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Abstract

In this work, we address motion planning for robots in human-robot collaboration. An overview of important prop-
erties of a motion planning algorithm in terms of safety and human comfort is provided. In terms of comfort, we 
emphasize fluency, legibility, and human-like motion. Furthermore, existing planning algorithms are reviewed and 
contrasted in terms of these desired properties. Based on this review of the literature, a receding horizon trajectory 
optimization approach is proposed, and its main features are highlighted.
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1 Introduction

In recent years, there has been an increase in demand for robots capable of 
working in the proximity of humans or even collaborate with them. Possible appli-
cations range from collaborative tasks in industry, such as load sharing tasks or 
joint assembly, to service robots in domestic environments. Because traditional 
safety measures such as fences are no longer appropriate for these applications, 
novel concepts are required to enable safe collaboration. Aside from safety, col-
laborative tasks give rise to additional requirements in task orchestration and 
adaptable robot behavior based on observations of the environment. Further-
more, human comfort during the interaction is critical in establishing the robot as 
a trustworthy collaborator. 

These requirements are typically handled by different layers in the automa-
tion architecture. First, a cognitive decision layer coordinates tasks between the 
human and the robot. This layer gives explicit goals to a motion planning layer, 
which are then executed by an underlying controller layer.

In this work, we focus on the motion planning layer while explicitly considering 
the interface to a suitable controller for task execution. In the first step, an over-
view of the requirements with respect to safety and human comfort in human-ro-
bot collaboration (HRC) will be provided. Second, existing planning algorithms 
proposed in the literature will be shortly reviewed given these requirements.

Based on this analysis, open issues towards a flexible motion planning ap-
proach for HRC are identified. A receding horizon trajectory optimization planner 
is proposed as a contribution to resolving these issues. For this, we take advan-
tage of the possibility to formulate the requirements for safety and comfort during 
the interaction as objective functions and constraints for trajectory optimization.

https://creativecommons.org/licenses/by-sa/4.0/
https://doi.org/10.34727/2022/isbn.978-3-85448-052-5_6
https://creativecommons.org/licenses/by-sa/4.0/
https://orcid.org/0000-0003-3407-4588
https://orcid.org/0000-0001-7995-1690


Florian Beck, Andreas Kugi

2 Collaborative Robots

Collaborative robotics applications require not only algorithmic solutions for the
control, planning, and cognitive layers, but also suitable mechanical structures. In
recent years, several collaborative robots, also referred to as cobots, have been
developed and brought to market. Examples include robots by Universal Robots,
the KUKA LBR iiwa, and Franka Emika’s Panda. The latter two are based on tech-
nology developed at DLR [Hirzinger et al. 2002] focusing on lightweight, torque-
controlled robots with elastic joints. The main advantage of the lightweight design,
while maintaining a reasonable payload, is that it reduces the inertia of the robot
links which directly contributes to reducing injuries upon impact. Another benefit of
such lightweight collaborative robots is their ability to be mounted on mobile plat-
forms, allowing for mobile manipulation. Furthermore, these robots feature seven
degrees of freedom (DOF), which increases the manipulability through kinematic
redundancy. The 7 DOF robot arms also mimic the human hand to some extent,
allowing analogies in planning and control to be drawn between the human and
the robot.

In our work, we use the KUKA LBR iiwa 14 R820 as a collaborative manipulator
arm, which can also be mounted on DS Automotion’s Sally, a differential drive
mobile platform, shown in Fig. 1 as a reference platform.

Figure 1 The KUKA LBR iiwa 14 R820 collaborative robot with a gripper (left)
and KUKA LBR iiwa 14 R820 mounted on DS Automotion’s SALLY, a differential
drive mobile platform (right).

130



Motion Planning for Human-Robot Collaboration

3 Motion Planning Requirements for HRC

Motion planning algorithms serve as a central component in the robot’s automation
architecture. In this section, the desired properties of motion planning algorithms
with respect to human-robot collaboration, in particular safety and comfort, as well
as existing approaches from the literature will be reviewed.

3.1 Safety

The most important criterion for enabling close collaboration between humans and
robots is safety. In the context of industrial robots, safety is typically ensured by
fencing or structural measures surrounding the robot, such that the robot moves
only if no humans are in close proximity. This is of course incompatible with col-
laborative tasks. As a result, safety concepts are required to avoid collisions or
to mitigate the consequences of impact in case of collisions. An overview of de-
sign criteria for safe human-robot interaction, both on the mechanical construction
level and for the algorithm design, is given in [Alami et al. 2006]. In the following,
we focus on algorithm design, assuming appropriate mechanical properties as
described in Section 2.

In [Haddadin et al. 2017], the authors distinguish between two phases, namely
pre-collision and post-collision. Motion planning is mainly concerned with the pre-
collision phase. This means that collision-free trajectories must be planned while
still meeting of task completion requirements. Typical collision avoidance ap-
proaches require a geometric representation of the robot’s environment. Due to
the computational complexity, objects are often approximated by convex shapes.
Although this simplifies pairwise collision checks, the environment can still be non-
convex if it contains multiple convex shapes. Using these convex representations,
algorithms like the Gilbert-Johnson-Keerthi (GJK) algorithm [Gilbert et al. 1988;
Cameron 1997] can be employed to check whether the robot is in collision with
the environment in a given configuration. Another popular collision checking ap-
proach is the V-Clip Algorithm [Mirtich 1998]. The paper’s performance compar-
ison does not indicate a clear improvement, but rather depends on the specific
application.

Collision checking is computationally expensive in motion planning in general
because pairwise checks between obstacles and the robot, or parts of the robot,
must be performed. Furthermore, depending on the planning algorithm this may
have to be repeated several times. For safety, it is also important to consider that
such collision checking approaches are only executed at discrete points in time.
Collisions between two sampling points are theoretically possible depending on
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the time discretization intervals. There are two solutions to this problem. First,
sampling density can be increased. This, however, comes at significant compu-
tational costs due to the increased number of samples required for representing
a movement. Second, collision detection can be extended to a continuous-time
approach. Examples for continuous collision checking can be found in [Schulman
et al. 2014] and [Merkt et al. 2019]. Such collision detection approaches are also
applicable in dynamic environments. However, the environment geometry must
depend on time. Hence, a motion model of objects in the environment is required
to predict their movement.

