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Abstract

Robots need to be able to learn about novel environments and acquire new capabilities during deployment. Robot 
learning from humans is a paradigm to enable the human user to teach robots certain information and skills without 
programming knowledge. In this chapter, we provide an overview of this domain and present some of our work as 
concrete examples. First, we address grounded language learning with the goal to create connections between 
words and references (e.g., objects, locations) in social environments. We present our incremental word learning 
systems using the Pepper robot. Following that, we introduce to learning low-level actions from demonstrations. 
We present our systems with an industrial robotic arm and a dexterous robotic hand. Then, we address the role of 
the teacher in the learning process. We investigate the human factors that are important for facilitating the learning 
process and present the results of our user studies. We conclude with open challenges and opportunities for further 
research.
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1 Introduction

Robots are increasingly being placed in unconstrained environments, such as 
homes, where they must adapt to new situations. They cannot be preprogrammed 
to perform every task with every object in every environment. They need to be 
able to learn about new tasks with unseen objects in novel environments. Learn-
ing from users’ input is one way to acquire this knowledge. Examples of infor-
mation provided by the user could include demonstrating a task or providing lan-
guage feedback via speech. Robotic learning from humans enables novice users 
to teach new tasks to a robot without extensive programming knowledge. There-
fore, the topic of learning from human teachers has received increased attention 
in recent years [Ravichandar et al. 2020].

Chernova and Thomaz [2014] motivate learning from humans using robots in 
the household. Vacuum cleaning robots have become ubiquitous in recent years. 
They can be placed in an unknown environment and start operating immediately. 
They can even create a map of the environment to navigate from room to room 
autonomously. This works well as long as certain constraints are met, such as a 
flat floor without stairs, cables, or other obstacles.

A general-purpose household robot must complete a much wider and more 
complex set of tasks. A user would expect it to empty the dishwasher, clean the 
bathtub, or store objects in their designated storage location. These tasks are 
not only more complex in terms of manipulation and perception but also need to 
be performed in less constrained environments. Each household is unique and 
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different from other households. There could be similarities that can be exploited,
such as the same type of existing object (e.g., cupboards, drawers, or fridges) or
the same type of room (e.g., kitchen, bathroom). However, the storage location
of certain objects, such as plates, mugs, or cookie jars, can be unique and arbi-
trary for each home. These conditions cannot be preprogrammed into the robotic
knowledge base in the factory but must be learned by a robot, once it arrives in a
new household, similar to a new person moving in. There has to be the possibility
for the user to extend the robot’s knowledge and modify its behavior. Learning
from demonstrations (LfD) methods attempt to learn information, and action poli-
cies (i.e., how to perform a task) from examples provided by humans.

Additionally, household robots must be controlled by users directly. A popular
and intuitive approach is to use voice commands such as “Put the strawberry jam
into the food storage cabinet.” Modern speech recognition algorithms perform
well and can convert a spoken language to text even from a distance, as demon-
strated by stationary voice assistants integrated into speakers at users’ homes
[Berdasco et al. 2019]. A more challenging task is to make sense of what has
been said. A robot might not know which object is meant by “strawberry jam”,
what location by “food storage cabinet” and maybe not even how to perform the
action “put”. “Grounded Language Learning” [Matuszek 2018] is the process of
assigning words to references in physical and social spaces. It is a subfield of
robotic learning from humans but is often not mentioned in the context of LfD.

Human factors are an important consideration when learning from human teach-
ers. Many papers focus on algorithms for learning policies from demonstrations.
The role of human teachers is often overlooked. Especially, novice users cannot
be treated as infallible oracles who always provide perfect demonstrations to the
robot. Instead, users are part of the learning loop and influence the final perfor-
mance of the robot immensely. A learning system must consider the human in
the loop and accommodate their needs.

The field of “Robotic learning from humans” is very broad, with many different
application fields. However, we focus on two domains as an example to provide a
starting point for discussing the human factors connected to the learning system.
The main contributions of this chapter are:

• We give an introduction to the field of grounded language learning and
present our framework with the Pepper robot. It is focused on iterative lan-
guage learning and being transparent towards the human teacher.

