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explainable robots
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Abstract

For robots to be accepted within society, non-expert users must deem them not only useful (and usable) but also 
trustworthy. Designing robots that can explain their decisions and actions in terms that everyone can understand is 
crucial to their trustworthiness and successful integration into our society. This paper, written as a part of a doctoral 
dissertation, draws from interdisciplinary research on social sciences and explainable robots (and AI) to address the 
set of challenges associated with making robots explainable and trustworthy. Particular attention is paid to non-ex-
pert users’ perspectives within the context of everyday interactions. We claim that, as perfect explanations do not 
exist, their success in triggering understanding and fostering trust is determined by their plausibility. Furthermore, 
we maintain that plausible explanations are the result of contextual negotiations between the parties involved. As a 
result, this paper presents strategies formalized into a model for explanatory interactions to maximize users’ under-
standing and support trust development.
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1	 Introduction

Recently, the concept that AI and robots should be able to explain their inner 
workings, decisions, and actions has emerged in academic and societal discus-
sions. Furthermore, as AI and robots permeate society at different levels, affecting 
people’s everyday life, their decision-making processes should be understand-
able not only for machine learning and robotics experts but also for a broader 
audience of domain experts (i.e., practitioners from fields where AI technologies 
are applied) and non-expert end-users. Importantly, each of these categories of 
users has different demands in terms of explainability desiderata and goals, as 
their interests and knowledge of the technology may differ substantially. To this 
extent, it is crucial to understand and acknowledge the differences between dif-
ferent categories of users and, hence, what explainability entails in each context.

The category of domain experts is concerned with applications, such as mil-
itary operations (e.g., robots used for mine detection and removal or rescue 
tasks), exploration (e.g., in space or the oceans), and medical purposes. This 
implies that most of the users will need to undergo some sort of special training 
to interact with the robots. While this does not guarantee that these users will 
become robotics experts, such a training allows for creating an adequate mental 
model of the robot that, in turn, supports users’ understanding and trust calibra-
tion. In contrast, the category of non-expert users refers to users who have little to 
no previous experience with specific robotic technologies. It includes application 
contexts such as caregiving and education, recreational activities, and, perhaps 
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most crucially, interactions with robots ‘in the wild’ [Sabanovic et al. 2006]. Be-
cause there has been no previous interaction or any introduction, the level of 
uncertainty concerning robots is higher in these contexts. According to several 
definitions, uncertainties and perception of risk represent two elements that may 
jeopardize trust [Lee and See 2004; Andras et al. 2018; Luhmann 2018].

This paper addresses a set of challenges of making robots explainable and 
trustworthy, particularly for non-expert users and within the context of everyday 
interactions. The main reason for doing this project is those non-expert users 
represent the vast majority of the public, and many robots and other AI-based 
technologies are designed to interact with them daily. Furthermore, because of 
their lack of technical knowledge and agency to manipulate robotic technologies, 
non-expert users are the most vulnerable. In this context, explainability plays a 
crucial and multifaceted role. According to some studies, explanations that are 
properly tailored to the needs of non-expert users reduce perceived uncertainty 
and increase the understandability of robots. This, in turn, supports users with 
trust calibration toward robots and, consequently, robot acceptability in society 
[Lomas et al. 2012; Langley 2016; Langley et al. 2017; Sheh 2017b; Andras et 
al. 2018; Papagni and Koeszegi 2020, 2021b]. Therefore, designing robots that 
can explain their decisions and actions in terms that everyone can understand 
will aid in their successful integration into our society. Furthermore, while the in-
terests and needs of specific groups of users might differ, an explanation that is 
understandable by users with no prior knowledge of robotic technologies should 
be understandable to more technologically accustomed ones.

One of the major problems in tailoring robot explanations to the needs of 
non-expert users is that explainability is frequently considered a data-driven rath-
er than goal-driven characteristic [Sado et al. 2020]. Instead, we claim that the 
design of social robots should integrate inputs from various disciplines and focus 
on developing the capacity to communicate decisions in terms easily graspable 
by a broad audience. Another problem that requires more extensive investigation 
is that explanations are, by their very nature, incomplete approximations of the 
actual decision-making processes [Keil 2006; Rudin 2018; Wang 2019]. The lack 
of perfect explanations is even more problematic for robotics, given the standard-
ized, algorithmic, and ‘coordinate-based’ modalities of information processing 
that are typical of robots [Lomas et al. 2012].

We approach these challenges with an interdisciplinary drive. Seeking and 
providing explanations is a form of everyday social communication, which has 
been extensively studied within disciplines, such as philosophy, sociology, and 
psychology [Hilton 1990; Miller 2019]. Combining findings from such disciplines 
with the need to integrate them into the design of robots and other artificial agents 
can be labeled as an ‘interdisciplinary challenge’ of explainability [Adadi and Ber-
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rada 2018]. Specifically, this paper discusses the core elements of a recent mod-
el for explanatory interactions with artificial agents proposed by the authors of this 
paper (see figure 1). The remainder of this paper is organized as follows. Section 
2 introduces the model and briefly analyzes its development and core elements. 
Concerning the standardization of explanations, Section 2 presents the concept 
of contextual, co-constructed plausibility as the most significant feature upon 
which explanations should be built. Section 3 addresses the timing of explana-
tions, which represents a central element of the model, to answer the question of 
when explanations are mostly needed to support the trust calibration between 
users and robots. Furthermore, Section 3 briefly presents the results of a study 
conducted in the context of repeated interaction with a virtual agent, whose accu-
racy and explainability are manipulated. Section 4 discusses whether a robot’s 
decision or action ought to be explained because of intentions and reasoning or 
other causes (e.g., natural or mechanical), as this aspect is critical for the struc-
ture of an explanation. Section 5 focuses on communication strategies to in-
crease the explanations’ understandability, particularly on the possibility of multi-
modal and interactive explanations, which is at the heart of the non-expert users’ 
question. Section 6 concludes the paper by addressing limitations and outlining 
the direction for future work.

