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Abstract: We present a generalized perturbative analytical formalism for evaluation and
optimization of the chromatic dispersion of complex ultrafast optical systems. Notably, we
identify polynomial and recursive relations associated with the chromatic dispersion orders that are
identical to the Lah and Laguerre transforms. We explicitly outline the first ten dispersion terms
and dispersion slope parameters and visualize the significance of the chromatic dispersion orders
for several advanced ultrafast optical and photonic systems consisting of various optical materials
and nanostructures, grating and prism-pair compressors, and hollow-core photonic anti-resonant
fibers. The derived simple hypergeometric transforms are applicable for evaluation of infinitely
high orders for any type of frequency-dependent phase and can facilitate the optimization of
complex optical systems with controlled dispersion balance at the single-cycle waveform extreme.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Often assumed negligible, the high chromatic dispersion orders are commonly ignored in complex
ultrafast optical system designs and analyses. In the present study, we revisit this longstanding,
classical phenomenon, dating back to the research of Pierre Laplace and George Airy on the
dispersion of water waves, and of Ernst Abbe on the dispersion in optical systems. However, we
approach these analyses with a new emphasis on obtaining generalized closed-form expressions
for the chromatic dispersion orders, and further unveiling their significance in the propagation
dynamics of ultrashort single-cycle laser pulses for cutting-edge dispersion control. Considering
that the accuracy of the evaluated dispersion orders is linked to the precision with which the
phase, the optical path, or the refractive index are specified, and vice versa, this formalism can
also facilitate more precise interferometric measurements of the refractive index and aid the
design of novel optical materials, nanostructures, and optical systems based on desired dispersion.
Furthermore, from a practical point of view, the evaluation speed of the simple hypergeometric
series can be competitive even against algorithms such as the fast Fourier transform (FFT).

The chromatic dispersion phenomenon has worked both in favor of and against some of the most
significant innovations in optics and photonics in the past decades. The group delay dispersion
(GDD) and the higher orders of dispersion have been a major hindrance to the expansion of
the fiber-based telecommunications. With the ever-growing need to increase the bit-rate-length
transfer product through dispersion-optimized hair-thin fibers, the technology has been pushed to
its limits. On one hand, pulsed signals are desired for information transfer. These pulses, on
the other hand, are expected to retain their structure to the extent that the receiver can decode
the data. Thus, the use of long narrow-band pulses at the zero GDD dispersion wavelength has
been a compromise [1–5], considering that even a lengthy sub-picosecond, narrow-band pulse
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may spread beyond recognition when propagating tens of kilometers. At present, the dispersion
can be manipulated through sections of dispersion-shifted fibers, Bragg gratings, etc. However,
counter-intuitively, operating away from the zero-dispersion is often advantageous for increased
data transmission through multiple channels (wavelength division multiplexing), in which some
residual dispersion is required by design to avoid signal distortions [6]. The performance of such
frameworks can be enhanced through the precise calculation and control of the high orders of
dispersion in the next-generation platforms.

In another field of optics and similarly to the radar ranging systems, the chirp pulse amplification
technique – in which a pulse is first stretched in time to prevent optical damage, then amplified,
and lastly compressed to femtosecond time scales – has opened the gateways to the development
of immensely high-average power and high-peak power laser systems at high pulse repetition rates
(kHz to MHz) [7–9]. At the same time, achieving transform-limited ultrashort pulse durations
requires a nearly impossible balance of the chromatic dispersion acquired in the stretcher and the
subsequent laser amplification stages in which the pulses accumulate a linear and nonlinear phase
passing through lengthy sections of various materials. Whereas groove-matched or mismatched
gratings or prism-based stretchers and compressors are suitable for compensation of the low
chromatic dispersion orders, the adequate balance of the higher orders of dispersion is not always
possible due to the different rates of linear or nonlinear phase accumulation [10,11]. In such
scenarios, it is beneficial first to use advanced multilayered thin-film structures to passively
mitigate the dispersion imbalance further, followed by additional active compensation of some of
the remaining very high orders of dispersion [12–14]. However, generating near transform-limited
laser pulses requires new apparatus and high-performance algorithms.

To address such challenges, our analyses begin with a detailed description and derivation of
analytical closed-form dispersion expressions which, in the second part of the paper, are utilized
to assess ultrahigh chromatic dispersion orders of various conventional ultrafast optical systems.

2. Analytical Lah-Laguerre optical formalism for chromatic dispersion

We start from first principles to craft an intuitive and comprehensive model of the perturbative
chromatic dispersion. Any well-behaved wavepacket depicting a broadband laser pulse E(ω |λ) =
|E |exp(−iφ(ω|λ)) in a dispersive medium, can be represented as a sum of sinusoidal wavelets
traveling at different phase velocities that are frequency-dependant. The propagation of such a
wave in a dispersive system is a linear and causal phenomenon that distorts the amplitude and the
phase of the pulse in the temporal domain. First, we consider the laser intensities for which the
interactions are linear. The dispersion relation for the phase is:

φ (ω |λ) = k(ω)z =
ω

c
n(ω)z =

2π
λ

n(λ)z =
ω

c
OP(ω) =

2π
λ

OP(λ) = ωτ(ω) =
2π
τ0
τ(ω) (1)

where OP(ω |λ) is the optical path, n(ω |λ) is the refractive index of the medium, τ(ω |λ) is the
corresponding temporal interval, and τ0 is the single-cycle pulse duration for a wavelet with a
wavelength λ. In such a picture, the spectral content of the signal does not change but rather
rearranges temporally over a certain band around an average frequency ω0. Historically, the
dispersion orders have been defined in the frequency space through the Taylor expansion of the
phase φ(ω |λ), or the wavevector k(ω |λ) around the pulse intensity-averaged frequency or the
carrier frequency at the pulse peak [15]:

φ(ω) = φ |ω0 +
∂φ

∂ω

|︁|︁|︁|︁
ω0

(ω − ω0) +
1
2
∂2φ

∂ω2

|︁|︁|︁|︁
ω0

(ω − ω0)
2 + . . . +

1
p!
∂pφ

∂ωp

|︁|︁|︁|︁
ω0

(ω − ω0)
p + . . . =

= φ |ω0 + τg |ω0 (ω − ω0) +
1
2

GDD (ω − ω0)
2 + . . . +

1
p!

POD (ω − ω0)
p + Rp

(2)

Such a representation is convenient as it requires knowledge only of a small number of spectral
derivatives at a single point. The first derivative ∂ϕ

∂ω

|︁|︁|︁
ω0
= τg corresponds to the group delay
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(GD), which results in a temporal lag of the pulse envelope. The presence of higher orders causes
distortions in the temporal pulse shape. The second term ∂2ϕ

∂ω2

|︁|︁|︁
ω0
= ∂

∂ω τg(ω)
|︁|︁
ω0

corresponds

to the group delay dispersion (GDD), and in general, ∂pϕ
∂ωp

|︁|︁|︁
ω0
= ∂p−1

∂ωp−1 τg(ω)
|︁|︁|︁
ω0

is the pth order

dispersion (POD). Finally, Rp = maxω≤ξ≤ω0
∂p+1ϕ(ξ)
∂ξp+1

(ω−ω0)
p+1

(p+1)! is the Lagrange error after the
first p terms. This description requires knowledge of the particular τg(ω) and can be used to
derive recursive expressions for functions with repetitive or sequential derivatives [16]. Inverse
chain rules need to be considered to estimate the chromatic dispersion when ω(τg) can be
easily specified, as in the case of the chromatic dispersion in extreme high order harmonic
generation [17–19]. The perturbative representation for the chromatic dispersion is ideal for
optimization problems in which the dispersion originating from several sources and at variable
levels of the pulse intensity must be precisely balanced, e.g., in complex laser chirped pulse
amplification systems, as opposed to situations where the effect on the pulse propagation caused
by uniform dispersive systems is of interest, e.g., in waveguiding photonic structures in which
such perturbative approximations can be avoided [20–22].

In a similar fashion, the wavevector k(ω |λ) can be expanded in a Taylor series [15]:

k(ω) =k |ω0 +
∂k
∂ω

|︁|︁|︁|︁
ω0

(ω − ω0) +
1
2
∂2k
∂ω2

|︁|︁|︁|︁
ω0

(ω − ω0)
2 + · · · +

1
p!
∂pk
∂ωp

|︁|︁|︁|︁
ω0

(ω − ω0)
p + · · · =

= k0 + v−1
gr (ω − ω0) +

1
2

GDD(ω − ω0)
2 + · · · +

1
p!

POD(ω − ω0)
p + Rp

(3)

Again, the lowest term ∂k
∂ω

|︁|︁
ω0
= 1

vg
=

τg
z represents the inverse group velocity, whereas the

second term ∂2k
∂ω2

|︁|︁|︁
ω0
= ∂

∂ω v−1
gr

|︁|︁
ω0

represents the GDD. In general, ∂pk
∂ωp

|︁|︁
ω0
= ∂p−1

∂ωp−1 v−1
gr

|︁|︁|︁
ω0

is the

pth order dispersion (POD), which may be significant in ultrashort pulse propagation. When
pulses have a substantial spectral bandwidth, it is necessary to consider many of the high orders
in the Taylor expansion. Recursive relations of the dispersion orders and their effects on the pulse
broadening for specific systems, such as optical fibers and waveguides, have previously been
investigated [23,24].

In the following paragraphs, we derive a closed-form, general, Lah-Laguerre optical formalism
(LLOF) for the dispersion orders of an optical system described by a known phase φ(ω |λ), a
refractive index n(ω|λ), or an optical path OP(ω |λ). The chromatic dispersion orders can be
easily evaluated in the frequency domain by obtaining the successive derivatives of the wavevector
k(ω) or the phase φ(ω). The first ten terms are specified in Appendix A and C. In general:

∂p

∂ωp k(ω) =
1
c

(︃
p
∂p−1

∂ωp−1 n(ω) + ω
∂p

∂ωp n(ω)
)︃
=
ω1−p

c

p∑︂
m=0

V(p, m)ωm ∂
m

∂ωm n(ω) (4)

∂p

∂ωp φ(ω) =
1
c

(︃
p
∂p−1

∂ωp−1 OP(ω) + ω
∂p

∂ωp OP(ω)
)︃
=
ω1−p

c

p∑︂
m=0

V(p, m)ωm ∂
m

∂ωm OP(ω) (5)

where p = 1, 2, 3 . . . are integral numbers. The matrix coefficients V(p, m) = pδp−1,m + δp,m
up to the tenth order, p≤10, are listed in Table 1, Appendix A. The Kronecker delta function δ
takes values δp,m = 1 for p = m, and 0 otherwise. The inverse transforms can be expressed as:
ωp ∂p

∂ωp f (ω) = (−1)p c
ω

∑︁p
m=0 E(p, m)ωm ∂m

∂ωm
(︁
ω
c f (ω)

)︁
, with f representing the refractive index

n(ω) or the optical path OP(ω). The matrix coefficients E(p, m) = (−1)m p!
m! are listed in Table 6,

Appendix E. We evaluate consecutively the frequency and wavelength derivatives of n(ω |λ)
or OP(ω|λ) as a function of the wavelength and the frequency. Despite the complexity, the
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derivatives interestingly reduce to polynomials of the pth order in λ or ω, which will further
enable a closed-form expression formulation of the dispersion orders:

∂p

∂ωp n(ω) = (−1)p
(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m) λm ∂
m

∂λm n(λ) (6)

The spectral derivatives dω
dλ = − ω2

2πc and dλ
dω = − λ2

2πc have the same functional form, and thus:

∂p

∂λp n(λ) = (−1)p
(︂ ω
2πc

)︂p p∑︂
m=0

A(p, m) ωm ∂
m

∂ωm n(ω) (7)

where p = 0, 1, 2, 3, . . . are integral numbers and the matrix A(p, m) is specified as: A(p, m) =
p!

(p−m)!m!
(p−1)!
(m−1)! = C(p, m)

(p−1)!
(m−1)! = C(p−1,p−m)

p!
m! , with binomial coefficients C(p, m) =

(︁p
m
)︁
=

p!
(p−m)!m! . The matrix elements A(p, m) up to the tenth order are listed in Table 2, Appendix B. At
m = 0, A(p, 0) = 0 for p≥1, and A(0, 0) = 1. For reference, all derivatives up to the tenth order
are specified in Appendix B.

