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In this paper, we present a semi-numerical method for determining the dynamics of micro-resonators
with finite width immersed in incompressible viscous fluids. The micro-resonator is modeled using
Kirchhoff plate theory, and the hydrodynamic force acting on the plate is determined from a boundary
integral formulation of the Stokes equations. The resulting equation of motion is solved with a continu-
ous/discontinuous finite element method in which an interior penalty term imposes C1-continuity to the
plate’s deflection. Numerical investigations show the method to be convergent with an exponent of the
convergence rate equals 2. Examples demonstrate that the proposed method overcomes the limitations
of existing semi-analytic methods, only applicable to beam geometries, considering arbitrary plate modes
in the structure’s dynamics and their effects on the fluid flow. Different resonator geometries are inves-
tigated for which displacement spectrum, mode shapes, and quality factors are not determinable with
existent semi-analytic methods. Moreover, we find excellent agreement between simulated and experi-
mental data, which has not been achieved even with purely numerical methods. The present method will
allow the understanding of high quality factors of wide micro-resonators in viscous fluids and facilitate
new applications in liquid atomic force microscopy and gas sensing in ambient and low-pressure
conditions.
� 2021 The Authors. Published by Elsevier Ltd. This is an openaccess article under the CCBY license (http://

creativecommons.org/licenses/by/4.0/).
1. Introduction

Resonant microelectromechanical systems (MEMS), also known
as micro-resonators, are a success story and span a wide range of
applications, e.g., atomic force microscopy (AFM) [52,25,29],
energy harvesting [12], bio-mimetic robotic propulsion
[14,23,33], viscosity sensors [11,35,46], micro-pumps [66] and
micro-fanning [7].

A standard building block of micro-resonators is a thin elastic
structure [8,49]. Micro-resonators operate using the structure’s
resonance frequencies, which typically range from a couple of kilo-
hertz to tens of megahertz [8]. When the micro-resonator is in con-
tact with a fluid, the fluid reduces the elastic structure’s resonance
frequency through the added-mass effect and dissipates the struc-
ture’s kinetic energy through viscous losses [38,37].

The fluid dissipation in MEMS is quantified by the quality factor,
or Q-factor, Q. The Q-factor is defined as the ratio of the maximum
elastic energy stored in the structure Eb per energy dissipated by
the fluid in one cycle of oscillation DEf [27] as
Q ¼ 2p Eb

DEf
: ð1Þ

A high Q-factor implies small energy dissipation. For most MEMS
applications, high Q-factors are desirable because it leads to an
enhanced resonant amplification, thus providing higher signal-to-
noise ratio [58].

The most common elastic structures used in micro-resonators
are cantilevered slender and thin beams [52,25,29,12,11,35,46,7].
Slender beams are characterized by their in-plane dimensions,
where the beam’s length is much larger than its width, such that
the aspect ratio ra = length/width is greater than 10. Thinness
refers to the beam’s thickness being much smaller than its length
so that the thickness ratio rt = thickness/length is smaller than 0:1.

One reason for the use of slender, thin beams for MEMS fluid
applications is the existence of several semi-analytical methods
to solve for the micro-beam dynamics in viscous fluids. Semi-
analytical methods avoid the computational effort associated with
the discretization and numerical solution of the beam-fluid inter-
action problem. Sader [57] proposed a landmark semi-analytical
method to determine the steady-state dynamics of a slender
micro-beam undergoing out-of-plane displacement in a viscous
fluid. In Sader’s model, the Euler Bernoulli equation describes the
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beam dynamics, and the hydrodynamic force on the beam is calcu-
lated by introducing a correction to the drag force on a circular
cylinder. Subsequent semi-analytical methods incrementally
incorporated more aspects in the scope of the micro-beam fluid
interaction problem, e.g., the presence of a nearby rigid wall
[5,64,32] or of an elastic surface [17], arrays of beams [12,36,16],
torsional modes [64,31,63,1,3], lateral modes [19,10], and fluid
compressibility effects [65].

Semi-analytical methods were used extensively to investigate
cantilevered micro-beams in both liquids and gases. In water,
micro-beams exhibit Q-factor ranging from 1 to 10 in low-order
vibrational modes (up to third vibrational mode) [5,7,28,15]. For
higher-order modes, Q-factors as high as 30 were obtained [28].
When using slender, thin beams, achieving higher Q-factors (in
order of hundreds) for micro-resonator applications in liquids has
proven to be a cumbersome task.

Recently it has been discovered experimentally that wide thin
plates can exhibit very high Q-factors in liquids. For example, a
Q-factor of 197 was obtained in water at 336 kHz when the plate
was excited in the so-called roof tile-shaped modes [39,56,47,48].
Roof tile-shaped modes are characterized by having two or more
nodal lines parallel to the plate’s length (ny P 2), and only one
nodal line parallel to the plate’s width (nx ¼ 1), as depicted in
Fig. 1. Leissa’s nomenclature is particularly useful to classify vibra-
tional modes of plates according to their nodal lines as (nx;ny) [41].
In Fig. 1 the first flexural (1,0), the first torsional (1,1), and the first
roof tile-shaped (1,2) vibrational modes of a plate are shown.

The application of these high Q-factor vibrational modes of
micro-plates in liquids for micro-resonators has been limited due
to the complexity of determining the dynamics of micro-plates in
viscous fluids. Both fluid dynamics and plate dynamics are more
complicated for plates in comparison to beams. For instance, theo-
ries such as linear elasticity, a plate theory (e.g., Kirchhoff, Reiss-
ner–Mindlin), or shell theory [53] can be used to model the plate
dynamics. For any of these theories, numerical techniques are
required to solve the plate dynamics when the plate is cantilevered,
whereas, for beams, analytical solutions for the Euler–Bernoulli
equation are well known [53]. Furthermore, the one-dimensional
vibrational modes of beams simplify the fluid flow solution because
the fluid velocity at the beam’s surface does not vary along the
beam’s width. A similar simplification can not be implemented for
plates since plate modes are intrinsically two-dimensional.

Due to the complexity in solving the micro-plate fluid interac-
tion problem, a few studies favored purely numerical methods1

[5,56,55,42,24,44,54], instead of semi-analytical approaches. With
the purely numerical methods, micro-plates with ra ranging from 8
to 2 were investigated, and good agreement with experimental data
was found. The error in the Q-factor prediction was within 10% for
flexural modes [5,44], and within 50% for roof tile-shaped modes
[56,55].

The purely numerical methods, although practical, require a fine
fluid meshing over a huge volume compared to the size of a fluid
mesh cell. What is more, the in-plane dimensions of micro-plates
are much larger than the occurring transverse deflections. This
multi-scale character of the problem results in discretization
requirements that are difficult to fulfill [60]. Furthermore, the pres-
sure gradient near the edges of the micro-plate is high [18], which
imposes additional discretization requirements in these regions.
These aspects limit the applicability of purely numerical methods
1 Different approaches were used in the purely numerical methods papers. In
[5,56,55,42,24] the transient dynamics of the plate is solved with the software ADINA
or Comsol Multiphysics when a single vibrational mode is imposed as an initial
condition. Maali et al. [44] solved the frequency domain problem by assuming that
the plate moved only with flexural beam modes (nx;0). In [54] the eigenvalue
problem is solved with Comsol Multiphysics.

2

and highlight that a semi-analytic or semi-numeric method for
determining the dynamics of micro-plates in viscous fluids is still
missing.

Here, we present a semi-numerical method to determine the
steady-state dynamics of micro-plate resonators in an incompress-
ible viscous fluid. The proposed method generalizes the existent
beam-based semi-analytic methods and, more importantly, over-
comes their limitations by accounting for arbitrary two-
dimensional plate modes in the structure’s dynamics and their
effects on the fluid flow. Solving for the dynamics of micro-plates
in fluids implies a departure from the assumptions that make the
semi-analytic approaches possible. For instance, we model the
micro-plate using Kirchhoff plate theory, which requires entirely
different solution strategies than existing methods. The resulting
equation of motion is solved with a continuous/discontinuous
finite element method in which an interior penalty term imposes
C1-continuity to the solution for the plate’s deflection. For beams,
in comparison, Euler–Bernoulli equation is used, whose analytical
solutions are known. The hydrodynamic forces on the plate’s sur-
faces are determined with a boundary integral formulation. For
plates, a two-dimensional quadrature scheme for numerically eval-
uating the hydrodynamic forces is required, whereas for beams,
this evaluation is based on an analytical integration [57]. In addi-
tion to overcoming a geometric limit of the semi-analytical meth-
ods, the present method is also advantageous compared to purely
numerical methods. The use of the boundary integral formulation
avoids the discretization of the entire fluid domain, which miti-
gates multi-scale issues, and makes the present method low-
costly computationally.

The paper is outlined as follows. In Section 2 a dimensional anal-
ysis to delimit the fluid flow regime around micro-plates is pre-
sented, followed by the partial differential equations in the time
and frequency domain. The semi-numerical method is described in
detail in Section 3. One important assumption in the proposed
method is that the fluid velocity along the plate’s length must be
much smaller than in the other directions. This assumption allows
the use of a two-dimensional fluid flow formulation which makes
the present method very efficient because there are analytical solu-
tions to the arising boundary integrals in each segment of the
numerical quadrature scheme [62]. The ramifications due to the
two-dimensional flow assumption are discussed in details in Sec-
tion 3.2, amongwhichwe remark that the proposedmethod is most
accurate for low number of nodal lines nx 6 6 and plates with med-
iumaspect ratios ra P 1. In Section4, the convergenceof themethod
is discussed, aswell as the displacement spectra, quality factors, and
mode shapes for structures ranging from slender plateswith ra ¼ 16
toasquareplatewith ra ¼ 1. The last subsectionsof thepaper refer to
comparison to results fromstudiesofpurelynumericalmethods, fol-
lowed by comparison to experimental published results.
2. Statement of the problem

The thickness of the elastic structures used in micro-resonators
range from hundreds of nanometers to tens of micrometers,
whereas their in-plane dimensions (length and width) vary
between tens of micrometers to millimeters [8]. Thin structures
with rt = thickness/length 6 10 are common micro-resonator
geometries. Thus, a thin plate theory accurately models the elastic
structure’s dynamics of a wide range of micro-resonators geome-
tries [53]2.
2 For rt P 10 a thick plate theory, as Reissner–Mindlin, or the linear elasticity
theory can be used to determine the plate’s dynamics. However, numerical solutions
using Reissner–Mindlin and elasticity theories can be subject to locking-effects in the
thin plate limit (rt ! 0), whereas numerical solution of the thin plate theory is not
prone to locking-effects [53,13].



