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Abstract: Using elementary methods we obtain a power-law lower bound on the two-
point function of the planar XY spin model at low temperatures. This was famously
first rigorously obtained by Fröhlich and Spencer (Commun Math Phys 81(4):527–602,
1981) and establishes a Berezinskii–Kosterlitz–Thouless phase transition in the model.
Our argument relies on a new loop representation of spin correlations, a recent result of
Lammers (Probab Relat Fields, 2021) on delocalisation of general integer-valued height
functions, and classical correlation inequalities.

1. Introduction and Main Result

Let G = (V, E) be a finite graph. Given a collection of nonnegative coupling constants
J = (Je)e∈E , and an inverse temperature β > 0, the XY model (with free boundary
conditions) is a random spin configuration σ ∈ S

V , where S = {z ∈ C : |z| = 1} is the
complex unit circle, sampled according to the Gibbs distribution

dμG,β(σ ) ∝ exp
(
1
2β

∑
vv′∈E

Jvv′(σvσ̄v′ + σ̄vσv′)
) ∏

v∈V
dσv, (1)

where vv′ denotes the edge {v, v′}, and dσv is the uniform probability measure on S.
For simplicity of notation, unless stated otherwise, we will assume that Je = 1 for all e.
However, our results extend naturally to nonhomogeneous coupling constants. We will
write 〈·〉G,β for the expectation with respect to μG,β . The observable of main interest
for us will be the two-point function 〈σa σ̄b〉G,β , a, b ∈ V , and its infinite volume limit
(which is well defined by the Ginibre inequalities [16])

〈σa σ̄b〉�,β = lim
G↗�

〈σa σ̄b〉G,β ,

where � is an infinite planar lattice.
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Note that if σv = eiθv , θv ∈ (−π, π ], then σvσ̄v′ + σ̄vσv′ = 2 cos(θv − θv′). This
means that the model is ferromagnetic, i.e., pairs of neighbouring spins that are (almost)
aligned have smaller energy and hence are statistically favoured. A natural question is
whether varying β leads to a ferromagnetic order–disorder phase transition in themodel.
The classical theorem of Mermin and Wagner [29] excludes this possibility when the
underlying lattice � is two-dimensional. Moreover, McBryan and Spencer [28] showed
that at any finite temperature 〈σa σ̄b〉Z2,β decays to zero at least as fast as a power of the
distance between a and b. On the other hand, it is known by the work of Fröhlich, Simon
and Spencer [13] that in higher dimensions the model exhibits long-range order at low
temperatures and the two-point function does not decay to zero.

Even though there is no spontaneous symmetry breaking, Berezinskii [5,6], and
Kosterlitz and Thouless [18] predicted that a different type of phase transition takes place
in two dimensions. It should be understood in terms of interacting topological excitations
of the model, the so called vortices and antivortices. They are those faces of the graph
where the XY configuration makes a full clockwise or anticlockwise turn respectively
when one traverses the edges of the face in a clockwise manner. Vortices and antivortices
interact through aCoulomb-like interaction, and are energetically favoured to form short-
distance pairs of vortex-antivortex. The Berezinskii–Kosterlitz–Thouless (BKT) phase
transition happenswhen,while decreasing the temperature, the freely spaced vortices and
antivortices (high-temperature plasma) bind together into such vortex-antivortex pairs.
This regime should exhibit power-law decay of the two-point functions (in contrast to
exponential decay at high temperatures). A rigorous lower bound of this type for low
temperatures, and therefore a proof of the BKT phase transition was first obtained in the
celebrated work of Fröhlich and Spencer [14] who also derived analogous results for
the Villain spin model. Their proof uses a multi-scale analysis of the Coulomb gas, and
the main purpose of the present article is to present an alternative and less technically
involved argument for the existence of phase transition in two dimensions.

To bemore precise, we introduce a new loop representation for the two-point function
in the XY model that can be used to transfer probabilistic information from the dual
integer-valued height function model to the XYmodel. Along the way we also show that
the height function possesses the crucial absolute-value-FKG property. This, together
with a recent elementary delocalisation result for general height functions obtained by
Lammers [19], is used to prove existence of the BKT phase transition.

Theorem 1 (Berezinskii–Kosterlitz–Thouless phase transition).There existsβc ∈ (0,∞)

such that

(i) for all β < βc, there exists c = c(β) > 0 such that for all v, v′ ∈ Z
2,

〈σvσ v′ 〉Z2,β ≤ e−c|v−v′|,

(ii) for all β ≥ βc and all distinct v, v′ ∈ Z
2,

〈σvσ v′ 〉Z2,β ≥ 1

8|v − v′| .

We note that unlike in the original proof of Fröhlich and Spencer, we do not show that
the rate of decay approaches zero when so does the temperature. However, we establish a
type of sharpnesswhich says that there is no other behaviour than exponential and power-
law decay. The short proof of sharpness is independent of the rest of the argument. In the
first step we classically use the Lieb–Rivasseau inequality [24,32] to establish a sharp
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transition between exponential decay and nonsummability of correlations (similarly to
the proof for the Ising model [11]). To conclude a uniform power-law lower bound as
in (i i) whenever the correlations are not summable we use the Messager–Miracle-Sole
inequality [30] on monotonicity of correlations with respect to the position of the vertex
on the lattice.

We also note that our proof works (with minor modifications and a different, implicit
multiplicative constant in (i i)) for other infinite planar graphs that in addition to being
translation invariant possess reflection and rotation symmetries, and whose dual graph
has bounded degree.

At the same time when this article appeared, an analogous result for the Villain
model (without sharpness and explicit polynomial decay in the BKT phase) was given
by Aizenman et al. [2]. It was later extended to also cover the XY model (including
sharpness). For amore detailed overview of theXYmodel, we refer the reader to [12,31],
and for expositions of the argument of Fröhlich and Spencer, we refer to [15,17].