For motion planning approaches, the post-collision phase must be considered
in addition to the pre-collision phase. The post-collision is typically treated in the
underlying control layer. Detection of collision and appropriate reaction strate-
gies are proposed in [De Luca et al. 2006] and [Haddadin et al. 2008] through
torque measurements in the joints. These strategies are typically combined with
impedance control [Ott 2008], enabling a compliant robot behavior. Such com-
pliant behavior is often desired in the Cartesian space of the robot end-effector.
To use such control laws, the motion planning algorithm must provide sufficiently
smooth trajectories, i.e. at least two times continuously differentiable. Further-
more, due to the presence of the inverse Jacobian in the control law, Cartesian
impedance control requires singularity-free trajectories. In this regard, it is criti-
cal not only to avoid singular configurations during planning, but also to include
a sufficiently large safety margin around the singularities. This is because, in the
proximity of singularities, small velocities in the task space can still result in large
velocities in the joint space.

3.2 Natural Motion and Comfort

In addition to functional aspects of a planner, such as reaching a goal, feasibility
of the trajectory, and the adherence to safety aspects according to Section 3.1,
human comfort must be taken into account when planning a robot’s motion. In
general, it is difficult to rigorously define robot motion that is comfortable for hu-
mans. It is highly dependent on how a human perceives the situation and can
vary greatly depending on the individual. Furthermore, it may be dependent on
the robot’s capabilities and design. Studies in human-robot interaction (HRI) try to
identify such properties. Furthermore, it is desirable to formalize such properties
to an extent such that they can be considered during planning. This was accom-
plished for certain criteria, which will be discussed in the following. An overview of
social aspects and psychological factors for safety in HRI can be found in [Lasota
et al. 2017].

132



Motion Planning for Human-Robot Collaboration

One of the most discussed aspects regarding comfort is proxemics [Hall 1963],
i.e. the notion of distance between humans or a human and a robot, respectively,
during certain interactions. The influence of a separation distance between a robot
and a human was for example investigated in [Arai et al. 2010; Koay et al. 2006;
Kulić and Croft 2007]. In a collaborative setting, distance is frequently constrained
by the task at hand. Aside from the desired end-effector goal, there are often
additional DOF that can be used to determine the pose or movement of the robot in
space, depending on the specific task. For a mobile manipulator, this includes the
positioning of the vehicle itself concerning the end-effector goal and the human.

An important concept with respect to comfort is legibility, as for example dis-
cussed in [Lichtenthäler et al. 2012] to increase the perceived safety. Legibility is
a measure of how well the robot can convey its intent. In the motion planning con-
text, this means that movement has to be planned such that ambiguity is reduced
making goals easily inferable by a human. In some cases, this can be achieved by
certain exaggeration of the movement, for example moving in a circular arc toward
an object. Of course, this type of exaggeration is not always achievable, espe-
cially if several target objects are located close to each other. In such a scenario,
it depends on other factors, e.g. if the human can infer where the robot is moving
next. This cannot be solved using motion planning alone. An optimization-based
formulation of legibility can be found in [Dragan et al. 2013], which also gives a
comparison to the notion of predictability. Predictable motion is defined as pre-
dicting how a motion will look like if the goal has already been determined. As a
result, the inference direction is reversed. In this regard, predictable motion can
differ from legible motion. Predictability or legibility is preferred depending on the
collaborative task at hand. For example, if the task consists of a fixed, sequential
process, a human already knows what the robot’s goals are, and predictability
is more important than legibility. Legible motion, on the other hand, is preferred
when the task is ambiguous.

In [Hoffman 2019], an overview of methods to evaluate fluency in HRC is given.
They provide a definition and a model for assessing fluency. Fluent collaboration
occurs when a human and a robot achieve a high level of coordination, resulting
in precisely timed, efficient sequences of action. In a user study, they discovered
that human idle time, i.e. the human waiting for the robot, as well as the functional
delay of the robot, has a significant influence on subjective fluency. Longer hu-
man idle time is perceived as increasing fluency, which was indicated by feedback
from participants who thought the robot did a better job. Increasing the functional
delay, on the other hand, has a negative impact on the sense of fluency. This
can be directly related to the robot’s time to action following the completion of the
human’s turn during the collaboration. The requirement of short functional de-
lays implies that fast planning and replanning are essential properties of motion
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planning algorithms. An example of fluency for robot-human handovers is given
in [Cakmak et al. 2011] considering the functional delay. They propose that con-
veying intent is a major factor in fluency. If the robot does not make its intentions
to hand over an object clear, functional delays increase and the sense of fluency
decreases during the interaction. This demonstrates that not only fast planning
is required, but approach directions and timing must also be considered for com-
fortable interactions. Further examples of the importance of approach directions
during handovers are given in [Koay et al. 2007] and [Sisbot and Alami 2012].
Human motion and action prediction are extremely useful for reducing such func-
tional delays and increasing fluency. There is a substantial body of literature on
human motion prediction in terms of long-term prediction, i.e. full reaching mo-
tions, see, e.g., [Luo et al. 2018], as well as short-term predictions obtained by
tracking algorithms. Both are important for motion planning. Short-term predic-
tions primarily improve the observations, resulting in more accurate estimates of
the goals and dynamic obstacles in the environment. Long-term prediction, on the
other hand, can be used to estimate human intentions and thus, influence fluency
directly. Prediction combined with rapid replanning results in both reactive and
anticipatory action [Hoffman and Breazeal 2007].

Depending on the mechanical structure of the robot, also human-like motions
can be planned. Anthropomorphic robot arms, for example, such as the KUKA
LBR iiwa, mimic the structure of a human arm with seven DOF. Optimal control
theory was used to analyze human reaching motions in relation to the hand pose,
see, e.g., [Flash and Hogan 1985] and [Todorov and Jordan 2002]. The results
show that hand movement minimizes jerk, leading to smooth motions with bell-
shaped velocity profiles. These findings provide explicit criteria that, in principle,
can be applied to robotic motion planning. Maximizing the smoothness of the
trajectories is somehow contradictory to minimizing the time, i.e. time optimality,
which is commonly desired in industrial processes to maximize throughput. Fast
robot movements, however, are perceived as less safe when interacting with hu-
mans [Arai et al. 2010]. This implies that the smoothness of robot motion is ex-
tremely important in HRC. Another important aspect is motion planning in the task
space, i.e. Cartesian end-effector coordinates because most existing motion plan-
ning algorithms are designed in the joint space. In the case of a redundant robot,
the nullspace motion must also be considered. The nullspace motion typically de-
termines the robot’s elbow movement, which is strongly dependent on the robot
structure and can only be determined on a very limited basis by HRI.
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4 Motion Planning Algorithms

In this section, we give an overview of existing motion planning algorithms in the
literature while also assessing their capabilities with respect to the criteria identi-
fied in Section 3. Because of its importance in robot autonomy, motion planning
has received a lot of attention in robotics research. The corresponding algorithms
can be categorized into planning for static and dynamic environments. While we
are primarily interested in real-time planning in dynamic environments, algorithms
proposed for static environments are frequently used as the foundation for devel-
oping real-time capable methods for dynamic environments.