Figure  1  Explanatory Dialogue Model  Adapted from [Papagni and Koeszegi 
2021b]
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2	 Explanatory dialogue models

According to Berland, “literature in both the philosophy of science and psychol-
ogy suggests that no single definition of explanation can account for the range 
of information that can satisfy a request for an explanation” [Berland and Reiser 
2009, p. 27]. Accordingly, there is no single model to describe a perfect explan-
atory interaction. Furthermore, as previously stated, such models must be suit-
able for implementation in the algorithmic information-processing units of robots. 
The model presented in this paper aims to cope with this issue [Papagni and 
Koeszegi 2021b]. To do so, we analyzed existing models for explainable artificial 
intelligence (XAI), identified shortcomings, and developed solutions accordingly 
[Walton 2011; Madumal et al. 2018, 2019].

We identify two major limitations in Walton’s, as well as Madumal’s, Miller’s, 
Sonenberg’s, and Vetere’s models. Sections 3 and 5 discuss more thoroughly 
each of these shortcomings. However, it is important to introduce them, as they 
both play central roles in the design and structure of our model. The first one 
concerns the timing of explanatory interactions and, more specifically, the notion 
that explanation requests are always promoted by an ‘anomaly detection’ [Walton 
2011] or ‘knowledge discrepancy’ [Madumal et al. 2018, 2019]. This approach 
expresses the idea of explanations as isolated events, rather than as contextual 
instances. For instance, the models mentioned do not account for the fact that 
explanations concerning the robot’s function in the specific interaction context are 
required at the beginning of an interaction with a robot, especially if this occurs ‘in 
the wild’. This moment plays a role in how people build their mental model of the 
robot and should thus be considered part of the explanatory interaction.

The second shortcoming we identify is ensuring users’ understanding of ex-
planations. As previously noted, the inner workings of AI-based technologies are 
difficult to understand, even for expert users, let alone non-expert. If the robots’ 
explanations are also not properly understood, the initial problem remains, since 
customers will still be unable to make sense of the robots’ behavior. This argu-
ment also holds when applied to wrong explanations. How could an explanation 
be labeled as wrong if the content is not understood? Section 5 addresses these 
considerations more in detail.

2.1.	Explanations’ plausibility

Our model leverages on the principle of explanations’ plausibility as the key cri-
teria and ultimate goal [Papagni and Koeszegi 2020]. According to Karl Weick’s 
‘sensemaking theory’, sensemaking intended as a process, “is driven by plausibil-
ity rather than accuracy” [Weick et al. 2005, p. 415]. Building upon Peirce’s work 



61

Challenges and solutions for trustworthy explainable robots

on abductive reasoning, Wilkenfeld and Lombrozo rework Harman’s concept of 
‘inference for the best explanation’ [Harman 1965; Peirce 1997; Wilkenfeld and 
Lombrozo 2015]. Specifically, they postulate that the purpose of explainability 
should be to provide the best understanding of the causes of an event, rather 
than the most accurate explanation possible. This approach is consistent with 
Weick’s idea that, to grasp the causes of an event, people seek plausible stories 
(i.e., that something ‘might be’) more than they seek true stories (i.e., that some-
thing ‘actually is’) [Peirce 1997; Miller 2019].

Malle argues that people seek explanations to find meanings and manage 
social interactions [Malle 2006]. According to Weick, the process of building 
meanings is the result of a collaborative effort involving the two parties (i.e., the 
explainer and explainee), as well as the context within which the interaction oc-
curs [Weick et al. 2005]. In terms of explanatory interactions, there must be a 
knowledge transfer from the robotic explainer, who initially and ‘asymmetrically’ 
possesses the information that makes a specific explanation plausible, to the ex-
plainee, who must understand and agree that the explanation is plausible in that 
given context and for a specific event [Malle et al. 2007]. This does not neces-
sarily imply that the explanation provided is the best in absolute terms, let alone 
the only one. The emphasis on all parties involved agreeing on the plausibility of 
an explanation implies the explainee’s understanding of the explanation (i.e., it is 
unlikely for someone to find something plausible without understanding it in the 
first place). Furthermore, viewing plausibility as a collaborative and contextual 
achievement implies that the parties involved judge a given explanation as suc-
cessful if it provides a satisfying account of an event’s most likely causes.

