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Abstract

We imagine that service robots must collaborate with humans in physical object manipulation tasks to be of assis-
tance in everyday scenarios, such as setting a table. This collaboration requires the capability of joint attention to 
smoothly accomplish a shared goal. One special modality for joint attention is the gaze behavior of an actor. Herein, 
we discuss the human gaze in physical tasks and its underlying cognitive mechanisms, a novel probabilistic robotic 
gaze controller in object-centred collaborative physical tasks, and its inclusion in a well-known joint action human-ro-
bot interaction (HRI) benchmark. First, we discuss human gaze behavior as an important modality for signaling, de-
tecting, and monitoring joint attention processes. This is followed by an overview of joint attention implementations 
in HRI and commonly used artificial intelligence methods for planning and plan recognition. These methods are used 
to mimic qualities of different components in psychological joint attention models in humans. In object manipulation 
tasks, the gaze behavior is not only used to gather information about the environment, but also has a communicative 
role, as the gaze direction can be interpreted by the interaction partner. The intended actions and beliefs about the 
current world state are communicated through the gaze. We argue that robotic gaze behavior, which humans easily 
interpret, will improve the interaction capability of a social robot. We investigate this claim in an already established 
HRI joint action benchmark scenario of collaboratively building a tower out of different blocks. To this end, we pro-
pose a stochastic gaze controller for joint action tasks and present results of a pilot study.
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1	 Introduction

Think of a situation where you have to coordinate with another person in a phys-
ical task at hand. Let us say that you and a friend attempt to move a sofa up 
a staircase. Both of you have the same goal, namely, to bring the sofa up into 
another apartment, and the sofa would be too heavy for either one of you, to 
attempt to do so alone. Hence, each of you grabs one end of it. It is also clear to 
you that your actions influence each other, such that you must monitor and react 
to each other. Similarly, you can signal to your friend how you imagine to squeeze 
the sofa around the tight corner up ahead. You probably will not verbalize each 
and every intention, but you just push the sofa in one direction more than strictly 
necessary to signal a direction, or you catch the gaze of your friend by intently 
looking into their eyes, and then gaze into a direction you intend to go. A short 
nod on their side could signal that they understood. Both of you proceed just for a 
few seconds with the now shared and agreed upon plan, until you have to check 
in with your friend to coordinate again. 

Collaboration is highly necessary and not overly mentally taxing for humans. 
Nevertheless, when paying close attention to these collaborative processes that
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occur almost automatically, it seems that there are numerous different compo-
nents on different levels of abstraction at work. For example, how do we notice
the focused attention of others? Which mental processes let us adapt and align
our plans? How do we infer the plans of others? How do we make sure that the
other person is really on the same page as us? How do we choose which kind
of signal to use for which kind of information? How do we draw the attention of
others and signal attention on our part? One must consider all these questions
when implementing the capability of human-robot collaboration on a social robot.

In this chapter, we first contribute a discussion of results in psychology related to
this topic. Specifically, we review research on joint attention [Baron-Cohen 1994;
Mundy and Newell 2007] and theory of mind [Baron-Cohen 1997] with a focus on
the human gaze in physical tasks. These are important building blocks generally
required for the success of collaborative tasks in human-human interaction (HHI).
First, we properly differentiate the two terms and observe how theory of mind
builds on joint attention. Then, we focus on joint attention in the robotic context.
We contribute a review of different approaches employed by roboticists to provide
robots with joint attention capability or at least a technically feasible equivalent.
Finally, we propose a novel probabilistic robotic gaze controller for a joint action
benchmark between the human and robot proposed by Clodic et al. [2017], based
on building a tower out of various wooden blocks. For object-centered collabo-
rative physical tasks, this represents an approach to generate realistic, intuitive,
and interpretable gaze behavior. We report the initial results of a pilot study and
discuss how to include it into the joint action benchmark. Our contribution extends
a stochastic gaze controller for static scenarios to dynamic ones.

2 Joint Attention in Psychology

Joint attention has been studied since the 1970ies [Scaife and Bruner 1975]. Re-
search on joint attention in psychology yielded structural and procedural models,
as well as analyses whose cues are used to signal the state of joint attention
between humans. If we intend to have service robots in the future that share en-
vironments with human beings and provide help in everyday physical tasks, they
must be endowed with the ability to engage in joint attention [Krämer et al. 2011]
in a similar way as two humans.

Joint attention is the process of sharing one’s attention with another person, us-
ing social cues for coordination. The coordination effort focuses on a third object,
event, or stimulus [Akhtar and Gernsbacher 2007]. One of the earliest reports of
joint attention appeared 1975 in an article by Scaife and Bruner [1975] and stud-
ied the gaze following ability in infants. The experiment showed that only 30% of
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two to four month old children engage in gaze following, whereas from the age of
eleven months every infant is able to do so. To this day, a significant amount of
research is conducted on joint attention in child development.

How can we achieve something functionally similar to human joint attention in
Social Robotics? First, we consider some results of cognitive and social psychol-
ogy to better understand how joint attention empowers humans. Furthermore, we
consider the components constituting joint attention and how it is embedded in
the broader coordination process.

2.1 On Theory of Mind and Modeling Joint Attention

One insightful approach is to recognize joint attention as a necessary building
block for the more high-level mental capability of Theory of Mind (ToM). Tomasello
[1995] describe joint attention and ToM as relevant in the field of social cognition,
as they are concepts explaining how humans process information about other
humans in social situations. Children at the end of their second year of life already
possess the following capabilities: “1) They understand other persons in terms
of their intentions. 2) They understand that others have intentions that may differ
from their own. 3) They understand that others have intentions that may not match
with the current state of affairs (accidents and unfulfilled intentions).” [Tomasello
1995, p. 105]

The term “theory of mind” was coined by Premack and Woodruff [1978] and
comprises several mental capabilities that develop later in children, around the
ages of three to four. It allows them to represent more complex mental states than
intentions, namely: “1) They understand other persons in terms of their thoughts
and beliefs. 2) They understand that others have thoughts and beliefs that may
differ from their own. 3) They understand that others have thoughts and beliefs
that may not match with the current state of affairs (false beliefs).”[Tomasello 1995,
p. 104] 1

Baron-Cohen [1994, 1997] claimed a structural relationship between the sep-
arate mental modules of joint attention and ToM. In fact, they claimed that the
human ability they call “mind-reading” requires at least four components that build
on each other. Mind-reading is defined in the sense that humans can often infer
the thoughts, beliefs, plans, and emotional states of other people they observe or
think about, in short, reason about “mental things.”