In static environments, sampling-based methods received a lot of attention.
Their primary benefit is that obstacles do not need to be explicitly modeled in the
configuration space. A collision detection module is instead used to determine
whether or not a sample in configuration space is in collision. This greatly im-
proves the planning efficiency [LaValle 2006]. Two important representatives of
sampling-based algorithms are Probabilistic Roadmap (PRM) [Kavraki et al. 1996]
and Rapidly-exploring Random Trees (RRT) [LaValle and J. 2001]. While PRM
invests heavily in preprocessing to provide fast multi-query planning, RRTs are de-
signed to be fast single-query planners. The basic RRT algorithm has probabilistic
completeness, i.e. in the limit a path, if it exists, will be obtained with probability
one. For a simplified version of PRM, this was proven as well [Kavraki et al. 1998].
Since their initial publication, several extensions were proposed to PRM and RRT
motion planning. For our purpose, extensions toward optimal motion planning are
the most relevant. Thus, for instance, the asymptotically optimal algorithms RRT*
and PRM* were proposed in [Karaman and Frazzoli 2011]. Although sampling-
based motion planners have several desirable properties, particularly probabilistic
completeness, they frequently suffer from non-smooth trajectories, which require
further post-processing. This ultimately increases the planning time. Further-
more, complex objectives and constraints lead to a high computational load. This
can be a problem when formulating the objectives for comfort, as discussed in
Section 3.2.

As a possible solution to these issues, trajectory optimization was proposed. Al-
though, in general, trajectory optimization returns only locally optimal trajectories,
it has been successfully applied to robotic motion planning. Trajectory optimiza-
tion can be used to refine trajectories obtained from sampling-based planners, but
it can also be used as a stand-alone algorithm. In [Ratliff et al. 2009; Zucker et al.
2013], an optimization-based planner called Covariant Hamiltonian Optimization
for Motion Planning (CHOMP) was proposed. The objective function consists of
two cost terms, an obstacle cost based on Euclidean distance fields and a smooth-
ness cost that takes velocities and accelerations into account along the trajectory.
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The trajectory is updated iteratively using covariant gradient descent. The update
rule ensures that the trajectory remains smooth while decreasing the cost. The
experiments demonstrate the algorithm’s successful application to robotic manip-
ulation. One significant drawback, which the authors also mention, is that due to
the fixed discretization, only trajectories of a predefined length are considered.

In [Kalakrishnan et al. 2011], a stochastic optimization approach for motion
planning called Stochastic Trajectory Optimization for Motion Planning (STOMP)
is presented. The authors propose using a series of noisy trajectories that deviate
slightly from the current candidate trajectory, and are then simulated to determine
their costs. The candidate solution is updated based on these costs. One of the
main advantages of this approach is that, because of derivative-free stochastic
optimization, it can deal with general constraints for which gradients are not al-
ways available. This can be an advantage compared to CHOMP [Ratliff et al.
2009; Zucker et al. 2013] if desirable cost functions are not differentiable.

The method in [Schulman et al. 2014] is similar to CHOMP [Ratliff et al. 2009;
Zucker et al. 2013], however, the authors make use of sequential convex opti-
mization. In each iteration, a convex approximation of the nonlinear trajectory
optimization problem is constructed. A trust region method is used to ensure that
the approximation remains valid. In addition, infeasible constraints are converted
to ℓ1 penalties. A quadratic programming solver is used to solve the convex sub-
problem. For collision checking, GJK as mentioned in Section 3.1 is used. To en-
sure continuous-time safety, the collision checking procedure takes into account
a swept-out volume, which is a polyhedral approximation of the free configuration
space between two time steps. When compared to CHOMP [Ratliff et al. 2009;
Zucker et al. 2013] and sampling-based planners implemented in the open motion
planning library (OMPL) [Şucan et al. 2012] including RRT [LaValle and J. 2001],
the experiments show a significant improvement in terms of speed, the problems
that can be solved, and the quality of the resulting trajectories. Furthermore, this
framework allows for inclusion of more complex cost functions, such as those re-
lated to human comfort.

Recently, a framework for guaranteed sequential trajectory optimization
(GuSTO) [Bonalli et al. 2019] using sequential convex programming (SCP) was
proposed. In contrast to TrajOpt [Schulman et al. 2014], which makes use of
SCP as well, theoretical guarantees for convergence to at least a stationary point
are given by the authors. Numerical simulations demonstrate that this approach
provides more accurate results in less time compared to other state-of-the-art
SCP-based planners.

To capture dynamic environments and real-time planning, several approaches
can be found in the literature. Extensions to RRT planning include [Li and Shie
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2002; Ferguson et al. 2006] and [Zucker et al. 2007]. In addition, [Svenstrup et al.
2010] use the RRT algorithm in combination with a dynamic potential field. The
potential field takes into account the robot’s position in the environment, its goal,
and the humans moving in its vicinity. To account for changes in the environment
the planner is implemented as a model predictive controller (MPC). To that end,
only the first few steps of the planned trajectory are executed, while the planner
calculates a new trajectory on-line. In [Sun et al. 2015], a similar RRT-based ap-
proach for high-frequency replanning was developed. A stochastic motion model
of the robot is used. Several independent RRTs are executed in parallel to quickly
find an optimal plan. The lowest cost plan is then chosen. While a single RRT will
not find an optimal solution, it is proven that running several RRTs in parallel will
asymptotically converge to an optimal plan. However, sampling-based planners
for dynamic environments have the same drawbacks as their static counterparts.

In [Park et al. 2012], a similar concept using trajectory optimization is proposed.
The motion of dynamic obstacles is taken into account by predicting their motion
over a short-time horizon and computing a conservative local bound on their loca-
tion and velocity. Based on this information, a constraint optimization problem is
solved to compute a plan. Because dynamic object trajectories are only predicted
for a short period of time, prediction uncertainty grows quickly. The planner is
executed again in each time step, and only one step of the trajectory is executed
before replanning.