Another advantage of adopting plausibility and abductive reasoning as core 
criteria of explainability is that there is no universally accepted principle for select-
ing a subset of causes upon which explanations are built. While certain qualities, 
such as internal coherence of an explanation and coherence of an explanation 
with prior beliefs, are generally considered desirable [Thagard 1989; Lombrozo 
2007], the choice of other features is less obvious. For instance, some studies 
emphasize that explanations should be simple, whereas others consider com-
plexity as the trademark of quality [Lombrozo 2007; Kulesza et al. 2013; Zemla et 
al. 2017]. If an explanation is only considered plausible when all the concerned 
parties agree, it follows that the most significant qualitative requirements for that 
situation are met. For an explanation to be (co-)considered plausible, the amount 
of information it conveys cannot be overwhelming or too scarce. Likewise, the ex-
planation must be coherent with itself and with the prior beliefs of the concerned 
parties; it must not be too generic and vague, or complex, and so on. However, it 
could still be that an explanation will not be immediately considered plausible by 
all concerned parties. As plausibility is a quality that results from a negotiation, 
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multiple utterances may be required before all parties are satisfied. Section 5 
discusses how this limitation can, at least in part, be dealt with.

2.2.	Explainable robots, plausible robots

From these last considerations, plausibility is not a property that can be pre-
defined once and for all. In other words, it is an aspect that is mostly determined 
by the context in which an interaction unfolds, the actors involved, and their spe-
cific interests. For instance, a possible application for social robots is assisting 
library customers. Among other tasks, such robots may suggest new readings 
to the customers, who may want to know the reasons for a specific recommen-
dation before deciding. In a similar case, if the timing is not an issue, the robot 
may explain in detail how it arrived at that recommendation, by demonstrating 
how features, such as the customer’s record of books requested in the past or 
feedback and reviews left by other users with similar preferences, weighed in the 
decision-making process [Ramos-Garijo et al. 2003; Mikawa et al. 2009; Sreejith 
et al. 2015]. Once these criteria have been presented by the robot, the custom-
er may eventually agree (or disagree) with the explanation’s plausibility and act 
accordingly.

However, in different situations, other features would likely be more relevant to 
show an explanation’s plausibility. For instance, when the timing is an issue (e.g., 
during a rescue operation [Murphy 2004]), people may want robots to provide 
simple and concise explanations while not sparing vital information, particularly if 
the consequences of a wrong decision are potentially disastrous. In conclusion, 
what plausibility entails cannot (and probably should not) fall under an unambig-
uous, umbrella definition. The reason for this is that whether an explanation is 
plausible or not should be negotiated between the concerned parties, in a specific 
context.

3	 Explanations’ timing

This section focuses on the timing of explanations, a critical aspect that previous 
models have ignored, at least partially. Both models identify the start of an ex-
planatory interaction in a ‘knowledge discrepancy’ or ‘anomaly detection’ [Walton 
2011; Madumal et al. 2019]. Even though these models envision back-and-forth 
explanatory interactions with artificial agents, the type of approach they symbol-
ize is one that ideally regards explanations as isolated instances. In contrast, we 
support Weick’s view that meanings are co-constructed in the interplay between 
the concerned actors and the context, as we explain in the following paragraphs.
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3.1.	 Initial explanations and trust formation

People provide explanations according to their mental model of the person with 
whom they are interacting in terms of the level of expertise and ‘technicality’ 
[Cawsey 1993]. In principle, this process is reliable because the parties involved 
in an explanatory interaction often share some knowledge about the topic being 
discussed. However, when it comes to robots, this can be problematic. When ro-
bots are employed in semi-controlled environments (e.g., in elderly care facilities 
or educational contexts), the researchers involved introduce them to users. To 
help users become acquainted with the robots, the researchers explain what the 
robots can and cannot do and support users in establishing an adequate initial 
mental model of the robots.

However, social robots are ultimately supposed to operate also ‘in the wild’ in 
everyday situations (e.g., at shopping malls and libraries) where people will most-
ly have little to no experience with robots and interactions will be limited in time. 
To this extent, initial trust depends on both personal attitude toward technology 
and ‘institutional cues’ [Siau and Wang 2018; Andras et al. 2018]. The former is a 
consequence of the combination of several factors, such as cultural background, 
demographics, and personality traits [Morris and Venkatesh 2000; Chien et al. 
2016], and it can result in an equally wide range of dispositions toward new tech-
nologies, which are not necessarily mediated by accumulated experience with 
such technologies. These range from high expectations and over-trust [Dzindolet 
et al. 2003; De Visser et al. 2020], to skepticism and even forms of ‘technophobia’ 
[Kerschner and Ehlers 2016].

The notion that trust partially depends on ‘institutional cues’ refers to the role 
played by ‘third parties’, such as private companies, developers working for them, 
national and international institutions, and experts and regulatory bodies. Lever-
aging on their reliability and reputation, such entities play a ‘proxy’ role in deter-
mining how people perceive and trust new technologies. Specifically, this process 
is based on the assumption that the entities introducing new technologies act in 
accordance with values, such as integrity and benevolence, that define moral 
trust [Elia 2009; Lankton et al. 2015; Sood 2018]. Researchers have expressed 
concerns about the transparency, responsibility, and accountability of such ‘third 
parties’. As for end-users initial trust in robots and AI, it is crucial to emphasize 
the importance of the adequate distribution of responsibilities (to, e.g., ensure 
technology transparency) among the stakeholders [Elia 2009; O’Leary 2019].