This article is organised as follows.

• In Sect. 2 we introduce the dual of the planar XY model in form of an integer-
valued height function defined on the faces of the graph. We also establish positive
association of its absolute value (the absolute-value-FKG property), and recall the
delocalisation result of Lammers [19].

• In Sect. 3 we define a random collection of loops on the graph that carries proba-
bilistic information about both the XY spins and the dual height function. Although
this is a well known object that goes back to the works of Symanzik [35], and Bry-
dges, Fröhlich and Spencer [7], the formula that relates the two-point function to the
probability of two points being connected by a loop (Lemma 8) is new and crucial to
our argument.

• In Sect. 4 we give an elementary argument which states that if the height function
delocalises at some temperature, then the spin two-point function does not decay
exponentially.

• In Sect. 5 we use the above ingredients to show that on any translation invariant
graph, there exists a finite temperature at which the two-point function does not decay
exponentially. This is not immediate as the result of Lammers [19] applies only to
trivalent graphs. However, a simple graph-modification argument together with the
Ginibre inequality allows to change the setup from a general graph to a triangulation
(a graph whose dual is trivalent).

• In Sect. 6 we finish the proof of the main theorem. We use the Lieb–Rivasseau
inequality [24,32] and the Messager–Miracle-Sole inequality [30] to show that the
absence of exponential decay implies a power-law lower bound on the two-point
function.

2. The Dual Height Function

To define the dual model we assume that G is planar and finite, and we introduce the
notion of currents. To this end, let �E = {(v, v′) : {v, v′} ∈ E} be the set of directed
edges of G, and let N = {0, 1, . . .}. A function n : �E → N is called a current on G. For
a current n, we define δn : V → Z by

δnv =
∑
v′∼v

n(v,v′) − n(v′,v).
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Hence if δnv is positive, then the amount of outgoing current is larger than the incoming
current, an we think of v as a source. Likewise if δnv is negative, there is more incoming
current and v is a sink. A current is sourceless if δnv = 0 for all v ∈ V .

We define �0 to be the set of all (sourceless) currents. Sourceless currents naturally
define a height function h on the set of faces of G, denoted by U , where the height of
the outer face is set to zero, and the increment of the height between two faces u and u′
is equal to

h(u) − h(u′) = n(v,v′) − n(v′,v),

where the primal directed edge (v, v′) crosses the dual directed edge (u, u′) from right
to left. That this yields a well defined function on the faces of G follows from the fact
that δn = 0. We define the XY weight of a current by

wβ(n) =
∏

(v,v′)∈ �E

1

n(v,v′)!
(β Jvv′

2

)n(v,v′)
, (2)

These weights appear naturally in the expansion of the partition function of the XY
model into a sum over sourceless currents after one expands the exponentials in (1) into
a power series in the variables 1

2β Jvv′σvσ̄v′ for each directed edge (v, v′) ∈ �E , and then
integrates out the σ variables. They will also appear in the analogous classical expansion
for spin correlations (11).

We note that using currents to define amodel on the dual graph is an instance of planar
duality of abelian spin systems [9], and the fact that the function is is a consequence of
Z being the dual group of the unit circle.

Clearly, the weight (2) defines a probability measure PG,β on currents and hence also
on height functions. In terms of the height function it is a Gibbs measure given by

PG,β(h) ∝ exp
(

−
∑

uu′∈E†

Vβ
e (h(u) − h(u′))

)
, (3)

where E† is the set of dual edges of G, and where the symmetric potentials Vβ
e : Z → R

are given by

Vβ
e (k) = − log

( ∞∑
i=0

1

i !(i + |k|)!
(β Je

2

)2i+|k|) = − log Ik(β Je) (4)

with Ik being the modified Bessel function. We again note that we will usually set all
Je = 1 to simplify the notation.

A well known Turán-type inequality for modified Bessel functions [36] states that
for any k ≥ 0 and β > 0,

I 2k (β) ≥ Ik−1(β)Ik+1(β) (5)

which means that Vβ
e is convex on the integers. This puts the model in the well-studied

framework of height functions with a convex potential (see e.g. [34]).
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2.1. Gibbs measures and delocalisation. To state the delocalisation result of Lammers
wewill need the notion of aGibbsmeasure for height functions on infinite graphs (though
we will not directly work with it in the remainder of the article). Let � = (V, E) be
an infinite planar graph and �† = (U, E†) its planar dual. If ν is a measure on height
functions ϕ : ZU → Z and � ⊂ U a finite subset, write ν� for the measure restricted
to �. Let V = (Ve)e∈E† be a family of convex symmetric potentials. We call ν a Gibbs
measure for the potentialV if for every such�, it satisfies theDobrushin–Lanford–Ruelle
relation

ν�(·) =
∫

ZU
ν

ϕ
�(·)dν(ϕ),

where ν
ϕ
� is the Gibbs measure on height functions h ∈ Z

U given as in (3) (but with Vβ

replaced by V) and conditioned on h being equal to ϕ on the boundary of �.
In what follows we will always assume that � is locally finite and invariant under the

action of a Z2-isomorphic lattice. We say that ν is translation invariant if it is invariant
under the same acton.

In a recent beautiful work [19] Lammers gave a condition on the potential that guar-
antees that there are no translation invariant Gibbs measures on graphs of degree three
(trivalent graphs).

Theorem 2 (Lammers [19]). Let �† = (U, E†) be as above and moreover trivalent. If
for every e ∈ E†,

Ve(±1) ≤ Ve(0) + log(2), (6)

then there are no translation invariant Gibbs measures for V .
This together with the dichotomy stated in Theorem 4 will be one of the key ingre-

dients of the proof of the main theorem.

2.2. Absolute-value-FKG and dichotomy. In this section, we prove that the height func-
tion satisfies the absolute-value-FKG property, which is known to imply the dichotomy
in Theorem 4 below [8,20]. Here we will only work with the potential Vβ as defined in
(4).

