

Diploma Thesis

PCI Express based Embedded System

System Specification, Design, Simulation and Implementation

realized to attain the academic degree of “Diplom-Ingenieur” under the supervision of

o.Univ.- Prof. Dr. Dietmar Dietrich
and

Dipl.-Ing. Herbert Nachtnebel
as the supervising assistant

applied at the
Technical University of Vienna

Department of Electrical Engineering
Institute of Computer Technology (E384)

in cooperation with
SIEMENS AG Austria

Department of Program and System Engineering (PSE),
Chip, Electronic and Software (CES) under the supervision of

Dipl.-Ing. Majid Ghameshlu

by
Faraj Nassar

0326747
Leopoldauer Platz 19

1210 Vienna

Vienna, October 2007

Die approbierte Originalversion dieser Diplom-/Masterarbeit ist an der
Hauptbibliothek der Technischen Universität Wien aufgestellt
(http://www.ub.tuwien.ac.at).

The approved original version of this diploma or master thesis is available at the
main library of the Vienna University of Technology
(http://www.ub.tuwien.ac.at/englweb/).

i

To My Family

ii

Abstract

The platform of Today's PC consists of many local buses with different requirements, to allow the
communication of different devices with each other. Nowadays, many of these modern electronic
devices are demanding a high bandwidth, even higher than what already existing input and output (IO)
bus systems can deliver, of most interest is the Peripheral Component Interconnect (PCI) bus. These
bus systems are reaching their practical limits and are facing serious problems and shortcomings that
prevent them from being able to provide the bandwidth and features needed by the electronic industry,
which keeps needing to an increased bandwidth as well as to a simple electrical connectivity.

All these factors together have motivated the engineering of a new IO bus system, the so-called
Peripheral Component Interconnect Express (PCIe), which has been adopted as a general purpose IO
device interconnect in different applications, such as desktop, server, mobile, workstations, computing
and communication platforms.

Within this diploma work, the theory of PCIe was summarized and presented in monthly-based
presentations (PCIe tutorial). Some of the available PCI Express Intellectual Property (IP) solutions in
the market were studied and compared.

In addition to that, a PCIe-based embedded data communication system was specified, designed,
simulated, and synthesized. This system utilizes the Xilinx Microblaze soft processor core, the Xilinx
PCIe core, and the Philips PX1011A physical layer.

Data communication between the designed PCIe-based intelligent Endpoint device (in the PCIe
topology) and the system memory, as well as the Central Processing Unit (CPU), through the Root
complex, was simulated.

Keywords: IP, Microblaze, PCI, PCIe Core, PCIe Endpoint, On Chip Peripheral Bus (OPB), OPB
IPIF, OPB to PCIe Bridge, Philips PX1011A PHY, USER LOGIC.

iii

Kurzfassung

Die Architekturen heutiger PCs bestehen aus vielen Bussystemen mit unterschiedlichen
Anforderungen, welche die Kommunikation der unterschiedlichen Geräte miteinander erlauben.
Heutzutage verlangen viele dieser modernen elektronischen Geräte eine hohe Bandbreite, oft höher als
es die verfügbaren Eingangs- und Ausgangsbussysteme erlauben. Die größte Bedeutung hat die
Peripheral Component Interconnect (PCI) Busfamilie, aber auch diese Bussysteme erreichen ihre
praktischen Grenzen und beinhalten ernsthafte Probleme und Mängel, welche verhindern, dass die,
durch die elektronische Industrie geforderte, immer höhere Bandbreite, und die einfache elektrische
Anbindung erreicht werden.

Alle diese Faktoren zusammen haben die Entwicklung eines neuen IO Bussystems motiviert, dem
sogenannten Peripheral Component Interconnect Express (PCIe) Bus, welcher als universelles
Eingangs- und Ausgangsbussystem in den unterschiedlichsten Anwendungen, wie Desktopcomputer,
mobile Endgeräten, Workstations, sowie Rechen- und Kommunikationsplattformen eingesetzt wird.

Im Rahmen dieser Diplomarbeit wurde die Theorie von PCIe zusammengefasst und in monatlichen
Präsentationen vorgestellt (PCIe Tutorial). Einige der vorhandenen PCIe Intellectual Property (IP)
Lösungen im Markt wurden untersucht und verglichen.

Zusätzlich wurde ein PCIe basiertes embedded Datenübermittlungssystem spezifiziert, entworfen,
simuliert und synthetisiert. Dieses System verwendet den Xilinx Microblaze Processor Core, den
Xilinx PCIe Core und die Philips PX1011A physikalische Ebene.

Außerdem wurde die Datenkommunikation zwischen dem entworfenen PCIe basierten intelligenten
Endpunkt-Gerät (in der PCIe Topologie) und dem Systemspeicher, sowie der Zentraleinheit (CPU),
durch den Verbindungsblock, simuliert.

Stichwörter: IP, Microblaze, PCI, PCIe Core, PCIe Endpunkt, On-chip Peripheral Bus (OPB), OPB
IPIF, OPB zur PCIe Brücke, Philips PX1011A PHY, USER LOGIK.

iv

Acknowledgment

This PCI Express based Embedded System was conducted as a Master thesis work in the field of
Microelectronics, in cooperation with the Institute of Computer Engineering at the Technical
University of Vienna and the program and System Engineering (PSE) Department, Chips, Electronics
and Software (CES) Division of SIEMENS AG Austria.

First of all, I would like to express my deepest thanks to Mr. Johann Notbauer (M.Sc.), for giving me
the opportunity to carry out this project in his department at SIEMENS, under the direct supervision of
Mr. Majid Ghameshlu (M.Sc.), who consistently helped me do my best, due to his wide experience in
this field. Many thanks to Mr. Ghameshlu for being patient and helpful all the time.

I am also grateful for the support and help provided by my colleagues at SIEMENS AG Austria.

I also want to express my appreciation to Mr. Herbert Nachtnebel (M.Sc.) for being my direct
supervisor at the Technical University of Vienna, and for his support and contribution to this work.

In addition, I want to thank Prof. Dietmar Dietrich, the Head of the Computer Engineering Institute at
the Technical University of Vienna, and Prof. Gottfried Strasser, professor at the Institute of Solid
State Electronics and the Technical Director of the Microstructure center of the Technical University
of Vienna, for being my examiners.

Finally, I want to thank my family and friends for their constant encouragement and support.

iv

Contents

1 Introduction 1

1.1 Objectives 1
1.2 Method, Software and Hardware 1
1.3 Tasks and Time Plan 2
1.4 Outline 3

2 PCI Express Theory 4
2.1 Evolution of IO Bus Systems 4
2.2 Peripheral Component Interconnect (PCI) 5

2.2.1 PCI Architecture 5
2.2.2 PCI Key Features 7
2.2.3 PCI practical Limitations and challenges 7

2.3 Peripheral Component Interconnect Express (PCIe) 8
2.3.1 PCIe Introduction 8
2.3.2 PCIe Topology 9
2.3.3 PCIe Key Features 10
2.3.4 PCIe Architecture 10
2.3.5 PCIe Future Prospective 16

3 PCIe Endpoint (EP) Design 17
3.1 Design Overview 17
3.2 Philips PX1011A PHY 22

3.2.1 Block Diagram 22
3.2.2 Operation Principle 22
3.2.3 Interfaces 23

3.3 Xilinx PCIe Core 26
3.3.1 Functionality and Features 27
3.3.2 Block Diagram and Functionality 28
3.3.3 Core Interfaces 29
3.3.4 Core Generation and Configuration 39

3.4 Xilinx Microblaze Soft Processor Core 42
3.4.1 Microblaze Block Diagram 42

 3.4.2 Microblaze Interfaces 43
 3.4.3 Local Memory Bus (LMB) 44
 3.4.4 On-Chip Peripheral Bus (OPB) 44

CONTENTS v

3.5 Microblaze PCIe Peripheral 46
 3.5.1 OPB to PCIe Bridge 47
 3.5.2 On-chip Peripheral Bus Intellectual Property Interface (OPB IPIF) 51
 3.5.3 USER LOGIC Model 53

 3.5.3.1 Register Read 56
 3.5.3.1 Register Write 56

 3.5.3.3 Software accessible Register Bank 57
 3.5.3.4 PCIe Transmission State Machine 65
 3.5.3.5 PCIe Receiving State Machine 70
 3.5.3.6 PCIe Configuration space Access READ/WRITE State Machine 735

4 PCIe Endpoint Simulations 80
 4.1 PCIe Testbench 80

4.1.1 Philips PHY Simulation Model 81
4.1.2 Xilinx PCIe Downstream Port Simulation Model 81
4.1.3 Design Under Test (DUT) 83

 4.1.3.1 Xilinx PCIe PIPE IP Simulation Model 83
 4.1.3.2 Microblaze based System Simulation Model 84

4.2 C Application Program 84
4.3 Simulation Flow 94

 4.4 Test Cases Summary 104

5 PCIe Endpoint Implementation 106

6 Conclusion and Future Work 107

Appendix A: PCI Express IP Providers 108

 Appendix B: Xilinx WebCases 121

Appendix C: Project Directory Structure 122

 Bibliography 124

iv

List of Acronyms and Abbreviations

A
ACK/NAK Acknowledged /Not Acknowledged
AGP Accelerated Graphics Port
ASIC Application Specific Integrated Circuits
ASPM Active State Power Management
Attr Attribute

B
B Byte
BAR Base Address Register
BE Byte Enable
BIOS Basic Input Output System
BRAM Block Random Access Memory

C
CA Completer Abort
CES Chips, Electronics and Software
CFG Configuration interface
CMM Configuration Management Module
CPl Completion without data
CPLD Completion with Data
CPU Central Processing Unit
CRS Configuration Request Retry Status

D
DDR Dual Data Rate
DLLP Data Link Layer Packet
DLMB Data Local Memory Bus
DMA Direct Memory Access
DUT Design Under Test
DW, DWORD Doubleword

E
ECRC End to End Cyclic Redundancy Check
EDK Embedded Development Kit
EISA Extended Industry Standards Architecture
ELF Executable linked Format
EOF End-of-Frame
EP Endpoint

LIST OF ACRONYMS AND ABBREVIATIONS v

F
FIFO First In First Out
Fmt Format
FPGA Field Programmable Gate Arrays
FSB Front Side Bus
FSL Fast Simplex Link

G
Gbytes/s Gigabytes per second
Gbps Giga bit per second

H
HDD Hard Disk Drive
HDL Hardware Description Language
HDR Header

I
ICH IO Controller Hub
IDE Integrated Drive Electronics
ILMB Instruction Local Memory Bus
IO Input and Output
IP Intellectual Property
IPIC IP Interconnect
IPIF Intellectual Property Interface
ISA Industry Standards Architecture
ISE Integrated Software Environment

K
Kbytes 210 Bytes

L
LCRC Link Cyclic Redundancy Check
LLM Data Link Layer Module
LMB Local Memory Bus
LTSSM Link Training and Status State Machine
LVDS Low Voltage Differential Signal

M
M.Sc. Master of Science
MAC Media Access Controller
Mbytes/s Megabytes per second
MCH Memory Controller Hub
MGTs Multi-Gigabit Transceivers
MSI Message Signalled Interrupt

O
OPB On-Chip Peripheral Bus
OPB IPIF OPB Intellectual Property Interface

LIST OF ACRONYMS AND ABBREVIATIONS vi

P
PCI Peripheral Component Interconnect
PCI-SIG PCI-Special Interest Group
PCI-X Peripheral Component Interconnect-X
PCIe Peripheral Component Interconnect Express
PHY Physical
PIPE Physical Interface for PCI Express
PLD Programmable Logic Device
PLI Programming Language Interface
PLM Physical Layer Module
PLPs Physical Layer Packets
PPM Programmed Power Management
PXPIPE Philips PHY Specification PIPE

Q
QDR Quad Data Rate
QoS Quality of services

R
R Reserved
RAM Random Access Memory
RISC Reduced Instruction Set Computer
RTL Register Transfer Level
RX Receiver

S
SC Successful Completion
SCSI Small Computer System Interface
SDK Software Development Kit
SDRAM Synchronous Dynamic Random Access Memory
SOF Start-of-Frame
SYS System interface

T
TC Traffic Class
TD TLP Digest
TLP Transaction Layer Packet
TLM Transaction Layer Module
TPI Test Programming Interface
TRN Transaction interface
TXPLL Transmitter Phase Locked Loop
TX Transmitter

U
UR Unsupported Request
USB Universal Serial Bus

LIST OF ACRONYMS AND ABBREVIATIONS vii

V
VESA Video Electronics Standards Association
VHDL VHSIC-HDL Very High Speed Integrated Circuit Hardware description
 Language

viii

List of Figures

Chapter 1 Introduction 1

Chapter 2 PCI Express Theory 4

Figure 2.1 - Evolution of IO bus systems 4
Figure 2.2 - An Example of 33 MHz PCI Bus Based System [ABS04] 6
Figure 2.3 - An Example of 66 MHz PCI Bus Based System [ABS04] 6
Figure 2.4 - PCI Express Link [ABS04] 8
Figure 2.5 - PCI Express Topology 9
Figure 2.6 - PCI Configuration Model [ABS04] 11
Figure 2.7 - PCI Express Architecture 12
Figure 2.8 - PCI Express TLP Assembly/Disassembly 12
Figure 2.9 - Header for a 32-bit Memory Write TLP 13

Chapter 3 PCIe Endpoint Design 17

Figure 3.1 - Basic Memory Transactions 17
Figure 3.2 - Endpoint Design 19
Figure 3.3 - Xilinx Virtex-5 LXT PCI Express Endpoint Block [UG197] 19
Figure 3.4 - Spartan-3 PCI Express Starter Kit [Xilinx] 20
Figure 3.5 - Complete PCIe Endpoint Device 21
Figure 3.6 - Block Diagram of PX1011A [GL05] 23
Figure 3.7 - PCIe Differential Transmitter/Receiver [ABS04] 24
Figure 3.8 - PIPE Interface [PPHY] 25
Figure 3.9 - PXPIPE Interface [PPHY] 25
Figure 3.10 - Two-chip Solution [XP05] 27
Figure 3.11 - Top-level Functional Blocks Diagram and Interfaces of Xilinx PCIe Core [XUG167] 28
Figure 3.12 - PCIe Configuration Space [XUG167] 30
Figure 3.13 - PCIe Component Name [XUG167] 39
Figure 3.14 - PCIe ID Initial Values [XUG167] 39
Figure 3.15 - PCIe Base Address Registers (BARs) Configuration 40
Figure 3.16 - PCIe Capabilities and Device Capabilities Register Configuration [XUG167] 41
Figure 3.17 - PCIe Link Capabilities Register Configuration [XUG167] 41
Figure 3.18 - PCIe Advanced Settings [XUG167] 42
Figure 3.19 - Microblaze Block Diagram [XUG081] 43
Figure 3.20 - Local Memory Bus (LMB) 44