1 Although the term joint attention originated in developmental psychology, other approaches in psy-
chology also provided results on the topic, some of which is covered in the following subsections.
In these, adults who exhibit a fully developed joint attention capability are the subject of the study.
As our robot model is also not developmentally inspired, we do not focus on child development for
the remainder of this chapter.
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Figure 1 Mind-reading system, adapted from Baron-Cohen [1994].

The four component system consists of the intentionality detector (ID), the eye-
direction detector (EDD), the shared attention mechanism (SAM), and the theory
of mind mechanism (ToMM) (Figure 1). The author claims the modularity to be a
necessary part of the model, as different clinical diagnoses can be explained by
deficits in specific modules. The ID interprets self-propelled motion of entities in
terms of its desires and goals. The EDD specializes in detecting eyes or eye-like
stimuli, recognizes the direction of the gaze, and enables the mental attribution
of the ability to see an observed entity. The purpose of the SAM module is to
integrate the two types of information provided by the ID and EDD. This module
already allows humans to determine whether another entity has the same target of
visual attention. The ToMM module builds on the SAM module and achieves two
goals: First, it allows inferring mental states in others from their observable be-
havior. Second, it allows us to generate explanations for observable behavior by
integrating these hidden mental states into theories [Langton et al. 2000]. ID and
EDD form dyadic representations (e.g., a cat chases a mouse (ID), or a cat sees
a mouse (EDD)). The SAM module, however, builds triadic representations that
are not possible only in the ID and EDD (e.g., I see a cat that chases a mouse).
Finally, the ToMM module is able to represent the full range of mental state con-
cepts. These are referred to as M-Representations and enable descriptions of
mental states, where an agent has an attitude toward a proposition (e.g., Johnny
believes that “the money is in the biscuit tin.”). There is research that builds on
this model in the fields of clinical, developmental, and comparative psychology
(where the latter studies the mental processes of non-human animals).
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Figure 2 An example of amental rotation task, adapted from [Just andCarpenter
1976].

2.2 Procedural Model of Joint Attention

Another approach to explain joint attention is to categorize processes involved in
a successful joint attention event. From observations in infants, the two core pro-
cesses are responding to joint attention (RJA) and initiating joint attention (IJA)
[Mundy and Newell 2007]. RJA refers to the ability to follow the direction of the
gaze and gestures of others. This allows to establish a common point of refer-
ence. IJA describes an infant’s ability to use gestures and eye-contact to direct
the attention of others. Targets of attention are either objects, events, or the in-
fant themself. Clinical research shows that developmental deficits arise in either
of these two processes separately. Comparative studies in non-human animals
show that animals have the capacity for one of these processes, while little to
none for the other. Chimpanzees, for example, can respond to, but rarely initiate
joint attention [Tomasello et al. 2005].

2.3 Eye-Mind Hypothesis

The gaze occurs first to gather information, while it also signals information to
observers, either intentionally or unintentionally. Just and Carpenter [1976] in-
troduced a simple, yet powerful idea, namely the “eye-mind hypothesis.” At that
point in history, cognitive psychologists strived to understand what was then called
the central processor of the humanmind. Their experiments involved eye-tracking
while performing mental rotation of Tetris-block-shaped three-dimensional objects
(Figure 2) as well as checking whether displayed sentences correctly described
the content of pictures next to them. The authors discovered relations between
the ongoing mental operation and the gaze fixation target.

In summary, they found empirical evidence that the “locus of eye fixations re-
flects what is being internally processed” and that the “locus of the eye fixation
can indicate what symbol is currently being processed” [Just and Carpenter 1976,
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p. 53]. The term symbol indicates a mental content or entity, something one can
think about. For example, when thinking about your favorite mug, your mental
representation of that mug is a symbol.

However, there are limits to the eye-mind hypothesis: Webb and Renshaw
[2008] argue that the eye-mind hypothesis is more likely to hold, when a person
is performing a visual task, as opposed to pure cognitive tasks or tasks involving
modalities other than the gaze.

2.4 Types of Gaze Behavior

As discussed in previous sections, there is strong evidence of some connection
of the mental focus of attention and the current gaze target. In situations where a
potential interaction partner is present, there are several plausible gaze targets.
Looking at objects or specific locations other than the interaction partner is referred
to as the deictic gaze. When two interaction partners are attending to each other’s
gaze it is calledmutual gaze, colloquially eye contact. Gaze following is the action
of attending to the gaze of the interaction partner, detecting their gaze direction,
and then focusing their own gaze onto the stimulus that is being attended by the
partner. Kaplan and Hafner [2006] also disambiguated the state of joint attention
from gaze events that appear similar, but have a lower degree of coordination: 1)
Simultaneous looking at an object that is triggered by a “pop-out” effect or salient
event; 2) Coincidental simultaneous looking at the same object; 3) Gaze following
of one agent, while the other pays no attention to the fact that they are being ob-
served; 4) Coordinated gaze at the same object, but attention to different aspects
of it (e.g., action intent (like playing with it), or aspect (like color)).

Gaze also plays a large role in pure conversation settings. For example, staring
at the other person is often uncomfortable, unnatural, and does not lead to a
smooth conversation experience for either participant. Therefore, gaze aversion is
often equally important and serves different roles: First, it regulates the intimacy of
a conversation. Secondly, it is utilized for turn-taking in a conversation. Gazing at
the addressee after an utterance while being silent indicates that the other person
should take the floor. Thirdly, averting the gaze indicates cognitive effort. Thus,
a speaker can signal that they are not yet done with their turn, even though they
are currently silently formulating a statement in their mind [Andrist et al. 2014].

154



I See What You Did There: Toward a Gaze Mechanism for Joint Actions in Human-Robot Interaction

3 Joint Attention in Human-Robot Interaction

An envisioned goal for Social Robotics is close collaboration between humans
and robots, reaching beyond humans and robots working on different subtasks
that lead to a common end result (e.g., pick-and-place robots in production). Ac-
tual collaboration between humans and robots is a sequence of shared actions
toward a shared goal and requires coordination [Kolbeinsson et al. 2019]; in other
words, joint attention as employed in the sofa moving example mentioned in the
introduction. In our work, we explicitly focus on human-robot interaction (HRI)
use cases surrounding object manipulation (e.g., picking up objects) and exclude
settings with a stronger social focus.

There is no definitive theoretical model for joint attention on a robot. For imple-
mentation purposes, one approach is to view the desirable input-output relation
for a given scenario as the requirement and use whichever technique is available
and achieves the result. For example, a human and a robot can both generate
plans for solving a given problem, but their specific methods can differ.

Additionally, Krämer et al. [2011] argued that the width and depth of human
coordination capabilities in social contexts will be out of reach for technological
systems in the foreseeable future (although constant progress is being made).
We must instead direct our attention to artificial intelligence (AI) research and look
for feasible components that solve simplified problems or help with a small part of
the problem.