The works [Ghazaei Ardakani et al. 2015, 2019] present an MPC approach
for real-time point-to-point trajectory generation for a robot manipulator. A linear
kinematic robot model is used, given by a double integrator system, where joint
positions, velocities and accelerations serving as optimization variables. The fi-
nal trajectories are generated using linear interpolation with a fixed sampling time.
Because of the fixed sampling intervals and the goal constraint on the final step,
it is assumed that the trajectory duration is sufficient to reach the goal while tak-
ing the robot’s kinematic limits into account. The authors successively reduce the
sampling period in the experiments, increasing the time resolution of the trajectory
as the robot approaches the goal. The fixed sampling period, on the other hand,
implies that the robot trajectory is initially quite coarse, which can be problematic
in terms of constraint satisfaction, such as collision constraints for safety. Due to
the convex formulation of the optimization problem, the authors report fast conver-
gence of their algorithm. The convex formulation, on the other hand, significantly
limits the available optimization criteria.

In contrast, in [Krämer et al. 2020] a different approach utilizing a cost-to-go-
term was proposed replacing the requirement of a goal constraint. This allows
for a fewer discretization points along the trajectory without sacrificing sampling
density. This is especially important in terms of safety because high sampling
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density reduces the likelihood of collision between trajectory samples while being
computationally less expensive than continuous collision checking as, for exam-
ple, done in [Schulman et al. 2014]. The results of [Krämer et al. 2020] show that
achieving planning times below 100ms per MPC iteration for pick-and-place tasks
is feasible.

In [Agboh and Dogar 2018], an extension of STOMP [Kalakrishnan et al. 2011]
to real-time replanning for grasping in cluttered environments is proposed. Initially,
an open-loop trajectory is generated with numerous iterations to obtain a locally
optimal solution. Starting with this initial trajectory, replanning is done with fewer
iterations and with feedback from the current state. High-quality trajectories can
be generated while maintaining fast planning times if the inital trajectory is a good
initialization for replanning. The experiments show that the approach works well
for grasping in cluttered environments that do not change too quickly. For moving
targets or obstacles, the initialization is not a good approach since the trajectory
can already be infeasible when the planner has finished.

A local receding horizon trajectory optimization given a global reference path
in a difficult terrain is proposed in [Howard et al. 2010]. In [Toit and Burdick 2012],
robot motion planning is formulated as a stochastic dynamic programming (SDP)
problem. The authors explicitly address uncertainty rooted in the robot’s environ-
ment. Because of the stochastic context, constraints are formulated as chance
constraints [Toit and Burdick 2011], meaning that the constraint has to be fulfilled
with a certain confidence. Given the complexity of the SDP problem, it is approx-
imately solved using stochastic receding horizon control in the belief space. In
dynamic uncertain environments, the stochastic approach provides more accu-
rate models for planning. However, when compared to deterministic solutions,
the additional computational effort is significant.

Recently, an MPC concept for autonomous guided vehicle motion planning was
published [Mercy et al. 2018]. The authors use B-Spline trajectory parametrization
to guarantee constraint satisfaction in the resulting nonlinear trajectory optimiza-
tion problem. In contrast to [Toit and Burdick 2012], obstacles are modeled and
predicted in a deterministic way facilitating a linear prediction model. The exper-
iments show that dynamic obstacles in the environment can be safely avoided
when combined with fast replanning.

MPC can also be used to plan and track a robot’s trajectory at the same time.
This has the advantage of not requiring the use of a trajectory following con-
troller. Furthermore, the dynamic constraints of the entire system can be system-
atically considered allowing for more aggressive trajectories. The MPC framework
CIAO [Schoels et al. 2020] is based on a novel convex inner approximation of the
collision avoidance constraint. This enables the planning of kinodynamically fea-
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sible collision-free trajectories in continuous time. A real-world experiment with
a differential drive mobile robot demonstrates the unified trajectory optimization
and tracking. Planning for multi-body robots, on the other hand, has yet to be
demonstrated.

Simultaneous trajectory optimization and tracking was also applied to full dy-
namic models of robot manipulators, see, e.g., [Tassa et al. 2012] and drones,
see, e.g, [Neunert et al. 2016]. Recently, Kleff et al. [Kleff et al. 2021] proposed
an MPC approach based on differential dynamic programming (DDP) in real time
on a collaborative robot. However, so far, MPC with full dynamics has only been
solved for simplified problems, with additional objectives such as obstacle avoid-
ance being neglected. As a result, for the currently available real-time hardware,
approaches with separate trajectory planning and trajectory tracking control are
typically used.

5 Receding Horizon Trajectory Optimization

In this section, we provide a brief overview of a receding horizon trajectory opti-
mization approach for robot motion planning that takes into account the require-
ments from Section 3. In comparison to previous works discussed in Section 4,
we explicitly take into account the combined requirements from Section 3, namely
pre-collision and post-collision safety, legibility and smooth robot motion while
enabling fluent interaction. We maintain compatibility with Cartesian impedance
control by introducing computationally efficient singularity avoidance based on
penalty functions. In addition, a novel via-point approach for receding horizon tra-
jectory optimization is discussed providing a framework for planning legible and
human-like motion with low computational overhead. Due to our emphasis on
computational efficiency in the aforementioned features, fluent interactions can
be ensured.

The planning approach considers robot manipulators under kinematic con-
straints. Note that robot dynamics are not considered in the planner. It is assumed
that the underlying controller, i.e. a Cartesian compliance control scheme [Ott
2008], compensates for the nonlinear dynamics resulting in a remaining linear
double integrator system. The motion planning problem is formulated as a trajec-
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tory optimization in the form

min
u0|n,...,uN−1|n

N−1∑
k=0

l(xk|n,uk|n) (1a)

s.t. xk+1|n = Φxk|n + Γuk|n (1b)

x0|n = x1|n−1, u0|n = u1|n−1 (1c)

x ≤ xk|n ≤ x, k = 0, . . . , N − 1 (1d)

u ≤ uk|n ≤ u, k = 0, . . . , N − 1 (1e)

for the time steps k = 0, . . . , N − 1, with fixed sampling time Ts. The optimization
problem (1) is solved at every sampling instant n for the finite planning horizon
NTs. Only the first step of the optimal control input is applied to the system until the
next sampling instant n+ 1. The optimization problem is then solved again, now
starting one sampling time Ts ahead and therefore predicting one step further into
the future. Hence, the planning horizon is said to be receding. Eq. (1a) describes a
general objective function to be minimized for the planning horizon nTs to (n+N−
1)Ts depending on the robot’s state xk|n and the input uk|n at the time (n+ k)Ts,
k = 0, . . . , N − 1. The objective function includes a cost term that represents the
distance to the goal such that the robot moves toward this goal. Additional cost
terms can be added depending on the specific application, which will be discussed
in greater detail in the remainder of this section. The resulting linear system of
the robot dynamics is an equality constraint defined by Eq. (1b). The planner is
initialized from the previously calculated trajectory through Eq. (1c). State and
input constraints, specifically addressing joint limits, velocity limits, and higher
derivatives, if necessary, are considered in Eq. (1e) where x, u, and x, u denote
lower and upper bounds, respectively.