LIST OF FIGURES ix

Figure 3.21 - OPB Slave Attachment [XTZ02] 45
Figure 3.22 - PCIe Peripheral Attachment as Slave [XTU02] 46
Figure 3.23 - PCIe Peripheral 47
Figure 3.24 - OPB to PCIe Bridge 47
Figure 3.25 - OPB to PCIe Bridge Interfaces/Transaction Interfaces 48
Figure 3.26 - OPB to PCIe Bridge Interfaces/Configuration Interfaces 49
Figure 3.27 - Basic OPB Read Transaction [XTU02] 50
Figure 3.28 - Basic OPB Write Transaction [XTU02] 51
Figure 3.29 - Full Set of OPB IPIF Features [XTU02] 52
Figure 3.30 - OPB IPIF Features for Register Access [XTU02] 52
Figure 3.31 - OPB IPIF Top-level Block Diagram, Register Interface Only [XDS414] 53
Figure 3.32 - USER LOGIC Interfaces 54
Figure 3.33 - Read Transaction from IP that utilizes Register Decodes [XDS414] 55
Figure 3.34 - Write transaction to IP that utilizes Register Decodes [XDS414] 56
Figure 3.35 - USER LOGIC Internal structure 57
Figure 3.36 - Register Bank, Base Address and Offset are in Hexadecimal 58
Figure 3.37 - Registers Big-Endian Format [XUG081] 58
Figure 3.38 - STATUS Register 58
Figure 3.39 - CONTROL Register 59
Figure 3.40 - MWR/MRD HDR DW1 Register 60
Figure 3.41 - MWR/MRD HDR DW2 Register 62
Figure 3.42 - MWR/MRD HDR DW3 Register 62
Figure 3.43 - REC. MWR/MRD/CPLD DW1 Register 63
Figure 3.44 - REC. CPLD DW2 Register 63
Figure 3.45 - REC. CPLD DW3 Register 64
Figure 3.46 - REC. MWR/MRD DW2 Register 64
Figure 3.47 - PCIe Transmission State Machine 66
Figure 3.48 - PCIe Transmission State Machine State Diagram 68
Figure 3.49 - Memory Write TLP with a 3 DW Header and Payload [XUG167] 69
Figure 3.50 - Memory Read TLP with a 3 DW Header without Payload [XUG167] 70
Figure 3.51 - PCIe Receiving State Machine 71
Figure 3.52 - PCIe Receiving State Machine State Diagram 73
Figure 3.53 - Received 32-bit Addressable Memory Write TLP [XUG167] 74
Figure 3.54 - Received 32-bit Addressable Memory Read TLP [XUG167] 74
Figure 3.55 - PCIe Configuration Space Access READ/WRITE State Machine 76
Figure 3.56 - PCIe Configuration Space Access READ/WRITE State Machine State Diagram 78
Figure 3.57 - Reading of PCIe Configuration Space [XUG167] 79

Chapter 4 PCIe Endpoint Simulation 80

Figure 4.1 - PCIe Testbench Top-level 80
Figure 4.2 - PX1011A Packaged Model [PUG05] 81
Figure 4.3 - PCIe Downstream Port Model 82
Figure 4.4 - Functional Block Diagram of the PCIe Downstream Port Model 82
Figure 4.5 - Top level of DUT Model 83

LIST OF FIGURES x

Figure 4.6 - Top-level of Microblaze Based System Simulation Model 84
Figure 4.7 - Segment 1: Initialization and Configuration of the PCIe Core 85
Figure 4.8 - Segment 2: PCIe Core Configuration Space Read 86
Figure 4.9 - Segment 3: PCIe Core Configuration Space Write 86
Figure 4.10 - Segment 4: Bus Master Enable 87
Figure 4.11 - Segment 5: Generating of a Memory Write TLP 88
Figure 4.12 - Segment 6: Generating of a Memory Read TLP 89
Figure 4.13 - Segment 7: Receiving of a CPLD 90
Figure 4.14 - Segment 8: Receiving of a Memory Write TLP 91
Figure 4.15 - Segment 9: Receiving of a Memory Read TLP 92
Figure 4.16 - Segment 10: Generation of a CPLD TLP 93
Figure 4.17 - Simulation Flow Stage 1 94
Figure 4.18 - Symbol Lock/PXPIPE Waveforms 95
Figure 4.19 - PCIe Downstream Port Waveforms 96
Figure 4.20 - Simulation Flow Stage 1 (Continued) 96
Figure 4.21 - Setting of PCIe Configuration Space 97
Figure 4.22 - Transmission Output Logging 98
Figure 4.23 - Reception Output Logging 98
Figure 4.24 - Transmitting Output Logging/Writing BAR0 Starting Address 99
Figure 4.25 - Waveforms of Configuration Write and CPL TLPs 99
Figure 4.26 - Simulation Flow Stage 2 100
Figure 4.27 - PCIe Core Configuration Space Access Waveforms 100
Figure 4.28 - Simulation Flow Stage 3 101
Figure 4.29 - Simulation Flow Stage 3 Waveforms 102
Figure 4.30 - Simulation Flow Stage 4 Waveforms 102
Figure 4.31 - Simulation Flow Stage 4 103
Figure 4.32 - Test Cases 1 and 2 104

5 PCIe Endpoint Implementation 106

6 Conclusion and Future Work 107

Appendix A: PCIe IP Providers 108
Figure A.1 – PCIe IP Providers 108

Appendix B: Xilinx WebCases 121

Appendix C: Project Directory Structure 122
Figure C.1 - Project Directory Structure 122
Figure C.1 - Project Directory Structure (Cont.) 123

Bibliography 124

xi

List of Tables

Chapter 1 Introduction 1

Chapter 2 PCI Express Theory 4

Chapter 3 PCIe Endpoint Design 17
Table 3.1 - PHY Interfaces to the PCIe Link 24
Table 3.2 - Philips PHY Interfaces to the Xilinx PCIe Core [KPE05] 26
Table 3.3 - PCIe Core Specification [XUG167] 27
Table 3.4 - PXPIPE Transmit Data Interface Signals [XUG167] 31
Table 3.5 - PXPIPE Receive Data Interface Signals [XUG167] 31
Table 3.6 - Clock and Reference Signals [XUG167] 31
Table 3.7 - PXPIPE Command Interface Signals [XUG167] 32
Table 3.8 - PXPIPE Status Interface Signals [XUG167] 32
Table 3.9 - Xilinx PCIe PIPE Endpoint Core Transaction Receive Interfaces [XUG167] 34
Table 3.9 - Xilinx PCIe PIPE Endpoint core Transaction Receive Interfaces (Cont.) [XUG167] 35
Table 3.10 - Xilinx PCIe Core Configuration Interfaces [XUG167] 36
Table 3.10 - Xilinx PCIe PIPE Endpoint Core Configuration Interfaces (Cont.) [XUG167] 37
Table 3.10 - Xilinx PCIe PIPE Endpoint Core Configuration Interfaces (Cont.) [XUG167] 38
Table 3.11 - OPB Global Signals 45
Table 3.12 - OPB Interface Signals 45
Table 3.12 - OPB Interface Signals (Cont.) 46
Table 3.13 - PCIe Transmission State Machine Transition Table 67
Table 3.14 - PCIe Receiving State Machine Transition Table 72
Table 3.15 - Registers Mapped Directly onto the Configuration Interface of the Core 75
Table 3.16 - PCIe Configuration Space Access READ/WRITE State Machine Transition Table 77

Chapter 4 PCIe Endpoint Simulation 80

5 PCIe Endpoint Implementation 106

Table 5.1 - Device Utilization 106

6 Conclusion and Future Work 107

LIST OF TABLES xii

Appendix A: PCIe IP Providers 108
Table A.1 - Features of Physical Layer and Data Link Layer 110
Table A.1 - Features of Physical Layer and Data Link Layer (Cont.) 111
Table A.1 - Features of Physical Layer and Data Link Layer (Cont.) 112
Table A.2 - Features of the Transaction Layer 113
Table A.2 - Features of the Transaction Layer (Cont.) 114
Table A.2 - Features of the Transaction Layer (Cont.) 115
Table A.2 - Features of the Transaction Layer (Cont.) 116
Table A.3 - General Key Features 117
Table A.3 - General Key Features (Cont.) 118
Table A.3 - General Key Features (Cont.) 119
Table A.3 - General Key Features (Cont.) 120

Appendix B: Xilinx WebCases 121

Table B.1 - WebCase Summary 121

Appendix C: Project Directory Structure 122
Table C.1 - Project Directory Structure 122

Bibliography 124

1

1 Introduction

1.1 Objectives

The main purpose of this diploma work is to demonstrate the capabilities of the third generation IO
Interconnect bus system, the so-called PCI Express. To achieve this purpose, two sub-objectives are
aimed to:

• Preparing a kind of PCIe tutorial (PowerPoint- Presentation) for the fast entry in the PCI
Express technology. These presentations provide the Know-How required for someone to use
this technology for the fist time. In addition, some of the available solutions in the market for
the implementation of PCI Express are to be studied, discussed and compared.

• Designing of a PCI Express-based embedded system for customer reference. In this system an
intelligent Endpoint device, employing this technology, should be able to write a double word
(DW = 32 bits) to a location within the system memory and read this data back. This system
should also enable data communication between the CPU through the Root Complex and this
Endpoint device.

1.2 Method, Software and Hardware

PCI Express theory has been acquired through an extensive reading of two reference books. Namely,
the PCI Express System Architecture and PCI System Architecture by MindShare, Incorporated. The
PCI Express Base Specification v1.0 – 2002 and others were additional valuable references as well.

XILINX, which leads the Programmable Logic Device (PLD) market, one of the fastest growing
segments of the semiconductor industry, was the source of most of the used Intellectual Property (IP)
solutions, which are functions designed for the implementation in the Field Programmable Gate Array
(FPGA) devices. Throughout this documentation the Intellectual Property will be referred to as IP.
Xilinx provides many of these ready optimized and compiled IP solutions. Xilinx accompanies these
with data sheets, manuals and detailed descriptions, which provide a paramount help. For the use of
the available development tools, Xilinx reports several tutorials and demos, which were extensively
used to assist the designing of the embedded system. Xilinx also gives the opportunity for consultancy
and technical supporting, through what it calls webcases. During this diploma work, several webcases
were opened, discussed, and successfully solved with engineers from this company.

CHAPTER 1: INTRODUCTION 2

Xilinx PCI Express Physical Interface for PCI Express (PIPE) Endpoint 1-Lane IP core was used to
implement the protocol layers of the PCI Express architecture. In the remainder of this documentation,
this core will be referred to as PCIe core.

An evaluation licence of this core was received in a package, along with the Spartan-3 PCI Express
Starter Kit. On which the designed system is to be implemented. The core was generated, configured
and customized using the Xilinx CORE generator.

The Xilinx Spartan-3 FPGA and Philips PX1011A PHY demonstrate a two-chip solution for designing
such a system. The Microblaze processor soft core IP was embedded in the Endpoint, to make it an
intelligent device. The Microblaze based embedded system and the PCIe PIPE core, are to be
implemented in the Spartan-3 FPGA.

The XPS (Xilinx Platform Studio), a part of Xilinx EDK (Embedded Development Kit) 8.2i, and the
SDK (Software Development Kit) were used to design the Microblaze based system.

PX1011A PHY is a discrete chip used to implement the physical layer of the PCIe protocol. For the
simulation, a behaviour model of this chip was received as a packaged model from NXP
Semiconductors. This model interfaces the simulation tool using the Verilog HDL Programming
Language Interface (PLI).

Xilinx provides a complete PCIe simulation testbench. In a customized version of this testbench and
with the help of the simulation tool ModelSim SE, the whole system was simulated.

Synplify Pro 8.1 and ISE (Integrated Software Environment) 8.2i were used to synthesize the PCI
Express based Embedded System.

ISE 8.2i was used to prepare the implementation of the design in the Xilinx programmable logic
device.

1.3 Tasks and Time Plan

The tasks carried out were divided into two parts: a theoretical part regarding the theory of PCI
Express and the preparing of the power point presentations, and a practical part regarding the
implementation of the data transfer system. These two main tasks were further divided into the
following subtasks:

• PCI Express theory: reading, studying and researching

• Preparation of PCIe tutorial and presentations to the chip design team at Siemens.

• Overview of the different available PCIe IP solutions in the market, studying and comparing.

• Specification of a microprocessor system (Microblaze) with PCIe links.

• Implementation of the system in Register Transfer Level (RTL) using Very High Speed
Integrated Circuit Hardware description Language (VHSIC-HDL or VHDL).

• Software development for the data transfer.

CHAPTER 1: INTRODUCTION 3

• Simulation and functionality verification.

• FPGA prototyping including measurements (optional).

• Documentation of the work, including an experience report.

This project was accomplished in four phases, over duration of 8 months.

1.4 Outline

After the brief introduction in chapter one, chapter two will summarize the most important aspects of
the PCI Express bus system. It starts with a short introduction to the evolution of IO bus systems. In
this chapter, the PCI bus architecture, its key features, practical limitations, challenges and
shortcomings are discussed. Furthermore, the PCIe bus system is introduced. Its topology and
architecture are then discussed. The functionality of each layer in the PCIe architecture is finally
illustrated through an example of a Memory Write Transaction.

Chapter three is dedicated to the design of a PCI Express based Endpoint. First, an overview of the
design is given. The Microblaze based Endpoint device is presented next. The complete design is
overviewed. Then all the components and IPs building up the system are discussed. The PX1011A
PHY physical layer, its block diagram, operational principle and interfaces are demonstrated. After
this, the PCIe core, its block diagram, functionality, features, interfaces, generation and configuration
are discussed. The Microblaze core, its interfaces, the Local Memory Bus (LMB) and the On-chip
Peripheral Bus (OPB) are also explained in this chapter. The final section of this chapter concentrates
on the design of the Microblaze PCIe peripheral. This includes a detailed description of the developed
OPB to PCIe Bridge, its internal structure, interfaces, and functionality.

Chapter four presents the simulation of the designed PCIe Endpoint. It introduces the simulation
models of each functional block in this Endpoint device. In this chapter the PCIe Downstream Port
simulation model provided by Xilinx is explained. Its integration into the PCIe Testbench is also
demonstrated. Then, a detailed description of the C application program executed by the Microblaze is
given. The next section in this chapter provides the simulation flow, followed by a summary of the
conducted testcases.

Finally, chapter 5 brings some conclusions and highlights future work.

4

2 PCI Express Theory

2.1 Evolution of IO Bus Systems

Since the 1980s till nowadays, many bus systems have been developed to serve different electronic
devices, computing and communication platforms.

Figure 2.1 depicts the evolution of IO bus systems. The first IO buses generation, which is located at
the bottom of the figure, was introduced in the 1980s, including the Industry Standard Architecture
(ISA), which enables a very low bandwidth of 16.7 Mbytes/s, a sufficient one at that time. Extended
ISA (EISA) and Video Electronics Standards Association (VESA) are other buses of this generation.

In the 1990s, the second IO buses generation was
started with different buses. In 1993 the PCI 33 MHz
bus was released. At that time, a 32-bit version of this
bus was enough to deliver a bandwidth of 133
Mbytes/s, which met the bandwidth requirements of
the available IO peripherals. A 64-bit version of this
PCI bus delivers a bandwidth of 266 Mbytes/s
[AS99].

However, due to the increase in the processor speeds
and the bandwidth needs of new developed IO
technologies, the PCI bus frequency was increased in
1995 from 33 to 66 MHz, to increase the bandwidth
from 133 Mbytes/s to 266 Mbytes/s for a 32-bit PCI,
and from 266 Mbytes/s to 533 Mbyte/s for a 64-bit
PCI, correspondingly [ABS04].

Several practical limitations of the PCI 66 MHz bus
and the emerging of new high end system
technologies that continued asking for higher
bandwidths led in 1999, to the releasing of a new
generation of the PCI called the PCI-X bus.

 PCI Express

2000s 3rd Generation IO buses

1990s 2nd Generation IO buses

1980s 1st Generation IO buses

PCI-XPCI AGP

ISA EISA VESA

Figure 2.1 - Evolution of IO bus systems

CHAPTER 2. PCI EXRESS THEORY 5

The PCI-X bus has frequencies of 66 and 133 MHz and enables a bandwidth up to 1.066 Gbytes/s.
These frequencies were increased to 266 and 533 MHz in the first quarter of 2002, to increase the
bandwidth provided up to 4 Gbytes/s [ABS04].

Another bus system in the second generation is the Accelerated Graphics Port (AGP). A x1 AGP bus,
for example, enables a bandwidth of 266 Mbyte/s and a x8 AGP can enable a bandwidth of up to 2.1
Gbytes/s.

However, in order to meet the higher bandwidth requirements and to satisfy the bandwidth hungry
devices, a new bus system was still needed.

The third and latest generation IO bus system is the PCIe, which was released in the second quarter of
2002. It evolved from the PCI and overcame the limitations of the PCI. The PCI Express (which is
currently being adopted as general purpose IO devices interconnect in different applications) began
shipping in standard desktop PCs in 2004. A x1 PCIe bus provides theoretically a bandwidth of 500
Mbytes/s, a x16 PCIe can provide up to 8 Gbytes/s, and a x32 provides 16 Gbytes/s [ABS04].

Next, the PCI bus system including its architecture, key features, practical limitations, and challenges
will be explained.

After that, an illustration of the PCIe bus system architecture, key advantages, and future prospectives
will follow.