Proposition 3 (Absolute-value-FKG). Let G = (V, E) be a finite graph and U the set
of its faces. Then for all β > 0, and all �,
 : NU → R+ increasing functions,

EG,β [�(|h|)
(|h|)] ≥ EG,β [�(|h|)]EG,β [
(|h|)].
We first explain briefly the dichotomy. Let � = (V, E) be a translation invariant

graph, and let 0 be a chosen face of �. Define Bn to be the subgraph of � induced by the
vertices in V that lie on at least one face of � that is contained in the graph ball of radius
n on �†. We introduce this slightly convoluted definition to guarantee the following
three properties: 0 belongs to all Bn , also Bn ↗ � as n → ∞, and finally, the weak
dual graph of Bn (the dual graph with the vertex corresponding to the external face of
Bn removed) is a subgraph of �†.

Theorem 4. Consider the setup as above. Then for every β > 0, exactly one of the
following two occurs:
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(i) (localisation) There exists a C < ∞ such that uniformly over all n,

EBn ,β [|h(0)|] ≤ C.

(ii) (delocalisation) There are no translation invariant Gibbs measures for the poten-
tial (4).

Proof. This is a consequence of the absolute-value-FKG property (Proposition 3) and
standard arguments using monotonicity in boundary conditions. See
[20, Theorem 2.7]. ��

We turn to the proof of Proposition 3. The first step (Lemma 5) consists in showing
that, forβ small enough, the potential satisfies an inequality known to imply the absolute-
value-FKG property [20]. In the second step we use this to conclude the absolute-value-
FKG property for general β.

Lemma 5. The absolute-value-FKG property holds true for all β ≤ 1.

Proof. We rely on a result of Lammers and Ott [20, Theorem 2.8], stating that if

Vβ
e (k − 1) − 2Vβ

e (k) + Vβ
e (k + 1) = − log

( Ik−1(β)Ik+1(β)

Ik(β)2

)

is a nonincreasing function of k on {0, 1, . . .}, then PG,β is absolute-value-FKG. We
define rk = 1

β
Ik (β)

Ik−1(β)
, and need to show that r2k ≤ rk−1rk+1 for all k ≥ 0. The well

known recurrence relation

Ik−1(β) = 2k
β
Ik(β) + Ik+1(β) yields rk = (2k + β2rk+1)

−1.

Hence it is enough to prove that

(2k + εk+1)(2(k + 2) + εk+3) ≤ (2(k + 1) + εk+2)
2,

where εk = β2rk . Using the Turán inequality (5), it follows that 0 ≤ rk+1 ≤ rk , and
therefore it is sufficient to establish that

Rk := (2k + εk+1)(2k + 4 + εk+1) − (2k + 2)2 = 4(k + 1)εk+1 + ε2k+1 − 4 ≤ 0.

At the same time, simply using the definition of rk+1 and comparing the Taylor expan-
sions (4) of Ik+1 and Ik term by term gives εk+1 ≤ β2/(2k + 2). Therefore, when β ≤ 1,
we have Rk ≤ ε2k+1 − 2 ≤ 0 for all k ≥ 0, which concludes the proof. ��

To treat general values of β, we will use a trick which consists in replacing each
edge of G by s = �β� consecutive edges, and reducing the parameter β by the factor s,
together with the following convolution property of the modified Bessel functions.

Lemma 6. For all k, l ∈ Z and all β, β ′ ≥ 0,
∑
m∈Z

Ik−m(β)Im−l(β
′) = Ik−l(β + β ′).

Proof. This is a classical identity which follows from the fact that Ik(β)/eβ = P(Z −
Z ′ = k), where Z , Z ′ are independent Poisson random variables with mean β/2, and
the fact that a sum of independent Poisson random variables is Poisson. ��
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With this we can prove Proposition 3.

Proof of Proposition 3. Let Gs = (Vs, Es) be G with each edge replaced by s consecu-
tive edges, and let hs be the height function onGs with lawμGs ,β/s . By Lemma 6 (and an
induction argument) the restriction of hs to V has the same law as h1.Moreover, β/s ≤ 1
by definition of s, which by Lemma 5 implies that μs satisfies the absolute-value-FKG
property. To finish the proof it is enough to notice that any increasing function on NV is
also increasing on NVs . ��
Remark 1. An interesting consequence of the idea above (that we will not use in this
article) is the following. Consider the case when s from above is independent of β and
diverges to infinity. In this limit, the height function becomes well defined at every point
of every dual edge.Herewe think of the dual graph as the so called cable graph, i.e., every
dual edge e is identified with a continuum interval of length Jeβ. Then the distribution
of the height on an edge, when conditioned on the values at the endpoints, is one of the
difference of two Poisson processes with intensity Jeβ/2 each, and conditioned on the
value at the endpoints. One can check that the model exhibits a spatial Markov property
on the full cable graph and not only on the vertices. This is in direct analogy with the
cable graph representation of the discrete Gaussian free field, where the vertex-field can
be extended to the edges via Brownian bridges (see e.g. [27] and the references therein).

3. Loop Representation of Currents and Path Reversal

The purpose of this section is mainly to develop a loop representation for the two-point
function of the XY model. The important aspect of our approach is that the correlations
are represented as probabilities for loop connectivities in random ensembles of closed
loops. This is in contrast with most of the classical representations that write correlation
functions as ratios of partition functions of loops, where in the numerator, in addition to
loops, one also sums over open paths between the points of insertion in the correlator
[7,35]. We note that a similar idea to ours appears in the work of Benassi and Ueltschi
[4], but due to technical differences in the framework (see Remark 4), the formula for
the two-point function obtained in [4] is not as transparent as ours.

Let G = (V, E) be a finite, not necessarily planar graph. We say that a multigraph
M on V is a submultigraph of G if after identifying the multiple copies of the same
edge inM it is a subgraph of G.