The authors split the problem of developing a ToM for Social Robotics into a
micro (actual interaction), meso (relationship building), and macro level (roles and
persona). On the micro level, they associate ToM, perspective taking, shared
intentionality, and common ground. Common ground refers to mental content
of which all interaction partners know that this content is known by everyone.In
relation to these levels, our work addresses a joint attention implementation on
the micro level, excluding considerations on the meso and macro level.

3.1 Implementing Joint Attention for HRI Tasks

HRI research has produced several results regarding joint attention implemen-
tations on robots. These include the capability of drawing attention to another
reference point, as well as establishing, monitoring, and ensuring joint attention
during an interaction. The interaction settings are either conversational with dif-
ferent points of interest in the environment or physical such as object handovers
or other object manipulations.
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These scenarios differ from pure conversational settings between a human and
a robot. Typically, joint attention HRI settings involve at least another object, lo-
cation of interest, or event besides the two agents. The human and robot both
measurably focus their attention on this third entity or even physically interact with
it. Imai et al. [2003] proposed an HRI joint attention mechanism in 2003. They
presented the difficulty of drawing a person’s attention to another reference point.
This includes how to make a person understand the communicative intention of
the robot, and how to deal with the person’s attention status. They implemented
the pointing and gazing functionality on a humanoid robot, enabled the robot to
perform the mutual gaze, and represented the person’s attentional focus as a
spatial coordinate. They conducted an experiment, where the robot acted as a
presenter of a scientific poster to a human participant. Results indicate that hu-
mans lookedmore frequently at the poster, when the robot displayed the proposed
attention mechanism.

Huang and Thomaz [2010, 2011] extended the Responding and Initiating Joint
Attention (RJA, IJA, Chapter 2.2) model by an explicit Ensuring Joint Attention
component (EJA). The EJA component in their framework encapsulates the abil-
ity to monitor another’s attention to verify that joint attention is reached and main-
tained. They describe a cannonical joint attention episode between two agents
comprising five steps: 1) Connection of two agents, where they become aware of
one another and anticipate an interaction; 2) Joint attention request by the initiat-
ing agent, where it focuses the attention on a third object and uses communicative
channels such as pointing, gesture, and voice; 3) Joint attention response, where
the other agent also focuses on the third object; 4) Monitoring, where the initiat-
ing agent ensures joint attention by switching the focus between the other agent
and the referential focus; 5) Joint attention is reached, the interaction continues.
The authors equipped their social robotic platform with a finite state machine, a
procedural representation of the described joint attention episode. The percep-
tion capabilities of the robot included face detection, marker detection to perceive
pointing actions, and speech recognition for a few phrases, which were used to
check the attentional state of the human interaction partner. The humanoid robot
had a movable head with two degrees of freedom and eyes with two degrees of
freedom, as well as movable arms for pointing and a speaker for verbal commu-
nication. The authors conducted several experiments. In the first one, the robot
had to show that it can respond to joint attention, by attending to objects that the
humans pointed at. In the other experiments, which were video-based, the robot
had to direct the attention of a human to a presentation as a tour guide, ensure at-
tention while delivering a verbal message and while giving directions. The overall
result indicates that robots with their joint attention implementation yielded better
results in the responding to pointing actions task, and were considered more nat-
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ural in the video-based experiments. Huang and Thomaz [2010] mentioned, that
it is unclear how to design the specific timings of the EJA component.

Pereira et al. [2019] created an autonomous gaze system for the Furhat robot (a
mountedmannequin head with an animated video-projected face) for a puzzle-like
spatial reasoning task conducted on a tabletop. Their attention system is split into
a proactive and a responsive gaze layer with different priority levels. Gaze events
of higher priority override those with lower priority. The timing of gaze shifts is
uniformly sampled from predefined ranges. The human participant, task objects,
and the surrounding environment (for gaze aversion) are possible gaze targets.
The proactive layer handles the gaze related to the speech acts of the robot (eye
contact, IJA at task objects) and idle gaze behavior through gaze aversion. In
the responsive layer, user speech activity and a detected mutual gaze led to a
mutual gaze, while gaze tracking and object tracking was used for RJA events to
gaze at objects. The system was then used to engage with the user during the
task, comment on their progress and provide hints for the correct move. In a user
study, self-reported data suggested that the robot with both responsive and the
proactive layers was perceived as more socially present than the robot with only
the proactive component, as only the former was able to react to the user and
thus engage in joint attention.

Joint attention capabilities have also been shown to improve collaborative phys-
ical tasks like handovers in HHI [Frankel et al. 2012], but also HRI. Grigore et al.
[2013] created a two layer architecture for physical robot-to-human handover tasks
for a humanoid robot. The first layer represents the physical state of the handover
as a Hidden Markov Model with the states “Robot pick up,” “Robot hold,” “User
grap,” and “Robot not hold.” These states, however, are only estimated by the
current and torque values measured in the robot hand. A higher-level layer was
then added that serves as an additional safety check to release a grasped cup to
the human under the right conditions. The authors observed that human users
performed a sequence of actions in a successful handover: browsing the envi-
ronment, looking at the target cup, (optionally looking at the cup repeatedly), and
finally grasping the cup. The second layer registers the gaze pattern of the human
by monitoring the head direction. Only if the described gaze pattern is detected
before registering a grasp attempt, the robot releases the cup. The extension of
the handover architecture has been empirically shown to result in fewer unsuc-
cessful grasp attempts.

Similarly, Moon et al. [2014] compared HRI handover scenarios with varied
humanoid robot gaze behavior. In an HHI handover study they detected two gaze
patterns of the agent handing over the object: The shared attention gaze is gaze-
directed at the projected handover location. In addition to this behavior, a turn-
taking gaze pattern occurs sometimes, which consists of establishing eye contact
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while reaching out. These findings were implemented in a humanoid robot, which
resulted in the experimental conditions of no gaze (baseline), shared attention
gaze, and the shared attention gaze plus turn-taking cue. The authors found that
human users reached for the handover object earlier in the two gaze conditions,
and reported a trend of self-reported preference for the turn-taking behavior over
the other two conditions.

3.2 Planning for Joint Human-Robot Interaction

As Baron-Cohen [1994] mentioned, humans are expert mind readers. Hence,
when a human observes another human in an everyday situation, the observer
most likely forms an idea about what the observed person is trying to achieve
with their current actions. For example, if you see someone in a kitchen opening
the cupboard drawer containing all the mugs, you will probably already think about
which drink they want to consume, while all they did was simply opening a drawer.
Notable, it is quite possible that the observed person will do something different,
but our experience tells us that getting a drink is the most probable goal given
such an observation. One research direction on Joint HRI is to explore methods
for simulating this human capability, namely AI planning.