2.2 Peripheral Component Interconnect (PCI)

2.2.1 PCI Architecture

Figure 2.2 illustrates an example of a 33 MHz PCI bus based system, which consists of a processor bus
to PCI bus Bridge, called the North Bridge, to which the Accelerated Graphics Port (AGP), system
memory, and the 33 MHz PCI buses are connected. The PCI bus is bridged to the ISA bus over the so-
called South Bridge, to which additionally the Integrated Device Electronics bus (IDE) and the
Universal Serial Bus (USB) are connected.

The PCI bus is a multi-drop parallel interconnect which uses a shared bus topology (the bus bandwidth
is shared) to allow data communication among the different devices that share the bus including the
CPU.

The PCI bus operating at 33 MHz and 32 bits provides a peak theoretical bandwidth of 132 Mbytes/s.
A bandwidth of 266 Mbytes/s is possible by extending the bus to 64 bits [ABS04].

Theoretically, up to 32 devices can be connected on a PCI bus. Due to some signal timing restrictions,
the PCI bus cannot support more than 10-12 loads (or 5-6 connectors); each connector is equivalent to
2 loads [ABS04]. However, it is possible to connect more devices to the PCI bus by implementing a
PCI-to-PCI bridge, as depicted in figure 2.2.

CHAPTER 2. PCI EXRESS THEORY 6

Figure 2.2 - An Example of 33 MHz PCI Bus Based System [ABS04]

Figure 2.3 shows an example of a 66 MHz PCI
bus based system, in which the latest
generation of Intel PCI chipsets is used, where
North and South bridges are replaced with a
Memory Controller Hub (MCH) and an IO
Controller Hub (ICH), respectively. A Hub link
connects both of these hubs together. The
figure also shows each 66 MHz PCI bus is
accessed over a P64H (PCI 64-bit Hub) bridge
connected to the MCH via Hub Link buses.

PCI Bus 1

PCI Bus 0

Audio
Chip

Ethernet

South Bridge

USB

HDD Ethernet

SCSI

PCI-33MHz

Slots

AGP
2x

SDRAM FSB

Processor

North Bridge
(Intel 440) GFX

 ISA

Boot
ROM

Audio
Chip

Modern
Chip

Ethernet

 COM1

 COM2

Super
IO

Figure 2.3 - An Example of 66 MHz PCI Bus Based
System [ABS04]

CHAPTER 2. PCI EXRESS THEORY 7

The 66 MHz PCI bus system supports a bandwidth requirement of 533 Mbytes/s, and one connector to
which a device can be connected, while the PCI-X can support from 8 to 10 loads or 4 connectors at 66
MHz and 3 to 4 or 1 to 2 connectors at 133 MHz. The peak bandwidth achievable with 64-bit/133 MHz
PCI-X is 1064 Mbytes/s. A further improvement to the PCI-X is the PCI-X 2.0 bus, which supports
either Dual Data Rate (DDR) or Quad Data Rate (QDR) data transport, and provides a peak bandwidth
capability of 4256 Mbytes/s for a 64-bit 533 MHz effective PCI-X bus [ABS04].

2.2.2 PCI Key Features

The PCI bus overcame the limitations of its predecessors and had several advantages over them.

Referring to figure 2.2, one can see a kind of partitioning into two hubs, the MCH and the ICH.
Indeed, this provides a kind of processor independency and buffered separation. Separating the CPU
local bus from the PCI bus, gives the ability to run simultaneous cycles on the CPU and PCI buses. It
also allows the CPU local bus to increase its frequency accompanied by a change in the memory bus,
independent of the PCI bus speed and loading.

The PCI bus provides a bus mastering connectivity, where the PCI devices arbitrate to access the bus
and master the bus transaction directly instead of waiting for the CPU to serve them. This results in
reducing the overall latency.

Another advantage of the PCI bus is the plug and play operation, which allows devices to be
automatically detected and configured.

2.2.3 PCI practical Limitations and challenges

The PCI bus has limited bandwidth capabilities, which makes it an unsatisfying choice for several
applications, which require a higher bandwidth.

In the industry, two ways are followed to adapt the performance of a bus system to the devices’
requirements: increasing the number of signals, or increasing the signal frequency. In both cases, the
bus system reaches its limitations. Both solutions also add extra costs to the development phase.

The PCI bus’s frequency cannot be scaled up, and its voltage cannot be scaled down. It faces some
time restrictions and stringent signal routing rules.

The PCI bus implements a shared bus topology, in which many devices share the same bus. Some of
these devices can monopolize more than 80% of the available PCI bus bandwidth.

PCI bus efficiency is reduced. This reduction is due to several factors:

• Masters and slaves are allowed to insert wait states in the bus cycle. Slower devices will make
the transfer on the bus slower.

• The transfer size on the bus is not indicated, which leads to an inefficiency in the buffer
management within both the master and slave devices.

CHAPTER 2. PCI EXRESS THEORY 8

PCI Express PCI Express

D
ev

ic
e

A
D

ev
ic

e
A

D
ev

ic
e

B
D

ev
ic

e
B

(x1,x2,x4,x8,x12,x16 or x32) link

PacketPacket

PacketPacket

PCI Express PCI Express

D
ev

ic
e

A
D

ev
ic

e
A

D
ev

ic
e

B
D

ev
ic

e
B

(x1,x2,x4,x8,x12,x16 or x32) link

PacketPacket

PacketPacketD
ev

ic
e

A
D

ev
ic

e
A

D
ev

ic
e

B
D

ev
ic

e
B

(x1,x2,x4,x8,x12,x16 or x32) link

PacketPacket

PacketPacket

• The handling of delayed transactions on the PCI bus is inefficient.

• The architecture of PCI follows strict ordering rules as defined by the PCI specification.

• The way the PCI architecture handles the interrupts is inefficient, because many devices share
the same PCI interrupt signal, which imposes additional time latency in discovering which of
these devices has generated the interrupt.

The PCI bus does not support real-time data transfer services. As many applications today require the
data streaming from video and audio devices, the bus must set some priorities in processing these
time-dependent data in a process called the Quality of Services (QoS).

This bus also does not provide advanced power management features, which are required by many
modern electronic devices.

All these limitations and challenges have motivated the developing of a new IO bus generation. The
PCI Express bus system was the result of the developments carried out by Intel. This PCIe bus system
was brought to the market in 2004, and is now used as a general IO Interconnect in diverse
applications.

The PCIe bus system is discussed next. Its topology, architecture and layer structure are explained.

2.3 Peripheral Component Interconnect Express (PCIe)

2.3.1 PCIe Introduction

Unlike the PCI bus, the PCIe bus is serial. Figure 2.4 shows a PCIe Link, which implements a high
performance, high speed, point-to-point, dual simplex, low-pin-count and differential signalling Link
for interconnecting devices. This bus system was developed to overcome the limitation of the original
PCI bus.

Figure 2.4 - PCI Express Link [ABS04]

The PCIe link shown in the figure implements the physical connection between two devices. A PCIe
interconnect is constructed of either a x1, x2, x4, x8, x12, x16 or x32 point-to-point link. A x1 Link has
1 Lane or 1 differential signal pairs in each direction, transmitter and receiver, with a total of 4 signals.
Correspondingly, x32 Link has 32 Lanes or 32 signal pairs for each direction, with a total of 128
signals [ABS04].

CHAPTER 2. PCI EXRESS THEORY 9

PCIe employs a packet-based communication protocol with a split transaction. Communication in this
bus system includes the transmission and reception of packets called Transaction Layer packets
(TLPs).

The transactions supported by PCIe protocol can be grouped into four categories: Memory, IO,
Configuration, and Message transactions.

2.3.2 PCIe Topology

The PCIe topology shown in figure 2.5 contains different components. A Root Complex, PCIe
switches, PCIe Endpoints, Legacy Endpoints, and optional PCIe to PCI bridges.

The Root Complex connects the CPU and
the memory to the PCIe fabric. For
instance, an Intel chipset could be used as a
Root Complex.

The main purpose of the Root Complex is
to generate transaction and configuration
requests on behalf of the CPU.

PCIe implements a switch-based topology
in order to interconnect multiple devices.
These Switches implement multiple,
logical, and virtual bridges.

Shown in the figure are switches with one
upstream port that points in the direction of
the root complex, and two downstream
ports, which point in the opposite direction.
These switches can have any number of
ports.

PCIe Endpoint (EP) is a device which can
be a requester that originates a PCIe
transaction or a completer that responds to
a PCIe transaction addressed to it.

As mentioned above, these Endpoints can posses a x1, x2, up to x32 link. PCIe Endpoints are
peripheral devices such as Ethernet, USB or graphic devices. Legacy Endpoint does not support all the
transaction like the PCIe Endpoint.

In order to connect some PCI devices to the PCIe fabric, a PCIe to PCI Bridge must be used.

GraphicsGraphics

PCIePCIe--PCI PCI

BridgeBridge

x2 EPx2 EP

MemoryMemory

CPUCPU

x1 EPx1 EP

SwitchSwitch

SwitchSwitch

Root ComplexRoot Complex

x8 EPx8 EP

SwitchSwitch

LegacyLegacy

EPEP

PCI ExpressPCI Express
PCIPCI

GraphicsGraphics

PCIePCIe--PCI PCI

BridgeBridge

x2 EPx2 EP

MemoryMemory

CPUCPU

x1 EPx1 EP

SwitchSwitch

SwitchSwitch

Root ComplexRoot Complex

x8 EPx8 EP

SwitchSwitch

LegacyLegacy

EPEP

PCI ExpressPCI Express
PCIPCI

PCIePCIe--PCI PCI

BridgeBridge

x2 EPx2 EP

MemoryMemory

CPUCPU

x1 EPx1 EP

SwitchSwitch

SwitchSwitch

Root ComplexRoot Complex

x8 EPx8 EP

SwitchSwitch

LegacyLegacy

EPEP

PCI ExpressPCI Express
PCIPCI

Figure 2.5 - PCI Express Topology

CHAPTER 2. PCI EXRESS THEORY 10

2.3.3 PCIe Key Features

The shared bus topology used for PCI is replaced with a shared switch, which provides each device,
with a direct access to the bus.

In a PCIe based system, unlike the parallel PCI bus system, data is sent serially in packet based
protocol.

PCIe bus has an advantageous attribute of frequency and bandwidth scalability, because it implements
a point-to-point interconnect, which limits the electrical load on the link, allowing transmission and
reception frequencies to be scaled up. Multiple lanes can be used to increase the bandwidth of the
PCIe link.

PCIe supports the same address spaces as PCI: memory, IO, and configuration address spaces.
Additionally, it enhances the configuration address space by extending it from 256 Bytes to 4 Kbytes
[PXS05].

The same transaction types supported by PCI and PCI-X are used by the PCIe. These include Memory
Read and Memory Write, IO Read and IO Write, Configuration Read and Configuration Write. The
PCIe bus also supports a new transaction type called Message transaction.

PCIe offers a new feature, called the Quality of Service (QoS). This new feature allows the routing of
packets from different devices with different priorities.

PCIe uses a flow control mechanism. This ensures that the TLP won't be transmitted unless there is
enough space in the receiving device.

PCIe uses Message Signalled Interrupt (MSI) style for handling interrupts. In order to interrupt the
CPU, a Memory Write packet is used to write an interrupt vector to the Root Complex, which in-turn
interrupts the CPU.

Other features supported by PCIe are the advanced power management features, which enable the
design of low power mobile devices. PCIe also supports hot plug and hot swap features. Signalling of
such features is carried out in-band using packet based messaging instead of side-band signals. This
has the advantage of keeping the device pin count low.

PCIe applies the same programming model as PCI and PCI-X. It also has a configuration model which
is compatible with PCI configuration model, shown in figure 2.6. It is also compatible with existing
operating systems, bus enumeration and configuration software for PCI/PCI-X [ABS04].

2.3.4 PCIe Architecture

PCIe has a layered architecture as depicted in figure 2.7. It consists of the Transaction Layer, the Data
Link Layer and the Physical Layer. On the top of these three layers resides the Software Layer, or
device core. Each of these layers is further divided into two sections: transmitter and receiver.

CHAPTER 2. PCI EXRESS THEORY 11

The transmitter is responsible for processing the Transaction Layer Packets requested from the device
core before being transmitted across the PCIe link. At the same time, the receiver processes the
incoming TLPs before sending them to the device core.

To demonstrate the functionality of PCI Express protocol and for the purpose of this diploma work,
32-bit addressable Memory Write/Read and Completion with Data (CPLD) TLPs will be considered.

Figure 2.8 shows the assembly and disassembly of a PCIe TLP. It also illustrates the contribution of
each layer to this TLP.

Figure 2.6 - PCI Configuration Model [ABS04]

The Memory Write TLP is considered to be a posted transaction where the requester transmits a
request TLP to the completer. This in turn does not return a completion TLP back to the requester.
Unlike the Memory Read TLP where the completer is supposed to return a completion TLP back to
the requester. The completer returns either a Completion with Data (CPLD), if it is able to provide the
requested data, or a Completion without data (CPl), if it fails to obtain the requested data.

Doubleword
Number

(in decimal)

CHAPTER 2. PCI EXRESS THEORY 12

Figure 2.7 - PCI Express Architecture [XP05]

In the illustration below, the core of device B issues a Memory Write request in order to write some
data to a memory mapped location within device A.

Figure 2.8 - PCI Express TLP Assembly/Disassembly

PCI Express FabricPCI Express Fabric

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device A Endpoint Device A

RXRXTXTX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device B Endpoint Device B

RXRXTXTX

Gigabit SerialGigabit Serial
PCI Express FabricPCI Express Fabric

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device A Endpoint Device A

RXRXTXTX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device B Endpoint Device B

RXRXTXTX

Gigabit Serial
PCI Express FabricPCI Express Fabric

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device A Endpoint Device A

RXRXTXTX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device A Endpoint Device A

RXRXTXTX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device B Endpoint Device B

RXRXTXTX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device B Endpoint Device B

RXRXTXTX

Gigabit SerialGigabit Serial

Reliable data transport

Signaling and electrical interfaces

TLP generation and receiving

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

Device B Device B

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

Device A Device A Device BDevice B

TXTX TXTX RXRXRXRX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

Device B Device B

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

Device A Device A Device BDevice B

TXTX TXTX RXRXRXRX

StartStart SEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRC ENDENDStartStart SEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRC ENDEND

SEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRCSEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRC

HDRHDR DataData ECRCECRCHDRHDR DataData ECRCECRC

1B

12-bit 1DW

1DW

StartStart SEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRC ENDENDStartStart SEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRC ENDEND

SEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRCSEQ.SEQ. ## HDRHDR DataData ECRCECRCLCRCLCRC

HDRHDR DataData ECRCECRCHDRHDR DataData ECRCECRC

1B

CHAPTER 2. PCI EXRESS THEORY 13

Device Core

The core of device B, which could be the Root Complex core logic or Endpoint core logic, sends to
the transaction layer the information required to assemble the TLP. This information contains the
Header (HDR) and the Data Payload (if it exists), because some TLPs do not have data payload, as in
the case of Memory Read TLPs.

The size of the Header can vary between 3 and 4 DWs depending on the TLP. 3 DWs are used for 32-
bit addressable Memory and CPLD TLPs, while the Header with 4 DWs is dedicated to 64-bit
addressable Memory TLPs. The maximum size of the data payload is 4Kbytes (1024 DW) [ABS04].

Figure 2.9 depicts the Header of a 32-bit addressable Memory Write request to write data of 1 DW
payload to a memory mapped location of 32-bit address within device A1.

This Header consists of 3 DWs. In the case of 64-bit addressable Memory TLPs, one more DW is
used. Bytes 12 to 15 must be added to the Header shown in the figure.

