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Abstract

Humans use the relations between objects in a scene to determine how they may interact with, grasp and manip-
ulate them. For robots, such an object-based scene understanding not only allows interaction with objects but also 
allows humans to interpret the robot’s perception and actions. To gain a higher-level understanding of an observed 
scene, knowledge of the objects’ poses is crucial. The poses, when combined with 3D models of the objects, allow 
for easy derivation of the interactions between objects, enabling reasoning about occlusion, collisions, support and, 
finally, manipulation by the robot. However, most related work does not consider scene-level object interactions 
but rather focuses on finding the pose of a single object in a given frame. Object interactions are considered only 
to augment training data or in post hoc verification steps. In contrast, we show that such scene-level information 
should be exploited during the estimation of the object poses themselves. Our main assumption is that all object 
hypotheses need to be plausible in terms of their visual observation and the physical scene in which they exist. In 
this chapter, we present our work on investigating the exploitation of this visual and physical plausibility for robust, 
accurate estimation and understandable explanation of object poses.
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1 Introduction

The ability of a robot to explain its actions – or reasons why it might have failed 
– is an important building block for establishing and maintaining human trust 
[Lomas et al. 2012; de Graaf and Malle 2017; de Graaf et al. 2018]. For example, 
interactive explanations are an effective way to gain a deeper understanding of 
the reasoning provided [Dunne et al. 2005; Walton 2007; Arioua et al. 2017; Mad-
umal et al. 2019]. But to provide such interactive explanations, the robot must 
attain a thorough understanding of the scene it inhabits. This may include the 
scene’s objects, their location and their relationship to one another, for example 
expressed as their class, pose and spatial relations, respectively [Naseer et al. 
2018]. Moreover, such an understanding enables the robot to perform tasks, such 
as grasping and manipulating objects, in the first place [Srinivasa et al. 2010; 
Chitta et al. 2012; Tremblay et al. 2018].

We hypothesize that, for the robot to provide an effective explanation of its 
understanding of a scene and its interactions with it, it must resolve to human-un-
derstandable reasoning approaches, such as how well the robot’s understanding 
visually aligns with its camera images or how physically plausible an object’s 
pose would be in a simulation of its estimated scene. We conjecture that both the 
visual and physical plausibility of the robot’s scene understanding must be jointly 
considered and we examine their application to the object pose estimation task. 
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Figure 1 Applications of an object-based scene understanding. Left: Rendering
the objects’ models under their estimated poses allows to overlay and compare
the robot’s perception to the observed scene. Mid: Similarly, a novel view of the
observed scene may be rendered. Right: Using the estimated poses, also the
relations between the objects in the scene may be derived.

The poses, when combined with 3D models, allow the robot to manipulate the
scene and explain it in terms of objects and their relations as illustrated in Figure
1.

This chapter provides an overview of our work exploring these hypotheses. In
Section 2, we define visual plausibility through rendering and physical plausibility
through simulation or evaluation of the static equilibrium. We present two different
approaches for exploiting plausibility in object pose estimation. The methods we
propose in Section 3 only require the 3D models of the objects and augment exist-
ing pose refiners. In Section 4, we propose novel object pose refinement methods
based on reinforcement learning. These methods may jointly consider both as-
pects of plausibility that are discussed in this chapter. In Section 5, we present
reasoning strategies that exploit this information for explanations in human-robot
interaction. Finally, in Section 6, we discuss our findings and draw conclusions
for future work.

2 Defining Visual andPhysical Plausibility of Object Poses

A scene understanding represented by (semantically annotated) 3D models and
their object poses allows to derive information about the scene that can be used for
explanation and improvement of the poses themselves. For example, spatial rela-
tions between objects may be derived or a rendering of the estimated scene may
be compared to the robot’s camera image, as shown in Figure 1. Furthermore,
the latter allows a robot to determine the plausibility of its scene understanding
and subsequently explain why its actions might have succeeded or failed.
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Figure 2 An object pose estimation pipeline. Left: A known object of interest
is detected in the observed image. Mid: Using the instance segmentation mask,
a cloud of all points predicted to belong to the object is generated from the cor-
responding depth image. Right: The task is to determine the 6D pose of the 3D
model of the object such that it aligns to the observed image or point cloud.

The task of object pose estimation is to find the transformation T that aligns a
3D model of the object with its observation, as illustrated in Figure 2. We need to
estimate this transformation by T̂ = [R̂ ∈ SO(3), t̂ ∈ R3], i.e., a rotation R̂ and a
translation t̂.