We distinguish between symbolic and subsymbolic planning: In a formal lan-
guage, symbols are atomic tokens of a language. This means they cannot be
split into smaller units of meaning. Symbols are manipulated with some kind of
procedure to build more complex expressions. This is (mostly) comparable to our
spoken language with its single tokens, such as “cat,” “in,” and “tree.” From these
tokens one can build expressions “cat in tree” or “tree in cat.” One of these makes
more sense from our experience than the other, but both are correct expressions
in our language. In turn, the expression “cat tree in” would not be considered
as part of our language. There is simply no valid symbol manipulation sequence
that can generate this expression. Nevertheless, symbols alone do not have any
meaning in themselves, and the problem of assigning symbols to references in
the physical or social space is referred to as the symbol grounding problem [Har-
nad 1990; Coradeschi et al. 2013]. In contrast, subsymbolic planning involves a
more direct representation of the problem. Consider a map where one must find
the shortest route between two points. There are no tokens that are manipulated,
just path finding reasoning with the data provided by the map.

Generally, subsymbolic planning is often used for collaborative problems such
as social navigation (i.e., safely moving through a crowd of people [Mirsky et al.
2021]) or human-robot handovers, where the problem is represented and solved
in a task space like the Euclidean space of a suitable dimension. For more ab-
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stract or high-level planning problems, however, a symbolic approach makes the
problem formulation more compact. In this book chapter, we focus on such rep-
resentations.

Before formulating the problem itself, however, wemust consider our underlying
assumption, namely the rationality of all involved agents. Broadly, this means that
an agent would rather perform an action that results in a benefit to them, rather
than harm. In the frame of the problem definition, the question is how to define a
cost function, or even how to know that optimizing the expected cost for a problem
is even the right thing to do [LaValle 2006]. Assigning reward (or cost) values
to certain outcomes of a decision process may be intuitive. These may be of a
monetary value, or of a more subjective value, like choosing between washing the
dishes or sweeping the floor. Thus, every action is assigned a reward value. If the
action outcome is stochastic, then a reward distribution is assigned to each action.
An example of this is a game where an agent chooses between receiving 1000 €
or letting a coin flip decide whether they receive 2000 € or nothing. Although the
expected value of both actions is the same, most people will have a preference
for one or the other, depending on their inclination toward gambling. Thus, using
the expected value alone is insufficient to model the preferences of agents. This
is solved by deriving a so-called utility function for all action outcome distributions.
For a utility function to exist, a rational agent must be able to provide a consistent
ranking of different probability distributions over outcomes according to the axioms
of rationality [LaValle 2006]. Thus, each action outcome is assigned an utility
value. Finally, a cost function can be derived from the utility function.

Markov Decision Processes (MDP) can be used to solve problems in sequential
decision theory [LaValle 2006], where agents repeatedly chose actions according
to their current state. A single agent MDP is defined by 1) a non-empty state
space X, which is a finite or countably infinite set of states; 2) for each x ∈ X a
finite, non-empty action space U(x) with a termination action (it is applied when
reaching a goal state); 3) a finite, non-empty nature action space Θ(x, u) for each
x ∈ X and u ∈ U(x) (a nature decision maker represents uncertainty in the action
outcome); 4) a state transition function f that produces a state, f(x, u, θ), for every
x ∈ X, u ∈ U , and θ ∈ Θ(x, u); 5) a set of stages, which is either infinite or set to a
fixed, maximum stage (i.e., how many sequential actions can be taken before the
problem must be solved); 6) an initial state xI ∈ X; 7) a goal set XG ⊂ X, and 8)
a stage-additive cost functional L. The goal of the agent is to find a plan to reach
a goal state from the initial state. Because there are stochastic state transitions, a
policy π : X → U must be found for all x ∈ X that minimizes the cost. Alternatively,
π can be a mapping from a state to a probability distribution over the action space.
Then, this corresponds to a randomized instead of a deterministic strategy.
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Markov chains are a simplification of this model without an explicit decision
maker. Nature determines the outcome of the next state alone. Markov chains
are used to model stochastic processes and, like MDPs, fulfill the Markov assump-
tion (equation 1). X1, X2, . . . , Xt denotes the sequence of random variables up to
timestep t, where the outcomes are xi ∈ X. This means that only local informa-
tion, and not the entire history of the process is used to determine the probability
of the next state transition.

Pr(Xt+1) = xt+1|X1 = x1, X2 = x2, . . . , Xt = xt) = Pr(Xt+1) = xt+1|Xt = xt)

(1)

Generally, artificial agents have some sensing capability to determine the cur-
rent state they are in. However, due to nature, sensor errors can occur. This
leads to anoher type of uncertainty, besides stochastic state transitions, namely
state uncertainty. This means that the agent does not know for sure whether it
is in a single current state xt ∈ X, but holds a belief about the current state, ex-
pressed as a probability overX. Including this belief into planning lifts the problem
formulations from the state space into the state belief space.2

For joint action scenarios, it is important to model more than one active decision
maker. This leads to the inclusion of the game-theoretic concept of the two-player
nonzero-sum game [LaValle 2006]. One formulation is to extend the MDP defi-
nition by another agent. Herein the two agents (players) P1 and P2 have their
respective action spaces U1 and U2. In zero-sum games, there is only one cost
function L : U × V → R ∪∞, which one player regards as reward, and the other
player as cost. In the nonzero-sum game, however, each player has a different
cost function (like L), namely L1 and L2. Both players now aim to minimize their
costs according to their respective cost function. Thus, in such games different
degrees of cooperation can be formulated, from total cooperation to a zero-sum
game. This formulation can be lifted to sequential games on game states by ex-
panding the MDP definition by another player.

In symbolic planning problems, if the planning problem uses deterministic ac-
tion outcomes, a wide-spread approach in robotics is to employ classical planning.
A classical planning domain (i.e., a state-transition system) is a triple Σ = (S,A, γ)

or a 4-tuple Σ = (S,A, γ, cost). S is a finite set of possible states of a system. A is
a finite set of actions that an actor can perform. γ : S×A → S is a partial function
called the state-transition function. When γ(s, a), s ∈ S, a ∈ A, is defined, then a is
applicable in s, and γ(s, a) ∈ S is the outcome of the action. cost : S×A → [0,∞)

is a partial function with the same domain as γ, defining a metric, which is to be

2 Literature presented in this chapter as well as our contribution only concerns planning in state
space.
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minimized, such as the monetary cost or time. In this kind of representation, there
are the assumptions of a finite, static environment, no explicit time (except the
cost, if it is to be interpreted in this way), and no concurrency, indicating that ac-
tions cannot be performed in parallel. Actions are deterministic, which means that
the outcome of an action is known with certainty [Ghallab et al. 2016].