Figure 2.9 - Header for a 32-bit Memory Write TLP

The figure also shows the different fields in this Header. The following is a detailed explanation of
each field:

• Byte0 [7]: R (Reserved bit): This bit should be set to zero.
• Byte0 [6:5]: Fmt (Packet Format) and Byte0 [4:0]: Type (TLP packet Type field) are used in a

combination that specifies the transaction type, header size, and whether data payload is
present or not (Byte0 [6:0]):

 0000000b = Memory Read (3DW without data)
 0100000b = Memory Read (4DW without data)
 1000000b = Memory Write (3DW with data)
 1100000b = Memory Write (4DW with data)
 0001010b = Completion (3DW without data)
 1001010b = Completion (3DW with data)

1 refer to [ABS04] for CPLD & Configuration TLPs

01234567000 11 122 23 33 44 45 5 56 6 67 7 7

+0 +1 +2 +3

000 0 0 0000 0 00 0000
LengthRTC AttrEPTDTypeFmt x0

1st DW BELast DW BETagRequester ID

Address [31:2]

RRR

R

00000

00

0 0 0 0 00 00

0 0 0 0 001 1000
Byte 0

Byte 4

Byte 8

0 0 0 10 0 0 00 0 00 0 000 0 00 0 00 0 0

CHAPTER 2. PCI EXRESS THEORY 14

• Byte1 [7]: R (Reserved bit): This bit should be set to zero.
• Byte1 [6:4]: TC (Traffic Class): These 3 bits are used to determine the traffic class to be applied

to the TLP. There are seven different traffic classes. In this example, the default traffic class
was applied to the transmitted TLP:

 000 = Traffic Class 0 (Default Class)
 001 = Traffic Class 1
 010 = Traffic Class 2
 011 = Traffic Class 3
 100 = Traffic Class 4
 101 = Traffic Class 5
 110 = Traffic Class 6
 111 = Traffic Class 7

• Byte1 [3:0]: R (Reserved bits): These bits should be set to zeros.
• Byte2 [7]: TD (TLP Digest Field Present): If set = 1, the optional 32-bit Cyclic Redundancy

Check (CRC) field is included with this TLP. All receivers must check the presence of this
field when this TD is set to 1.

• Byte2 [6]: EP (Poisoned data): When set = 1, the payload data with this TLP should be
considered corrupted, although the transaction completes normally.

• Byte2 [5:4]: Attr (Attributes): Bit 5 = Relaxed ordering: If set = 1, the PCI-X relaxed ordering
is enabled for this TLP. Otherwise, strict PCI ordering is used. Bit 4 = No Snoop.

• Byte2 [3:2]: R (Reserved bits): These bits should be set to zeros.
• Byte2 [1:0] and Byte3 [7:0]: length, TLP data payload transfer size (in DW). Maximum

transfer size is 10 bits; 210 = 1024 DW (4Kbytes). Encoding [ABS04]:

 00 0000 0001b = 1DW
 00 0000 0010b = 2DW
 .
 .
 11 1111 1111b = 1023 DW
 00 0000 0000b = 1024 DW

• Byte4 [7:0] and Byte5 [7:0]: Requester ID: Indicates the identification number of the device
that generates the TLP. This number is indicated for the purpose of returning a completion
TLP.

Byte4 [7:0]: bus number,
Byte5 [7:3]: device number and
Byte5 [2:0]: function number.

• Byte6 [7:0]: Tag: These bits are used to identify each transmitted request issued by the
requester. Upon the sending of one request, the next sequential tag is assigned. By default,
only 5 bits are used for this tag, which allows 32 outstanding transactions at a time. This
number can be extended to 256 tags by having 8 bits used, when configuring the PCIe core by
setting the extended tag bit in the PCIe control register = 1.

• Byte7 [7:4]: Last DW BE: These bits are used to qualify the bytes in the last sent DW. These
byte enables are active high.

CHAPTER 2. PCI EXRESS THEORY 15

A value of "0" indicates that the concerned byte should not be written by the completer of the
TLP. It is written otherwise. Since we have the valid transfer data are within only 1 aligned
DW, the Last DW BE must be = 0000b.

• Byte7 [3:0]: 1st DW BE: These bits are used to qualify the bytes in the first sent DW. Since we
have the valid transfer data are within only 1 aligned DW, the 1st DW BE must be = 1111b.

• Byte8 [7:0], Byte9 [7:0], Byte10 [7:0] and Byte11 [7:2]: Address: 32-bit addressable memory
mapped location. This targeted address is used to route the Packet in the PCIe fabric to the
intended device.

• Byte11 [1:0]: R (Reserved bits): These bits should be set to zero. Doing so forces the 32-bit
start address to be DW aligned.

In figure 2.8, the PCIe based transmitter and receiver are illustrated. The following is an explanation
of the role each of the PCIe layers plays when transmitting and receiving TLPs.

Transaction Layer

The main functionality of the Transaction Layer is the generation of TLPs to be transmitted across the
PCIe link and the reception of TLPs received from the PCIe link.

Transaction Layer employs the split transaction protocol, by associating the incoming completion TLP
of a certain tag with the transmitted non posted TLP of the same tag.

In this layer, Transmission buffers are included to store the TLPs that wait to be transmitted as well as
to store the received TLPs. This layer provides a flow control mechanism, ensuring that the TLP won't
be transmitted unless there is enough space in the receiving device.

Also in this layer, the Quality of Service protocol is implemented, which prioritizes the transmission
and receiving of TLPs.

The contribution of this layer to the transmitted packet is shown in figure 2.8. This layer appends a 32-
bit End to End Cyclic Redundancy Check (ECRC). This ECRC is generated based on the whole TLP
from the first byte of the Header to the last byte of the data Payload, in order to check for CRC errors
in the header and the data Payload. These 32 bits are stripped out of the incoming TLPs before being
forwarded to the core of the receiving device (as shown in figure 2.8).

Data Link Layer

This layer is responsible for ensuring a reliable data transport on the PCIe link. The received TLP from
the transaction layer is concatenated with a 12-bit sequence ID and a 32-bit Link CRC (LCRC) as
shown in figure 2.7. The LCRC is calculated based on all the bytes within the TLP in addition to the
sequence ID. These added bits are stripped out from the incoming TLP by the same layer in the
receiving device before being transferred to the Transaction Layer (as shown in figure 2.8).

CHAPTER 2. PCI EXRESS THEORY 16

The Data Link Layer applies a replay mechanism (ACK/NAK) to ensure the transmission of the TLPs
across the link. Before sending the TLP, it copies it into a replay buffer. The sequence ID is used to
associate this copy with a received ACK/NAK Data Link Layer Packet (DLLP) from the targeted
receiver.

This ACK/NAK packet indicates whether the transmitted TLP has been received with or without
errors. If no errors are found, the reply buffer is cleared. Until then the stored TLP is sent again and
again until it is received properly.

Physical Layer

The physical layer of a PCIe device is responsible for driving and receiving the Low Voltage
Differential Signals (LVDS) at a high speed rate of 2.5 Gbps each way. It interfaces the device to the
PCIe fabric. Such an interface is scalable to deliver a higher bandwidth. The physical layer supports
for example x1, x2, x4, x8, x12, x16, and x32 lane widths.

The TLPs and DLLPs are transferred to this layer for the purpose of transmission across the link. This
layer also receives the incoming TLPs from the link and sends them to the Data Link Layer.

In this layer the data clock is embedded using an 8b/10 encoding algorithm, in order to obtain the high
data rate.

Figure 2.8 shows the contribution of this layer to the transmitted packets. It appends 8-bit Start and
End framing characters to the packet before being transmitted. The physical layer of the receiving
device in-turn stripes out these characters after recognizing the starting and ending of the received
packet, and then forwards it to the Data Link Layer.

In addition to that, the physical layer of the transmitter issues Physical Layer Packets (PLPs) which are
terminated at the physical layer of the receiver, such PLPs are used during the Link Training and
Initialization process. In this process the link is automatically configured and initialized for normal
operation; no software is involved. During this process the following features are defined: link width,
data rate of the link, polarity inversion, lane reversal, bit/symbol lock per lane, and lane-to-lane de-
skew (in case of multi-lane link).

2.3.5 PCIe future prospective

The current PCIe bus represents the first PCIe bus generation demonstrating a bandwidth capability of
2.5 Gbps. The second and third generations of this bus are expected in the future, and will have
bandwidths of 5 Gbps and 10 Gbps, respectively [ABS04].

The layered architecture of PCIe allows such an increase in the bandwidth by redesigning the physical
layer only. No modification is required on the other layers. Such architecture leaves the door open for
using optical fibers for instance, as a medium to carry packets in the PCIe fabric.

17

3 PCIe Endpoint Design

3.1 Design Overview

Figure 3.1- Basic Memory Transactions

Figure 3.1 shows the PCIe topology again. For design purposes, the x1 PCIe Endpoint will be
considered.

In this illustration, the Endpoint is an intelligent device which acts as a target for downstream TLPs
from the CPU through the Root Complex and as an initiator of upstream TLPs to the CPU.

In this diploma work, the PCIe Endpoint was designed. This Endpoint generates or responds to
Memory Write/Read transactions. Since the used PCIe core supports up to six 32-bit Base Address
Registers (BARs) used to route the TLP [XUG167], the behavior of this Endpoint can be easily
extended by reconfiguring this core to have memory and IO address spaces.

GraphicsGraphics

x1 PCIe EPx1 PCIe EP

MemoryMemory

CPUCPU

SwitchSwitch

Root ComplexRoot Complex

PCI ExpressPCI Express

Memory Write Transaction

Memory Read Transaction

GraphicsGraphics

x1 PCIe EPx1 PCIe EP

MemoryMemory

CPUCPU

SwitchSwitch

Root ComplexRoot Complex

PCI ExpressPCI Express

GraphicsGraphics

x1 PCIe EPx1 PCIe EP

MemoryMemory

CPUCPU

SwitchSwitch

Root ComplexRoot Complex

PCI ExpressPCI Express

Memory Write Transaction

Memory Read Transaction

CHAPTER 3. PCIe ENDPOINT DESIGN 18

When the Endpoint acts as a receiver, the CPU issues a store register command to a memory mapped
location in the Endpoint. This is done by having the Root Complex generate a Memory Write TLP
with the required memory mapped address in the Endpoint, the payload size (a Doubleword in this
design), byte enables and other Header contents. These will be discussed later in the device core
section of this Endpoint.

This TLP moves downstream through the PCIe fabric to the Endpoint. Routing of the TLP in this case
is based on the address within its Header. A termination of the transaction takes place when the
Endpoint receives the TLP and writes the data to the targeted local register.

To read this data back, the CPU issues a load register command from the same memory mapped
location in the Endpoint. This is done by having the Root Complex generate a Memory Read TLP with
the same memory mapped address and other Header contents. This TLP moves downstream through
the PCIe fabric to the Endpoint. Again, routing here is based on the same address within the Header.

Once the Endpoint receives this Memory Read TLP, it generates a Completion with Data TLP
(CPLD). The Header of this CPLD TLP includes the ID number of the Root Complex, which is used
to route this TLP upstream through the fabric to the Root Complex, which in-turn update the targeted
CPU register and terminates the transaction.

The other way around, is to have the Endpoint act as a bus master and initiate a Memory Write TLP to
write 1 DW to a location within the system memory. This TLP is routed upstream toward the Root
Complex which in turn writes the data to the targeted location in the system memory.

If the Endpoint wants to read the data it has written, it generates a Memory Read TLP with the same
address. The TLP is steered to the Root Complex, which in-turn accesses the system memory, gets the
required data and generates a Completion with this data. This CPLD TLP is routed downstream to the
Endpoint through the PCIe fabric. The Endpoint receives this TLP, updates its local register and
terminates the transaction.

As mentioned in chapter 2, the PCIe core can be integrated in different devices composing the PCIe
fabric. For instance, the core can be implemented in the Root Complex, in the PCIe switch, and in the
PCIe Endpoint. For the purpose of this diploma work, the focus will be on designing a PCIe Endpoint.

When designing a PCIe Endpoint, several issues have to be considered. Figure 3.2 shows the layered
structure of a PCIe Endpoint device. In the figure, the way this Endpoint was designed is depicted.

The physical layer provides the electrical transceivers, which drive and receive the dual-simplex low
voltage differential signals at the 2.5 Gbps data rate. There are two different solutions for the physical
layer. In the first solution, this layer can be integrated with the other layers in the same chip. Doing so
increases the complexity of this chip and provides a higher integration level. This integrated solution
has one key advantage when designing using an FPGA. It uses less number of IO pins, which enables
easier timing closure.

CHAPTER 3. PCIe ENDPOINT DESIGN 19

PCI Express FabricPCI Express Fabric

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device Endpoint Device

RXRXTXTX

Gigabit Serial

PHILIPS PHY
Signaling and electrical interfaces

Protocol Layers
XILINX PCIe PIPE Endpoint 1-

Lane Core

Application Layer
Microblaze-based System

PCI Express FabricPCI Express Fabric

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device Endpoint Device

RXRXTXTX

Gigabit Serial

PCI Express FabricPCI Express Fabric

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device Endpoint Device

RXRXTXTX

Device CoreDevice Core

Physical LayerPhysical Layer

Data Link LayerData Link Layer

Transaction Transaction

LayerLayer

PCIe Bus Interface

Endpoint Device Endpoint Device

RXRXTXTX

Gigabit Serial

PHILIPS PHY
Signaling and electrical interfaces

Protocol Layers
XILINX PCIe PIPE Endpoint 1-

Lane Core

Application Layer
Microblaze-based System

Figure 3.2 - Endpoint Design

An example of this integrated solution is offered by Xilinx in their newly introduced Xilinx Virtex-5
PCIe Endpoint block shown in figure 3.3.

Figure 3.3 - Xilinx Virtex-5 LXT PCI Express endpoint block [UG197]

Unlike the first solution mentioned above which is quite expensive, the second solution offers a low
cost way of implementing the PCIe Endpoint. In this solution, the physical layer exists in one chip,
and the other layers are designed in another chip.

CHAPTER 3. PCIe ENDPOINT DESIGN 20

In this two-chip solution, a smaller FPGA with external PHY can be used. Within this diploma work,
the discrete PHY, PX1011A from Philips was used.

This PHY supports x1 PCIe designs. Having the practical bandwidth provided by x1 PCIe is 2.0 Gbps
requires an internal interface of 8 bits runs at 250 MHz or an interface of 16 bits runs at 125 MHz.
This solution has the disadvantage of higher number of IO pins.

The protocol layers containing the logical sub-layer of the physical layer, the data link layer and the
transaction layer are implemented using the Xilinx PCIe core.

A Microblaze based embedded system was built up to implement the Application layer of the designed
PCIe Endpoint. In this Microblaze processor embedded system, the PCIe core is attached as a slave to
the processor, which in-turn tries to access the configuration space of this core, reading from and
writing to this space.

In the application layer, the Microblaze is responsible for sending the required Header and data
payload to the transaction layer of the PCIe core, which generates a TLP and forwards it to the data
link layer. The Data link layer appends a 12-bit sequence number and a 32-bit LCRC, to ensure a
reliable data transport. The TLP is then forwarded to the physical layer to be transmitted across the
PCIe link.

When a TLP is received by the PCIe Endpoint, the Header and the payload, if exists, will be
forwarded to the Microblaze for further processing. The Microblaze also controls the transmitting and
receiving of TLPs.

The protocol layers and the application layer are to be implemented on a Xilinx® Spartan-™3/E
FPGA, as depicted in figure 3.4, which shows a Spartan-3 PCI Express Starter Kit from Xilinx.

Figure 3.4 - Spartan-3 PCI Express Starter Kit [Xilinx]

Xilinx Spartan-3 FPGA

PHILIPS
PX1011A x1 PCI Express PHY x1 PCI Express Slots

CHAPTER 3. PCIe ENDPOINT DESIGN 21

Figure 3.5 shows the complete designed PCIe Endpoint. This system embeds the Xilinx Microblaze,
which implements a 32-bit Reduced Instruction Set Computer (RISC) and operates at a frequency of
50MHz. Having the Microblaze as a soft core processor enables the design of a unique and customized
PCIe peripheral device to be connected as a slave to it.

PX
PI

PE

PHILIPS
PHY

PC
I E

xp
re

ss
 L

in
k

U
SE

R
 L

O
G

IC

O
PB

_I
PI

F

O
n-

C
hi

p
Pe

rip
he

ra
l B

us

MicroBlaze

ILMB
Controller

DLMB
Controller

ilm
b

dl
m

b

OPB_PCIe_Bridge

BRAM

Instruction
BRAM

Data
BRAM

XILINX
PCIe PIPE

1-Lane Core

Xilinx® Spartan-3
FPGA

Spartan-3 PCI Express Starter Kit

50 MHz
32 Bits

62.5 MHz
32 Bits

250 MHz
8 Bits

2.5 GHz
Serial

Figure 3.5 - Complete PCIe Endpoint device

The Microblaze has different bus interfaces, connecting it with different peripherals. For example, the
Local Memory Bus (LMB) allows the communication between the processor and the Block Random
Access Memory (BRAM), which is initialized with the application program to be executed by the
Microblaze.