In particular, we note that the matrix elements A(p, m) represent, amongst other known
sub-series, the values of the Lah numbers [25–27]. In this context, the transformation of the
derivatives from the frequency to the wavelength space, and vice versa, of any differentiable
function can be intuitively viewed as a representation of a Lah transform. The forward L(x) and
inverse L−1(u) Lah transforms can be expressed as [28,29]:

up = L(x) = (−1)p
p∑︂

m=0
A(p, m) xm; xp = L−1 (u) = (−1)p

p∑︂
m=0

A(p, m) um (8)

The polynomial sums in Eqs. (6)–(8), and Eqs. (10)–(14) form sequential polynomials G(α)
p (x)

for α = −1. The corresponding generating function can be expressed as:

G(α)
p (x) = x−α

dp

dxp
(︁
xp+αf (x)

)︁
=

p∑︂
m=0

C(p + α, p − m)
p!
m!

xmf (m)(x) (9)

where f (x) ≡ G(α)
0 is a smooth p-times-differentiable function, representing here either the

refractive index n, the optical path OP, or the phase φ, and f (m)(x) is the mth derivative of f (x).
Several physical properties of these generalized polynomials are examined in the next section.
Similarly, we can write the Lah transforms for the optical path derivatives:

∂p

∂ωp OP(ω) = (−1)p
(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m) λm ∂
m

∂λm OP(λ) (10)

∂p

∂λp OP(λ) = (−1)p
(︂ ω
2πc

)︂p p∑︂
m=0

A(p, m) ωm ∂
m

∂ωm OP(ω) (11)

For completeness, we also include the Lah transforms in terms of the wavelength for the chain
sequence ∂p+1

∂ωp+1 φ(ω) =
(︂
− λ2

2πc

)︂
∂
∂λ

(︂
∂p

∂ωp φ(ω)
)︂
, which for numerical purposes can be recast more



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40783

conveniently as:

POD(φ) =
∂p

∂ωp φ(ω) = (−1)p
(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m) λm ∂
m

∂λm φ(λ) (12)

∂p

∂λp φ(λ) = (−1)p
(︂ ω
2πc

)︂p p∑︂
m=0

A(p, m) ωm ∂
m

∂ωm φ(ω) (13)

From a practical point of view, when the GDD data is experimentally or numerically accessible
in the wavelength space, the dispersion orders can be expressed as:

∂p+2

∂ωp+2 φ(ω) =
∂p

∂ωp GDD = (−1)p
(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m) λm ∂
m

∂λm GDD(λ) (14)

By substituting the frequency derivatives from Eqs. (6) and (10) into the frequency dispersion
relations Eqs. (4) and (5), we obtain further simplified closed-form expressions. The POD
dispersion orders are reduced to polynomials of pth order in λ. Accordingly, we arrive at another
key expression for the pth order chromatic dispersion:

POD(n) =
∂p

∂ωp k(ω) = (−1)p
1
c

(︃
λ

2πc

)︃p−1 p∑︂
m=0

B(p, m) λm ∂
m

∂λm n(λ) (15)

where p = 0, 1, 2, 3, 4, . . . are integral numbers. The matrix elements B(p, m) =
p!

(p−m)!m!
(p−2)!
(m−2)!

= A(p, m)m−1
p−1 = C(p, m)

(p−2)!
(m−2)! = C(p−2,p−m)

p!
m! , up to the tenth order are tabulated in Table 3,

Appendix C. At m = 0 or 1, B(p, [0, 1]) = 0 for p≥2, however, B(0, 0) = 1, B(1, 0) = −1, and
B(1, 1) = 1. For reference, the POD chromatic dispersion expressions are explicitly outlined
in Appendix C. Thus, the Lah-Laguerre optical formalism facilitates an infinite extension of
the well-known low orders. Similarly, when a system is described by its optical path, the main
expression for the pth order chromatic dispersion reduces to:

POD(OP) =
∂p

∂ωp φ(ω) = (−1)p
1
c

(︃
λ

2πc

)︃p−1 p∑︂
m=0

B(p, m) λm ∂
m

∂λm OP(λ) (16)

Importantly, the matrix elements B(p, m) = A(p, m)m−1
p−1 , denote the unsigned coefficients

presented as a triangular or square array i!
[︂
C(i±2,i−j) 1

j!

]︂
for the generalized orthogonal Laguerre

polynomials L(α)
i (x) for α = −2, or α = 2 with shifted indices. The matrix elements D(p, m) =

A(p, m)
p
m in Eq. (28) represent the unsigned coefficients for the orthogonal Laguerre polynomials

L(α)
p (x) for α = 0 [27].
The generating function for the polynomial sums in Eqs. (15) and (16) can be expressed

in terms of the already defined polynomial G(α)
p (x) for α = −2. Interestingly, the generating

function for the polynomial sum in Eq. (28) can be expressed using the same G(α)
p (x), albeit for

α = 0. For the Laguerre polynomials, the weight function is f (x) = e−x. However, for the G(α)
p (x)

polynomials, the analogous weight function is trivially f (x) ≡ G(α)
0 (x) = eln(f (x)) with f (x) being a

smooth p-times-differentiable expression representing the refractive index n or the optical path
OP. The G(α)

p (x) polynomials may not be orthogonal in general, however, they share several
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similar relations with the Laguerre polynomials:

G(α)
p (x) = G(α+1)

p (x) − pG(α+1)
p−1 (x) = p!

β∑︂
j=0

(︃
β

j

)︃
(−1)j

(p − j)!
G(α+β)

p−j (x) (17)

G(α+1)
p (x) = p!

p∑︂
j=0

1
j!

G(α)
j (x) ; G(α)

p (x) = p!
p∑︂

j=0

(︃
α + p − β

p − j

)︃
1
j!

G(β−j)
j (x) (18)

xp+αG(α)
p+1(x) =

∂

∂x

(︂
xp+α+1G(α)

p (x)
)︂

; G(α)
p+1(x) = x

∂

∂x
G(α)

p (x) + (p + α + 1)G(α)
p (x) (19)

Using the above polynomials, the pth order dispersion can now be expressed as:

POD (n|OP) =
1
c
(−1)p

(︃
λ

2πc

)︃p−1
G(−2)

p (λ) =
(−1)p

c

(︃
λ

2πc

)︃p−1 (︂
G(−1)

p (λ) − pG(−1)
p−1 (λ)

)︂
(20)

Furthermore, taking into consideration Eq. (12), the pth order dispersion POD(φ) can be
exclusively stated as:

POD(φ) = (−1)p
(︃
λ

2πc

)︃p
G(−1)

p (λ) = (−1)p
(︃
λ

2πc

)︃p (︂
G(0)

p (λ) − pG(0)
p−1(λ)

)︂
(21)

Accordingly, the group delay becomes GD = − 1
c G(−2)

1 (λ) = 1
c

(︂
G(−1)

0 (λ) − G(−1)
1 (λ)

)︂
.

In summary, the chromatic dispersion transformation from the frequency to the wavelength
domain and vice versa is a generalized Laguerre type transform or a generalized Lah transform
(LLOF). The forward Lg(α) and inverse Lg(α)−1 Laguerre transforms can be written as [26,29]:

up = Lg(α) = (−1)p
p∑︂

m=0

(︃
p + α
p−m

)︃
p!
m!

xm; xp = Lg(α)−1
= (−1)p

p∑︂
m=0

(︃
p + α
p−m

)︃
p!
m!

um (22)

The Laguerre Lg(α) and Lah L(x) transforms are interconnected: Lg(α)(x) = P(α)PL(x), where
P(α) =

(︁i+α−j−1
i−j

)︁ i!
j! is the permutation matrix [26]. Essentially, the Laguerre transform of order

negative one, α = −1, is equivalent to a Lah transform [30].
The refractive index n(λ) and the optical path OP(λ) are interchangeable in the closed-form

chromatic dispersion equations, although the units must be suitably changed. The pth order
dispersion POD(n) is measured in seconds to the power of p per unit of length [sp/m], whereas the
units of the total dispersion POD(φ|OP) are [sp]. In fiber optics, a scaled group-delay dispersion
is commonly used in units of [s/nm] and [s/nm/m]: SD(φ) = ∂ω

∂λ

∂τg(ω)

∂ω

|︁|︁|︁
ω0
= −

ω2
0

2πc GDD(φ)

or SD(n) = ∂ω
∂λ

∂
∂ω

(︂
1
vg

)︂|︁|︁|︁
ω0
= −

ω2
0

2πc GDD(n). These entities effectively represent the temporal
separation ∆τ = SD(n) · ℓ · δλ between two wavelength components spaced out by δλ after a
certain propagation length ℓ. Additionally, the higher derivatives ∂p

∂λp τg or ∂p

∂λp v−1
gr are often

denoted as slopes of the dispersion parameters. Regarding the p + 1 dispersion orders ∂p

∂ωp τg and
∂p

∂ωp v−1
gr , the slope parameters can be formulated as:

∂p

∂ωp v−1
gr (ω) = (−1)p

(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m) λm ∂
m

∂λm v−1
gr (λ) (23)

∂p

∂λp v−1
gr (λ) = (−1)p

(︂ ω
2πc

)︂p p∑︂
m=0

A(p, m) ωm ∂
m

∂ωm v−1
gr (ω) (24)

With the help of Eq. (15), the latter equality can be articulated in the wavelength space as:
λp ∂p

∂λp v−1
gr (λ) = − 1

c
∑︁p

m=0
∑︁m+1

k=0 (−1)p−mA(p, m)B(m + 1, k) λk ∂k

∂λk n(λ). After simplification or



Research Article Vol. 30, No. 22 / 24 Oct 2022 / Optics Express 40785

by direct evaluation of the derivatives, we can obtain the closed-form expression for the slope
parameters:

∂pv−1
gr (λ)

∂λp = −
1
c

(︃
(p−1)

∂p

∂λp n(λ) + λ
∂p+1

∂λp+1 n(λ)
)︃
= −
λ−p

c

p+1∑︂
m=0

K(p, m)λm ∂
m

∂λm n(λ) (25)

where p = 1, 2, 3 . . . are integral numbers. The matrix coefficients K(p, m) = (p−1)δp,m + δp+1,m,
up to the tenth order are listed in Table 4, Appendix D. For reference, all closed-form expressions
up to the tenth order are summarized in Appendix D. The inverse transform can be formulated as:
λp ∂p

∂λp n(λ) = (−1)p+1c
∑︁p−1

m=0 K(p, m)−1λm ∂m

∂λm v−1
gr (λ) , where the inverse coefficients K(p, m)−1 =

(−1)m−1 (p−2)!
(m−1)! , m ≤ p − 1 are equivalent to the matrix elements E(p − 2, m − 1) with shifted

indices, as indicated in Table 7, Appendix E. Thus, a refined linear and nonlinear refractive index
function n(λ) can be extracted from known dispersion orders or a known phase.

Similar generalizations can be obtained when the dispersion is formulated in the wavelength
space:

k(λ) = k |λ0 +
∂k
∂λ

|︁|︁|︁|︁
λ0

(λ−λ0) +
1
2
∂2k
∂λ2

|︁|︁|︁|︁
λ0

(λ−λ0)
2 + · · ·+

1
p!
∂pk
∂λp

|︁|︁|︁|︁
λ0

(λ−λ0)
p + Rp (26)

φ(λ) = φ |λ0 +
∂φ

∂λ

|︁|︁|︁|︁
λ0

(λ−λ0) +
1
2
∂2φ

∂λ2

|︁|︁|︁|︁
λ0

(λ−λ0)
2 + · · ·+

1
p!
∂pφ

∂λp

|︁|︁|︁|︁
λ0

(λ−λ0)
p + Rp (27)

The derivatives of the wavevector k and the phase φ with respect to the wavelength, obtained
from Eqs. (5) and (13) and expressed in terms of the frequency, or through a direct differentiation
in terms of the wavelengths, are:

∂p

∂λp

(︃
2π
λ

f (λ)
)︃
= (−1)p2π

(︂ ω
2πc

)︂p+1 p∑︂
m=0

D(p, m)ωm ∂
m

∂ωm f (ω) (28)

∂p

∂λp φ(λ) =
∂p

∂λp

(︃
2π
λ

f (λ)
)︃
= (−1)p2πλ−(p+1)

p∑︂
m=0

E(p, m)λm ∂
m

∂λm f (λ) (29)

where p = 0, 1, 2, . . . are integral numbers. The matrix coefficients D(p, m) =
p!

(p−m)!m!
p!
m! =

A(p, m)
p
m , and E(p, m) = (−1)m p!

m! up to the tenth order are listed in Table 5, and Table 6,
Appendix E. The analytical expressions are presented explicitly up to the tenth order in Appendix
E. The derivatives ∂p

∂ωp φ(ω) and ∂p

∂λp φ(λ) are related through Eqs. (12) and (13). The matrix
elements D(p, m) represent the unsigned coefficients for the orthogonal Laguerre polynomials
L(α)

p (x) for α = 0 and follow the Laguerre transform. The inverse transform of Eq. (29) can be
stated as: λp ∂p

∂λp f (λ) = λ
2π

∑︁p
m=0 V(p, m)λm ∂m

∂λm

(︂
2π
λ f (λ)

)︂
, where the coefficients V(p, m) are

listed in Table 1, Appendix A. Hence, a refined linear and nonlinear refractive index or an optical
path function can be extracted from known phase derivatives at a single point. Furthermore, by
altering the properties of novel materials and optical systems, the dispersion can be optimized in
reverse.

