
Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalInformation?journalCode=umcm20

Mechanics of Advanced Materials and Structures

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/umcm20

Stiffness and stress fluctuations in dental cement
paste: a continuum micromechanics approach

Petr Dohnalík, Christian Hellmich, Gilles Richard & Bernhard L. A. Pichler

To cite this article: Petr Dohnalík, Christian Hellmich, Gilles Richard & Bernhard L. A.
Pichler (2022): Stiffness and stress fluctuations in dental cement paste: a continuum
micromechanics approach, Mechanics of Advanced Materials and Structures, DOI:
10.1080/15376494.2022.2073493

To link to this article:  https://doi.org/10.1080/15376494.2022.2073493

© 2022 The Author(s). Published with
license by Taylor and Francis Group, LLC

Published online: 23 May 2022.

Submit your article to this journal 

Article views: 610

View related articles 

View Crossmark data

https://www.tandfonline.com/action/journalInformation?journalCode=umcm20
https://www.tandfonline.com/loi/umcm20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/15376494.2022.2073493
https://doi.org/10.1080/15376494.2022.2073493
https://www.tandfonline.com/action/authorSubmission?journalCode=umcm20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=umcm20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/15376494.2022.2073493
https://www.tandfonline.com/doi/mlt/10.1080/15376494.2022.2073493
http://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2022.2073493&domain=pdf&date_stamp=2022-05-23
http://crossmark.crossref.org/dialog/?doi=10.1080/15376494.2022.2073493&domain=pdf&date_stamp=2022-05-23


ORIGINAL ARTICLE

Stiffness and stress fluctuations in dental cement paste: a continuum
micromechanics approach

Petr Dohnal�ıka , Christian Hellmicha , Gilles Richardb , and Bernhard L. A. Pichlera

aInstitute for Mechanics of Materials and Structures, TU Wien (Vienna University of Technology), Vienna, Austria; bSeptodont,
Saint-Maur-des-Foss�es, France

ABSTRACT
Calcite-reinforced hydrates provide the superior mechanical properties of Biodentine, a cementi-
tious material used in dentistry. Herein, a self-consistent micromechanics model links two nanoin-
dentation-probed, lognormally distributed microstiffness distributions of infinitely many hydrate
phases, to the material’s macrostiffness, quantified from longitudinal and transverse ultrasonic
wave transmission experiments. Thereby, the model provides values for the Poisson’s ratio of the
hydrates and for a microcrack density reflecting grain boundary defects. Moreover, the model-pre-
dicted hydrate microstresses turn out as beta-distributed, while the overall stiffness can be equally
well upscaled from only two, piecewise uniform, hydrate phases exhibiting median microstiff-
ness values.

HIGHLIGHTS

� Grid nanoindentation provides lognormal distributions of hydrate stiffness
� They enter a microelastic model for dental cement paste
� This model considers grain boundary defects as isotropically-oriented closed cracks
� It provides micro-stress fluctuations resulting from hydrate stiffness distributions
� Median values of hydrate stiffness govern the overall paste stiffness
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1. Introduction

Biodentine is a cementitious material used in dentistry. The
main hydraulic component is tricalcium silicate (“clinker”),
making up 74wt% of the dry binder powder [1, 2]. Calcite
(16.5 wt%) acts as a filler and reinforcement [3]. Zirconium
dioxide (“zirconia”, 5 wt%) provides X-ray opacity. The mix-
ing liquid consists of water, a modified polycarboxylate
polymer (¼ superplasticizer), and calcium chloride accelerat-
ing the setting reaction [1, 2]. The present paper refers to
micromechanics modeling of the elastic stiffness of well-
hardened Biodentine, based on results from a grid nanoin-
dentation testing campaign [3].

Using results from grid nanoindentation as microscopic input
for microelastic modeling of cement paste was introduced by
Constantinides and Ulm [4]. They performed 200 indentation
tests into the calcium-silicate-hydrate matrix. The 200 resulting
values of indentation moduli were translated into moduli of
elasticity, assuming a Poisson’s ratio of 0.24 [5]. The histogram
of the moduli of elasticity showed two peaks. They were repre-
sented by the superposition of two Gaussian probability density
functions. Their mean values were used as input for upscaling
of the elastic stiffness of cement paste, delivering a homogenized

modulus of elasticity amounting to 23:2GPa: As for validation,
the speed of longitudinal ultrasonic waves passing through the
tested material, its mass density, and its Poisson’s ratio (set equal
to 0.24) were translated, based on the theory of elastic wave
propagation through isotropic media, into the macroscopic
modulus of elasticity: 22:8GPa [4]. This success motivated fol-
low-up developments, see the discussion section, and it provides
the motivation for the present contribution. Focused on
Biodentine, it is aimed at linking microstructural stiffness distri-
butions by means of a micromechanics model to the macro-
scopic effective (¼ homogenized) stiffness of the material.

As regards microscopic characterization of Biodentine, results
from a grid nanoindentation testing campaign are taken from
[3]. 5748 nanoindentation tests were performed with a
Berkovich tip. Imposing maximum indentation forces of 1mN
resulted in maximum indentation depths of on average 140 nm:
Only two experiments had to be excluded, because their max-
imum indentation depths were smaller than 45 nm and, there-
fore, did not satisfy the requirement of being at least 2.5-times
larger than the root-mean-squared average surface roughness [6,
7], which amounted to 18 nm [3]. 5746 force-displacement dia-
grams were evaluated based on the Oliver-Pharr formulae for
nanoindentation into infinite halfspaces [8]. The obtained
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histogram of the indentation modulus was represented by the
superposition of three lognormal probability density functions,
see Fig. 1. Lognormal distributions were used rather than
Gaussians, because (i) indentation moduli are strictly positive
quantities, and (ii) the large number of indentation experiments
revealed skewed rather than symmetric stiffness distributions.
The rightmost lognormal distribution in Fig. 1 refers to both
clinker and zirconia, the central distribution to high-density cal-
cite-reinforced hydrates (“HDCR hydrates”), and the leftmost to
lower-density calcite-reinforced hydrates (“LDCR hydrates”), see
[3] and Table 1. This reveals the existence of two types of
hydrates reinforced by calcite particles of single-to-submicromet-
ric size [9]. The two populations of hydrates are reminiscent of
construction cement pastes in which inner and outer products
[10], phenograin and groundmass [11], low-density and high-
density C-S-H [12, 13], as well as class-A and class-B C-S-H
[14] are distinguished.

Evaluation of nanoindentation tests into the stiff clinker and
zirconia grains, based on the Oliver-Pharr formulae mentioned
above, led to smaller-than-expected indentation moduli,
because the grains acted as a kind of larger indenters pressed
into the softer surrounding hydrated material. This effect has
been shown explicitly by image-supported grid nanoindenta-
tion, applied to two different types of cementitious materials
[15, 16]. Hence, we resort to the well-known elastic properties
of clinker and zirconia which are taken from the literature, see
Table 2. The volume fractions of all four types of solid constit-
uents are taken from [3].

As regards macroscopic characterization of Biodentine, the
speed of longitudinal ultrasonic waves and the mass density
were reported in [3]. Herein, also the speed of transversal
ultrasonic waves sent through well-hardened Biodentine is pro-
vided, see Appendix A. This allows for the complete character-
ization of the macroscopic isotropic stiffness of the material:

k exp
bio ¼ 38:4GPa , (1)

g exp
bio ¼ 14:1GPa , (2)

where k exp
bio and g exp

bio denote the macroscopic bulk and shear
moduli of Biodentine; for details see Appendix A.

The micromechanics model will also account for grain
boundary defects. This is motivated as follows. Micromechanical
stiffness bounds were computed for Biodentine, based on

median stiffness values and volume fractions of the three lognor-
mal distributions [3]. The lower bound for the stiffness tensor
component C1111 turned out to be significantly larger than the
value of C1111 derived from the ultrasonic longitudinal wave
transmission experiments. This analysis indicated the existence
of zero-volume microstructural defects such as imperfect
grain boundaries.

The focus of the present contribution rests on the devel-
opment of a micromechanics model which establishes a
quantitative link between the microstructural stiffness prop-
erties (see Fig. 1 and Tables 1 and 2) and the macroscopic
effective stiffness of Biodentine, see Eqs. (1) and (2), with
two remarkable features:

� Grain boundary defects will be accounted for in a self-con-
sistent homogenization approach. They will be modeled by
means of closed circular cracks which are isotropically ori-
ented in space. Budiansky and O’Connell’s dimensionless
crack density parameter [19, 20] will be quantified from
linking the micromechanical model to both nanoindenta-
tion and ultrasonic test results.

� The lognormal distributions of the indentation modulus of
the two populations of calcite-reinforced hydrates will serve
as input for the micromechanics model, rather than just
one representative stiffness per population. Poisson’s ratio
of the two populations of calcite-reinforced hydrates will be
quantified from linking the micromechanical model to both
nanoindentation and ultrasonic test results.

The described micromechanics model will be used to
illustrate quantitatively how macroscopic uniform loading
imposed on a representative volume of Biodentine results in
microscopic stress and strain distributions inside the two
populations of hydrates.