Fig. 1. First a) flexural (1,0), b) torsional (1,1), and c) roof tile-shaped (1,2) vibrational modes of plates. Leissa’s nomenclature [41] classifies plate modes as (nx;ny), where nx is
the number of nodal lines parallel to the plate’s width, and ny the number of nodal lines parallel to the. plate’s length.

Fig. 2. Thin micro-plate immersed in a viscous fluid and subject to an arbitrary load
q. The shown transverse displacement / x; yð Þ of the plate corresponds to the first
roof tile-shaped (1,2) vibrational mode.

3 The definition of Re in Eq. (5) is similar to studies that focus on beam-fluid
interaction with high amplitude displacement [16,24,2,59], while it differs from the
non-dimensional number b ¼ 2pfw2

p=mf introduced in some of the other works on
beam-fluid interaction by a factor of � [57,64,31].
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The elastic structure is a cantilevered thin plate with a uniform
width wp, length lp and thickness hp, as shown in Fig. 2. The Carte-
sian coordinate system has x along the plate’s length, y along the
plate’s width, and z along its thickness. The plate undergoes purely
out-of-plane displacement / x; yð Þ, while lateral movement in
x- and y-directions are negligible. We use the Kirchhoff plate equa-
tion for thin plates to determine / x; yð Þ, and represent the three-
dimensional resonator by its two-dimensional mid-plane Xp.

The plate is fully immersed in a fluid of density qf , dynamic vis-
cosity lf and kinematic viscosity mf . The fluid is unbounded, which
means the volume of the fluid domain Xf is much larger than the
volume of the plate and that the fluid velocity far from the plate
tends to zero. In addition, the fluid is quiescent, i.e., there is no flow
other than the one caused by the plate’s movement. These assump-
tions are typically fulfilled in MEMS applications [57,64,28].

The fluid acts on the plate’s surfaces with a pressure p and a
vorticity x. Pressure and vorticity acting on the top plate surface
are denoted pþ and xþ, respectively. At the bottom plate surface,
they are denoted p� and x�, respectively. Since the plate is thin,
fluid forces acting on the side surfaces of the plate can be neglected
[10]. With the thin plate theory, forces acting on the top and bot-
tom surfaces of the plate are transmitted through the plate without
alteration, since the strain of the plate in z-direction is negligible.
Thus, the fluid forces acting on the top and bottom plate surfaces
can be represented at the plate mid-plane Xp.

In the case of a thin micro-plate made of an isotropic material
with density qp, Young’s Modulus Ep and Poisson’s ratio mp the
plate mid-plane dynamics is determined with

EpIp
1� m2p

@4/
@x4

þ 2
@4/

@x2@y2
þ @4/

@y4

" #
þ qphp

@2/

@t2

¼ q� pþ � p�ð Þnp � ez þ lf xþ �x�ð Þ � np½ � � ez;

ð2Þ

where Ip ¼ h3
p=12 is the moment of inertia of the plate, q is an exci-

tation in z-direction, np is the unit vector normal to the plate’s mid-
plane and ez is the unitary vector in the z-direction ez ¼ 0; 0;1ð ÞT.
3

The pressure and vorticity differences between the top and bot-
tom surfaces of the plate are denoted as Dp ¼ pþ � p� and
Dx ¼ xþ �x�,respectively. The inner product between Dx and
ez in Eq. (2) implies that Dx is projected onto ez, i.e., only the z-
component of Dx affect the plate’s displacement / x; yð Þ.

Silicon is the most common material for MEMS [8], and silicon
is an anisotropic material [34], which requires a modification of Eq.
(2). The equation of motion of the plate can be rewritten using a
material tensor Cabcd where the indices a; b; d; c represent x- and
y-directions, which yields

Ip Cabcd/;abcd þ qphp
@2/

@t2
¼ q� Dpnp

f e
z
f þ lf�fsnDxfnp

se
z
n; ð3Þ

where f; s and n represent x-, y- and z-directions. The indices fol-
lowing a comma represent spatial derivatives in the index direction,
�fsn is the Levi–Civita symbol, and Dxf; ezf and np

f are the compo-
nents of Dx; ez and np, respectively.

The fluid flow around a MEMS resonator can exhibit different
regimes. The flow can be in the continuum or the slip flow regime.
Moreover, the fluid might be considered compressible or incom-
pressible, depending on the plate dimensions, operating frequency,
and fluid properties [37]. The non-dimensional parameters that
characterize the fluid flow around a micro-resonator are the Knud-
sen number Kn, Reynolds number Re and Mach number Ma. Kn is
given in terms of Re and Ma as

Kn ¼ k
wp

ffiffiffiffiffiffi
pc
2

r
Ma
Re

; ð4Þ

where k is the molecular free path and c is the ratio of specific heats
of the fluid. To define Re and Ma we introduce a characteristic flow
velocity uc, where uc is the maximum flow velocity at the plate’s
surface. For a plate vibrating at a single frequency f ;uc is given as
2pfd, where d is the plate’s maximum displacement. d is commonly
written as a fraction of the characteristic length as d ¼ �wp. Consid-
ering the plate’s width wp as the problem’s characteristic length
yields3

Re ¼ wp2pfd
mf

¼ w2
p2pf�
mf

; ð5Þ

and

Ma ¼ 2pfd
vs

¼ 2pfwp�
vs

; ð6Þ

where vs is the speed of sound in the fluid.



Fig. 3. Classification of the fluid flow around micro-plates in terms of Re and Kn for six characteristic lengths (100 nm, 1 lm, 10 lm, 100 lm, 500 lm, 2 mm). For each length,
a rectangle indicates the Re and Kn for a frequency range between 10 kHz and 10 MHz. The color inside the rectangle corresponds to the frequency in the color-bar on the
right.
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For micro-resonators applications, small amplitude oscillations
in the nanometer scale are the most common scenario4, which
results in � in the order of 10�6. Fig. 3 shows that different flow
regimes can occur around micro-plates undergoing small amplitude
oscillations of d ¼ 10�6wp in air in standard ambient conditions. Slip
flow (also called free molecular flow) occurs when Kn P 0:01, where
the continuum hypothesis and the no-slip boundary conditions
break down. For micro-resonators, Kn is greater than 0.01 only for
the narrow plate examples with wp ¼ 100nm. For wider plates with
wp P 1lm;Kn is smaller than 0.01. Hence continuum flow and slip
boundary conditions are valid for MEMS resonators with
wp P 1lm in air in ambient conditions. Note that k is inversely
related to pressure, hence in a low vacuum, Kn is larger, and slip flow
can be the case even for wider plates depending on the ambient
pressure.

Because the continuum model is a valid approach to model the
flow around micro-plates, the no-slip and no-penetration bound-
ary conditions are imposed on the surfaces of the plate. Since the
plate is very thin, relative motion between the top and bottom sur-
faces of the plate is neglected. Thus, the fluid velocity u at the top
and bottom surfaces of the plate are equal to the plate’s mid-plane
velocity, which yields

u ¼ ux;uy;uz
� �T ¼ 0; 0;

@/
@t

� �T

: ð7Þ

Concerning the fluid compressibility characterization, one condition
for incompressibility is a small Mach number Ma 6 0:3 [68]. This is
usually fulfilled in MEMS due to the small displacement d. For
instance, in Fig. 3 all micro-plates inspected are well below the
Ma ¼ 0:3 limit. A second condition for incompressibility of the flow
around micro-plates is that the fluid’s acoustic wavelength kac
(kac ¼ vs=f ) must be larger than the plate’s flexural wavelength kfl.
For micro-plates in liquids, this condition is fulfilled commonly up
to at least 3 MHz [48], and in air up to hundreds of kilohertz
[64,65]. Hence, incompressible continuum flow is a standard flow
regime around micro-plates. However, since kfl is mode-
dependent, this second incompressibility condition must be
checked for each individual vibrational mode.

Incompressible continuum flow can be split in three types:
Stokes flow when Re < 1, laminar Navier–Stokes flow for
4 Some MEMS applications as micro-fanning [14,23,33] and robotic propulsion [7]
can make use of high amplitude oscillations.

5 The transition Re ¼ 4000 from laminar to turbulent flow was taken from the flow
in long channels of circular cross-section as there is not a clear transition specified for
micro-structures in fluids [37,38]

4

1 < Re < 4000 and turbulent Navier–Stokes flow at Re > 4000
[37,38]5. Turbulent flow can occur around MEMS resonators only
under exceptional circumstances, such as very large oscillations.
The most common flow cases around MEMS are laminar Navier–
Stokes flow and Stokes flow. The transition from Stokes flow to lam-
inar Navier–Stokes flow is typically defined at Re ¼ 1 [37,38]. Note in
Fig. 3 that the plate with wp ¼ 2mm crosses the limit between lam-
inar Stokes flow (Re < 1) and laminar Navier–Stokes flow (Re > 1) at
a frequency around 1 MHz. Above 1 MHz, the convective terms in
the Navier–Stokes equations may not be neglected and Stokes equa-
tions are not applicable. All smaller plates wp 6 500lm are in the
laminar Stokes flow regime up to, at least, 10 MHz. Thus, the flow
around micro-plates is typically laminar Stokes flow for plates with
width up to hundredths of micrometers, and the unsteady Stokes
equations accurately determine the fluid flow around micro-plates.

