Holzrahmenkonstruktion

-Oberputz, Knauf Diamant Putz

Preis 3,9 €/m² Netto Preis von OBI

-Mineralwolledämmplatte

KNAUF Mineral Plus d= 100mm Mineralwolle Preis: 19,90 €/m² Netto

- OSB Platte

OSB Platte 1,50 cm , 5,69 €/m² Netto, Preis von OBI

-Mineralwolle zw. Latten

d=240mm

KNAUF-Glaswolle mit ECOSE Technology für Holzrahmenbau, Brandverhalten A1, Dämmung zwischen Konstruktion

Preis 47,35 €/m²

-Konstruktionvollholz

d=240mm

HolzBau Sulzer, Keilverzinktes Fichteholz, getrocknet und gefast, nicht sicht qualität

100x240mm 12,96€/lfm

-Dampfbremse

Dampfsperre

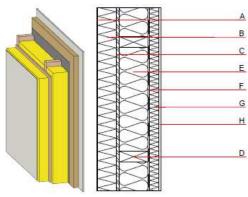
Rockwool RockTec Dasatop, 4,18 €/m² Netto

-Holzfaserdämmplatte

KNAUF Heraklith BM d 5 cm, 26,20 €/m² Netto

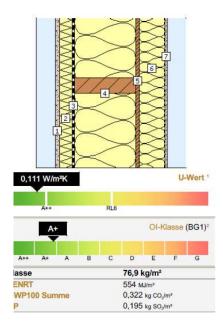
-Kalk-Gipsputz

Kalk Gipsputz 7€/m² Netto


Bezeichnung: Stand: Quelle: Bearbeiter: awropi23a-02 13.03.17 Knauf Insulation GmbH HFA, PLB

Aussenwand - awropi23a-02

Aussenwand, Holzrahmen/Holztafel, nicht hinterlüftet, mit Installationsebene, geputzt, andere Oberfläche


Bauphysikalische Bewertung

Brandschutz	REI von innen REI von außen	60 90
max. Wandhöhe = 3 m; ma Klassifizierung durch HFA	ux. Last E _{d,fi} = 19,2 kN/m;	REI 90 von außen
Wärmeschutz	U Diffusionsverhalten	0,11 W/(m ² K) geeignet
Berechnung durch HFA		
Schallschutz	R _w (C;C _{tr}) L _{n,w} (C _l)	52 dB
Beurteilung durch TGM		
Flächenbezogene Masse	m	81,80 kg/m ²

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Warmeschut	Brandverhaltensklasse			
			λ	μ min – max	ρ	c	EN
Α	6,0	Putzsystem	1,000	10 - 35	2000	1,130	A1
В	100,0	MW-PT FKD-S C2 [036; R=110]	0,036	1	110	1,030	Al
C	15,0	OSB	0,130	200	600	1,700	D
D	240,0	Konstruktionsholz (60/; e=625)	0,120	50	450	1,600	D
E	240,0	Glaswolle UNIFIT [037; R=14]	0,037	1	14	1,030	Al
F		Dampfbremse sd ≥ 14m					
G	50,0	Heraklith BM	0,090	2 - 5	370	2,000	В
Н	15,0	Kalk-Gipsputz	0,700	10	1300	1,000	A1

Nr. Ty	/p Schicht (von innen nach aussen)	d	W/mK	m ² K/W	∆OI:
1	RÖFIX 190 Gips-Kalk-Innenputz	1,50	0,470	0,03	:
2	KI Heraklith-BM	5,00	0,090	0,56	(
3	Airstop Diva + Dampfbremse	0,10	0,220	0,00	
4	Inhomogen (Elemente horizontal)	24,00			
	56,5 cm (90%) Glaswolle MW(GW)-W (15 kg/m³)	24,00	0,040	6,00	13
	6 cm (10%) Nutzholz (425 kg/m³) - rauh, luftgetrocknet	24,00	0,110	2,18	-1
5	AGEPAN® OSB/3 PUR	1,50	0,130	0,12	3
6	Sto-Steinwolleplatte 035 VHF Fix	10,00	0,035	2,86	15
7	Silikatputz (ohne Kunstharzzusatz)	0,70	0,800	0,01	4
1100	$R_{si}/R_{se} =$		0,130 /	0,040	
	R' / R" (max. relativer Fehler: 1,6%) =		9,176 /	8,880	
	Bauteil	42,80		9,028	45

1 Geschossdecke Holzmassiv

-Estrich

Rigips Rigidur Estrichelement, Gipsfaserelement d 2,5 cm , 16,40 €/m² Netto

www.bausep.de

-Trittschalldämmung

Austhotherm EPS-T 650 Plus, 3,43 €/m² netto

-Schüttung zementgebunden

d=60mm 8,80 €/m² netto S.192

-Rieselschuz

Rieselschutz 0,54 €/m²

-KLH Platte d 14,5 cm

KLH 145 mm, 5s, DL, 74 €/ m²

-Rigips mit CD 60/27 abhänger

Rigips d 9,50 1,79 €/m²

-Mineralwolle

Rockwool Sonorock d 8 cm, Steinwolle , 3,49 €/m²

-Feuerschutzplatte

KNAUF Feuerschutzplatte 18,40 CHF/ m² Netto ca. 16,14 €/m² Netto Währungswechsel am 02.02.2020

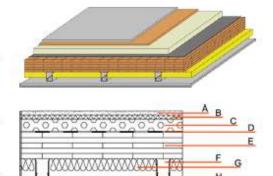
-Feuerschutzplatte

KNAUF Feuerschutzplatte 18,40 CHF/ m² Netto ca. 16,14 €/m² Netto Währungswechsel am 02.02.2020

Bezeichnung: tdmtxa01b-05 Stand: 28.09.17

Quelle: Saint-Gobain Rigips Austria GesmbH

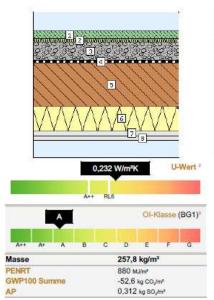
Bearbeiter: HFA, PLB


Geschossdecke - tdmtxa01b-05

Geschossdecke, Holzmassivbau, mit Abhängung, trocken, mit Schüttung, andere Oberfläche

Bauphysikalische Bewertung

Berechnet mit GKF


Brandschutz mux. Spannweite = 5 m; max. Last $E_{d,h}$ = 8,81 kN/m² Klassifizierung durch IBS Wärmeschutz U 0,25 W/(m²K) Diffusionsverhalten geeignet speichewirksame Masse oben: 48,2 kg/m² Berechmung durch HFA R_w (C;C_{tr}) Schallschutz 78(-5;-12) dB 36(2) Lnu (Ci) Beurteitung durch IFT Flächenbezogene Masse m 219,50 kg/m²

Bemerkung: Schüttung: Kalksplitt lose

Baustoffangaben zur Konstruktion, Schichtaufbau (von außen nach innen, Maße in mm)

	Dicke	Baustoff	Warmeschutz	Wärmeschutz				
			λ	μ min – max	p	2	EN	
A	25,0	Rigidur Estrichelement	0,200	19	1200	1,100	A1	
В	12,0	Trittschalldammung MW-T [s'=40 MN/m²]	0,040	1	160	0,840	A2	
C	60,0	Splittschüttung gebunden bzw. lose bei Var. 02 und 05	0,700	1	1500	1,000	A1	
D		Rieselschutz					E	
E	147,0	Brettsperiholz BBS 125 5-lagig	0,130	50	470	1,500	D	
F.	95,0	Rigips Direktabhänger mit CD 60/27						
G	75,0	Mineralwolle [040; 18]x	0,040	1	18	1,030	A1	
H	30,0	Rigips Feuerschutzplatte RF (2x15 mm) oder	0,250	10	900	1,050	A2	
н	30,0	Gipsfaserplatte Rigidur H (2x15 mm)	0,350	19	1200	1,100	A2	

Nr. Ty	yp Schicht	d	W/mK	m ² K/W	∆OI3 Pkt/m
1	Trockenestrich (Zement- und Zementfließestrich (1800 kg/m²),	2,50	1,100	0,02	4
2	Trittschalldämmung (ROCKWOOL Trittschalldämmplatte Floor	1,20	0,040	0,30	6
3	Schüttung (Splittschüttung (leicht zementgebunden))	6,00	0,700	0.09	- 2
4	Rieselschutz (TenCate Polyfelt TS)	0,09	0,220	0,00	(
5	KLH®-Massivholzplatte	14,50	0,130	1,12	1 27
6	ROCKWOOL Fixrock 032 (Fixrock 032 VS) Austria	8,00	0.032	2,50	118
7	Knauf Gipskarton Feuerschutzplatte	1,50	0,250	0,06	- 2
8	Knauf Gipskarton Feuerschutzplatte	1,50	0,250	0,06	- 3
	$R_{si}/R_{so} =$		0,130 /	0,040	
	R' / R" (max. relativer Fehler: 0,0%) =		4,318 /	4,318	
	Bauteil	35,29		4,318	62

2. Geschossdecke Holzrahmen

-Trockenestrich d=25mm

Trockenestrich, A2, Estrich 1 lagig

Durchschnittspreis 16,40 €/m² netto BKI 196

-Ausgleichsschicht

Durchschnittspreis 3,9 €/m² netto BKI S.192

-Trittschalldämmung d=20mm

Austrotherm Trittschallrolle Plus 650 4,60 €/m² netto

-Trockenschüttung

d=30mm 8,8 €/m² netto BKI S. 192

-Rieselschutz

Fermacell 0,54 €/m² Netto

-OSB Platte

Agepan Pur OSB 3 Platte

11,16 CHF/m² - 10,28€/m² Währung 31.12.19 Netto

-Mineralwolle zw. Latten

KNAUF Glaswolle mit Ecose Technology, A1-Euroklasse,

d=240mm,k 46,00 €/m² netto

-KVH

Gehobelt, getrocknet

Holzbau Sulzer 80 x 240 10,37 €/lfm Netto

-Rieselschutz

Fermacell 0,54 €/m² Netto

-Federschiene

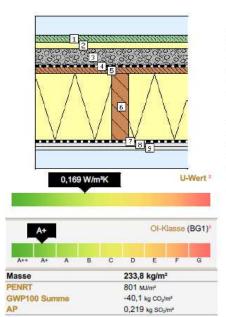
KNAUF Federschiene 60/27

6,79 €/m² Netto

-GKF

KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-GKF


KNAUF Feuerschutzplatte d=18mm 15,94 €/m²

-Grundierung

Durchschnittspreis 1,4 €/m² netto BKI S.246

-Beschichtung

Durchschnittspreis 1,26 €/m² netto BKI S.246

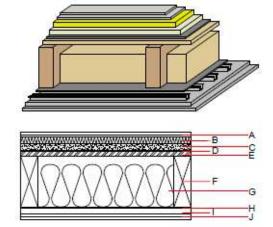
Nr. Ty	Schicht	d	W/mK	m ² K/W	ΔOI3 PkVm²
1	Zement- und Zementfließestrich (1800 kg/m³)	2,50	1,100	0,02	4
2	Trittschalldämmung (Glaswolle MW(GW)-W (32 kg/m³))	2,00	0,035	0,57	3
3	Splittschüttung (leicht zementgebunden)	6,00	0,700	0,09	2
4	TenCate Polyfelt TS	0,09	0,220	0,00	10
5	AGEPAN® OSB/3 PUR	2,20	0,130	0,17	5
61	Il Inhomogen (Elemente quer) 56,5 cm (90%) Holzfaser WF-T (130 kg/m²) 6 cm (10%) Nutzholz (425 kg/m²) - rauh, luftgetrocknet	24,00 24,00 24,00	0,046	5,22 2,18	25 -1
7	TenCate Polyfelt TS	0,09	0,220	0,00	0
8	FERMACELL Gipsfaser-Platte	1,25	0,320	0,04	6
9	FERMACELL Gipsfaser-Platte	1,25	0,320	0,04	6
	$R_{si}/R_{so} =$		0,170	0,170	
	R' / R" (max. relativer Fehler: 0,9%) =		5,988	5,878	
	Bauteil	39,38		5,933	49