Definition (Loop configurations outside S). Let M be a submultigraph of G, and let
S ⊆ V . A loop configuration (on M) outside S is a collection of

• unrooted directed loops on M avoiding S, and
• directed open paths on M starting and ending in S (and not visiting S except at
their start and end vertex),

such that every edge of M is traversed exactly once by a loop or a path.
We write LS for the set of all loop configurations outside S, and define a weight for

ω ∈ LS by

λS
β(ω) =

∏
v∈V \S

1

(degM(v)/2)!
∏
e∈E

1

Me!
(β

2

)Me
, (7)

where M is the underlying multigraph, and Me is the number of copies of e in M.
When S = ∅, a configuration is composed only of loops that can visit every vertex in
V , and we simply call it a loop configuration.
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An important feature of the weight (7) is that it depends on ω only through M.
Also note, that if S′ ⊆ S, then there is a natural map ρ : LS′ → LS that consists in
forgetting (or cutting) the loop connections at the vertices in S \ S′. Under this map,
each configuration in LS has

∏
v∈S\S′ (degM(v)/2)! preimages, each of them having

the same weight, and hence
∑

ω̃∈ρ−1[ω]
λS′

β (ω̃) = λS
β(ω). (8)

This consistency property will be useful later on.
For now, let |n| : E → N be the amplitude of a current n, i.e.

|n|vv′ := n(v,v′) + n(v′,v).

Definition (Multigraph of a current and consistent configurations). For a current n, let
Mn be the submultigraph of G where each edge e ∈ E is replaced by |n|e (possibly
zero) parallel copies of e. A loop configuration on Mn is called consistent with n if
for every edge (v, v′) ∈ �E , the number of times the loops traverse a copy of vv′ in the
direction of (v, v′) is equal to n(v,v′). We defineLS

n to be the set of all loop configurations
onMn outside S that are consistent with n.

For ϕ : V → Z, let �ϕ = {n : δn = ϕ},
Zϕ
G,β =

∑
n∈�ϕ

wβ(n),

and S(ϕ) = {v ∈ V : ϕv �= 0}. For a current n, with a slight abuse of notation, we also
write S(n) = S(δn). Note that LS

n can be nonempty only if S(n) ⊆ S. Indeed, each
path and loop that enters a vertex in V \ S must also leave it, and hence the total number
of incoming and outgoing arrows at each such vertex must be the same. For ϕ : V → Z,
we also define

LS
ϕ =

⋃
n∈�ϕ

LS
n.

Again, this is nonempty only if S(ϕ) ⊆ S. We will write LS
0 , where 0 denotes the zero

function on V .
We now relate the weights of loops to those of currents. To this end, note that for

each edge vv′ ∈ E , there are exactly

|n|vv′ !
n(v,v′)!n(v′,v)!

ways of assigning orientations to it so that the result is consistent with n. Moreover,
independently of the choices of orientations, there are exactly (degMn

(v)/2)! possible
pairings of the incoming and outgoing edges at each vertex v ∈ V \ S. Combining all
this we arrive at a crucial loop representation for current weights: if S(n) ⊆ S, then

wβ(n) =
∑

ω∈LS
n

λS
β(ω). (9)

An important observation here is that the left-hand side is independent of S, and hence
so is the right-hand side.
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3.1. Coupling with the height function. We now apply this framework to the case of two
sourceless currents and a coupling with the corresponding height function. From (9) we
have

Z0
G,β =

∑

ω∈L∅
0

λ∅
β(ω) (10)

where 0 denotes the zero function on V .

Remark 2 This loop representation of the partition function, though obtained via a dif-
ferent procedure, goes back to the work of Symanzik [35], and Brydges, Fröhlich and
Spencer [7].

Moreover, in the case when G is planar we immediately get the following distribu-
tional identity. Define PG,β to be the probability measure on L0 := L∅

0 induced by the
weights λβ := λ∅

β . For each face u ∈ U of G, and ω ∈ L0, define Wω(u) to be the total
net winding of all the loops in ω around u.

Proposition 7 The law of (W (u))u∈U under PG,β is the same as the law of the height
function (h(u))u∈U under PG,β .

3.2. The two point-function and path reversal. Wenow turn to the loop representation of
the two-point function. For reasons that will become apparent soon, we need to consider
the two-point function of the squares, i.e., 〈σ 2

a σ̄ 2
b 〉.

Since the resulting currents will have sources, we will need to consider nonempty
S in the construction above. To this end, fix two vertices a, b ∈ V , and and define
ϕ = 2(δa − δb), where δa(v) = 1{a = v}. To lighten the notation, will write a, b
instead of {a, b} for the set S. As for the partition function, expanding the exponential in
the Gibbs–Boltzmann weights (1) into a power series in 1

2β Jvv′σvσ̄v′ for each directed
(v, v′) ∈ �E , and integrating out the σ variables, we get

〈σ 2
a σ̄ 2

b 〉G,β = Zϕ
G,β

Z0
G,β

=
∑

ω∈La,b
ϕ

λ
a,b
β (ω)

Z0
G,β

, (11)

where the first equality classically follows from the high-temperature expansion of cor-
relation functions and the second one is a consequence of (9).