Figure 3 Challenges in object pose estimation. Left: Limited visibility, noise and
inaccurate segmentation result in inaccurate pose estimates. Mid: The physical
object relations in the estimated scenes violate the assumptions of plausible, static
scenes. Right: Considering all scene-level interactions of multiple object under
multiple (inaccurate) pose hypotheses quickly grows intractable.

The observation may be in the form of RGB or depth images. It is therefore
only a partial and noise afflicted view of the object due to limited visibility from a
single view and sensor limitations, as shown in Figure 3 (left). This problem is
exacerbated in cluttered scenes and affects all parts of the perception pipeline –
from detection, to segmentation and pose estimation. As a result, wemight end up
with multiple inaccurate pose hypotheses, as illustrated in Figure 3 (right). On the
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one hand, to prevent failure, we want to verify and select the best available object
pose before executing any robotic actions. On the other hand, we want to be able
to explain why the robot selects a certain pose or why it decides that the pose is
sufficiently accurate to base its interactions on it. In this section, we propose two
approaches to this, based on visual alignment and physical plausibility.

2.1 Rendering-based Visual Plausibility

Object pose estimation and evaluation thereof are commonly based on the align-
ment of a 3D object model [Hodaň et al. 2020]. The Average Distance of Model
Points (ADD) [Hinterstoisser et al. 2012] is the most used metric in related work. It
measures the mean distance between corresponding model points x ∈ X under
estimated pose T̂ and ground-truth pose T , or formally

ADD = avgx∈X ||T̂ x− Tx||2. (1)

In contrast, the Visual Surface Discrepancy (VSD) [Hodaň et al. 2016, 2018], con-
siders the discrepancy between the rendered depth images of the object under
estimated pose Îd(T̂ ) and ground-truth pose Îd(T ) by

V SD = avgp∈V (T̂ )∪V (T )

0, if p ∈ V (T̂ ) ∩ V (T ) and∆(p) < τ,

1, otherwise.
(2)

The visibility under a given pose V is computed with respect to the observed depth
image Id and ∆(p) is the absolute difference between the rendered images at a
pixel p.

Figure 4 Example of the visual-alignment score. The observed depth and sur-
face normals (left) are compared to the rendered objects under estimated pose
(right). The resulting score for different sets of pose hypotheses (columns) is
visualized below, where a more yellow color indicates better alignment with the
observation. Adapted from [Bauer et al. 2022].
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When estimating the pose of an object, the ground-truth pose is unknown and
thus these metrics cannot be used to measure the quality of the pose estimate.
Building on the idea of VSD, however, we suggest that the rendered view of a
scene should be compared to the observation (i.e., the robot’s camera view), as it
can be considered a noisy version of the rendered object under the ground-truth
pose T . If both align, we consider the estimate to be visually plausible. We define
the visual-alignment score ā in [Bauer et al. 2020c] that quantifies the average
alignment between the object in the observed and rendered depth and normal
images under the estimated pose T̂ . As illustrated in Figure 4, ā is computed over
all pixels with valid depth values, defined as V = Id > 0 ∪ Îd(T̂ ) > 0, by

ā =
1

2

(
avgp∈V ad(p) + avgp∈V an(p)

)
, (3)

with depth-based alignment ad and normal-based alignment an per pixel p defined
as

ad(p) =

1− |d−d̂|
τ , if |d− d̂| < τ

0, otherwise
(4)

an(p) =

1− 1−n·n̂
α , if 1− n · n̂ < α

0, otherwise,
(5)

where d ∈ Id is the depth value and n ∈ In is the corresponding normal at pixel p
in the observation. The corresponding values in the rendered image are denoted
by d̂ ∈ Îd(T̂ ) and n̂ ∈ În(T̂ ). The parameters τ and α limit the maximal admissible
discrepancy.

2.2 Contact- and Simulation-based Physical Plausibility

Visual alignment alone may result in ambiguity under partial observability. We
suggest that physical plausibility is able to resolve visually ambiguous cases. We
define the physical plausibility of a scene as the combination of feasibility (non-
intersecting, non-floating) and static stability of the objects therein, as illustrated
in Figure 5.

Contact-based Formulation: We define these conditions based on two sets
of critical points in [Bauer et al. 2020a], the intersecting points I and the contact
points C. These point sets depend on the signed distance δ between the object of
interest and the scene. δ is computed for uniformly random sampled points X̂ on
the surface of the model X under an estimated pose T̂ . We compute these point
sets with respect to a slack variable ε, accounting for inaccuracy due to the mesh
representation and random sampling.
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Figure 5 Definition of physical plausibility based on critical points for a single
object (left) and a scene (right). If feasible, the center of mass projected in gravity
direction must intersect the support polygon (convex hull of supported points) to
be considered stable. Reprinted from [Bauer et al. 2022].