Bezeichnung: Stand: Quelle: Bearbeiter: gdrtxa02b-04 03.09.19 Holzforschung Austria HFA, SP

Geschossdecke - gdrtxa02b-04

Geschossdecke, Holzrahmen/Holztafel, mit Abhängung, trocken, mit Schüttung, andere Oberfläche

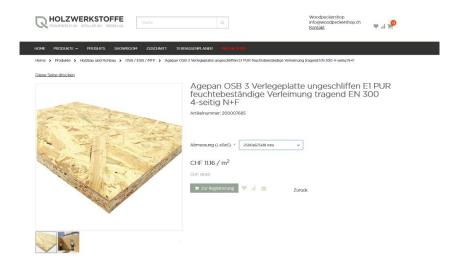
Bauphysikalische Bewertung


Brandschutz REI 60 m.o. Spannweite = 5 m; max. Last E_{d.6} = 3,66 kN/m² Krassifizierung durch HFA

Deutschland

F60

Last E_{dri} gentäß des deutschen Verwendbarkeitsrachweises Nachweis: DN 4102-4:2016-05, Tabelle 10.12, Zeile 4


Wärmeschutz	U Diffusionsverhalt	
Schallschutz	R_ (C;C _b) L _{r,w} (C;)	76(-1;-7) dB 42(3)
Bearteilung durch Mi		34421
Flächenbezogene M	asse m	186,00 kg/m²

Bemerkung: C:Kalksplit m'=90 kg/m2

Baustoffangaben zur Konstruktion, Schichtaufbau wor außen nach innen, Maße in mm)

	Dicke	cke Baustoff		Wärmeschutz				
	PRIORES VI	-CC50.00%	λ	μ min – max	p	c	EN	
Α	25,0	Trockenestrich	0,210	8	900	1,050	A1	
8	20,0	Trittschalldammung WFT [s' <30 MN/m²]	0,038	5 - 7	135	2,100	E	
C	50,0	Schüttung	0,700	1	1500	1,000	A1	
D	0,2	Rieselschutz			X X		E	
E	22,0	OSB	0,130	200	600	1,700	D	
F	240,0	Konstruktionsholz (80/J e=838)	0,120	50	450	1,600	D	
G	200,0	Holzfaserdammung [039; 45]	0,039	1 . 2	45	2,100	E	
Н	0,2	Rieselschutz					E	
1	27,0	Federschiene					33	
1	25,0	Gipsplatte Typ DF (GKF) (2xmm)	0,250	10	800	1,050	A2	

AGEPAN® OSB 3 ECOBOARD

VORTEILE

- Hohe Festigkeit und Stabilität
- Einsetzbar als luftdichte Ebene bzw. Dampfbremse
- Gesundheitsverträglich Lebensmittelunbedenklichkeit unabhängig bestätigt
- Abriebfeste, schmutz- und wasserabweisende Contiface-Oberfläche
- Formaldehydfreie und feuchtebeständige Verleimung
- Hohe Qualität wird durch regelmäßige, externe Überwachungen bestätigt
- · Rohmaterial ausschließlich aus verantwortungsvoller Forst- und Waldwirtschaft

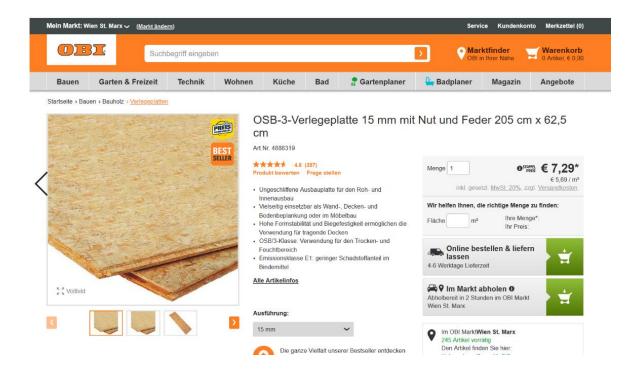
ANWENDUNGSBEREICHE

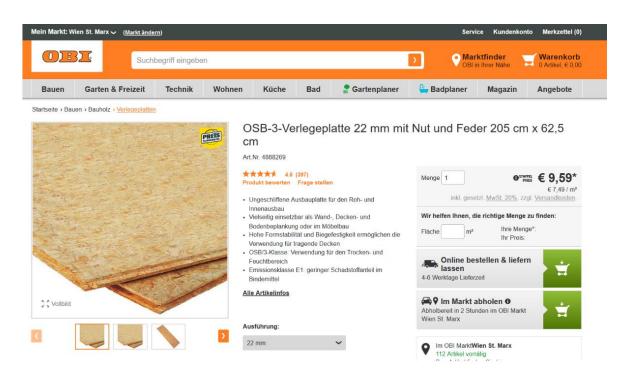
- OSB-Platte für tragende Zwecke zur Verwendung im Feuchtbereich (Nutzungsklasse 1 + 2) Holzwerkstoffplatte Typ OSB/3 gemäß EN 300 bzw. DIN EN 13986
- Fußbodenaufbauten
- Wandverkleidungen

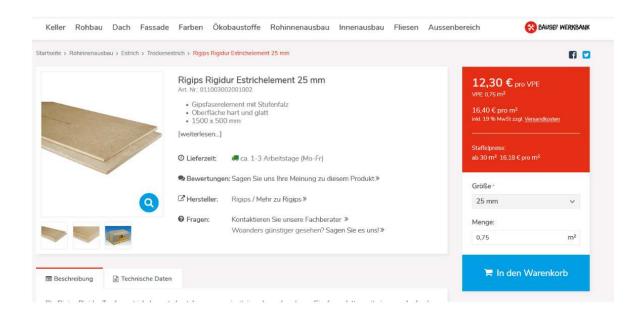
TECHNISCHE DATEN

EIGENSCHAFT	EINHEIT	WERT
Norm		EN 300 bzw. DIN EN 13986
Rohdichte	kg/m³	≥ 600
Bemessungswert Wärmeleitfähigkeit λ _R	W / (m*K)	0,13
Wasserdampf-Diffusionswiderstandszahl µ		150 / 200 (feucht / trocken)
Formaldehyd-Emissionsklasse		E1 – formaldehydfrei verleimt (< 0,03 ppm)
Klassifizierung des Brandverhaltens		D-s2, d0
Dickenquellung 24 h	%	15
Längenänderung je 1 % Holzfeuchteänderung	%	0,03

CHARAKTERISTISCHE WERTE nuch EN 12368-1


Eigenschaft	Einheit	Dicke	Biegu	ıng f _m	Zu	g f _t	Dru	ck f _e	Schub quer zur	Schub in		
		(mm)	II oder 0	I oder 90	II oder 0	loder90	II oder 0	Loder 90	Plattenebene f _v	Plattenebene f _r		
		6-10	18,0	9,0	9,9	7,2	15,9	12,9				
Festigkeitswerte	N / mm²	N / mm²	e N/mm²	> 10 - 18	16,4	8,2	9,4	7,0	15,4	12,7	6,8	1,0
				> 18 – 25	14,8	7,4	9,0	6,8	14,8	12,4		
Eigenschaft	Einheit	Dicke	Biegu	ng E _m	Zu	g E _t	Druc	k E _o	Schub quer zur	Schub in		
		(mm)	II oder 0	l oder 90	II oder 0	Loder 90	II oder 0	l oder 90	Plattenebene G _v	Plattenebene G		
Steifigkeitswerte	N/mm²	6 – 25	4.930	1.980	3.800	3.000	3.800	3.000	1.080	50		


FUNKTIONSH (2z°



Austrotherm EPS® F-PLUS Fassadendämmplatte

Höchstwärmedämmende Fassadendämmplatte aus expandiertem Polystyrolhartschaumstoff mit Protect-Beschichtung.

 Fassadendämmung (Vollwärmeschutz) im Wärmedämmverbundsystem (WDVS)

- Wasserabweisend
- Protect-Beschichtung Sicher und einfach zu verarbeiten
- Styropor Zertifiziert
- +23 % verbesserte Wärmedämmung gegenüber herkömmlichem Styropor

Stufenfalzausführung auf Anfrage.

- Lieferzeitraum auf Anfrage.
- ³ Mindermengenzuschlag: € 100,- zwischen 10 und 20 m³ pro Entladestelle, Abholverg\u00fctung: € 2,-/m³.