Regarding the accuracy of the perturbative expansion, while the Taylor series of the phase
is expected to converge for most functions of interest f (x), convergence is not guaranteed.
Nevertheless, we can obtain a rough estimate for the radius of convergence of the phase in Eqs. (2)
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and (3) from the limit:

R = lim
p→∞

|︁|︁|︁|︁cp+1

cp

|︁|︁|︁|︁∼ lim
p→∞

(︄
1 +

λp+1 ∂p+1

∂λp+1 f (λ)∑︁p
m=0 B(p, m) λm ∂m

∂λm f (λ)

)︄
⏞ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏟⏟ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ̄ ˉ⏞

ϵ (ω0)

(︃
λ

2πc

)︃|︁|︁|︁|︁
ω0

|ω−ω0 | <1 (30)

As a rule of thumb, convergence could be expected for ∆ω = |ω−ω0 |<ω0/ϵ(ω0) , i.e.
|λ | < ϵ (λ0)

1+ϵ (λ0)
λ0 or |∆λ | ∼λ0. The Taylor series usually converge to the actual function value as

the number of the included orders increases. However, adding successive ultrahigh orders, even
within the radius of convergence does not necessarily lead progressively towards a superior
approximation in domains far from the expansion point. For example, the addition of all fifteen
orders to the propagation of a single-cycle laser pulse with an extremely broad bandwidth
centered at a wavelength of 4.0 µm, analyzed in the next section in Fig. 1(B), results in a worse
approximation than obtained considering the first fourteen orders, contrary to the ultraviolet (UV)
pulse propagation at a wavelength of 0.3 µm.

Finally, as the laser intensity increases, the laser-mater interactions become nonlinear. The
refractive index can be expressed as n(r, t, λ) ≅ n0(λ)+n2(λ)I(r, t)+n4(λ)I2(r, t)+ . . . , assuming
an instantaneous nonlinear response and intensities I(r, t) within the radius of convergence.
Here, n0 is the linear refractive index, all ni (i≥2) represent the nonlinear refractive indices, and
I(r, t) is the pulse intensity. Now, the phase φ = 2π

λ n(r, t, λ)dz depends on the intensity and the
polarization, and changes in space and time. This situation leads to numerous self-action effects,
i.e., self-focusing, self-defocusing, self-phase modulation, temporal self-compression, solitons in
space and time, etc. [3,15,31]. Although the presented chromatic dispersion relations discussed
above remain unchanged, a series of approximations must be made in order to estimate the pulse
shape distortions during propagation, which is beyond the scope of this study.

3. Chromatic dispersion in conventional ultrafast systems

As an illustration of the importance of the very high dispersion orders and demonstrating the
simplicity and reduced computational load of the Lah-Laguerre optical formalism attained using
the polynomial dispersion expressions, we describe several advanced areas of applications.

The derivatives of the phase, the refractive index, or the optical path length are required up
to the highest order of the considered dispersion, and they need to be evaluated just once. We
use analytical Sellmeier equations to determine the refractive index in cases involving material
dispersion. The derivatives of the refractive index, the phase, or the optical path are obtained
through symbolic evaluations. Numerically, this framework is highly efficient. For extremely
high orders, the calculation speed can be increased by using recursive relations to determine the
derivatives of the refractive index [5].

First, we consider the material dispersion of CaF2, which is frequently encountered in
broadband ultrafast laser applications. For this purpose, we use the analytical Sellmeier equation
for the refractive index n(λ) in the spectral region of 0.15 µm − 12 µm [32,33]. Although
CaF2 exhibits a small orientational birefringence at wavelengths less than 0.2 µm, the largest
magnitude of the intrinsic birefringence is in the order of 10−6 [34], which is less than the
accuracy of the measured index of refraction in that region. The first ten chromatic dispersion
orders are shown in a bi-symmetric log plot [35] in Fig. 1(A). The high dispersion orders in the
UV spectral domain exhibit extremely low values that increase in magnitude by 102 − 1010 times
towards the mid-infrared (mid-IR). All odd orders are positive and result in a non-symmetrical
pedestal pulse formation. Whereas the even orders undergo a sign change at the zero-crossing
points, located approximately between 0.3 µm and 1.55 µm. In contrast, their effect in the time
domain is a symmetric pulse broadening. As a rule of thumb, the dispersion effects on the
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Fig. 1. Effect of ultrahigh dispersion orders on the temporal evolution of laser pulses
at the single-cycle waveform extreme in the UV, near-IR, and mid-IR spectral regions.
A) Material dispersion of pth order up to the tenth order, 2 ≤ p ≤ 10, for a CaF2, indicating
the zeros of the even orders and the significant increase in the magnitude of the dispersion
orders towards the mid-IR wavelengths. B) (Top row) Evolution of single-cycle laser pulses
versus time (in τ0 cycles) in the UV, near-IR, and mid-IR regions at λL = 0.3 µm, near the
zero GDD at λL = 1.5 µm, and λL = 4 µm, respectively, after propagation through CaF2 for
the same accumulated phase of 4π, corresponding to thicknesses of L = 40 µm, L = 30 mm,
and L = 2 mm, respectively. (Bottom row) Comparison of the evolution of the single-cycle
laser waveforms for an equal propagation length L = 1 mm. The effects of the GDD and
the combination of GDD and TOD are represented by the dashed burgundy and dotted blue
curves, respectively. The effects of considering all orders up to the tenth order and only
the high orders, specifically 3 ≤ p ≤ 10 (all but GDD) and 4 ≤ p ≤ 10 (all but GDD and
TOD) are represented by the dashed cyan, orange and green curves, respectively. The final
pulse broadening evaluated using the exact total phase is shown in purple. The temporal
phase of the pulse ϕ(t) is depicted in dashed and solid gray, evaluated using only the first ten
dispersion orders and exact calculations.
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pulse broadening are substantial when POD(φ)
τp is not negligible, where τ is the temporal pulse

duration. The upper row of Fig. 1(B) shows a comparison of the pulse broadening for ultrashort,
single-cycle, Gaussian pulses centered at UV, near-IR, and mid-IR wavelengths of λL = 0.3 µm,
λL = 1.5 µm, and λL = 4 µm during linear propagation through a CaF2 optical element with a
thickness of L = 40 µm, L = 30 mm, and L = 2 mm, respectively. The propagation lengths are
chosen such that the accumulated relative phase of the pulses changes in the order of 4π radians
in the time domain. We visualize the strength of the distortion effects associated with individual
dispersion orders or a group of orders, in terms of the pulse duration and compare the pulse
shapes to the exact pulse shape distorted by the accumulated total spectral phase φ = 2π

λ n(λ)z.
All temporal shapes E(t) = |E |exp(−iϕ(t)), where ϕ(t) denotes the temporal phase, are obtained
through Fourier transforms of the pulse waveforms. Consideration of the first ten chromatic
orders results in a near-perfect approximation of the dispersion effects compared to that achieved
in the evaluation of the pulse shape using the exact total spectral phase φ. The single-cycle laser
pulses have extremely broad spectral content and are considerably influenced also by the high
orders of dispersion. In the UV spectral range, the high orders of dispersion have relatively low
values per unit length, as shown in Fig. 1(A), and the main pulse broadening effect is dominated
by the GDD and the third-order dispersion (TOD), which have the largest magnitude. The
distortions associated with the high orders of dispersion are smaller but not negligible for large
propagation distances. In contrast, in the mid-IR spectral region, the high dispersion orders
are significantly more pronounced. This indicates that near-transform-limited few-cycle laser
pulses can be realized more conveniently in practice in spectral regions with low values of the
high orders, typically in the UV spectral region, by balancing fewer dispersion orders, mainly
those associated with the GDD and the TOD. However, special precautions need to be taken
for UV pulses to avoid propagation through any substantial amount of material, leading to the
extremely fast pulse spreading. The bottom row of Fig. 1(B) illustrates the pulse broadening for
the same propagation length L = 1 mm, indicating the fast pulse broadening in the UV, dictated
primarily by the GDD and the TOD. The same qualitative behavior with more pronounced effects
is observed for the fused silica-based glasses, predominantly used in the fiber telecommunication.
The significant pulse spread can be partially mitigated by operating near the zero GDD dispersion
wavelength and using long picosecond narrow-bandwidth pulses. The TOD dominates the pulse
spread in this scenario. However, the very high dispersion orders become significant at longer
technologically relevant propagation scales. For single-cycle femtosecond pulses at 1.5 µm
(near the zero-dispersion GDD of CaF2), an analogous picture involving a significant pulse
modulation is observed, wherein the higher orders p ⩾ 4 contribute mostly to the broadening of
the main pulse structure, which contains most of the energy, and to the formation of wings. This
phenomenon indicates that to design dispersion-compensating systems for single-cycle near-IR
and mid-IR pulses, novel advanced passive and active dispersion approaches must be used to
balance and address the low- and high-order effects.

In general, the trend for the refractive index of materials with normal dispersion, far from
the UV–extreme UV (EUV) absorption peaks, is smooth, corresponding to a monotonically
decreasing functional form with an inflection point usually in the IR region for solids, the IR–
far-IR region for gases, and the visible (VIS)–IR region for liquids, in which the zero GDD
dispersion wavelength is located. Consequently, the odd-order derivatives of the refractive
index are positive, and a step-like switching from positive to negative values is observed for the
even-order derivatives. Gases at standard conditions exhibit mostly positive dispersion order
values in the UV–VIS–IR region. For reference, data files and plots of the material dispersion
of CaF2, sapphire, fused silica, BK7, BBO (for the ordinary and extraordinary axes), water,
liquid Ar, and several gases at standard conditions (air, He, Ne, Ar, Kr, Xe, H2, O2, and N2),
decomposed into the first ten orders using the Lah-Laguerre optical formalism, are available in
Dataset 1, Ref. [36].

https://doi.org/10.6084/m9.figshare.19236792
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Subsequently, we consider the chromatic dispersion of a reflective grating compressor with

a spectral phase φ(λ) = ω
c OP(λ) and a total optical path OP(λ) = 2L

√︂
1 − (mσλ − sin(ϑ))2,

where L is the grating separation, σ is the grating groove density, m is the diffraction order, and ϑ
is the incident angle (Fig. 2(A)) [10,37]. Owing to the parameter space L and ϑ, a certain amount
of GDD can be preserved when adjusting a desired order, albeit at the cost of the compressor
throughput efficiency.
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Fig. 2. High chromatic dispersion orders in ultrafast pulse compression systems in the
UV and IR spectral regions. Top: Chromatic dispersion up to the tenth order, 2 ≤ p ≤ 10,
A) in a reflection-grating compressor in the near-IR around λL = 0.8 µm, and B) in a prism-
pair compressor in the UV spectral region around λL = 0.4 µm, where CaF2 has low values
of the high dispersion orders (Fig. 1(A)). Bottom: Schematics of the considered designs,
where Gi, Pi, and M denote gratings, prisms, and retroreflecting mirrors, respectively.

The first ten chromatic dispersion orders for a conventional ultrashort near-IR pulse compressor
operating near λL = 0.8 µm, are analyzed, as shown in Fig. 2(A), for L = 30 cm, σ =
1200 lines/mm, m = 1, and ϑ = 38◦. For a case where blazed gratings may be considered,
the highest diffraction efficiency is at λL = 2sin(δB)cos(ϑ − δB)/mσ, with δB representing the
blaze angle. As shown in Fig. 2(A), the high dispersion orders are significant – even a single
fourth-order can distort a few-cycle laser pulse, rendering grating compressors incapable of
realizing the fine compensation of the linear and the nonlinear phases of temporally and spectrally
broadened pulses due to material dispersion. In general, the values of the high orders of dispersion
of the compressor decrease towards the UV–EUV range, leaving the second and the third orders
dominant. Although the GDD can be balanced, the residual high orders persist. A similar
situation may be encountered in attosecond EUV pulse compression based on grating structures,
where the phase of the EUV pulses may not be fully compensated due to the mismatch with the
high dispersion orders.

In summary, the reflective-grating compressor phase shows monotonically increasing values,
with even and odd optical-path derivatives exhibiting a negative and positive sign, respectively.
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Transmission-grating compressors exhibit similar behavior with few minor differences. The
incident angle can be designed to match the Littrow angle ϑL = asin(mσλ/2), thereby achieving a
higher transmission capacity and a lower angular sensitivity. By adding the dispersion contribution
of the grating substrates, we can obtain the optical path of a transmission-grating compressor:

OP(λ) ≅ 2L
√︂

1 − (mσλ − sin(ϑ))2 + 4ℓn2
√

n2−sin2ϑ
, where ℓ and n denote the substrate thickness

and the refractive index, respectively. These approximations correspond to a thin transmission
grating with a grating equation at the glass-air interface, −nsin(ϑi) + n0sin(ϑm) = −mσλ, where
ϑi is the angle inside the substrate (sin(ϑ) = nsin(ϑi)), and ϑm represents the diffracted angles
with n0 ≅ 1.