The receding horizon trajectory optimization shares advantages of the trajec-
tory optimization approach over sampling based algorithms as stated in Section 4.
This is particularly relevant to the flexibility of objective functions and constraints
in modelling desired properties in human-robot interactions and ensuring smooth
trajectories. Furthermore, we use a cost-to-go term for reaching the goal in com-
bination with fixed sampling times similar to what is done in [Krämer et al. 2020].
This allows for fast planning while still maintaining tightly sampled trajectories.
Fast planning times are essential to reduce the robot’s functional delay, enabling
fluent interactions. Nonetheless, safety cannot be sacrificed for the sake of fast
planning times. As mentioned in Section 3.1, safety violations can in principle
happen between the discrete time steps of the trajectory optimization. Due to
the computational effort, we do not consider continuous-time collision checking
but instead, rely on small sampling times Ts. This property is in contrast to pre-
vious approaches in the literature. For example, [Ghazaei Ardakani et al. 2015]
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and [Mercy et al. 2018] demand that the final point in the planning horizon already
reaches the goal. This requires either a fixed duration of the trajectory, i.e. in-
dependent of the distance to the goal or the introduction of the duration as an
additional optimization variable, increasing the complexity and thus the computa-
tional effort of the problem.

Collision checking for receding horizon trajectory optimization can be performed
using well-known approaches from the literature. However, the gradient of the
objective function and constraints can be provided to improve the optimization
algorithm’s convergence behavior. To this end, we use a smooth distance ap-
proximation as introduced in [Vu et al. 2020]. We extend the formulation from
rectangular boxes and points to spheres as basic obstacle shapes to allow for
more complex environments. Because collision checking is frequently the bottle-
neck, limiting to simple shapes results in faster optimization times. In the context
of collision checking, the receding horizon framework also enables planning in
dynamic environments. New information about objects in the environment can
be incorporated due to the constant replanning. Furthermore, by including ob-
ject states in the dynamic constraints (1b), predictions of object movements in the
planning horizon can be taken into account.

In addition to safety considerations in the pre-collision phase, we also address
compatibility with Cartesian impedance control [Ott 2008] to enable post-collision
safety. The Cartesian impedance controller requires trajectories to be at least
two times continuously differentiable and singularity free. In the proposed ap-
proach, sufficient smoothness is guaranteed by the equality constraints (1b) and
(1c). Note that, in general, the sampling times of the trajectories are significantly
lower than those required for the execution of the controller. As a result, for the
controller, the trajectories must be interpolated and resampled. The optimization
framework provides several ways to make sure that the planned trajectories are
free of singularities. As mentioned in Section 3.1, a safety margin around sin-
gularities has to be taken into account. A distance to a singular configuration
can in general be defined by the so-called manipulability measure [Yoshikawa
1985]. Alternatively, if a robot’s singular configurations are known, direct distance
measures in the configuration space can be used. The safety margin can be
formulated as an inequality constraint ensuring a minimum distance to singular
configurations or by demanding a minimum amount of manipulability. In view of
the computational costs, the singularity avoidance is realized by a penalty function
which is added to the objective function l(xk|n,uk|n). Note that, in principle, this
does not guarantee singularity-free motions due to competing cost terms, how-
ever, such a situation can be avoided by selecting a sufficiently large weight for
the penalty function.
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Besides safety, we explicitly address comfort discussed in Section 3.2 within the
receding horizon trajectory optimization framework. First, we consider human-like
movement, as for the example investigated in [Flash and Hogan 1985]. Human
movement of the hand is regarded as minimizing jerk there. This corresponds to
minimizing jerk along an end-effector trajectory in the task space in the robotic
applications under consideration. This formulation can be easily incorporated into
the trajectory optimization problem, however, it would require planning in the task
space. Direct planning in the task space makes the consideration of the joint
limit constraints more involved. Because of the nonlinear relationship between
the joint and the task space, enforcing smoothness in the joint space is computa-
tionally more efficient but does not always result in human-like movement in the
task space. Planning in the joint space, but formulating the cost-to-go term in the
task space based on the forward kinematics is another option, again at the cost of
higher computational effort. Thus, we propose to approximate a cost-to-go term
in the task space by placing via-points in the task space along the planned trajec-
tories. The approximation is more or less coarse and computationally expensive
depending on the number of via-points. Such intermediate goals are also impor-
tant for a variety of other robotic tasks. Grasping for example requires the gripper
to be aligned with an object in a so-called pre-grasp pose before the grasp point
is reached. Furthermore, via-points can also aid the establishment of comfortable
interactions by ensuring appropriate approach directions and end-effector orien-
tations. In addition, intermediate goals can help to disambiguate goals resulting in
legible robot trajectories. Again, this is a computationally efficient approximation
compared to what is done, e.g. in [Dragan et al. 2013] to achieve legible robot mo-
tion. In previous works, see, e.g., [Schulman et al. 2014; Ghazaei Ardakani et al.
2015], a common approach for intermediate goals was to constrain points along
the trajectory to via-points. This requires predetermined timings for the via-points
along the trajectory. Furthermore, for a receding planning horizon, this approach
is not feasible because the via-point may not be reachable within the horizon.

In contrast, we propose to formulate the optimization problem in such a way
that only the relative timing between via-points, i.e. a sequence of via-points,
is considered, rather than the exact timing along the trajectory. To that end, we
introduce a parametrized reference path that linearly interpolates from the starting
configuration through the via-points to the goal. The path parameter’s dynamics
are added to the optimization problem to represent the progress along the path. In
contrast to classical path-following control, see, e.g., [Böck and Kugi 2014, 2016;
Faulwasser et al. 2017], we are not interested in precisely following the path, but
only in accurately passing through the via-points. Therefore, the cost weights are
adjusted so that progress along the path is favored over precise tracking between
via-points. To pass the via-points exactly, a path progress dependent constraint
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is introduced. Instead of being specified in advance, the optimizer determines the
timings and velocities through the via-points in this formulation.