Zellinhalt: Produkttyp:

Kantenausbildung: Kennzeichnung: Nutzmaß: Nutzfläche: Zugfestigkeit: Plattenformat: Luft nach ÖNORM B 6000: EPS F; systemgeprüft nach ETAG 004 gerade Kante (GK) 1 roter Streifen

1000 x 500 mm 0,5 m² pro Platte 150 kPa 1000 x 500 mm

EAN-Nr. 9007646	Artikel- Nr.	m² je Bund	Stk. je Bund	Dicke in mm	Preis exkl. MwSt." €/m²	Wärmeleit fähigkeit λ _D W/(mK)
005001	EFPR 060	4,0	8	60	9,45	
005018	EFPR 070	3,5	7	▶ 70	11,02	
005025	EFPR 080	3,0	6	80	12,60	
005032	EFPR 090	2,5	5	▶ 90	14,18	
005049	EFPR 100	2,5	5	100	15,75	
005063	EFPR 110	2,0	4	▶ 110	17,32	
005070	EFPR 120	2,0	4	120	18,90	
005100	EFPR 140	1,5	3	140	22,05	
005131	EFPR 160	1,5	3	160	25,19	
005162	EFPR 180	1,0	2	180	28,34	
005186	EFPR 200	1,0	2	200	31,49	0,031
005216	EFPR 220	1,0	2	▶ 220	34,64	
005230	EFPR 240	1,0	2	▶ 240	37,80	
005254	EFPR 260	1,0	2	▶ 260	40,94	
005278	EFPR 280	0,5	1	▶ 280	44,09	
005292	EFPR 300	0,5	1	▶ 300	47,24	
005315	EFPR 320	0,5	1	▶ 320	50,39	
005339	EFPR 340	0,5	1	▶ 340	53,54	
005353	EFPR 360	0,5	1	▶ 360	56,70	
005377	EFPR 380	0,5	1	▶ 380	59,84	
005391	EFPR 400	0,5	1	▶ 400	62,99	

Austrotherm EPS® F Fassadendämmplatte

Fassadendämmplatte aus expandiertem Polystyro

Fassadendämmung (Vollwärmeschutz)im Wärmedämmverbundsystem (WDVS)

Wasserabweisend

Gut wärmedämmend

Einfache Verarbeitung

Stufenfalzausführung auf Anfrage. • Lieferzeitraum auf Anfrage. • Mindermengenzuschlag: \in 100,– zwischen 10 und 20 m³ pro Entladestelle, Abholvergütung: \in 2,–/m³.

-	.774
olhartschaumstoff.	

Luft nach ÖNORM B 6000: EPS F; systemgeprüft nach ETAG 004 gerade Kante (GK) 1 roter Streifen 1000 x 500 mm 0,5 m² pro Platte 150 kPa 1000 x 500 mm Zellinhalt: Produkttyp: Kantenausbildung: Kantenausbildun Kennzeichnung: Nutzmaß: Nutzfläche: Zugfestigkeit: Plattenformat:

EAN-Nr. 9007646	Artikel- Nr.	m² je Bund	Stk. je Bund	Dicke in mm	Preis exkl. MwSt.*) €/m²	Wärmeleit- fähigkeit λ _D W/(mK)
002062	EF 060	4,0	8	60	7,54	
002079	EF 070	3,5	7	▶ 70	8,79	
002086	EF 080	3,0	6	80	10,04	
002093	EF 090	2,5	5	▶ 90	11,30	
002109	EF 100	2,5	5	100	12,55	
002116	EF 110	2,0	4	▶ 110	13,81	
002123	EF 120	2,0	4	120	15,06	
002130	EF 140	1,5	3	140	17,57	
002147	EF 160	1,5	3	160	20,09	
002154	EF 180	1,0	2	180	22,60	
002161	EF 200	1,0	2	200	25,11	0,040
004110	EF 220	1,0	2	▶ 220	27,61	11.51
004134	EF 240	1,0	2	▶ 240	30,12	
004165	EF 260	1,0	2	▶ 260	32,64	
004189	EF 280	0,5	1	▶ 280	35,15	
002178	EF 300	0,5	1	▶ 300	37,66	
004219	EF 320	0,5	1	▶ 320	40,17	
004233	EF 340	0,5	1	▶ 340	42,68	
004257	EF 360	0,5	1	▶ 360	45,18	
004332	EF 380	0,5	1	▶ 380	47,70	
004271	EF 400	0,5	1	▶ 400	50,21	

Austrotherm Trittschallrolle PLUS

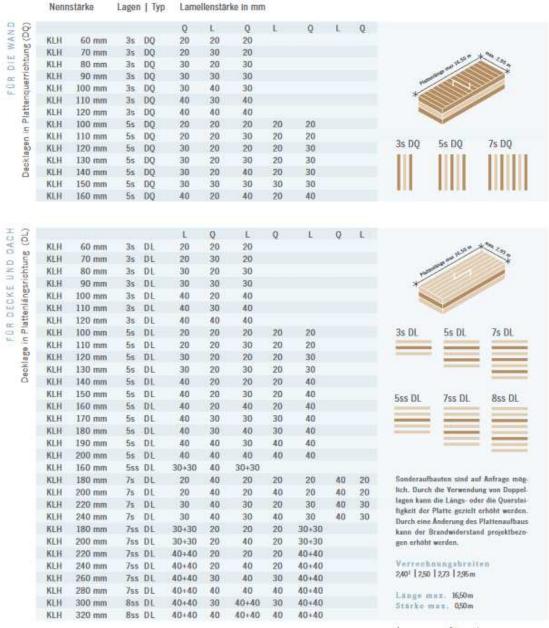
Trittschallrollen aus expandiertem Polystyrolhartschaumstoff mit aufkaschierter Gewebe- bzw. Alufolie

Zellinhalt: Produkttyp: Kantenausbildung: Nutzmaß: Nutzfläche: Anwendungs-grenztemperatur:

Luft nach ÖNORM B 6000: EPS T 650/1000 gerade Kante (GK) 10000 x 1000 mm 10 m² pro Rolle

- Bahnenware zur schnellen und passgenauen Verlegung
 Für Zement- und Fließestriche geeignet
 Wärme- und Trittschallschutz
 Reißfestes Gewebe mit aufgedrucktern Raster für die Positionierung von Heizschlangen

Austrotherm Trittschallrolle	EAN-Nr. 9007646	Artikel- Nr.	Format mm	Dicke/ mm	Zul. Druck- belastbarkeit [kg/m²]	m²/ Rolle	Preis exkl. MwSt €/m²
	076810	ETRP 0650 G 20	10.000 x 1000	▶ 20	650	10	4,60
	076827	ETRP 0650 G 25	10.000 x 1000	- 25	650	10	5,00
PLUS 650 Gewebe	076834	ETRP 0650 G 30	10.000 x 1000	▶ 30	650	10	5,50
	076841	ETRP 0650 G 40	10.000 x 1000	► 40°	650	10	6,40
	076858	ETRP 0650 G 50	10.000 x 1000	► 50°	650	10	7,38
	076889	ETRP 1000 G 30	10.000 x 1000	▶ 30	1000	10	6,30
PLUS 1000 Gewebe	076896	ETRP 1000 G 40	10.000 x 1000	► 40°	1000	10	7,60
	076766	ETRP 0650 A 20	10.000 x 1000	▶20	650	10	4,80
	076773	ETRP 0650 A 25	10.000 x 1000	▶ 25	650	10	5,30
PLUS 650 Alu	076780	ETRP 0650 A 30	10.000 x 1000	30	650	10	5,80
	076797	ETRP 0650 A 40	10.000 x 1000	► 40°	650	10	6,70
	076803	ETRP 0650 A 50	10.000 x 1000	► 50°	650	10	7,70
DI LIC +000 AL-	076865	ETRP 1000 A 30	10.000 x 1000	▶ 30	1000	10	6,60
PLUS 1000 Alu	076872	ETRP 1000 A 40	10,000 x 1000	► 40°	1000	10	7.90


NETTOPREISE FÜR KLH - STANDARDPLATTENTYPEN

PLATTENTYP	VERRECHNUNGSBREITE	NICHTSICHTQUALITÄT (NSI)
PLATTEN - VORWIEDEND ALS W	AKOELEMENTE (Orientierung der Decklage	quar zur Procuktionslängs)
KLH 57mm 3s D0	2.40/2.50/2.73/2.95 m	39.00
KLH 72mm 3s DO	2.40/2.50/2.73/2.95 m	43.50
KLH 80mm 3s 00	2 40/2 50/2 /3/2.95 m	47.00
KLH 94mm 3s DO	2.40/2.50/2.73/2.95 m	50 50
KLH 100mm 3s D0	2.40/2.50/2.73/2.95 m	52.00
KLH 120mm 3s D0	2 40/2 50/2 73/2.95 m	58,00*
KLH 95mm 5s DO	2.40/2.50/2.73/2.95 m	58.00
Q.H 120mm 5s D0	2 40/2 50/2 /3/2.95 m	64.00
KLH 128mm 5s DO	2.40/2.50/2.73/2.95 m	67.50
KLII 140mm 5s D0	2.40/2.50/2.73/2.95 m	73.00
CLH 158mm 5s D0	2 40/2 50/2 73/2.95 m	76.00
KLH 160mm 5s DO	2 40/2 50/2.73/2.95 m	78 50
KLH 180mm 5s DQ	2.40/2.50/2.73/2.95 m	84.50
PLATTENTYP	VERRECHNUNGSBREITE	NICHTSICHTQUALITÄT (NSI)
0.0000000000000000000000000000000000000		EU8/m²
PLATTEN - VORWIEGEND ALS DE	ECREN- UND DACHELEMENTE (Orientierung	der Decklage längs zur Produktionslänge
LH 60mm 3s DL	2.40/2.50/2.73/2.95 m	41.00
KLH 78mm 3s DL	2.40/2.50/2.73/2.95 m	47,50
KLH 90mm 3s DL	2.40/2.50/2.73/2.95 m	50,50
KLH 95mm 3s DL	2.40/2.50/2.73/2.95 m	52,00
KLH 108mm 3s DI	2.40/2.50/2.73/2.95 m	55.00
KLH 120mm 3s DL	2.40/2.50/2.73/2.95 m	59,50**
KLH 95mm 5s DL	2.40/2.50/2.73/2.95 m	59,50
KLH 100mm 5s DL	2.40/2.50/2.73/2.95 m	61.50
KEH 117mm 5s DL	2.40/2.50/2.73/2.95 m	69,00
KLH 120mm 5s DL	2.40/2.50/2.73/2.95 m	65,50
KLH 125mm 5s DL	2.40/2.50/2.73/2.95 m	69.50
KLH 140mm 5s DL	2.40/2.50/2.73/2.95 m	72,00
KLH 145mm 5s DL	2 40/2 50/2.73/2.95 m	74.00
KLH 162mm 5s DL	2.40/2.50/2.73/2.95 m	78,00
KEH 190mm 5s DL	2,40/2,50/2,73/2,95 m	87,50**
GLH 182mm bs Dt.	2.40/2.50/2.73/2.95 m	88.50
KLH 200mm 5s DL	2 40/2 50/2 73/2.95 m	94,00**
KLH 201mm 7s DL	2.40/2.50/2.73/2.95 m	98,50
KLH 226mm 7s Dt.	2.40/2.50/2.73/2.95 m	106.30
KLH 208mm 7ss DL	2.40/2.50/2.73/2.95 m	103.00
KLH 230mm 7ss DL	2.40/2.50/2.73/2.95 m	109.50
KLH 248mm 7ss DL	2.40/2.50/2.73/2.95 m	116,50
KLH 260mm 7ss DL	2.40/2.50/2.73/2.95 m	123,00**
KLH 280mm 7ss DL	2.40/2.50/2.73/2.95 m	130,50**
KLH 247mm 8ss DL	2.40/2.50/2.73/2.95 m	118,00
	2.40/2.50/2.73/2.95 m	138,50**
KLH 300mm 8ss DL		
	2.40/2.50/2.73/2.95 m	148,50**