The unsteady Stokes equations [30] are

@u
@t

¼ � 1
qf

rpþ mfr2u; ð8Þ

r � u ¼ 0: ð9Þ

Eqs. 3, and (7)–(9) form the mathematical model for the micro-plate
fluid interaction problem. We focus on periodic solutions of the
coupled Eqs. 3, and (7)–(9), whose Fourier transform yields

IpCabcd/̂;abcd �x2qphp/̂ ¼ q̂� Dp̂np
f e

z
f þ lf�fsnDx̂fnp

se
z
n; ð10Þ

jxû ¼ � 1
qf

rp̂þ mfr2û; ð11Þ

r � û ¼ 0; ð12Þ
ûjXp

¼ 0;0; jx/̂
� �T

; ð13Þ

where j is the imaginary unity. Since the Eqs. 3, and (7)–(9) are lin-
ear, their Fourier transforms do not contain coupling terms between
different frequencies. /̂; q̂; û; x̂ and p̂ refer to the Fourier transform
of the time-dependent quantities /; q;u;x and p.
3. Numerical method

An analytic solution to the Kirchhoff plate equation with can-
tilevered boundary conditions is not known [53]. We use finite ele-
ment method (FEM) to determine the plate dynamics numerically.
In the following sections, the implementation of the plate continu-
ity conditions and the coupling between fluid and plate are dis-
cussed. The numerical method was implemented with the Finite
Element (FE) package FEniCS [43].



Fig. 4. a) Partitioning of the plate’s mid surface X in N by N elements. Left
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3.1. Interior Penalty Method

The boundaries of the plate’s mid-plane Xp are denoted by @Xp,
which is formed by the union of the clamped edge boundary Cc

with the free edge boundary Cf ;Cc [ Cf ¼ @Xp. The intersection
of Cc and Cf are denoted c;Cc \ Cf ¼ c, as depicted in Fig. 4a).

The plate is cantilevered, which means it is clamped at one side
where x ¼ 0 and free at all other sides. Clamped and free edge
boundary conditions are defined in index notation as

/̂ ¼ 0
/̂;ana ¼ 0

9>=>; on Cc; ð14Þ

and

IpCabcd/̂;cd nanb ¼ 0

IpCabcd/̂;bcd na þ Ip Cabcd/̂;cd sanb

� �
;s

¼ 0

9>=>; on Cf ; ð15Þ

respectively. na and sa denote the components of the unit outward
normal and the unit tangent vectors at the boundaries @Xp, respec-
tively. Force equilibrium on the plate’s corners is imposed with

IpCabcd/̂;cdsanbjcþ � IpCabcd/̂;cdsanbjc� ¼ 0; 8c; ð16Þ
where c� are the two nearest neighbor points on the two edges that
meet at the corner c, infinitesimally near the corner c [67].

The numerical solution of Eq. (10) using FEM requires the solu-
tion function space to be H2, i.e., the Sobolev space of functions
with square-integrable generalized second derivatives. This means
C1 continuity of the basis functions in the solution function space is
required, so that no discontinuities in the slope of the displacement
/̂ exist, as such discontinuities are unphysical. C1 continuous basis
functions in two dimensions are very challenging to implement [4].
An alternative to C1 basis functions are continuous/discontinuous
Galerkin methods [4,9,40,21]. Continuous/discontinuous methods
combine standard Lagrangian C0 continuous basis functions with
discontinuous methods such as interior penalty (IP) methods
[4,21,22] or lifting methods [67,6,20,45] to enforce C1 continuity
of the solution. In this work, we implement an IP method, which
is consistent, stable, convergent, and can be implemented using
standard FE packages [21,22].

We consider a partitioning of the plate’s mid-plane P Xp
� �

in tri-
angular elements Ei; i ¼ 1; . . . ;N y �N x, where N y and N x are the
number of elements in y- and x-direction, respectively6. The union
of all internal edges ei is denoted by ~C, and the union of internal
edges and external boundaries is denoted by C ¼ ~C [ @Xp.

To obtain the weak form of Eq. (10), the function space Wh is
defined using the partitioning P Xp

� �
as

Wh ¼ /̂h 2 H2 Xp
� �

: /̂hjEi 2 Pk Eið Þ8Ei 2 P Xp
� �

; /̂hjCc
¼ 0

n o
;

ð17Þ
where Pk Eið Þ are C0 Lagrangian FE shape functions of degree k
defined on the element Ei. The Dirichlet boundary condition at Cf

appears as a direct restriction of the function space Wh.
To account for discontinuities in the FE solution, the average �h i

and the jump �½ �½ � operators are introduced. For two internal ele-
ments Eþ and E� as shown in Fig. 4b) the average operator of the
derivative of a scalar function a in the direction a at the edge ei is

a;a
	 
 ¼ 1=2 aþ;a þ a�;a

� �
; ð18Þ
6 An structured mesh is considered because of its simplicity, but any unstructured
mesh could be used without loss of generality.

5

where the + and � superscripts mean evaluation at the edge ei in
the elements Eþ and E�, respectively. The jump of the derivative
of a in the normal direction at ei is

a;n½ �½ � ¼ aþ
;an

þ
a þ a�;an

�
a : ð19Þ

The discretized weak form of Eq. (10) is obtained by multiplying Eq.
(10) with a test function wh 2 Wh, replacing /̂ by an FE approxima-
tion /̂h 2 Wh and integrating over the domain Xp, which yieldsR
Xp

IpCabcd/̂h
;abcdw

h dX� R
Xp
x2qphp/̂hwh dX

¼ R
Xp

q̂wh dX� R
Xp

Dp̂np
f e

z
f w

h dX

þ R
Xp
lf�fsnDx̂fn

p
seznw

h dX; 8wh 2 Wh:

ð20Þ

The first term in Eq. (20) is integrated twice by parts accounting for
shear force and moment boundary conditions, which rendersR
Xp

IpCabcd/̂h
;abw

h
;cddX�R

~C[Cc
Ip Cabcdwh

;anb

h ih i
/̂h

;cdncnd

D E
dC

� R
~C[Cc

Ip Cabcd/̂h
;anb

h ih i
wh

;cdncnd

D E
dC

þ R
~C[Cc

Ip s
hE
Cabcd /̂h

;anb

h ih i
wh

;cnd

h ih i
dC

� R
Xp
x2qphp/̂hwhdX

¼ R
Xp

q̂wh dX� R
Xp

Dp̂np
f e

z
f w

h dX

þ R
Xp
lf�fsnDx̂fn

p
seznw

h dX; 8wh 2 Wh;

ð21Þ

where hE is the diameter of the inner elements Ei. The first and sec-
ond terms on the left-hand-side (LHS) of Eq. (21) are obtained
directly from the integration by parts of Eq. 20. The third term to
the LHS of Eq. (20) was added so that the method yields a symmet-
ric bilinear form. The fourth term on the LHS is the penalisation

term, which ensures /̂h
;anb

h ih i
! 0 for a suitable s and imposes C1

continuity of /̂h and wh [22]. The slope boundary condition is
weakly imposed with the integral of the third and fourth terms of
the LHS on Cc. No explicit terms of vertex terms for the corner
forces are necessary since the corner forces equilibrium is automat-
ically fulfilled [22,67]. The value of s has to be determined empiri-
cally such that the method is convergent [4,22,26]. The procedure
for determining s is discussed in Section 4.1.

3.2. Boundary integral method

The unsteady Stokes equations (Eqs. 11 and 12) are solved using
the boundary integral method. With the boundary integral
p x y

boundary Cc is clamped, all others are free Cf (dashed line) and gray dots are the
corners c intersecting Cf and Cc. b) Close-up view of two neighbouring elements E�

and Eþ sharing an internal edge ei . n� and s� are the normal and tangent vectors at
the edge ei from element E� to E� .
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method, the fluid forces acting on the plate’s surface are calculated
using the fundamental solution to the unsteady Stokes equations,
without the necessity for discretizing and numerically solving
the unsteady Stokes equations in the entire fluid domain Xf . The
unsteady Stokes equations have different fundamental solutions,
e.g., the Stokeslet in two or three dimensions [50,51] and the fun-
damental solution to the stream-function formulation of the
unsteady Stokes equations in two dimensions. One advantage of
the latter fundamental solution is that analytical solutions to the
arising boundary integrals were obtained [62].

Due to the efficiency of the latter approach, the majority of the
semi-analytical models for micro-beams in viscous fluids solves a
boundary integral assuming two-dimensional fluid flow around
the beam [57,32,36,31,63,1,3,19,10]. A two-dimensional fluid flow
is confined in a plane. In the semi-analytic models discussed, this
plane is parallel to the y-z plane, as shown in Fig. 5a. Thus the fluid
moves only in y- and z-directions.

The exact extent to which three-dimensional flow affects the
beam’s and plate’s dynamics in fluids is yet an unsolved question
[7,5,42,24]. Comparison to purely numerical methods [42,24] show
that a two-dimensional flow formulation accurately predicts the
pressure acting on the plate everywhere except near the plate’s
completely free edge at x ¼ lp [24]. Near the plate’s free edge, the
two-dimensional fluid model overestimates the pressure because
the fluid is forced to move farther in the direction of the side edges
of the plates (y ¼ �wp=2) instead of moving over the completely
free edge of the plate (x ¼ lp). As a consequence, the use of two-
dimensional fluid flow approximation underestimates both the
plate’s resonance frequency and the Q-factor in comparison to
purely numerical predictions. These differences were found to be
smaller than 5% for low order vibrational modes (nx 6 3), and
increase with nx up to 20% in the sixth flexural mode (nx ¼ 6) [5].

Here, the viscous flow is modeled with the two-dimensional
fundamental solution to the stream-function formulation. This for-
mulation makes the present method very efficient. However, it
imposes two main limitations for the methods applicability. The
plate’s aspect ratio ra must be greater than 1, so that the fluid flow
over the entirely free edge of the plate does not dominate the fluid
flow. Secondly, nx must be smaller than 6, because ux increases
with the number of nodal lines nx.