The lognormal microelasticity model will also allow for
assessing the potential and the limitations of piecewise uni-
form microelasticity models. The latter are based on just
one representative stiffness per population of calcite-rein-
forced hydrates. This is particularly interesting in case of
skewed probability density functions (Fig. 1) in which the
mode (¼ most frequent value), the median (¼ 50%-quan-
tile), and the mean value are different, while they are all the
same in case of Gaussians.

Figure 1. Histogram of indentation modulus approximated by the superposition of three lognormal distributions; after [3].
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The present paper is structured as follows: Section 2
presents the lognormal microelasticity model for Biodentine,
accounting for the microstiffness distributions of the two
populations of hydrates by means of two times infinitely
many material phases. Section 3 is dedicated to stress and
strain fluctuations within the hydrates of Biodentine, quanti-
fied by means of probability density functions of volumetric
and deviatoric strain and stress concentration tensor compo-
nents of the two populations of hydrates. Section 4 deals
with piecewise uniform microelasticity models in which one
“equivalent” uniform stiffness is assigned to each one of the
two populations of hydrates. Section 5 contains a discussion.
Section 6 closes the paper with conclusions drawn from
results of the presented study.

2. Lognormal microelasticity model for Biodentine

2.1. Fundamentals of stiffness homogenization

Stiffness homogenization refers to a boundary value problem
of the linear theory of elasticity. It is defined on a represen-
tative volume element (RVE) with volume V of the microhe-
terogeneous material of interest.

The field equations refer to all positions x inside V. The
linear geometric equations define the linearized strain tensor
e as the symmetric part of the displacement gradient.
Denoting the displacement vector as u, they read as eðxÞ ¼
1
2 ½ruðxÞ þ ruTðxÞ�: The linear constitutive relations refer
to linear elastic material behavior. Denoting Cauchy’s stress
tensor as r and the elasticity tensor as C, they read as
rðxÞ ¼ CðxÞ : eðxÞ: The stresses must fulfill the equilibrium
conditions, reading as divrðxÞ ¼ 0:

The boundary conditions refer to all positions x at the
surface @V of the representative volume. Herein, uniform
strain boundary conditions are used [21]. Denoting the
imposed macroscopic strain state as E, they read as

uðxÞ ¼ E � x: (3)

Homogenization of the elastic stiffness is facilitated
through the introduction of quasi-homogeneous constituents
of the microheterogeneous material. Denoted as material
phases, they occupy specific subvolumes Vi of the represen-
tative volume V. Their volume fractions read as fi ¼ Vi=V,
with i ¼ 1, 2, :::,N, where N denotes the number of material
phases. In addition, material phases are characterized by
specific elastic stiffness tensors Ci: Average phase strains
and stresses are introduced:

ei ¼ 1
Vi

ð
Vi

eðxÞ dV, i ¼ 1, 2, :::,N, (4)

ri ¼ 1
Vi

ð
Vi

rðxÞ dV , i ¼ 1, 2, :::,N: (5)

Boundary conditions (3) and the principle of virtual power
[22] imply the existence of the following strain and stress
average rules:

E ¼
XN
i¼1

fi ei, (6)

R ¼
XN
i¼1

fi ri, (7)

where R denotes the macroscopic stress state. Because the
stiffness is uniform inside the phase volumes Vi, the phase-
specific version of the elasticity law reads as:

ri ¼ Ci : ei, i ¼ 1, 2, :::,N: (8)

Macro-to-micro and micro-to-macro scale transitions are
made possible by so-called strain concentration tensors Ai:

They establish links between the macrostrain and the aver-
age phase strains [23–26]:

ei ¼ Ai : E, i ¼ 1, 2, :::,N: (9)

Strain concentration tensors also allow for bottom-up stiff-
ness homogenization, as will be explained next. Inserting ei
according to Eq. (9) into Eq. (8), and the resulting expres-
sion for ri into Eq. (7) yields a relation between the macro-
stress R and the macrostrain E. Comparing it with the
macroscopic version of the elasticity law,

R ¼ Chom : E, (10)

delivers the following expression for the homogenized stiff-
ness tensor [23, 26]

Chom ¼
XN
i¼1

fi Ci : Ai: (11)

Stress concentration tensors Bi establish links between the
macrostress and the average phase stresses:

ri ¼ Bi : R, i ¼ 1, 2, :::,N: (12)

The stress concentration tensors are related to the strain
concentration tensors, as will be shown next. The macro-

scopic elasticity law (10) is solved for the macrostrain: E ¼
ðChomÞ�1 : R: Inserting it into Eq. (9) and the resulting
expression for ei into Eq. (8) yields a relation between the
microstresses ri and the macrostress R: Comparing this
relation with Eq. (12) yields

Bi ¼ Ci : Ai : ðChomÞ�1, i ¼ 1, 2, :::,N: (13)

Eqs. (9), (11), and (13) underline that strain concentration
tensors enable scale transitions in continuum microme-
chanics. These strain concentration tensors are estimated
from Eshelby/Laws-type matrix-inclusion problems [27, 28].
This will be explained in more detail in the context of the
following development of a lognormal microelasticity model
for Biodentine.

Table 1. Results obtained from grid nanoindentation testing [3]: values of
medians, modes, and volume fractions associated with the three lognormal
distributions representing the histogram of indentation moduli in Fig. 1.

Lognormal distribution Median [GPa] Mode [GPa] Volume fraction [–]

LDCR hydrates 45.1 24.5 0.1228
HDCR hydrates 62.6 60.2 0.7420
clinker and zirconia 92.2 89.0 0.1352

sum: 1.0000

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 3



2.2. Tensorial formulation of lognormal microelasticity
model for Biodentine

Continuum micromechanics models account for key features
of microheterogeneous materials: the stiffness constants of
the material phases, their volume fractions, their characteris-
tic phase shapes, and the specific type of interaction between
the phases. Biodentine consists of five types of constituents:
zirconia (index i¼ 1), clinker (i¼ 2), HDCR hydrates (i¼ 3),
LDCR hydrates (i¼ 4), and grain boundary defects modeled
as closed microcracks (i¼ 5). The microstructure of
Biodentine is represented as a highly disordered
(“polycrystalline”) arrangement of material constituents
which exhibit direct phase-to-phase interaction, see Fig. 2.

As regards phase shapes, all four types of solid constitu-
ents are represented as spherical phases. The microcracks
are introduced as thin oblate spheroids.1 Because they are
isotropically oriented in space, they will be represented as a
population of infinitely many material phases [29, 30].

Zirconia and clinker are isotropic, with constant (invari-
ant) stiffness tensors reading as

Ci ¼ 3kiI
vol þ 2giI

dev, i ¼ 1, 2, (14)

where ki and gi denote the bulk and shear moduli, see Table 2.
Ivol and Idev stand for the volumetric and deviatoric parts of
the symmetric fourth-order identity tensor I: Their compo-
nents read as Iijkl ¼ dikdjl þ dildjk

� �
=2, Ivolijkl ¼ dijdkl

� �
=3, and

Idevijkl ¼ Iijkl � Ivolijkl, where dij is the Kronecker delta which is

equal to 1 for i¼ j, and equal to 0 otherwise. Ivol and Idev sat-
isfy the following relations:

Ivol : Ivol ¼ Ivol, (15)

Idev : Idev ¼ Idev, (16)

Ivol : Idev ¼ 0, (17)

Idev : Ivol ¼ 0: (18)

The two populations of hydrates exhibit lognormal stiff-
ness distributions, see Table 1. The probability distribution
functions of their indentation moduli M read as:

uiðMÞ ¼ 1

Mri
ffiffiffiffiffi
2p

p exp � 1
2

ln ðMÞ � li
ri

� �2 !
, i ¼ 3, 4:

(19)

By definition, the area under the graphs of the probability
density functions (19) is equal to 1:

ð1
0

uiðMÞ dM ¼ 1, i ¼ 3, 4: (20)

The continuous stiffness distributions of both populations of
hydrates are accounted for in the continuum micromechanics
model by representing each one of the two populations of
hydrates as infinitely many material phases; the latter exhibit-
ing infinitesimally small volume fractions. The material phases
making up the RVE are complemented by two additional
phases with finite volume fractions, representing zirconia and
clinker, and by infinitely many crack phases.

The self-consistent scheme is well suited for homogenization
of materials with highly disordered “polycrystalline” micro-
structure [26]. One Eshelby-type matrix-inclusion problem is
formulated for each and every material phase, irrespective of
whether they exhibit finite or infinitesimal volume fractions,
see Fig. 3. The inclusion has the stiffness, the shape, and the
orientation of the material phase it is representing. The stiff-
ness of the infinitely large matrix is equal to that of the homo-
genized composite (here: Biodentine, index bio). This specific
property of the self-consistent scheme expresses that the mater-
ial phases are directly interacting with all constituents of the
microheterogeneous material [26]. Remotely, the matrices of all
of the infinitely many Eshelby problems are subjected to the
same auxiliary strain state E1: The strains in the inclusions
are spatially uniform and read as [27]

ei ¼ Iþ Psph : ðCi � CbioÞ
� ��1

: E1,

i ¼ 1, 2,

(21)

eiðMÞ ¼ Iþ Psph : ðCiðMÞ � CbioÞ
� ��1

: E1,

i ¼ 3, 4, M 2 R0,þ,
(22)

e5ðw,#Þ ¼ Iþ Poblðw,#Þ : ðC5 � CbioÞ½ ��1 : E1,

w 2 0, 2p½ �, # 2 0,p½ �: (23)

where R0,þ denotes all positive real numbers including
zero. Psph and Pobl denote the Hill tensors of spherical and
oblate phases, respectively. Pobl is a function of Euler angles
w and #, see [31] and Fig. 4. The stiffness tensors of
hydrates, see CiðMÞ in Eq. (22), are parametrized using the
indentation modulus M, see Subsection 2.6 for details. The
stiffness tensor of the microcracks, see C5 in Eq. (23), is
purely volumetric, see Subsection 2.3 for more details.