In state-of-the-art laser architectures in which dispersion balance is essential, phase-compensating
compressors are often designed with matched or mismatched stretchers by introducing achromatic
lenses, prisms, glass plates, grisms, and other optical elements inside the stretcher or the compres-
sor [38–41]. These complex tuning designs cannot be easily implemented, necessitate individual
and precise high-order dispersion calculations, and primarily suffer from the nonlinear phase
accumulation that limits the energy and the peak power to relatively modest values. Additionally,
chirped mirrors can be used to combat the low orders of dispersion. Typically, a linear or a
curved GDD chirped mirror can be designed to introduce GDD and specific TOD and FOD with
different slopes and curvatures to tune the TOD and the FOD of the grating-based stretchers
and compressors in the chirped-pulse amplifiers [42]. The higher-order dispersion terms remain
of great significance when a transform-limited single-cycle pulse duration must be ensured.
In such circumstances, first, passive compensation is employed to eliminate the lower orders.
Subsequently, active, adaptive compensation, such as spatial light modulators and acousto-optical
programmable dispersive filters (e.g., Dazzler, Mazzler, etc.), is used to balance the remaining low
and higher orders to a certain extent. An ordinary prism-pair compressor can also be employed
to passively reduce a particular high order of dispersion while not affecting the GDD or other
orders [43].

Next, we evaluate the chromatic dispersion orders of a prism-pair compressor for UV laser
pulses in a model, considering the finite spectral bandwidth of an ultrashort pulse, including
the material dispersion of the prisms [11,15,43,44]. In the schematic shown in Fig. 2(B), the
optical path can be described as: OP(λ) = 2

(︂
ℓ1

n2sin(α)
A(λ) +

L
B(λ) + ℓsin(ϑ) + ℓλ

n2sin(α)−A(λ)sin(ϑ)
D(λ)

)︂
,

where ℓλ = ℓ2 + L
(︂

C(λm)
B(λm)

−
C(λ)
B(λ)

)︂
+ ℓ1nsin(α)

(︂
1

A(λm)
− 1

A(λ)

)︂
, D(λ) =

√︁
n2 − sin2(ϑ), A(λ) =

cos(α)D(λ) + sin(α)sin(ϑ), B(λ) =
√︁

1 − C2(λ), and C(λ) = sin (α)D(λ) − cos(α)sin(ϑ) [43].
Figure 2(B) shows the assessment of the first ten chromatic dispersion orders of a CaF2 prism-pair
compressor for a UV laser pulse with a central wavelength λL = 0.4 µm and a spectral bandwidth
∆λ = 30 nm, used near the Brewster incident angle ϑB = atan(n(λL)). The compressor is
constructed from commercially available prisms optimized for near 0.78 µm laser wavelength
with an apex angle of the prisms α = π − 2ϑB = 69.9◦. In this configuration, the incident angle
ϑ = asin(n(λL)sin(α/2)) is insignificantly deviated by approximately 0.4◦ from the Brewster
angle for λL = 0.4 µm. The dispersion orders are evaluated for the following parameters: a
normal distance between the prisms L = 30 cm, a prism length ℓ = 30 mm, a range of insertion
depths of the first prism ℓ1 = 1 − 15 mm, and a near-minimal insertion depth of the second
prism ℓ2 = 1 mm at the shortest wavelength λm = λL − ∆λ/2. The insertion depth ℓ2 promotes
further finer adjustment of the dispersion. We note that for a broadband laser pulse with a central
wavelength of 0.4 µm, the higher material dispersion orders p ⩾ 3 are very small and positive,
except for the material dispersion of the eighth and the tenth or the higher even orders, which
are negative for CaF2 (Fig. 1(A)). In an intuitive picture, the combination of the UV material
dispersion and the negative angular dispersion of the prisms results in a positive dispersion
slope as a function of the increasing insertion length of Prism 1, for the second through the
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seventh, and the ninth compressor dispersion orders for which the material dispersion per unit
length is positive. Interestingly, the eighth and the tenth compressor dispersion orders exhibit
negative dispersion slopes as their material dispersion is negative. Furthermore, these slopes are
very small for the high orders of dispersion of the compressor, owing to which the UV pulse
compression is not excessively sensitive to these orders with the insertion lengths of the prisms.
In conventional near-IR–mid-IR prism-pair compressors, the negative and positive slopes of the
compressor dispersion are somewhat more strongly pronounced due to the large spread of the
even and the odd material dispersion orders and their larger magnitudes.

Finally, we analyze the dispersion performance of photonic bandgap-like hollow-core fibers with
a revolver substructure (Fig. 3(B)) [45]. These anti-resonant waveguides have been envisioned as
a potential substitute for the present-day telecommunication network fibers and as components
for various advanced photonic devices. We evaluate the waveguide chromatic dispersion orders
assuming a complex wavevector k(λ) = ω

c nij
eff (λ) and an effective refractive index n11

eff for the
fundamental linearly polarized hybrid HE11 mode. To considerably reduce the attenuation,
we couple a free-space linearly polarized Gaussian laser mode to this lowest-loss waveguide
mode. The real part of the effective refractive index for the hybrid modes HEij to a first order

approximation can be expressed as: Re
(︂
nij

eff

)︂
≅ n0 −

1
2n0

(︂
uij
k0R

)︂2
−

u2
ij

2(k0n0R)3
n2+n2

0√︂
n2−n2

0

cot(ϕ), where n0

is the refractive index of the hollow-core, n is the refractive index of the fiber material, k0 = 2π/λ,
R is the radius of the inner hollow-core, ℓ is the thickness of the inner tubes, ϕ = k0ℓ

√︂
n2 − n2

0
is the phase controlling the resonant behavior, and uij is the jth zero of the Bessel function of
the first kind Ji−1(x), (u11 ≅ 2.40483) [45]. The attenuation for the hybrid modes HEij to a

first order approximation is: α
[︁ dB

m
]︁
≅ 8.686

(1+cot2(φ))(n4+n4
0)u

3
ij

2(n2−n2
0)k

3
0n5

0R4 , which can be designed to have a

considerably smaller absorption compared to that of a regular hollow-core waveguide (λ2/R3

characteristic attenuation) [46,47].
As a next level of optimization, hollow-core fibers can potentially offer a larger bit-rate-length

transfer product considering that light propagates faster in air than in a glass core which is
currently used in modern telecommunication networks. In addition, these classes of hollow fibers
can withstand high energies and maintain a pure polarization state [48]. However, the attenuation
levels and the varying ambient air density have adverse effects.

The first ten waveguide dispersion orders of the HE11 mode of a photonic structure made of
fused silica glass are presented in Fig. 3(A) for the transparent spectral band between 0.21 µm and
6.7 µm [32,49,50]. The anti-resonant fiber with an inner radius R = 30 µm and a revolver wall
thickness of ℓ = 300 nm is placed in vacuum (n0 = 1). At the zero-dispersion GDD wavelengths
of the waveguide, this geometry has a dominant third-order dispersion, which is lower than the
material dispersion of fused silica. The analyses indicate that the values of the high orders of
dispersion for ℓ = 300 nm are relatively larger than the corresponding material dispersion orders
because the curves pass through discontinuities. However, decreasing ℓ can reduce the number
of resonances, the spectral interval in which all the even orders are zero, and the values of the
dispersion order. Equivalently, both the dispersion values and the attenuation decrease for shorter
laser wavelengths in the UV region owing to a smaller λ/R ratio. In applications in which these
structured fibers are used as a precursor for self-guiding via filamentation or for guiding of long
femtosecond-to-picosecond pulses over relatively short distances, these effects can be of lesser
concern, for example, in laser pulse compression, spectral broadening, high harmonic generation,
etc.

Here, the general trend of the effective refractive index of this class of anti-resonant fibers is
a series of material-like absorptive resonances with monotonically decreasing functional form
in-between towards the longer wavelengths. The wall thickness ℓ of the revolver capillaries for a
given inner radius R can be changed to control the number of resonance discontinuities of the
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Fig. 3. High chromatic dispersion orders in anti-resonant hollow-core fibers in the
UV, VIS, and IR spectral regions. Chromatic dispersion up to the tenth order, 2 ≤ p ≤ 10,
for a photonic band-gap fiber with an inner revolver substructure of R = 30 µm, made of A)
fused silica with a wall thickness of ℓ = 300 nm, and C) CaF2 of lower chromatic dispersion
with a larger wall thickness of ℓ = 600 nm. The attenuation is plotted in a dashed red-rose
color. B) Dispersion in the deep UV region near 153 nm for a CaF2 structured fiber showing
the closely spaced zeros of the even orders (within 0.05 nm), and the very small values of all
dispersion orders. Insets: Schematics of the substructure of the anti-resonant fibers, as well
as the considered linearly polarized fundamental HE11 mode, calculated using the Finite
Element Method (FEM). The arrows indicate the electric field polarization of the mode.
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dispersion, the attenuation, and the spectral interval width within which all the even orders are
zero. Moreover, the thickness ℓ affects the zero-dispersion wavelength of the GDD and all other
even dispersion orders, which can be displaced towards or away from a central laser wavelength
(Fig. 3(A), 3(B), and 3(C)). The resonances introduce multiple characteristic zero-dispersion
wavelengths for all even orders at the inflection points, which can be tuned further by introducing
atomic or molecular gas density for pulse self-compression applications. The analyses highlight
that the odd orders are strictly positive and decrease towards the UV region, whereas the even
orders exhibit step-like behavior and cross the zero line accompanied by a change in sign. The
GDD is positive and negative on the left and right-hand sides of the zero GDD dispersion point,
respectively, and this framework can enable self-compression to few-cycle pulse durations for
spectrally broadened pulses in gas-filled fibers.

Additionally, we assess a novel class of non-fused-silica-based fibers made of CaF2 in its broad,
highly transparent spectral window of 0.15 − 12 µm [32,33,51]. For comparison, we consider a
fiber with the same inner radius R = 30 µm but with a larger wall thickness of ℓ = 600 nm to
emphasize the closely spaced zero-dispersion points of all even dispersion orders, Fig. 3(B). The
lower values of dispersion of CaF2 help ensure that the magnitude of the dispersion is smaller
for larger ℓ, which are also less technologically challenging, while expanding the operational
bandwidth in the vacuum UV and mid-IR ranges. Figure 3(C) highlights the similar characteristic
behavior of the first ten orders, although with a larger number of discontinuities compared to that
in fused silica. Remarkably, in the vacuum UV region, the zero-dispersion wavelengths for all
even orders are spread only within less than 0.05 nm, near 153.2 nm with a leading fifth order
and extremely small other higher orders, as shown in the inset of Fig. 3(B). Narrow-band laser
pulse guiding or data transmission may be advantageous at many of these multiple locations due
to minimal low and high order dispersion, as well as minimal attenuation when using UV or VIS
pulses that are not significantly affected by the high dispersion orders. However, gas dispersion
can have adverse effects.

In perspective, the attenuation of these classes of anti-resonant fibers is now approaching the
challenging level of attenuation in the telecommunication industry [52]. Combined with their
unique tunability and distinctive dispersion advantages, these fibers might be even used for data
transmission in the near future, along with many other ultrafast femtosecond applications.

4. Conclusions

In summary, we present a general analytical formalism in Lah-Laguerre optics for the chromatic
dispersion and dispersion slope parameters of advanced ultrafast optical systems. We identify
polynomial and recursive relations for the chromatic dispersion orders based on the Lah and
Laguerre transforms. These transforms are hypergeometric series that are computationally very
efficient and can minimize the error of the analyses. The derived recursive relationships for the
polynomials G(α)

p that describe the dispersion orders are of particular interest when the phase
derivatives are repetitive. In general, the described formalism is applicable to analyses of material
and geometrical dispersion of ultrafast pulse space-time dynamics, of stretchers and compressors,
advanced photonic fibers, or any dispersion of an optical system with a well-characterized
frequency-dependent phase. Additionally, we explicitly list the closed-form dispersion relations
and dispersion slope parameters for the first ten dispersion orders, for the first time. Using this
analytical formalism, the computational time to evaluate all high chromatic orders up to the pth

order can be minimized as much as (p − 1)! times, compared to that associated with the use
of chain sequences of the form: ∂p+1

∂ωp+1 φ(ω) =
(︂
− λ2

2πc

)︂
∂
∂λ

(︂
∂p

∂ωp φ(ω)
)︂
. Although the formulated

relations may introduce uncertainties in the chromatic dispersion owing to experimental errors
in the measurements of the refractive index, this analytical formalism can be used in reverse
to enhance the precision of the refractive index measurements. Further, a desired phase and
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dispersion can be attained in reverse by optimization of the properties of novel materials and
optical systems. The very high orders of the chromatic dispersion become significant at large
propagation lengths, as in state-of-the-art ultrafast laser amplifiers, or when the spectral content
of the pulses spans an octave, as in single-cycle ultrafast laser pulse generation. Our analyses
indicate that in spectral regions with low values of the high dispersion orders, most often in the
UV spectral region, the induced phase changes in materials, ultrafast single-cycle laser pulse
propagation, photonic fiber designs, etc., are not significantly sensitive to the high orders of
dispersion, and a near-transform-limited pulse compression or any phase compensation can be
easily achieved by balancing fewer orders compared to those in the near-IR–mid-IR region.