• We discuss the topic of learning low-level actions from human demonstra-
tions and give an overview of recent approaches. We present our setups
with an industrial robotic arm and a dexterous robotic hand in simulation.
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• We investigate different human factors involved in the learning process such
as the teacher’s workload, self-efficacy, transparency and trust. We present
the results of our experiments with a robot teleoperation setup, a language-
learning setup and an interaction scenario.

In Section 2, we provide a brief overview of the field of “grounded language
learning,” highlighting our two approaches with the Pepper robot. Section 3 dis-
cusses “learning of low-level actions” with examples using industrial robotic arms
and simulated robotic hands for dexterous manipulation, with a special emphasis
on input methods. In Section 4, we discuss the teacher side of the learning loop to
identify human factors that must be considered when building learning systems,
such as workload, self-efficacy, and trust. Section 5 concludes the paper and
mentions opportunities for further research in this field.

2 Grounded Language Learning

Robots are increasingly being used in environments where theymust be controlled
by untrained nonexpert users. Using one’s voice to give commands or commu-
nicate intent is a very natural approach in everyday life. Therefore, speech is a
very popular modality for giving instructions to robots and has been extensively
studied [Matuszek 2018].

Grounded language (also known as situated language) connects the natural
language to references in physical and social spaces [Tellex et al. 2020]. For ex-
ample, the word “mug” can be connected to a class of objects, the word “fridge” to
a storage location different for each home, or the word “put” with a series of motor
controls dependent on the specific object. The purpose of grounded language
learning is to create these word-reference connections.

Many datasets have been introduced because of the various scenarios to which
grounded language learning can be applied. An early example was the MARCO
dataset [MacMahon et al. 2006], which addresses the problem of navigation in-
structions. It consists of navigation instructions for a simulated robot (e.g., “With
the wall on your left, walk forward.”). The goal of the system is to understand and
follow these instructions with a simulated robot. Other examples of datasets that
can be used as starting points for language learning are object detection datasets.
They provide natural language class labels for the images. Imagenet has many
class labels (e.g., snail, broccoli, teapot) [Deng et al. 2009]. It uses the WordNet
[Fellbaum 1998] hierarchy of sets of synonyms that describe meaningful concepts
by adding images to each set. Other datasets extend image labels to describe en-
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tire images, such as “a kid sitting on the side walk eating a slice of pizza.” in the
COCO dataset [Lin et al. 2014].

Robots have a various sensors that enable them to use different modalities
for grounded language learning such as detected objects, human movements,
and recognized actions. Multimodal datasets are used to cover more modalities
of real-life scenarios than the above-mentioned. Gaspers et al. [2014] present
a dataset where human participants show object manipulation actions to a robot
and explain what they are doing. It includes video, audio and human posture data.

We introduced the action verb corpus dataset geared toward object manipu-
lations [Gross et al. 2018], consisting of 390 simple actions (i.e., take, put, and
push) of 12 humans following pictured instructions of tasks and describing what
they are doing. It includes audio, video and motion data of hand joints and ob-
jects. The dataset is annotated with utterance transcriptions, part-of-speech tags,
which object is currently moved, and whether a hand touches an object, or an
object touches the ground/table. This type of cross-modal and cross-situational
data can be used to create systems that learn from humans demonstrating ac-
tions while explaining what they are doing. A robot could infer the object name of
a manipulated object and the name of the action. The action could be defined by
its outcome or by its trajectory. The data can also be used by the robot to replicate
the presented action.

Cooccurrence statistics of words and references are often used in computa-
tional models that learn from this type of cross-situational data [Krenn et al. 2020].
Taniguchi et al. [2017] provided an overview of different approaches. However,
these methods often require large datasets or batches of examples for learning,
which is often disadvantageous when deploying a robot in a new environment to
learn about new concepts from a human teacher. Additionally, noisy real-world
data collected by a robot usually differ from those provided on datasets. Consider
a situation where to teach a new concept to a robot, the user must first gather
a dataset, which is of course cumbersome and not feasible for a robot at home.
However, an incremental learning system uses each new sample to update the
probability of a word-reference pair.