Based primarily on ‘institutional cues’ and individual attitude, initial trust can 
be very high or low irrespective of robots’ actual performance concerning their 
purposes (i.e., not calibrated). For this reason, we emphasize the importance 
of the initial explanations. When robots have not yet proved to be reliable and 
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benevolent (e.g., on behalf of their makers), initial explanations may substitute 
the missing previous interactions, support the establishment of adequate mental 
models, and guide users toward placing calibrated trust in robots [Andras et al. 
2018; Fossa 2019].

We agree with Cawsey that, in the event of a first-time interaction, robots 
should treat users ‘as novices’ which implies that robots should not assume any-
thing about what users know. Accordingly, the robots’ mental models of the users 
should only evolve and update as an interaction develops [Cawsey 1993]. Ac-
cording to Weick’s argument, by adopting this approach, meanings and knowl-
edge are lifted from the private and implicit sphere and made public and explicit 
[Weick et al. 2005]. Interestingly, Walton notes that “to grasp the anomaly, you 
have to be aware of the common knowledge” [Walton 2011, p. 365] and that “the 
system has to know what the user knows, to fill in the gaps” [Walton 2011, p. 365]. 
This appears to contradict the idea that explanation requests are triggered by 
the detection of an anomaly in one’s account. However, how could a robot know 
what the user knows? Likewise, how can a user detect an anomaly in a robot’s 
behavior if the user has no prior knowledge of what the robot should or should 
not do? For this reason, our model proposes that robots should provide initial 
explanations that contain basic information, such as what role and purpose the 
robot have and what it can and cannot do (see top left part of Figure 1). By so do-
ing, robots could proactively establish the interaction context and support users 
in developing an adequate mental model. Additionally, once users are informed, 
the basic notions about the robot become shared knowledge and the robot can 
update its mental model of the user accordingly.

3.2.	Unexpected events and trust restoration

According to the literature, the other moment in an interaction when people seek 
out explanations is when something unexpected or unpredictable happens [An-
dras et al. 2018; Miller 2019]. In other words, once users establish a mental mod-
el of a robot based on prior interactions, they will expect the robot to perform ac-
tions within a certain range of possibilities. Within this range, the robot’s reliability 
will be progressively determined based on its performance and accuracy. As a 
robot regularly demonstrates reliability and trustworthiness, users may consoli-
date their positive mental model of it, so that explanations become superfluous 
if not even damaging [Doshi-Velez and Kim 2017]. However, a robot may still act 
unexpectedly or unpredictably. Such events, which do not fit into the established 
mental model, are also recorded in the interactions. This is also what the models 
by [Walton 2011; Madumal et al. 2018, 2019] label as ‘knowledge discrepancy’ 
or ‘anomaly’. In similar situations, users’ understanding of the robot’s behavior 
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is challenged. Furthermore, several researchers have found that if users do not 
understand why a robot is behaving in a certain way, their acceptance and trust in 
the robot are probably weakened [Lomas et al. 2012; De Graaf and Malle 2017; 
de Graaf et al. 2018; Miller 2019]. While this is particularly the case when unex-
pected robot actions turn out to be mistakes [Elangovan et al. 2007; Robinette 
et al. 2017] even if a robot behaves according to its internal planning, if this is 
not obvious to users, it is important that they still make sense of why the robot is 
acting that way [Andras et al. 2018].

In an aging society, social robots are meant to be deployed in elderly-care facil-
ities with assisting duties. IBM’s MERA is one such robot being developed, on top 
of SoftBank Robotics’ Pepper platform, for similar purposes. It can monitor peo-
ple’s pulse and breathing functions, among other things [Martinez-Martin and del 
Pobil 2018; Venkatesh 2019]. For instance, if the robot detects any anomalies in 
these parameters before the person is consciously aware of it, it may suggest the 
assisted person rest. Such an event may be perceived as an anomaly, prompting 
the assisted person to request an explanation, which would likely elucidate the 
reasons behind the suggestion and show that, while these reasons were not ob-
vious at a first glance, they still make the robot’s suggestion plausible.

Hence, whether it is to prevent the loss of trust, or restore it after a mistake, 
robots must provide reasons for their actions through explanations. Other trust 
restoration strategies, such as denial, apologies, compensation, and relationship 
restructuring, exist and can be implemented among robots’ functions [Quinn et 
al. 2017; Lewicki and Brinsfield 2017]. However, unlike these strategies, explain-
ability offers two main advantages. On the one hand, as we discussed in the 
previous paragraph, explanations support trust not only in the case of a violation 
but also in building it at the start of an interaction. On the other hand, explanations 
provide useful insights into the causes of an unexpected event or mistake. We 
previously noted that explanations may not be strictly necessary in case of re-
peated successful interactions with a robot. For instance, when “there are no sig-
nificant consequences for unacceptable results” [Doshi-Velez and Kim 2017, p.3] 
or when a problem has been thoroughly researched and validated in real-world 
scenarios, explanations could become superfluous. However, even after multiple 
interactions, specific users may be unaware that a certain problem has been 
previously studied and that a robot’s decision is based on real-world-validated 
data. Therefore, in principle, robots should always be able to explain themselves 
whenever users ask.