Table 2. Input quantities of the solid material constituents: bulk moduli, ki,
shear moduli gi, as well as lognormal parameters li and ri which are consist-
ent with median and mode values listed in Table 1; input values taken from
[3, 17, 18].

Phase Index Stiffness properties Volume fraction

zirconia i¼ 1 k1 ¼ 170:8 GPa g1 ¼ 78:8 GPa f1 ¼ 0:0182
clinker i¼ 2 k2 ¼ 116:7 GPa g2 ¼ 53:8 GPa f2 ¼ 0:1170
HDCR hydrates i¼ 3 l3 ¼ 4:14 r3 ¼ 0:20 f3 ¼ 0:7420
LDCR hydrates i¼ 4 l4 ¼ 3:81 r4 ¼ 0:78 f4 ¼ 0:1228

Figure 2. Micromechanical representation of Biodentine (“material organo-
gram”): the two-dimensional sketch shows qualitative properties of a three-
dimensional representative volume element of the lognormal microelasticity
model which accounts for stiffness distributions of two populations of hydrates.

1The transition to flat circular slit cracks will be explained in Subsection 2.3.
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It is a key step to establish relations between the auxiliary
Eshelby problems described above, and the actual RVE of
Biodentine [26]. To this end, the Eshelby-problem-related
inclusion strains according to Eqs. (21)–(23) are used as
estimates of the average strains of the corresponding mater-
ial phases inside the real representative volume of
Biodentine, see Eq. (4). The latter satisfy the strain average
rule, see Eq. (6). When inserting Eqs. (21)–(23) into Eq. (6),
the sum extending over two populations of infinitely many
hydrate phases turns into the sum of two integrals, and the
sum extending over infinitely many crack phases turns into
a double-integral:

E ¼
X2
j¼1

fj Iþ Psph : ðCj � CbioÞ
� ��1

: E1

þ
X4
j¼3

fj

ð1
0

ujðMÞ Iþ Psph : ðCjðMÞ � CbioÞ
� ��1 dM : E1

þ f5

ðp
0

ð2p
0

IþPoblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d# : E1:

(24)

Eq. (24) establishes a link between the loading of the repre-
sentative volume of Biodentine (¼ the macrostrain E) and
the loading of the auxiliary Eshelby problems (¼ the auxil-
iary strain E1). Solving Eq. (24) for E1 yields

E1 ¼
(X2

j¼1

fj Iþ Psph : ðCj � CbioÞ
� ��1

þ
X4
j¼3

fj

ð1
0

ujðMÞ Iþ Psph : ðCjðMÞ � CbioÞ
� ��1 dM

þ f5

ðp
0

ð2p
0

Iþ Poblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

)�1

: E:

(25)

Inserting Eq. (25) into Eqs. (21)–(23) and comparing the
results with Eq. (9) yields the following estimates for the
strain concentration tensors of clinker and zirconia

Ai ¼ ½Iþ Psph : ðCi � CbioÞ��1

:

(X2
j¼1

fj ½Iþ Psph : ðCj � CbioÞ��1

þ
X4
j¼3

fj

ð1
0

ujðMÞ ½IþPsph : ðCjðMÞ � CbioÞ��1 dM

þ f5

ðp
0

ð2p
0

½Iþ Poblðw,#Þ : ðC5 � CbioÞ��1 sin#
4p

dw d#

)�1

,

i ¼ 1, 2,

(26)

of the hydrate phases

AiðMÞ ¼ Iþ Psph : ðCiðMÞ � CbioÞ
� ��1

:

(X2
j¼1

fj Iþ Psph : ðCj � CbioÞ
� ��1

þ
X4
j¼3

fj

ð1
0

ujðNÞ Iþ Psph : ðCjðNÞ � CbioÞ
� ��1 dN

þ f5

ðp
0

ð2p
0

Iþ Poblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

)�1

,

i ¼ 3, 4, M 2 R0,þ,

(27)

and of the microcracks

A5ðw,#Þ ¼ IþPoblðw,#Þ : ðC5 � CbioÞ½ ��1

:

(X2
j¼1

fj IþPsph : ðCj � CbioÞ
� ��1

þ
X4
j¼3

fj

ð1
0

ujðMÞ IþPsph : ðCjðMÞ � CbioÞ
� ��1 dM

þ f5

ðp
0

ð2p
0

Iþ Poblðv,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dv d#

)�1

,

w 2 0, 2p½ �, # 2 0,p½ �:
(28)

Figure 3. Eshelby-type matrix inclusion problems: (a) spherical inclusion, and (b) oblate spheroid, both embedded in an infinite matrix with isotropic stiffness Cbio ,
subjected remotely to auxiliary uniform strains E1:
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The homogenized stiffness of Biodentine follows from
inserting Eqs. (26)–(28) into Eq. (11) as

Cbio ¼
(X2

i¼1

fiCi : Iþ Psph : ðCi � CbioÞ
� ��1

þ
X4
i¼3

fi

ð1
0

uiðMÞCiðMÞ : Iþ Psph : ðCiðMÞ � CbioÞ
� ��1 dM

þ f5 C5 :

ðp
0

ð2p
0

Iþ Poblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

)

:

(X2
j¼1

fj IþPsph : ðCj � CbioÞ
� ��1

þ
X4
j¼3

fj

ð1
0

ujðMÞ IþPsph : ðCjðMÞ � CbioÞ
� ��1 dM

þ f5

ðp
0

ð2p
0

IþPoblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

)�1

:

(29)

2.3. Transition to flat circular slit cracks

Microcracks are invisible in micrographs of Biodentine [3].
This indicates that the cracks are closed. Their volume frac-
tion is zero. Thus, the effect of closed cracks on the overall
material behavior cannot be traced back to their volume
fraction. Instead, the crack density parameter of Budiansky
and O’Connell [19] is introduced, see also [20, 32]. To this
end, cracks are first represented as thin oblate spheroids,
with a as the larger half-diameter, c as the smaller half-
diameter, and very small aspect ratio X ¼ c=a � 1: The
volume of one such spheroid reads as: 4pa2c=3: Thus, the

volume fraction of thin spheroidal cracks inside a represen-
tative volume of Biodentine amounts to

f5 ¼ Ncr

Vbio

4pa2c
3

, (30)

where Ncr denotes to number of cracks within one represen-
tative volume Vbio of Biodentine. Introducing the dimen-
sionless crack density parameter as x ¼ Ncra3=Vbio, Eq. (30)
can be re-written as

f5 ¼ 4px
3

X: (31)

The Hill tensor Pobl can be expressed as the Eshelby tensor
Sobl double-contracted with the inverse of the stiffness ten-
sor of Biodentine [29]:

Pobl ¼ Sobl : ðCbioÞ�1, (32)

where Sobl is a function of the aspect ratio X, see Appendix C.
The stiffness tensor C5 is purely volumetric, because the shear
stiffness of closed cracks vanishes [29]

C5 ¼ 3k5 I
vol: (33)

Because of the following limit case X ! 0, the actual value
of k5 does not matter, as long as it is positive and finite: 0 <
k5 < 1, see [29]. Inserting Eqs. (31)–(33) into the expres-
sion in the last line of Eq. (29), and subjecting the result to
the limit X ! 0, which expresses that the volume occupied
by closed cracks is negligibly small, yields [29]

lim
X!0

f5ðXÞ
ðp
0

ð2p
0

Iþ PoblðX,w,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

¼ 4px
3

Tdev I
dev,

(34)

with

Tdev ¼ 8 ð3kbio þ 4gbioÞ
15p ð3kbio þ 2gbioÞ : (35)

The third line in Eq. (29) vanishes, because it is equal to the
volumetric stiffness tensor C5, see Eq. (33), double-con-
tracted with the expression on the left-hand-side of Eq. (34),
which is deviatoric, see also Eq. (17). Thus Eq. (29) reads
for closed cracks with crack density parameter x:

Cbio ¼
(X2

i¼1

fiCi : IþPsph : ðCi � CbioÞ
� ��1

þ
X4
i¼3

fi

ð1
0

uiðMÞCiðMÞ : Iþ Psph : ðCiðMÞ � CbioÞ
� ��1 dM

)

:

(X2
j¼1

fj Iþ Psph : ðCj � CbioÞ
� ��1

þ
X4
j¼3

fj

ð1
0

ujðMÞ Iþ Psph : ðCjðMÞ � CbioÞ
� ��1 dM

þ 4px
3

Tdev I
dev

)�1

:

(36)

Figure 4. Thin oblate spheroid oriented in w,#-direction.
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2.4. Scalar expressions for the homogenized bulk and
shear moduli

The Hill tensor Psph can be expressed as the Eshelby tensor
Ssph double-contracted with the inverse of the stiffness ten-
sor of Biodentine [29]:

Psph ¼ Ssph : ðCbioÞ�1: (37)

Because Ssph is isotropic, it can be expressed as

Ssph ¼ Svol I
vol þ SdevI

dev, (38)

with

Svol ¼ 3kbio
3kbio þ 4gbio

, (39)

Sdev ¼ 6ðkbio þ 2gbioÞ
5ð3kbio þ 4gbioÞ : (40)

All tensors in Eqs. (36) and (37) are isotropic. They can
be subdivided into volumetric and deviatoric parts.
Consideration of Eqs. (15)–(18) together with Eqs. (14),
(37), and (40) in Eq. (36) yields

kbio ¼
(X2

i¼1

fi ki

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ kiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)

�
(X2

i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(41)

gbio ¼
(X2

i¼1

fi gi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ giðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM

)

�
(X2

i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM

þ 4px
3

Tdev

)�1

:

(42)

The scalar Eqs. (41) and (42) allow for an iterative deter-
mination of the homogenized bulk and shear moduli
of Biodentine.