We will write Pa,b(ω) for the set of paths in ω that start at a and end at b, and define

ma,b(ω) = |Pa,b(ω)|.
We now want to “erase the sources” at a and b from the currents underlying La,b

ϕ , and

hence rewrite the numerator as a sum over La,b
0 . We will then ultimately connect the

open paths at a and b in all possible ways, and hence get a sum overL∅
0 (see Fig. 1 for an

example). To this end note that in each ω ∈ La,b
ϕ there are exactly two more paths going

from a to b, than those going from b to a, i.e., ma,b(ω) = mb,a(ω) + 2. The elementary
operation that wewill perform on the former paths is reversal. To this end, denote by r(γ )

the path γ with the orientation of all the visited edges reversed. Obviously this does not
change the underlying multigraph, and hence also the weight of the loop configuration.
The crucial observation now is that it maps ω ∈ La,b

ϕ to a configuration ω′ ∈ La,b
0 , and
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hence erases the sources of the underlying currents. Indeed one can easily check that
after reversing a path, the number of incoming minus the number of outgoing edges at
every vertex v /∈ {a, b} in ω′ is the same as in ω, whereas at a (resp. b) this number is
decreased (resp. increased) by two. More precisely, our transformation maps bijectively
a pair (ω, γ ) where ω ∈ La,b

ϕ and γ ∈ Pa,b(ω) to the pair (ω′, r(γ )) where ω′ ∈ La,b
0

and r(γ ) ∈ Pb,a(ω
′). Moreover, mb,a(ω

′) = mb,a(ω) + 1, which in particular means
that m(ω′) > 0. Since path reversal does not change the weight of a loop configuration,
we obtain

∑

ω∈La,b
ϕ

λ
a,b
β (ω) =

∑

ω∈La,b
ϕ ,γ∈Pa,b(ω)

1

mb,a(ω) + 2
λ
a,b
β (ω)

=
∑

ω′∈La,b
0 ,γ ′∈Pb,a(ω

′)

1

mb,a(ω′) + 1
λ
a,b
β (ω′)1{ma,b(ω

′) > 0}

=
∑

ω′∈La,b
0

mb,a(ω
′)

mb,a(ω′) + 1
λ
a,b
β (ω′)1{mb,a(ω

′) > 0}

=
∑

ω′′∈L∅
0

mb,a(ω
′′)

mb,a(ω′′) + 1
λ∅

β(ω′′)1{mb,a(ω
′′) > 0},

where in the second equality we used path reversal, the last equality follows from (8)
with S′ = ∅, and where, with a slight abuse of notation, for ω′′ ∈ L∅

0, mb,a(ω
′′) is the

number of pieces of loops going from b to a and not visiting b nor a except for the
start and end vertex. Recall that PG,β is the probability measure on L∅

0 induced by the
weights λ∅

β , and note that mb,a has the same distribution as ma,b under PG,β (the law
on loops is invariant under a global orientation reversal). We therefore obtain from (10)
and (11) the following loop representation of the two-point function.

Lemma 8 Let a, b ∈ V be distinct. Then

〈σ 2
a σ̄ 2

b 〉G,β = EG,β

[ ma,b

ma,b + 1

]
,

and in particular

1

2
PG,β(ma,b > 0) ≤ 〈σ 2

a σ̄ 2
b 〉G,β ≤ PG,β(ma,b > 0).

Let us finish with a number of remarks.

Remark 3 We stress again that the crucial property of this loop representation is that
the measure PG,β is supported on collections of closed loops, and is independent of the
choice of a and b. A similar idea was used by Lees and Taggi [23] to study spin O(n)

models with an external magnetic field. Moreover, by Proposition 7 and Lemma 8, the
random loops under PG,β carry probabilistic information about both the spin XY model
(in terms of correlation functions) and its dual height function (as an exact coupling).
An analogous role for the Ising and Ashkin–Teller model is played by the (double)
random current measure that encodes both an integer-valued height function and the spin
correlations [10,25,26]. The difference is that for the XY model, the correlations are
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Fig. 1. Left to right: an Eulerian multigraphM; a loop configuration ω ∈ La,b
2(δa−δb)

onM (a is the top left

and b the bottom right vertex) together with a path from a to b marked red; a loop configuration ω′ ∈ La,b
0

with the path reversed; and one of the final loop configurations ω′′ ∈ L∅
0 corresponding to ω′, i.e., such that

ρ(ω′′) = ω′. Here ma,b(ω) = 3, mb,a(ω) = 1, and ma,b(ω
′) = mb,a(ω′) = 2

determined by loop connectivities instead of percolation connectivities. This comparison
offers an alternative explanation for the different types of phase transition in discrete
and continuous spin systems.

Remark 4 The approach above is different from [4,7,23,35] in that in the loop config-
urations, we never make connections at vertices with sources. This leads to different
combinatorics than in [4], and in particular a more transparent formula for the two-point
function.

Remark 5 We call a multigraphM Eulerian if its degree is even at every vertex. Another
way to sample the loop configuration that easily follows from the above definitions is
the following procedure:

• First sample an Eulerian submultigraph M of G with probability proportional to

E(M)
∏
e∈E

1

Me!
(β

2

)Me
,

where E(M) is the number of Eulerian orientations of M, i.e., assignments of
orientations to every edge of M with an equal number of incoming and outgoing
edges at every vertex.
• Then choose uniformly at random an Eulerian orientation of M.
• Finally, at each vertex, independently of other vertices, connect the incoming edges
with the outgoing edges uniformly at random.

Remark 6 Using the same argument as above one obtains the following formula for
higher power two-point functions. For k ≥ 1, we have

〈σ 2k
a σ̄ 2k

b 〉G,β = EG,β

[ (ma,b)k

(ma,b + k)k

]
,

where (m)k = m(m − 1) · · · (m − k + 1) is the falling factorial. One can also consider
multi-point functions and get more complicated loop representation formulas.

Remark 7 The isomorphism theorem of Le Jan [21] says that the discrete complex Gaus-
sian free field can be coupled with a Poissonian collection of random walk loops, the
so called random walk loop soup, in such a way that one half of the square of the ab-
solute value of the field is equal to the total occupation time of the random walk loops.
On the other hand, it is immediate that conditioned on the absolute value of the field,
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its complex phase is distributed like the XY model with coupling constants depending
on this absolute value. With some work, e.g. using [22], one can show that under this
conditioning the random walk loops have the same distribution as the loops described
above.