To examine some claims discussed in the previous sections, an empirical 
study was conducted. Participants were required to interact with a personalized 
virtual learning assistant seven times. The goal of the assistant was to provide 
participants with recommendations on what chunks of text to focus on (out of 
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larger portions), for them to prepare for quizzes. The system’s explainability and 
accuracy were modified throughout the study.

Among the main findings, we observed that, contrary to expectations, initial 
explanations about the system’s functionality did not increase initial trust. Simul-
taneously, the assistant’s wrong recommendation affected participants’ trust neg-
atively, as it was perceived as a trust breach. However, qualitative data reveal 
that participants tended to be quite tolerant toward imperfect AI-based systems, 
as these systems are not expected to always function perfectly. Additionally, the 
qualitative data suggest that the researchers’ ‘hidden authority’ has a favorable 
impact on the system’s trustworthiness. Perhaps more importantly, trust resto-
ration was significantly faster when the system provided an explanation following 
the wrong recommendation, rather than not. Specifically, explanations were the 
most effective as a trust-restoration strategy with risk-averse participants. Fur-
thermore, explanations aided trust recovery, even if the participants did not al-
ways access them. Our qualitative analysis revealed how this may be explained, 
at least in part, by the fact that the very availability of explanations suggests a 
more transparent and trustworthy system.

4	 Explainable robots and the intentional framework

Another element is crucial in terms of the mental model of robots and explanation 
generation. It is about whether or not robots’ explanations ought to reflect some 
form of intentionality (and other mental states) behind robots’ behavior. This as-
pect of explanatory interactions is part of a broader ongoing discussion between 
the human-robot and human-computer interaction (respectively, HRI and HCI) 
communities. While discussions on robots’ ‘mental states’ have paced up recent-
ly, they have older roots that date back at least to Heider’s and Simmel’s work, as 
they demonstrated that people adopt a mentalistic framework to interpret even 
the movements of simple and schematic geometrical shapes [Heider and Simmel 
1944]. Then, with Daniel Dennett’s concept of the ‘intentional stance’, interest 
in the topic has spread. [Dennett 1988, 1989]. Dennett explained that people 
interact with certain technological artifacts (such as a chess-playing computer) 
as though they acted on human-like internal states, such as desires, beliefs, and 
intentions. According to Dennett, it would be too difficult to understand how such 
devices work solely by relying on one’s knowledge of their intended purpose (i.e., 
the design stance), let alone the knowledge of natural laws (i.e., the physical 
stance) that ultimately govern everything [Dennett 1988, 1989, 1997]. Therefore, 
Dennett says, people adopt with computers and robots a mentalistic framework 
that is similar to that adopted with other people.
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According to recent interpretations, the phenomenon is due to a ‘primacy of 
the social mindset’, which means that a mentalistic interpretative framework is 
always readily available because of people’s social training and familiarity with 
it since childhood [Buckner et al. 2008; Looser and Wheatley 2010; Spunt et al. 
2015; Papagni and Koeszegi 2021a]. Furthermore, as most people appear to 
lack a strategy for interacting specifically with sophisticated technologies, such as 
robots, a mentalistic approach eventually prevails. Attributing intentions to robots 
and other seemingly intelligent machines has some problematic aspects. For in-
stance, researchers have proposed that in certain cases, the unconscious (and 
erroneous) adoption of a mentalistic framework may be the origin of the so-called 
‘uncanny valley’ phenomenon [Bartneck et al. 2009; Mori et al. 2012]. Additional-
ly, in certain situations, attempting to understand robots’ behavior from a mental-
istic perspective is not the best strategy, and users may have to forcefully adapt 
their mental model at the expense of cognitive resources [Wiese et al. 2017].

According to Weick’s sensemaking framework, finding meanings in the social 
context of everyday life entails bringing order to the chaotic stream of both inten-
tional behaviors and unintentional events. In terms of explanations, this trans-
lates to attributing either reasons, intentions, desires, and beliefs, or natural and 
mechanical causes. According to De Graaf and Malle, intentionality is a core 
concept that allows people to explain and understand others’ behaviors [De Graaf 
and Malle 2017]. While the phenomenon has been thoroughly investigated in 
the human sciences, the concept of predicting and explaining robots’ behavior 
using the intentionality framework is an open debate. According to Bossi, “people 
may treat robots as mechanistic artifacts or may consider them to be intentional 
agents. This might result in explaining robots’ behavior as stemming from opera-
tions of the mind (intentional interpretation) or as a result of mechanistic design 
(mechanistic interpretation)” [Bossi et al. 2020, p. 1].

As we previously discussed, explanations are often sought after when users’ 
mental models of robots are challenged by unpredictable events. This includes 
situations in which users cannot understand or explain robots’ actions according 
to the mental model of robots they already possess. An implication of this inter-
pretative gap is that whatever framework (i.e., intentional or mechanistic) users 
are adopting at the time of the unexpected occurrence, their trust in the frame-
work’s prediction-making power might decrease. In other words, when something 
unexpected happens, users may be unable to provide themselves with reasons 
or causes and, hence, ask the robot with whom they are interacting for an expla-
nation. Some cases will force a complete perspective (i.e., framework) switch, 
while others will not. Importantly, according to De Graaf and Malle, robots “must 
be able to distinguish intentional from unintentional behaviors” and they “must 
be able to explain each of these classes of behavior in the expected way – unin-
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tentional behaviors with (mere) causes, intentional behaviors with reasons” [De 
Graaf and Malle 2017, p. 19].