In the formulation above, there is a finite set of states (S = (s0, s1, . . . )) with
no specific relation to one another. A more succinct way of describing states is
by using state-variables (predicates) and objects. Hereby, states are defined as
specific instantiations of these state-variables. These state-variables can use ob-
jects as arguments. A concrete example is the planning domain blocksworld in
the Planning Domain Definition Language [Fox and Long 2003] (PDDL), which is
a formal planning language that is commonly used for robotic tasks that involve
planning in semantic domains. It is an approach to encode a classical planning
problem, derived from previous formal languages like the Stanford Research Insti-
tute Problem Solver (STRIPS) [Lifschitz 1987]. A PDDL problem is encoded by a
domain and a problem instance, where the domain describes the state-variables
and operators, which are uninstantiated action templates. Once an operator is
given parameters, it is called an action. Operators, like pickup, are defined with
objects as possible parameters (?ob), preconditions, and effects. Only when the
preconditions are met in the current state, the action is performed by applying
the effects of the action on it. This is done by adding and/or removing predicates
from a state. The problem instance describes the existing objects, the initial state,
and the goal. The solution represents a plan, which solves the problem. There
are PDDL versions that allow durative and concurrent actions, continuous and
conditional effects, etc., however, we disregard these options for simplicity.

3.3 Plan Recognition in Classical Planning

Classical, symbolic AI planning is an approach to endow a robot with a planning
capability suitable for joint HRI situations. However, it is only a part of the solution.
A robot must also be able to infer the goal and plan of the interaction partner. To
this end, classical planning plan recognition is employed [Ramírez and Geffner
2009, 2010; Sohrabi et al. 2016]. An advantage of this approach is the reuse of
the planner that the robot uses to generate its own plans. The plan recognition
problem is formulated as a triple T = ⟨P,G,O⟩, where P is a planning domain, G
is a set of goals, and O is a sequence of observed actions. When the sequence
O ends in a state that is a goal, the goal recognition is trivial; however, when the
observation ends in a state that is not a goal, the problem is to predict which is
the most likely goal, to rank these goals with regard to their relative probabilities,
or to assign probabilities to the different goals. Various approaches have different
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ways of executing this, but their commonality is to transform the original planning
domain to accommodate the observations and subsequently compare the cost
of different plans. Different plans are generated for a single goal, e.g., one that
satisfies the observations and one that does not. When the cost of adhering to the
observation for a goal is significantly higher than reaching the goal without doing
so, that goal is probably not likely to be the actual goal of the observed actor. This
builds on the assumption of rationality of an agent, i.e., that one attempts to fulfill
their desires in an effective and efficient way.

3.4 A Benchmark in HRI for Joint Action

Situations that are simple and intuitive to solve for a human team, such as building
a specific tower out of wooden blocks on a table, prove to be complex and difficult
for current joint attention research. Therefore, this setting - a human and a hu-
manoid robot who attempt to build a block tower - is used as a recurring scenario
in joint action research [Johnson et al. 2009; Schulz et al. 2018; Barchard et al.
2020; Jensen 2021].

Pure plan recognition research often only treats problems that are already for-
mulated in formalisms like PDDL. Similarly, the problem formulation of plan recog-
nition does not deal with the continuous coordination effort that is necessary in
joint attention situations. Devin et al. [2017] combined classical planning in the
block world domain with the demands of joint action problems. In their study, they
set up a joint action scenario with a human participant and a PR2 robot3 (Figure
5, left). The PR2 robotic platform was equipped with several optical sensors and
two arms with pincer grippers. The setup includes fiducial markers on the blocks
to facilitate their recognition. The robot was able to perceive the world state (i.e.,
the current arrangement of blocks) and manipulate the blocks.

The robot and the human participant have a shared goal. They stand on oppo-
site sides of a table and attempt to build a specific block tower with blocks lying
on the surface. Howeer, each agent is only able to reach some of the blocks,
hence they must collaborate. To introduce another challenge, there is not one
single fixed sequence that results in the correct block tower (Figure 3). For exam-
ple, there are two places for putting the red blocks and each actor has access to
one of the two red blocks. They need to coordinate who picks which placement
spot. The following difficulty arises when the agents must place the block stack
green-blue-green. Again, each actor has access to only one green block. Thus,
the actors must coordinate who places the first green block.

3 https://robots.ieee.org/robots/pr2/, Image source: https://www.wevolver.com/wevolver.staff/pr2
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Figure 3 Joint action task described in [Devin et al. 2017]. Left: Initial configu-
ration. Right: Goal State.

The authors approach this scenario as a multi-agent planning problem. The
robot finds plans by modeling three discrete actors (itself, the human, and a ficti-
cious X agent) who can place the blocks. In valid plans, actions that are assigned
to the X agent mean that either of the two actors human or robot will perform the
action. Notably, in the example above, there could be multiple open actions at
once, e.g., placing the two initial red blocks in the center. In the shared plan,
when the next necessary step is an action performed by the human, the robot
waits for its completion. When the next necessary step is a robot action, the robot
performs it. However, whenever an action is assigned to the X agent, the robot
has different approaches for enacting this shared plan, namely acting lazily (i.e.,
waiting for a specified amount of time and watching whether the human will per-
form the action) or in a hurried way (i.e., the robot always attempts to immediately
perform an X action. Furthermore, agent assignments can change during the plan
execution, such that the plan must be recalculated after each step. For example,
when one actor places the first green cube, the placement of the second cube is
no longer an X agent action, as only the other agent has a green block left. This
demonstrates the complexity of this simple collaborative block world problem as it
already exposes numerous interesting and difficult aspects of joint action and re-
quires further research effort. Thus, to establish a standardized scenario, Clodic
et al. [2017] propose a joint action scenario similar to Devin et al. [2017]. Their
goal was to facilitate finding answers to the following questions: “What knowledge
does a robot need to have about the human it interacts with [...]?”; “What informa-
tion should the human possess to understand what the robot is doing and how the
robot should make this information available [...]?” [Clodic et al. 2017, p. 2] The
proposed simple HRI scenario has the following setup and assumptions:
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Figure 4 Left: Initial configuration. Middle and Right: The two possible goal
states.

The common goal of the human and robot is to build a stack of four blocks in a
specified order with a pyramid on top. They are on opposite sides of the table and
face each other. Each agent has access to two of the four blocks. There are two
pyramid pieces, one on either agent’s side of the table. Only one of the two agents
is supposed to place the pyramid piece at the end of the action sequence. The
agents are restricted to the actions of the block world domain, plus a handover
action, and a possibly support tower action.

Figure 4 illustrates the initial and the possible goal states. Both agents are
assumed to perceive the current world state and thus are able to locate objects
and assess their reachability by either agent. Finally, each agent is able to observe
actions of the other.