Abbildung 105 KLH Preisliste²⁵⁸

²⁵⁸ Pipoh Marcus-Alexander, Holzleichtbeton-Verbundelemente: Wirtschaftliche Studien, Verfügbar: http://repositum.tuwien.ac.at/obvutwhs/download/pdf/1642385?originalFilename=true Zugriff am 10.01.2020

01 KLH® STANDARDPLATTENTYPEN UND AUFBAUTEN

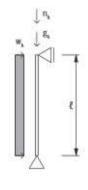
¹ ausgenommen Osterreich

Abbildung 106: KLH Preisliste 259

²⁵⁹ Pipoh Marcus-Alexander, Holzleichtbeton-Verbundelemente: Wirtschaftliche Studien, Verfügbar: http://repositum.tuwien.ac.at/obvutwhs/download/pdf/1642385?originalFilename=true Zugriff am 10.01.2020

03 KLH® ALS BEPLANKTE WAND

3.1 EINSEITIGER BRANDANGRIFF (BEI AUSSENWÄNDEN)


nach ETA-06/0138

ÖNORM EN 1995-1-1:2015 und ÖNORM B 1995-1-1:2019

ÖNORM EN 1995-1-2:2011 und ÖNORM B 1995-1-2:2011

Winddruck: w_k = 0,8 kN/m²

Mindestplattenstärken für verschiedene Brandwiderstände (R 30 bis R 120) mit 15 mm Gipskarton Feuerschutzplatten (GKF) auf der brandbeanspruchten Seite

Ständige Auflast 8 _{2,k}	Nutzlast	HÖHE WAND (Knicklange ?)									
	$n_{\tilde{k}}$	2,73 m				2,95 m					
[kN/m]	[kN/m]	R 30	R 60	R 90	R 120	R 30	R 60	R 90	R 120		
	10.00	2,0000	1000								
	20,00		3s 80 DQ			ra-series					
36000	30,00				S 2022		(a) an an	all red and			
10,00	40,00	35 80 DQ		3s 120 DQ	5s 110 DQ	3s 80 DQ	3s 80 DQ	3s 120 DQ	5s 110 D		
	50,00										
	60,00										
	10,00										
	20,00			3s 120 DQ			3s 80 DQ				
12222	30,00	272222	2-22-22		-2-702000	SEPARATE I		3s 120 DQ	5s 110 De		
20,00	40.00	3s 80 00	3s 80 DQ		5s 110 DQ	3s 80 DQ					
	50.00										
	60,00								5s 120 D		
	10.00		3s 80 DQ	3s 120 DQ		3s 80 DQ	3s 80 DQ		5s 110 D		
	20,00				5s 110 DQ						
	30,00	3u 80 DQ			5s 120 DQ						
30,00	40,00							3s 120 0Q	5s 120 D		
	50,00										
	60,00										
	10,00	3s 80 DQ	3s 80 DQ	3s 120 DQ	5s 120 DQ	3s 80 DQ	3s 80 DQ	3s 120 DQ	5s 120 D(
	20,00										
20530	30,00										
40,00	40,00										
	50,00										
	60,00										
	10,00										
	20.00			AND DESCRIPTION OF THE PARTY OF	5s 120 DQ	3s 80 DQ	3s 80 DQ	3s 120 DQ	5s 120 00		
	30.00	CO. Section Co.									
50,00	40,00	35 80 00	3s 80 DQ	3s 120 DQ							
	50,00			500/04/450							
	60,00										
	10.00										
	20,00										
	30.00										
60,00	40,00	3s 80 DQ	3s 80 DQ	3s 120 DQ	5s 120 DQ	3s 80 DQ	3s 80 DQ	3s 120 DQ	5s 120 D		
	50,00		Total Contract	222.11	200000000000000000000000000000000000000		Vitalisis de la constantina della constantina de	and the latest			
	60,00										
	60,00										

Nutzungsklasse 1

Nutzlast Kategorie A (ψ_0 = 0,7 und ψ_2 = 0,3): k_{mod} = 0,8 Windlasten (ψ_0 = 0,6 und ψ_2 = 0,0): k_{mod} = 1,0 Das Eigengewicht der tragenden KLH-Bauteile ist in den Tabellen inkludiert.

Tragfähigkeit

- a) Nachweis als Knickstab (Druck und Biegung nach dem Ersatzstabverfahren)
- b) Nachweis der Schubspannungen

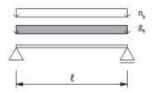
Bemessung für den Brandfall (einseitiger Brandangriff)

Bemessung mit KLHdesigner auf Basis der "Methode mit reduzierten Eigenschaften" gemaß ETA-06/0138.

- a) Abbrandrate $\beta_1 = 0,55$ mm/min regulare Abbrandgeschwindigkeit (innerhalb einer Lage)
- b) Abbrandrate β₂ = 0,80 mm/min erhohte Abbrandgeschwindigkeit (nach dem Abfallen einer Lage)
- c) für lokale Plattenbereiche b < 300 mm sind erhöhte Abbrandraten anzusetzen
- d) zusätzliche Ausmitte durch Abbrand berücksichtigt

Beplankung

Für die Beplankung sind direkt an die KLH-Oberfläche verschraubte Gipskarton Feuerschutzplatten (GKF) oder Gleichwertiges (gemaß ONORM EN 520 und ONORM B 3410 bzw. DIN 18180) anzubringen. Die Befestigung hat nach dem Stand der Technik und den aktuellen Verarbeitungsrichtlinien der KLH Massivholz GmbH zu erfolgen.


Diese Tabelle dient lediglich zur Vorbemessung und ersetzt keine statische Berechnung!

04 KLH® ALS DECKE - EINFELDTRÄGER

4.1 SCHWINGUNGSNACHWEIS FÜR ERHÖHTE ANFORDERUNGEN (NASSESTRICH)

nach ETA-06/0138 ÖNORM EN 1995-1-1:2015 und ÖNORM B 1995-1-1:2019 ÖNORM EN 1995-1-2:2011 und ÖNORM B 1995-1-2:2011

Mindestplattenstärken für die angegebenen Spannweiten

Ständige Auflast	Nutzlast		SPANNWEITE EINFELDTRÄGER &						
$g_{\gamma,k}$	n _k		3,00 m	4,00 m	5,00 m	6,00 m	7,00 m		
[kN/m ²]	Kategorie	[kN/m²]	3,00 m	4,00 m	5,00 m	11 00,0	7,00 m		
	A 2,00 2,80								
		2,80	5s 140 DL	5s 140 DL			7s 240 DL		
1,00		3,00	5s 120 DL		5s 170 DL	7s 220 DL			
3777	В	3,50			550000000000000000000000000000000000000				
		4,00		W. A.M. W.					
	C	5.00		5s 140 DL			7ss 260 DL		
		1,50					7s 240 DL		
	A	2,00		5s 140 DL					
		2.80							
1,50	1100	7 00 E- 120 N	5s 170 DL	7s 220 DL	0.7-20.7 6.7-				
Western .	В	3,50		THE PERSON NAMED IN					
	100	4,00		100000000000000000000000000000000000000			7		
С	C	5,00		5s 140 DL		7s 240 DL	7ss 260 DI		
		1,50		F-186 m	5s 180 DL	7s 220 DL	7s 240 OL		
	A	2,00		5s 140 DL 5s 140 DL					
		2,80							
2.00	В	3,00	5s 120 DL						
		3,50							
	0.00	4,00					7ss 280 DL		
	C	5,00				7s 240 DL	755 280 DI		
		1,50				7s 220 DL	7s 240 DL		
	A	2,00							
	235	2,80							
2,50	В	3,00	00 5s 120 DL 5s 140 DL Ss	Ss 200 DL					
	R	3,50		125011110000000000000000000000000000000			7ss 280 DL		
	C 4,00				7s 240 DL				
	1100	5,00				75 240 DE			
	200	1,50				100 (000)			
	A	2,00				7s 220 DL			
		2,80							
3,00	В	3,00	5s 120 DL	5s 150 DL	5s 200 DL		7ss 280 DI		
ASCON		3,50		18.54.56.50.57		7s 240 DL	100.000,000		
		4,00				TESTINA			
	0.55	5,00				7ss 260 DL			

Nutzungsklasse 1

$$k_{def} = 0.6$$

Nutzlast Kategorie A und B ($\psi_0 = 0.7$ und $\psi_2 = 0.3$): $k_{mod} = 0.8$

Nutzlast Kategorie C ($\psi_0 = 0.7$ und $\psi_2 = 0.6$): $k_{mod} = 0.9$

Das Eigengewicht der tragenden KLH-Bauteile ist in den Tabellen inkludiert.

Grenzwerte der Durchbiegung nach den Anforderungen der ÖNORM EN 1995-1-1:2015

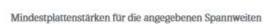
- a) charakteristische Bemessungssituation: $w_{\text{Q,inst}} \le \ell/300 \text{ und } (w_{\text{fin}} w_{\text{Q,inst}}) \le \ell/200$
- b) quasi-ständige Bemessungssituation: $w_{fin} \le \ell/250$

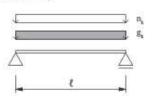
Schwingungsnachweis nach ÖNORM B 1995-1-1:2019

- a) Deckenklasse I: Decke zwischen verschiedenen Nutzungseinheiten (z.B. Wohnungstrenndecken oder Büros);
 6 cm Nassestrich schwimmend auf Schüttung
- b) Grenzwert des Frequenz- und Steifigkeitskriteriums: $f_{1,min} \ge 4,5$ Hz; $f_1 \ge f_{gr} = 8$ Hz; $w_{grad} \le w_{gr} = 0,25$ mm
- c) Dämpfungsgrad für Brettsperrholzdecken mit schwimmendem Estrich und schwerem Fußbodenaufbau: $\zeta = 4.0 \%$
- d) Grenzwertbeschleunigung (erforderlich bei $f_{l,min} \le f_l \le f_g$): $O_{mng} \le O_{gg} = 0,05 \text{ m/s}^2$
- e) Breite Deckenfeld (b) ≤ 1,2 * Spannweite (1,2*l)

Tragfähigkeit

- a) Nachweis der Biegespannungen
- b) Nachweis der Schubspannungen


Bemessung für den Brandfall (einseitiger Brandangriff)


Bemessung mit KLHdesigner auf Basis der "Methode mit reduzierten Eigenschaften" gemäß ETA-06/0138.