We introduced a word-learning system for the Pepper1 robot, as a concrete
example, in Hirschmanner et al. [2018a]. The goal is to learn word-object and
word-action mappings in a human-robot interaction scenario. The setup and sys-
tem architecture are shown in Figure 1. The human teacher demonstrates actions
(i.e., take, put, push) to the robot and explains what they are doing. The system
infers the type of action from the movement of an object obtained from an object
detector processing visual data. The output of the speech recognition module

1 https://www.softbankrobotics.com/emea/en/pepper
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Figure 1 A user performs an object manipulation action (left). Overview of the
system architecture (right) used for the language learning system. Tracked ob-
jects are used to identify actions and then aligned with the utterances. Normalized
pointwisemutual information is used to estimate object/action-word cooccurrence.
From Hirschmanner et al. [2021].

is aligned with the action to create utterance-situation pairs. An example of an
episode with two utterance-situation pairs would be <I take the box - ACTION1
OBJECT1>, <and put it next to the can. - ACTION2 OBJECT1 OBJECT2>. We
use the normalized pointwise-mutual information (npmi), which is a measure of
the likelihood of an object/action-word cooccurrence. The npmi value is updated
after each detected situation-utterance pair. We propose two extensions to this
system to increase transparency for the human teacher, in Hirschmanner et al.
[2021]. These extensions will be addressed in more detail in Section 4.

The approaches described above usually treat the robot as a passive observer.
However, unlike a computer program, a robot is an embodied agent, which can
actively request new information by directing the attention of the human teachers
toward some unknown references through pointing, gaze, or verbal utterances.
This can also be motivated by findings in the developmental psychology of chil-
dren during language acquisition. They actively request the names of objects
using deictic gestures, such as pointing or gaze [Krenn et al. 2019]. A robot can
formulate full sentences to acquire knowledge of its surrounding. At public events,
we experimented with a Pepper robot that points at objects and formulates ques-
tions about the objects pointed at [Hirschmanner et al. 2018b]. The questions did
not only refer to the name of an object (i.e., “How do you call this object?”) but
also to its function (i.e., “What do you use it for?”) and the users’ preferences
(i.e., “How do you like it?” “What does it mean to you?”). We used a relatively
simple approach that uses part-of-speech tagging to identify nouns, verbs, and
adjectives in users’ responses. The number of occurrences of each word in these
categories is summed up for each object, providing the robot information about
the objects modeled using the cultural space model [Schürer et al. 2018]. In this
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preliminary study, we looked at how human teachers respond to questions from
robots.

This section provides a brief introduction to grounded language learning. We
want to motivate further development of incremental and active word learning sys-
tems for robots, similar to Bisk et al. [2020]. For a general introduction to robots
that use language, we refer to Tellex et al. [2020].

3 Learning Low-Level Actions

When deploying a service robot at home, it can already perform certain actions,
such as grasping objects and placing them somewhere. In our example of the
household robot, the user might give the voice command “Put the salad bowl
into the dishwasher.” Assume that it has already learned which object is meant
by “salad bowl” and which location by “dishwasher” through grounded language
learning. There could be a problem in which the robot puts the bowl into an unsat-
isfactory position or is unable to place the bowl at all. The user will probably know
a good strategy for positioning the bowl in the dishwasher. The user can teach the
robot the low-level action of placing this specific bowl into the dishwasher using
an LfD algorithm.

When creating an LfD system, the following numerous design decisions must
be addressed. Which input method is used by the teacher to demonstrate the
action? How is the demonstration represented (i.e., which state space is used)?
Which algorithm is used to learn the presented demonstration? We give a short
overview of the different possibilities to address these design decisions. At the end
of the section, we present some concrete projects where we implement learning
action policies from human demonstration. We direct the interested readers to
Billard et al. [2016] and Chernova and Thomaz [2014] for a general introduction
to the topic. A detailed view of the algorithms used in LfD can be found in Osa
et al. [2018]. Recent advances are summarized in Ravichandar et al. [2020].