2.5. Scalar expressions for volumetric and deviatoric
strain and stress tensor components

The strain concentration tensors of the spherical solid
phases are also isotropic

Ai ¼ Avol, i I
vol þ Adev, iI

dev: (43)

The volumetric and deviatoric components of the strain
concentrations tensors of zirconia (i¼ 1) and clinker (i¼ 2)
follow from Eq. (26) as

Avol, i ¼ 1

1þ Svolðki�kbioÞ
kbio

(X2
i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(44)

Adev, i ¼ 1

1þ Sdevðgi�gbioÞ
gbio

(X2
i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

:

(45)

The volumetric and deviatoric components of the strain
concentrations tensors of HDCR (i¼ 3) and LDCR (i¼ 4)
hydrates follow from Eq. (27) as

Avol, iðMÞ ¼ 1

1þ SvolðkiðMÞ�kbioÞ
kbio

(X2
i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(46)

Adev, iðMÞ ¼ 1

1þ SdevðgiðMÞ�gbioÞ
gbio

(X2
i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

,

(47)

where M 2 R0,þ: Strain concentration tensors of the closed
cracks will be discussed in Subsection 3.4.

The stress concentration tensors of the spherical solid
phases are also isotropic

Bi ¼ Bvol, i I
vol þ Bdev, i I

dev: (48)

Accounting for the isotropy of the tensors in Eq. (13)
delivers

Bvol, i ¼ ki
kbio

Avol, i, (49)

Bdev, i ¼ gi
gbio

Adev, i, (50)

with ki and gi being the bulk and shear moduli of i-th phase,
kbio and gbio are bulk and shear moduli of the homogenized
composite Biodentine. The volumetric and deviatoric com-
ponents of the stress concentrations tensors of zirconia
(i¼ 1) and clinker (i¼ 2) follow from insertion of Eqs. (44)
and (45) into Eqs. (49) and (50), respectively, as

Bvol, i ¼ ki=kbio

1þ Svolðki�kbioÞ
kbio

(X2
i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(51)
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Bdev, i ¼ gi=gbio

1þ Sdevðgi�gbioÞ
gbio

(X2
i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

:

(52)

The volumetric and deviatoric components of the stress con-
centrations tensors of HDCR (i¼ 3) and LDCR (i¼ 4)
hydrates from insertion of Eqs. (46) and (47) into Eqs. (49)
and (50), respectively, as

Bvol, iðMÞ ¼ kiðMÞ=kbio
1þ SvolðkiðMÞ�kbioÞ

kbio

(X2
i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(53)

Bdev, iðMÞ ¼ giðMÞ=gbio
1þ SdevðgiðMÞ�gbioÞ

gbio

(X2
i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

,

(54)

where M 2 R0,þ:

2.6. Bulk and shear moduli of the hydrates, as functions
of the indentation modulus

Evaluation of the integrals in Eqs. (41), (42), (44)–(47), and
(51)–(54) requires expressions for the bulk and shear moduli
of the hydrates, as functions of the indentation modulus. The
latter is a function of the elastic stiffness properties of the
nanoindentation-probed domain and of the diamond tip of the
indenter. For an isotropic domain, this function reads as [8]

1
M

¼ 1� �2h
E

þ 1� 0:072

1141GPa
, (55)

where E and �h denote the modulus of elasticity and
Poisson’s ratio of the hydrates. Herein, �h is assumed to be
constant.2 In other words, the distribution of indentation
modulus is related to a corresponding distribution of the
modulus of elasticity, E. The latter distribution follows from
solving Eq. (55) for E:

EðMÞ ¼ 1� �2h
1
M � 1�0:072

1141GPa

: (56)

The sought bulk moduli kiðMÞ and the shear moduli giðMÞ
follow from standard relations for isotropic elastic media:

kiðMÞ ¼ EðMÞ
3 ð1� 2 �hÞ, i ¼ 3, 4, (57)

giðMÞ ¼ EðMÞ
2 ð1þ �hÞ, i ¼ 3, 4, (58)

see also Fig. 5.

2.7. Identification of crack density of Biodentine and
Poisson’s ratio of hydrates

In order to identify the values of the crack density of
Biodentine and of Poisson’s ratio of the hydrates, the search
intervals x ¼ ½0:5 ; 2:0� and �h ¼ ½0:15 ; 0:30� are subdi-
vided into 7 equidistant values, defining a search grid. For all
49 combination of values (¼ grid points), kbioðx, �hÞ and
gbioðx, �hÞ are computed according to Eqs. (41) and (42).
Because they are implicit expressions of the homogenized bulk
and shear moduli of Biodentine, kbio and gbio are quantified
iteratively, as outlined in the flowchart given in Table 3.

For every grid point, the square root of the sum of
squared errors is quantified based on the computed homo-
genized stiffness moduli and their experimental counter-
parts, see the ultrasonics-derived values in Eqs. (1) and (2):

eSRSS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k exp
bio � kbioðx, �hÞ

� �2 þ g exp
bio � gbioðx, �hÞ

� �2q
:

(59)

The obtained error surface exhibits one minimum in the
vicinity of x � 0:78 and �h � 0:20, see also Fig. 6. The
optimal solution is found iteratively, using a method based
on search intervals which are progressively refined and
shifted, see [3, 33]. The lognormal microelasticity model
reproduces the ultrasonics-derived macrostiffness moduli when
using the following values of the crack density parameter and
of Poisson’s ratio of LDCR and HDCR hydrates as input:

x ¼ 0:7802, (60)

�h ¼ 0:2017, (61)

see also Fig. 7. The numerical values of the integrals in Eqs.
(41), (42) and (44)–(47), obtained with kbio ¼ 38:4GPa, gbio ¼
14:1GPa, and �h ¼ 0:2017, are listed in Appendix B.

3. Application of the lognormal microelasticity
model: strain and stress fluctuations

3.1. Distributions of strain concentration tensor
components of the two populations of hydrates

Probability distribution functions for strain concentration
tensor components of both populations of hydrates are com-
puted as follows. Eq. (19) provides access to the probability
density as a function of the indentation modulus. Eqs. (46)
and (47) allow for computing the volumetric and deviatoric
components of the strain concentration tensor as a function
of the indentation modulus. Combining Eq. (19) with Eq.
(46) and Eq. (47), respectively, allows for producing para-
metric plots showing probability density over strain concen-
tration tensor components, with the indentation modulus as
the parameter. Normalizing the obtained parametric plots
such that the area under the graphs becomes equal to 1,
delivers probability density functions for the strain2The value of �h will be identified in Subsection 2.7.
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concentration tensor components, see Fig. 8. The probability
densities of Avol and Adev of the LDCR hydrates are left-skewed
functions. The corresponding results obtained for the HDCR
hydrates, in turn, are reminiscent of Gaussian distributions.

It is interesting to quantify the strain concentration ten-
sor components averaged over each one of the two popula-
tions of hydrates. Notably, the volume average rule applies
for strain concentration tensors [26]. Thus, the population-
averaged volumetric and deviatoric strain concentration ten-
sor components read as

Avol , j ¼
ð1
0

ujðMÞAvol, jðMÞ dM j ¼ 3, 4, (62)

Adev , j ¼
ð1
0

ujðMÞAdev, jðMÞ dM j ¼ 3, 4: (63)

Inserting Avol, jðMÞ and Adev, jðMÞ according to Eqs. (46) and
(47), respectively, into Eqs. (62) and (63) yields

Avol, j ¼
ð1
0

ujðMÞ
1þ SvolðkjðMÞ�kbioÞ

kbio

dM

�
(X2

i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(64)

Adev, j ¼
ð1
0

ujðMÞ
1þ SdevðgjðMÞ�gbioÞ

gbio

dM

�
(X2

i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

:

(65)

Evaluation of the strain concentration tensor components Avol

and Adev of zirconia and clinker according to Eqs. (44) and (45),
as well as the average strain concentration tensor components
Avol and Adev of HDCR and LDCR hydrates according to Eqs.
(64) and (65), yields numerical values listed in Table 4. These
values quantify the expected trend that the strains experienced
by the material constituents increase with decreasing stiffness.