For instance, We previously mentioned, referring to elderly people’s assis-
tance, the possibility of the robot advising the assisted person takes a rest. The 
latter may not immediately grasp the reason for the recommendation, as they are 
unaware of what the robot knows. This includes not knowing whether the recom-
mendation is genuine (i.e., based on the intention to assist the person) or based 
on a wrong premise (e.g., a malfunction). Assuming that the robot has been use-
ful and has acted in the best interest of the user up to that point, the user may be 
struggling to make sense of the recommendation within the same (i.e., intention-
al) framework and may request an explanation. Within an intentional framework, 
the robot’s explanation that its sensors have observed increased heart rate and 
heavy breathing would still make sense, as it would show the robot’s intention 
to assist the user. A similar explanation emphasizes that the user was merely 
unaware of the robot’s actual decision-making process. Accordingly, this implies 
that not every unpredictable behavior is the result of robots’ malfunctions or inter-
nal errors, which are more likely to be detected (e.g., if the robot suddenly stops 
performing its tasks), and require users’ to switch framework.

Ultimately, it could still be that a robot provides an explanation that makes 
sense (i.e., sounds plausible) within the boundaries of the framework adopted 
by the users but is built upon wrong premises [Dunne et al. 2005; Walton 2011]. 
As will be discussed in Section 5, when dealing with the structure of explanato-
ry interactions, the risk of wrong explanations going unnoticed motivates taking 
further measures. Based on the discussion in this section, we claim that robots 
must be designed to support users, by means of explanations, in adopting the 
most appropriate interaction framework. This is especially the case for the ear-
ly stages of extensive adoption of robotics in everyday contexts. Indeed, these 
times are most characterized by uncertainty in terms of both the adoption of and 
narratives built around these technologies. Furthermore, whenever necessary, 
robots should support the transition from one interpretative framework to anoth-
er. We have previously discussed how the plausibility of explanations must be 
considered a contextual joint achievement. What framework is most adequate 
for understanding an event is a contextual feature that must be treated as such. 
Hence, robots should communicate explicitly and clearly, to the greatest extent 
feasible, whether the event being explained involves unintentional causes (e.g., 
an internal failure or mistake or uncontrollable external forces) or intentional rea-
sons. In the next section, we will discuss explanation communication strategies 
that maximize the chances of users’ correct understanding and hence trust to-
ward the robots.
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5	 Communicating explanations

Explanations are primarily forms of social communication [Hilton 1990]. There-
fore, addressing how robots should deliver explanations is likely the most es-
sential aspect of explanatory interactions. This section analyzes two features of 
explanation communication that constitute the core of our model. Specifically, 
we discuss our claims that to support users’ understanding and trust calibration, 
robots should:

	- Be able to use diversified means of communication.

	- Provide users with the possibility to question explanations and ask for further 
insights.

Importantly, when it comes to explainable robots, the research on the effects of 
combining the two mentioned strategies while promising is still in its early stages 
[Abdul et al. 2018; Anjomshoae et al. 2019].

5.1.	Multi-modal explanation

In human-human interactions, explanations are primarily communicated through 
natural language. Generally, they should follow communication norms, such as 
‘Grice’s (four) maxims of conversation’ [Grice 1975]. They refer to communicating 
only what is confidently believed to be accurate, avoiding overwhelming amounts 
of information without being scarce, relevant to the context (i.e., a ‘good social 
explanation’ [Hellström and Bensch 2018; Miller 2019]), avoiding obscurity and 
ambiguity and being brief and orderly in presenting the information. Grice’s max-
ims are often mentioned in explainable robots and AI research because they pro-
vide an implementable solution that may improve explanation quality [Miller 2019; 
Papagni and Koeszegi 2021b]. Sheh provides further possibilities for modifying 
how explanations are communicated through natural language [Sheh 2017a]. Ac-
cording to the author, robots can modify the depth and type of explanation based 
on the needs of specific interaction instances and the availability of the robots’ 
underlying AI models. The author observes, in reference to a scenario in which 
a robotic shopping mall assistant is questioned about its product recommenda-
tions, that in similar circumstances, social robots’ explanations are expected to 
primarily satisfy users’ curiosity and support further engagement. For this reason, 
the author continues, ‘Post-Hoc’ explanations at ‘Attribute Only’ or ‘Attribute Use’ 
depths may be appropriate for the purpose [Sheh 2017a]. While the former indi-
cates explanations that are tailored solely to what the robot deems the most rel-
evant features, the latter considers the implications (i.e., ‘use’) of each attribute’s 
value. Therefore, if properly tailored, text-based explanations alone already pro-
vide various customization options.
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However, when the explanations’ goal is to maximize users’ understanding and 
trust calibration toward a robot, it is important to note that natural language only 
covers a subset of feasible communication strategies. Explanations in the form 
of ‘combined signals’ [Engle 1998], also known as ‘multi-modal’ explanations 
represent a promising but under-explored research avenue. Anjomshoae, Najjar, 
Calvaresi, and Främling discussed six possible communication modalities [An-
jomshoae et al. 2019]. Besides text-based natural language explanations, they 
identified the “visualization” (i.e., graphical) type as the second most common 
one. Logs, expressive motions, expressive lights, and speech complete the list. 
The notion behind multimodality is that, as technological devices, robots can con-
vey information through complementary modalities, sometimes even better than 
humans can. For instance, with visual explanations being the second most com-
mon after text-based ones, many robots can display on frontal screens graphic 
information gathered by their sensors, and once processed, these environmental 
data may support text to convey more complete messages. In our previous ex-
ample, the IBM’s MERA robot explained to the assisted person that its recom-
mendation to take a rest was based on factors, such as the unusually high pulse 
rate and heavy breathing. While a text-based explanation would likely suffice to 
convey the essential message, the explanation’s quality could still improve if the 
robot would provide visualizations of the actual scans of normal and abnormal 
heart activity. While HRI research on multimodality and ‘combined signals’ is still 
in its early stages, an increasing number of studies have demonstrated that users 
can benefit from multimodal explanations. The HCI community has done most 
of the research in multimodal explanations so far. Most studies effectively com-
bined verbal and visual information, showing how people preferred this format to 
‘uni-modal’ ones [Huk Park et al. 2018; Kanehira et al. 2019].