- a) Abbrandrate $\beta_1 = 0,65$ mm/min reguläre Abbrandgeschwindigkeit (innerhalb einer Lage)
- b) Abbrandrate β₂ = 1,00 mm/min erhöhte Abbrandgeschwindigkeit (nach dem Abfallen einer Lage)
- c) für lokale Plattenbereiche b < 300 mm sind erhöhte Abbrandraten anzusetzen
- d) Die Mindestplattenstärken (für R 0) erreichen automatisch die Brandwiderstände gemäß farbiger Markierung

4.2 SCHWINGUNGSNACHWEIS FÜR ERHÖHTE ANFORDERUNGEN (TROCKENESTRICH)

nach ETA-06/0138 ÖNORM EN 1995-1-1:2015 und ÖNORM B 1995-1-1:2019 ÖNORM EN 1995-1-2:2011 und ÖNORM B 1995-1-2:2011

Ständige Auflast	Nutziast n,		SPANNWEITE EINFELDTRÄGER &						
g _{2,k} [kN/m ²]			3,00 m	4,00 m	5.00 m	6,00 m	7.00 m		
	Kategorie	[kN/m²]	3,00 III	4,00 III	3,00 m	6,00 III	7,00 m		
		1,50							
	A	2,00							
	92	2,80							
1,00		3,00	5s 130 DL	5s 150 DL	5s 170 DL	7s 220 DL	7ss 280 Di		
	B	3,50							
		4,00							
	C	5,00							
		1,50		5s 150 DL					
	٨	2,00			5s 180 DL	7s 220 DL			
	100	2,80							
1,50	В	3,00	5s 130 DL				7ss 280 Di		
		3,50							
	С	4,00							
		5,00				7s 240 DL			
	A 2	1,50	5s 130 DL	5< 150 DL	5s 190 DL	7s 240 DL	7ss 280 DL		
		2,00							
		2,80							
2,00	В	3,00							
		3,50							
	С	4,00							
		5,00							
		1,50		5s 150 DL	5s 200 DL	7s 240 DL	7ss 280 DL		
	A	2,00							
		2,80							
2,50	В	3,00	5s 130 DL						
		3,50							
	С	4,00							
		5,00							
	A B	1,50							
		2,00							
		2,80				7s 240 DL			
3,00		3,00	5s 130 DL	5s 150 DL	5s 200 DL	75 ZAU UL	7ss 280 Di		
		3,50							
	С	4,00							
		5,00				7ss 260 DL			

R 90

R 120

R 60

Nutzungsklasse 1

$$k_{def} = 0.6$$

Nutzlast Kategorie A und B ($\psi_0 = 0.7$ und $\psi_z = 0.3$): $k_{mod} = 0.8$

Nutzlast Kategorie C ($\psi_0 = 0.7$ und $\psi_2 = 0.6$): $k_{mod} = 0.9$

Das Eigengewicht der tragenden KLH-Bauteile ist in den Tabellen inkludiert.

Grenzwerte der Durchbiegung nach den Anforderungen der ÖNORM EN 1995-1-1:2015

- a) charakteristische Bemessungssituation: $w_{Q,inst} \le \ell/300$ und $(w_{fin} w_{G,inst}) \le \ell/200$
- b) quasi-ständige Bemessungssituation: w_{fin} ≤ ℓ/250

Schwingungsnachweis nach ÖNORM B 1995-1-1:2019

- a) Deckenklasse I: Decke zwischen verschiedenen Nutzungseinheiten (z.B. Wohnungstrenndecken oder Büros);
 Trockenestrich schwimmend auf schwerer Schüttung (mind. 60 kg/m²)
- b) Grenzwert des Frequenz- und Steifigkeitskriteriums: $f_{1,min} \ge 4,5$ Hz; $f_{1} \ge f_{gr} = 8$ Hz; $w_{gree} \le w_{gr} = 0,25$ mm
- c) Dämpfungsgrad für Brettsperrholzdecken mit schwimmendem Estrich und schwerem Fußbodenaufbau: $\zeta = 4,0 \%$
- d) Grenzwertbeschleunigung (erforderlich bei $f_{l,min} \le f_l \le f_g$): $O_{rms} \le O_{gr} = 0.05 \text{ m/s}^2$
- e) Breite Deckenfeld (b) ≤ 1,2 * Spannweite (1,2*I)

Tragfähigkeit

- a) Nachweis der Biegespannungen
- b) Nachweis der Schubspannungen

Bemessung für den Brandfall (einseitiger Brandangriff)

Bemessung mit KLHdesigner auf Basis der "Methode mit reduzierten Eigenschaften" gemäß ETA-06/0138.

- a) Abbrandrate β, = 0,65 mm/min reguläre Abbrandgeschwindigkeit (innerhalb einer Lage)
- b) Abbrandrate β₂ = 1,00 mm/min erh
 htte Abbrandgeschwindigkeit (nach dem Abfallen einer Lage)
- c) für lokale Plattenbereiche b < 300 mm sind erhöhte Abbrandraten anzusetzen
- d) Die Mindestplattenstarken (für R 0) erreichen automatisch die Brandwiderstände gemaß farbiger Markierung

Bezeichnung	Dimension	Einheit	Verkaufs- preis	verfügbare Längen
	60x100 mm	Ifm	3,24	bis 11m
	60x120 mm	Ifm	3,89	bis 11m
	60x140 mm	Ifm	4,54	bis 11m
	60x160 mm	Ifm	5,18	bis 11m
	60x200 mm	Ifm	6,48	bis 11m
	80x80 mm	Ifm	3,46	bis 11m
	80x120 mm	Ifm	5,18	bis 11m
	80x140 mm	Ifm	6,05	bis 11m
	80x160 mm	Ifm	6,91	bis 11m
Keilverzinktes Fichtenholz	80x200 mm	Ifm	8,64	bis 11m
gehobelt, getrocknet und gefast	80x240 mm	Ifm	10,37	bis 11m
(KVH-NSI)	80x280 mm	Ifm	12,10	bis 11m
	100x100 mm	Ifm	5,40	bis 11m
	100x140 mm	Ifm	7,56	bis 11m
	100x160 mm	Ifm	8,64	bis 11m
	100x200 mm	Ifm	10,80	bis 11m
	100x240 mm	Ifm	12,96	bis 11m
	100x280 mm	Ifm	15,12	bis 11m
	120x120 mm	Ifm	8,29	bis 11m
	140x140 mm	Ifm	11,29	bis 11m
	160x160 mm	Ifm	14,75	bis 11m

andere Dimensionen und Längen auf Anfrage/Bestellung

Premium Fassadendämmplatte mit schwarzem Glasvlies

- Nennwert der Wärmeleitfähigkeit $\lambda_{\rm p}$ = 0,031 W/m·K (für Dicken 5-20), ab Dicke 22: $\lambda_{\rm p}$ = 0,032 W/m·K
- durchgehend hydrophobiert
- sicher, da nichtbrennbar, Euroklasse A2-s1, d0, ab Dicke 22cm: Euroklasse A1

Bezeichnungsschlüssel: MW - EN 13162 T5-DS(70,90) - WS - WL(P) - MU1 - AW* - AFr5
 Bezeichnungsschlüssel ab Dicke 22 cm:
 MW - EN 13162 - T4 - WS - MU1 - AFr5

Format: 120 x 60 cm

ab 22 cm Dicke: 125 x 60 cm

Palettenabmessung: 120 x 120 x 255 cm Dicken 22-26 cm Lieferzeit auf Anfrage

Lieferzeit: 1-3 Werktage

*bei d=50-99mm: AW0,95; bei d=100-180 mm: AW1,0

Rabattgruppe: Premium			Del u - 30 - 3	STIIII. AWO,53, Del G-100-10011III. A	***1.0			
urzzeichen und Bestelldicke [cm]	U-Wert* [W/m²-K]	Preis/m² exkl. MwSt. €	Preis/m² inkl. MwSt. €	Bestellnummer 5200_	Einzelpac Dämmfläche [m²]	stück/ Paket	Multipa Dämmfläche [m²]	Pakete/ Multipack
P-FDPL SV 5	0,53	10,10	12,12	_773377	7,20	10	115,20	16
P-FDPL SV 6	0,46	11,80	14,16	_773376	5,76	8	92,16	16
P-FDPL SV 8	0,36	15,25	18,30	_773379	4,32	6	69,12	16
P-FDPL SV 10	0,29	18,75	22,50	_773380	3,60	5	57,60	16
P-FDPL SV 12	0,24	22,15	26,58	_773381	2,88	4	46,08	16
P-FDPL SV 14	0,21	25,75	30,90	_773735	2,16	3	34,56	16
P-FDPL SV 16	0,18	29,10	34,92	_773736	2,16	3	34,56	16
P-FDPL SV 18	0,16	32,60	39,12	_773739	2,16	3	34,56	16
P-FDPL SV 20	0,15	36,25	43,50	_773740	1,44	2	23,04	16
P-FDPL SV 22**	0,14	39,60	47,52	_774183	1,50	2	24,00	16
P-FDPL SV 24**	0,13	43,15	51,78	_774184	1,50	2	24,00	16
P-FDPL SV 26**	0,12	46,70	56,04	_774185	1,50	2	24,00	16

Startseite > Bauen > Baustoffe > Dämmstoffe > Mineralfaser Dämmstoffe

Isover Ultimate Trennwand-Platte WLG 040 40 mm

(0) Produkt bewerten Frage stellen

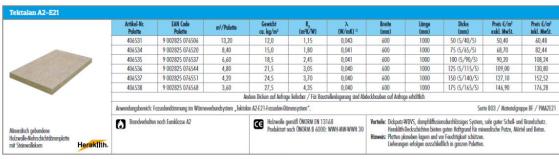
isover

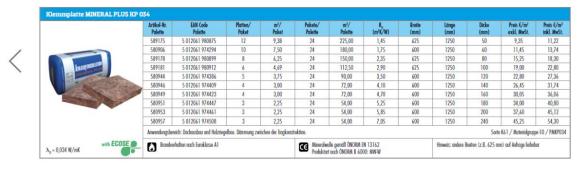
- WLG 040, Stärke: 40 mm
 Paketinhalt: 9,375 m²
- Robust und flexibel zugleich für eine komfortable
- Verarbeitung