A human teacher can provide demonstrations to a robot in several different
ways. Teleoperation is a popular method. The human teacher controls the robot
via some device, such as a keyboard, mouse, or joystick to make the robot di-
rectly perform the action that is to be learned, which is often cumbersome and
difficult to do for novice users [Whitney et al. 2020]. To overcome these limita-
tions, researchers investigated using methods, such as motion tracking to repli-
cate the human motion on the robot [Chernova and Thomaz 2014]. Kinesthetic
teaching is an alternative to teleoperation, in which a human manually guides the
end-effector of the robot to perform the task [Ravichandar et al. 2020]. For tele-
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operation or kinesthetic teaching, the sensor data of the robot (e.g., joint angles,
end-effector positions, and torques) can be recorded directly and used as input
for the machine learning algorithm. We compare kinesthetic teaching to teleop-
eration on a Pepper robot concerning to the workload on the human teacher in
Hirschmanner et al. [2019], which is summarized in Section 4.

Alternatively, some approaches exist that learn directly from observing a hu-
man performing an action, making teaching much easier and more natural to the
human teacher. The drawback the machine learning problem becomes more dif-
ficult because the human movements must be encoded or mapped to the robot’s
movement [Ravichandar et al. 2020]. Other technical problems may occur if the
human performs the task in a way that the robot cannot properly perceive (e.g.,
fast movements, occlusions, or leaving the field of view).

The next design decision is how to store and process the demonstrations. In
this chapter, we will mainly discuss deriving a policy π : S → A that maps from a
state vector s ∈ S to a low-level action a ∈ A. Other approaches learn policies
that output complete trajectories instead of low-level actions. Instead of policies,
alternative learning outcomes in LfD can be plans or a reward function for re-
inforcement learning (i.e., Inverse Reinforcement Learning) [Ravichandar et al.
2020]. The choice of state space S and action space A depends on the con-
crete problem statement. A very simple state space S may represent the current
time, resulting in an open-loop control, where no feedback on the robot or its en-
vironment is provided to the policy. Additionally, the robot’s sensor data, such
as end-effector positions, joint angles, joint velocities, and torques can be used.
Sensor data from the environment of the robot can also be included, which can
be high-level, such as the pose of an object received by an object pose estimator
or low-level, such as a light detection and ranging sensor (LIDAR) or raw camera
images.

Similarly, the action spaceA can be defined in different ways. Low-level policies
could output torques applied to each robot joint. Motion controllers can be used
to output actions as end-effector poses or velocities in Cartesian or joint space.
Actions can also be defined as trajectories or even sub-tasks as a high-level repre-
sentation. The choice of granularity of the state and action space depends on the
concrete problem, as previously stated. Naturally, the state depends on the avail-
able sensors and the teaching approach. For example, when using kinesthetic
teaching, using raw camera images as the input might be problematic because
the human teacher moving the robot is only present during the demonstration
phase. Thus, the image would necessarily be different when the robot executes
the action without a teacher. Additionally, a balance should be found between
providing enough information to accurately represent the demonstration and not
introducing too many dimensions to make the machine learning problem too dif-
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ficult (“curse of dimensionality” [Bellman 1957]). Similarly, for the action space,
a simple representation that can still perform the required task is preferable. For
example, for a task involving pushing an object on a table, the two-dimensional
(2D) position of the end-effector at a fixed distance to the table might be sufficient.
If a device is used to teleoperate the robot, the obvious choice for the action space
would be the same domain that is used by the demonstrator, such as the steering
angle and acceleration for a remote-controlled car.

A recorded trajectory τ consists of a state vector s and an action vector a per
timestep. The complete demonstration D can then be defined as

τ = [s0,a0, s1,a1, . . . sT−1,aT−1, sT ,aT ], D = {τi}Ni=1 .

Training a policy π(s) = a from these demonstrations can be seen as a super-
vised learning problem. Over the years, many different supervised learning ap-
proaches have been applied to LfD. Popular approaches include support vector
machines (SVM) [Chernova and Veloso 2009], Gaussian mixture models (GMMs)
[Khansari-Zadeh and Billard 2011], and Gaussian processes [Choi et al. 2016].
In recent years, artificial neural networks (ANNs) have gained popularity (e.g.,
Rahmatizadeh et al. [2018]; Zhang et al. [2018]; Young et al. [2021]). There have
also been many approaches that address specific problems occurring in LfD. For
example, the DAGGER algorithm reduces the number of demonstrations required
and, therefore, the load on the human teacher by generating additional demon-
strations [Ross et al. 2011].