3.2. Distributions of stress concentration tensor
components of the two populations of hydrates

Combining Eq. (19) with Eq. (53) and Eq. (54), respectively,
allows for producing parametric plots showing probability dens-
ity over stress concentration tensor components, with the inden-
tation modulus as the parameter. Normalizing the obtained

Table 3. Flowchart for the computation of kbio and gbio according to Eqs. (41)
and (42), respectively.

1. Define numerical values of the crack density parameter x and of Poisson’s
ratio of the hydrates, �h.

2. Define initial values of kbio and gbio as arbitrary positive numbers; for
example, kbio ¼ 4:2 GPa and gbio ¼ 2:5 GPa:

3. Set the tolerance value tol equal to 10�10:
4. Save kbio as koldbio and gbio as goldbio:
5. Compute Tdev, Svol, Sdev according to Eqs. (35), (39), (40).
6. Evaluate the integrals in Eqs. (41) and (42) based on u3ðMÞ and u4ðMÞ

according to Eq. (19) with values of l3, r3, l4, r4 from Table 2, as
well as k3ðMÞ, g3ðMÞ, k4ðMÞ, g4ðMÞ according to Eqs. (57) and (58),
with E(M) according to Eq. (56).

7. Evaluate the sums in Eqs. (41) and (42) based on f1, f2, f3, f4, k1, g1, k2, g2
from Table 2.

8. Quantify kbio and gbio according to Eqs. (41) and (42).
9. Determine the convergence ratio according to

c ¼ kkbio�koldbiok
koldbio

þ kgbio�goldbiok
goldbio

:

10. If c < tol then stop the iteration; else go to 4. (¼ start the next
iteration step).

Figure 6. Square root of the sum of squared errors (59), quantifying the differ-
ence between computed homogenized stiffness moduli, see Eqs. (41) and (42)
as well as Table 3, and their experimental counterparts, see Eqs. (1) and (2).

Figure 5. (a) Bulk and (b) shear modulus of the hydrates as a function of the indentation modulus, for three different values of Poisson’s ratio of the hydrates.

MECHANICS OF ADVANCED MATERIALS AND STRUCTURES 9



parametric plots such that the area under the graphs becomes
equal to 1, delivers probability density functions for the stress
concentration tensor components, see Fig. 9. The probability
densities of Bvol and Bdev of the LDCR hydrates are right-skewed
functions. The corresponding results obtained for the HDCR
hydrates, in turn, are reminiscent of Gaussian distributions.

The stress concentration tensor components averaged over
each one of the two populations of hydrates are quantified based
on the volume average rule for stress concentration tensors [26]:

Bvol , j ¼
ð1
0

ujðMÞBvol, jðMÞ dM, j ¼ 3, 4, (66)

Bdev , j ¼
ð1
0

ujðMÞBdev, jðMÞ dM, j ¼ 3, 4: (67)

Inserting Bvol, jðMÞ and Bdev, jðMÞ according to Eqs. (53) and
(54), respectively, into Eqs. (66) and (67) yields

Bvol, j ¼ 1
kbio

ð1
0

ujðMÞ kjðMÞ
1þ SvolðkjðMÞ�kbioÞ

kbio

dM

�
(X2

i¼1

fi

1þ Svolðki�kbioÞ
kbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SvolðkiðMÞ�kbioÞ

kbio

dM

)�1

,

(68)

Bdev, j ¼ 1
gbio

ð1
0

ujðMÞ gjðMÞ
1þ SdevðgjðMÞ�gbioÞ

gbio

dM

�
(X2

i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

:

(69)

Evaluation of the stress concentration tensor components Bvol and
Bdev of zirconia and clinker according to Eqs. (51) and (52), as
well as the average stress concentration tensor components Bvol

and Bdev of HDCR and LDCR hydrates according to Eqs. (68)
and (69), yields numerical values listed in Table 5. These values
quantify the expected trend that stresses experienced by the
material constituents decrease with decreasing stiffness.

3.3. Reproducing the distributions of strain and stress
concentration tensor components based on
generalized beta-distributions

Probability density functions uiðAvolÞ, uiðAdevÞ, uiðBvolÞ and
uiðBdevÞ of both populations of hydrates (i¼ 3, 4) can be
approximated by means of generalized beta-distributions:

Figure 7. Homogenized stiffness moduli kbio and gbio according to Eqs. (41) and (42), as functions of the crack density of Biodentine and Poisson’s ratio of the
hydrates, see the solid blue lines, and ultrasonics-derived counterparts according to Eqs. (1) and (2), see the red dashed lines; the circles mark the optimal solutions,
see also Eqs. (60) and (61).
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uB
i ðyÞ ¼

y�a
c�a

� �a�1 c�y
c�a

� �b�1

ðc� aÞ � Bða,bÞ, (70)

where y denotes the statistical variable ranging in the inter-
val ½a ; c�, and Bða,bÞ denotes the beta-distribution eval-
uated for parameters a and b:

Bða, bÞ ¼ CðaÞCðbÞ
Cðaþ bÞ , (71)

where C denotes the gamma function [34, 35].
Optimal a and b parameters are identified by means of the

“Nonlinear Least Squares” method of MATLAB, see Tables 6
and 7 for the results. The lowest coefficient of determination,
R2, amounts to 0.9992 and is obtained for the deviatoric com-
ponents of strain as well as stress concentration tensors of
LDCR hydrates, see Tables 6 and 7 as well as Figs. 8 and 9.
Notably, the a parameters found for the strain concentration
tensor components are identical to the b parameters of the
corresponding stress concentration tensor components, and
vice versa, because strain and stress concentration tensor com-
ponents are linearly related via Eqs. (49) and (50).

3.4. Contribution of the microcracks to the stress and
strain average rules

Closed microcracks do neither contribute to the stress aver-
age rule nor to the volumetric part of the strain average rule.
Still, they contribute significantly to the deviatoric deform-
ation of Biodentine, as will be shown next.

Insertion of Eq. (12), into Eq. (5) yields the stress average
rule expressed in terms of stress concentration tensors:

XN
i¼1

fi Bi ¼ I: (72)

Closed microcracks transfer finite stresses across their microcrack
planes. Therefore, their stress concentration tensor components
are finite. The volume fraction of closed microcracks is equal to
zero. Therefore, closed microcracks have a vanishing contribution
to Eq. (72). Subdividing this equation into volumetric and devia-
toric parts, and consideration of volume fractions according to
Table 2 as well as (hydrate population-averaged) stress concentra-
tion tensor components according to Table 5, yields

f1 Bvol, 1 þ f2 Bvol, 2 þ f3 Bvol , 3 þ f4 Bvol , 4 ¼ 1, (73)

f1 Bdev, 1 þ f2 Bdev, 2 þ f3 Bdev , 3 þ f4 Bdev , 4 ¼ 1: (74)

Similarly, insertion Eq. (9) into Eq. (4) yields the strain average
rule expressed in terms of strain concentration tensors:

XN
i¼1

fiAi ¼ I: (75)

Because closed microcracks occupy a vanishing volume and
because they remain closed also under macroscopic loading, they
have a vanishing contribution to the volumetric part of Eq. (75):

f1 Avol, 1 þ f2 Avol, 2 þ f3 Avol , 3 þ f4 Avol , 4 ¼ 1, (76)

where volume fractions according to Table 2 and (hydrate
population-averaged) strain concentration tensor

Figure 8. Results of the lognormal microelasticity model (black graphs): statistical distributions of volumetric and deviatoric components of the strain concentration tensors
of LDCR hydrates and of HDCR hydrates: (a) and (c) show probability density distributions, (b) and (d) cumulative distribution functions. The best fits of generalized beta-dis-
tributions to the statistical distributions are the red dashed graphs, see Eqs. (70) and (71) as well as the Beta distributions parameters listed in Table 6.
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components according to Table 4 were used. However, the
same approach applied to the deviatoric part of Eq. (75)
yields:

f1 Adev, 1 þ f2 Adev, 2 þ f3 Adev , 3 þ f4 Adev , 4 ¼ 0:5100 6¼ 1:

(77)

Eq. (77) underlines that closed cracks contribute to the
deviatoric compliance of the homogenized material.