In perspective, to minimize the computational intensity, for phases specified as discrete values,
the data can be first fitted to a smooth differentiable function before proceeding in the usual
manner by using Eq. (12). Further gain in computational efficiency can be accomplished by using
simplified fitting functions or parallel computing. Numerically, the highest order of dispersion
that can be evaluated is limited by the computer architecture’s ability to allocate the smallest
and largest floating-point number. Lastly, the evaluation of the high orders of dispersion at or
away from the zero GDD dispersion wavelength is computationally fast, making compensation
optimization of the dispersion orders an efficient procedure for any complex ultrafast optical
design.

In the following appendices, we list for reference the closed-form expressions and the relevant
matrix elements in Lah-Laguerre optics discussed throughout the main text.

Appendix A. Forward and inverse transforms for the chromatic dispersion orders
as a function of frequency

The chromatic dispersion equations for the wavevector k(ω) = ω
c n(ω) and the phase φ(ω) =

ω
c OP(ω) (Eqs. (4) and (5), respectively) have the same functional form. In general:

∂p

∂ωp

(︂ω
c

f (ω)
)︂
=

1
c

(︃
p
∂p−1

∂ωp−1 f (ω) + ω
∂p

∂ωp f (ω)
)︃
=
ω1−p

c

p∑︂
m=0

V(p, m)ωm ∂
m

∂ωm f (ω) (31)

The inverse transform yields the Taylor coefficients of the refractive index from the phase in
the frequency domain:

ωp ∂
p

∂ωp f (ω) = (−1)p
c
ω

p∑︂
m=0

V(p, m)−1ωm ∂
m

∂ωm

(︂ω
c

f (ω)
)︂

(32)

Table 1. Matrix elements V(p, m) up to the tenth order.

Dispersion order p d(0)λ
m = 0

d(1)λ
m = 1

d(2)λ
m = 2

d(3)λ
m = 3

d(4)λ
m = 4

d(5)λ
m = 5

d(6)λ
m = 6

d(7)λ
m = 7

d(8)λ
m = 8

d(9)λ
m = 9

d(10)
λ

m = 10

First p = 1 1 1 0 0 0 0 0 0 0 0 0

Second p = 2 0 2 1 0 0 0 0 0 0 0 0

Third p = 3 0 0 3 1 0 0 0 0 0 0 0

Fourth p = 4 0 0 0 4 1 0 0 0 0 0 0

Fifth p = 5 0 0 0 0 5 1 0 0 0 0 0

Sixth p = 6 0 0 0 0 0 6 1 0 0 0 0

Seventh p = 7 0 0 0 0 0 0 7 1 0 0 0

Eight p = 8 0 0 0 0 0 0 0 8 1 0 0

Ninth p = 9 0 0 0 0 0 0 0 0 9 1 0

Tenth p = 10 0 0 0 0 0 0 0 0 0 10 1
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where f (ω) represents either the refractive index n or the optical path OP, and the matrix
coefficients V(p, m) = pδp−1,m + δp,m are listed in Table 1. The inverse matrix elements
V(p, m)−1 = (−1)m p!

m! are identical to the E(p, m) coefficients, listed in Table 6, Appendix E. δp,m
represents the Kronecker delta with values δp,m = 1 if p = m, and 0 otherwise.

For completeness, the first ten dispersion orders, written for the wavevector, are expressed as a
function of frequency, as:

A I.
∂

∂ω
k(ω) =

1
c

(︃
n(ω) + ω

∂n(ω)
∂ω

)︃
A II.

∂2

∂ω2 k(ω) =
1
c

(︃
2
∂n(ω)
∂ω

+ ω
∂2n(ω)
∂ω2

)︃
(33)

A III.
∂3

∂ω3 k(ω) =
1
c

(︃
3
∂2n(ω)
∂ω2 + ω

∂3n(ω)
∂ω3

)︃
A IV.

∂4

∂ω4 k(ω) =
1
c

(︃
4
∂3n(ω)
∂ω3 + ω

∂4n(ω)
∂ω4

)︃
(34)

A V.
∂5

∂ω5 k(ω) =
1
c

(︃
5
∂4n(ω)
∂ω4 + ω

∂5n(ω)
∂ω5

)︃
A VI.

∂6

∂ω6 k(ω) =
1
c

(︃
6
∂5n(ω)
∂ω5 + ω

∂6n(ω)
∂ω6

)︃
(35)

A VII.
∂7

∂ω7 k(ω)=
1
c

(︃
7
∂6n(ω)
∂ω6 + ω

∂7n(ω)
∂ω7

)︃
A VIII.

∂8

∂ω8 k(ω)=
1
c

(︃
8
∂7n(ω)
∂ω7 + ω

∂8n(ω)
∂ω8

)︃
(36)

A IX.
∂9

∂ω9 k(ω) =
1
c

(︃
9
∂8n(ω)
∂ω8 + ω

∂9n(ω)
∂ω9

)︃
A X.

∂10

∂ω10 k(ω)=
1
c

(︃
10
∂9n(ω)
∂ω9 + ω

∂10n(ω)
∂ω10

)︃
(37)

Appendix B. Lah transforms for the chromatic dispersion orders and chromatic
dispersion orders of the phase

The derivatives of any function f (ω |λ) in the wavelength or the frequency space, as in Eqs. (6),
(10) and (12), can be generalized using the forward and inverse Lah transforms as:

∂p

∂ωp f (ω) = (−1)p
(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m)λm ∂
m

∂λm f (λ) (38)

∂p

∂λp f (λ) = (−1)p
(︂ ω
2πc

)︂p p∑︂
m=0

A(p, m)ωm ∂
m

∂ωm f (ω) (39)

The phase φ(ω |λ), the refractive index n(ω |λ), the optical path OP(ω |λ), the group delay
τg(ω |λ) and any differentiable function f (ω|λ) can be used interchangeably in the frequency-
wavelength Lah transforms. The relevant matrix elements A(p, m) =

p!
(p−m)!m!

(p−1)!
(m−1)! are listed

Table 2. Matrix elements A(p, m) and Lah numbers up to the tenth order.

Derivative order p d(1)λ
m = 1

d(2)λ
m = 2

d(3)λ
m = 3

d(4)λ
m = 4

d(5)λ
m = 5

d(6)λ
m = 6

d(7)λ
m = 7

d(8)λ
m = 8

d(9)λ
m = 9

d(10)
λ

m = 10

First p = 1 1 0 0 0 0 0 0 0 0 0

Second p = 2 2 1 0 0 0 0 0 0 0 0

Third p = 3 6 6 1 0 0 0 0 0 0 0

Fourth p = 4 24 36 12 1 0 0 0 0 0 0

Fifth p = 5 120 240 120 20 1 0 0 0 0 0

Sixth p = 6 720 1800 1200 300 30 1 0 0 0 0

Seventh p = 7 5040 15120 12600 4200 630 42 1 0 0 0

Eight p = 8 40320 141120 141120 58800 11760 1176 56 1 0 0

Ninth p = 9 362880 1451520 1693440 846720 211680 28224 2016 72 1 0

Tenth p = 10 3628800 16329600 21772800 12700800 3810240 635040 60480 3240 90 1
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in Table 2. For p = 0, the binomials with negative arguments are set as
(︁
−n
k
)︁
= (−1)k

(︁n
k
)︁

and 0
for n<k<0. Thus, the non-zero element for p<1 is A(0, 0) = 1. The Lah transform is also a
Laguerre transform of order negative one, α = −1.

Written for the phase φ, the first ten dispersion orders can be expressed as a function of
wavelength using the Lah transforms as:

B I.
∂φ(ω)

∂ω
= −

(︃
λ

2πc

)︃
G(−1)

1 (λ) = −

(︃
2πc
ω2

)︃
∂φ(ω)

∂λ
= −

(︃
λ2

2πc

)︃
∂φ(λ)

∂λ
(40)

B II.
∂2φ(ω)

∂ω2 =
∂

∂ω

(︃
∂φ(ω)

∂ω

)︃
=

(︃
λ

2πc

)︃2
G(−1)

2 (λ) =

(︃
λ

2πc

)︃2 (︃
2λ
∂φ(λ)

∂λ
+ λ2 ∂

2φ(λ)

∂λ2

)︃
(41)

B III.
∂3φ(ω)

∂ω3 = −

(︃
λ

2πc

)︃3
G(−1)

3 (λ) = −

(︃
λ

2πc

)︃3 (︃
6λ
∂φ(λ)

∂λ
+ 6λ2 ∂

2φ(λ)

∂λ2 + λ3 ∂
3φ(λ)

∂λ3

)︃
(42)

B IV.
∂4φ(ω)

∂ω4 =

(︃
λ

2πc

)︃4
G(−1)

4 (λ) =

(︃
λ

2πc

)︃4 (︂
24λ
∂φ(λ)

∂λ
+ 36λ2 ∂

2φ(λ)

∂λ2 + 12λ3 ∂
3φ(λ)

∂λ3 +

+ λ4 ∂
4φ(λ)

∂λ4

)︂ (43)

B V.
∂5φ(ω)

∂ω5 = −

(︃
λ

2πc

)︃5
G(−1)

5 (λ) = −

(︃
λ

2πc

)︃5 (︂
120λ

∂φ(λ)

∂λ
+ 240λ2 ∂

2φ(λ)

∂λ2 +

+ 120λ3 ∂
3φ(λ)

∂λ3 + 20λ4 ∂
4φ(λ)

∂λ4 + λ5 ∂
5φ(λ)

∂λ5

)︂ (44)

B VI.
∂6φ(ω)

∂ω6 =

(︃
λ

2πc

)︃6
G(−1)

6 (λ) =

(︃
λ

2πc

)︃6 (︂
720λ

∂φ(λ)

∂λ
+ 1800λ2 ∂

2φ(λ)

∂λ2 +

+ 1200λ3 ∂
3φ(λ)

∂λ3 + 300λ4 ∂
4φ(λ)

∂λ4 + 30λ5 ∂
5φ(λ)

∂λ5 +λ6 ∂
6φ(λ)

∂λ6

)︂ (45)

B VII.
∂7φ(ω)

∂ω7 = −

(︃
λ

2πc

)︃7
G(−1)

7 (λ) = −

(︃
λ

2πc

)︃7 (︂
5040λ

∂φ(λ)

∂λ
+ 15120λ2 ∂

2φ(λ)

∂λ2 +

+ 12600λ3 ∂
3φ(λ)

∂λ3 + 4200λ4 ∂
4φ(λ)

∂λ4 + 630λ5 ∂
5φ(λ)

∂λ5 + 42λ6 ∂
6φ(λ)

∂λ6 + λ7 ∂
7φ(λ)

∂λ7

)︂ (46)

B VIII.
∂8φ(ω)

∂ω8 =

(︃
λ

2πc

)︃8
G(−1)

8 (λ) =

(︃
λ

2πc

)︃8 (︂
40320λ

∂φ(λ)

∂λ
+ 141120λ2 ∂

2φ(λ)

∂λ2 +

+ 141120λ3 ∂
3φ(λ)

∂λ3 + 58800λ4 ∂
4φ(λ)

∂λ4 + 11760λ5 ∂
5φ(λ)

∂λ5 + 1176λ6 ∂
6φ(λ)

∂λ6 +

+ 56λ7 ∂
7φ(λ)

∂λ7 + λ8 ∂
8φ(λ)

∂λ8

)︂ (47)
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B IX.
∂9φ(ω)

∂ω9 = −

(︃
λ

2πc

)︃9
G(−1)

9 (λ) = −

(︃
λ

2πc

)︃9 (︂
362880λ

∂φ(λ)

∂λ
+ 1451520λ2 ∂

2φ(λ)

∂λ2 +

+ 1693440λ3 ∂
3φ(λ)

∂λ3 + 846720λ4 ∂
4φ(λ)

∂λ4 + 211680λ5 ∂
5φ(λ)