Hand Tracking

Demonstrations Learned Policy

Figure 2 A user teleoperating a Kuka robotic arm using hand tracking to perform
a task. The demonstrations are used to learn a policy represented as a neural
network. From Hirschmanner et al. [2020].

We present an LfD approach in Hirschmanner et al. [2020], as a concrete ex-
ample of how to address the different design decisions. We trained a policy on the
Kuka LWR IV+ [Bischoff et al. 2010] robot to push a box to a certain position on the
186
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Figure 3 Overview of the system. The dashed lines represent the procedure for
collecting demonstrations for training. The continuous lines represent the infor-
mation flow during policy execution. From Hirschmanner et al. [2020].

table. The demonstrations were recorded using a teleoperation setup based on
hand tracking from an RGB webcam. The setup is shown in Figure 2. The state of
the robot and its environment are represented as an RGB-D image and the end-
effector position of the robot in Cartesian space at the five previous timesteps. For
the actions, we use the relative end-effector position∆p ∈ R3 in Cartesian space.
These representations were chosen to capture the entire scene without requiring
a separate method to obtain the object pose. The policy is represented as a con-
volutional neural network (CNN) based on the architecture of Zhang et al. [2018].
It includes two auxiliary tasks during the policy training to predict the current and
final end-effector position from the input images. The architecture is shown in
Figure 3. We recorded 98 demonstrations at a 10Hz sampling rate. For the eval-
uation, we placed the box in different positions on the table, which were unseen
during the demonstrations. The robot started to push the box in 86.1% of the trials
and reached the goal in 58.3%.

These results indicate some problems with pure supervised learning methods.
Demonstrations will not cover each possible configuration in the problem space.
During the policy execution, the agent encounters situations unseen during the
demonstrations. The situation when the source domain distribution differs from
the target domain distribution is referred to as a “covariate shift” [Osa et al. 2018].
Several data-efficient trajectory-learning methods addressed this generalization
problem recently. Task-parametrized models of movement [Calinon 2016] use
GMMs and represent demonstrations in different frames of reference to improve
generalization. Probabilistic movement primitives [Paraschos et al. 2018] repre-
sent movement policies in the form of a distribution of trajectories that can be
conditioned on desired via-points to adapt to new situations. Kernelized move-
ment primitives [Huang et al. 2019] extend this idea to a nonparametric approach
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Figure 4 Teleoperation system used to collect the dexterous manipulation tasks.
The Leap Motion hand tracker is used to control a simulated robotic or human
hand in simulation. The two tasks are shown in the left column of the image on
the right. From Zahlner et al. [2020].

geared toward high-dimensional inputs and extrapolation of demonstrated trajec-
tories. One limitation of these trajectory-learning approaches is that the task pa-
rameters, such as object poses or obstacles, must be provided to the system
when executing the policy, for example, by computer vision algorithms [Pervez
et al. 2017]. Additionally, they require a motion planner that converts the trajec-
tory to low-level actions.

One problem with supervised learning is that a learned policy will not outper-
form the teacher. Researchers have worked on using expert demonstrations in
reinforcement learning, as an alternative. In this alternative learning paradigm,
the agent can discover new policies through exploration. A reward function is
required, which returns a value depending on how beneficial a certain step is to
achieve the goal of the task. The machine learning algorithm attempts to maxi-
mize the sum of rewards over all timesteps. In the previous box pushing example,
this reward function could be the negative distance of the box from the goal. Re-
inforcement learning is usually very time-intensive because actions that solve a
certain task must be discovered through exploration. When expert demonstra-
tions that solve the task are available, this process can be speed-up (e.g., Nair
et al. [2020]).