In order to quantify the contribution of the microcracks miss-
ing in Eq. (77), their population-averaged (¼ orientation-aver-
aged) strain concentration tensor is introduced, while the cracks
are still considered as thin but slightly open oblate spheroids:

A5 ¼
ðp
0

ð2p
0

Iþ Poblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

:

(X2
j¼1

fj Iþ Psph : ðCj � CbioÞ
� ��1

þ
X4
j¼3

fj

ð1
0

ujðMÞ Iþ Psph : ðCjðMÞ � CbioÞ
� ��1 dM

þ f5

ðp
0

ð2p
0

Iþ Poblðw,#Þ : ðC5 � CbioÞ½ ��1 sin#
4p

dw d#

)�1

:

(78)

The transition to circular slit cracks refers to the limit case
that the aspect ratio of the microcracks approaches zero:
X ! 0: In this limit case, the deviatoric component of A5

approaches infinity [29], while the volume fraction of the
population of microcracks, f5, approaches zero, such that the
product of f5 and A5 remains finite:

lim
X!0

f5 A5 ¼ 4px
3

Tdev

(X2
i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ
X4
i¼3

fi

ð1
0

uiðMÞ
1þ SdevðgiðMÞ�gbioÞ

gbio

dM þ 4px
3

Tdev

)�1

Idev:

(79)

Evaluation of Eq. (79) based on kbio ¼ 38.4GPa, gbio ¼
14.1GPa, Tdev from Eq. (35), Sdev from Eq. (40), together
with x from Eq. (60), and volume fractions from Table 2
yields, under consideration of Eqs. (B.7) and (B.8):

lim
X!0

f5 A5 ¼ f5 Adev , 5 I
dev ¼ 0:4899 Idev: (80)

Adding f5Adev , 5 according to Eq. (80) to Eq. (77) yields

f1 Adev, 1 þ f2 Adev, 2 þ f3 Adev , 3 þ f4 Adev , 4 þ f5 Adev , 5 ¼ 1:

(81)

Eqs. (80) and (81) underline that almost 50% of the devia-
toric deformation of Biodentine results from shear-disloca-
tions of closed microcracks.

4. Piecewise uniform microelasticity models

The developed lognormal microelasticity model accounts for
stiffness distributions of hydrates, as characterized in a grid
nanoindentation testing campaign. Standardly used multi-
scale models for cementitious materials, in turn, assign char-
acteristic stiffness constants to a small number of considered
hydrate phases, typically two. This provides the motivation
to identify characteristic stiffness constants of HDCR
hydrates and LDCR hydrates such that a piecewise uniform
microelasticity model, based on four solid phases and infin-
itely many crack phases, reproduces the same homogenized
stiffness as the lognormal microelasticity model described
above. In the piecewise uniform microelasticity model,
Biodentine is represented as a composite with polycrystalline
microstructure in which four spherical solid phases (zirco-
nia, clinker, HDCR hydrates, and LDCR hydrates) and infin-
itely many crack phases (which are isotropically oriented in
space) directly interact with each other, see Fig. 10.

The stiffness constants of zirconia and clinker, the vol-
ume fractions of the four solid phases, and the crack density
are the same as before, see Table 2 and Eq. (60). Denoting
the characteristic bulk and shear moduli assigned to the two
populations of hydrates as k3 and k4 as well as g3 and g4,
respectively, the expressions for the homogenized bulk and
shear moduli according to Eqs. (41) and (42), those for the
strain concentration tensor components according to Eqs.
(44)–(47), and those for the stress concentration tensor
components according to Eqs. (51)–(54) simplify to

kbio ¼
(X4

i¼1

fi ki

1þ Svolðki�kbioÞ
kbio

)
�
(X4

i¼1

fi

1þ Svolðki�kbioÞ
kbio

)�1

,

(82)

gbio ¼
(X4

i¼1

fi gi

1þ Sdevðgi�gbioÞ
gbio

)
�
(X4

i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ 4px
3

Tdev

)�1

,

(83)

Avol, j ¼ 1

1þ Svolðkj�kbioÞ
kbio

�
(X4

i¼1

fi

1þ Svolðki�kbioÞ
kbio

)�1

, (84)

Adev, j ¼ 1

1þ Sdevðgj�gbioÞ
gbio

�
(X4

i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ 4px
3

Tdev

)�1

,

(85)

Bvol, j ¼
kj=kbio

1þ Svolðkj�kbioÞ
kbio

�
(X4

i¼1

fi

1þ Svolðki�kbioÞ
kbio

)�1

, (86)

Table 4. Results of the lognormal microelasticity model: (population-averaged)
strain concentration tensors components of the four types of solid constitu-
ents of Biodentine.

Constituent of
Biodentine

(Average) strain
concentration tensor components Source

zirconia Avol, 1 ¼ 0:3017 Adev, 1 ¼ 0:2352 Eqs. (44) and (45)
clinker Avol, 2 ¼ 0:4223 Adev, 2 ¼ 0:3192 Eqs. (44) and (45)
HDCR hydrates Avol , 3 ¼ 1:0551 Adev , 3 ¼ 0:5248 Eqs. (64) and (65)
LDCR hydrates Avol , 4 ¼ 1:3207 Adev , 4 ¼ 0:6428 Eqs. (64) and (65)
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Bdev, j ¼
gj=gbio

1þ Sdevðgj�gbioÞ
gbio

�
(X4

i¼1

fi

1þ Sdevðgi�gbioÞ
gbio

þ 4px
3

Tdev

)�1

:

(87)

4.1. Averaging of hydrate strain and stress concentration
tensors - piecewise uniform microelastic properties

Equivalent, piecewise uniform, bulk and shear moduli of LDCR
and HDCR hydrates are determined from averaging over the
strain and stress concentration tensor distributions of the two
hydrate populations. Equivalent bulk moduli k3 and k4 are
derived as follows. Equating Avol, j according to Eq. (84) and

Avol , j according to Eq. (64) yields the conditions

1

1þ Svolðkj�kbioÞ
kbio

¼
ð1
0

ujðMÞ
1þ SvolðkjðMÞ�kbioÞ

kbio

dM, j ¼ 3, 4: (88)

Equating Bvol, j according to Eq. (86) and Bvol , j according
to Eq. (68) yields the conditions

kj

1þ Svolðkj�kbioÞ
kbio

¼
ð1
0

ujðMÞ kjðMÞ
1þ SvolðkjðMÞ�kbioÞ

kbio

dM, j ¼ 3, 4: (89)

Notably, the conditions (88) and (89) also imply the equality
of kbio according to Eqs. (41) and (82). The equivalent bulk
moduli k3 and k4 are obtained from dividing Eq. (89) by Eq.
(88) as

kj ¼

Ð1
0

ujðMÞ kjðMÞ
1þSvolðkjðMÞ�kbioÞ

kbio

dM

Ð1
0

ujðMÞ
1þSvolðkjðMÞ�kbioÞ

kbio

dM
, j ¼ 3, 4: (90)

Evaluating Eq. (90) for j¼ 3 and for j¼ 4, respectively,
yields under consideration of Eqs. (B.1)–(B.4):

k3 ¼ 35:41GPa, (91)

k4 ¼ 24:51GPa: (92)

Equivalent shear moduli g3 and g4 are derived in an
analogous way. Equating Adev, j according to Eq. (85) and

Adev , j according to Eq. (65) yields the conditions

1

1þ Sdevðgj�gbioÞ
gbio

¼
ð1
0

ujðMÞ
1þ SdevðgjðMÞ�gbioÞ

gbio

dM, j ¼ 3, 4: (93)

Equating Bdev, j according to Eq. (87) and Bdev , j according to
Eq. (69) yields the conditions

gj

1þ Sdevðgj�gbioÞ
gbio

¼
ð1
0

ujðMÞ gjðMÞ
1þ SdevðgjðMÞ�gbioÞ

gbio

dM, j ¼ 3, 4: (94)

Notably, the conditions (93) and (94) also imply the equality
of gbio according to Eqs. (42) and (83). The equivalent shear
moduli g3 and g4 are obtained from dividing Eqs. (94) by
Eq. (93) as

gj ¼

Ð1
0

ujðMÞ gjðMÞ
1þSdevðgjðMÞ�gbioÞ

gbio

dM

Ð1
0

ujðMÞ
1þSdevðgjðMÞ�gbioÞ

gbio

dM
, j ¼ 3, 4: (95)

Evaluating Eq. (95) for j¼ 3 and for j¼ 4, respectively,
yields under consideration of Eqs. (B.5)–(B.8):

g3 ¼ 26:41GPa, (96)

g4 ¼ 18:59GPa: (97)

Equivalent stiffness properties, according to Eqs. (91),
(92), (96), and (97) reproduce the homogenized stiffness as
well as the (population-averaged) stress and strain concen-
tration tensor components of the lognormal model, see
Tables 4 and 5. According to Eqs (90) and (95), the equiva-
lent moduli are functions of (i) the stiffness distributions to
which they are equivalent and (ii) the interaction of the
phase population with all other constituents of the microhe-
terogeneous material.

4.2. Comparison of piecewise uniform LDCR and HDCR
hydrate properties, with modes and medians of the
two hydrate stiffness distribution

The equivalent piecewise uniform microelastic properties,
see Eqs. (91), (92), (96), and (97), are compared with the
probability density functions of the bulk and shear moduli
of the two populations of hydrates. These functions are
determined as follows: bulk and shear moduli are obtained
as a function of the indentation modulus from inserting
Eqs. (56) and (61) into Eqs. (57) and (58), respectively.
Combining the obtained expressions with Eq. (19) allows
for producing parametric plots showing probability den-
sities over bulk and shear moduli, with the indentation
modulus as the parameter. Normalizing the parametric
plots, such that the area under the graphs becomes equal
to 1, delivers probability density functions for the bulk and
shear moduli, see Fig. 11. The modes (¼ most frequent val-
ues) and the medians (¼ 50%-quantiles) of bulk and shear
moduli of the two populations of hydrates are determined
numerically:

modeðk3Þ ¼ 34:14GPa, modeðg3Þ ¼ 25:42GPa, (98)

modeðk4Þ ¼ 13:46GPa, modeðg4Þ ¼ 10:02GPa, (99)

medianðk3Þ ¼ 35:61GPa, medianðg3Þ ¼ 26:52GPa, (100)

medianðk4Þ ¼ 25:19GPa, medianðg4Þ ¼ 18:76GPa: (101)

The modes according to Eqs. (98) and (99) are marked in
Fig. 11 by dotted ordinate-parallel lines, the medians accord-
ing to Eqs. (100) and (101) by solid lines, and the equivalent
piecewise uniform microelastic values according to Eqs.
(91), (92), (96), and (97) by dash-dotted lines.