The Microblaze has a Harvard structure, in which the BRAM consists of two sections, data and
instructions. These sections are accessed by the processor through memory controllers over the local
memory bus.

Xilinx On-Chip Peripheral Bus (OPB), which implements the IBM CoreConnect On-Chip Peripheral
Bus, has two 32-bit separate paths for data and address. This bus is used to connect peripherals to the
Microblaze, which masters the bus. Several peripherals can be attached to the Microblaze as slaves.

The PCIe core can not be directly connected to the OPB as a slave, because of the incompatibility of
its interfaces with the OPB protocol. To fulfill this compatibility issue, a bridge was developed to
bridge the OPB and the PCIe core.

CHAPTER 3. PCIe ENDPOINT DESIGN 22

This bridge interfaces the OPB with its standard protocol through the OPB Intellectual Property
Interface (OPB IPIF) from one side, and the PCIe core through the USER LOGIC model from the
other side. This USER LOGIC model implements the logic needed to transmit/receive TLPs across the
PCIe link and to access the configuration space of the PCIe core. The PCIe core transaction interfaces
are synchronized with a clock of 62.5 MHz generated from the core as indicated in the figure.

The PCIe core interfaces with the Philips PHY using the Philips PHY Specification Physical Interface
for PCI Express (PXPIPE), defined by Philips Semiconductors, which implements an extended version
of the Physical Interface for PCI Express (PIPE), defined by Intel. PXPIPE is a 250 MHz source
synchronous interface, which provides two clocks, one for transmission, and the other for reception.

Depicted in the figure are the interfaces of Philips PHY to the PCIe link, which are the low voltage
differential signals (LVDS) driven at a high data rate of 2.5 Gbps.

In the following sections of this chapter, the components building up the PCIe Endpoint device are
discussed in details1.

3.2 Philips PX1011A PHY

Philips PHY is a standalone transceiver, which is optimized for usage with digital Application Specific
Integrated Circuits (ASICs) and low cost FPGAs. This device implements a x1 PCIe physical layer. It
provides a receiving bit error rate of less than 10-12 and comes in a small package used for chip to chip
communication [KPE06].

3.2.1 Block Diagram

Figure 3.6 illustrates the block diagram of the PX1011A. It interfaces the Media Access Controller
(MAC) of the physical layer of the protocol layers from the upper side, as well as the PCIe fabric from
the other side.

3.2.2 Operation Principle

For the transmission of TLPs, the PX1011A receives words of 8 bits from the MAC, accompanied by
a control bit that indicates whether the 8-bit word is data or a control character. The data is clocked in
at a rate of one word per cycle of a 250 MHz clock. A First in First Out (FIFO) is used to compensate
the phase difference between the interfacing clock and the internal 250 MHz transmitting clock
generated by the Phase Locked Loop of the transmitter (TXPLL).

The data is first buffered in a FIFO. For the purpose of a high transmission rate, the transmission clock
of 2.5 GHz is embedded by decoding the data using an 8b/10b encoder. The resulting symbols of 10
bits are then serialized and differentially transmitted across the transmission line.

1 Excluding the PX1011A and the USER LOGIC, all the components are IPs provided by Xilinx

CHAPTER 3. PCIe ENDPOINT DESIGN 23

When the PX1011A receives the
serial differential data from the
transmission line, it recovers a clock
from the incoming signal. This clock
is used to sample the serial data. The
sampled data is then forwarded to a
serial to parallel converter, which
converts the serial data into 10-bit
symbols.

Once the 10-bit symbols are available,
the symbol boundaries must be
recognized. This is done by detecting
a special 10-bit character called the
"comma" character, which is used for
symbol synchronization.

After the symbol synchronization, the
synchronized 10-bit characters are
passed through an elastic buffer that
compensates the frequency difference
between the recovered clock and the
locally generated transmission clock.
8-bit data words are obtained by
decoding the 10-bit symbols using an
8b/10 decoder. The resulting data is
then stored in a register before being
outputted to the protocol layers.

3.2.3 Interfaces

Interfaces to PCIe Link

The electrical part of the PX1011A physical layer interfaces the PCIe fabric with two Low Voltage
Differential Signals (LVDS) to drive and receive the high data rate data of 2.5 Gbps. Figure 3.7 shows
the electrical characteristics of a PCIe signal. A positive difference between the D+ and D- lines
indicates the transmission of logic "1", while a negative difference implies a logic "0" on the link.
Having a voltage difference of zero leads to a high impedance "tri-state" link, and forces the link to
stay in the electrical idle state [ABS04].

Table 3.1 summarizes the interfaces of this layer to the PCIe link.

Figure 3.6 - Block diagram of PX1011A [GL05]

CHAPTER 3. PCIe ENDPOINT DESIGN 24

Figure 3.7 - PCIe Differential Transmitter/Receiver [ABS04]

Table 3.1 - PHY Interfaces to the PCIe Link

Signal

I/O

Description

TX_P

O Positive transmission signal

TX_N

O Negative transmission signal

RX_P

I Positive receiving signal

RX_N

I Negative receiving signal

REFCLK_P

I Reference clock of 100 MHz

REFCLK_N

I out of phase version of REFCLK_P

Interfaces to PCIe core

Figure 3.8 illustrates the PHY Interface for the PCI Express Architecture (PIPE), defined by Intel.
This kind of interface assigns a single 250 MHz clock, referred to as PCLK in the figure. This clock
synchronizes both the transmitting and receiving of data. This clock is outputted from the PHY as
shown in the figure. Intel first introduced an 8-bit data interface.

Due to a timing budget problem, this interface was further improved to a 16-bit data interface. The
newly introduced interface has the disadvantage of requiring more pins than the previous one and
imposes an extra latency in converting from 16 to 8 bits.

CHAPTER 3. PCIe ENDPOINT DESIGN 25

Philips Semiconductors provided a version of the PIPE interface named PXPIPE. This interface
employs the source synchronous clocking. Instead of having one clock for both directions, it provides
two clocks: one for transmitting and another for receiving, as shown in figure 3.9.

The interface signals with the Xilinx PCIe core are summarized in table 3.2.

Figure 3.8 - PIPE Interface [PPHY]

Figure 3.9 - PXPIPE Interface [PPHY]

CHAPTER 3. PCIe ENDPOINT DESIGN 26

Table 3.2 - Philips PHY Interfaces to the Xilinx PCIe Core [KPE05]*

Signal

I/O

Description

TXDATA[7:0] I 8-bit transmit data from the FPGA to the PHY.
TXDATAK I Data or control for the symbols of transmit data. A value of “0”

indicates a data byte; a value of “1” indicates a control byte.
RXDATA[7:0] O 8-bit receive data from the PHY to the FPGA.
RXDATAK O Data or control for the symbols of receive data. A value of “0”

indicates a data byte; a value of “1” indicates a control byte.
TXCLK I Source synchronous 250 MHz clock for transmit from the FPGA.

All the data and input signals to the PHY are synchronized to this
clock

RXCLK O Source synchronous 250 MHz clock for received data bound for the
FPGA.

RXDET_ LOOPB I Enables the Philips PHY to begin a receiver detection operation or
to begin loopback.

TXIDLE I Forces Philips PHY TX output to electrical idle when asserted in all
power states.

TXCOM I When high, sets the running disparity to negative. Used when
transmitting the compliance pattern.

RXPOL I Active high, signals the PHY to perform a polarity inversion on the
receive data.

RESET_N I Output Active low PHY reset from FPGA.
PWRDWN1,
PWRDWN0

I Power up or down the transceiver. Power states [1:0]:
00 - P0, normal operation
01 - P0s, low recovery time (2.5 µs), power saving state
10 - P1, longer recovery time (64us max), lower power state
11 - P2, lowest power state.

RXVALID O Indicates symbol lock and valid data on RXDATA and RXDATAK
PHYSTATUS O Communicates completion of several Philips PHY functions,

including power management state transitions, and receiver
detection.

RXIDLE O Indicates receiver detection of an electrical idle. This is an
asynchronous signal.

RXSTATUS2,
RXSTATUS1,
RXSTATUS0

O Encodes receiver status and error codes for the received data stream
and receiver detection. Encoding [2:1]
000 - Received data OK
001 - 1 SKP added
010 - 1 SKP removed
011 - Receiver detected
100 - 8B/10B decode error
101 - Elastic Buffer overflow
110 - Elastic Buffer underflow
111 - Receive disparity error

* The direction is defined from the perspective of the PHY.

3.3 Xilinx PCIe Core

The product name of this core is Xilinx PCIe Physical Interface for PCI Express (PIPE) Endpoint 1-
Lane core.

CHAPTER 3. PCIe ENDPOINT DESIGN 27

This core implements a high performance
serial Interconnect intellectual property,
which is optimized for the use with the
Spartan-3/3E device families of Xilinx, as
indicated in table 3.3.

The table also shows some of the core's
specifications, such as the complexity when
targets the XC3S1000-4 device of the Xilinx
Spartan-3 family.

This core shows a compliance with the PCI Express Base Specification v1.1, and a backward
compatibility with the existing PCI software model.

3.3.1 Features and Applications

Several features make the Xilinx PCIe core one of the most desirable core in implementing PCIe based
serial interconnects with Xilinx FPGAs. The most important features are listed here [XDS321]:

• Flexibility, scalability, and reliability, due to its compliance to the PCIe base specification and
compatibility with the PCI software model.

• Meeting the PCIe transaction ordering rules.
• Implementing 32-bit datapaths.
• Employment of six programmable and configurable Base Address Registers (BARs) and an

expansion ROM BAR.
• Providing error and detection of corrupted packets.
• Supporting Message Signaling Interrupt (MSI).
• Providing of PCI/PCIe power management

functions:
o Active State Power Management (ASPM)
o Programmed Power Management (PPM).

• Offering a two-chip solution with the Philips
PX1011A PHY, to demonstrate a capable
transceiver to provide a high data rate of 2.5
Gbps, buffering and clock compensation, clock
and data recovery as well as 8b/10b encoding
and decoding. Figure 3.10 shows the two-chip
low cost solution.

 Table 3.3 - PCIe Core Specification [XDS321]

1. The precise number of slices depends on the user configuration
 of the interface and the level of resource sharing with adjacent
 logic. 2. This range indicates resources used for a 2BAR–
 7BAR implementation

Figure 3.10 - Two-chip solution [XP05]

CHAPTER 3. PCIe ENDPOINT DESIGN 28

• Supporting a maximum transaction payload of

up to 512 bytes.
• Supporting packet-based full-duplex

communication and back-to-back transactions.
• Enabling of data flow control.
• Full configurability using the Xilinx CORE

Generator.

The PCIe PIPE Endpoint can be used in many applications. For instance, it can be used in test and
medical imaging equipments, graphic boards, data communication, telecommunication networks, chip
to chip communications and server applications.

3.3.2 Block Diagram and Functionality

A top-level functional block diagram of the Xilinx PCIe core is shown in figure 3.11. This core
consists of four different functional blocks, namely the Transaction Layer Module (TLM), the Data
Link Layer Module (LLM), the Physical Layer Module (PLM) and the Configuration Management
Module (CMM).

Figure 3.11 - Top-level functional blocks diagram and
Interfaces of Xilinx PCIe Core [XUG167]

Each of the four modules is further divided into receive and transmit parts. As mentioned previously,
the received part processes the incoming TLPs while the transmit part processes the TLPs to be
transmitted. Theses four modules implement the functionality of each layer of the PCIe architecture.

The transaction layer module generates the transaction layer packets (TLPs), which are used for the
purpose of transactions communication, such as Read and Write memory transactions.

CHAPTER 3. PCIe ENDPOINT DESIGN 29

The transaction layer of the PCIe PIPE core uses a pipelined, full split-transaction protocol, employs
flow control of TLPs in addition to other features.

The main purpose of the Data Link Layer Module is to implement the functionality of the Data Link
Layer in providing a reliable transport of the TLPs across the PCIe link. It does this by detecting and
recovering errors and generating Data Link Layer Packets (DLLP).

The Physical Layer Module interfaces the Data Link layer module from one side, while interfaces the
Philips PHY through the PXPIPE from the other side. It is responsible for initializing the physical link
and scrambling /de-scrambling the transmitted/received data.

The Configuration Management Module enables the communication between the different modules of
the core to support the generation and reception of TLPs. It implements configuration space registers,
which support the PCI configuration space as well as a new PCIe extended space.

Programmed Power Management (PPM) and Active state Power Management (ASPM) are the power
management functions supported by this configuration management module. This module also
provides error reporting and tracking. It receives Configuration Reads and Writes, and transmits a
completion with or without data. In addition to that, Message Signaling Interrupt is implemented by
this module.

Figure 3.12 shows the PCIe configuration space. A type 0 configuration space is implemented in this
module, consisting of 64 bytes (the type 0 configuration space header) plus 192 bytes, used for the
purpose of the PCIe extended capabilities. A new operating system is needed to access theses extended
PCIe capabilities.

Within this configuration space, the Base Address Registers (BARs) exist. The PCIe core uses the
addresses stored in these registers to route TLPs. When the information in the Header of a TLP
indicates that address routing is to be used, then the PCIe core compares the address in the TLP
Header with the implemented BARs. It claims and forwards the TLP to the user logic, if it founds a
match in the address. Otherwise, it blocks this TLP. The initialization of these BARs will be explained
later in this chapter.

3.3.3 Core Interfaces

The PCIe core poses four different interfaces: System interface (SYS), PCI Express PIPE (PXPIPE),
Transaction interface (TRN) and Configuration interface (CFG).

System Interface (SYS)

For a hard reset of the core and the external physical layer PHY, a system reset signal (sys_reset_n) is
used as an asynchronous input to the core. This reset signal is an active low. Practically, this signal is
connected to a sideband reset signal.

CHAPTER 3. PCIe ENDPOINT DESIGN 30

Figure 3.12 - PCIe Configuration Space [XUG167]

CHAPTER 3. PCIe ENDPOINT DESIGN 31

PCI Express PIPE (PXPIPE)

In tables 3.4 to 3.8, the interfaces of this core to the discrete PHY from Philips are illustrated.

 Table 3.4 - PXPIPE Transmit Data Interface Signals [XUG167]

Signal

I/O

Description

TXDATA[7:0]

O

8-bit transmit data from the FPGA to the Philips PHY.

TXDATAK

O

Data/Control for the symbols of transmit data. A value of 0
indicates a data byte; a value of 1 indicates a control byte.

 Table 3.5 - PXPIPE Receive Data Interface Signals [XUG167]

Signal

I/O

Description

RXDATA[7:0]

I

8-bit receive data from the Philips PHY to the FPGA.

RXDATAK

I

Data/Control for the symbols of received data. A value of 0
indicates a data byte; a value of 1 indicates a control byte.

 Table 3.6 - Clock and Reference Signals [XUG167]

Signal

I/O

Description

TXCLK

O

Source synchronous 250 MHz clock (from FPGA) for transmit
clock from MAC input. All the data and the input signals to the
PHY are synchronized to this clock

RXCLK

I

Source synchronous 250 MHz clock (to FPGA) for received data
bound for the MAC output

fast_train_simulation_only

I

Used for Simulation Only, active high. Causes link training time-
out counters to be smaller than normal for faster link training.

two_plm_auto_config

I

Used for Simulation Only, active high. PCI Express specification
non compliant link train with another similarly configured core.

CHAPTER 3. PCIe ENDPOINT DESIGN 32

 Table 3.7 - PXPIPE Command Interface Signals [XUG167]

Signal

I/O

Description

TXDETECTRX_
LOOPBACK

O

Enable the Philips PHY to begin a receiver detection operation or
to begin loopback.

TXELECIDLE O

Forces Philips PHY TX output to electrical idle when asserted in
all power states.

TXCOMPLIANCE O

When high, sets the running disparity to negative. Used when
transmitting the compliance pattern.

RXPOLARITY

O

Active high, signals the PHY to perform a polarity inversion on
the receive data.