Similarly, we used demonstrations to accelerate the learning process for two
dexterous manipulation tasks in Zahlner et al. [2020]. The setup consists of the
Shadow Dexterous Hand2 in the PyBullet3 simulator. The tasks involved reaching
a target position for each fingertip and manipulation of a block to rotate it to a cer-
tain orientation. Demonstrations are provided using a teleoperation system that
tracks the human hand using a Leap Motion Controller4 to replicate the current

2 https://www.shadowrobot.com/dexterous-hand-series/
3 https://pybullet.org
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hand poses on the simulated hand. The teleoperation system and the different
tasks are shown in Figure 4. The state space consists of the absolute angle and
velocity of all 20 joints and additional task-specific data. For the reaching task,
the current and target Cartesian positions of the fingertips are added to the state.
For the object manipulation task, the cube’s current and target Cartesian poses,
as well as its linear and angular velocities, are provided. The action space of
both tasks consists of the 20-dimensional noncoupled hand joints. Both tasks
were designed to be similar to the ones presented by Plappert et al. [2018]. We
trained the policy with deep deterministic policy gradient (DDPG) [Lillicrap et al.
2016] and hindsight experience replay (HER) [Andrychowicz et al. 2017]. The
policy was represented as a neural network. We used demonstrations for pre-
training the policy using supervised learning. We saw a speed-up compared to
reinforcement learning without pre-training from 2.2 · 106 to 1.2 · 106 timesteps for
the reaching task. No comparable speed-up was observed for the cube manip-
ulation task. We hypothesize that this is because the goal in the manipulation
task is often reached randomly during exploration and thus does not profit from
demonstrations. Additionally, the quality of the demonstrations was low because
of the difficulty in manipulating a cube in the simulation without haptic feedback.

Learning the reward function from expert demonstrations is another approach
to combining demonstrations and reinforcement learning. This domain is known
as inverse reinforcement learning (IRL). Themain idea is that the teacher performs
demonstrations that optimize an unknown reward function. IRL approaches try to
find this reward function. This problem is ill-posed since the expert’s behavior
could be explained using multiple functions. The retrieved reward function is then
used to train a motion policy using standard reinforcement learning algorithms in
a subsequent step. Because of to the limited scope of this chapter, we refer to
Osa et al. [2018] and Arora and Doshi [2021] for an extensive overview of IRL.

4 Human Factors

In the previous sections, we have addressed how a robot can use the information
provided by a human teacher to acquire new skills and knowledge. We did not
discuss the influence of the learning process on the user and vice-versa. The
human teacher is a part of the learning loop and significantly affects the final per-
formance of the robot. A learning system must consider the humans in the loop
and accommodate their needs. However, few studies have been conducted to
evaluate the role of the teacher and how the teaching behavior influences a learn-

4 https://www.leapmotion.com
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ing system [Sena and Howard 2020]. See Vollmer and Schillingmann [2018] for
a recent review.

When designing a system that learns from humans, several factors must be
considered. The teaching process must be designed in a way to keep the work-
load of the user minimal. Low mental and physical workloads lead to higher qual-
ity and quantity of training data by keeping the human teacher motivated and en-
gaged [Cui et al. 2021]. The quality of the training data directly affects the learning
outcome.

In the context of learning low-level actions, we compared theworkload of human
demonstrators using a virtual-reality teleoperation setup and kinesthetic guidance
in Hirschmanner et al. [2019]. The human teacher wears a virtual reality headset
with an attached Leap Motion Controller to teleoperate the Pepper robot shown in
Figure 5. The camera stream is displayed in the headset. The current head orien-
tation of the user is imitated by the robot. The hand pose is tracked using the Leap
Motion Controller, which is also transferred to the robot. Thus, the robot imitates
the upper-body movements of the user. The robot’s physical dimensions and con-
straints are different from those of humans. However, humans can still complete
the task successfully because they receive immediate feedback and can adapt
to the situation. We compared this setup to kinesthetic guidance, in which users
moved the arms of the robot manually. In a user experiment (n=21), participants
performed an object grasping task and a pouring task that required controlling both
of the robot’s arms. Most of the users preferred the teleoperation system for both
tasks stating because it was easier to learn. The workload was measured using
the NASA-TLX questionnaire [Hart and Staveland 1988]. Compared to kinesthetic
guidance, the workload of the users was lower when using teleoperation for the
pouring task. We also observed a reduction in task duration for the pouring task
when using the teleoperation setup, as an objective measure. Contrary to these
results, previous research demonstrated that users preferred kinesthetic guidance
to teleoperation [Fischer et al. 2016; Praveena et al. 2019]. This is not contradic-
tory; rather, it emphasizes the importance of tailoring the teaching method to the
concrete scenario.