Intersecting points lie inside the scene objects’ surface and contact points are
within a small distance from them. Formally, we define

I = {x̂ ∈ X̂ : δ(x̂) < −ε}, (6)

C = {x̂ ∈ X̂ : |δ(x̂)| < ε}. (7)

Based on these point sets we define an object to be

not floating, if |C| > 0, (8)

not intersecting, if |I| = 0 (9)

and feasible, if both conditions are satisfied.

Additionally, we consider the stability of the object, i.e., we determine whether
it would be in static equilibrium (SE) under the estimated pose T̂ . To be in SE
[Del Prete et al. 2016; Hauser et al. 2018], the object must satisfy the conditions
of

force balance
∑
i

fi + fext =
∑
i

fi +mg = 0, (10)

torque balance
∑
i

(cm − x̂i)× fi = 0 and (11)

admissible contact force fi ∈ K, (12)

wherem is the mass of the object, cm its center of mass, fi is the contact force at
contact point x̂i ∈ C and K is a friction cone.

The stability constraints may be approximated using the “support polygon prin-
ciple” [Or and Rimon 2010]. The support polygon is defined as the convex hull of
the projection of the contact points C onto the supporting plane. If the projection
of the center of mass falls within the support polygon, the object is considered to
be in SE [Or and Rimon 2010; McGhee and Frank 1968].
86



Visual and Physical Plausibility of Object Poses for Robotic Scene Understanding

In static cluttered scenes (where gravity is the only external force acting upon
objects), certain contact points of an object may not provide support in the gravity
direction. Thus, they may result in an overestimation of its static stability, as the
support polygon is enlarged by those contacts. Hence, as a compromise between
the simplicity of the support polygon principle and the accuracy of solving for con-
ditions (10)–(12), we consider the support polygon with respect to the supported
points defined [Bauer et al. 2022] as

S = {x̂ ∈ C :
ny(x̂) · g

||ny(x̂)|| ||g|| < 0}, (13)

where y(x̂) is the closest point to x̂ in the scene and ny(x̂) is its surface normal.
Therefore, only the subset of contacts is considered onto which a force may be
exerted in gravity direction g. See Section 4.2 for an application of this contact-
based definition.

Simulation-based Formulation: Instead of evaluating physical plausibility
based on contact points, we may also initialize the estimated scene in a physics
simulation and evaluate its dynamic progression over time. Intuitively, a plausible
configuration of a static scene should not be subject to any change due to gravity
in the simulation. Since the 3D models used in the simulation and their physi-
cal parameters are inherently approximates of the real objects, we will observe
at least slight displacement. Hence, rather than determining whether an object
moved within the simulation, we want to determine by how much it moved over a
(varying) period of time. To determine a stable pose, for example, we may want
to simulate until the object no longer moves. In the simulation, resolving intersec-
tions typically generates an impulse that displaces the involved objects, causing
the scene to “explode” in the worst case. To deal with estimated poses that result
in intersecting objects, we might only simulate for a few steps at a time before
setting the objects’ velocities back to 0 again. See Section 3 for an application of
this simulation-based definition.

3 Enforcing Plausibility through Rendering and Simula-
tion

To consider new objects, the methods presented in this section only require 3D
models through using rendering and physics simulation . The proposed ap-
proaches enforce plausibility, exploit it to limit the search space given multiple
pose hypotheses and improve initial poses. In Section 3.1, we present a simple
approach for exploiting simulation for pose estimation. In Section 3.2, we present
an integrated approach for improving refinement and augmenting it by verification.
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3.1 Stable Object Pose Estimation

A simple proof-of-concept pose estimator [Bauer et al. 2020b] demonstrates the
predictive power of considering plausibility for this task. It assumes only approxi-
mate object meshes and segmentation masks to be given; no additional training
is required for pose estimation. This allows us to consider novel instances more
easily than with end-to-end trained estimators. We derive a small set of physi-
cally plausible poses per object through physics simulation and clustering. Using
the visual-alignment score, we are able to determine the visually most plausible
candidate.

Figure 6 Stable object poses. Top to bottom: The real object, QSE [Goldberg
et al. 1999] and our approach for isolated objects (ours). Multiple representatives
of the same stable pose are transparently overlayed for QSE and ours. Reprinted
from [Bauer et al. 2020a].