RESETN

O

Output Active low PHY reset from FPGA.

POWERDOWN[1:0]

O

Power up or down the transceiver. Power states:
00 - P0, normal operation
01 - P0s, low recovery time latency, power saving state
10 - P1, longer recovery time (64us max) latency, lower power
state
11 - Reserved for P2, lowest power state.

 Table 3.8 - PXPIPE Status Interface Signals [XUG167]

Signal

I/O

Description

RXVALID

I

Input Indicates symbol lock and valid data on RxData and RxDataK

PHYSTATUS

I

Used to communicate completion of several Philips PHY functions
including power management state transitions, and receiver detection.

RXELECIDLE

I

Indicates receiver detection of an electrical idle. This is an asynchronous
signal.

RXSTATUS[2:0]

I

Encodes receiver status and error codes for the received data stream and
receiver detection.
000 - Received data OK
001 - 1 SKP added
010 - 1 SKP removed
011 - Receiver detected
100 - 8B/10B decode error
101 - Elastic Buffer overflow
110 - Elastic Buffer underflow
111 - Receive disparity error

CHAPTER 3. PCIe ENDPOINT DESIGN 33

The core interfaces the user application logic with different signals, to enable the transmission and
reception of TLPs. These interfaces are divided into three sections: the Common Transaction
Interface, the Transmit Transaction Interface and the Receive Transaction Interface. The following is
an explanation of each section.

Common Transaction Interface Signals

trn_clk: Transaction Clock: An output 62.50 MHz clock signal. All transaction and configuration
interfaces are synchronized to the rising edge of this clock. This signal is not available whenever the
sys_reset_n is asserted.

trn_reset_n: Transaction Reset: An active low output reset signal. This signal is used to reset user
logic, which interfaces with the transaction and configuration signals. The deassertion of this signal is
synchronized to trn_clk.

trn_lnk_up_n: Transaction Link Up: An active low output signal. This signal is activated, when the
PCIe core and the upstream PCIe link are ready and can start exchanging packets, and deactivated
when they are trying to establish communication or when data is lost because of some error on the
link.

Transmit Transaction Interface Signals

These are the interfaces the core needs to transmit TLPs across the PCIe link.

trn_tsof_n: Transmit Start-of-Frame (SOF): An active low input signal that indicates the start of a
packet.

trn_teof_n: Transmit End-of-Frame (EOF): An active low input signal that signals the end of a
packet.

trn_td [31:0]: Transmit Data: 32-bit input packet data to be transferred to the transaction layer of the
core.

trn_terrfwd_n: Transmit Error Forward: An active low input signal. This signal is used to indicate
that the associated packet is error-poisoned.

trn_tsrc_rdy_n: Transmit Source Ready: An active low signal that indicates the availability of valid
data from the user logic application.

trn_tdst_rdy_n: Transmit Destination Ready: An active low signal that indicates that the PCIe core is
ready to receive data on trn_td [31:0]. The simultaneous assertion of trn_tsrc_rdy_n and
trn_tdst_rdy_n represents a successful transfer of one DWORD of data on trn_td [31:0].

trn_tsrc_dsc_n: Transmit Source Discontinue: An active low signal indicates that the user application
is discarding the current packet.

CHAPTER 3. PCIe ENDPOINT DESIGN 34

trn_tbuf_av [3:0]: Transmit Buffers Available: Number of transmit buffers available in the core. The
maximum number is 6. Each transmit buffer can hold one packet with up to 512 bytes of payload.

Receive Transaction Interface Signals

These are the interfaces the core needs to receive TLPs across the PCIe link. Tables 3.9 and 3.10 list
and explain these signals.

 Table 3.9 - Xilinx PCIe PIPE Endpoint Core Transaction Receive Interfaces [XUG167]

Signal

I/O

Description

PCIE_TRN_RSOF_N I Receive Start-of-Frame (SOF): Signals the start of a packet.
Active low.

PCIE_TRN_REOF_N I Receive End-of-Frame (EOF): Signals the end of a packet.
Active low.

PCIE_TRN_RD[31:0] I Receive Data: Packet data being received.
PCIE_TRN_RERRFWD_N I Receive Error Forward: Marks the current packet in progress

as error-poisoned. Asserted by the core at EOF. Active low.
PCIE_TRN_RSRC_RDY_N I Receive Source Ready: Indicates that the PCI Express Endpoint

core is presenting valid data on trn_rd [31:0]. Active low.
PCIE_TRN_RDST_RDY_N O Receive Destination Ready: Indicates that the User Application

is ready to accept data on PCIE_TRN_RD [31:0]. Active low.
The simultaneous assertion of PCIE_TRN_RSRC_RDY_N and
PCIE_TRN_RDST_RDY_N marks the successful transfer of
one DWORD of data on PCIE_TRN_RD [31:0].

PCIE_TRN_RSRC_DSC_N O Receive Source Discontinue: Indicates that the PCI Express
Endpoint core is aborting the current packet. Asserted when the
physical link is going into reset. Active low.

PCIE_TRN_RNP_OK_N O Receive Non-Posted OK: The User Application asserts this
whenever it is ready to accept a Non-Posted Request packet.
This allows Posted and Completion packets to bypass Non-
Posted packets in the inbound queue if necessitated by the User
Application. Active low. When the User Application approaches
a state where it is unable to service Non-Posted Requests; it must
deassert PCIE_TRN_RNP_OK_N after SOF of the second-to-
last Non-Posted packet it can accept.

trn_rbar_hit_n[6:0] I Receive BAR Hit: Indicates BAR(s) targeted by the current
receive transaction. Active low.
trn_rbar_hit_n[0] => BAR0
trn_rbar_hit_n[1] => BAR1
trn_rbar_hit_n[2] => BAR2
trn_rbar_hit_n[3] => BAR3
trn_rbar_hit_n[4] => BAR4
trn_rbar_hit_n[5] => BAR5
trn_rbar_hit_n[6] => Expansion ROM Address
Note that, if two BARs are configured into a single 64-bit
address, both corresponding trn_rbar_hit_n bits will be asserted.

CHAPTER 3. PCIe ENDPOINT DESIGN 35

 Table 3.9 - Xilinx PCIe PIPE Endpoint Core Transaction Receive Interfaces (Cont.) [XUG167]

Signal

I/O

Description

TRN_RFC_PH_AV[7:0] I Receive Posted Header Flow Control Credits Available:
The number of Posted Header FC credits available to the
remote link partner.

TRN_RFC_PD_AV[11:0] I Receive Posted Data Flow Control Credits Available: The
number of Posted Data FC credits available to the remote link
partner.

TRN_RFC_NPH_AV[7:0] I Receive Non-Posted Header Flow Control Credits
Available: The number of Non-Posted Header FC credits
available to the remote link partner.

TRN_RFC_NPD_AV[11:0] I Receive Non-Posted Data Flow Control Credits Available:
The number of Non-Posted Data FC credits available to the
remote link partner.

TRN_RFC_CPLH_AV[7:0] I Receive Completion Header Flow Control Credits
Available: The number of Completion Header FC credits
available to the remote link partner. Note that this value and
PCIE_TRN_RFC_CPLd_AV [11:0] are hypothetical
quantities reflecting credit availability that would be advertised
to the remote link partner if the PIPE core were not required to
advertise infinite Completion credits.

TRN_RFC_NPH_AV[7:0] I Receive Non-Posted Header Flow Control Credits
Available: The number of Non-Posted Header FC credits
available to the remote link partner.

TRN_RFC_NPD_AV[11:0] I Receive Non-Posted Data Flow Control Credits Available:
The number of Non-Posted Data FC credits available to the
remote link partner.

TRN_RFC_CPLH_AV[7:0] I Receive Completion Header Flow Control Credits
Available: The number of Completion Header FC credits
available to the remote link partner.
Note that this value and PCIE_TRN_RFC_CPLd_AV [11:0]
are hypothetical quantities reflecting credit availability that
would be advertised to the remote link partner if the PIPE core
were not required to advertise infinite Completion credits.

TRN_RFC_NPH_AV[7:0] I Receive Non-Posted Header Flow Control Credits
Available: The number of Non-Posted Header FC credits
available to the remote link partner.

TRN_RFC_NPD_AV[11:0] I Receive Non-Posted Data Flow Control Credits Available:
The number of Non-Posted Data FC credits available to the
remote link partner.

TRN_RFC_CPLd_AV[11:0] I Receive Completion Data Flow Control Credits Available:
The number of Completion Data FC credits available to the
remote link partner.

CHAPTER 3. PCIe ENDPOINT DESIGN 36

Configuration Interface

The core enables the user to access its configuration space. In this version of the core a writing access
of the registers is not supported. Tables 3.11 to 3.13 describe these interfaces.

 Table 3.10 - Xilinx PCIe Core Configuration Interfaces [XUG167]

Signal

I/O

Description

CFG_DO[31:0]

I

Configuration Data Out: This is a 32-bit data output port
used to obtain read data from the configuration space
inside the PCI Express endpoint.

CFG_RD_WR_DONE_N

I

Configuration Read Write Done: This active-low read-
write done signal indicates a successful completion of the
user configuration register access operation. For a user
configuration register read operation, the signal validates
the cfg_do [31:0] data-bus value. For a user configuration
register write operation, the assertion signals the
completion of a successful write operation.
Not supported for write operations.

CFG_DI[31:0]

O

Configuration Data In: This is a 32-bit data input port
used to provide write data to the configuration space inside
the core. Not supported.

CFG_DWADDR[9:0]

O

Configuration DWORD Address: This is a 10-bit address
input port used to provide a configuration register
DWORD address during configuration register accesses.

CFG_WR_EN_N

O

Configuration Write Enable: This is the active low write
enable for configuration register access.
Not supported.

CFG_RD_EN_N

O

Input Description: Configuration Read Enable: This is the
active low read enable for configuration register access.

CFG_INTERRUPT_N

O

Configuration Interrupt: This is the active low interrupt
request signal. The User Application may assert this to
cause appropriate interrupt messages to be transmitted by
the PCI Express PIPE core.

CFG_INTR_RDY_N

I

Configuration Interrupt Ready: This is the active low
interrupt grant signal. The assertion on this signal indicates
that the PIPE core has successfully transmitted the
appropriate interrupt message.

CFG_TURNOFF_OK_N

O

Configuration Turnoff OK: This is the active low power
turn-off ready signal. The User Application may assert this
to notify the PCI Express PIPE core that it is safe for
power to be removed.

CFG_TO_TURNOFF_N

I

Configuration To Turnoff: This output signal notifies the
user that a PME_TURN_Off message has been received
and the CMM will start polling the
PCIE_CFG_TURNOFF_OK_N input coming in from
the user. Once PCIE_CFG_TURNOFF_OK_N is
asserted, CMM sends a PME_To_Ack message to the
upstream device.

CHAPTER 3. PCIe ENDPOINT DESIGN 37

 Table 3.10 - Xilinx PCIe PIPE Endpoint Core Configuration Interfaces (Cont.) [XUG167]

Signal

I/O

Description

CFG_BYTE_EN_N[3:0]

I

Configuration Byte Enable: This is the active low byte
enables for configuration register access signal. Not
supported.

CFG_ERR_ECRC_N

O

ECRC Error Report: The user can assert this signal to
report an ECRC error (end-to-end CRC).

CFG_ERR_CPL_TIMEOUT_N

O

Configuration Error Completion Timeout: The user
can assert this signal to report a completion timed out.

CFG_ERR_CPL_TIMEOUT_N

O

Configuration Error Completion Timeout: The user
can assert this signal to report a completion timed out.

CFG_ERR_CPL_ABORT_N

O

Configuration Error Completion Aborted: The user
can assert this signal to report that a completion was
aborted.

CFG_ERR_CPL_UNEXPECT_N

O

Configuration Error Completion Unexpected: The
user can assert this signal to report that an unexpected
completion was received.

CFG_ERR_CPL_POSTED_N

O

Configuration Error Posted: This signal is used to
further qualify any of the PCIE_CFG_ERR_* input
signals. When this input is asserted concurrently with
one of the other signals, it indicates that the transaction
which caused the error was a posted transaction.

CFG_ERR_COR_N

O

Configuration Error Correctable Error: The user can
assert this signal to report that a correctable error was
detected.

CFG_ERR_UR_N

O

Configuration Error Unsupported Request: The user
can assert this signal to report that an unsupported
request was received.

CFG_ERR_TLP_CPL_HEADER[47:0]

O

Configuration Error TLP Completion Header: This
input to the core accepts the header information from
the user when an error is signaled. This information is
required so that the core can issue a correct completion,
if required.

CFG_BUS_NUMBER[7:0]

I

Configuration Bus Number: This output provides the
assigned bus number for the device. The user may
require this information to form packets.

CFG_DEVICE_NUMBER[4:0]

I

Configuration Device Number: This output provides
the assigned device number for the device. The user
may require this information to form packets.

CFG_FUNCTION_NUMBER[2:0]

I

Configuration Function Number: This output
provides the function number for the device. The user
may require this information to form packets.

CFG_PCIE_LINK_STATE_N[2:0]

I

PCI Express Link State: This one-hot encoded bus
reports the PCI Express Link State Information to the
user.
110b - PCIExpress Link State is "L0"
101b - PCIExpress Link State is "L0s"
011b - PCIExpress Link State is "L1"
111b - PCIExpress Link State is "under transition"

CHAPTER 3. PCIe ENDPOINT DESIGN 38

Table 3.10 - Xilinx PCIe PIPE Endpoint Core Configuration Interfaces (Cont.) [XUG167]

Signal

I/O

Description

CFG_STATUS [15:0] I Configuration Status: PCI status register output
CFG_COMMAND [15:0] I Configuration Command: PCI command register

output.
CFG_DSTATUS [15:0] I Configuration Device Status: PCI Express PIPE device

status register output.
CFG_DCOMMAND [15:0] I Configuration Device Command: PCI Express PIPE

device command register output.
CFG_LSTATUS [15:0] I Configuration Link Status: PCI Express PIPE link

status register output.
CFG_LCOMMAND [15:0] I Configuration Link Command: PCI Express PIPE link

command register output.

CFG_PM_WAKE_N

O

Configuration Power Management Wake: A one-
clock cycle active low assertion on this signal enables
the core to generate and send a Power Management
Wake event to the upstream link partner.
NOTE: The user is required to assert this input only
under stable link conditions as reported on the
PCIE_CFG_PCIE_LINK_STATE_N[2:0]bus.
Assertion of this signal when the PCI Express link is
under transition will result in incorrect behavior on the
PCI Express link.

CFG_DSN [63:0]

O

Configuration Device Serial Number: Serial Number
Register fields of the PCI Express Device Serial Number
extended capability.

CFG_PCIE_LINK_STATE_N [2:0]

I

PCI Express Link State: This one-hot encoded bus
reports the PCI Express Link State Information to the
user.
110b - PCIExpress Link State is "L0"
101b - PCIExpress Link State is "L0s"
011b - PCIExpress Link State is "L1"
111b - PCIExpress Link State is "under transition"

CFG_LSTATUS [15:0] I Configuration Link Status: PCI Express PIPE link
status register output.

CFG_LCOMMAND [15:0] I Configuration Link Command: PCI Express PIPE link
command register output.

CFG_PM_WAKE_N

O

Configuration Power Management Wake: A one-
clock cycle active low assertion on this signal enables
the core to generate and send a Power Management
Wake event to the upstream link partner.
NOTE: The user is required to assert this input only
under stable link conditions as reported on the
PCIE_CFG_PCIE_LINK_STATE_N[2:0]bus.
Assertion of this signal when the PCI Express link is
under transition will result in incorrect behavior on the
PCI Express link.

CFG_DSN [63:0]

O

Configuration Device Serial Number: Serial Number
Register fields of the PCI Express Device Serial Number
extended capability.

CHAPTER 3. PCIe ENDPOINT DESIGN 39

3.3.4 Core Generation and Configuration

The PCIe core is fully configurable and highly customizable. The Xilinx CORE Generator was used to
generate and customize this core.

The following figures show some of the important steps in generating and configuring the PCIe core.1

In Figure 3.13, the component name is given, which was used as a base name of the output files
generated for the core. The physical interface is indicated as well.