4 Toward a Gaze Mechanism for Joint Actions

As described above, one of the two core questions posed by Clodic et al. [2017]
is how a robot should signal information that is important to the human in order
to enable smooth collaboration. We argue that the gaze is a useful modality for
this specific benchmark task even for robots, as it is highly intuitive for humans
to interpret, and is perceived constantly without being bothersome (in contrast to
continuously verbalizing information, for example). It is furthermore potentially
easier to perform than other non-verbal behavior, e.g., pointing.

Conveniently, commonmobile service robotic platforms such as the PR2 byWil-
lowGarage or the Toyota Human Support Robot4 (HSR) (Figure 5) have head-like
extensions with two degrees of freedom that house forward-facing optical sen-
sors. Therefore, the head orientation represents in fact the direction of gaze.
Social humanoid robotic platforms, such as Pepper from Softbank Robotics5 or
Nao6 (Figure 6) have the same degrees of freedom in their heads and have al-

4 https://robots.ieee.org/robots/hsr/, Image source:
https://developer.nvidia.com/embedded/community/reference-platforms/toyota-hsr

5 https://www.softbankrobotics.com/emea/en/pepper
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Figure 5 Two domestic service robots. Left: Toyota Human Support Robot
(HSR). Right: PR2 by WillowGarage.

ready been used in gaze related HRI studies. Research has shown that their head
orientation communicates attention [Breazeal et al. 2005; Takayama et al. 2011]
and is interpreted as gaze by human participants. We, therefore, propose that the
gaze in the joint action benchmark will significantly smooth the interaction between
the human and the robot, as it has previously in the different communicative HRI
settings surveyed by Admoni and Scassellati [2017].

4.1 Comparison of Human-derived Gaze Mechanisms

It is important to model the gaze behavior of domestic service robots in a way that
it primarily does not impede their functionality, and secondly serves a communica-
tive purpose in joint attention and joint action situations. The human gaze is very
effective at doing both simultaneously. During object manipulation tasks, humans
gaze at task-relevant objects and locations [Hayhoe and Ballard 2005; Pelz et al.
2001]. This behavior is a rich source of information for an interaction partner in
collaborative scenarios. In the ideal case, a robot would use its gaze to improve
its belief about the current world state, as well as utilize the communicative as-
pect of gaze. Therefore, a model of the human gaze in joint action tasks can be
used as an initial heuristic. The most important characteristics of such a model
are the gaze locations and timings, i.e., when to look at what. Another, perhaps
less important factor, are the transition dynamics, i.e., which animation profile is
exhibited by gaze transitions.

When implementing a gaze model for a robot that interacts with another actor
and objects in its environment during a joint task, the question of when the robot
looks at a specific gaze target needs to be addressed. More specifically, which se-

6 https://www.softbankrobotics.com/emea/en/nao
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Figure 6 Two social humanoid robots by Softbank Robotics. Left: Nao. Right:
Pepper.

quence of gaze targets and fixation durations communicates the attentional (gaze)
focus of the robot to the human actor? We assume that the gaze is divided be-
tween the objects the robot manipulates itself, the object manipulations of the
human partner, and the human’s hands and face. The gaze at the objects that
the robot wants to manipulate is (at least at some point in the process) necessary
for the proper execution of the planned action. Thereby, the robot communicates
its own attentional focus through gaze. The gaze at the object manipulations by
the human is necessary to assess the current world state. The gaze at the face
of the human is necessary to ensure the joint attention status. Similarly, at each
point, the gaze of the robot could be interpreted by the human to draw conclusions
about the attentional state of the robot.

This might seem to overly complicate the block stacking benchmark task, how-
ever, it represents only an initial step to solve more difficult scenarios. Examples
of these include tasks with more than two actors, and tasks that include more
movement, such that not each important location of attention is captured in a sin-
gle camera angle, for example when objects are positioned further apart, when
actors do not face each other all the time, or when objects are occluded.
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4.2 Modeling the Sequence of Gaze Targets

Next, we discuss how to create a gaze model for the above-mentioned tasks.
Lehmann et al. [2017]; Acarturk et al. [2021] employed a specific methodology for
creating a gaze controller specifically for gaze aversion in conversational settings.
They recorded two eye-tracking datasets in dialogs between two humans, where
one participant was the interviewer and the other the interviewee. One dataset
was generated from the view of the interviewer, the other one from the view of
the interviewee, using a wearable Tobii Glasses 27 eye-tracker. For each inter-
view perspective they used a sequential data mining method to derive the most
common gaze shifts, where the following gaze targets were encoded: the face of
the dialog partner (referred to as gaze contact fixation by the authors), and gaze
aversion directions relative to the position of the face (down, up, left, right, and
diagonal directions).

More importantly for this book chapter, stochastic models are also used to
model gaze sequences. (First order) Discrete-Time Markov Chains (DTMC) de-
scribe sequences of gaze directions using theMarkov property assumption (Equa-
tion 1, Section 3.2), i.e., only the previous gaze target determines the probability
of the next gaze direction and the possible states are in the set
Ω = {center, up, down, left, right, up−left, up−right, down−left, down−right}.

A simplifying assumption was made, namely time-invariance, meaning that the
probabilities do not change depending on the position in the sequence. This al-
lows the gaze model to be represented as a Markov chain transition matrix of size
|Ω| × |Ω|. A cell matrix cell value pij represents the probability of changing the
gaze from target xi to xj and the rows must sum up to 1.

The authors argued that a gaze controller producing such stochastic behav-
ior will be helpful in HRI conversational settings. Further, they have future plans
to validate this idea by implementing it on a humanoid robot and conducting HRI
validation studies following themethodology of Andrist et al. [2014], where the pro-
posed model with proper gaze timings was tested against a baseline with static
gaze and a baseline with inverted timings (“anti-timings”). The study argued that
both baselines should lead to a worse evaluation of the robot by the human inter-
view partners than the proposed model.

This kind of gaze control is aimed at conversational HRI settings and has nu-
merous useful applications, such as tour and info guidance, receptionist duties,
etc. Mobile service robots such as the Toyota HSR can additionally perform object
manipulation tasks and require gaze control for them, as argued above. Provid-

7 https://www.tobiipro.com/product-listing/tobii-pro-glasses-2/
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Figure 7 Gaze data capturing during the pilot study. Left: Initial position. Middle:
Eye-tracked participant places a block from the reachable area. Right: Placement
of the pyramid block. Both participants can place their pyramid, and after a nego-
tiation phase, the other participant places the final piece.

ing a gaze controller for the joint action benchmark task described earlier is thus
helpful to handle more realistic scenarios in the future.