6 Conclusions

In this work, we outlined the requirements for motion planning algorithms in col-
laborative human-robot tasks. In addition to physical properties of collaborative
robots, a brief overview of algorithmic safety measures for planning algorithms,
particularly collision checking, was provided. Although safety is the topmost pri-
ority, it is not the only requirement for planning in human-robot collaborative tasks.
In this context, properties related to comfort including proximity, legibility, fluency,
and human-likeness of robot motion were discussed. Furthermore, the state-
of-the-art motion planning algorithms were evaluated concerning these require-
ments. Finally, a motion planning framework based on a receding horizon opti-
mization approach was outlined. This method enables the flexible specification of
control objectives and the systematic incorporation of constraints to easily adjust
the desired properties for HRC.

Bibliography
Wisdom C. Agboh and Mehmet R. Dogar. 2018. Real-Time Online Re-Planning for Grasp-

ing Under Clutter and Uncertainty. IEEE-RAS International Conference on Humanoid
Robots, 1–8. https://doi.org/10.1109/HUMANOIDS.2018.8625041

R. Alami, A. Albu-Schaeffer, A. Bicchi, R. Bischoff, R. Chatila, A. De Luca, A. De Santis, G.
Giralt, J. Guiochet, G. Hirzinger, F. Ingrand, V. Lippiello, R. Mattone, D. Powell, S. Sen,
B. Siciliano, G. Tonietti, and L. Villani. 2006. Safe and dependable physical human-robot
interaction in anthropic domains: State of the art and challenges. IEEE/RSJ International
Conference on Intelligent Robots and Systems, 1–16. https://doi.org/10.1109/IROS.
2006.6936985

T. Arai, R. Kato, and M. Fujita. 2010. Assessment of operator stress induced by robot
collaboration in assembly. CIRP Annals 59, 1 (2010), 5–8. https://doi.org/10.1016/j.
cirp.2010.03.043

Martin Böck and Andreas Kugi. 2014. Real-time Nonlinear Model Predictive Path-Following
Control of a Laboratory Tower Crane. IEEE Transactions on Control Systems Technology
22, 4 (2014), 1461–1473. https://doi.org/10.1109/TCST.2013.2280464

Martin Böck and Andreas Kugi. 2016. Constrained model predictive manifold stabilization
based on transverse normal forms. Automatica 74 (2016), 315–326. https://doi.org/10.
1016/j.automatica.2016.07.046

Riccardo Bonalli, Abhishek Cauligi, Andrew Bylard, and Marco Pavone. 2019. GuSTO:
Guaranteed Sequential Trajectory optimization via Sequential Convex Programming.

143

https://doi.org/10.1109/HUMANOIDS.2018.8625041
https://doi.org/10.1109/IROS.2006.6936985
https://doi.org/10.1109/IROS.2006.6936985
https://doi.org/10.1016/j.cirp.2010.03.043
https://doi.org/10.1016/j.cirp.2010.03.043
https://doi.org/10.1109/TCST.2013.2280464
https://doi.org/10.1016/j.automatica.2016.07.046
https://doi.org/10.1016/j.automatica.2016.07.046


144

Florian Beck, Andreas Kugi

International Conference on Robotics and Automation, 6741–6747. https://doi. 
org/10.1109/ICRA.2019.8794205

Maya Cakmak, Siddhartha S. Srinivasa, Min Kyung Lee, Sara Kiesler, and Jodi Forlizzi. 
2011. Using spatial and temporal contrast for fluent robot-human hand-overs. ACM/
IEEE International Conference on Human-Robot Interaction, 489–496. https://doi.
org/10.1145/1957656.1957823

Stephen Cameron. 1997. Enhancing GJK: computing minimum and penetration distanc-
es between convex polyhedra. International Conference on Robotics and Automation, 
3112–3117. https://doi. org/10.1109/ROBOT.1997.606761

Alessandro De Luca, Alin Albu-Schaffer, Sami Haddadin, and Gerd Hirzinger. 2006. Colli-
sion Detection and Safe Reaction with the DLR-III Lightweight Manipulator Arm. IEEE/
RSJ International Conference on Intelligent Robots and Systems, 1623–1630. https://
doi.org/10.1109/IROS.2006. 282053

Anca D Dragan, Kenton C T Lee, and Siddhartha S Srinivasa. 2013. Legibility and predict-
ability of robot motion. ACM/IEEE International Conference on Human-Robot Interac-
tion, 301–308. https: //doi.org/10.1109/HRI.2013.6483603

Timm Faulwasser, Tobias Weber, Pablo Zometa, and Rolf Findeisen. 2017. Implemen-
tation of Nonlinear Model Predictive Path-Following Control for an Industrial Robot. 
IEEE Transactions on Control Systems Technology 25,4(2017),1505–1511. https://doi.
org/10.1109/TCST.2016.2601624

Dave Ferguson, Nidhi Kalra, and Stentz Anthony. 2006. Replanning with RRTs. IEEE Inter-
national Conference on Robotics and Automation,1243–1248. https://doi.org/10.1109/
ROBOT.2006. 1641879

Tamar Flash and Neville Hogan. 1985. The coordination of arm movements: an experi-
mentally confirmed mathematical model. Journal of Neuroscience 5, 7 (1985), 1688–
1703. https://doi.org/10. 1523/JNEUROSCI.05- 07- 01688.1985

M Mahdi Ghazaei Ardakani, Björn Olofsson, Anders Robertsson, and Rolf Johansson. 
2015. Realtime trajectory generation using model predictive control. IEEE International 
Conference on Automation Science and Engineering,942–948. https://doi.org/10.1109/
CoASE.2015.7294220

M Mahdi Ghazaei Ardakani, Björn Olofsson, Anders Robertsson, and Rolf Johansson. 
2019. Model Predictive Control for Real-Time Point-to-Point Trajectory Generation. 
IEEE Transactions on Automation Science and Engineering 16, 2 (2019), 972–983. 
https://doi.org/10.1109/TASE.2018.2882764