Figure 3.13 - PCIe Component Name [XUG167]

Figure 3.14 shows the ID initial values screen where different parameters can be set. The Vendor ID
identifies the manufacture of the device or application. A default value of 10EE refers to Xilinx. A
Device ID can also be set to identify the application.

Figure 3.14 - PCIe ID Initial Values [XUG167]

 1 For more detailed steps, refer to the user guide [XUG167].

CHAPTER 3. PCIe ENDPOINT DESIGN 40

In Figure 3.15, the configuration of the Base address registers space is shown. The core was
configured to support memory mapped space. Base Address Registers (BARs) are used for two
purposes. Firstly, the Endpoint device through these BARs can request blocks of addresses in the
system memory map. Secondly, after the operating system or Basic Input Output System (BIOS)
defines the addresses to be assigned to the Endpoint device, the BARs are programmed with these
addresses and the Endpoint uses this information for the address decoding and recognizing of TLPs.

Figure 3.15 - PCIe Base Address Registers (BARs) Configuration

The core can be configured to support up to six 32-bit BARs or three 64-bit BARs. Once the core
receives a TLP, it compares the address included in the header of the TLP with the address defined by
the BAR. If the address matches within the range, the core presents the data at the Transaction
interface for the user logic. The data will be blocked otherwise.

The unused BARs are disabled, and the logic that enables their usage is not implemented to reduce the
complexity.

In figure 3.16 the capabilities register setting is shown. Here, the PCIe logical device type is
determined. The only functionality supported by Xilinx PCIe core is to have it as PCI Express
Endpoint device.

The figure also shows the setting of the device capabilities register. In this register, the Maximum
Payload size can be configured. This core can support up to 512 bytes as payload to be sent with the
packet.

CHAPTER 3. PCIe ENDPOINT DESIGN 41

Figure 3.16 - PCIe Capabilities and Device Capabilities Register Configuration [XUG167]

The configuration of the Link Capabilities Register is depicted in figure 3.17. Illustrated are the link
speed and width which are set to 1 to indicate a x1 PCIe link, which has a data transfer rate of 2.5
Gbps.

Figure 3.17 - PCIe Link Capabilities Register Configuration [XUG167]

CHAPTER 3. PCIe ENDPOINT DESIGN 42

Some of the advanced settings are shown in figure 3.18. For the transaction layer, selecting Trim TLP
Digest ECRC will cause the core to drop out any TLP digest of the incoming TLPs before forwarding
it to the user logic. Scrambling data TLPs to be transmitted can be deselected in the logical sublayer of
the core's physical layer. Enabling and disabling of PCI configuration space is also possible.
Furthermore, the extended PCI Configuration space can be enabled or left disabled.

Figure 3.18- PCIe Advanced Settings [XUG167]

3.4 Xilinx Microblaze Soft Processor Core

Xilinx Microblaze processor is a soft IP core optimized for the implementation in Xilinx FPGAs. This
core implements a 32-bit reduced instruction set computer. It includes thirty-two 32-bit general
purpose registers and implements a 32-bit instruction word with three operands and two addressing
modes. This core uses 32-bit address buses.

The Microblaze "soft" processor is built using the FPGA's logic, unlike the "hard" processor which is
built using dedicated silicon. It is configurable for the optimal use of the designer.

3.4.1 Microblaze Block Diagram

Figure 3.19 shows the block diagram of this soft core. In the figure both the fixed and the configurable
features of this processor are shown. The core uses the Harvard structure by dedicating two different
paths for the instruction and the data (as illustrated in the figure).

CHAPTER 3. PCIe ENDPOINT DESIGN 43

Figure 3.19 - Microblaze Block Diagram [XUG081]

3.4.2 Microblaze Interfaces

The Microblaze core has many interfaces. The following is a list of them [XUG081]:

 DOPB: Data interface, On-chip Peripheral Bus
 DLMB: Data interface, Local Memory Bus (BRAM only)
 IOPB: Instruction interface, On-chip Peripheral Bus
 ILMB: Instruction interface, Local Memory Bus (BRAM only)
 MFSL 0..7: FSL master interfaces
 SFSL 0..7: FSL slave interfaces
 IXCL: Instruction side Xilinx CacheLink interface (FSL master/slave pair)
 DXCL: Data side Xilinx CacheLink interface (FSL master/slave pair)
 Core: Miscellaneous signals for: clock, reset, debug, and trace

 For the purpose of this work, the LMB and OPB interfaces will be considered1.

1 Refer to Xilinx Microblaze Processor Reference Guide [XUG081] for other interfaces and details.

CHAPTER 3. PCIe ENDPOINT DESIGN 44

3.4.3 Local Memory Bus (LMB)

The main purpose of the LMB is to access an on-chip Block RAM (BRAM) peripheral, in a single
clock cycle. The Microblaze core has two LMB interfaces: The Data Local Memory Bus (DLMB),
which provides an interface to the data RAM and the Instruction Local Memory Bus (ILMB), which
interfaces the instruction RAM.

The BRAM Block is a dual port configurable memory that can be attached to the Microblaze ILMB
and DLMB ports in conjunction with the Local Memory Bus (LMB) Block RAM (BRAM) Interface
Controller as illustrated in figure 3.20. This BRAM is initialized with the application program to be
executed by the Microblaze.

The dual port feature of the BRAM enables a concurrent access of the ILMB and DLMB sides in a
single cycle.

Figure 3.20 – Local Memory Bus (LMB)

3.4.4 On-Chip Peripheral Bus (OPB)

The Microblaze enables the attachment of several peripherals using the OPB interfaces. These
peripherals must be connected to the processor using data and address buses.

The OPB implemented in this Microblaze system is a 32-bit configurable version of the IBM's
Coreconnect architecture which facilitates the connection of peripherals to the processor. These
peripherals must fulfill the compatibility with the OPB protocol.

This bus provides address and data interfaces both of 32-bit. It allows choosing the valid byte on the
data bus, by dedicating a byte enabling signal. The OPB employs logic arbiter to arbitrate among
masters, in case more than one master is connected to the bus.

Figure 3.21 shows the OPB slave interfaces, and tables 3.14 to 3.16 describe these interfaces.

ILMB

DLMB

Microblaze

BRAM

Instruction
BRAM

Data
BRAM

DLMB

Controller

ILMB

Controller

CHAPTER 3. PCIe ENDPOINT DESIGN 45

Figure 3.21 - OPB Slave Attachment [XTU02]

 Table 3.11 - OPB global signals

Signal

I/O

Description

OPB_Clk

I

All input signals are synchronized to the rising edge of this clock.

OPB_Rst

I

Active high reset, which is asynchronous to the OPB_Clk. The
Microblaze uses the same reset signal.

 Table 3.12 - OPB Interface Signals

Signal

I/O

Description

OPB_ABus [0:31] I Address bus driven by the OPB and received by all slaves. This
signal is valid whenever the OPB_Select signal is activated.

OPB_BE I Byte-enable indicates which byte is valid within the data path.
OPB_DBus [0:31] I Write data bus driven by the OPB and received by all slaves
OPB_RNW I (Read not Write) signal, setting this signal to "1" indicates that

the master is performing a read operation on the slave, while a
"0" values refers to a write operation on the slave.

OPB_select I Driven by the OPB to indicate that a transfer on the OPB is
taking place.

OPB_seqAddr I OPB sequential address indicates that the current transfer will be
followed by a transfer to the next sequential address in the same
direction.

<Sln>_DBus[0:31] O Read data bus driven by the targeted slave. <Sln> refers to the
name of the peripheral.

CHAPTER 3. PCIe ENDPOINT DESIGN 46

PCIe SlavePCIe Slave

 Table 3.12 - OPB Interface Signals (Cont.)

Signal

I/O

Description

<Sln>_xferAck O OPB transfer Acknowledge. Asserted by the addressed slave to
indicate that the data transfer between the OPB master and slave
has been accomplished.

<Sln>_retry O OPB bus cycle retry. This signal is asserted by an OPB slave to
indicate that it is unable to perform the requested transfer at this
time.

<Sln>_toutSup O Slave time-out Suppress. If an OPB slave wants to delay the bus
operation for an extended time, it asserts this signal..

<Sln>_errAck O OPB transfer error Acknowledge. The signal is asserted by a slave
device to indicate that the slave encountered an error in performing
the requested transfer.

3.5 Microblaze PCIe Peripheral

The Xilinx Embedded Development Kit (EDK) delivers many compiled and optimized IPs that
implement different functionalities and peripherals. This design tool does not provide all the modules
required for the designing of a PCIe peripheral, which imposes a challenging task when carrying out
such a design.

The PCIe peripheral has to be attached as a slave to the Microblaze as shown in the figure 3.22. In case
of having more than one master existing on the bus, an OPB arbiter is needed to control the
communication over the bus.

Figure 3.22 - PCIe Peripheral Attachment as
 Slave [XTU02]

A PCIe peripheral (or PCIe slave), shown in figure 3.23, is a device that consists of the protocol layers
implemented by the PCIe core and the OPB to PCIe Bridge module. The OPB to PCIe Bridge module
implements the standard OPB protocol and the logic needed to transmit/receive TLPs as well as the
logic needed to access the configuration space of the PCIe core.

CHAPTER 3. PCIe ENDPOINT DESIGN 47

Philips
PHY

 PXPIPE

On-Chip

Peripheral
Bus

OPB

PCIe Peripheral

OPB to PCIe Bridge

PCIe
Core

OPB
IPIF

USER
LOGIC

Figure 3.23 - PCIe Peripheral

3.5.1 OPB to PCIe Bridge

A module that bridges the OPB to the PCIe protocol layers is not available from Xilinx. Therefore, an
effort was made to develop a simplified bridge that adapts the PCIe core to the OPB for the purpose of
designing a PCIe peripheral.

Figure 3.24 shows the two modules, which construct this bridge: the OPB IPIF and USER LOGIC
modules.

Figure 3.24 - OPB to PCIe Bridge

A top level block diagram of the OPB to PCIe Bridge is illustrated in figures 3.25 and 3.26. This bridge
is controlled by the Microblaze over the OPB. The standard OPB protocol is implemented on the side
of the OPB by the OPB IPIF module.

The interfaces to the PCIe are also shown in the figure. These interfaces are divided into four groups:
Transmit Transaction Interface, Receive Transaction Interface, Common Transaction Interface, and
Configuration Interface.

Microblaze

Philips
PHY

 PXPIPE

On-Chip

Peripheral
Bus

OPB

PCIe Peripheral

OPB

to
PCIe

Bridge

PCIe
Core

CHAPTER 3. PCIe ENDPOINT DESIGN 48

These interfaces are driven by the USER LOGIC module, which is explained later. In addition to the
bus protocol compatibility, the bridge implements the logic needed for the transmission and reception
of TLPs as well as the logic needed for accessing the configuration space of the PCIe core. The way
how this is implemented, is explained in the coming sections.

 OPB

OPB_ClK

Sl_DBUS

OPB_RNW

OPB_BE
OPB_DBUS

OPB_ABUS

OPB_select
OPB_seqAddr

OPB_RST

Sl_errAck
SI_Retry

Sl_toutSup
Sl_sferAck

trn_tdst_rdy_n
trn_tdst_dsc_n

trn_tsof_n

trn_terrfwd_n

trn_teof_n
trn_tscr_rdy_n

trn_tscr_dsc_n

trn_lnk_up_n
trn_reset_n

trn_clk

trn_td

trn_tbuf_av

tn_rsof_n
trn_reof_n

trn_rerrfwd_n
trn_rsrc_rdy_n

trn_rsrc_dsc_n
trn_rdst_rdy_n
trn_rnp_ok_n

trn_rbar_hit_n
trn_rfc_ph_av
trn_rfc_pd_av

trn_rfc_nph_av
trn_rfc_npd_av
trn_rfc_cplh_av
trn_rfc_cpld_av

trn_rd

T
ra

ns
m

it
T

ra
ns

ac
tio

n
In

te
rf

ac
e

C
om

m
on

T

ra
ns

ac
tio

n
In

te
rf

ac
e

R
ec

ei
ve

 T
ra

ns
ac

tio
n

In
te

rf
ac

e
C

on
fig

ur
at

io
n

In
te

rf
ac

e

OPB to PCIe
Bridge

Figure 3.25 - OPB to PCIe Bridge Interfaces/Transaction
Interfaces

P
C
I
e

C
o
r
e

CHAPTER 3. PCIe ENDPOINT DESIGN 49

Figure 3.26 - OPB to PCIe Bridge Interfaces/Configuration Interfaces

OPB

T
ra

ns
m

it
T

ra
ns

ac
tio

n
In

te
rf

ac
e

C
om

m
on

T

ra
ns

ac
tio

n
In

te
rf

ac
e

R
ec

ei
ve

T

ra
ns

ac
tio

n
In

te
rf

ac
e

C
on

fig
ur

at
io

n
In

te
rf

ac
e

cfg_w r_en_n
cfg_rd_en_n

cfg_interrupt_n

cfg_err_ecrc_n
cfg_err_cpl_tim eout_n

cfg_err_cpl_abort_n
cfg_err_cpl_unexpect_n

cfg_err_cpl_posted_n

cfg_err_cor_n
cfg_err_ur_n

cfg_rd_w r_done_n
cfg_do[31:0]

cfg_di[31:0]
cfg_byte_en_n[3:0]

cfg_dw addr[9:0]

cfg_err_tlp_cpl_header[47:0]

cfg_turnoff_ok_n
cfg_interrupt_rdy_n

cfg_to_turnoff_n
cfg_pm _w ake_n

cfg_pcie_link_state_n[2:0]

cfg_bus_num ber[7:0]
cfg_device_num ber[4:0]

cfg_function_num ber[2:0]

cfg_dstatus[15:0]
cfg_dcom m and[15:0]

cfg_lstatus[15:0]
cfg_lcom m and[15:0]

cfg_trn_pending_n

cfg_dsn[63:0]
cfg_status[15:0]

cfg_com m and[15:0]

fast_train_sim ulation_only
tw o_plm _auto_config

OPB to PCIe
Bridge

PCIe
Core

CHAPTER 3. PCIe ENDPOINT DESIGN 50

OPB_select

OPB ClK

1 2 3 4 5 6

ReadRNW

OPB_ABus Valid Address

Valid BE

<Sln>_DBus Valid data 0000-0000 0000-0000

OPB_BE

<Sln>_xferAck

In figure 3.27, a basic OPB read transaction is shown. When the OPB master, the Microblaze in this
case, wants to access a register in the PCIe peripheral for the purpose of reading, it first selects the
OPB by asserting the OPB_select signal and validates the 32-bit address on the OPB_ABus. While
reading, the RNW is asserted to indicate a read not write access. The Microblaze puts a valid Byte
Enable (BE) on the bus. Once the targeted slave recognizes this transaction, it loads the bus with the
required data using the <Sln>_DBus signal. It asserts the acknowledge signal at the same time to
complete the transfer. This in-turn causes the Microblaze to get the valid data and deselect the OPB by
deasserting the OPB_select signal.

Figure 3.27 - Basic OPB Read Transaction [XTU02]

An OPB write transaction is shown in figure 3.28. The Microblaze does the same thing as with the
read transaction.

CHAPTER 3. PCIe ENDPOINT DESIGN 51

Figure 3.28 - Basic OPB Write Transaction [XTU02]

3.5.2 On-chip Peripheral Bus Intellectual Property Interface (OPB IPIF)

Although Xilinx did not provide a ready solution for the bridge, it facilitates its design by providing a
module called OPB IPIF, which makes the connection of Xilinx cores or third party IPs to the OPB
easier.

This module consists of eight different modules as depicted in figure 3.29. These modules allow an
easy connection of the customized core to the processor bus, with making less effort in developing
such modules from scratch. The interface to the IP core is called IP Interconnect (IPIC) as shown in the
figure.

This OPB IPIF is a highly configurable module. It enables the designer to select the required modules
for his optimal usage. A full set of the provided facilities: Master attachment, Slave attachment,
Interrupt control, Address Decode, Read FIFOs, Write FIFOs, Direct Memory Access (DMA), and
Scatter Gather (automated DMA) is shown in figure 3.29.