5 Data Collection for our Stochastic Gaze Control

We describe how to adapt the procedures from Lehmann et al. [2017]; Acarturk
et al. [2021] to a collaborative object manipulation task. In a pilot study, we recre-
ated the block stacking task with the pyramid top presented in Clodic et al. [2017]
(Figure 7). Two human participants sit opposite each other at a table. One of the
two participants per trial wore a PupilLabs Core8 [Kassner et al. 2014] eye-tracker
with monocular eye-tracking.

We tested two pairs of participants (n = 4). Each pair conducted two trials.
After the first trial, they swapped positions, such that each participant wore the
eye-tracker in one trial. All participants were briefed by the experimenter. The
participants were asked to read and sign an informed consent form. They were
instructed to collaboratively build a specified tower (from bottom to top: green -
red - lavender - blue - pyramid). Figure 4 depicts the view of the person wearing
the eye-tracker. This person was instructed to act as if only the red block, blue
block, and right pyramid is reachable for them. The person sitting opposite was
instructed to act as if they can only reach the green block, the lavender block, and
the left pyramid.

The participants were instructed to follow a set of rules: (1) Use only your right
hand. The task was simple enough for humans, such that non-disabled persons
can use their right hand even if it is not their dominant hand. (2) The right hand is
supposed to always be above the table. (3) The left hand is supposed to be out
of sight underneath the table. (4) Participants were asked not to rotate the blocks
while moving them.

8 https://pupil-labs.com/products/core/
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The participants were informed that this is not a test and that speedy execution
is not important. Starting a grasping action while the other person is still placing
their block was not forbidden. The blocks display fiducial markers facing the per-
son wearing the eye-tracker and participants were asked to grasp the block in a
way that does not occlude the markers. The placement position of the bottom
block was also marked on the table with fiducial markers. These rules and restric-
tions were implemented such that the resulting behavior is similar to the one of a
robot during such a task.

The two participants were asked to memorize and recite the correct block stack-
ing sequence before the experiment to avoid execution mistakes and to limit gaze
and other behavior that is not associated with shared plan execution. The par-
ticipants were not allowed to discuss any strategy before the task and were not
allowed to speak during its execution.

The participant wearing the eye-tracker is referred to as the robot (R), because
the recorded gaze behavior is meant to be implemented on a service robot in the
future. The other participant is referred to as human (H). X denotes the X Agent
(X). The resulting interactions included only actions that were in accordance with
the optimal plan:
(pickup H green) (place H green table) (pickup R red)
(stack R red green) (pickup H lavender) (stack H lavender red)
(pickup R blue) (stack R blue lavender) (pickup X yellow)
(stack X yellow blue)

Gaze behavior that results from these interactions thus depicts gaze behavior
for smooth interaction without errors. During the last step, where the two agents
need to negotiate who picks up their pyramid piece, gaze behavior indicative of
negotiation will take place. The generalization is naturally only possible for an ap-
propriately large sample size and only for populations with the same demographic
properties. In this chapter, only a preliminary feasibility check with a small sample
size is presented, and the obtained results serve as an exemplary outcome.

The goal of this experimental setup is to elicit successful collaboration and the
corresponding gaze behavior in the person wearing the eye-tracker. Large-scale
plan re-negotiations during the task must be avoided. Small-scale negotiations
(i.e., resolution ofX agent actions) fall within the capabilities of the planning formal-
ism. This choice is motivated by the consideration of the full robot architecture: In
problms that are more general than the chosen experimental setting, large-scale
plan deviations might occur. However, after each action (planned or unforeseen),
the visual sensors of the robot will detect the resulting world state, which will be
used as the initial state to the planning problem. Then, a new shared plan will
be calculated. This might result in a new planned sequence of actions. The robot
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gaze controller always acts with respect to a determined plan, as described below
in further detail. Thus, if a new plan is calculated, the gaze is adjusted according to
the newfound plan. Plan changes occur due to unforeseen actions; however, this
does not result in unspecified gaze behavior. The robot gaze always corresponds
to the belief of the robot and visualizing the belief of the robot through gaze is the
goal of this gaze controller.

During the trials, the strategy to overcome the ambiguity of who places the
pyramid was always solved with the “turn-taking” strategy, where the person who
placed the topmost rectangular block waits for the other person to place the pyra-
mid. In our small sample, the placement of the pyramid occured either immedi-
ately or after a short period of inactivity.

For each gaze data sample, we conducted the following evaluation: Using fidu-
cial markers9, as well as (the partner’s) hand and face tracking [Lugaresi et al.
2019] allowed the recognition of these objects in the eye-tracked video. By defin-
ing a 100 pixel radius around each target, we distinguish eye fixations of the other
person’s hand and face, as well as the placement location of the bottom block
on the table, as well as all other blocks and pyramids. Furthermore, we encode
fixations gazing at none of the above.

For each sample, a sequence of fixations is extracted from the gaze data, and
we create a DTMC transition model by counting the transitions. In this scenario,
this yields a 8× 8 matrix (pyramids are counted as one object). The gaze targets
are the face of the partner, the hand of the partner, the placement location on the
table, the four blocks, and the two pyramids, which are counted as one object due
to their interchangeability.

For this gaze controller, we disregard fixations that do not fall in the radius of
any target. If a fixation falls on a spot in the visual field that is currently in the
radius of more than one target, we count split transitions and mark more than one
object as currently active, until the gaze falls on a single object again.

The aggregated model in Table 1 was derived with the gaze model for every
sample. There are two possibilities of arriving at the probability values, which sum
up to 1 per row: Either the frequency counts of the transitions are averaged per
sample, and then the averaged matrices are added and again normalized per row.
This is the variant we chose, since it leads to equal representation of each sample.
Another method is to add all frequency count tables and only then normalize over
the rows.

The controller can then be applied to create gaze behavior by choosing a basic
timestep unit, e.g., one second (This varies with the task, and the robot embod-

9 https://april.eecs.umich.edu/software/apriltag
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Next Target

Target Face Hand Table Green Red Lavender Blue Yellow

Face 0.12 0.12 0.29 0.17 0.17 0.13
Hand 0.13 0.23 0.02 0.22 0.11 0.11 0.07 0.11
Table 0.11 0.37 0.08 0.25 0.04 0.04 0.11
Green 0.30 0.05 0.24 0.14 0.05 0.17 0.05
Red 0.10 0.10 0.25 0.12 0.23 0.10 0.10

Lavender 0.38 0.07 0.07 0.11 0.26 0.11
Blue 0.19 0.04 0.11 0.04 0.14 0.48

Yellow 0.67 0.17 0.08 0.08

Table 1 DTMC transition probabilities of eye-tracked locations.

iment.) and creating a gaze sequence by starting in a random or predetermined
(e.g., face) state. The next state is always sampled with the probability weights of
the row of the current state.