∂λ5 + 28224λ6 ∂
6φ(λ)

∂λ6 +

+ 2016λ7 ∂
7φ(λ)

∂λ7 + 72λ8 ∂
8φ(λ)

∂λ8 + λ9 ∂
9φ(λ)

∂λ9

)︂ (48)

B X.
∂10φ(ω)

∂ω10 =

(︃
λ

2πc

)︃10
G(−1)

10 (λ) =

(︃
λ

2πc

)︃10 (︂
3628800λ

∂φ(λ)

∂λ
+ 16329600λ2 ∂

2φ(λ)

∂λ2 +

+ 21772800λ3 ∂
3φ(λ)

∂λ3 + 12700800λ4 ∂
4φ(λ)

∂λ4 + 3810240λ5 ∂
5φ(λ)

∂λ5 + 635040λ6 ∂
6φ(λ)

∂λ6 +

+ 60480λ7 ∂
7φ(λ)

∂λ7 + 3240λ8 ∂
8φ(λ)

∂λ8 + 90λ9 ∂
9φ(λ)

∂λ9 + λ10 ∂
10φ(λ)

∂λ10

)︂ (49)

Appendix C. Chromatic dispersion orders and Laguerre transforms for the chro-
matic dispersion orders

The dispersion orders in Eqs. (15) and (16) are generalized through a Laguerre type transform of
order negative two, α = −2:

POD(n) =
∂p

∂ωp k(ω) = (−1)p
1
c

(︃
λ

2πc

)︃p−1 p∑︂
m=0

B(p, m) λm ∂
m

∂λm n(λ) (50)

POD(OP) =
∂p

∂ωp φ(ω) = (−1)p
1
c

(︃
λ

2πc

)︃p−1 p∑︂
m=0

B(p, m) λm ∂
m

∂λm OP(λ) (51)

The inverse transforms relate the Taylor coefficients of the refractive index or the optical path
to the wavevector or the phase:

λp ∂
p

∂λp n(λ) = (−1)p
c
ω

p∑︂
m=0

B(p, m)ωm ∂
m

∂ωm k(ω) (52)

λp ∂
p

∂λp OP(λ) = (−1)p
c
ω

p∑︂
m=0

B(p, m)ωm ∂
m

∂ωm φ(ω) (53)

Table 3. Matrix elements B(p, m) up to the tenth order and unsigned Laguerre coefficients
for α = −2.

Dispersion order p d(2)λ
m = 2

d(3)λ
m = 3

d(4)λ
m = 4

d(5)λ
m = 5

d(6)λ
m = 6

d(7)λ
m = 7

d(8)λ
m = 8

d(9)λ
m = 9

d(10)
λ

m = 10

Second p = 2 1 0 0 0 0 0 0 0 0

Third p = 3 3 1 0 0 0 0 0 0 0

Fourth p = 4 12 8 1 0 0 0 0 0 0

Fifth p = 5 60 60 15 1 0 0 0 0 0

Sixth p = 6 360 480 180 24 1 0 0 0 0

Seventh p = 7 2520 4200 2100 420 35 1 0 0 0

Eight p = 8 20160 40320 25200 6720 840 48 1 0 0

Ninth p = 9 181440 423360 317520 105840 17640 1512 63 1 0

Tenth p = 10 1814400 4838400 4233600 1693440 352800 40320 2520 80 1
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The matrix elements of the transforms B(p, m) =
p!

(p−m)!m!
(p−2)!
(m−2)! are listed in Table 3. For p = 0

and p = 1, the binomials with negative arguments are evaluated as
(︁
−n
k
)︁
= (−1)k

(︁n
k
)︁

and 0 for
n<k<0. Thus, the non-zero block of matrix elements for p<2 are B(0, 0) = 1, B(1, 0) = −1, and
B(1, 1) = 1.

The first four chromatic dispersion orders are well-known in the literature. Using the above-
mentioned Lah-Laguerre optical formalism, the first ten dispersion orders, written for the
wavevector, can be explicitly written in closed-form expressions as:

C I. GD = ∂
∂ω

k(ω) =
1
c

(︃
n(ω) + ω

∂n(ω)
∂ω

)︃
= −

1
c

G(−2)
1 (λ) =

1
c

(︃
n(λ) − λ

∂n(λ)
∂λ

)︃
= v−1

gr (54)

The group refractive index ng is defined in terms of the group velocity vgr: ng = cv−1
gr .

C II. GDD = ∂
2

∂ω2 k(ω) =
1
c

(︃
2
∂n(ω)
∂ω

+ ω
∂2n(ω)
∂ω2

)︃
=

1
c

(︃
λ

2πc

)︃
G(−2)

2 (λ) =

=
1
c

(︃
λ

2πc

)︃ (︃
λ2 ∂

2n(λ)
∂λ2

)︃ (55)

C III. TOD = ∂
3

∂ω3 k(ω) =
1
c

(︃
3
∂2n(ω)
∂ω2 + ω

∂3n(ω)
∂ω3

)︃
= −

1
c

(︃
λ

2πc

)︃2
G(−2)

3 (λ) =

= −
1
c

(︃
λ

2πc

)︃2 (︂
3λ2 ∂

2n(λ)
∂λ2 + λ3 ∂

3n(λ)
∂λ3

)︂ (56)

C IV. FOD = ∂
4

∂ω4 k(ω) =
1
c

(︃
4
∂3n(ω)
∂ω3 + ω

∂4n(ω)
∂ω4

)︃
=

1
c

(︃
λ

2πc

)︃3
G(−2)

4 (λ) =

=
1
c

(︃
λ

2πc

)︃3 (︂
12λ2 ∂

2n(λ)
∂λ2 + 8λ3 ∂

3n(λ)
∂λ3 + λ4 ∂

4n(λ)
∂λ4

)︂ (57)

C V. FiOD = ∂
5

∂ω5 k(ω) =
1
c

(︃
5
∂4n(ω)
∂ω4 + ω

∂5n(ω)
∂ω5

)︃
= −

1
c

(︃
λ

2πc

)︃4
G(−2)

5 (λ) =

= −
1
c

(︃
λ

2πc

)︃4 (︂
60λ2 ∂

2n(λ)
∂λ2 + 60λ3 ∂

3n(λ)
∂λ3 + 15λ4 ∂

4n(λ)
∂λ4 + λ5 ∂

5n(λ)
∂λ5

)︂ (58)

C VI. SiOD = ∂
6

∂ω6 k(ω) =
1
c

(︃
6
∂5n(ω)
∂ω5 + ω

∂6n(ω)
∂ω6

)︃
=

1
c

(︃
λ

2πc

)︃5
G(−2)

6 (λ) =

=
1
c

(︃
λ

2πc

)︃5 (︂
360λ2 ∂

2n(λ)
∂λ2 + 480λ3 ∂

3n(λ)
∂λ3 + 180λ4 ∂

4n(λ)
∂λ4 +

+ 24λ5 ∂
5n(λ)
∂λ5 + λ6 ∂

6n(λ)
∂λ6

)︂ (59)

C VII. SeOD = ∂
7

∂ω7 k(ω) =
1
c

(︃
7
∂6n(ω)
∂ω6 + ω

∂7n(ω)
∂ω7

)︃
= −

1
c

(︃
λ

2πc

)︃6
G(−2)

7 (λ) =

= −
1
c

(︃
λ

2πc

)︃6 (︂
2520λ2 ∂

2n(λ)
∂λ2 + 4200λ3 ∂

3n(λ)
∂λ3 + 2100λ4 ∂

4n(λ)
∂λ4 + 420λ5 ∂

5n(λ)
∂λ5 +

+ 35λ6 ∂
6n(λ)
∂λ6 + λ7 ∂

7n(λ)
∂λ7

)︂ (60)
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C VIII. EOD = ∂
8

∂ω8 k(ω) =
1
c

(︃
8
∂7n(ω)
∂ω7 + ω

∂8n(ω)
∂ω8

)︃
=

1
c

(︃
λ

2πc

)︃7
G(−2)

8 (λ) =

=
1
c

(︃
λ

2πc

)︃7 (︂
20160λ2 ∂

2n(λ)
∂λ2 + 40320λ3 ∂

3n(λ)
∂λ3 + 25200λ4 ∂

4n(λ)
∂λ4 + 6720λ5 ∂

5n(λ)
∂λ5 +

+ 840λ6 ∂
6n(λ)
∂λ6 + 48λ7 ∂

7n(λ)
∂λ7 + λ8 ∂

8n(λ)
∂λ8

)︂ (61)

C IX. NOD = ∂
9

∂ω9 k(ω) =
1
c

(︃
9
∂8n(ω)
∂ω8 + ω

∂9n(ω)
∂ω9

)︃
= −

1
c

(︃
λ

2πc

)︃8
G(−2)

9 (λ) =

= −
1
c

(︃
λ

2πc

)︃8 (︂
181440λ2 ∂

2n(λ)
∂λ2 + 423360λ3 ∂

3n(λ)
∂λ3 + 317520λ4 ∂

4n(λ)
∂λ4 +

+ 105840λ5 ∂
5n(λ)
∂λ5 + 17640λ6 ∂

6n(λ)
∂λ6 + 1512λ7 ∂

7n(λ)
∂λ7 + 63λ8 ∂

8n(λ)
∂λ8 + λ9 ∂

9n(λ)
∂λ9

)︂ (62)

C X. TeOD = ∂
10

∂ω10 k(ω) =
1
c

(︃
10
∂9n(ω)
∂ω9 + ω

∂10n(ω)
∂ω10

)︃
=

1
c

(︃
λ

2πc

)︃9
G(−2)

10 (λ) =

=
1
c

(︃
λ

2πc

)︃9 (︂
1814400λ2 ∂

2n(λ)
∂λ2 + 4838400λ3 ∂

3n(λ)
∂λ3 + 4233600λ4 ∂

4n(λ)
∂λ4 +

+ 1693440λ5 ∂
5n(λ)
∂λ5 + 352800λ6 ∂

6n(λ)
∂λ6 + 40320λ7 ∂

7n(λ)
∂λ7 + 2520λ8 ∂

8n(λ)
∂λ8 +

+ 80λ9 ∂
9n(λ)
∂λ9 + λ10 ∂

10n(λ)
∂λ10

)︂
(63)

Appendix D. Forward and inverse transforms for the dispersion slope parameters

The derivatives ∂p

∂λp τg or ∂p

∂λp (v−1
gr ) are often denoted as slopes of the dispersion parameters. The

group velocity v−1
gr =

1
c

(︂
n(λ) − λ ∂n(λ)

∂λ

)︂
and group delay τg(λ) = zv−1

gr can be used interchangeably
in the equation for the slopes of the dispersion parameters (Eq. (25)), with the remark that the
derivatives need to be expressed in terms of n(λ) and OP(λ), respectively:

∂pv−1
gr (λ)

∂λp = −
1
c

(︃
(p − 1)

∂p

∂λp n(λ) + λ
∂p+1

∂λp+1 n(λ)
)︃
= −

1
c
λ−p

p+1∑︂
m=0

K(p, m)λm ∂
m

∂λm n(λ) (64)

Table 4. Matrix elements K(p, m) up to the tenth order.

Dispersion order p + 1 d(2)λ
m = 2

d(3)λ
m = 3

d(4)λ
m = 4

d(5)λ
m = 5

d(6)λ
m = 6

d(7)λ
m = 7

d(8)λ
m = 8

d(9)λ
m = 9

d(10)
λ

m = 10
d(11)
λ

m = 11

Second p = 1 1 0 0 0 0 0 0 0 0 0

Third p = 2 1 1 0 0 0 0 0 0 0 0

Fourth p = 3 0 2 1 0 0 0 0 0 0 0

Fifth p = 4 0 0 3 1 0 0 0 0 0 0

Sixth p = 5 0 0 0 4 1 0 0 0 0 0

Seventh p = 6 0 0 0 0 5 1 0 0 0 0

Eight p = 7 0 0 0 0 0 6 1 0 0 0

Ninth p = 8 0 0 0 0 0 0 7 1 0 0

Tenth p = 9 0 0 0 0 0 0 0 8 1 0

Eleventh p = 10 0 0 0 0 0 0 0 0 9 1
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The corresponding matrix elements K(p, m) = (p−1)δp,m + δp+1,m, (δp,m = 1, if p = m and 0
otherwise) are listed in Table 4.

The inverse transform relates the Taylor coefficients of the refractive index to the dispersion
derivatives:

λp ∂
p

∂λp n(λ) = (−1)pc
p−1∑︂
m=0

K(p, m)−1λm ∂
mv−1

gr (λ)

∂λm (65)

The inverse coefficients K(p, m)−1 = (−1)m−1 (p−2)!
(m−1)! , K(p, 0)−1 = 0 are equivalent to the E(p −

2, m − 1) coefficients with shifted indices m ≤ p − 1, as indicated in Table 7, Appendix E. Hence,
using LLOF, a refined linear and nonlinear refractive index or an optical path function can be
extracted from knowledge of the dispersion derivatives at a single point. Further, the dispersion
can be optimized in reverse by altering the properties of novel materials and optical systems.