To solve the micro-plate fluid interaction problem with the
boundary integral method using the two-dimensional fundamen-
tal solution, the stream-function formulation in vector notation
in frequency domain is introduced. The fluid velocity along the x-
axis is assumed to be negligible ûT ¼ 0; ûy; ûz

� �
, as well as the vari-

ation of the fluid velocity along the x-axis @ûT=@x ¼ 0;0;0ð Þ. The
vorticity vector x̂ is given by

x̂ ¼ r� û; ð22Þ

and the vector potential ŵ
Fig. 5. a) The fluid flow is confined to a plane (in blue), which is parallel to the
plate’s cross-section. b) Vorticity Dx̂ and pressure Dp̂ differences act on the plate.
The equilibrium configuration of the plate is a flat surface, and np is parallel to the z-
direction.
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û ¼ r� ŵ: ð23Þ
Using the definition from Eq. (23) in Eq. (22) leads to

x̂ ¼ �r2
ŵ: ð24Þ

Taking the curl of Eq. (11) and writing the vorticity x̂ in terms of the
vector potential ŵ yields

r4
ŵ� jx

mf
r2

ŵ ¼ 0;0;0ð ÞT : ð25Þ

The vector potential that satisfies Eq. (25), satisfies both Eq. (11)
and Eq. (12). Since the velocity in x-direction and fluid velocity û
variations in x-direction are negligible, the vorticity has only one
non-zero component, x̂T ¼ x̂x;0;0ð Þ, which implies

ŵT ¼ ŵx;0; 0
� �

. ŵx is the stream-function for the two-dimensional

flow field. The fundamental solution Ŵ to the x-component of Eq.
(25) is defined as [62]

Ŵ ¼ 1
2p

m2f
x2 log

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y0ð Þ2 þ z� z0ð Þ2

q� ��
þK0 jx

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y� y0ð Þ2 þ z� z0ð Þ2

q� ��
; ð26Þ

where K0 is the modified Bessel function of the third kind and order
zero. y0 and z0 are coordinate axes with coincident orientation to y
and z, respectively.

The fundamental solution Ŵ can be used to describe the fluid
forces at the plate’s surfaces. Since the plate is a thin structure,
consistently the plate domain is represented by its two-
dimensional mid-plane Xp [62,50,51]. The vorticity difference Dx̂

has only one non-zero component, i.e., Dx̂ ¼ Dx̂x;0;0ð ÞT . With
the application of Green’s theorem at Xp; ŵx is determined at a
position x as a function of Dx̂x and Dp̂ with

ŵx x; y0; z0ð Þ ¼
Z wp=2

�wp=2
Dx̂x x; yð Þ @Ŵ

@n
� 1
lf

Dp̂ x; yð Þ @Ŵ
@s

ds; ð27Þ

where the derivative with respect to n is derivative in the direction
of the surface normal np and the derivative with respect to s is the
tangential derivative on Xp along the plate’s width. We assume the
equilibrium configuration of Xp in the absence of external forces
and internal stress to be a flat surface. With this equilibrium config-
uration, np is parallel to the z-direction as shown in Fig. 5, ergo n ¼ z
and s ¼ y at the plate’s mid-plane z ¼ 0, which yields

ŵx x; y0; z0ð Þ ¼
Z wp=2

�wp=2
Dx̂x x; yð Þ @Ŵ

@z







z¼0

� 1
lf

Dp̂ x; yð Þ @Ŵ
@y







z¼0

dy: ð28Þ

Differentiation of Eq. (28) with respect to y0 renders a relation
between Dx̂x and Dp̂ with ûz at the plate’s mid-plane z0 ¼ 0 as

ûz x; y0;0ð Þ ¼ �
Z wp=2

�wp=2
Dx̂x x; yð Þ @2Ŵ

@z@y0







z ¼0
z0¼0

dy

þ 1
lf

Z wp=2

�wp=2
Dp̂ x; yð Þ @2Ŵ

@y@y0







z ¼0
z0¼0

dy: ð29Þ

Knowing that @2Ŵ=@z@y0 ¼ 0 at z ¼ z0 ¼ 0 [62] and applying the no-
penetration boundary condition, defined in Eq. (13), renders a rela-
tion between Dp̂ and the plate’s transverse displacement /̂ asZ wp=2

�wp=2
Dp̂ x; yð Þ @2Ŵ

@y@y0







z¼0
z0¼0

dy ¼ lf jx/̂ x; y0ð Þ: ð30Þ

Note that the function @2Ŵ=@y@y0 relates the pressure difference at a
point x; y with the displacement at another point x; y0 in the same
cross-section at a position x.
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Differentiating Eq. (28) with respect to z0, and knowing that the

term @2Ŵ=@z@z0 vanishes at z ¼ z0 ¼ 0 [62], rendersZ wp=2

�wp=2
Dx̂x x; yð Þ @2Ŵ

@y@z0







z¼0
z0¼0

dy ¼ ûy x; y0; 0ð Þ; ð31Þ

where ûy is the y-component of the fluid velocity at Xp. From the
no-slip boundary condition in Eq. (13), ûy ¼ 0, which implies

Dx̂x ¼ 0, and therefore Dx̂ ¼ 0;0;0ð ÞT . Hence, in the absence of lat-
eral plate movements, the vorticity jump at the plate does not influ-
ence the fluid flow field, nor the plate’s dynamics, and the vorticity
term in the weak form in Eq. (21) of the Kirchhoff equation is zero.

3.3. Chebyshev-Gauss quadrature

The finite element approximation of the weak form in Eq. (21)
requires the projection of the pressure difference Dp̂ onto the func-
tions space Wh. With the equilibrium configuration discussed in
Section 3.2, np ¼ ez, and the inner product np

f e
z
f in Eq. (21) equals

to 1. Hence, integration of Dp̂ over the domain Xp yields simplyZ
Xp

Dp̂np
f e

z
f w

hdX ¼
Z
Xp

Dp̂whdX: ð32Þ

In this subsection, a numerical procedure to evaluate the integral in
Eq. (32) using the pressure difference definition in Eq. (30) is
introduced.

3.3.1. 1D Integration
To numerically solve Eq. (30) for the pressure difference Dp̂ it is

crucial to understand how the terms Dp̂ and @2Ŵ=@y@y0 behave.
The pressure difference Dp̂ over a ribbon moving with uniform
velocity ûz is unbounded at the edges y ¼ �wp=2 and exhibits an
inverse square-root singularity towards the edges [62]. This singu-
larity also occurs when the plate moves with a non-uniform veloc-

ity ûz ¼ ûz x; yð Þ. @2Ŵ=@y@y0 exhibits a logarithmic singularity for
jy� y0j ! 0, and oscillates while decaying to zero for jy� y0j ! 1
[62].

Numerical integration of the LHS of Eq. (30) requires consider-
ing a suitable quadrature scheme for the inverse square-root sin-
gularity of Dp̂. An appropriate choice of quadrature scheme is the
Chebyshev-Gauss quadrature. In y-direction, the Chebyshev-
Gauss quadrature points are distributed over the plate’s width as

yi ¼
wp

2
cos

2i� 1
2N y

p
� �

; ð33Þ
Fig. 6. Fluid grid with N y by N x grid points. Das
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where N y is the number of grid points in the y-direction and
i ¼ 1 . . . bN y. With such quadrature scheme, the variation of Dp̂
between two grid points is much smaller than the variation of

@2Ŵ=@y@y0 in the same segment [62]. The numerical integration of
the LHS of Eq. (30) becomes a sum of N y integrals as

XN y

i¼1

Dp̂ x; yið Þ
Z y lð Þ

iþ1

y lð Þ
i

@2Ŵ
@y@y0

dy ¼ lf jx/̂ x; y0j
� �

ð34Þ

where the pressure difference Dp̂ x; yið Þ and the displacement

/̂ x; y0j
� �

are discretized in y-direction according to Eq. (33). The lim-

its of integration y lð Þ
j and y lð Þ

jþ1 are defined as

y lð Þ ¼ �wp=2; . . . byi=2þ yiþ1=2 . . . bwp=2
� �

, where y lð Þ has N y þ 1
points, as shown in Fig. 6.

For each integral in Eq. (34), there exists an analytical solution
[62] given byZ y lð Þ

iþ1

y lð Þ
i

@2W
@y@y0

dy ¼
ffiffiffiffiffi
mf

p
j2p

ffiffiffiffiffi
x

p F
ffiffiffiffiffi
x
mf

r
y lð Þ
iþ1 � y0j

� �� ��
�F

ffiffiffiffiffi
x
mf

r
y lð Þ
i � y0j

� �� ��
:

ð35Þ

Evaluation of Eq. (35) depends on the position y0j as well as on the

limits of integration y lð Þ
iþ1 and y lð Þ

i . The function F is defined as

F gð Þ ¼ 1
g
þ dKer gð Þ

dg
þ j

dKei gð Þ
dg

for g > 0; ð36Þ

F gð Þ ¼ 1
g
� dKer �gð Þ

dg
� j

dKei �gð Þ
dg

for g < 0; ð37Þ

where dKer=dg and dKei=dg are the first derivatives of the real and
imaginary Kelvin Functions, respectively.