4. Delocalisation Implies No Exponential Decay

In this section we prove that if the height function delocalises, then the spin correlations
are not summable along certain sets of vertices. In the next section, we will show how to
apply this together with the delocalisation results of Lammers [19] to deduce a BKT-type
phase transition in a wide range of periodic planar graphs.

Suppose � = (V, E) is a translation invariant planar graph, and write

〈σa σ̄b〉�,β = lim
G↗�

〈σa σ̄b〉G,β (12)

for the infinite volume two-point function, where the limit is taken along any increasing
sequence of subgraphs G exhausting �. That this is well defined is guaranteed by the
fact that the sequence is nondecreasing, i.e., 〈σa σ̄b〉G,β ≤ 〈σa σ̄b〉G ′,β if G is a subgraph
of G ′, which in turn is a classical consequence of the Ginibre inequality [16].

Definition Let 0 be a distinguished face of �. A bi-infinite self-avoiding path in � that
goes through at least one edge incident to 0 is called a cut (at 0). Note that a cut L
naturally splits into two connected infinite sets of vertices L+ and L− with the property
that any cycle in � that surrounds 0 must intersect both L+ and L−.

The main quantity of interest for us will be the sum of correlations along cuts. To be
more precise for ε > 0, let

χε
�,β(L) =

∑
a∈L+,b∈L−

(〈σaσ b〉�,β)2−ε. (13)

Proposition 9 For every ε > 0, there exists C = C(ε, β, �) < ∞ such that for all finite
subgraphs G of � containing 0, we have

EG,β [|h(0)|] ≤ C inf
L

χε
�,β(L),

where the infimum is over all cuts at 0.

Before presenting the proof, let us mention that a direct corollary of this proposition
is the following. A natural example of a cut is any path that stays at a constant distance
from a straight line going through 0. In this case it is easy to see that χε

�,β(L) is finite
whenever there is exponential decay of spin correlations. We can now state the main
conclusion of this section.

Corollary 10 If the height function delocalises in the sense of Theorem 4, then

χε
�,β(L) = ∞

for all ε > 0 and all cuts L at 0. In particular the two-point function does not decay
exponentially fast with the distance between the vertices.
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Proof We know that situation (i) from Theorem 4 does not happen. This means that
supn EBn ,β [|h(0)|] = ∞, and the claim follows directly from Proposition 9. ��
Remark 8 One naturally expects that the localisation-delocalisation phase transition for
the height function happens at the same temperature as the BKT transition for the XY
model. The remaining part of this prediction is therefore to show that if the spin corre-
lations do not decay exponentially, then the height function delocalises. We do not do
this in this article.

Recall that ma,b is the number of paths (pieces of loops) in a loop configuration that
go from a to b. We will need the following lemma.

Lemma 11 For all β > 0 and p > 1, there exists a Cp < ∞ such that for all finite
graphs G = (V, E) and all a, b ∈ V ,

EG,β [ma,b] ≤ Cp degG(a)
(
PG,β(ma,b > 0)

) 1
p .

Proof Fix β > 0, G = (V, E) and a, b ∈ V , and let ω ∈ L0 be a loop configuration on
G. Denote by ωe, the number of visits of all loops in ω to an undirected edge e ∈ E . If
there are m ≥ 1 paths going from a to b in ω, then in particular

∑
c∼a ω{a,c} ≥ m. This

implies that

EG,β [ma,b] ≤ EG,β

[ ∑
c∼a

ω{a,c}1{ma,b > 0}
]

≤ degG(a)max
c∼a

EG,β [ω{a,c}1{ma,b > 0}].

Applying Hölder’s inequality gives

EG,β [ω{a,c}1{ma,b > 0}] ≤ (
EG,β [ωq

{a,c}]
)1/qPG,β(ma,b > 0)1/p,

where 1/p + 1/q = 1. We now notice that by definition, ωe under PG,β has the same
distribution as the amplitude |n|e under PG,β . Therefore, to finish the proof it is enough
to show that for all q > 1, there exists Cq < ∞ depending on β but independent of G
such that

EG,β [|n|qe ] ≤ Cq . (14)

We postpone the proof of this bound to Lemma 13 and Lemma 14. ��
The last ingredient that we will need is the following inequality

Lemma 12 For any a, b ∈ V , we have

〈σ 2
a σ̄ 2

b 〉G,β ≤ 2〈σa σ̄b〉2G,β .

Proof A version of the Ginibre inequality (see e.g. [3]) says that

〈�(σa)�(σb)�(σa)�(σb)
〉
G,β

≤ 〈�(σa)�(σb)
〉
G,β

〈�(σa)�(σb)
〉
G,β

,

which after rearrangement gives the desired inequality. ��
We are now ready to prove the main theorem.
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Proof of Proposition 9 Fix a finite subgraph G and a cut L . By Proposition 7 the height
function h(0) under PG,β has the sam law as W (0) – the total net winding around 0
of all loops in a loop configuration – drawn according to PG,β . Moreover, any piece of
a loop that adds to the winding (in any orientation) must intersect both L+ and L− by
definition of a cut. Therefore, taking p = 2/(2 − ε), we have

EG,β [|h(0)|] = EG,β [|W (0)|]
≤

∑
a∈L+,b∈L−

EG,β [ma,b]

≤ C̃
∑

a∈L+,b∈L−
(PG,β(ma,b > 0))1/p

≤ 2C̃
∑

a∈L+,b∈L−
(〈σ 2

a σ̄ 2
b 〉G,β)1−ε/2

≤ 4C̃
∑

a∈L+,b∈L−
(〈σa σ̄b〉G,β)2−ε

≤ Cχε
�,β(L).

where the third line follows from Lemma 11, the forth one from Lemma 8, the fifth one
from Lemma 12, and the last one from (12). This completes the proof. ��

It therefore remains to show (14), which will directly follow from Lemma 13 and
Lemma 14 below. To that end, define for k ∈ N and β > 0, a random variable Yk by

Pβ(Yk = i) ∝ 1

i !(i + k)!
(β
2

)2i+k
,

so that the normalizing constant is Ik(β). For e = vv′, let

|∇h|e = |n(v,v′) − n(v′,v)|
be the absolute value of the gradient of the height function across the dual edge e†. Note
that the random variables (Xe = Xe(n))e∈E defined through

Xe = |n|e − |∇h|e
2

have the same distribution as Y|∇h|e . Moreover, conditionally on |∇h|, they are an in-
dependent family. To show (14) it is enough to bound the moments of |∇h|e and Xe
separately, which we will now do.