Elmer G Gilbert, Daniel W Johnson, and S Sathiya Keerthi. 1988. A fast procedure for com-
puting the distance between complex objects in three-dimensional space. IEEE Journal 
on Robotics and Automation 4, 2 (1988),193–203. https://doi.org/10.1109/56.2083

Sami Haddadin, Alin Albu-Schaffer, Alessandro De Luca, and Gerd Hirzinger. 2008. Colli-
sion Detection and Reaction: A Contribution to Safe Physical Human-Robot Interaction. 
IEEE/RSJ International Conference on Intelligent Robots and Systems, 3356–3363. 
https://doi.org/10.1109/IROS.2008.4650764

Sami Haddadin, Alessandro De Luca, and Alin Albu-Schäffer. 2017. Robot Collisions: A 
Survey on Detection, Isolation, and Identification. IEEE Transactions on Robotics 33, 6 
(2017), 1292–1312. https://doi.org/10.1109/TRO.2017.2723903

Edward T Hall. 1963. A System for the Notation of Proxemic Behavior. American Anthro-
pologist 65, 5(1963),1003–1026. https://doi.org/10.1525/aa.1963.65.5.02a00020



145

Motion Planning for Human-Robot Collaboration 

Gerhard Hirzinger, Norbert Sporer, Alin Albu-Schaffer, M. Hahnle, Rainer Krenn, A. Pas-
cucci, and Manfred Schedl. 2002. DLR’s torque-controlled light weight robot III-are we 
reaching the technological limits now? IEEE International Conference on Robotics and 
Automation,1710–1716. https://doi.org/10.1109/ROBOT.2002.1014788

Guy Hoffman. 2019. Evaluating Fluency in Human–Robot Collaboration. IEEE Trans-
actions on Human-Machine Systems 49, 3 (2019), 209–218. https://doi.org/10.1109/
THMS.2019.2904558

Guy Hoffman and Cynthia Breazeal. 2007. Cost-Based Anticipatory Action Selection for 
Human–Robot Fluency. IEEE Transactions on Robotics 23, 5 (2007), 952–961. https://
doi.org/10.1109/TRO.2007.907483

Thomas Howard, Colin Green, and Alonzo Kelly. 2010. Receding Horizon Model-Predic-
tive Control for Mobile Robot Navigation of Intricate Paths. Field and Service Robotics, 
69–78. https://doi.org/10.1007/978-3-642-13408-1_7

Mrinal Kalakrishnan, Sachin Chitta, Evangelos Theodorou, Peter Pastor, and Ste-
fan Schaal. 2011. STOMP: Stochastic trajectory optimization for motion planning. 
IEEE International Conference on Robotics and Automation, 4569–4574. https://doi.
org/10.1109/ICRA.2011.5980280

Sertac Karaman and Emilio Frazzoli. 2011. Sampling-based algorithms for optimal mo-
tion planning. The International Journal of Robotics Research 30, 7 (2011), 846–894. 
https://doi.org/10.1177/0278364911406761

Lydia E Kavraki, Mihail N Kolountzakis, and Jean-Claude Latombe. 1998. Analysis of 
probabilistic roadmaps for path planning. IEEE Transactions on Robotics and Automa-
tion 14, 1 (1998), 166–171. https://doi.org/10.1109/70.660866

Lydia E Kavraki, Petr Svestka, Jean-Claude Latombe, and Mark H Overmars. 1996. 
Probabilistic roadmaps for path planning in high-dimensional configuration spaces. 
IEEE Transactions on Robotics and Automation 12, 4 (1996), 566–580. https://doi.
org/10.1109/70.508439

Sebastien Kleff, Avadesh Meduri, Rohan Budhiraja, Nicolas Mansard, and Ludovic 
Righetti. 2021. High-Frequency Nonlinear Model Predictive Control of a Manipulator. 
IEEE International Conference on Robotics and Automation, 7330–7336. https://doi.
org/10.1109/ICRA48506.2021.9560990

Kheng L Koay, Kerstin Dautenhahn, Sarah N Woods, and Michael L Walters. 2006. Em-
pirical Results from Using a Comfort Level Device in Human-Robot Interaction Studies. 
ACM SIGCHI/SIGART Conference on Human-Robot Interaction,194–201. https://doi.
org/10.1145/1121241.1121276

Kheng L Koay, Emrah A Sisbot, Dag S Syrdal, Mick L Walters, Kerstin Dautenhahn, and 
Rachid Alami. 2007. Exploratory Study of a Robot Approaching a Person in the Context 
of Handing Over an Object. AAAI Spring Symposium: Multidisciplinary Collaboration for 
Socially Assistive Robotics, 18–24.

Maximilian Krämer, Christoph Rösmann, Frank Hoffmann, and Torsten Bertram. 2020. 
Model predictive control of a collaborative manipulator considering dynamic obsta-
cles. Optimal Control Applications and Methods 41, 4 (2020), 1211–1232. https://doi.
org/10.1002/oca.2599

Dana Kulić and Elizabeth Croft. 2007. Physiological and subjective responses to ar-
ticulated robot motion. Robotica 25, 1 (2007), 13–27. https://doi.org/10.1017/
S0263574706002955



146

Florian Beck, Andreas Kugi

Przemyslaw A Lasota, Terrence Fong, and Julie A Shah. 2017. A Survey of Methods for 
Safe Human-Robot Interaction. Foundations and Trends in Robotics 5, 4 (2017), 261–
349. https://doi.org/10.1561/2300000052

Steven M LaValle. 2006. Planning Algorithms. Cambridge University Press, Cambridge, 
U.K.

Steven M LaValle and James J Kuffner 2001. Rapidly-Exploring Random Trees: Prog-
ress and Prospects. In Algorithmic and Computational Robotics, Bruce Donald, 
Kevin Lynch, Daniela Rus (Hrsg.). A K Peters/CRC Press, NewYork. https://doi.
org/10.1201/9781439864135

Tsai-Yen Li and Yang-Chuan Shie. 2002. An incremental learning approach to motion plan-
ning with roadmap management. Proceedings 2002 IEEE International Conference on 
Robotics and Automation, 3411–3416. https://doi.org/10.1109/ROBOT.2002.1014238

Christina Lichtenthäler, Tamara Lorenzy, and Alexandra Kirsch. 2012. Influence of leg-
ibility on perceived safety in a virtual human-robot path crossing task. International 
Symposium on Robot and Human Interactive Communication, 676–681. https://doi.
org/10.1109/ROMAN.2012.6343829