Further work is planned to split the gaze controller into two parts and to analyse
whether the gaze behavior in the action phase (placement up to the last block)
differs from in the negotiation phase (placement of either pyramid).

5.1 Creating a Gaze Controller for Time-Variant Scenarios

Table 1 indicates the specific objects the participants gazed at during the whole
task duration. This neglects an important factor, namely the dynamic nature of
the time-variant task. During the task, the world state is defined by the block
arrangement and whether an actor is currently grasping a block. It is clear to both
actors which block to grasp next (or whether to negotiate who should place the
pyramid top). For the plan execution, the following block to be placed has another
role to the actors of the current action than a block that has already been placed.
Therefore, we annotate the video samples with the current state of the world, i.e.,
which blocks have already been stacked (neglecting whether a block is grasped
or not). Thereby, we partition the set of blocks, pyramids and table placement
location into sets of past, previous, current, next, and future. The current block
is the one that must be picked up and placed at a specific point in time. The
previous block is the block that was placed right before the current block. Prior to
placing the first block, previous indicates the table placement location. The next
block indicates the block to be placed after the current block. Past and future
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Next Target

Target Face Hand Past Prev. Curr. Next Future

Face 0.08 0.08 0.19 0.11 0.19 0.33
Hand 0.16 0.19 0.09 0.27 0.20 0.09
Past 0.11 0.11 0.78

Previous 0.12 0.12 0.12 0.12 0.50
Current 0.20 0.35 0.19 0.22 0.03

Next 0.23 0.12 0.11 0.06 0.31 0.15 0.03
Future 0.33 0.50 0.17

Table 2 DTMC transition probabilities of eye-tracked locations in their dynamic
context of the plan execution.

blocks group blocks that have been placed before previous, and must be placed
after next, respectively. The controller in Table 2 is derived with this dynamic
assignment of object roles. Hence, we preserve the time-invariance assumption
of the gaze controller with this transformation from block identities to temporal
roles.

5.2 Future Work

We tested the described pipeline to derive a gaze controller with transition prob-
abilities based on a larger sample size. Careful attention to the validity of the
result must be paid, as numerous design choices have been taken in the aggre-
gation method of the different study participants and filtering of fixations in single
samples. Therefore, we propose a validation study, where a pre-programmed
humanoid robot and a human participant perform the described task. The robot
functions according to the same assumptions as the one described by Clodic et al.
[2017]. The robot acts in two different conditions: It can place the final piece proac-
tively (try to do it itself) or “lazily” (wait until the human places it). During the task,
the robot exhibits gaze behavior in accordance with the gaze controller derived
from the empirical data collection. There will be two baseline conditions, namely
one where the robot does not display any gaze behavior at all, and another one,
where the robot acts according to “anti-timings,” as in the study of Andrist et al.
[2014].

For the gaze controller, there are numerous possible elaborations. For exam-
ple, the state space of the temporal roles could be expanded by the belief of who
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the believed actor of that action is. The state space would then be {past, previous,
current, next, future}×{robot, human,Xagent}. The robot gaze could thus vary
when the robot believes that the human is about to perform the next action in con-
trast to when the robot believes that it is to perform the next action itself.

While the approach in Lehmann et al. [2017]; Acarturk et al. [2021], and Andrist
et al. [2014] has worked in conversation settings, it is unclear how gaze processes
with dynamic gaze targets are handled by a robot. As human-like object manipula-
tion capabilities are the current goal of service robotics research, human-like gaze
behavior in object manipulation tasks is also beneficial, as humans are known to
actively seek out information that helps solve the current task. This approach has
a counterpart in robotic vision, called active vision [Aloimonos et al. 1988]. Fu-
ture research can make use of the derived gaze timings to more reliably focus on
important aspects of a scene, according to the ongoing task.

6 Conclusion

In this chapter, we mainly focused on research in psychology and HRI on joint
attention, although there are numerous other related interesting subfields that in-
fluence how to think about joint attention in service robotics.

In psychology, attention is studied in numerous different scenarios, such as
sustained attention, vigilance, and other low-level models of attention. In develop-
mental psychology, research on the autism spectrum disorder in infants and devel-
opmental robotics explore how social collaboration abilities develop and emerge
in complex behavior frommore simple prerequisites. Studies in neuroscience and
psychophysics focus on the neurological processes leading to the attention phe-
nomenon. Differential psychology studies how personality traits lead to different
modes of attending to stimuli.

Similarly, for AI/robotics, there are numerous fields that deserve amention in at-
tention research. Visual attention is an inductive bias, often used in visual pattern
recognition and machine learning research. Multi-agent reinforcement learning
deals with the emergence of communication protocols between untrained agents
and how they attend to each other to solve complex collaborative tasks. In dif-
ferent computational cognitive architectures, joint attention may be a feature that
emerges from the dynamic interplay of different architecture components. In ma-
chine vision, object detection plays a critical role regarding which objects can be
paid attention to. Only if an object is detected, segmented, or classified, it will
be able to enter the center of attention. In planning and scheduling, there are
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numerous different paradigms with many different frameworks, of which a single
one was chosen as the focus in this chapter.

To summarize this chapter, first, structural and procedural models of joint at-
tention from the psychological perspective were discussed. The special relation
between ToM and joint attention was of particular interest. We then focused on
gaze as the main sensory modality. Information gathered through gaze not only
provides necessary information to calculate mental representations of one’s sur-
roundings, but it is also driven top-down to focus on areas that are crucial to form
a coherent explanation. This gaze behavior can be a source of information for
observers.

Second, we reviewed how these insights are used to create robotic implemen-
tations for different joint attention or joint action scenarios. The scenarios included
conversations with locations of interest other than conversation partners or collab-
orative physical tasks with different manipulable objects.

Third, decision-theoretic and classical planning were reviewed for their use in
such collaborative physical tasks. Special attention was paid to plan recognition
and the usefulness of a benchmark (building a tower out of blocks) for joint action
in HRI.

Finally, we proposed a method for learning a stochastic gaze controller for such
tasks from data. The joint action benchmark of jointly building a tower was used as
experimental foundation. We presented a method to preserve the time-invariance
assumption of the stochastic controller by assigning temporal roles to objects.
These roles are assigned dynamically by checking the current world state and the
shared plan. This was followed by an outlook on future research needed for the
development of a novel gaze mechanism for joint actions in HRI.

Clearly, the work presented in this chapter only is a building block to a sig-
nificantly larger research problem, namely how to enable humans and robots to
succeed in dynamic collaborative tasks. However, it also demonstrates that at-
tention is a topic that must not only be considered relevant for HRI research, but
for the entire robotics field.
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