Lemma 13 For all β > 0 and all r ∈ N, there exists a Cr < ∞ such that for all finite
planar graphs G = (V, E) and all e ∈ E,

EG,β [|∇h|re] ≤ Cr .

Proof Fix a finite planar graph G, and let e = vv′ ∈ E . Write Pe,β for the law of the
height function on the graph consisting of just one edge e, say with h(v) = 0. We claim
first that there exists some absolute constant C not depending on G, e or r such that

EG,β |∇h|re ≤ CEe,β |∇h|re. (15)
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This implies the result because (as Vβ is convex and symmetric) the law of ∇he is
log-concave and symmetric under Pe,β so that it has all moments.

Let G \ e be the graph without the edge e. For l ∈ Z, we define �l(G) = {n on G :
δn = l(δv − δv′)}, and

Zl
G =

∑
n∈�l (G)

wβ(n),

and analogously Zl
G\e. Similarly to (11), we get from the high-temperature expansion

of correlation functions that

〈σ l
vσ̄

l
v′ 〉G\e,β = Zl

G\e
Z0
G\e

.

By the definition of the height function and currents, we therefore have

PG,β(|∇h|e = l) = Il(β)
(Zl

G\e + Z−l
G\e)

Z0
G

= 2Il(β)
Zl
G\e

Z0
G\e

Z0
G\e
Z0
G

≤ 2Il(β)

= Pe,β(|∇h|e = l)Z0
e ,

where we used the obvious bounds 〈σ l
vσ̄

l
v′ 〉G\e,β ≤ 1, and Z0

G\e/Z0
G ≤ 1. Setting

C = Z0
e we establish (15). ��

Lemma 14 For all β > 0 and all r ∈ N, there exists a C̃r < ∞ such that for all finite
planar graphs G = (V, E) and e ∈ E,

EG,β [|Xe|r ] ≤ C̃r .

Proof For two nonnegative integers i, r , let (i)r = i(i − 1) · · · (i − r + 1) be the falling
factorial with the convention that (i)0 = 1. Note that (i)r = 0 whenever i < r . It will
be convenient to look at the falling factorial moments. First note that by definition of Yk ,

Eβ [(Yk)r ] = 1

Ik(β)

∑
i≥0

(i)r
i !(i + k)!

(β
2

)2i+k =
(β
2

)r
Ik(β)

∑
i≥0

1

i !(i + k + r)!
(β
2

)2i+k+r

= (
β
2

)r Ik+r (β)

Ik(β)
.

By the Turán inequality (5), the map k �→ Ik+1(β)/Ik(β) is decreasing and hence

Eβ [(Yk)r ] = (β
2

)r Ik+r (β)

Ik(β)
≤ (β

2

)r Ir (β)

I0(β)
=: C.

Now note that (i)r ≥ |i − r |r when i ≥ r , and hence ir ≤ 2r−1(|i − r |r + rr ) ≤
2r ((i)r + rr ). Finally

Eβ [|Xe|r | |∇h|e = k] = Eβ [|Yk |r ] ≤ 2r (C + rr ) := C̃r ,

where the last bound does not depend on k. Integrating over the possible values of |∇h|e
concludes the proof. ��
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Fig. 2. The transformation to a triangulation. The red edge on the right is the edge with different potential

5. Existence of Phase Transition in the XY Model

In this section, we prove that for all translation invariant planar graphs � = (V, E), the
XY model undergoes a non-trivial phase transition in terms of the quantity χε

β(L). As
before, let 0 denote an arbitrary distinguished face of �. We define

β0 = inf{β > 0 : for all ε > 0 and all cuts L at 0, χε
β(L) = ∞}.

Theorem 15 Let � be as above. Then β0 < ∞.

By Corollary 10 it is enough to show that for any such �, there exists a finite β0 >

0 such that the associated height function delocalises in the sense that there are no
translation invariant Gibbs measures on the dual �†. We first implement this strategy
for triangulations, where delocalisation can be shown directly using the general result
of Lammers [19] (Theorem 2).

Proof of Theorem 15 for triangulations Let � be a translation invariant triangulation.
Note that condition (6) in our case is equivalent to I1(β)/I0(β) ≥ 1

2 . It is known that
this fraction converges to 1 as β → ∞ (see for example [33]), and therefore in light of
Theorem 2, there are no translation invariant Gibbs measures for β large enough. ��

To extend beyond triangulations, we will use a different approach. We stress that in
particular, we will not show delocalisation of the height function on graphs that are not
triangulations. Instead, we exploit monotonicity in coupling constants to bound from
below the spin correlations on an arbitrary translation invariant graph by correlations
on a modified graph that is a triangulation. We explain this procedure in detail for the
square lattice, and briefly mention the extension to other lattices at the end.

In what follows, we will need the following well known monotonicity of spin corre-
lations that is a classical consequence of the Ginibre inequality [16].

Lemma 16 For each (infinite or finite) graph G = (V, E), β > 0, e ∈ E, and a, b ∈ V ,
the function

Je �→ 〈σa σ̄b〉G,β

is nondecreasing.