Eq. (34) is written as a matrix–vector product,

ADp̂ ¼ lf jx/̂: ð38Þ
The matrix elements Aij are given by the right-hand-side (RHS) of
Eq. (35) as

Aij ¼
ffiffiffiffiffi
mf

p
j2p

ffiffiffiffiffi
x

p F
ffiffiffiffiffi
x
mf

r
y lð Þ
iþ1 � y0j

� �� ��
�F

ffiffiffiffiffi
x
mf

r
y lð Þ
i � y0j

� �� ��
: ð39Þ

Dp̂ and /̂ are the pressure difference and displacement vectors eval-
uated at all points yj at the same cross-section at a fixed x. Multiply-

ing Eq. (38) with the inverse matrix A�1, a matrix–vector product
for the pressure difference Dp̂ is obtained as

Dp̂ ¼ lf jxA�1
/̂: ð40Þ
hed lines represent limits y lð Þ in y-direction.
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3.3.2. Projection onto Wh

Since a two-dimensional formulation for the fluid dynamics is
implemented, the pressure difference Dp̂ x; yð Þ depends only on
the displacements /̂ x; yð Þ on the same position x. Integration of
the pressure difference Dp̂ in Eq. (32) is written as successive inte-
gration in y and x-direction as

Z
Xp

Dp̂ x; yð ÞwhdX ¼
Z lp

0

Z wp=2

�wp=2
Dp̂ x; yð Þwh x:yð Þdydx: ð41Þ

Numerical evaluation of the integral in x-direction is achieved with
the Simpson’s one-third rule asZ
Xp

Dp̂ x; yð ÞwhdX �
XN x

k¼1

wk

Z wp=2

�wp=2
Dp̂ xk; yð Þwh xk; yð Þdy; ð42Þ

where wk are the Simpson’s rule weighting constants. With the
Simpson’s one-third rule N x must be an odd number.

To evaluate the y-integration of Dp̂ xk; yð Þ note that the integra-
tion of a polynomial function f divided by the inverse square root
singularity with Chebyshev-Gauss quadrature is given byZ wp=2

�wp=2

f yð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wp=2
� �2 � y2

q dy ¼ p
n

Xn
j¼1

f yj
� �

; ð43Þ

where f yj
� �

are the function’s value at the discrete points defined in
Eq. (33). The definition in 43 is exact when the degree of the poly-
nomial function f is n� 1. This definition is used to numerically
evaluate the integral of Dp̂ xk; yð Þ in y-direction in Eq. (42) asZ

Xp

Dp̂ x; yð ÞwhdX �
XN x

k¼1

wk

XN y

j¼1

p
N y

Dp̂ xk; yj
� �

wh xk; yj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wp=2
� �2 � y2j

q
:

ð44Þ

The union of all points xk; yj
� �

and xk; yj
� �

form the fluid grid, which
is represented in Fig. 6. In essence the fluid grid consists of N x

cross-sections parallel to y linearly spaced in the x-direction from
x ¼ 0 to x ¼ lp, and N y grid points in y-direction positioned accord-
ing to Eq. (33).

To determine Dp̂ xk; yj
� �

, Eq. (40) is rewritten in summation
notation as

Dp̂ xk; yj
� � ¼ lf jx

XN y

i¼1

A�1
ij /̂ xk; yið Þ; ð45Þ

and using this definition in Eq. (44) yieldsZ
Xp

Dp̂ x; yð ÞwhdX ¼lf jx
p
N y

XN x

k¼1

wk

XN y

j¼1

XN y

i¼1

A�1
ij /̂h xk; yið Þ

wh xk; yj
� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

wp=2
� �2 � y2j

q
:

ð46Þ

Eq. (46) reveals that the projection of the pressure difference corre-

sponds to a weighted projection of the inverse of matrix A�1 into
the function space Wh.

With the projection of Dp̂ x; yð Þ into Wh as defined in Eq. (46),
and neglecting the vorticity term as discussed in Section 3.2, the
Fig. 7. Geometries with aspect ratio ra between 16
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equation of motion of the plate in a viscous fluid from Eq. (21) is
rewritten asZ

Xp

IpCabcd/̂
h
;abw

h
;cddX

�
Z
~C[Cc

Ip Cabcdwh
;anb

h ih i
/̂h

;cdncnd

D E
dC

�
Z
~C[Cc

Ip Cabcd/̂
h
;anb

h ih i
wh

;cdncnd

D E
dC

þ
Z
~C[Cc

Ip
s
hE

Cabcd /̂h
;anb

h ih i
wh

;cnd

h ih i
dC

�
Z
Xp

x2qphp/̂
hwhdX

þ lf jx
p
N y

XN x

k¼1

wk

XN y

j¼1XN y

i¼1

A�1
ij /̂h xk; yið Þwh xk; yj

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wp=2
� �2 � y2j

q
¼

Z
Xp

q̂whdX; 8wh 2 Wh: ð47Þ

The proposed method is resumed to a single equation to determine
the plate dynamics, which accounts for the viscous forces of an
incompressible fluid in an unbounded domain. Eq. (47) is solved
with a FE-mesh with Nx � Ny elements and any fluid grid with
N x � N y points.
4. Numerical results

In this section, the convergence of the proposed method is pre-
sented, and five geometries are investigated as numerical exam-
ples. The geometries are lp ¼ 500lm long, hp ¼ 10lm thick and
the width wp varies between 31:25lm and 500lm. So the plate’s
aspect ratio ra spans from 16 to 1, as shown in Fig. 7.

In the following numerical examples, the plates are comprised
of isotropic silicon (Ep ¼ 169GPa;qp ¼ 2330kg=m3; mp ¼ 0:3). Here,
silicon as isotropic material is used, so that a comparison with pre-
vious semi-analytic models for beams is possible. In the subSec-
tion 4.3.6, the material properties of silicon as an orthotropic
material are defined. The fourth-order constitutive tensor Cabcd

for an isotropic material is written from Ep and mp as

Cabcd ¼
Ep dacdbd þ daddbc
� �
2 1þ mp
� � þ Epmp

1� m2p
dabdcd

" #
: ð48Þ

The plates are considered immersed in water at 25�C
(qf ¼ 997kg=m3;lf ¼ 0:89mPa s). For all following analyses, the
degree of the function space Wh is 2. Any degree higher than or
equal to two can be used [22].

4.1. Convergence

Three aspects of the convergence of the present method must
be inspected: the IP method convergence, the Chebyshev-Gauss
integration convergence, and the complete method convergence.
and 1 are analyzed as the numerical examples.
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For the convergence analysis, we focus on the plate with ra ¼ 4 at
three different representative frequencies: 10 kHz, 100 kHz, 1
MHz.

The FE meshes comprise ra times as many elements in x-
direction as there are in y-direction, Nx ¼ raNy. Using such meshes
the internal angles between edges are equal, which minimizes the
numerical error. In the convergence analyses a quasi-square fluid
grid with N y ¼ N x � 1 is considered.
4.1.1. IP method
To check the convergence of the IP method, the Kirchhoff plate

equation without the fluid force term, i.e., Eq. (47) without the
pressure difference, is considered. To quantify the convergence of
the IP method, the L2 norm of the difference between solutions
/̂i and /̂i�1 obtained with two consecutively refined FE-meshes is
introduced as
jj�ijjL2 ¼
jj/̂i � /̂i�1jjL2

max jj/̂ijjL2 ; jj/̂i�1jjL2
� � : ð49Þ

Fig. 8 shows jj�jjL2 with the number of elements Nx at 10 kHz,
100 kHz and 1 MHz for penalty parameters s between 8 and 64.
For any sP 8, the IP method is convergent at all frequencies, while
for s < 8, solutions diverge and are not shown. The exponent of the
convergence according to the power-law (convergence rate) varies
between 1.25 and 2 at different frequencies, and is not altered with
different penalty parameters s at the same frequency. These results
Fig. 8. Convergence of IP method for the plate ra ¼ 4 as a function of the number of
elements Nx in the FE-mesh for penalty parameters s between 8 and 64 at (a)
10 kHz, (b) 100 kHz and (c) 1 MHz.

9

agree with the observation by Engel et al. [22] that the stabilization
parameter s is not critical for convergence if chosen large enough,
and that the rate of convergence is independent of the value of s.

The solution diverges for very fine meshes with Nx > 128 at low
frequencies (10 kHz and 100 kHz) for all penalty parameters s. This
divergence is related to the IP method for Kirchhoff plates. The IP
method imposes C1-continuity of the basis functions by penalising
discontinuities in the derivatives of the basis functions. This penal-
isation exhibits instability at very fine meshes at low frequencies
[22]. At higher frequencies, this instability occurs only with finer
meshes than it does for low frequency. For instance, at 1 MHz
jj�jjL2 is convergent up to Nx ¼ 256, while at lower frequencies it
diverges at Nx P 256. Also note that at 1 MHz the mesh with
Nx 6 32 is too coarse to describe a high-order vibrational mode
of the plate, which causes jj�jjL2 to be in the order of 1 and non-
convergent until a mesh with Nx ¼ 32 is used.

In the following investigations, the FE-meshes are refined to a
maximum of Nx ¼ 128 elements, as they are the finest FE-mesh
with convergent behavior at any given frequency. Concerning the
value of the penalty parameter s, the IP method is convergent for
s >¼ 8. In the following analyses, s is set to 16 to ensure with a
safety margin that the method operates in the convergence regime.
4.1.2. Chebyshev-Gauss convergence
In order for the proposed method to be convergent, integration

of the pressure difference Dp̂ with Chebyshev-Gauss quadrature as
written in Eq. (46) has to be convergent. To examine the conver-
gence of the Chebyshev-Gauss numerical integration, a matrix P
is defined, whose elements Pij are
Fig. 9. Convergence of the Chebyshev-Gauss quadrature integration of the plate
with ra ¼ 4 as a function of the number of fluid grid points N y for different FE-
meshes (Nx � Ny) at (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.
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Pij ¼ p
N y
lf jx

XN x

k¼1

wk

XN y

l¼1

XN y

m¼1

A�1
lm wh

i xk; ylð Þ

wh
j xk; ymð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
wp=2
� �2 � y2j

q
;

ð50Þ

where wh
i is the i-th basis function of Wh. The matrix P is a projec-

tion of the pressure difference Dp̂ generated at the j-th basis func-
tion on the i-th basis function. To quantify the convergence of P,
the Frobenius norm of P is introduced as

jj�ijjFB ¼ jjPi � Pi�1jjFB
max jjPijjFB; jjPi�1jjFB

� � ; ð51Þ

where Pi and Pi�1 are pressure matrices obtained with consecu-
tively refined fluid grids for a similar FE-mesh. Four different FE-
meshes Nx � Ny are used, they are 32� 8;64� 16;128� 32 and
256� 64.