To determine the stable poses of an object, it is initialized under a uniformly
random rotation in a physics simulator and dropped onto a plane. This assump-
tion is motivated by the observation that objects in static scenes typically rest on
horizontal planes, such as tables or shelves. Alternatively, more complex simu-
lation scenes may be used for this purpose. Once the simulated object no longer
moves, it has reached a stable pose. This process is repeated multiple times to
sample a large number of potential stable poses. However, the resulting poses
are highly redundant. First, multiple poses represent the same stable pose, albeit
under in-plane rotation. Second, the object resting on different neighboring faces
of the locally planar 3D model introduces a slight pose variance. To prune these
superfluous poses, we discard in-plane rotation and cluster potential stable poses
based on their angular distance. Each resulting stable pose represents the mean
rotation and z-translation per cluster, with the plane normal defining the z-axis.
Figure 6 shows a a comparison with the related probabilistic quasi-stable estima-
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tion (QSE) approach [Goldberg et al. 1999] and real-world observations. While
both our approach and QSE are able to reliably find all stable poses of an object
resting on a horizontal plane, ours leverages a more general simulation-based ap-
proach. This would allow us to consider geometrically more complex simulation
scenes or further physical properties of the object, beyond its shape and center
of mass as in QSE.

To determine the pose of this object in an observation, we generate a pool of
stable pose hypotheses by uniformly sampling in-plane rotations for each stable
pose. Note that these hypotheses are inherently physically plausible for planar
support. Given a segmented depth observation of the object, we may moreover
estimate its in-plane translation as an offset from the rendered hypothesis. Among
this pool of physically-plausible pose hypotheses, we need to find the visually most
plausible pose. This is achieved by computing the visual-alignment score (3) for
each hypothesis.

simulation
C̃1 C̃2 C̃3 C̃4

vi
su
al

Õ1 51.5 50.8 48.3 49.1
Õ2 51.6 50.7 48.4 49.0
Õ3 51.4 50.4 47.8 48.4
Õ4 48.9 48.6 45.2 44.5

Table 1 Influence of approximate object meshes on the visual-alignment score
and simulation-based hypotheses generation. Results indicate the AR metric on
Occluded LINEMOD.

Figure 7 Approximate duck models Õi with 704, 352, 70 and 34 faces and the
convex hull C̃ of the full-resolution mesh Õ. Reprinted from [Bauer et al. 2020b].

This simple approach achieves competitive pose accuracy on LINEMOD [Hin-
terstoisser et al. 2012] and Occluded LINEMOD [Brachmann et al. 2016], while
also offering a general method to consider novel objects for pose estimation as it
only depends on non-textured object meshes. To highlight the robustness of this
approach, Table 1 shows our results on the Occluded LINEMOD dataset [Brach-
mann et al. 2016] using approximations of the object meshes as shown in Figure 7.
We evaluate the impact of using the decimatedmeshes Õi on the visual-alignment
score (3) and the influence of using their convex hulls C̃i for the simulation-based
stable pose generation. The decimated meshes are generated in Blender using
the decimate-collapse operation. The reported Average Recall (AR) [Hodaň et al.
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2020] is computed using the full-resolution object mesh and thus is solely depen-
dent on the accuracy of the estimated pose. As shown per column in Table 1, our
hypothesis scoring approach is highly robust to the decimated meshes, producing
similarly accurate poses using the first three approximations. Shown per row, the
stable pose hypotheses generated using our approach become increasingly in-
accurate when the approximated resting shapes deviate farther from the original
shape, i.e., with approximations C̃3 and C̃4.

3.2 Integrated Object Pose Refinement and Verification

An important step in object pose estimation pipelines is pose refinement. In pipe-
lines yielding multiple pose hypotheses, the best hypothesis must be selected
through pose scoring. Moreover, we want to verify the plausibility of the estimated
object pose when using it for robotic manipulation, leveraging the pose scoring.
With VeREFINE [Bauer et al. 2020c], we integrate iterative refinement, physics
simulation and visual-alignment scoring in a joint optimization. We evaluate this
approach on pose estimation datasets and in real-world grasping experiments.

(a) Initial pose estimates in the sim-
ulation environment (top) are im-
proved using VeREFINE (mid, bot-
tom), enabling successful robotic
grasping.

(b) PIR: Integration of physics simu-
lation (SIM) and iterative refinement
(REF). SIR: Supervision using veri-
fication score ā. RIR: Regret mini-
mization.

Figure 8 Grasping YCB objects with a Toyota HSR (a) and the iterative ap-
proaches proposed in VeREFINE (b), given an initial object pose estimate (T̂cur).
Adapted from [Bauer et al. 2020c].

During refinement, we would like both discussed aspects of plausibility to in-
form one another. We achieve this by interleaving physics simulation steps with
iterative refinement steps, as illustrated in Figure 8b (Physics-guided Iterative Re-
finement, PIR). Thereby, simulation guides refinement towards physically more
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plausible poses, while alignment-based refinement improves visual plausibility.
Both steps work complementary, improving each other’s initialization.