Written for the group velocity, the slopes of the dispersion parameter are:

D I.
∂v−1

gr (λ)

∂λ
= −

1
c
λ
∂2n(λ)
∂λ2 D II.

∂2v−1
gr (λ)

∂λ2 = −
1
c

(︃
∂2n(λ)
∂λ2 + λ

∂3n(λ)
∂λ3

)︃
(66)

D III.
∂3v−1

gr (λ)

∂λ3 = −
1
c

(︃
2
∂3n(λ)
∂λ3 + λ

∂4n(λ)
∂λ4

)︃
D IV.

∂4v−1
gr (λ)

∂λ4 = −
1
c

(︃
3
∂4n(λ)
∂λ4 + λ

∂5n(λ)
∂λ5

)︃
(67)

D V.
∂5v−1

gr (λ)

∂λ5 = −
1
c

(︃
4
∂5n(λ)
∂λ5 + λ

∂6n(λ)
∂λ6

)︃
D VI.

∂6v−1
gr (λ)

∂λ6 = −
1
c

(︃
5
∂6n(λ)
∂λ6 + λ

∂7n(λ)
∂λ7

)︃
(68)

D VII.
∂7v−1

gr (λ)

∂λ7 = −
1
c

(︃
6
∂7n(λ)
∂λ7 + λ

∂8n(λ)
∂λ8

)︃
D VIII.

∂8v−1
gr (λ)

∂λ8 = −
1
c

(︃
7
∂8n(λ)
∂λ8 + λ

∂9n(λ)
∂λ9

)︃
(69)

D IX.
∂9v−1

gr (λ)

∂λ9 = −
1
c

(︃
8
∂9n(λ)
∂λ9 + λ

∂10n(λ)
∂λ10

)︃
D X.

∂10v−1
gr (λ)

∂λ10 = −
1
c

(︃
9
∂10n(λ)
∂λ10 + λ

∂11n(λ)
∂λ11

)︃
(70)

Appendix E. Wavevector derivatives with respect to the wavelength and disper-
sion formulation in the wavelength space

When the dispersion is formulated in the wavelength space, as in Eqs. (26) and (27), the
dispersion orders according to Eq. (28), representing the Lah-Laguerre transform for α = 0, can
be articulated as:

∂p

∂λp

(︃
2π
λ

f (λ)
)︃
= (−1)p2π

(︂ ω
2πc

)︂p+1 p∑︂
m=0

D(p, m) ωm ∂
m

∂ωm f (ω) (71)

The inverse transform connects the Taylor coefficients of the refractive index or the optical path
to the phase:

ωp ∂
p

∂ωp f (ω) = (−1)p
λ

2π

p∑︂
m=0

D(p, m)λm ∂
m

∂λm

(︃
2π
λ

f (λ)
)︃

(72)

Here, f is either the refractive index n or the optical path OP (k(λ) = 2π
λ n(λ) and φ(λ) = 2π

λ OP(λ)).
The corresponding matrix elements D(p, m) =

p!
(p−m)!m!

p!
m! are given in Table 5.
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The expressions, written for the wavevector, are:

E I.
∂k(λ)
∂λ

= −2π
(︂ ω
2πc

)︂2
G(0)

1 (ω) = −2π
(︂ ω
2πc

)︂2
(︃
n(ω) + ω

∂n(ω)
∂ω

)︃
(73)

E II.
∂2k(λ)
∂λ2 = 2π

(︂ ω
2πc

)︂3
G(0)

2 (ω) = 2π
(︂ ω
2πc

)︂3
(︃
2n(ω) + 4ω

∂n(ω)
∂nω

+ ω2 ∂
2n(ω)
∂ω2

)︃
(74)

E III.
∂3k(λ)
∂λ3 = −2π

(︂ ω
2πc

)︂4
G(0)

3 (ω) = −2π
(︂ ω
2πc

)︂4 (︂
6n(ω) + 18ω

∂n(ω)
∂ω

+ 9ω2 ∂
2n(ω)
∂ω2 +

+ ω3 ∂
3n(ω)
∂ω3

)︂ (75)

E IV.
∂4k(λ)
∂λ4 = 2π

(︂ ω
2πc

)︂5
G(0)

4 (ω) = 2π
(︂ ω
2πc

)︂5 (︂
24n(ω) + 96ω

∂n(ω)
∂ω

+ 72ω2 ∂
2n(ω)
∂ω2 +

+ 16ω3 ∂
3n(ω)
∂ω3 + ω4 ∂

4n(ω)
∂ω4

)︂ (76)

E V.
∂5k(λ)
∂λ5 = −2π

(︂ ω
2πc

)︂6
G(0)

5 (ω) = −2π
(︂ ω
2πc

)︂6 (︂
120n(ω) + 600ω

∂n(ω)
∂ω
+

+ 600ω2 ∂
2n(ω)
∂ω2 + 200ω3 ∂

3n(ω)
∂ω3 + 25ω4 ∂

4n(ω)
∂ω4 + ω5 ∂

5n(ω)
∂ω5

)︂ (77)

E VI.
∂6k(λ)
∂λ6 = 2π

(︂ ω
2πc

)︂7
G(0)

6 (ω) = 2π
(︂ ω
2πc

)︂7 (︂
720n(ω) + 4320ω

∂n(ω)
∂ω
+

+ 5400ω2 ∂
2n(ω)
∂ω2 + 2400ω3 ∂

3n(ω)
∂ω3 + 450ω4 ∂

4n(ω)
∂ω4 + 36ω5 ∂

5n(ω)
∂ω5 +ω6 ∂

6n(ω)
∂ω6

)︂ (78)

E VII.
∂7k(λ)
∂λ7 = −2π

(︂ ω
2πc

)︂8
G(0)

7 (ω) = −2π
(︂ ω
2πc

)︂8 (︂
5040n(ω) + 35280ω

∂n(ω)
∂ω
+

+ 52920ω2 ∂
2n(ω)
∂ω2 + 29400ω3 ∂

3n(ω)
∂ω3 + 7350ω4 ∂

4n(ω)
∂ω4 + 882ω5 ∂

5n(ω)
∂ω5 +

+ 49ω6 ∂
6n(ω)
∂ω6 + ω7 ∂

7n(ω)
∂ω7

)︂ (79)

E VIII.
∂8k(λ)
∂λ8 = 2π

(︂ ω
2πc

)︂9
G(0)

8 (ω) = 2π
(︂ ω
2πc

)︂9 (︂
40320n(ω) + 322560ω

∂n(ω)
∂ω
+

+ 564480ω2 ∂
2n(ω)
∂ω2 + 376320ω3 ∂

3n(ω)
∂ω3 + 117600ω4 ∂

4n(ω)
∂ω4 + 18816ω5 ∂

5n(ω)
∂ω5 +

+ 1568ω6 ∂
6n(ω)
∂ω6 + 64ω7 ∂

7n(ω)
∂ω7 + ω8 ∂

8n(ω)
∂ω8

)︂ (80)

E IX.
∂9k(λ)
∂λ9 = −2π

(︂ ω
2πc

)︂10
G(0)

9 (ω) = −2π
(︂ ω
2πc

)︂10 (︂
362880n(ω) + 3265920ω

∂n(ω)
∂ω
+

+ 6531840ω2 ∂
2n(ω)
∂ω2 + 5080320ω3 ∂

3n(ω)
∂ω3 + 1905120ω4 ∂

4n(ω)
∂ω4 + 381024ω5 ∂

5n(ω)
∂ω5 +

+ 42336ω6 ∂
6n(ω)
∂ω6 + 2592ω7 ∂

7n(ω)
∂ω7 + 81ω8 ∂

8n(ω)
∂ω8 + ω9 ∂

9n(ω)
∂ω9

)︂ (81)
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E X.
∂10k(λ)
∂λ10 = 2π

(︂ ω
2πc

)︂11
G(0)

10 (ω) = 2π
(︂ ω
2πc

)︂11 (︂
3628800n(ω) + 36288000ω

∂n(ω)
∂ω
+

+ 81648000ω2 ∂
2n(ω)
∂ω2 + 72576000ω3 ∂

3n(ω)
∂ω3 + 31752000ω4 ∂

4n(ω)
∂ω4 + 7620480ω5 ∂

5n(ω)
∂ω5 +

+ 1058400ω6 ∂
6n(ω)
∂ω6 + 86400ω7 ∂

7n(ω)
∂ω7 + 4050ω8 ∂

8n(ω)
∂ω8 + 100ω9 ∂

9n(ω)
∂ω9 + ω10 ∂

10n(ω)
∂ω10

)︂ (82)

Table 5. Matrix elements D(p, m) up to the tenth order and unsigned Laguerre coefficients for
α = 0.

Dispersion order p d(0)ω
m = 0

d(1)ω
m = 1

d(2)ω
m = 2

d(3)ω
m = 3

d(4)ω
m = 4

d(5)ω
m = 5

d(6)ω
m = 6

d(7)ω
m = 7

d(8)ω
m = 8

d(9)ω
m = 9

d(10)
ω

m = 10

Zero p = 0 1 0 0 0 0 0 0 0 0 0 0

First p = 1 1 1 0 0 0 0 0 0 0 0 0

Second p = 2 2 4 1 0 0 0 0 0 0 0 0

Third p = 3 6 18 9 1 0 0 0 0 0 0 0

Fourth p = 4 24 96 72 16 1 0 0 0 0 0 0

Fifth p = 5 120 600 600 200 25 1 0 0 0 0 0

Sixth p = 6 720 4320 5400 2400 450 36 1 0 0 0 0

Seventh p = 7 5040 35280 52920 29400 7350 882 49 1 0 0 0

Eight p = 8 40320 322560 564480 376320 117600 18816 1568 64 1 0 0

Ninth p = 9 362880 3265920 6531840 5080320 1905120 381024 42336 2592 81 1 0

Tenth p=10 3628800 36288000 81648000 72576000 31752000 7620480 1058400 86400 4050 100 1

The derivatives of k(λ) = 2π
λ n(λ) and φ(λ) = 2π

λ OP(λ) in terms of the wavelength can be
obtained through the transform specified in Eq. (29):

∂p

∂λp

(︃
2π
λ

f (λ)
)︃
= (−1)p2πλ−(p+1)

p∑︂
m=0

E(p, m)λm ∂
m

∂λm f (λ) (83)

The inverse transform connects the Taylor coefficients of the refractive index or the optical path
to the phase, in the most convenient computational form:

∂p

∂λp f (λ) =
λ1−p

2π

p∑︂
m=0

V(p, m)λm ∂
m

∂λm

(︃
2π
λ

f (λ)
)︃
=

=
1

2π

(︃
p
∂p−1

∂λp−1

(︃
2π
λ

f (λ)
)︃
+ λ
∂p

∂λp

(︃
2π
λ

f (λ)
)︃)︃ (84)

Here, knowledge of the phase derivatives at a single point reproduces the refractive index (linear
and nonlinear) in an extended vicinity of the considered point through the calculated Taylor
coefficients of the refractive index, enabling more precise refractive index measurements and
optimization of the dispersion in reverse.

The refractive index n(λ), and optical path OP(λ) are interchangeable in Eq. (29) for the
derivatives of k(λ) = 2π

λ n(λ) and φ(λ) = 2π
λ OP(λ). The corresponding matrix elements

E(p, m) = (−1)m p!
m! are listed in Table 6.
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Table 6. Matrix elements E(p, m) up to the tenth order.