Proof of Theorem 15 for the square lattice Let � = (V, E) denote the square lattice.
In order to use (6),we need to transform� into a triangulation. See Fig. 2 for guidance.

Fix a square and double the bottom and left edge and put coupling constants β/2 on
the doubled edges instead of β. Next, double the common vertex of the left and bottom
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Fig. 3. The transformation of a general graph to a triangulation (after identifying the resulting multiple edges).
The dashed edges are such that the coupling constant is set to infinity first, and then to zero (which is equivalent
to removing the edges) and hence the spin correlations in the final graph are smaller than in the original graph

edge and add an additional edge e, on which we set the coupling constant to infinity.
This does not change the distribution of the spins. Finally, set the coupling constant on
the edge e to 0, which is equivalent to removing the edge from the square, and repeat the
procedure for all other squares. In this way, we obtain a new lattice �′, which consists
of squares with a diagonal on which there is an additional vertex. Note that all coupling
constants are now equal to β/2. By Lemma 16,

〈σa σ̄b〉�,β ≥ 〈σa σ̄b〉�′,β/2 (16)

for all pairs of vertices a, b in �, using the natural embedding of � on �′.
Since�′ is a translation invariant graph, the dichotomy statement of Theorem 4 holds.

To show that there are no translation invariant Gibbs measures for the associated height
function, notice that the dual (�′)† of �′ (after collapsing the doubled edges to a single
edge) is trivalent. Moreover, the height function on any finite subgraph of (�′)† has a
potential given by V ′

e = Vβ/2
e for the nondiagonal edges and V ′

e = 2Vβ/2
e otherwise, and

the potential V ′ satisfies Lammers’ condition (6) precisely when (I1(β/2)/I0(β/2))2 ≥
1
2 . Since the fraction on the left-hand side tends to 1 as β → ∞, we can choose β large
enough so that there are no translation invariant Gibbs measures for the height function
on (�′)†.

Note that every cut on � embeds naturally as a cut on �′. Therefore, by Proposition 9
together with (16), we have that for each cut L on � and each ε > 0,

χε
�,β(L) ≥ χε

�′,β/2(L) = ∞.

This finishes the proof. ��
To extend this proof to general graphs, we make each face into a triangulation by

“zig-zagging” (see Fig. 3).

6. No Exponential Decay Implies a Power-Law Lower Bound

In this section we finish the proof of the main theorem by showing that the absence of
exponential decay implies a power-law lower bound on the two-point function when
� = Z

2. Similar arguments can be applied to other graphs that in addition to being
translation invariant possess reflection and rotation symmetries.

We will use the following two classical inequalities.



102 D. van Engelenburg, M. Lis

Fig. 4. The [−n, n]2 box �n shaded in grey and the L1 ball �′
n of radius 2n

Lemma 17 (Lieb–Rivasseau inequality [24,32]). Let G = (V, E) be any graph. Let
a, b ∈ V be distinct, and let H be a finite subgraph of G containing a and not containing
b, and let ∂H be the set of vertices of H adjacent to at least one vertex outside H. Then

〈σa σ̄b〉G,β ≤
∑
c∈∂H

〈σa σ̄c〉H,β〈σcσ̄b〉G,β .

Lemma 18 (Messager–Miracle-Sole inequality [30]). For any n ∈ Z, the two sequences
〈σ0σ̄(n,k)〉Z2,β and 〈σ0σ̄(n+k,n−k)〉Z2,β are nonincreasing in k for k ≥ 0.

Proof of Theorem 1 Let 0 denote the vertex at the origin. For a finite subgraph G of Z2

containing 0, let

ϕG,β =
∑

w∈∂G

〈σ0σ̄w〉G,β ,

where ∂G is the set of vertices of G adjacent to at least one vertex outside G. Define

βc = sup{β : there exists finiteG withϕG,β < 1}. (17)

We will show that βc satisfies the properties listed in Theorem 1. To this end first fix
β < βc. By Lemma 16, there exists a finite graph G with ϕG,β < 1. Take m such that
G ⊂ �m and let x ∈ V . Fix n so that (n + 1)m ≥ |x |1 ≥ nm. Iteratively applying the
Lieb–Rivasseau inequality [24,32] to translates of G gives

〈σ0σ̄x 〉Z2,β ≤
∑

w∈∂G

〈σ0σ̄w〉G,β

∑
w′∈∂(G+w)

〈σwσ̄w′ 〉G+w,β〈σw′ σ̄x 〉Z2,β ≤ · · · ≤ (ϕG,β(0))n,

hence (i) holds true if β < βc.
To conclude (ii), note that for each finite G, ϕG,β is a continuous function of β, and

hence the set in (17) is open. This means that for every β ≥ βc, we have ϕG,β ≥ 1 for
all finite subgraphs G.



An Elementary Proof of Phase Transition in the Planar XY Model 103

Now let�n be the box [−n, n]2, and let�′
n be the ball in L1 of radius 2n (see Fig. 4).

We write xn := (n, n) ∈ ∂�n ∩ ∂�′
n and an = 〈σ0σ̄xn 〉Z2,β . By rotation symmetry and

the Messager–Miracle-Sole [30] inequality, we have

an = min
v∈∂�n

〈σ0σ̄v〉Z2,β = max
v∈∂�′

n

〈σ0σ̄v〉Z2,β .

For β ≥ βc, we moreover have
∑

w∈∂�′
n

〈σ0σw〉Z2,β ≥ ϕ�′
n ,β

≥ 1.

These two observations together imply that for any v ∈ ∂�n ,

〈σ0σ̄v〉Z2,β ≥ an ≥ 1

|∂�′
n|

= 1

8n
≥ 1

8|v|
which implies (i i).

Finally by Theorem 15 we know that there exists a finite β at which there is no
exponential decay, and by classical expansions there exists a nonzero β at which there
is exponential decay (see e.g. [1]). We conclude that 0 < βc < ∞. ��
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