 Hervorragender Brand-, Schall- und Wärmeschutz

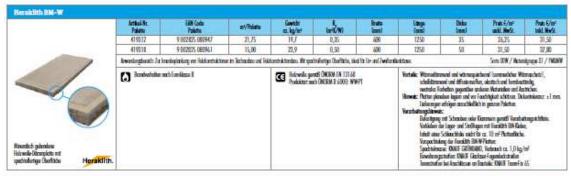
Alle Artikelinfos

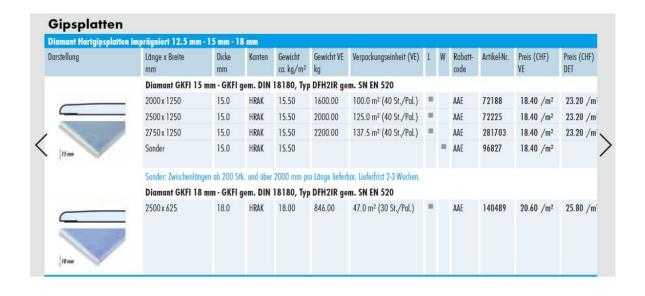
Artikel vergleichen

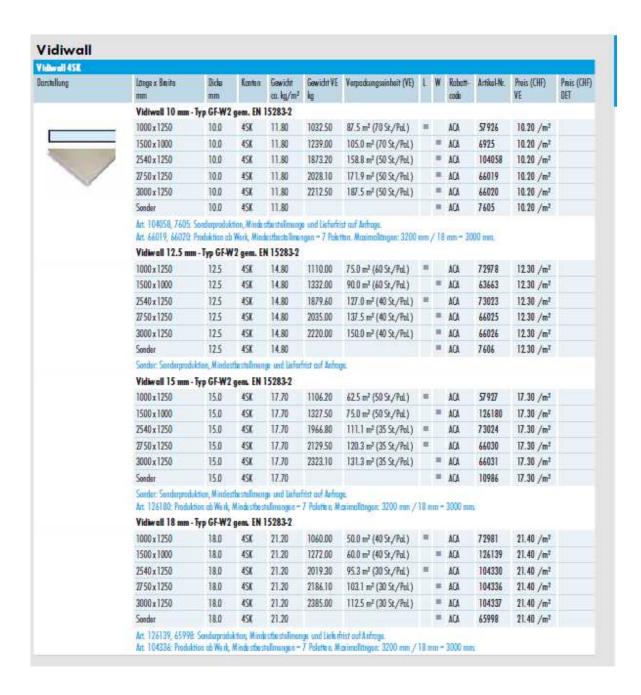

Artikel merken


	Artikel-Nr. Palette	EAN Code Palette	Rollen/ Paket	m²/ Paket	Pakete/ Palette	m²/ Palette	R _s (m²K/W)	Breite (mm)	Länge (mm)	Dicke (mm)	Preis €/m² exkl. MwSt.	Preis €/m² inkl. MwSt.
	355990	5 413031 014970	2	7,245	24	173,88	2,35	575	6.300	80	16,05	19,26
NEU!	355989	5 413031 014963	2	5,98	24	143,52	2,90	575	5.200	100	19,85	23,82
	355988	5 413031 014956	2	5,06	24	121,44	3,50	575	4.400	120	23,65	28,38
	355987	5 413031 014949	2	4,26	24	102,24	4,10	575	3.700	140	27,60	33,12
	355985	5 413031 014925	2	3,80	24	91,20	4,70	575	3.300	160	31,60	37,92
CONTRACTOR OF THE PARTY OF THE	355984	5 413031 014918	2	3,34	24	80,16	5,25	575	2.900	180	35,50	42,60
	355983	5 413031 014901	2	2,99	24	71,76	5,85	575	2.600	200	39,30	47,16
	356045	5 413031 015786	2	3,11	18	55,98	7,05	575	2.700	240	47,35	56,82
	Anwendungsber	eich: Holzriegelbau. Dämmung	zwischen der Trogkor	nstruktion.						Sorte KO4 /	Materialgruppe BL /	PMNATUROLLO
λ _s = 0,034 W/mK	Brandve	rhalten nach Euroklasse A1			Mineralwo Produktor	lle gemäß ÖNORM E nach ÖNORM B 60	N 13162 DO: MW-WL					

1) Für eine einfachere U-Wertberechnung ist der A-Wert auf die einzelnen Produktdicken gerechnet.

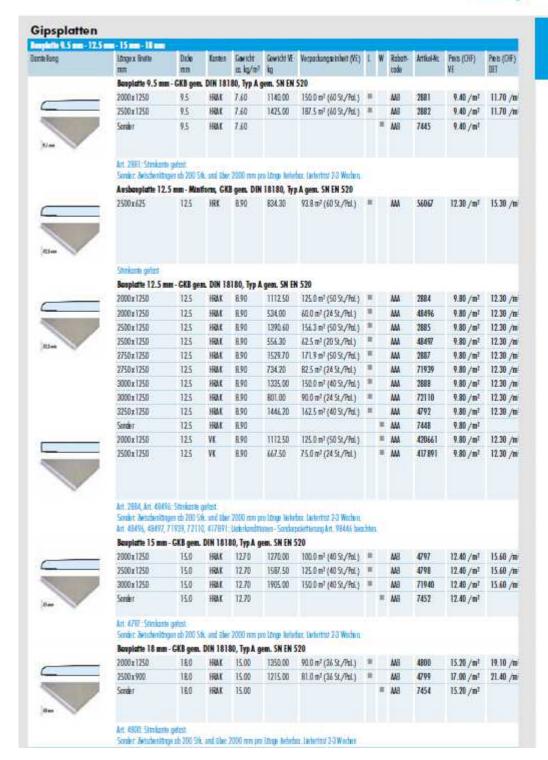



Artica Ac. Points	IAN Cots Politic	Polar Polar	n¥ Fokat	Polatic	st/ Folds	(m/CW)	Snate (mm)	(draga (mm)	Eleka (mm)	That 6/est axid MeSt.	Pres E/or sell, Marg.
2405261	5 413031 715294	24:	18,75	20	275	0.55	425	1250	- 20	19,30	73,16
2405262	5 413031 715303	16	12,50	70	250	28,0	625	1750	30	29,00	34,80
Armentangue	Aswentingsbesich im Immunistra ab Schall absolutionale Adlaga								5orts	K17 / National group	×E/PMP120
(1) limbs	Amendangsbesisch im Immunisten ab Schaf absobiesonte Adlage Die Brandenstein mich Landiesse El			GB Alterosterille genetil (MSB) 31 131.67 Produkter such (MSB) 3 5000; 569 W				Newt: Sixthe ode fale di luftage omphikim			


λ-0,05 W/m	(a) Bondurio Schmitter	dten mich Euroklasse AT nikt > 1600° E		Atmostivation on Produktori exch	DASS ÜNCRIK EN 13142 Üncrik is 4000: MW-1		Howak Enground Stale (EV	ocidation < 4 mm		
	Arwordingbook	ic bitschaldermang von l	Archae. Für numoki V	klaranbástnyn.			300		Sono SZID / Mi	cturtolgruppo BH / FM E
	3/1921	2 850340 740587	28,80	- 6	1,00	400	1000	25	18,70	77,64
The same of the sa	578575	8 581760 158100	48,00	1	0,85	400	1000	20	15,25	18,40
100	24/1286	3 856340 751000	34,00	34	0,70	800	1000	75	12,60	15,12
	24(295)	3 850340 751806	(3,20	- 4	0,55	400	1000	.70	9,65	11,34
	Artical No. Georgelatus	EAN Code Elemperatu	al/ Kalepoints	Non/ Gapoins	terCW1	Ento (no)	large (and	Date (aned)	Proto E/lef unit MeG.	Proto 6/or total MeSt.

	Artical Nr. Managements	EAN Code Ebiopolatu	Natycists	Fairpoints	terOW)	(ma)	lage land	Otio (mo)	France/ork until Made.	Prote-E/m² Indi: MwSt.
	261928	3 850340 760631	34,00	- 4	0,45	- 800	1000	25	14,60	17,52
10000	578526	8 581760 158122	48,00	1	0,80	600	1000	30	18,40	77,00
And the second	261930	1850340760655	78,80	- 6	0,95	800	1000	76	21,75	78,10
5 657	261931	3 850340 769642	21,60	- 4	1,25	500	1000	- 6	28,75	34,50
	Jewonbrigbioo	Aswarkingsbesich: Intschafelternung ein Dieber. Für numch Webenantsbestungen.							Sorta 521 / Mon	ondgruppo DE / Ph
	(C) Bostock	dian moch Eurokiessa All mich > 1000° E		(Brondenk go Probleter sech	ONDRING GOOD: MWT		Howas: Assertments State (72)	kibakat s 3 mm		
-0,636 W/mK										

	Arthui Nr. Palatu	EAN Code Polette	nt/folds	Gostár ez kg/s/	LeCVI	Stratu (com/	Lingo	Dris ion)	Prob.E/or acid Me/a	Proto-E/for Intil: MwSt.	
	406575	9 002825 07 6794	30,00	11,0	0,30	400	1250	25	16,96	20,29	
	406576	9007825 076711	22,50	14,0	0,40	AD0	1250	35	70,50	74,60	
1000	404574	P002825 07 6995	24,93	18,5	0.40	420	2000	50	75,70	21,44	
Inserted galantees to be selected galantees Herald III.	Anwardungbooks: In Inner and Autherbapkinkung our Holdcosstruktioner to Darbassban and Holdcosstruktionbas.									Sedu 001 / Materialgrape BA / FMBA	
	(a) Standardates	Funktiese B		GG Hodewile go Prodestort m	nds Öndram en 1916 en Öndram e soden nav	H	Vortale: Witmeditement and witmespectrum (communities Witmeschate), schaldemented and diffusionalism, electrich und feministration, prostate and substantial vortales and electrical, stocked Partitigue. However, Michael Partitigue and van Frachligheit and totale. Indianagem and applications and van Frachligheit in grown Paletter. Viscationaryshieselt: Selectrum of Schristian del Economic postfil Versichtungskristian. Viscation del Economic postfil Versichtungskristian.				



Platten für Wand und Decke

Gipsplatten

1

Rockwool Dampfbremsen & Zubehör

Rockwool RockTect Intello Climate: Sd-Wert 0,25 - 10,0 m (feuchtevariabel);
Brandverhalten nach EN 13501-1: E
Rockwool RockTect CentiTop: Sd-Wert ≥ 100 m; Brandverhalten nach EN 13501-1: E
Rockwool RockTect Dasatop: Sd-Wert 0,05 - 2 m (feuchtevariabel);

Brandverhalten nach EN 13501-1: E
Rockwool RockTect Inline: Zur luftdichten Verklebung der Überlappungen von

Dampfbremsen.

Rockwool RockTect Twinline: Dehnfähiges Klebeband zur luftdichten Verklebung von

Anschlüssen an Durchdringungen.

Rockwool RockTect Multikit: Dichtkleber zur luftdichten Verklebung von angrenzenden Bauteilen.