Fig. 9 shows jj�jjFB as a function of the fluid grid points N y. The
fluid grid N x �N y ranges from 9� 8 to 257� 256 grid points. At
all frequencies and for all FE-mesh, the integration converges with
a convergence rate that varies between 1.2 and 1.4. Hence, the
Chebyshev-Gauss integration of Dp̂ as defined by Eq. (46) is stable
and convergent.

4.1.3. Complete method convergence
The convergence of the solutions obtained with the complete

proposed method as described by Eq. (47) is here inspected.
Quasi-square fluid grids of 33� 32;65� 64;129� 128, and
257� 256 are employed for this analysis.
Fig. 10. Convergence of the L2 norm of the displacement jj�jjL2 as a function of the
number of elements Nx in the FE-mesh of the plate with ra ¼ 4 using different fluid
grids (N x �N y) at (a) 10 kHz, (b) 100 kHz and (c) 1 MHz.
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Fig. 10 shows jj�jjL2 at 10 kHz, 100 kHz and 1 MHz with the
number of FE-mesh elements in x-direction Nx. At 10 kHz, the pro-
posed method converges with a convergence rate equals 1.25 for a
FE-mesh discretized up to Nx ¼ 128 elements. For Nx > 128, solu-
tion /̂ diverges, similarly to the IP method convergence results at
10 kHz in Fig. 8. Thus at 10 kHz the convergence/divergence behav-
ior of the complete method is dominated by the convergence/di-
vergence of the IP method. At 100 kHz and 1 MHz, the method
converges with rate equals to 1.7 and 2, respectively. Interestingly,
the complete method does not diverge at 100 kHz for Nx P 256 as
it occurs in the IP method convergence analysis. This means that at
100 kHz the convergence of the method is dominated by the
Chebyshev-Gauss convergence.

From the convergence results shown in this section, s ¼ 16 and
Nx 6 128 are defined as parameters to be used in the following
investigations, since they provide convergence at the three repre-
sentative frequencies for any fluid grid.

4.2. Slender plates

In the following subsections we analyze the slender plates with
ra = 16, 8, and 4. Results obtained with the present method are
compared with the ones obtained with the semi-analytic models
for flexural modes (Sader [57]) and for torsional modes (Green
[31]).

4.2.1. Displacement spectrum

Fig. 11 shows the absolute displacement spectrum j/̂cj of the
slender plates at their free corner at x ¼ lp; y ¼ wp=2 due to an uni-
Fig. 11. Absolute displacement spectrum j/̂cj of the slender plates with aspects
ratios a) ra ¼ 16, b) ra ¼ 8 and c) ra ¼ 4 for different fluid grids N x �N y.
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form load q̂ ¼ 1Pa. The free corner is chosen because it is not on or
close to a nodal line of any vibrational modes. The considered fre-
quency band ranges from 1 kHz to 2 MHz with 1 kHz discretiza-
tion. Quasi-square fluid grids N y ¼ N x � 1 are used, because they
converge quicker than rectangular grids related by the aspect ratio
N y ¼ N x � 1ð Þ=ra. This is discussed in detail in A.

For the slender plate with ra ¼ 16; j/̂cj converges exactly to
Sader’s solution as the fluid grid is refined to 129 � 128 points as
shown in Fig. 11a. This is an important result, as it shows that
the proposed method is consistent with the semi-analytic model
for flexural modes of beams in viscous fluids. For the plates with
smaller aspect ratio ra ¼ 8 and ra ¼ 4; j/̂cj obtained with the pre-
sent method does not match exactly Sader’s solution. This differ-
ences occur because, for the lower aspect ratio plates (ra ¼ 8 and
ra ¼ 4), the structure’s dynamics is less well approximated by a
one-dimensional beam model, and the lateral strain components
must be considered. Therefore to predict the flexural modes of
plates with ra 6 8, the present method provides more accurate
results than models based on the Euler–Bernoulli equation.
4.2.2. Quality factor
The quality factor of each vibrational mode is obtained from the

absolute displacement spectrum. To evaluate Q, we fit the spectral
response function of the damped simple harmonic oscillator (SHO)

/sho fð Þ ¼ a

f 2 � f 2d þ jf f d=Q
þ b; ð52Þ

to each damped resonance frequency f d. In Eq. (52), a and b are
amplitude and offset fitting parameters, respectively. This definition
of Q based on the SHO equation renders similar results to the Q-
factor definition based on dissipated energy in Eq. (1).
Fig. 12. Quality factor of the vibrational modes of the plates with a) ra ¼ 16, b)
ra ¼ 8 and c) ra ¼ 4.
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Convergence of Q and f d with the fluid grid is discussed in B for
the three slender geometries. The Q-factor is considered converged
when the difference between the Q-factors obtained with two con-
secutively refined fluid grids is smaller than 1%. For resonance fre-
quency convergence, the difference must be smaller than 0.1%.
Higher-order flexural modes (higher nx) require finer fluid grids
for convergence of Q and f d. And, the wider the structures (higher
ra), the finer the fluid grid required for convergence Q and f d.

Fig. 12 shows the converged quality factors of the flexural and
torsional modes. In addition to the present method’s prediction,
Q obtained with Sader’s method [57] for flexural modes and with
Green’s method [31] for torsional modes are shown. For the slen-
der plate with ra ¼ 16, the quality factors Q of flexural modes agree
within 0.1% to those obtained with Sader’s method. For the (1,1)
torsional mode, a Q which differs by 2% from Green’s prediction
is obtained. As ra decreases to ra ¼ 8 and ra ¼ 4, the quality factor
differences to Sader’s and Green’s models increase. For the plate
with ra ¼ 4, this difference reaches 4% for the (5,0) mode compared
to Sader’s model, and 10% for the (3,1) mode in comparison to
Green’s model. Besides the difference in Q-factors, there is a signif-
icant difference in the damped resonance frequencies between the
present method and the one-dimensional models, especially with
Green’s method for torsional modes. For the (3,1) mode, for
instance, there is a 17% difference in f d prediction.

4.2.3. Added-mass effect
In addition to the Q-factor, for MEMS resonators it is essential to

quantify the added mass effect caused by the fluid. This is achieved
with the fluid-added-mass-per-plate-mass-ratio M, defined as

M ¼ madded

mplate
¼ f 2n

f 2d
� 1: ð53Þ
Fig. 13. Fluid-added-mass-per-plate-mass-ratio M of the plates with a) ra ¼ 16, b)
ra ¼ 8 and c) ra ¼ 4.
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M quantifies the added mass effect, characterized by the reduction
of the resonance frequency of a resonator in vacuum f n to its
damped resonance frequency in a fluid f d [5]. When f d � f n the
added mass is negligible and M � 0.

Fig. 13 shows M of the slender plates up to 2 MHz. The flexural
modes exhibit much higher M than the torsional modes for the
three structures. M increases with the width of the plate for flex-
ural and torsional modes, which means that wider plates exhibit
larger reduction in f n to f d than slender beams.
4.3. Rectangular plate with r ¼ 2

The proposed method is, of course, not limited to slender beam
structures, and its purpose is exactly the simulation of wider struc-
tures. To demonstrate the method’s capabilities, a plate with ra ¼ 2
(Fig. 7) in water is considered as an example for which the dis-
placement spectrum, mode shapes, pressure difference, quality
factors, and fluid-added-mass-per-plate-mass-ratioM are not pre-
dictable with existing semi-analytical methods. A point force of

amplitude bF ¼ wp � lp � q̂ excites the plate at its free corner

x ¼ lp and y ¼ wp=2. bF is applied at the plate’s free corner so that
all vibrational modes are excited.
Fig. 14. Absolute displacement spectrum j/̂cj of the plate with ra ¼ 2 obtained with
128� 64 FE-mesh and 129� 128 fluid grid. Peaks correspond to the vibrational
modes characterized by (nx ;ny).

Fig. 15. Absolute displacement of the flexural modes (nx;0) of the plate ra ¼ 2. The flexur
is normalized between 0 (blue) and 1 (yellow).
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4.3.1. Displacement spectrum
Fig. 14 shows the absolute displacement spectrum of the plate’s

corner j/̂cj obtained with a 129� 128 fluid grid. Note in Fig. 14,
that there are several additional resonance peaks present in the
same frequency range of 2 MHz in comparison to the slender plates
shown in Fig. 11. Resonance peaks in j/̂cj correspond to flexural
(nx;0), torsional (nx;1), roof tile-shaped (1;ny P 2) or other non-
conventional (neither torsional, nor flexural nor roof-tile shaped)
plate modes (nx P 2;ny P 2).
4.3.2. Vibrational modes

The absolute displacement j/̂j of the 6 flexural vibrational
modes of the plate ra ¼ 2 up to 2 MHz are shown in Fig. 15. The dis-
placement j/̂j at the second flexural mode (2,0) in Fig. 15b is dom-
inated by the torsional mode (1,1), which is shown in Fig. 16a. This
modal overlap occurs because the resonance frequency f d of the
flexural mode (2,0) is very close to f d of the torsional mode (1,1).

With the point force bF at the plate’s corner, the torsional mode
(1,1) is more strongly excited than the flexural mode (2,0). This
phenomenon can not be predicted by other semi-analytic methods,
as they only predict either the flexural modes or the torsional
modes of these structures separately.