However, either step might diverge, for example, due to bad initialization. The
simulated object might topple over andmove away from its true pose. Local refine-
ment may determine incorrect correspondences and move toward a false pose.
To contain these issues, we embed the visual-alignment score (3) in the refine-
ment loop, as shown in Figure 8b (Supervised Iterative Refinement, SIR). Note
that this also facilitates pose verification.

Generally, we might have to refine more than one object pose hypothesis. For
example, with the pose estimator proposed in Section 3.1, multiple in-plane hy-
potheses need to be considered per stable pose hypothesis. With a growing
number of hypotheses, simply refining and scoring all of them becomes com-
putationally expensive. Rather, we want to spend a fixed budget of refinement
iterations. We propose to consider the efficient allocation of the refinement bud-
get as a multi-armed bandit problem. To minimize the regret of choosing to refine
a sub-optimal hypothesis with respect to its visual-alignment score, we employ the
Upper Confidence Bound policy (UCB) [Auer et al. 2002], as shown in Figure 8b
(Regret-minimizing Iterative Refinement, RIR). The policy balances exploitation
of high-scoring hypotheses with exploration of alternative, potentially better hy-
potheses.

We extend our approach to multiple objects per scene, considering the scene-
level interactions of objects. We cluster scene objects based on their support
relationships, with each cluster starting from a base object in contact with the
supporting plane. The clusters are then ordered from front to back, i.e., starting
from the least occluded base object. To yield physically plausible configurations,
we iteratively add objects from the ordered clusters to the simulated scene during
refinement. Each object’s pose hypotheses are refined as before, albeit consider-
ing the visual plausibility of the whole scene. The highest scoring hypothesis per
object is added to the simulation scene used for the subsequent objects, allowing
the consideration of occlusions and support relationships between them.

Table 2 shows the results of the different single- and multi-hypotheses ap-
proaches we propose in VeREFINE [Bauer et al. 2020c] on the YCB-Video dataset
[Xiang et al. 2018]. The dataset contains scenes of 3-6 YCB objects [Calli et al.
2015], that are occluded and stacked upon each other in clutter. Initial pose hy-
potheses are generated using DenseFusion (DF) [Wang et al. 2019] and its asso-
ciated refinement network (DF-R) is used as implementation of REF (see Figure
8b). Figure 9 depicts an ablation study to show the influence of the initial rotation
and translation error as wel as the impact of partial depth data. For these
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AR #ref/obj
DF-R 73.9 2
PIR 74.7 2
SIR 76.5 2
VFb 77.6 10
VFd 77.8 10

(a) Comparison on
YCB-VIDEO.

mustard spam foam jello banana success found #ref/obj
DF-R 10 3 1 7 0 42% 46% 2
SIR 9 7 2 7 0 50% 70% 2
DF-R 10 6 5 9 1 62% 70% 10
MCTS 9 10 2 6 0 54% 78% 10
RIR 10 10 9 10 4 86% 90% 10

(b) Results of grasping experiments in percentage of
found collision-free grasp poses and successful grasp at-
tempts.

Table 2 Evaluation of the methods in VeREFINE [Bauer et al. 2020c] (bold).
Initial poses from DenseFusion [Wang et al. 2019], sampled to 1/5 hypotheses
per object and refined with a budget of two refinement iterations per hypothesis
and object for a total of 2/10 iterations.

experiments, the initial poses are generated by adding a uniformly random error
of varying magnitude on top of the ground-truth poses.
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(a) Using single hypotheses (top) and five hy-
potheses (bottom). EVEN and EXPL use our ver-
ification score to determine the best estimate and
PIR for refinement. PhysBefore and PhysAfter
apply simulation before and after refinement.
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depth values using a sin-
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error magnitude of 5mm
and 5deg.

Figure 9 Ablations on LM. Average Recall (AR) [Hodaň et al. 2020] values are
reported at 5mm/deg steps (a) and every 10% (b), respectively, and are linearly
interpolated in between. Adapted from [Bauer et al. 2020c].