Another important factor that contributes to the workload of the teacher is the
number of demonstrations required to train an algorithm. Approaches based on
deep learning often require many demonstrations to reach satisfactory perfor-
mance. Mandlekar et al. [2021] report that 40 demonstrations from a proficient
teacher were sufficient to train simple actions, such as lifting an object. For a
more complex task, such as transporting a hammer from the workspace of one
robot arm to the workspace of another robot arm with a handover operation, the
success rate dropped from 72% when using 200 demonstrations to 30.7% when
using 40 demonstrations. To overcome the sample inefficiency of deep learn-
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Oculus Rift Virtual Reality Headset
Leap Motion Hand Tracking Sensor
RGB Camera

(a) Teleoperation Setup (b) Grasping Task (c) Pouring Task

Figure 5 The human demonstrator uses the virtual reality teleoperation setup
to control the Pepper robot to perform two different tasks. The human head and
hand poses are then transferred to the robot. From Hirschmanner et al. [2019].

ing approaches, one can start with a pretrained policy and only ask for human
demonstrations if the robot fails (e.g., DelPreto et al. [2020]) or a policy trained for
a different task and apply meta-learning with a low number of demonstrations to
transfer it to a new task (e.g., Finn et al. [2017]). Algorithms that learn trajectories
instead of low-level actions using GMMs or movement primitives (e.g., Calinon
[2016]; Paraschos et al. [2018]; Huang et al. [2019]) are designed to require few
demonstrations (<10) but require task-parameters, such as object poses.

Additionally, the teacher’s mental model of the learning system should align
with the actual model to facilitate good teaching behavior of the user [Cakmak
and Thomaz 2014]. A robot needs to be able to communicate the current state
of the learning system and how the teacher can improve teaching examples to
the teacher. These topics are also investigated in the context of transparency in
human-robot interaction and explainable artificial intelligence (AI) to increase trust
in robots [Papagni and Koeszegi 2021].

Robots, as embodied agents, can expose the current state of the user through
various means, such as visualization, movements, text, speech, lights, and im-
agery [Wallkötter et al. 2021]. A combination of these different modalities is of-
ten used. In Hirschmanner et al. [2021] we investigated the efficacy of different
modalities. We integrated transparency mechanisms using visualization and de-
ictic gestures in our word-learning system described in Section 2. As a visualiza-
tion, the Pepper robot displays its current lexicon and the output of the speech
recognition system on its screen. The robot uses deictic gestures, such as look-
ing and pointing at objects to either request additional information or to announce
the learned word of the object. This behavior is motivated by early-childhood lan-
guage learning in humans [Krenn et al. 2019]. We did not observe any significant
performance difference between the base, visualization, and deictic gestures con-
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ditions in a user experiment (n=32). However, the users’ knowledge of the sys-
tem’s state positively correlates with the self-reported perception of control and
perceived learning success. Users exhibited more interactive behavior when the
robot used deictic gestures which might help keep the user engaged, but it also
increases noise in the training data. These results encourage further investigation
of the transparency mechanism in LfD systems.

Additionally, a learning system should consider factors that influence the user’s
self-efficacy and perceived control when teaching the system. Self-efficacy is the
confidence of a user in being able to perform actions to accomplish a certain task
[Bandura 1982]. In the context of a teaching system, self-efficacy is the confi-
dence in being able to teach a new task or concept to a robot. High self-efficacy
is important to increase the user’s willingness to engage with a robot and to keep
them motivated to interact with a learning system in a long-term deployment [Püt-
ten and Bock 2018; Robinson et al. 2020].

The way the robot interacts with the user can influence these factors. We con-
ducted a user experiment (n=29) in Zafari et al. [2019] to study the effect of the
interaction style. The task of the user was to build a house of cards. The Pepper
robot observed the user and interacted with them using natural language output,
such as “Very nice, keep up the good work.” The speech output was controlled by
a researcher following a script. In the person-oriented condition, the robot used
motivational sentences to support the user. In the task-oriented condition, the
interaction was focused on the task progress and pushed the participant to im-
prove their performance. In the neutral control condition, the robot was only a
game instructor and commented on the task progress. We did not tell the partic-
ipants that they were demonstrating how to build a house of cards to the robot,
but the scenario could be used for an LfD system. We found that users in the
person-oriented condition reported higher self-efficacy and that they experienced
the interaction as less frustrating than in the task-oriented condition. Additionally,
participants performed the task significantly longer and thus stayed engaged for a
longer time in the person-oriented conditions than in the neutral condition. These
results indicate that the interaction style of a robot can also be used to positively
influence the human demonstrator and as a consequence, they might be willing
to provide more training data in learning from a human setting.