The additional 8 peaks in Fig. 14 refer to the torsional (nx,1), the
first roof tile-shaped (1,2) and non-conventional (nx P 2;ny P 2)
vibrational modes, which are shown in Fig. 16. Note that the
dynamics of the roof tile-shaped and non-conventional vibrational
modes can be predicted only with the proposed method or with
purely numerical methods, but not with semi-analytic models.
4.3.3. Pressure difference
With the proposed method, it is possible to further understand

the pressure with which the fluid acts on the plates vibrating at dif-
ferent modes. The pressure difference Dp̂ is calculated at a cross-
section of the plate with Eq. (40). The plate’s tip x ¼ lp is a suitable
choice as a position where no nodal lines in y-direction occur, i.e.
where /̂ is non-zero. Fig. 17 shows the imaginary component of
the pressure difference at the flexural (1,0), torsional (1,1), and roof
tile-shaped (1,2) vibrational modes of the rectangular plate. The
number of grid points N y varies from N y ¼ 16 to N y ¼ 256. For
the three modes, the inverse square root singularity of Dp̂ towards
the edges y ¼ 125lm is present. What is more, from Fig. 17, it is
clear, at least N y P 256 is required so that the inverse square root
singularity towards the edge is well represented.
al mode (2,0)* is dominated by the torsional mode (1,1). The absolute displacement



Fig. 16. Absolute displacement of the torsional (nx,1), roof tile-shaped (1,2) and other non-conventional (nx P 2;ny P 2) vibrational modes of the plate ra ¼ 2. The absolute
displacement is normalized between 0 (blue) and 1 (yellow). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of
this article.)

Fig. 17. Imaginary pressure difference at the free edge x ¼ lp at a) the first flexural
mode (1,0) and b) the torsional mode (1,1) and c) the roof tile-shaped mode (1,2)
with different number of fluid grids points N y. The edge of the plate is at
y ¼ 125lm.

Fig. 18. Quality factor Q of the plate with ra ¼ 2 arranged according to its
vibrational mode in flexural, torsional, roof tile-shaped, and non-conventional
vibrational modes.

Fig. 19. Fluid-added-mass-per-plate-mass-ratio M of the plate with ra ¼ 2
arranged according to its vibrational mode.
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4.3.4. Quality factor
Fig. 18 shows the Q-factors of the vibrational modes of the rect-

angular plate ra ¼ 2 categorized in flexural, torsional, roof tile, and
non-conventional modes. The Q-factors shown in Fig. 18 converged
with less than 1% variation for a fluid grid of 2049� 2048 points, as
shown in B. In this frequency range, Q of the flexural modes are the
highest, reaching a value of 130 for the (6,0) mode. Note that the Q-
factor of the roof tile-shaped (1,2) mode is much higher than the Q
of the first flexural mode (1,0), but not higher than higher-order
flexural modes as the (4,0) mode which have close damped reso-
nance frequencies.
4.3.5. Added mass effect
Fig. 19 shows the fluid-added-mass-per-plate-mass-ratio M of

the rectangular plate up to 2 MHz. The roof tile-shaped mode
and the non-conventional modes exhibit lower M than the tor-
13
sional modes, which in turn have lower M than flexural modes.
Hence for the rectangular plate in water, the higher the number
of nodal lines ny, the smaller the added-mass effect.
4.3.6. Orthotropic material
Silicon is an orthotropic material, whose elastic tensor cabcd has

8 non-zero entries [61]. For a standard (100) silicon wafer the elas-



Fig. 20. Absolute displacement spectrum j/̂cj of the plate with ra ¼ 2 obtained with
128� 64 FE-mesh and 129� 128 fluid grid with isotropic and orthotropic
materials.

Fig. 21. Quality factor Q of the plate with ra ¼ 2 arranged according to its
vibrational mode. Results for orthotropic silicon are shown in color, and for
isotropic silicon in gray. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Fig. 22. Fluid-added-mass-per-plate-mass-ratio M of the plate with ra ¼ 2
arranged according to the vibrational modes. Results for orthotropic silicon are
shown in color, and for isotropic silicon in gray.

Fig. 23. Absolute displacement spectrum j/̂cj of the plate with ra ¼ 1 with a)
symmetric and b) asymmetric excitation.
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ticity constants are Cxxxx = Cyyyy = 194.5 GPa, Cxxyy = Cyyxx = 35.7 GPa,
and Cxyxy = Cxyyx= Cyxyx = Cyxxy = 50.9 GPa [34].

Fig. 20 shows the spectral displacement of the plate with ra ¼ 2
considering silicon as isotropic and orthotropic materials. Consid-
ering silicon as an orthotropic material, slightly shifted resonance
frequencies are obtained in comparison to the ones considering
isotropic material. For instance, the peaks of the modes (2,0) and
(1,1) with the isotropic model are very close in frequency, while
with the orthotropic model they are clearly distinguishable. The
damped resonance frequency of the (3,2) mode reduces from
1619 kHz with the isotropic model to 1525 kHz with the orthotro-
pic model. And f d of the (6,0) mode increases from 1571 kHz to
1620 kHz, when altering from isotropic to orthotropic models.

The Q-factor of the vibrational modes obtained with isotropic
and orthotropic materials do not significantly differ from each
other, as shown in Fig. 21. The Q-factors obtained for orthotropic
material are displayed in color, and for isotropic material in gray.
In Fig. 21 see that the damped resonance frequencies f d of the flex-
ural modes are lower with the isotropic model than with the ortho-
tropic model. In contrast, f d of the torsional modes are higher with
the isotropic model.
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Even though f d changes with the material model, the fluid-ad
ded-mass-per-plate-mass-ratio M is not significantly altered with
the inclusion of the direction dependent material properties of sil-
icon, as shown in Fig. 22.

4.4. Square plate

As an interesting application example, the quality factors of a
square micro-plate (ra ¼ 1) vibrating in the roof tile-shaped shaped
vibrational modes are evaluated. Differently than for the rectangu-
lar plate ra ¼ 2, here two point forces at the two free corners of the
plate at x ¼ lp and y ¼ �wp=2 are considered. When the point
forces are in phase, they are named symmetric excitation. When
they are out-of-phase, they are referred to as asymmetric excita-
tion. These excitations are employed so that the roof tile-shaped
modes are more easily identified, due to the sheer amount of vibra-
tional modes in the 8 MHz frequency range. A 128 � 128 FE-mesh
with a 257� 256 fluid grid is used to determine the plate’s dis-
placement spectrum which is shown in Fig. 23a and b with sym-
metric and asymmetric excitation, respectively. Up to the (1,9)
roof tile-shaped mode in the 8 MHz frequency range is identified.
Note that the flexural wavelength of the (1,9) roof tile-shaped
mode is k1:9 = 125 lm. The resonance frequency of this mode is



Fig. 24. Absolute displacement j/̂j of the roof tile-shaped vibrational modes of the plate with aspect ratio ra ¼ 1. The absolute displacement is normalized between 0 (blue)
and 1 (yellow).

Fig. 25. Q-factor of the roof tile-shaped modes of the plate with ra ¼ 1 in the 8 MHz
frequency range.

Fig. 26. Q-factor Q and fluid-added-mass-per-plate-mass-ratioM of flexural modes
of a slender plate predicted by a purely numerical method [5] and with the. present
method.
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7.52 MHz, which means that the acoustic wavelength is kac = 199
lm. Thus even at this high frequency, water flow around the
micro-plate is incompressible.

Fig. 24 shows the absolute displacement j/̂j of the roof tile-
shaped vibrational modes, from the (1,2) up to the (1,9).

The Q-factor associated with each roof tile-shaped mode in the
8 MHz frequency range is shown in Fig. 25. Q-factors shown in 25
converged with less than 1% variation with fluid grid equals 8193
� 8192. The roof tile-shaped vibrational modes exhibit an increas-
ing Q, reaching values as high as 200 for the (1,9) mode. This high
Q-factor pattern is consistent with experimentally obtained quality
factors of micro-plates in liquids [39,56,48].
4.5. Numerical comparison

An important assumption in the present method is the two-
dimensional fluid flow approximation, as discussed in detail in Sec-
tion 3.2. Here the Q-factor and M calculated with the present
method and with a purely numerical method and reported by
Basak et al. [5] are compared. The silicon micro-plate has length
equals 197 lm, width equals 29 lm (ra � 6:5), and the thickness
is 2lm.

The Q-factor andM of the first six flexural modes of this slender
plate in water are shown in Fig. 26. Q-factor with the purely
15
numerical method agree with the present method’s prediction
within 10% for the low order modes (nx 6 4). For higher nx, the dif-
ference in Q-factors increases, reaching 20% difference for the (6,0)
mode. There are minimal differences in M (smaller than 5%) with
the two methods up to the sixth flexural mode. Results shown in
Fig. 26 agree with previous findings of studies that used purely
numerical methods [5,7,24,42] that the two-dimensional fluid flow
approximation results in an underestimated resonance frequency,
which in turns yields an overestimated added mass, as well as
under-estimated Q-factor.
4.6. Experimental comparison

To validate the proposed semi-numerical method we resort to
published experimental data on the Q-factor of micro-plates in a
viscous fluids. Here a silicon micro-plate which is 500lm long,
300 lm wide (ra � 1:66) and 11:5 lm thick is investigated [55].



Fig. 27. Quality factor Q of different vibrational modes of a wide micro-plate in
isopropanol.

Fig. 28. Fluid-added-mass-per-plate-mass-ratio M of roof tile-shaped modes of a
rectangular micro-plate in isopropanol.

Fig. 29. Q-factor of the roof tile-shaped modes of a rectangular micro-plate in
isopropanol. Experimental and purely numerical results are obtained from Ruiz
Diez et al. [55].
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The fluid used in the experiments is isopropanol with
lf ¼ 2:1062mPa s and density qf ¼ 781:2kg=m3. Silicon is here
considered as an orthotropic material with similar material tensor
as described in Section 4.3.6.

Fig. 27 shows the Q-factor of the reported vibrational modes
obtained experimentally and calculated with the present method.
Results include not only roof tile-shaped modes, but also other
low order modes [55]. Excellent agreement between simulated
and experimental Q-factors is found. Notably, we observe excep-
tional agreement with all vibrational modes up to the (1,2) mode
at 750 kHz. For the three higher frequency vibrational modes, the
prediction and experimental Q-factors differ by less than 10%7,
which is a smaller difference than the errors reported using purely
numerical methods [5,7].