The equivalent piecewise uniform microelastic values are
very close to the median values. This provides the motiv-
ation to use the median values as input for the piecewise
uniform microelastic model.
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4.3. Piecewise uniform microelastic model fed with
median values of the two populations of hydrate
bulk and shear moduli

The median values of Eqs. (100) and (101) are assigned to the
LDCR and to the HDCR hydrates. The elastic properties of zirco-
nia and clinker as well as the volume fractions of all constituents
are taken from Table 2, the crack density parameter from Eq. (60).
Corresponding homogenized stiffness properties of Biodentine
are obtained for the stiffnessmoduli from Eqs. (82) and (83):

kbio ¼ 38:72GPa, gbio ¼ 14:17GPa: (102)

These median-based values are by only 0.8% and 0.5% larger
than the corresponding values of the lognormal microelastic-
ity model: kbio ¼ 38:4GPa, and gbio ¼ 14:1GPa, respect-
ively. The (population-averaged) strain and stress
concentration tensor components of the piecewise uniform
median-based microelasticity model, computed according to
Eqs. (84)–(87), are listed in Tables 8 and 9. They differ from
the reference values of the lognormal microelasticity model,
see Tables 4 and 5, by only up to 1.05%.

5. Discussion

Herein, the solid constituents of Biodentine were modeled
as spherical phases, such as introduced in the first

micromechanics models for cementitious materials [4, 36].
Stora et al. [37] scrutinized this approach and found that
spherical shapes are suitable for hardened cement pastes,
but questionable for leached pastes with porosities of up to
40%. Sanahuja et al. [38] identified specific aspect ratios of
oblate nanoscopic solid C-S-H building blocks, in order to
model setting (¼ transition from a gel-like suspension to a
solid material). Pichler et al. [39] compared spherical and
prolate shapes assigned to micron-sized gel-porous hydrates
and found significant differences at early ages, when the
porosity is quite large, but small differences at mature ages,
when the microstructure is already rather dense. Because the
present paper refers to well-hardened Biodentine, spherical
phase shapes are suitable for micromechanical modeling.

The identified value of Poisson’s ratio of the calcite-reinforced
hydrates of Biodentine (�h ¼ 0:20) is smaller than 0.24 which is
the value standardly assumed for low-density and high-density
C-S-H of construction cement pastes [5]. This difference can
be explained from the compositional characteristics of the
hydrates found in construction cement pastes and in Biodentine,
respectively. Low-density and high-density C-S-H consist of solid
C-S-H building blocks and pores [40]. Calcite-reinforced
hydrates of Biodentine, in turn, consist of solid C-S-H building
blocks, pores, calcium hydroxide, and calcite. Thus, they are
somewhat reminiscent of a composite initially referred to as

Figure 9. Results of the lognormal microelasticity model (black graphs): statistical distributions of volumetric and deviatoric components of the stress concentration tensors
of LDCR hydrates and of HDCR hydrates: (a) and (c) show probability density distributions, (b) and (d) cumulative distribution functions. The best fits of generalized beta-dis-
tributions to the statistical distributions are the red dashed graphs, see Eqs. (70) and (71) as well as the Beta distributions parameters listed in Table 7.
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“ultra-high-density C-S-H” [41], which turned out to be a high-
density C-S-H reinforced by small crystals of calcium hydroxide
[42], see also [43–45].

The present paper continues the line of studies in which
results from nanoindentation were combined with microme-
chanical homogenization approaches. Sorelli et al. [46] applied
the method of Constantinides and Ulm [4] to an ultra-high
performance concrete, N�eme�cek et al. [47] to cement paste,
gypsum, and an aluminum alloy, and G€obel et al. [48] to poly-
mer-modified cement paste. Other complementary research
approaches combined grid nanoindentation and stiffness hom-
ogenization at different scales of observation and with different
targets, as will be discussed next. As for the smallest scales, scan-
ning electron microscopy, energy dispersive spectroscopy, and
X-ray diffraction were combined to gain access to the compos-
ition at nanoindented material points, and this knowledge was
upscaled by means of homogenization methods in order to pre-
dict the stiffness at the indented material points, see e.g. [44,
49]. At the next larger scale, microstructural properties of
cement paste determined by means of grid nanoindentation
were used as input for stiffness upscaling, in order to predict
stiffness properties determined by means of microindentation,
see e.g. [50]. As for stiffness homogenization up to the material
scale of concrete, grid nanoindentation, used for quantifying
microstructural properties of cement paste, was combined with
microindentation, used for the characterization of interfacial
transition zones surrounding aggregates, see e.g. [51].

The present study shares two aspects of emerging devel-
opments regarding stiffness upscaling based on results
obtained from grid nanoindentation. The first one relates to
using probability density functions describing stiffness distri-
butions of two populations of hydrate phases as input for
micromechanical modeling, as realized by Stefaniuk et al.
[52] for symmetric, Gaussian stiffness distributions. In this
context, our current approach goes three steps further,
(i) employing lognormal rather than Gaussian distributions,
(ii) evaluating corresponding concentration relations reveal-
ing the microstresses to follow generalized beta distributions,
and (iii) identifying that median values of the skewed stiff-
ness distributions are representative piecewise uniform stiff-
ness properties governing the overall stiffness of Biodentine.
The second aspect relates to weak interfaces. Liang et al.
[53] and Damien et al. [54] have used a modified Eshelby
tensor in the context of cementitious matrix-inclusion com-
posites homogenized by means of the Mori-Tanaka scheme
[55], in order to account for weak tangential bond in inter-
faces between spherical phases and the surrounding
matrix. Herein, we have modeled weak grain boundaries
by means of closed circular microcracks which are isotrop-
ically oriented in space, in the context of homogenizing
the “polycrystalline” microstructure of Biodentine by
means of the self-consistent scheme [26]. This approach
allowed us to show that almost 50% of the deformation of
hardened Biodentine refers to shear-dislocations of weak
grain boundaries.

6. Conclusions

A lognormal microelasticity model for hardened Biodentine was
based on the results of a grid nanoindentation campaign.
Poisson’s ratio of the two populations of hydrates and the crack
density parameter were identified such that the model reprodu-
ces macroscopic stiffness properties derived from ultrasonic
pulse velocity measurements. Based on the results of the pre-
sented study, the following conclusions are drawn:

� The identified value of Poisson’s ratio of the lower-density
and high-density calcite-reinforced hydrates of Biodentine,
mh ¼ 0:20, is smaller than Poisson’s ratio used for the
low-density and high-density calcium-silicate-hydrates of
Portland cements: m ¼ 0:24, see [4]. The difference is

Table 5. Results of the lognormal microelasticity model: (population-averaged)
stress concentration tensors components of the four types of solid constitu-
ents of Biodentine.

Constituent of
Biodentine

(Average) stress
concentration tensor components Source

zirconia Bvol, 1 ¼ 1:3419 Bdev, 1 ¼ 1:3152 Eqs. (49) and (50)
clinker Bvol, 2 ¼ 1:2828 Bdev, 2 ¼ 1:2188 Eqs. (49) and (50)
HDCR hydrates Bvol , 3 ¼ 0:9730 Bdev , 3 ¼ 0:9830 Eqs. (68) and (69)
LDCR hydrates Bvol , 4 ¼ 0:8430 Bdev , 4 ¼ 0:8476 Eqs. (68) and (69)

Table 6. Optimal parameters of generalized beta-distributions, see Eqs. (70)
and (71), approximating the distributions of the volumetric and deviatoric
strain concentration tensor components of both populations of hydrates, see
also the dashed red lines in Fig. 8; R2 denotes coefficients of determination.

HDCR hydrates LDCR hydrates
Parameter u3ðAvolÞ u3ðAdevÞ u4ðAvolÞ u4ðAdevÞ
a 0.0136 0.0071 0.0136 0.0071
c 3.0427 1.3816 3.0427 1.3816
a 35.2406 37.0711 4.6942 4.9316
b 63.8869 58.4258 3.7593 3.5650
R2 1.0000 1.0000 0.9995 0.9992

Table 7. Optimal parameters of generalized beta-distributions, see Eqs. (70)
and (71), approximating the distributions of the volumetric and deviatoric
stress concentration tensor components of both populations of hydrates, see
also the dashed red lines in Fig. 9; R2 denotes coefficients of determination.