Two considerations must be made. First, the availability of alternative commu-
nication strategies should not mean that robots must display all available informa-
tion at once. Explanations should not exclude vital information, but simultaneous-
ly, they should also not overwhelm users with too much information. To this extent, 
researchers propose that, in certain cases, employing alternative single-handed 
modalities may be more beneficial to the users. For instance, referring to robots’ 
reactive planning, Theodoru, Wortham, and Bryson suggest that since robots can 
take many decisions per second, graphical explanations are more efficient and 
direct than verbal ones [Theodorou et al. 2016]. Giving self-driving systems the 
ability to employ light signaling to communicate simple messages to pedestrians, 
such as that they can cross the street safely [Faas and Baumann 2019], is an-
other example of how alternative modalities can suffice even when taken alone. 
In conclusion, while in certain cases alternative modalities may provide adequate 
information, text-based explanations are likely to remain prominent (possibly sup-
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ported by other means) because the semantic richness that can be conveyed 
through natural language is difficult to match through other means alone.

Finally, multimodality should not be unidirectional or limited to the combination 
of text-based and graphic communication. Natural language processing and im-
age recognition have improved significantly recently, allowing robots and virtual 
agents to provide progressively better answers to users’ text- or image-based 
inputs. One further possibility is that robots can ‘read’ and ‘express’ signals other 
than graphic and natural language communications. For instance, research in 
other relevant areas of robotics, such as (reading and expressing) body motion 
[Han et al. 2012; McColl and Nejat 2014] or facial expressions and gaze [Fiore 
et al. 2013; Admoni and Scassellati 2017] shows that robots can process various 
signal typologies that can make communication with humans (included explana-
tory interactions) more flexible and inclusive.

5.2.	 Interactive explanations

Making explanations ‘interactive’ is another promising strategy to increase robots’ 
explanations quality that requires further investigation, particularly in the field of 
social robots [Abdul et al. 2018; Papagni and Koeszegi 2021b]. This research is 
partly driven by the desire to achieve a higher degree of human likeness [Mad-
umal et al. 2018, 2019]. Indeed, explanations in robotics are often treated as 
‘single-shot’ communication acts, whereas in human-human interaction, they fre-
quently occur in the form of dialogues with back-and-forth iterations. However, 
interactivity also represents a strategy to deal with what Keil identifies as people’s 
attitude to overestimate their own understanding of explanations (i.e., the ‘illusion 
of explanatory depth’) [Keil 2003]. According to Keil, this phenomenon, which is 
related to studies from social psychology on the ‘introspection illusion’ [Pronin 
2009], consists of wrongly assessing the quality of the information one retains 
after being provided an explanation. The next paragraphs discuss our claim that, 
among other advantages, im- plementing design features that support interactiv-
ity of robots’ explanations helps mitigate this phenomenon.

A fundamental contribution to the user-friendliness of explanations’ interactivity 
is that it allows the parties involved to seek further insights to better understand 
what is being explained, and it allows questioning of both parties’ accounts. The 
implementation of ‘nested argumentation dialogues’ [Madumal et al. 2018, 2019] 
and an ‘examination phase’ into our model aims to primarily tackle this multifac-
eted aspect [Dunne et al. 2005; Walton 2006, 2011].