Additional studies focused exclusively on the roof tile-shaped
modes, for example a micro-plate with lp ¼ 2524lm;wp ¼ 1274
lm (ra � 2), and hp ¼ 22 lm in isopropanol [48,55]. The experi-
mental fluid-added-mass-per-plate-mass-ratio M of the roof tile-
shaped modes up to 2 MHz are shown in Fig. 28. The present
method slightly over-predicts M for all roof tile-shaped modes
by 15� 2%, while the damped resonance frequencies show very
good agreement.

The Q-factors of the roof tile-shaped modes of the same plate
are shown in Fig. 29. Excellent agreement between the present
method’s prediction and experimental data is found. Predicted Q-
factors are within the experimental errors for most of the evalu-
ated modes, being the only exceptions the (1,4) and (1,5) modes,
for which the present method under-predicts the Q-factors by
10%8. Fig. 29 shows also the Q-factor obtained with a purely numer-
ical method from Ruiz Diez et al. [55]. With the purely numerical
method, good agreement in Q-factor is found only for the (1,2) mode.
For the (1,3) mode, Q is over-predicted, whereas for the higher order
roof tile-shaped modes (1,4) to (1,8) Q is under-predicted. For
instance, the Q-factor of the (1,8) mode is under-estimated by
50.2% with the purely numerical method. Moreover, the purely
numerical method under-predicts the resonance frequencies of all
roof tile-shaped modes. Results in Fig. 29 evidence that the proposed
method surpasses the accuracy of purely numerical methods in the
estimation of both resonance frequencies and Q-factors of micro-
plates in viscous fluids.
7 Compressibility is not the reason for this 10% difference, since even for the (1,4)
mode at 4.12 MHz the acoustic wavelength (276 lm) is larger than the flexural
wavelength of the (1,4) mode (151 lm).

8 Note that isopropanol is incompressible even for the (1,8) mode, because the
acoustic wavelength at 1.92 MHz is 592 lm, which is much larger than the flexural
wavelength of the (1,8) mode that is 320 lm The acoustic wavelength is calculated
considering the speed of sound of isopropanol as 1139 m s�1 [55]. The flexural
wavelength is calculated using a two-dimensional Fourier transform.
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5. Conclusions

This work describes a semi-numerical method to determine the
dynamics of micro-plates immersed in incompressible viscous flu-
ids. The proposed method goes beyond the semi-analytical models
by accounting for two-dimensional vibrational modes of plates
rather than simply one-dimensional modes of beams. The present
model is especially valid and accurate for micro-plates in liquids
and gases in ambient and low-pressure conditions.

The method converges at all frequencies with a convergence
rate between 1.25 and 2. Numerical results for the slender plates
with aspect ratios ra ¼ 16; ra ¼ 8 and ra ¼ 4 show that the pro-
posed method properly generalizes previous semi-analytical meth-
ods for slender structures. What is more, the proposed method can
show the limits of semi-analytic models for flexural and torsional
modes of slender structures. For a plate with ra ¼ 4, the difference
in Q-factor prediction between the proposed method and semi-
analytical models [57,31] reach 4% and 10% for flexural and tor-
sional modes, respectively.

As an application example, we investigate the dynamics of a
rectangular plate with ra ¼ 2 for which displacement spectrum,
mode shapes, pressure difference, quality factors, and fluid-adde
d-mass-per-plate-mass-ratio M are not predictable with existing
models. With the analysis of a square-sized plate with ra ¼ 1, the
capabilities of the present method to investigate micro-plates
vibrating at roof tile-shaped modes is displayed.

Comparison to purely numerical results shows that the two-
dimensional fluid flow assumption in the proposed method yields
Q-factors prediction within 20% up to the (6,0) mode. What is
more, excellent agreement to experimental data of micro-plates
in liquids (Figs. 27–29) is found. These results ensure that the pre-
sented method accurately predicts the Q-factor and the fluid-add
ed-mass-per-plate-mass-ratio M of micro-plates in viscous fluids,
even to a higher accuracy than purely numerical methods.
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The numerical examples and comparisons to published data
highlight that a semi-numerical method for predicting the non-
conventional (neither torsional nor flexural) vibrational modes of
MEMS micro-plates in viscous fluids has been missing. We antici-
pate that the proposed method will enable the investigation of
MEMS resonator geometries utilizing non-conventional vibrational
modes of plates, thus inspiring novel device architectures to per-
form with unprecedentedly high quality-factors in viscous fluids.
Fig. 31. Quality factors of the (5,0) and (2,1) modes of the slender beam with ra ¼ 8
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in water obtained with different quasi-square fluid grids.
Appendix A. Quasi-square vs rectangular fluid grid

The spectral displacement of the beam ra ¼ 16 using two differ-
ent sets of fluid grids is calculated. The first is called the rectangu-
lar grid, where N y ¼ N x � 1ð Þ=r. The second type is named the
Fig. 30. Absolute displacement spectrum j/̂cj of the beam with ra ¼ 16 with a) a
quasi-square fluid grid N y ¼ N x � 1ð Þ=ra, and b) a rectangular fluid grid
N y ¼ N x � 1ð Þ.
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quasi-square grid, for which N y ¼ N x � 1ð Þ. Fig. 30a and b show

the absolute displacement spectrum j/̂cj of the free corner of the
beam with the rectangular and quasi-square grids, respectively.

The displacement /c varies significantly with the rectangular
grid depending on the total number of points. This is clearly seen
in the close-up view in Fig. 30a. The resonance frequency increases
from the fluid grid 33 x 2 to the grid 64 x 4, and for finer grids, the
resonance frequency decreases, and /c approaches Sader’s solu-
tion. Although not yet converging to Sader’s solution even with a
grid of 513 x 32 (total of 16416 points). With the quasi-square grid,
on the other hand, a /c that quickly converges to Sader’s solution
with the 129 x 128 fluid grid (total of 16512 points) is obtained.
The reason a finer discretization fluid grid is required in y-
direction lies in the variation of the pressure jump (see Fig. 17),
which is high in the y-axis due to the inverse square-root singular-
ity towards the edges. In the x-axis, the variation of the pressure
jump is linearly dependent on the variation of the plate’s displace-
ment, which results in smaller pressure gradient in x-direction, and
thus requiring coarser discretization. In the present paper’s analy-
Fig. 32. Convergence of quality factor � Qi
� �

for the flexural modes (nx;0) and
torsional modes (nx;1) of the slender plates with a) ra ¼ 16, b) ra ¼ 8 and c) ra ¼ 4.
The dotted black line stands for � Qð Þ ¼ 0:01, value at which the Q-factor for this
mode is considered converged.
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ses, the quasi-square fluid grid independent of the plate’s aspect
ratio is employed, since the quasi-square fluid grid provides faster
convergence.
Fig. B.34. Convergence of quality factor for all the vibrational modes of the plate
with ra ¼ 2.
Appendix B. Convergence of Q-factor and resonance frequency

The Q-factors of all the vibrational modes alter with the number
of points in the fluid grid. As an example, Fig. 31 shows the Q-factor
of the (5,0) and (2,1) modes of the slender beam with ra ¼ 8 in
water. As the number of points in y-direction N y increases, Q con-
verges to a stable value with a fine enough fluid grid.

The convergence of the quality factor is quantified according to

� Qi
� �

¼ jQi � Qi�1j
max Qi

n;Q
i�1
n

� � ; ðB:1Þ

where Qi and Qi�1 are quality factors obtained with two consecu-
tively refined fluid grids for a same vibrating mode. Fig. 32 shows

� Qi
� �

for all modes of the plates with aspect ratio ra ¼ 16; ra ¼ 8

and ra ¼ 4.
The Q-factor of lower order modes converge with a coarser fluid

grid than the Q-factor of higher order modes. For instance, the (1,0)
mode of the slender plate with ra ¼ 16 converges for N y P 32. The
mode (4,0) of the same plate requires N y P 256 for Q-factor con-
vergence. Furthermore, the wider the plate, the finer the fluid grid
required for a converged quality factor. The Q-factor of the mode
(4,0) of the plate with ra ¼ 4 requires a discretization with
N y P 512 for convergence. The Q-factors of all modes of the slen-
der structures converge with � Qð Þ 6 0:01 with a fluid grid of at
least 1025 x 1024 points.
Fig. B.33. Convergence of the resonance frequencies f d of the slender plates with a)
ra ¼ 16, b) ra ¼ 8 and c) ra ¼ 4. The dotted black line stands for � f dð Þ ¼ 0:001, value
at which convergence of f d is achieved.

Fig. B.35. Convergence of the resonance frequencies of the plate with ra ¼ 2.
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Similarly to the quality factor convergence, the convergence of
the resonance frequency is determined with

� f dð Þ ¼ jf id � f i�1
d j

max f id; f
i�1
d

� � ; ðB:2Þ

where f id and f i�1
d are resonance frequencies obtained with two con-

secutively refined fluid grids for a same vibrating mode. Fig. B.33
shows the convergence of the resonance frequency of the slender
plates. Convergence is achieved when � f dð Þ 6 0:001. f d varies less
with the fluid grid than the Q-factor. For this reason, � f dð Þ 6 0:001
is fulfilled with coarser fluid grids than required for the Q-factor
convergence.

Convergences of the Q-factor and of the resonance frequencies
of the rectangular plate are shown in Figs. B.34 and B.35, respec-
tively. Both convergence criteria (� Qð Þ 6 0:01 and � f dð Þ 6 0:001)
are met for all vibrational modes with a fluid grid of 2049 x 2048
points.

Fig. B.36 shows the convergence of the Q-factor of the roof tile-
shaped modes of the square plate. All roof tile-shaped modes con-
verge with � Qð Þ 6 0:01 with a fluid grid of 8193 � 8192 points.
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