HDCR hydrates LDCR hydrates
Parameter u3ðBvolÞ u3ðBdevÞ u4ðBvolÞ u4ðBdevÞ
a 4:3� 10�5 3:9� 10�5 4:3� 10�5 3:9� 10�5

c 1.4829 1.5768 1.4829 1.5768
a 63.8869 58.4258 3.7593 3.5650
b 35.2406 37.0711 4.6942 4.9316
R2 1.0000 1.0000 0.9995 0.9992

Figure 10. Micromechanical representation of Biodentine (“material organogram”):
the two-dimensional sketch shows qualitative properties of a three-dimensional
representative volume element of the piecewise uniform microelasticity models
which account for characteristic stiffness constants of two populations of hydrates.
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attributed to a reinforcement effect of calcite and cal-
cium hydroxide.

� Grain boundary defects (modeled as microcracks) are
responsible for almost 50% of the deviatoric deformation
of Biodentine. The corresponding value of the crack
density parameter was identified as x ¼ 0:78:

� Bottom-up stiffness homogenization, accounting for
microscopic stiffness distributions of the hydrates, is vir-
tually equivalent to upscaling of piecewise uniform stiff-
ness properties, provided that medians of the
microscopic stiffness distributions are assigned to the
hydrates. Corresponding differences regarding the homo-
genized stiffness of Biodentine were found to be smaller
than 1.1%. This corroborates the validity of standard
homogenization models for the elastic stiffness of cemen-
titious materials, because these models are based on
piecewise uniform stiffness properties.

� As for top-down strain and stress quantification, there
are important differences between the lognormal micro-
elasticity model and the alternative which is based on
piecewise uniform microscopic stiffness values. The latter

approach leads to volume-averaged values of the stresses
experienced by the two populations of hydrates. The stat-
istical homogenization approach, in turn, provides direct
access to microscopic stress fluctuations. These fluctua-
tions are expected to be valuable for future strength
modeling, which, however, goes beyond the scope of the
present paper.
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Appendix A: Macrostiffness characterization by
means of ultrasonic pulse velocity measurements

The ultrasonic pulse transmission method was used as nondestruc-
tive technique to characterize the macroscopic elastic properties of
hardened Biodentine. Here, both longitudinal and shear waves, with
excitation frequencies ranging from 50 kHz to 20MHz, were sent
through cylindrical Biodentine samples with 5mm diameter and
10mm height.

The test setup consisted of a serial arrangement of a pulse gener-
ator, a layer of coupling medium (honey), a plastic foil, the specimen,
another plastic foil, another layer of honey, and a pulse detector. The
plastic foils protected the sample against contamination of its open
porosity with the coupling medium. The specimens, the equipment,
and its surrounding environment were conditioned to 37 	C.

The wave velocities v of Biodentine are equal to the height b of the
tested specimens divided by the time of flight tf of the ultrasonic pulse
through the tested specimen,

v ¼ b
tf
: (A.1)

Direct measurement of tf is not possible; however, it results from the
difference of two other time measurements,

tf ¼ ttot � td, (A.2)

where ttot is the travel time of the pulse from the transducer – through
the coupling medium, the plastic foils, and the specimen – to the
receiver, while the delay time td is needed by the pulse to just travel
from the generator, through honey and plastic foils (without speci-
men), to the receiver.

325 measurements of longitudinal waves were performed at mater-
ial ages from 7 to 28 days [3]. The central excitation frequencies
amounted to 50 kHz, 500 kHz, 1MHz, 2.25MHz, 5MHz, 10MHz, and
20MHz. The longitudinal wave velocities were fairly independent of
the material age as well as the testing frequency. On average, they
amount to vL ¼ 4:977 km/s, see [3] and Fig. A.12.

122 measurements of shear waves were performed at material ages
from 7 to 28 days. The central excitation frequencies amounted to
2.25MHz and 5MHz, see Table A.10. The shear wave velocities are
also fairly independent of the material age and the testing frequency.
On average, they amount to vS ¼ 2:473 km/s, see Fig. A.12.

The separation of scales principle states that the wavelengths k must be
significantly larger than the size ‘rve of a representative volume element of
the tested material [26, 56], and that ‘rve must be significantly larger than
the characteristic size ‘het of the microheterogeneities:

k 
 ‘rve 
 ‘het: (A.3)
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Residual clinker grains are the largest microheterogeneities of hardened
Biodentine. Their characteristic size amounts to 4.3lm [3]. Thus, ‘het ¼
4:3 lm: The characteristic size of a representative volume of Biodentine is
some three times larger [57, 58]. Thus, ‘rve ¼ 12:9lm. This size is to be
compared with the wavelengths of the ultrasonic pulses.

The wavelength is indirectly proportional to the ultrasonic frequency.
Therefore, the largest testing frequency yields a lower bound for the wave-
lengths. As for the longitudinal waves, this lower bound follows as

kL � vL
max f

¼ 4:977 km=s
20MHz

¼ 249 lm: (A.4)

As for the shear waves, it follows as

kS � vS
max f

¼ 2:473 km=s
5MHz

¼ 495 lm: (A.5)

Eqs. (A.4) and (A.5) underline that the wavelengths were by a factor
of 19 (longitudinal waves) and 38 (shear waves) larger than
‘rve ¼ 12:9 lm. The principle of separation of scales, see Eq. (A.3), is
fulfilled [26, 56]. This provides evidence that wave velocities of Fig.
A.12 are representative for the homogenized composite Biodentine.

According to the theory of wave propagation through isotropic lin-
ear-elastic media, longitudinal and shear wave velocities, together with
the mass density q of the tested material, allow for quantifying the
bulk modulus, k, and the shear modulus, g, as [59–61],

k exp ¼ q
3
3 v2L � 4 v2S
� �

, (A.6)

g exp ¼ q v2S, (A.7)

respectively. Evaluation of Eqs. (A.6) and (A.7) based on q ¼
2:311 kg=dm3 [3] and the wave velocities of Fig. A.12 gives access to
constant isotropic elastic properties, namely to a bulk modulus of
38.4GPa and a shear modulus of 14.1GPa.

Appendix B: Numerical values of integrals involving
the lognormal distributions of the two populations
of hydrates

Numerical evaluation of the integrals in Eqs. (41), (42), (44)–(47), and
(51)–(54), based on kbio ¼ 38:4GPa, gbio ¼ 14:1GPa, and �h ¼ 0:2017,
delivers the following numerical results:

ð1
0

u3ðMÞ k3ðMÞ
1þ Svolðk3ðMÞ�kbioÞ

kbio

dM ¼ 37:36450836GPa, (B.1)

ð1
0

u4ðMÞ k4ðMÞ
1þ Svolðk4ðMÞ�kbioÞ

kbio

dM ¼ 32:37198195GPa, (B.2)

ð1
0

u3ðMÞ
1þ Svolðk3ðMÞ�kbioÞ

kbio

dM ¼ 1:05507934, (B.3)

ð1
0

u4ðMÞ
1þ Svolðk4ðMÞ�kbioÞ

kbio

dM ¼ 1:32063926, (B.4)
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gbio

dM ¼ 18:77600304GPa, (B.5)

ð1
0
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gbio

dM ¼ 16:19052283GPa, (B.6)

ð1
0

u3ðMÞ
1þ Sdevðg3ðMÞ�gbioÞ

gbio

dM ¼ 0:71090769, (B.7)

ð1
0

u4ðMÞ
1þ Sdevðg4ðMÞ�gbioÞ

gbio

dM ¼ 0:87075413: (B.8)

Appendix C: Components of the Eshelby tensor of
thin oblate spheroids

Consider a thin oblate spheroid with the unit normal to the “crack”
plane parallel to e3: The non-vanishing components of the Eshelby
tensor Sobl read as [31]

S1111 ¼ 3
16

9kbio þ 7gbio
3kbio þ 4gbio

pX, S2211 ¼ S1122,

S1122 ¼ 9
16

kbio � gbio
3kbio þ 4gbio

pX, S2222 ¼ S1111,

S1133 ¼ 3
4

�gbio
3kbio þ 4gbio

pX, S2233 ¼ S1133,

S3311 ¼ 3
4

gbio � 3kbio
4gbio þ 3kbio

pX � 2gbio � 3kbio
4gbio þ 3kbio

,

S1212 ¼ 3
16

3kbio þ 5gbio
3kbio þ 4gbio

pX, S3322 ¼ S3311

S2323 ¼ 1
2

1� 3
4
3kbio þ 2gbio
3kbio þ 4gbio

pX
	 


,

S3333 ¼ 1� 3gbio
2ð3kbio þ 4gbioÞ pX, S3131 ¼ S2323,

(C.1)

with Sijkl ¼ Sjikl ¼ Sijlk: Notably, X ¼ c=a denotes the aspect ratio.

Figure A.12. Longitudinal and shear wave velocities sent at different frequen-
cies through cylindrical samples of Biodentine, with 5mm diameter and 10mm
height; the mean longitudinal wave velocity is equal to vL ¼ 4:977 km/s (upper
data points cluster) and the mean shear wave velocity amounts to vS ¼ 2:473
km/s (lower data points cluster). The pink markers correspond to 50 kHz trans-
ducers central frequency, red to 500 kHz, cyan to 1MHz, black to 2.25MHz,
green to 5MHz, blue to 10MHz, and yellow to 20MHz transducers’ central fre-
quency, after [3].

Table A.10. Ultrasonic shear wave transducers used for characterization of
hardened Biodentine.

Frequency [MHz] Shear transducer

2.25 V154-RM
5 V155-RM
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