Another important factor to investigate is how trust is influenced in learning from
humans setting. A low trust may cause the human teacher to abandon the sys-
tem. Over-trusting the system may lead to the user ending the teaching process
before the system has learned a task reliably and failing to monitor the trained
agent, which may result in unwanted behavior or even accidents [Lewis et al.
2018]. DelPreto et al. [2020] found that low accuracy in an LfD task reduces
trust and increases the users’ workload. They also found tendencies that users
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overestimate the robot’s skills. Hedlund et al. [2021] found that when robots fail
to perform the learned tasks, participants’ trust in the robot and themselves as
teachers decreases.

5 Conclusion and Open Challenges

In this chapter, we presented our work and set it into the context of the field of
robotic learning from humans. First, wemotivated the need for grounded language
learning of social robots, i.e., connecting words with references such as objects.
Learning these connections is required for a robot to follow voice commands. We
presented two word-learning systems using the Pepper robot. Following that, we
addressed the field of learning low-level actions from demonstrations. We covered
the main design choices that must be made when developing a learning system.
We presented two systems with different robotic setups to demonstrate different
design decisions. Furthermore, we discussed the role of the human teacher in the
learning system. We emphasized the importance of considering factors, such as
workload, self-efficacy, and trust during the teaching process to obtain good train-
ing examples and keep the user motivated. We presented three user studies for
different robotic setups that investigated workload, transparency, and self-efficacy.

The field of learning from human users is emerging, as more robots move into
living spaces. There are still many open problems to be tackled. Robots need
to be able to acquire information from spoken language to make interactions with
humans more natural. Grounded language learning methods that can incremen-
tally process the high-dimensional multimodal data that robots will encounter in
everyday situations must be developed [Bisk et al. 2020]. Additionally to spoken
language, they need to be able to understand nonverbal communication to better
interact with humans.

Learning action policies from demonstrations has accelerated in recent years
[Ravichandar et al. 2020]. Many algorithms have been developed to address the
special conditions and constraints associated with learning from human teachers.
However, it is often difficult to compare the approaches because of the limited
number of available benchmarks using real demonstrations provided by humans
that have advanced other fields such as computer vision or reinforcement learning.
Two of the few examples are Mandlekar et al. [2021] and [Sharma et al. 2018].
New standardized benchmarking methods on real robotic systems will be required
to advance the field of learning motion policies from human demonstrations.

Demonstrations are usually task-specific and do not cover the entire problem
space. A promising direction for further research is to develop algorithms that
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generalize better across tasks, domains, and robots. A combination of demon-
strations with reinforcement learning could be useful in this regard and should be
examined further. Demonstrations can be used to shorten the long training times
of reinforcement learning algorithms. Additionally, these systems often require
tedious hyperparameter tuning, which is not feasible for novice users. Further re-
search is required to develop methods that require few hyperparameters and are
easy to tune automatically.

The role of the teacher and teaching behavior have been under-represented
in the robotic learning from humans pipeline [Vollmer and Schillingmann 2018].
High-quality training data from the human teacher facilitates the learning process.
To ensure this, the teacher must be considered as a part of the learning loop
when designing a system. Further research should aim to create non-intrusive
and intuitive teaching systems to minimize the workload of the user and keep
them motivated and engaged.

If we want to deploy robots that learn from humans in users’ homes, the effect
of the learning system on the users must be studied further. Users will only accept
these systems, if they see an added value in them and if they enjoy using them
[de Graaf et al. 2017]. We believe that self-efficacy is an important concept in
that regard. We must investigate which factors influence the trust of the user in
the system to find a balance between not overtrusting the system and trusting it
enough to use it continuously.
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