Ruikun Luo, Rafi Hayne, and Dmitry Berenson. 2018. Unsupervised early prediction of 
human reaching for human–robot collaboration in shared workspaces. Autonomous 
Robots 42, 3 (2018), 631–648. https://doi.org/10.1007/s10514-017-9655-8

Tim Mercy, Ruben Van Parys, and Goele Pipeleers. 2018. Spline-Based Motion Plan-
ning for Autonomous Guided Vehicles in a Dynamic Environment. IEEE Transactions 
on Control Systems Technology 26, 6 (2018), 2182–2189. https://doi.org/10.1109/
TCST.2017.2739706

Wolfgang Merkt, Vladimir Ivan, and Sethu Vijayakumar. 2019. Continuous-Time Collision 
Avoidance for Trajectory Optimization in Dynamic Environments. IEEE/RSJ Internation-
al Conference on Intelligent Robots and Systems, 7248–7255. https://doi.org/10.1109/
IROS40897.2019.8967641

Brian Mirtich. 1998. V-Clip: Fast and Robust Polyhedral Collision Detection. ACM Transac-
tions on Graphics 17, 3 (1998), 177–208. https://doi.org/10.1145/285857.285860

Michael Neunert, Cédric de Crousaz, Fadri Furrer, Mina Kamel, Farbod Farshidian, Ro-
land Siegwart, and Jonas Buchli. 2016. Fast nonlinear Model Predictive Control for 
unified trajectory optimization and tracking. IEEE International Conference on Robotics 
and Automation, 1398–1404. https://doi.org/10.1109/ICRA.2016.7487274

Christian Ott. 2008. Cartesian Impedance Control of Redundant and Flexible-Joint Ro-
bots. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69255-3

Chonhyon Park, Jia Pan, and Dinesh Manocha. 2012. ITOMP: Incremental Trajectory 
Optimization for Real-Time Replanning in Dynamic Environments. International Con-
ference on Automated Planning and Scheduling, 207–215.

Nathan Ratliff, Matt Zucker, J. Andrew Bagnell, and Siddhartha Srinivasa. 2009. CHOMP: 
Gradient optimization techniques for efficient motion planning. IEEE Internation-
al Conference on Robotics and Automation, 489–494. https://doi.org/10.1109/RO-
BOT.2009.5152817

Tobias Schoels, Luigi Palmieri, Kai O. Arras, and Moritz Diehl. 2020. An NMPC Approach 
using Convex Inner Approximations for Online Motion Planning with Guaranteed Col-
lision Avoidance. IEEE International Conference on Robotics and Automation, 3574–
3580. https://doi.org/10.1109/ICRA40945.2020.9197206



147

Motion Planning for Human-Robot Collaboration 

John Schulman, Yan Duan, Jonathan Ho, Alex Lee, Ibrahim Awwal, Henry Bradlow, Jia 
Pan, Sachin Patil, Ken Goldberg, and Pieter Abbeel. 2014. Motion planning with sequen-
tial convex optimization and convex collision checking. The International Journal of Ro-
botics Research 33, 9 (2014), 1251– 1270. https://doi.org/10.1177/0278364914528132

Emrah A Sisbot and Rachid Alami. 2012. A Human-Aware Manipulation Planner. 
IEEE Transactions on Robotics 28, 5 (2012), 1045–1057. https://doi.org/10.1109/
TRO.2012.2196303

Ioan A Şucan, Mark Moll, and Lydia E Kavraki. 2012. The Open Motion Planning Library. 
IEEE Robotics & Automation Magazine 19, 4 (2012), 72–82. https://doi.org/10.1109/
MRA.2012.2205651

Wen Sun, Sachin Patil, and Ron Alterovitz. 2015. High-Frequency Replanning Under Un-
certainty Using Parallel Sampling-Based Motion Planning. IEEE Transactions on Ro-
botics 31, 1 (2015), 104–116. https://doi.org/10.1109/TRO.2014.2380273

Mikael Svenstrup, Thomas Bak, and Hans J Andersen. 2010. Trajectory planning for ro-
bots in dynamic human environments. IEEE/RSJ International Conference on Intel-
ligent Robots and Systems, 4293–4298. https://doi.org/10.1109/IROS.2010.5651531

Yuval Tassa, Tom Erez, and Emanuel Todorov. 2012. Synthesis and stabilization of 
complex behaviors through online trajectory optimization. IEEE/RSJ International 
Conference on Intelligent Robots and Systems, 4906–4913. https://doi.org/10.1109/
IROS.2012.6386025

Emanuel Todorov and Michael I Jordan. 2002. Optimal feedback control as a theo-
ry of motor coordination. Nature Neuroscience 5, 11 (2002), 1226–1235. https://doi.
org/10.1038/nn963

Noel E Du Toit and Joel W Burdick. 2011. Probabilistic Collision Checking With Chance 
Constraints. IEEE Transactions on Robotics 27, 4 (2011), 809–815. https://doi.
org/10.1109/TRO.2011.2116190

Noel E Du Toit and Joel W Burdick. 2012. Robot Motion Planning in Dynamic, Uncer-
tain Environments. IEEE Transactions on Robotics 28, 1 (2012), 101–115. https://doi.
org/10.1109/TRO.2011.2166435

Minh N Vu, Patrik Zips, Amadeus Lobe, Florian Beck, Wolfgang Kemmetmüller, and An-
dreas Kugi. 2020. Fast motion planning for a laboratory 3D gantry crane in the presence 
of obstacles. IFAC-PapersOnLine 53, 2 (2020), 9508–9514. https://doi.org/10.1016/j.
ifacol.2020.12.2427

Tsuneo Yoshikawa. 1985. Manipulability and redundancy control of robotic mechanisms. 
IEEE International Conference on Robotics and Automation, 1004–1009. https://doi.
org/10.1109/ROBOT. 1985.1087283

Matt Zucker, James Kuffner, and Michael Branicky. 2007. Multipartite RRTs for Rapid Re-
planning in Dynamic Environments. IEEE International Conference on Robotics and 
Automation, 1603–1609. https://doi.org/10.1109/ROBOT.2007.363553

Matthew Zucker, Nathan Ratliff, Anca Dragan, Mihail Pivtoraiko, Matthew Klingensmith, 
Christopher Dellin, James Andrew Bagnell, and Siddhartha Srinivasa. 2013. CHOMP: 
Covariant Hamiltonian Optimization for Motion Planning. International Journal of Robot-
ics Research 32 (2013), 1164–1193. https://doi.org/10.1177/0278364913488805