The integration of physics simulation in the iterative refinement loop (PIR) im-
proves the achieved accuracy by providing better initialization in each step. In Fig-
ure 9a (top left) we see how alternative ways of combining simulation with refine-
ment may even reduce the performance. The use of the visual-alignment score
(SIR) significantly improves accuracy, as indicated in Table 2a. It also improves
92



Visual and Physical Plausibility of Object Poses for Robotic Scene Understanding

the robustness to partial depth data, as shown in Figure 9b. Our motivation for us-
ing a multi-armed bandit formulation for considering multiple hypotheses (RIR) is
to balance exploration of the different hypotheses with exploitation of known high-
scoring hypotheses. In the extreme case, the former would spend the budget
of refinement iterations evenly among hypotheses (EVEN), while the latter would
use it to refine a single hypothesis (EXPL). Figure 9a (bottom row) shows the
benefit of using multiple hypotheses and our regret-minimizing approach. These
findings also transfer to real-world grasping experiments with a Toyota HSR and
using the GRASPA layouts [Bottarel et al. 2020] for reproducibility, illustrated in
Figure 8a. As indicated by the results in Table 2b, both our single hypothesis
(SIR) and multi-hypothesis approaches (RIR) significantly improve grasp success
compared to the baseline refiner (DF-R) and a competing approach that uses a
combination of physics simulation and refinement in a Monte Carlo tree search
(MCTS) scheme [Mitash et al. 2018].

4 Enforcing Plausibility in Learning-based Approaches

The methods presented in Section 3 consider the visual and physical aspects of
plausibility separately. For example, in Section 3.2, enforcing physical plausibil-
ity through simulation competes with enforcing visual plausibility through iterative
refinement, illustrated by the experiments in Figure 9a (top). Instead, the influ-
ence of both plausibility aspects should be dynamically adapted depending on
the scene configuration and refinement state. We want to leverage the contact-
based constraints (8)–(12) directly for refinement. This motivates the design of a
learning-based, plausible pose refinement approach.

4.1 Reinforced Point Cloud Registration

As the first step in this direction, we propose a novel approach to the related task
of point cloud registration [Bauer et al. 2021]. We pose the iterative registration
task as determining a policy that selects basic registration actions in each step, as
illustrated in Figure 10. Inspired by [Shao et al. 2020], we use discrete steps per
axis, separately for rotation and translation. These actions, for example, translate
the source by a small offset in x direction. Our registration agent (ReAgent) is
trained using imitation and reinforcement learning. Its formulation allows the in-
corporation of additional constraints – such as physical plausibility – by including
them in the agent’s reward.
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Figure 10 Iterative registration using ReAgent. The source point cloud (cyan) is
aligned to the target point cloud (gray), starting from an initial source (magenta).
ReAgent follows policy π by taking action ai = argmaxa π(a|Oi) given the current
observation Oi, improving registration step-by-step. Reprinted from [Bauer et al.
2021].
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Figure 11 Architecture overview for one iteration of ReAgent. Reprinted from
[Bauer et al. 2021].

The agent is implemented as a neural network, illustrated in Figure 11. The ob-
served point clouds are embedded into a state space to reduce their dimension-
ality. The embedding uses a siamese PointNet-like architecture [Qi et al. 2017],
generating a global feature that represents each point cloud. Two policy heads
then predict the discrete distribution representing the policies for the rotation and
translation action to be selected next. This process is also visualized in Figure 10
(bottom).

Since jointly learning the embedding and the registration policies from scratch
using reinforcement learning (RL) might not converge (quickly), we opt for a hy-
brid training approach that also includes imitation learning (IL). Through IL, the
agent should learn to replicate the behavior of an expert. We define an expert
registration policy with perfect information (ground-truth transformation T ) and,
in each iteration, selects the actions that take the largest step toward alignment.
Additionally, the agent is reinforced by a symmetry-aware point-cloud alignment
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reward. The resulting loss is a combination of a cross-entropy loss for IL and the
Proximal Policy Optimization (PPO) loss [Schulman et al. 2017] for RL.

PoseCNN DeepIM Multi-ICP ReAgent (IL) ReAgent (IL+RL)
AD < 0.10d (↑) 62.8 88.6 92.1 98.7 98.7
AD < 0.05d (↑) 26.9 69.2 68.6 90.6 91.1
AD < 0.02d (↑) 3.3 30.9 19.0 38.8 39.6

Table 3 Comparison of object pose refinement methods on LINEMOD (mean
over per-class results) using PoseCNN [Xiang et al. 2018] for initial object pose
and segmentation.

Figure 12 Qualitative examples on LINEMOD using ReAgent (IL+RL). In the
top row, 1024 points are sampled within the estimated segmentation mask. The
black box indicates the zoomed-in view. Outlines are shown for target (gray),
initial (magenta) and current source pose (cyan). The last column shows a failure
case. Reprinted from [Bauer et al. 2021].