Downloads:

Rockwool	Produktdatenblatt	RockTect	Intello Climate.pdf
Rockwool	Produktdatenblatt	RockTect	Centitop.pdf
Rockwool	Produktdatenblatt	RockTect	Dasatop.pdf
Rockwool	Produktdatenblatt	RockTect	Klebebänder.pdf
Rockwool	Produktdatenblatt	RockTect	Multikit.pdf

Artikelnr.	Bezeichnung	Preis exkl. MwSt.	VPE 1	VPE 2
RRTIC	RockTect Intello Climate Plus Breite: 1,5 m; Länge: 50 lfm	€ 5,29/m²	75 m ² /Rol	20 Rol/Pal
RRTC60	Rockwool RockTect CentiTop Breite: 2 m; Länge: 50 lfm;	€ 1,80/m²	100 m ² /Rol	53 Rol/Pal
RRTD	Rockwool RockTect Dasatop Breite: 1,5 m; Länge: 50 lfm;	€ 4,18/m²	75 m ² /Rol	20 Rol/Pal
RRTI	Rockwool RockTect Inline 60 mm - 40 lfm/Rolle	€ 1,10/lfm	40 lfm/Rol	5 Rol/Krt
RRTT	Rockwool RockTect Twinline 60 mm - 25 lfm/Rolle	€ 1,33/lfm	25 lfm/Rol	10 Rol/Krt
RRTMD310	Rockwool RockTect Multikit Dichtkleber 310 ml	€ 14,28/Stk	20 Stk/Krt	

Holzrahmenbauweise

Dämmung für Wände und Decken

Flexirock*

	X		ROCKPACK	B 17	DINZEL-		Preis C/m²		
Abmessingen mm (i, x B x D)	ArtNr. Paket	Pakete	Transport*	m#	PAKET	M-KW	waki. MwSt.	Inkl. MwSt.	
1000×575 × 00	110071	34	111,000	124.20	1,450	2,05	9,10	10,92	
1000 x 575 ± 100	110372	26	10,000	100,50	2,875	2,55	11,16	13,39	
1000 ± 575 ± 120	110373	36	10,000	82,60	2,300	3,05	13,50	16,20	
1000 = 575 = 140	110374	32	10,000	73,60	2,300	3,55	15,79	19,95	
1000×575×180	110075	34	10,000	42,10	1,725	4,10	17,65	21,42	
1000 x 575 x 100	11037A	.12	10,000	15.20	1,725	4,60	20,26	24,31	
1000 ± 575 ± 200	107166	20	10,000	34,50	1,725	5,10	22,55	27,06	
1000 = 575 = 220	236694	24	10,000	27,60	1,150	5,60	24,79	29,75	
1000×575×240	118540	26	10,000	41.40	1,150	6,13	क्र,क	17,48	

Steinwoße-Dämmpfette mit elastischem Einbauwerhalten. Ohne Zuschneiden, ohne Abfall wirfschipwischen die Ständer der Außen-oder Transsard in nach ÖNORM EN 13501-1.

Nermwert der Wärmeleitfähigkeit
einschauen. Die Abmessungen sind ideel auf die
Hubrahmenbauweise ebgestimmt – die Briebs
kannum 5 om kompitmiert werden.

Flexirock*

Abmessingen	ArtNr.		BOCKPACK	i i	DINZEL	2.	Preis €	inst.
mm(LxDxD)	Palcet	Pakets	Transp.re*	m/f	Pon	Int-KJ/W	MwSt.	MwSt.
1000 x 600 x 00	110377	36	10,000	129,60	3.60	7,05	9,10	10,93
1000+100+100	110378	24	10,000	106,00	3,00	2,55	11,16	13,39
1000 ± 600 ± 120	110379	36	10,000	84,40	2,40	3,08	13,50	16,20
1000 ± 600 ± 140	110300	32	10,000	76,80	2.40	3,55	15,79	18,95
1000 ± 500 ± 160	110361	36	10,000	64,60	1,00	4,10	17,85	71,47
1000±600±100	110302	32	10,000	57,60	1,80	4,60	20,26	34,31
1000 = 600 = 200	107167	20	10,000	36,00	1,00	5,10	22,55	27,06
1000 x 600 x 220	236675	24	10,000	20,00	1,20	5,60	24,79	29,75
1000 x 600 x 240	110303	32	10,000	30,40	1.20	4,15	27.07	32,40

Steinwolle-Démmplatte mit elestischem Einbeuwerhalten. Ohne Zuschneiden, ohne Abfell einfach
zwischen die Ständer der Außen-oder Trentmennd
einzubeisen. Die Abmessungen sind ideel auf die
hobmitnenbeuweise abgestimmt – die Briefte
kann um 5 cm konprimiert werden.

Holzrahmenbauweise

Dämmung für Wände und Decken

Wärmeschutzplatte Sonorock® 035

AT PARTY AND ADDRESS.	1	BOCKINA		11		133-51	Presia €/m²		
Abmessinger mm (L v B x D)	ArtNr. Paket	Paketa	Transp.m*	m/*	PAKET Inf	Bri-KSW	eski. MwSt.	MwSt.	
1000 x 575 x 40°	116301	20	10,000	115,00	5,750	1,75	0,70	10,46	
1000 x 575 x 90°	116302	24	10,000	82,00	3,450	2,35	11,27	13,52	
1000 x 575 x 100°	119302	.20	10,000	47.00	3,450	2,90	14,10	17,02	
1000×575×120*	116304		10,000	57,50	2,875	3.50	17,19	30,63	
1000 x 575 x 140°	118305	20	10,000	46,00	2,300	4,10	19,93	23,92	
1000 x 575 x 160°	116304	24	10,000	41,40	1,725	A,70	22,94	27,53	
1000 v.575 x 180**	113711	20	10,000	34,50	1,725	5,25	25,62	30,74	
1800×575×200*	116356	. 20	10,000	34,50	1,725	5,65	26,52	34,22	
1000 x 575 x 220* Y	116309	24	10,000	27,60	1,150	6,45	21,40	37,79	
1000 x 575 x 240*	116210	.24	10,000	27,60	1,150	7,05	34,21	41,05	

Nichtbrennbere Steinwolle-Dänmplette für Wärme-, Schall und Brandschutz im Holy- und Trockenbeu.

- Produktart MW-W nach ÖNORM B 8000.
 Euroklasse A3 nach ÖNORM EN 13501-1.

 Ilängenbezogener Strömungswiderstand nach ÖNORM EN ISO 29053: AFræ 8 kPa s/m².

 Nemwert der Wärmsleitfähigkeit

 A₀ = 0.034 W/Jn-K)

Wärmeschutzplatte Sonorock® 035

ī			ROCKPACK			DINZEL-		Presis City*	
l	Abmessungen mm (L x B x D)	ArtNr. Peket	Palate	Transp.m*	m/s	PAKET	Ro (m*-K)W	eski. MwSt.	Inid. MwSt.
Ī	1000×625× 40*	113712	20	10,000	112,50	5,425	1,75	6,70	10,44
i	1000 x 625 x 80*	113713	24	15,000	90,00	3,750	2,35	11,27	13,52
ı	1000 x 625 x 100°	113714	20	10,000	75,00	3,750	2,90	14,18	17,02
ı	1000 x 625 x 120°	113715	30	10,000	62,50	3,125	2,50	17,19	20,63
ı	1000 x 625 x 140*	113714	30	10,000	50,00	2,500	4,10	19,93	23,92
ı	1000 x 625 x 160*	113717	24	15,000	45,00	1,875	4,70	22,94	27,53
ı	1000 x 625 x 100°	113710	20	10,000	37,50	1,675	5,25	25,42	30,74
-	1000 x 625 x 200°	113719	30	10,000	37,50	1,475	5,65	38,52	24,22
	1000 x 625 x 220*	113720	24	10,000	30,00	1,250	4,45	31,40	37,78
	1000 × 105 × 240*	113721	34	10,000	30,00	1,250	7,05	34,21	41,05

*Liebration Statestops

Nichtbrendare Steinwolle-Dähmplatte Für Villeme-, Schell und Brendschutz im Hob- und Trockenbeu.

- Produktart MW-W nach ÖNORM B 6000.
 Euroklasse A1 nach ÖNORM EN 12501-1.
 längerbezogener Strömungswiderstand nach ÖNORM EN ISO 29052: AFr≥ 8 kFe s/m².
 Nentwert der Wärmeletfähigkeit å_e = 0,034 Wijm K)

Außenwand

Dämmung für hinterlüftete Fassaden und zwischen zweischaligem Mauerwerk

Fassadendämmplatte Fixrock^a 032 Austria

		ROCKPACK		EINZEL- PAKET		Preis C/m²		
mm (L x B x D)	ArtNr. Pelost	Palate	Transp.m*	m/s	no.	ton-KJW	MwSt.	MwSt.
1000×525× 40*	106705	29	10,000	105,00	3,750	1,65	15,79	18,95
1000×425× 80*	100704	24	10,000	75,00	3,125	2,50	20,96	25,18
1000 × 625 × 100°	106707	24	10,000	10,00	2,500	3,10	26,45	31,74
1000 × 625 × 120°	106708	28	10,000	52,50	1,875	2,75	21,40	37,78
1000 x 625 x 140°	106709	24	10,000	45,00	1,075	4,35	36,79	44,15
1000 x 625 x 160°	106710	20	10,000	35.00	1,250	5,00	42,36	50,83
1000×625×180*	106711	20	10,000	35.00	1,250	5,60	47,78	57,34
1000 x 625 x 200°	106712	24	10,000	30,00	1,250	6,25	52,75	13,30

Durchgehend sassersbweisende SteinwolfeDämmplatte für die außersettige Dämmung vor histerfülleten Fassacien. Schnall und einfach zu verlegen. Auch geeignet als Könndärtmung für zweischaliges Mauerwerk.

1 Didsel pro Flette möglich (siehe technisch
Detenblett).

2 Produktet WW-WF nach ÖNORM B 6000.

2 Euroblasse 37 nach ÖNORM EN 13501-1.

2 Längenberogener Strömungseiderstand na

- 1 Dübel pro Platte möglich (siehe technisches
- Längerberogeter Strömungseidersband nach ONOHM EN ISO 29053-AFra 36 kPaulm!
 Nentwart der Wärmeleitfähigkeit
 A₀ = 0,032 Wijm K).