Dispersion order p d(0)λ
m = 0

d(1)λ
m = 1

d(2)λ
m = 2

d(3)λ
m = 3

d(4)λ
m = 4

d(5)λ
m = 5

d(6)λ
m = 6

d(7)λ
m = 7

d(8)λ
m = 8

d(9)λ
m = 9

d(10)
λ

m = 10

Zero p = 0 1 0 0 0 0 0 0 0 0 0 0

First p = 1 1 −1 0 0 0 0 0 0 0 0 0

Second p = 2 2 −2 1 0 0 0 0 0 0 0 0

Third p = 3 6 −6 3 −1 0 0 0 0 0 0 0

Fourth p = 4 24 −24 12 −4 1 0 0 0 0 0 0

Fifth p = 5 120 −120 60 −20 5 −1 0 0 0 0 0

Sixth p = 6 720 −720 360 −120 30 −6 1 0 0 0 0

Seventh p = 7 5040 −5040 2520 −840 210 −42 7 −1 0 0 0

Eight p = 8 40320 −40320 20160 −6720 1680 −336 56 −8 1 0 0

Ninth p = 9 362880 −362880 181440 −60480 15120 −3024 504 −72 9 −1 0

Tenth p=10 3628800 −3628800 1814400 −604800 151200 −30240 5040 −720 90 −10 1

The expressions, written for the wavevector, are :

EE I.
∂k(λ)
∂λ

= −2πλ−2
(︂
n(λ) − λ

∂n(λ)
∂λ

)︂
(85)

EE II.
∂2k(λ)
∂λ2 =

∂

∂λ

(︃
∂k(λ)
∂λ

)︃
= 2πλ−3

(︂
2n(λ) − 2λ

∂n(λ)
∂λ

+ λ2 ∂
2n(λ)
∂λ2

)︂
(86)

EE III.
∂3k(λ)
∂λ3 = −2πλ−4

(︂
6n(λ) − 6λ

∂n(λ)
∂λ

+ 3λ2 ∂
2n(λ)
∂λ2 − λ3 ∂

3n(λ)
∂λ3

)︂
(87)

EE IV.
∂4k(λ)
∂λ4 = 2πλ−5

(︂
24n(λ) − 24λ

∂n(λ)
∂λ

+ 12λ2 ∂
2n(λ)
∂λ2 − 4λ3 ∂

3n(λ)
∂λ3 + λ4 ∂

4n(λ)
∂λ4

)︂
(88)

EE V.
∂5n(λ)
∂λ5 = −2πλ−6

(︂
120n(λ) − 120λ

∂n(λ)
∂λ

+ 60λ2 ∂
2n(λ)
∂λ2 − 20λ3 ∂

3n(λ)
∂λ3 + 5λ4 ∂

4n(λ)
∂λ4 +

− λ5 ∂
5n(λ)
∂λ5

)︂ (89)

EE VI.
∂6k(λ)
∂λ6 = 2πλ−7

(︂
720n(λ) − 720λ

∂n(λ)
∂λ

+ 360λ2 ∂
2n(λ)
∂λ2 − 120λ3 ∂

3n(λ)
∂λ3 +

+ 30λ4 ∂
4n(λ)
∂λ4 − 6λ5 ∂

5n(λ)
∂λ5 +λ6 ∂

6n(λ)
∂λ6

)︂ (90)

EE VII.
∂7k(λ)
∂λ7 = −2πλ−8

(︂
5040n(λ) − 5040λ

∂n(λ)
∂λ

+ 2520λ2 ∂
2n(λ)
∂λ2 − 840λ3 ∂

3n(λ)
∂λ3 +

+ 210λ4 ∂
4n(λ)
∂λ4 − 42λ5 ∂

5n(λ)
∂λ5 + 7λ6 ∂

6n(λ)
∂λ6 − λ7 ∂

7n(λ)
∂λ7

)︂ (91)

EE VIII.
∂8k(λ)
∂λ8 = 2πλ−9

(︂
40320n(λ) − 40320λ

∂n(λ)
∂λ

+ 20160λ2 ∂
2n(λ)
∂λ2 − 6720λ3 ∂

3n(λ)
∂λ3 +

+ 1680λ4 ∂
4n(λ)
∂λ4 − 336λ5 ∂

5n(λ)
∂λ5 + 56λ6 ∂

6n(λ)
∂λ6 − 8λ7 ∂

7n(λ)
∂λ7 + λ8 ∂

8n(λ)
∂λ8

)︂ (92)
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EE IX.
∂9k(λ)
∂λ9 = −2πλ−10

(︂
362880n(λ) − 362880λ

∂n(λ)
∂λ

+ 181440λ2 ∂
2n(λ)
∂λ2 +

− 60480λ3 ∂
3n(λ)
∂λ3 + 15120λ4 ∂

4n(λ)
∂λ4 − 3024λ5 ∂

5n(λ)
∂λ5 + 504λ6 ∂

6n(λ)
∂λ6 − 72λ7 ∂

7n(λ)
∂λ7 +

+ 9λ8 ∂
8n(λ)
∂λ8 − λ9 ∂

9n(λ)
∂λ9

)︂ (93)

EE X.
∂10k(λ)
∂λ10 = 2πλ−11

(︂
3628800n(λ) − 3628800λ

∂n(λ)
∂λ

+ 1814400λ2 ∂
2n(λ)
∂λ2 +

− 604800λ3 ∂
3n(λ)
∂λ3 + 151200λ4 ∂

4n(λ)
∂λ4 − 30240λ5 ∂

5n(λ)
∂λ5 + 5040λ6 ∂

6n(λ)
∂λ6 − 720λ7 ∂

7n(λ)
∂λ7 +

+ 90λ8 ∂
8n(λ)
∂λ8 − 10λ9 ∂

9n(λ)
∂λ9 + λ10 ∂

10n(λ)
∂λ10

)︂ (94)

Referring to Eq. (65), Appendix D, the inverse coefficients K(p, m)−1 = (−1)m−1 (p−2)!
(m−1)! ,

K(p, 0)−1 = 0 are equivalent to the E(p − 2, m − 1) coefficients with shifted indices, m ≤ p − 1.
The corresponding coefficients are listed in Table 7.

Table 7. Matrix elements K(p, m)−1 and E(p − 2, m − 1) up to the eleventh order.

Dispersion order p d(1)λ
m = 1

d(2)λ
m = 2

d(3)λ
m = 3

d(4)λ
m = 4

d(5)λ
m = 5

d(6)λ
m = 6

d(7)λ
m = 7

d(8)λ
m = 8

d(9)λ
m = 9

d(10)
λ

m = 10

Second p = 2 1 0 0 0 0 0 0 0 0 0

Third p = 3 1 −1 0 0 0 0 0 0 0 0

Fourth p = 4 2 −2 1 0 0 0 0 0 0 0

Fifth p = 5 6 −6 3 −1 0 0 0 0 0 0

Sixth p = 6 24 −24 12 −4 1 0 0 0 0 0

Seventh p = 7 120 −120 60 −20 5 −1 0 0 0 0

Eight p = 8 720 −720 360 −120 30 −6 1 0 0 0

Ninth p = 9 5040 −5040 2520 −840 210 −42 7 −1 0 0

Tenth p = 10 40320 −40320 20160 −6720 1680 −336 56 −8 1 0

Eleventh p = 11 362880 −362880 181440 −60480 15120 −3024 504 −72 9 −1

The expressions, written for the refractive index n(λ), are:

λp ∂
p

∂λp n(λ) = (−1)p+1c
p−1∑︂
m=0

K(p, m)−1λm ∂
m

∂λm v−1
gr (λ) (95)

EEE I. n(λ) − λ
∂n(λ)
∂λ

= cv−1
gr (λ) (96)

EEE II.
∂2n(λ)
∂λ2 = −cλ−2

(︂
λ
∂v−1

gr (λ)

∂λ

)︂
(97)

EEE III.
∂3n(λ)
∂λ3 = cλ−3

(︂
λ
∂v−1

gr (λ)

∂λ
− λ2 ∂

2v−1
gr (λ)

∂λ2

)︂
(98)

EEE IV.
∂4n(λ)
∂λ4 = −cλ−4

(︂
2λ
∂v−1

gr (λ)

∂λ
− 2λ2 ∂

2v−1
gr (λ)

∂λ2 + λ3 ∂
3v−1

gr (λ)

∂λ3

)︂
(99)
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EEE V.
∂5n(λ)
∂λ5 = cλ−5

(︂
6λ
∂v−1

gr (λ)

∂λ
− 6λ2 ∂

2v−1
gr (λ)

∂λ2 + 3λ3 ∂
3v−1

gr (λ)

∂λ3 − λ4 ∂
4v−1

gr (λ)

∂λ4

)︂
(100)

EEE VI.
∂6n(λ)
∂λ6 = −cλ−6

(︂
24λ
∂v−1

gr (λ)

∂λ
− 24λ2 ∂

2v−1
gr (λ)

∂λ2 + 12λ3 ∂
3v−1

gr (λ)

∂λ3 − 4λ4 ∂
4v−1

gr (λ)

∂λ4 +

+ λ5 ∂
5v−1

gr (λ)

∂λ5

)︂ (101)

EEE VII.
∂7n(λ)
∂λ7 = cλ−7

(︂
120λ

∂v−1
gr (λ)

∂λ
− 120λ2 ∂

2v−1
gr (λ)

∂λ2 + 60λ3 ∂
3v−1

gr (λ)

∂λ3 − 20λ4 ∂
4v−1

gr (λ)

∂λ4 +

+ 5λ5 ∂
5v−1

gr (λ)

∂λ5 − λ6 ∂
6v−1

gr (λ)

∂λ6

)︂ (102)

EEE VIII.
∂8n(λ)
∂λ8 = −cλ−8

(︂
720λ

∂v−1
gr (λ)

∂λ
− 720λ2 ∂

2v−1
gr (λ)

∂λ2 + 360λ3 ∂
3v−1

gr (λ)

∂λ3 − 120λ4 ∂
4v−1

gr (λ)

∂λ4 +

+ 30λ5 ∂
5v−1

gr (λ)

∂λ5 − 6λ6 ∂
6v−1

gr (λ)

∂λ6 + λ7 ∂
7v−1

gr (λ)

∂λ7

)︂ (103)

EEE IX.
∂9n(λ)
∂λ9 = cλ−9

(︂
5040λ

∂v−1
gr (λ)

∂λ
− 5040λ2 ∂

2v−1
gr (λ)

∂λ2 + 2520λ3 ∂
3v−1

gr (λ)

∂λ3 − 840λ4 ∂
4v−1

gr (λ)

∂λ4 +

+ 210λ5 ∂
5v−1

gr (λ)

∂λ5 − 42λ6 ∂
6v−1

gr (λ)

∂λ6 + 7λ7 ∂
7v−1

gr (λ)

∂λ7 − λ8 ∂
8v−1

gr (λ)

∂λ8

)︂ (104)

EEE X.
∂10n(λ)
∂λ10 = −cλ−10

(︂
40320λ

∂v−1
gr (λ)

∂λ
− 40320λ2 ∂

2v−1
gr (λ)

∂λ2 + 20160λ3 ∂
3v−1

gr (λ)

∂λ3 +

− 6720λ4 ∂
4v−1

gr (λ)

∂λ4 + 1680λ5 ∂
5v−1

gr (λ)

∂λ5 − 336λ6 ∂
6v−1

gr (λ)

∂λ6 + 56λ7 ∂
7v−1

gr (λ)

∂λ7 − 8λ8 ∂
8v−1

gr (λ)

∂λ8 +

+ λ9 ∂
9v−1

gr (λ)

∂λ9

)︂ (105)

Here c = 299 792 458 m/s is the speed of light in vacuum.

Appendix F. Identities

F I. xp =
∑︂p

m=0

m∑︂
k=0

(−1)p−mA(p, m)A(m, k)xk (106)

F II. xp =

p∑︂
m=0

m∑︂
k=0

(−1)p−mB(p, m)B (m, k) xk (107)

F III. xp =

p∑︂
m=0

m∑︂
k=0

(−1)p−mC(p, m)C(m, k)xk (108)

F IV. xp =

p∑︂
m=0

m∑︂
k=0

(−1)p−mD(p, m)D(m, k)xk (109)

F V. xp =

p∑︂
m=0

m∑︂
k=0

(−1)mV(p, m)E(m, k)xk (110)

F VI. up = (−1)p
p∑︂

m=0

m∑︂
k=0

V(p, m)E(m, k)uk (111)
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F VII. xp =

p+1∑︂
m=2

m−1∑︂
k=1

(−1)m+1K(p, m)E(m − 2, k − 1)xk (112)

F VIII. up = (−1)p+1
p−1∑︂
m=1

m+1∑︂
k=0

E(m − 2, k − 1)K(p, m)uk (113)

F IX. D(p, k) =
p∑︂

m=0
(−1)mE(p, m)A(m, k) (114)

F X. K(p, k) =
p+1∑︂
m=0

(−1)p−mA(p, m)B(m + 1,k) (115)

F XI. V (p, k) =
p∑︂

m=0
(−1)p−mB(p, m)A(m, k) (116)

F XII.
∂p+k

∂ωp+k φ(ω) =
∂p

∂ωp KOD = (−1)p
(︃
λ

2πc

)︃p p∑︂
m=0

A(p, m) λm ∂
m

∂λm KOD(λ) (117)

where KOD is the kth order of dispersion. The lower dispersion terms n<k can be obtained
simpler from the even dispersion terms (k even), with the help of the Cauchy formula:

F XIII.
∂k−n

∂ωk−n φ(ω) =

∫
. . .

∫ ω

ωzd

KOD(ω)dω . . . dω =
∫ ω

ωzd

KOD(t)
(ω − t)n−1

Γ(n)
dt (118)

where ωzd is the zero dispersion frequency of the KOD, and Γ(n) is the gamma function.
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