In [Bauer et al. 2021], we show that our lightweight approach achieves faster in-
ference as well as improved accuracy and robustness to noise and initialization as
compared to related learning-based approaches on ModelNet40 [Wu et al. 2015]
and ScanObjectNN [Uy et al. 2019]. Experiments on LINEMOD [Hinterstoisser
et al. 2012], moreover, show high accuracy when applying ReAgent to the pose
refinement task. Table 3 shows the comparison of our method to DeepIM [Li et al.
2018] and a rendering-based multi-hypothesis approach (Multi-ICP) [Xiang et al.
2018], employing initial poses and segmentation mask estimated using PoseCNN
[Xiang et al. 2018]. When applied to the pose refinement task, our point cloud reg-
istration method achieves state-of-the-art performance on the LINEMOD dataset.
The results obtained with tighter AD thresholds indicate the benefit of the com-
bined IL and RL approach. Furthermore, Figure 12 illustrates the sampling of
the source point cloud and qualitative examples of the accuracy of our ReAgent
approach.
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4.2 Reinforced Object Pose Refinement and Verification

When we apply the method from Section 4.1 (ReAgent) to cluttered scenes such
as the ones observed in the YCB-Video dataset, we must cope with partial point
clouds that may contain outliers from neighboring objects due to occlusion and
inaccurate segmentation. Additionally, the initial pose estimates are affected by
these challenges and are, in general, less accurate than in the single object case
previously evaluated.

As we suggested in Section 2.2, additional consideration of physical plausibility
allows us to resolve the resulting visual ambiguities. To this end, for SporeAgent
[Bauer et al. 2022], we integrate our contact-based formulation from [Bauer et al.
2020a] with ReAgent. We modify it further to consider object symmetries, outlier
points and visual-alignment scores. As a result, a learning-based approach similar
to VeREFINE [Bauer et al. 2020c] (Section 3.2) is achieved that jointly considers
both aspects of plausibility.

Figure 13 Initial scene representation (left) and refined poses using SporeAgent
(mid and right). The critical points for one target object (gray) are shown – inter-
secting (red), contact (green) and supported (cyan). Adapted from [Bauer et al.
2022].

Physical plausibility is considered at two points in the refinement pipeline. First,
we define an additional reward term that reinforces the agent to reach SE, approx-
imated using the support polygon principle for the supported points S (as defined
in Section 2.2). Second, we discover that the surface distance δ(x̂) is a useful
input signal for the agent. It provides the underlying information required to de-
termine the SE and, in addition, orients the object within the scene by including
the distance to the supporting plane. As illustrated in Figure 13, these extensions
allow the agent to resolve implausible configurations.

Visual plausibility with respect to the point clouds is already considered by the
refinement itself. Additionally, to evaluate the iterative results, we leverage the
visual-alignment score (3). Thereby, we are able to determine the overall most
plausible (and accurate) object poses. This reduces the effect of the agent oscil-
lating between two similarly fitting poses for fine alignment, as we observed in our
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experiments, and allows to resort to the initial pose should the refinement diverge.
Figure 4 shows a qualitative example for scoring.

To further adapt the method to the task of object pose refinement in clutter, we
introduce an outlier-removal subnetwork. Based on a concatenation of local and
global features, this subnetwork is tasked with labeling geometrical outliers and is
trained under an artificial segmentation error. The latter is an input augmentation
that samples a coherent patch from the ground-truth segmentation mask, simulat-
ing occlusion and potentially including background pixels. The outlier predictions
prune these geometrical outliers before the computation of the global feature used
in the state vector (see Figure 11). Moreover, we adapt the expert policy to con-
sider symmetrical objects by following the shortest trajectory to any symmetrical
pose. To this end, we propose a canonical object frame in which the symmetry
axes coincide with the origin, allowing symmetrical poses to be reduced to rota-
tions. As a result, the symmetry-aware expert policy tends toward the symmetrical
pose with minimal rotation from the current pose estimate.

PoseCNN ICC-ICP P2Pl-ICP w/ VeREFINE Multi-ICP SporeAgent
ADD AUC (↑) 51.5 67.5 68.2 70.1 77.4 79.0
AD AUC (↑) 61.3 77.0 79.2 81.0 86.6 88.8
ADI AUC (↑) 75.2 85.6 87.8 88.8 92.6 93.6

Table 4 Comparison of depth-based refinement methods on YCB-VIDEO (mean
over per-class results) using PoseCNN [Xiang et al. 2018] for initial object pose
and segmentation.