Fassadendämmplatte Fixrock^a 032 V5 Austria

			ROCKPACK		DINZEL-		Prote-Circl	
Abmessingen mm (L x B x D)	ArtNr. Peket	Palate	Transport	m ^a	PAKET	Ro (w/-K)W	eski. MwSt.	Inid. MwSt.
1000×525× 60*	106737	29	10,000	105,00	3,750	1,65	17,19	20,63
1000×425× 80*	106740	24	10,000	75,00	3,125	2,50	22,43	36,92
1000×625×100*	106761	24	10,000	10,00	2,500	3,10	27,96	11,55
1000 x 625 x 120°	106742	20	10,000	52,50	1,675	2,75	12,67	39,44
1000 x 525 x 540°	106743	24	10,000	45,00	1,075	4,35	36,34	45,09
1000 x 625 x 160*	106744	20	10,000	35.00	1,250	5,00	43,76	\$2,51
1000×625×180*	106745	20	10,000	35.00	1,250	5,60	48,17	27,00
1000 x 625 x 200°	237034	26	10,000	35,00	1,250	6,25	54,58	65,50

Durchgehend exassersbweisende Steinwollecorregement essainstwessers stemmole-Dammplatte mit einestliget, schwarzer Vles-kachterung für die Dammung von hinselühalen Fessaden, sowie zweischaligem Mauerwerk. Schreib und einfach zu verliegen.

- 1 Dübel pro Plette möglich (siehe technisches Datenblatt).
- Produktert MW-WF nach ÖNORM B 6000. Euroklasse All nach ÖNORM EN 13501-1.
- Längenbezogerer Strömungswiderstand nach ONOMM EN ISO 29033-AFra 36 kPaulmi.

 Nennwert der Wärmeleitfähigkeit
 Au = 0,032 Wijn K).

Fußboden

Dämmung für schwimmende Estriche

Trittschalldämmplatte Floorrock* SE

		ROCKPACK			DNZEL		Prote-Cini?	
Abmenungen mm (L x B x D)	ArtNr. Paket	Pakete	Transp.m*	mit	PAKET	R ₀ bi/-KJ/W	waki. MwSt.	inki. MwSt.
1000 × 625 × 20-5	107069	24	10,000	240,00	19,00	0,55	5,52	6,62
1000 × 625 × 25-5	107070	26	10,000	100,00	7,50	0,70	7,14	0,57
1000 x 625 x 30-5	107071	24	10,000	150,00	6,25	0,85	8,70	30,76
1000 × 625 × 25-5*	107072	26	10,000	140,00	5,00	1,00	10,77	12,92
1000 x 625 x 40-5"	111340	24	10,000	120,00	5,00	1,15	12,89	15 AT
1000 x 425 x 50-5*	107055	.20	10,000	105,00	3,75	1,45	10,13	19,36

Trockstart NW-1 rach LOVOWN 8 6000.

Introductor NW-1 rach LOVOWN 8 6000.

Wolfrungstrenndecken unter scheimmendem Estrich ohne keremischem Belag. Geeignet als schalfdammende Enlage für die Therentige won zweische Mannende Therentige won zweische Mannender Mannender

- Produktart MW-T nach ÖryORM 8 6000.

- Bemessingsdicke für die Konstruktionshöhe d, is ein 50 25 Dynamische Stelfigkeit d In Mikini nach EN 29052-1 30 13: 117

Flexible Dämmstoffe/Hohlraumdämmung

Nach DIN EN 13171

Trockenverfahren | ca. 60 kg/m³, λ_D 0,036

- Flexible Holzfaser-Dämmplatten für die Gefachdämmung
- Niedrigste verfügbare Wärmeleitfähigkeit bei flexiblen Holzfasermatten

Handliche Formate (Rechtecke)

Format [mm]	Kanten	Dicke [mm]	Anzahl [St./Pal.]	Bruttofläche [m²/Pal.]	Volumen [m ³ /Pal.]	Preis [€/m²]	Preis- gruppe
1.220 * 575 a	stumpf	30	10 Pak. à 16 St.	112,240	3,367	4,38	A 01
1.220 * 575	stumpf	40	12 Pak. à 10 St.	84,180	3,367	4,42	A 01
1.220 * 575	stumpf	50	10 Pak. à 9 St.	63,135	3,157	5,41	A 01
1.220 * 575	stumpf	60	10 Pak. à 8 St.	56,120	3,367	6,32	A 01
1.220 * 575	stumpf	80	10 Pak. à 6 St.	42,090	3,367	8,23	A 01
1.220 * 575	stumpf	100	12 Pak. à 4 St.	33,672	3,367	10,29	A 01
1.220*575	stumpf	120	10 Pak. à 4 St.	28,060	3,367	12,35	A 01
1.220 * 575	stumpf	140	8 Pak. à 4 St.	22,448	3,143	14,40	A 01
1.220 * 575	stumpf	160	10 Pak. à 3 St.	21,045	3,367	16,46	A 01
1.220*575	stumpf	180	8 Pak. à 3 St.	16,836	3,030	18,52	A 01
1.220*575	stumpf	200	12 Pak. à 2 St.	16,836	3,367	20,58	A 01
1.220 * 575	stumpf	220	10 Pak. à 2 St.	14,030	3,087	23,48	A 02
1.220 * 575	stumpf	240	10 Pak. à 2 St.	14,030	3,367	25,62	A 02

Palettenformat: ca. 1,15*1,22*2,20-2,65 m; 22 Pal./LKW; Sonderformate 550-3.100 mm auf Anfrage; a) Keine Lagerware – Lieferzeit auf Anfrage

Nach DIN EN 13171

Nassverfahren | Typ H: ca. 265 kg/m³, λ_D 0,048 | Typ M: ca. 230 kg/m³, λ_D 0,046 • Putzbeschichtbare Holzfaser-Dämmplatte für Außendämmung

- Hohe Druckfestigkeit
- WDVS für den Holzbau

STEICOprotect

Тур	Format [mm]	Deckmaß [mm]	Kanten	Dicke [mm]	Anzahl [St./Pal.]	Bruttofläche [m²/Pal.]	Volumen [m³/Pal.]	Preis [€/m²]	Preis- gruppe
Handl	iche Formate, z.l	B. für den Bauste	elleneinsatz u	nd die Elem	entfertigung				
н	1.325 * 600	1.300 * 575	N+F	40	56	44,520	1,781	13,08	101
Н	1.325 * 600	1.300 * 575	N+F	60	38	30,210	1,813	19,62	101
М	1.325 * 600	1.300 * 575	N+F	80	28	22,260	1,781	24,81	102
М	1.325 * 600	1.300 * 575	N+F	100	22	17,490	1,749	30,30	102

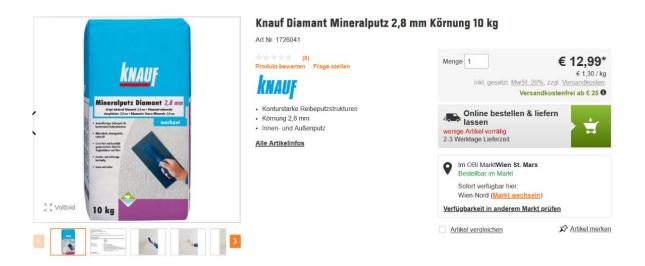
Großformatplatten für die Elementfertigung, Typ H aussteifend gem. AbZ-9.1-826

Н	2.800 * 1.250 a	-	stumpf	40	28	98,000	3,920	12,96	101
Н	2.800 * 1.250 a	==	stumpf	60	19	66,500	3,990	19,35	101
М	2.800 * 1.250 a/c	-	stumpf	80	14	49,000	3,920	23,85	102
М	2.800 * 1.250 a/c		stumpf	100	11	38,500	3,850	29,81	102
н	2.625*1.175 b/c	2.600 * 1.150	N+F	40	28	86,362	3,455	13,12	101
н	2.625 * 1.175 b/c	2.600 * 1.150	N+F	60	19	58,603	3,516	19,70	101
М	2.625 * 1.175 b/c	2.600 * 1.150	N+F	80	14	43,181	3,455	25,38	102

a) Palettenformat: ca. 2,80 *1,25 *1,30 m; 16 Pal./LKW; b) Palettenformat: ca. 2,63 *1,18 *1,30 m; 20 Pal./LKW;

c) Keine Lagerware – Lieferzeit auf Anfrage

Palettenformat: ca. 1,33 *1,21 *1,30 m; 40 Pal./LKW


Laibungsplatten für Detailausbildungen und Fensterlaibungen

Н	1.350 * 500	-	stumpf	20	112	75,600	1,512	7,35	101
Н	1.350 * 500 =		stumpf	20	6	4,050	0,081	9,62	101

Palettenformat: ca. 1,35*1,00*1,24m; 40 Pal./LKW; a) Versand aus Logistiklager – gesonderte Frachtkosten auf Anfrage

HINWEIS: Putzträgerplatte für das WDV-System STEICOs*ecure* Timber (AbZ Z-33.47-1581). Für weitere Informationen bzgl. Putzkomponenten und Zubehör für das STEICOs*ecure* WDVS siehe separate STEICOs*ecure* Preisliste.

STEICO Preisliste 01. September 2019 – V6 | 5 |

BETONSORTEN MIT GARANTIERTEN EIGENSCHAFTEN

Nach ÖNORM B 4710-1, mit rezyklierten Gesteinskörnungen (RH-B), Größtkorn 32 mm, Konsistenz CO bis F45, Standardzement CEM II 42,5 N, Festigkeitsentwicklung mittel (EM).

Kein Korrosions- oder Angriffsrisiko

хо	Druckfestigkeitsklasse	Preis
Unbewehrte Fundamente ohne Frost, Füll- und Ausgleichsbeton ohne Frost.	xo	82,00
	C8/10	83,00
	C12/15	85,00
	C16/20	86,50

Kein Wasserdruck

XC1	Druckfestigkeitsklasse	Preis
Beton in Gebäuden mit geringer Luftfeuchtigkeit bzw. mit geeigneter	C16/20	86,50
Abdichtung.	C20/25	87,50
	C25/30	88,50

Kein Wasserdruck

XC2	Druckfestigkeitsklasse	Preis	
Bauteile im Trockenen bzw. mit geeigneter Abdichtung	C16/20	89,00	
	C20/25	89,00	
	C25/30	89,50	

SONDERBETONE

Betone für Sauberkeitsschichten

Ökologische pumpfähige Sauberkeitsschicht aus rezyklierten, aufbereiteten und gewaschenen Gesteinskömungen mit hervorragenden Verarbeitungseigenschaften. Pumpfähig ab F52 GK16, CEM II 42,5 N

Druckfestigkeitsklasse	Preis
XO	82,00
C8/10 X0	83,00
C12/15 X0	85,00

WVM Wopfinger Verfüllmaterial

Ökologische hochfließfähige Künetten- u. Hohlraumverfüllung aus rezyklierter u. aufbereiteter Gesteinskörnung. Größt- korn 8 mm, je nach Anforderung höhere Konsistenz auf Anfrage möglich.		Preis
	ois F52	75,00
	59	79,00