Introducing nested argumentation dialogues allows users to engage in mul-
tilayered explanations in which they can drift from one question to another in a 
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back-and-forth manner. This back-and-forth movement may concern the topic of 
the original question or may be about ‘spin-off’ discussions [Madumal et al. 2018, 
2019]. Often in human-human interaction, such spin-off argumentation dialogues 
are nested on top of the original explanation to support explainees by improving 
their understanding. The model proposed by Walton does not account for nested 
argumentation because the author labels overlapping dialog as an illicit dialecti-
cal shift, implying that the previous question must be considered closed [Walton 
2011]. However, to achieve interaction naturalness and support users’ sensem-
aking, robots should be able to process nested dialogs as such, leaving users 
the choice to return to the original one. Hence, to increase the human-likeness 
of explanatory interactions, our model allows users to engage in nested argu-
mentation dialogues that are both related and unrelated to the original question, 
as shown in the top right corner of Figure 1. However, introducing such internal 
loops is merely one interpretation of the concept of interactivity.

Explanations may appear logical at a first glance and yet be grounded upon in-
correct premises [Walton 2011; Dunne et al. 2005; Lakkaraju and Bastani 2020]. 
Introducing a dialectical shift in the form of an ‘examination phase’ allows users to 
analyze the explainer’s account for any inconsistencies and evaluate the quality 
of the explanation for potential errors [Dunne et al. 2005; Lamche et al. 2014]. 
To this extent, Kaur et al. highlight the propensity, even among HCI expert practi-
tioners, to over-rely on interpretability tools’ visual outputs in a study in which they 
analyze participants’ reactions to different approaches to model interpretability 
(i.e., ‘glass-box’ and ‘black-box’) To address this issue, one of their suggestions 
is to adopt ‘back-and-forth explanations’ (i.e., interactive interpretability) [Kaur et 
al. 2020].

Another possible use for an examination phase is to test the explainee’s un-
derstanding of an explanation, as suggested by Walton [Walton 2011]. Indeed, 
as previously stated, people are susceptible to the ‘illusion of explanatory depth’ 
and tend to overestimate their understanding of explanations [Keil 2003]. Sec-
tion 1 also highlighted the connections between understanding robots (and ro-
bots’ explanations) and calibrating trust in them. For these reasons, assessments 
of understanding quality are an important aspect of models for explanatory in-
teractions. This is supposed to be done by questioning the explainee about the 
explanation, the causal connections to the event being explained, and so on. 
Nevertheless, testing users’ understanding should not translate into an interroga-
tion, as this may be perceived as aggressive and have overall counterproductive 
effects on the interaction [Walton 2011]. To this extent, the authors of the model 
described in [Madumal et al. 2018, 2019] assert that such an operation is uncom-
mon in everyday human-human interactions. Instead, to keep the interaction as 
natural as possible, they consider the explainee’s affirmation of effective under-
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standing as a sufficient criterion to measure the quality of the explanation. While 
we agree that explanatory interactions should feel natural and smooth to users, 
rather than making them feel uncomfortable and jeopardizing future interactions, 
we also acknowledge a gap in the model from Madumal, Miller, Sonenberg, and 
Vetere in terms of evaluation strategies for the success of an explanation. There-
fore, we deem an ‘incremental approach’ to be the most appropriate [Papagni 
and Koeszegi 2021b]. Alternatively, after a robot provides an explanation, it may 
ask users to pick among multiple options what they understood to be the right 
explanation. To this end, we claim that testing users’ understanding must be con-
textually calibrated based on how much time and interest users are willing to 
invest. In other words, instead of being predetermined by the robot, questions 
concerning the explanation must be negotiated with users based on contextual 
affordances.

Finally, just as it occurs in human-human interaction, it is impossible to guaran-
tee the success of explanations in terms of knowledge transfer and users’ under-
standing. Despite robots’ best attempts, there will be circumstances in which us-
ers do not grasp what is being explained to them. Future research on explainable 
robots should focus on how to minimize the likelihood of such events occurring 
by refining and testing solutions, such as the ones presented in this paper, and 
implementing alternative strategies to better prevent trust losses and restore trust 
after a violation.

6	 Future work and conclusions

The presence of social robots in everyday life is becoming a reality. Their suc-
cessful integration and acceptability into society depend not only on how useful 
they prove to be in terms of performance but also on how they explain their 
decisions to a broad audience of non-expert users. At the same time, this paper 
acknowledges that perfect explanations do not exist and that making robots ex-
plainable poses a multifaceted interdisciplinary challenge. To solve this problem, 
we proposed a model for explanatory interactions. This model considers import-
ant findings from social sciences as well as from research on explainable AI and 
robots and their affordances and availability in terms of explainability. Further-
more, as the key criterion to assess the quality of explanations, we proposed a 
notion of explanations’ plausibility as a joint achievement, which presupposes the 
users’ understanding of robots’ explanations.

One of the main limitations is that the type of explanation a robot can provide 
depends on the availability of the underlying algorithms and the physical capa-
bilities of individual robots. In other words, not all the features of our model may 
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be implemented in the behavioral programming of certain robots. Therefore, re-
search should focus on how to broaden the scope of both AI models’ explainabili-
ty and robots’ customization. Another limitation concerns the primarily conceptual 
nature of the work presented in this paper. This calls for follow-up experimental 
studies to test our claims and the feasibility of implementing the various features 
of our model. Such studies shall, for instance, focus on the long-term effects 
of explanations on trust formation and restoration. Likewise, the combination of 
multimodal and interactive strategies is a promising but understudied research 
avenue that may shed further light on users’ reception of explainable robots in 
terms of both trust and understandability.
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