Table 4 shows the improved accuracy of SporeAgent compared to related depth-
based refinement methods on YCB-Video [Xiang et al. 2018]. All compared meth-
ods use initial poses and segmentation masks estimated using PoseCNN [Xiang
et al. 2018]. We compare our method to Iterative Collision Check with ICP (ICC-
ICP) [Wada et al. 2020], vanilla Point-to-Plane ICP (P2Pl-ICP) [Chen and Medioni
1992; Zhou et al. 2018], P2Pl-ICP augmented by single-hypothesis VeREFINE
[Bauer et al. 2020c] and a rendering-based multi-hypothesis approach (Multi-ICP)
[Xiang et al. 2018]. While VeREFINE is able to significantly improve the results of
the simple ICP approach by combining physics simulation with visual-alignment
scoring, it is still inherently limited by the performance of the underlying refinement
approach. In contrast, SporeAgent is able to exploit both sources of information
to achieve state-of-the-art accuracy.

Figure 14a shows the training convergence of SporeAgent for five different ran-
dom seeds on LINEMOD. For all evaluated thresholds, there is minimal variation
in the recall beyond 50 epochs. Figure 14b shows an ablation study that highlights
the robustness of SporeAgent to the quality of the initialization. For example, in
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Figure 14 Ablations on LM. AD recalls with thresholds as fraction of the object
diameter d [Hinterstoisser et al. 2012]. Reprinted from [Bauer et al. 2022].

the case of a translation error, the accuracy starts to decline only at a magnitude
of around 2.0 units, which is limited by the number of iterations and the largest
translation-step size.

5 Explaining Plausibility Violations

The consideration of plausibility offers not only a technical advantage but also sup-
ports users’ understanding of the robot’s perception and actions, thereby fostering
trust. In [Papagni et al. 2021], we investigate how human interaction partners per-
ceive plausibility-based explanations of robotic failure. Our proposed online study
evaluates the impact of different explanation strategies on users’ understanding
of the robot and their trust in it after the interaction.

Participants in the study are instructed to assist a robot in locating and removing
objects from a table, as shown in Figure 15 (top left). They are informed that their
human-robot team may earn up to eight points in this task, one per object. This is
to give the participants “something at stake” in the interaction. They are given a
description of the next object to be be removed and are requested to provide the
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Figure 15 Rendered interaction from the view of the participants (top left) and
the robot (bottom left). Example textual explanations are shown together with
visualizations of uncertainty (top right), visual plausibility (mid right) and physical
plausibility (bottom right). Adapted from [Papagni et al. 2021].

robot with an initial location. While hovering the cursor over the correct object, a
circle indicates the corresponding location area. As a result, we aim to increase
the perceived involvement of the participants in this human-robot interaction. After
providing a location, they are shown rendered videos of the robot performing its
task. Initially, robot (and hence the team) succeeds twice.

The third grasp attempt of the robot fails and the participants are shown differ-
ent types of explanations, depending on the experimental condition to which they
are assigned, as shown in Figure 15 (right). In a 2-by-2 study design, we modify
the interactivity (single-shot or multiple levels) and the reasoning strategy (visual
alignment of the rendering or displacement in the physics simulation) of the pro-
vided explanation. Participants then report their understanding of the explanation
and answer short questionnaires regarding trust.

A technical pilot study has already highlighted the importance of the design of
the visual explanations. Based on the findings of a currently ongoing user study,
we will be able to further improve the visualizations and explanations provided by
our object pose estimation approaches for deployment in human-robot interaction
scenarios.
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6 Conclusion and Future Work

This chapter discussed our definition of visual and physical plausibility, its techni-
cal benefit in object pose estimation and robotic grasping as well as its application
in generating understandable explanations for human-robot interaction.

We showed that, by jointly considering these two aspects of plausibility, we are
able to achieve increased pose accuracy in situations when each aspect alone
would be ambiguous. We propose a set of object pose estimation and refinement
approaches that are solely based on the 3D model of the objects and may be
directly used to augment existing pipelines. Further exploiting the combined visual
and physical plausibility information, we present a learning-based pose refinement
method that considers the intersecting and supported points between interacting
objects. Finally, we give an outlook on ongoing work investigating the exploitation
of the plausibility information computed by our approaches to generate human-
understandable explanations of robotic failure.

Nevertheless, many of the objects that robots have to deal with are not yet
covered by the rigidity and static-scene assumptions of the proposed methods.
Dealing with articulated (or even deformable) objects, potentially being manipu-
lated by a human hand or robotic gripper and exposing high intra-class variance
in texture and shape, is beyond the scope of this work. To this end, the visual
plausibility considerations could be extended to include color information to deal
with texture, thereby increasing the robustness of the methods to partial depth
data. Considering, for example, hand-object contacts would allow the physical
plausibility definition to be extended to these dynamic cases. Moreover, a robotic
prototype that employs the presented methods to generate a scene explanation
and the corresponding explanations of its actions (and failures) would allow for fur-
ther evaluation of our approach in the ever-changing environments that the robots’
human interaction partners inhabit.
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