<Sln>_xferAck

OPB ClK

 1 2 3 4 5 6

OPB select

OPB_ABus Valid Address

RNW
Write

Valid data<Sln>_DBus

Valid BEOPB_BE
OPB_BE

CHAPTER 3. PCIe ENDPOINT DESIGN 52

Figure 3.29 - Full Set of OPB IPIF Features [XTU02]

The main duties of the embedded processor are to check the configurability of the PCIe core, to access
its configuration space by reading from/writing to this space, to control the transmission/reception of
TLPs, and to send the Header and Payload of a TLP to the Transaction layer in the PCIe core. This
indeed, makes the PCIe peripheral a simple slave that needs not more than input/output data buses,
some register address decoding, read/write request and some acknowledge signals. Therefore, a
simplified OPB IPIF, with only features that enabled register accessing was used as shown in figure
3.30.

Figure 3.30 - OPB IPIF Features for Register Access [XTU02]

CHAPTER 3. PCIe ENDPOINT DESIGN 53

When creating the PCIe peripheral, several parameters can be configured in this OPB IPIF. The Base
System Builder (BSB) of the Xilinx Platform Studio (XPS) assigns the peripheral base and high
addresses. These addresses allow the processor to access the accessible registers implemented in the
bridge. The Address and Data widths on the OPB are set to 32 bits. The targeted FPGA family and the
number of registers can also be specified, based on the design requirements.

Figure 3.31 shows the OPB IPIF top-level block diagram, which only implements register interfaces.
A slave attachment is shown in this figure. Such configuration allows the translation of the OPB
standard protocol to some enabling signals serve the accessing of the registers implemented in the
bridge. The address decoding unit is responsible for the generation of enable signals to access the
targeted registers. These registers are enabled either to read from or to write onto them.

The interfaces to the PCIe core for the purpose of register access are explained in the next section.

Figure 3.31 - OPB IPIF Top-level Block Diagram, Register Interface Only [XDS414]

3.5.3 USER LOGIC

The main functionality of the PCIe peripheral is implemented in this module. First of all, a top level of
this USER LOGIC module is illustrated in figure 3.32. This module has two groups of interfaces. It
interfaces the OPB IPIF module from one side and the PCIe core from the other side.

The interfaces to the OPB IPIF are not more than a way that enables the processor to access the
registers implemented in the PCIe peripheral. In another word, it makes this peripheral compatible with
the OPB protocol. In our simplified case, the register interface facility is implemented in the USER
LOGIC module.

address

data,reg&qual

IP Interconnect

data,resp

data,reg&qua

Reg CEs

data,resp

O
P
B

Slave

Attachment

Address
Decode

R
egister Interface

CHAPTER 3. PCIe ENDPOINT DESIGN 54

Figure 3.32 - USER LOGIC Interfaces

The following is a description of the interfaces to the OPB IPIF (IPIC):

• Bus2IP_Clk: This signal is connected to the OPB_Clk signal of 50 MHz, to which the OPB is
synchronized.

• Bus2IP_Reset: This signal is used to reset the IP, asserted whenever the OPB_Rst signal is
activated.

• Bus2IP_Data: 32-bit data transferred from the processor to the IP over the OPB.

• Bus2IP_BE (0 to 3): Byte Enables to indicate on which byte’s location the valid data is
available.

• Bus2IP_RdCE (i): Register read enables; where i indicates the corresponding register under a
read transaction.

• Bus2IP_WrCE (i): Register write enables; where i indicates the corresponding register under a
write transaction.

• IP2Bus_Data: 32-bit data from the IP to the OPB.

• IP2Bus_Ack: IP to bus read or write Acknowledgment. Asserted when the targeted register
responses to a read or write transaction.

• IP2Bus_Retry: This signal is asserted whenever the PCIe peripheral is unable to perform the
requested transfer at this time.

• IP2Bus_Error: This signal indicates an error response.

• IP2Bus_ToutSup: This signal is asserted by the peripheral whenever its acknowledgment or
retry response will take longer than 8 cycles.

PX
PIPE

Standard O
PB

 Protocol

OPB

OPB
IPIF IP2Bus_Data

Bus2IP_RdCE(i)

Bus2IP_Data
Bus2IP_BE

Bus2IP_Reset

Bus2IP_WrCE(i)

Bus2IP_Clk

IP2Bus_Error
IP2Bus_Retry
IP2Bus_Ack

IP2Bus_ToutSup

PCIe Core

USER
LOGIC

CHAPTER 3. PCIe ENDPOINT DESIGN 55

Figures 3.33 and 3.34 show examples of basic read and write transactions for IP Interconnect. Reading
and writing accesses of a targeted register are illustrated.

Normally, (for each implemented register) a separate decoding for the read and write access exists.
This is indicated by the vectors Bus2IP_RegRDCE (i) and Bus2IP_RegWrCE (i), respectively as shown
in the figures. The figures also show the signals Bus2IP_RegRd and Bus2IP_RegWr. These signals
enable register read and write transactions, respectively. In the designed OPB IPIF module, only two
signals serve the same purpose.

As mentioned above, the signal Bus2IP_RdCE(i) is used to enable a register read transaction, with the
index i points to the addressed register and the signal Bus2IP_WrCE(i) is used to enable a register
write transaction, with the index i indicates the requested register [XDS414].

As indicated in the figure, when reading a register, the PCIe peripheral drives the signal IP2Bus_Data
with a 32-bit non-zero value. The peripheral drives zero otherwise. The peripheral can determine the
duration of the transaction because it issues the acknowledgement.

For the purpose of this simplified unit, the acknowledgment signals due to read and write accesses are
indicated by one signal, the IP2Bus_Ack on the interface. This acknowledgement can be returned in the
same cycle as the request, making the transaction as short as one cycle. If the peripheral is unable to
return an acknowledgment within 8 cycles, it can then drop the timeout by asserting the
IP2Bus_ToutSup and holding it until it responds to the transaction [XDS414].

In case of an error, the peripheral can issue an error response by asserting IP2Bus_Error as indicated in
the figures. If the transaction can be completed successfully, if it is retried, the peripheral asserts the
IP2Bus_Retry.

For both transactions, the peripheral must drive these signals with zero, in case it is not addressed and
accessed by the processor.

Figure 3.33 - Read Transaction from IP that utilizes Register Decodes [XDS414]

CHAPTER 3. PCIe ENDPOINT DESIGN 56

Figure 3.34 - Write Transaction to IP that utilizes Register Decodes [XDS414]

The USER LOGIC module consists of several units that implement the functionality of the PCIe
peripheral. Figure 3.35 shows the register read, register write, 15 X 32 software accessible register
bank, PCIe transmission state machine, PCIe receiving state machine, and PCIe configuration space
access read/write units that construct the USER LOGIC. Following is a detailed description of each of
these units.

3.5.3.1 Register Read

This unit implements the slave model register read multiplexer. Figure 3.33 shows an example of a
read transaction from an addressed register.

3.5.3.2 Register Write

The slave model register write multiplexer is implemented in this unit. An example of a write
transaction into an addressed register is illustrated in figure 3.34.

Both Register Read and Register Write units interface the OPB IPIF through the IP Interconnects
(IPICs) as shown in figure 3.35.

CHAPTER 3. PCIe ENDPOINT DESIGN 57

Figure 3.35 - USER LOGIC Internal Structure

3.5.3.3 Software accessible Register Bank

In order to enable the Microblaze to control the transmission and reception of TLPs as well as to
access the configuration space of the PCIe core, fifteen 32-bit registers were used. The Microblaze
does access these register by issuing read or write transactions.

These registers can be accessed using the base address assigned to the PCIe peripheral, when creating
it. Each register is assigned a unique address, which is the Base address plus an offset as shown in
figure 3.36. The figure also shows the names given to these registers.

These registers use Big-Endian bit-reversed format to represent data as depicted in figure 3.37.

15 X 32

Software accessible
Register Bank

PCIe Configuration

space Access
READ/WRITE
State Machine

PCIe Transmission
State Machine

PCIe Receiving
State Machine

Register Read

Register
Write

Tr
an

sm
it

Tr
an

sa
ct

io
n

In
te

rf
ac

e
R

ec
ei

ve
 T

ra
ns

ac
tio

n
In

te
rf

ac
e

C
on

fig
ur

at
io

n
In

te
rf

ac
e

IP
 In

te
rc

on
ne

ct
 (I

PI
C

)
IP

 In
te

rc
on

ne
ct

 (I
PI

C
)

USER LOGIC

CHAPTER 3. PCIe ENDPOINT DESIGN 58

Figure 3.36 - Register Bank, Base Address and Offset are in Hexadecimal

Figure 3.37 - Registers Big-Endian Format [XUG081]

STATUS Register

The status register, shown in figure 3.38, provides a kind of feedback to the Microblaze by indicating
the accomplishment of several tasks. The following is a detailed description of each field in this
register:

Figure 3.38 - STATUS Register

0 24 25 26 27 28 29 30 31

00… 00

cpld_
transmitted

mem_rd_
received

mem_wr_
received

cpld_
received

mem_rd_
transmitted

mem_wr_
transmitted

cfg_
Command(2)

0 31

PCIe CONFIG. DATA READ
PCIe CONFIG. DATA WRITE

MWR/MRD HDR DW1

MWR/MRD HDR DW3
MWR/MRD HDR DW2

MWR PAYLOAD

STATUS
CONTROL

REC. MWR/MRD/CPLD DW1
REC. CPLD DW2
REC. CPLD DW3
REC. CPLD DW4

REC. MWR/MRD DW2
REC. MWR/MRD DW3
REC. MWR/MRD DW4

 Base Address + 0x34
 Base Address + 0x38

 Base Address + 0x08

 Base Address + 0x0F
 Base Address + 0x0C

 Base Address + 0x14

 Base Address + 0x00
 Base Address + 0x04

 Base Address + 0x18
 Base Address + 0x1C
 Base Address + 0x20
 Base Address + 0x24
 Base Address + 0x28
 Base Address + 0x2C
 Base Address + 0x30

CHAPTER 3. PCIe ENDPOINT DESIGN 59

STATUS [0:24]: These bits are set to zeros.

STATUS [25]: cpld_transmitted: Indicates that a completion with data TLP (CPLD) was successfully
transmitted.

STATUS [26]: mem_rd_received: Indicates that a Memory Read TLP was successfully received.

STATUS [27]: mem_wr_received: Indicates a successful reception of a Memory Write TLP.

STATUS [28]: cpld_received: Indicates that a CPLD TLP was successfully received.

STATUS [29]: mem_rd_transmitted: Indicates that a Memory Read TLP was successfully transmitted

STATUS [30]: mem_wr_transmitted: Indicates that a Memory Write TLP was successfully
transmitted.

STATUS [31]: cfg_command (2): Refers to the master enabling in the command register of the PCIe
configuration space. Setting this bit to "1" indicates that the PCIe Endpoint is enabled as a bus master
and can initiate TLPs across the PCIe link. Setting this bit to "0" disables the PCIe Endpoint bus
mastering. In this case the Endpoint can only respond to TLPs but not initiate them.

CONTROL Register

This register stores the control signals received from the Microblaze for the purpose of controlling the
generation of TLPs as well as accessing the configuration space of the PCIe core. Figure 3.39 shows
the bits allocation within this register.

Figure 3.39 - CONTROL Register

CONTROL [0]: master_enable: The Microblaze asserts this bit to confirm the enabling of the PCIe
Endpoint as bus master. Deasserting this bit disables the master enabling feature.

CONTROL [1]: mem_wr_gen: The Microblaze asserts this bit after sending the information required
to generate a Memory Write TLP (Header + Payload) to the USER LOGIC. This enables the
generation of a Memory Write TLP and allows the sending of this information to the transaction layer
located in the PCIe core. Deasserting this bit deactivates the generation of a Memory Write TLP.

CONTROL [2]: mem_rd_gen: The Microblaze asserts this bit after sending the information required
to generate a Memory Read TLP (Header + Payload) to the USER LOGIC. This enables the
generation of a Memory Read TLP and allows the sending of this information to the transaction layer
located in the PCIe core. Deasserting this bit deactivates the generation of a Memory Read TLP.

 0 1 2 3 4 5 6 15 16 31

0000… 000

master_
enable

mem_wr_
gen

cfg_
dwaddr

compl_
gen

cfg_
read

mem_rd_
gen

cfg_
write

CHAPTER 3. PCIe ENDPOINT DESIGN 60

CONTROL [3]: compl_gen: The Microblaze asserts this bit after receiving a Memory Read TLP that
request a completion with data.

CONTROL [4]: cfg_read: The Microblaze sets this bit to "1" in order to generate a configuration
register read cycle. At the same time, it writes a 10-bit address onto CONTROL [6:15] to address the
required configuration register in the PCIe core.

CONTROL [5]: cfg_write: The Microblaze sets this bit to "1" in order to generate a configuration
register write cycle. At the same time, it writes a 10-bit address onto CONTROL [6:15] to address the
required configuration register in the PCIe core.

CONTROL [6:15]: cfg_dwaddr: A 10-bit address for a DWORD location in the configuration space of
the PCIe core. This address points to two 16-bit registers.

CONTROL [16:31]: These bits are set to zeros.

MWR/MRD HDR DW1 Register

This register contains the first header's DW of a Memory Write or a Memory Read TLP. This DW is
written by the Microblaze over the OPB to the USER LOGIC. The transferring of the TLP to the PCIe
core starts after the reception of all information required from the Microblaze and the activation of the
memory generation signal in the control register.

Figure 3.40 shows the MWR/MRD HDR DW1 register and the following is a detailed illustration of
each bit:

Figure 3.40 - MWR/MRD HDR DW1 Register

MWR/MRD HDR DW1 [0]: Reserved bit: This bit must be set to zero.

MWR/MRD HDR DW1 [1:2]: FMT (Packet Format) and MWR/MEMRD HDR DW1 [3:7]: Type
(TLP packet Type field) are used in a combination that specifies the transaction type, header size, and
whether data payload is present or not (MWR/MRD HDR DW1 [1:7]):

 0000000b = Memory Read (3DW without data)
 0100000b = Memory Read (4DW without data)
 1000000b = Memory Write (3DW with data)
 1100000b = Memory Write (4DW with data)
 0001010b = Completion (3DW without data)
 1001010b = Completion (3DW with data)

0 1 2 3 7 8 9 11 12 15 16 17 18 19 20 21 22 31

length

FMT

Type

Attr

TD

TC

EP

0

0

0000

00

CHAPTER 3. PCIe ENDPOINT DESIGN 61

MWR/MRD HDR DW1 [8]: Reserved bit: This bit must be set to zero.

MWR/MRD HDR DW1 [9:11]: TC (Traffic Class): These 3 bits are used to determine the traffic class
applied to the TLP. There are seven different traffic classes. In our design, the default traffic class was
applied to the transmitted TLP:

000 = Traffic Class 0 (Default Class)
001 = Traffic Class 1
010 = Traffic Class 2
011 = Traffic Class 3
100 = Traffic Class 4
101 = Traffic Class 5
110 = Traffic Class 6
111 = Traffic Class 7

MWR/MRD HDR DW1 [12:15]: Reserved bits: These bits must be set to zeros.

MWR/MRD HDR DW1 [16]: TD (TLP Digest Field Present): If set = 1, the optional 32-bit Cyclic
Redundancy Check (CRC) field is included with this TLP. The receiver must check the presence of
this field when this TD is set to “1”. This bit is set = 0 by the Microblaze in order to ignore checking
this CRC.

MWR/MRD HDR DW1 [17]: EP (Poisoned data): When set = 1, the payload data with this TLP
should be considered corrupted, although the transaction completes normally. This bit is set = 0 to
indicate a valid payload data.

MWR/MRD HDR DW1 [18:19]: Attr (Attribute): Bit 18 = Relaxed ordering: If set = 1, The PCI-X
relaxed ordering is enabled for this TLP. Strict PCI ordering is used otherwise. Bit 19 = No Snoop.
These 2 bits are set to zeros.

MWR/MRD HDR DW1 [20:21]: Reserved bits: These bits must be set to zeros.

MWR/MRD HDR DW1 [22:31]: length: TLP data payload transfer size (in DW). Maximum transfer
size is 10 bits; 210 = 1024 DW (4KB). Encoding:

 00 0000 0001b = 1DW

 00 0000 0010b = 2DW
 .
 .
 11 1111 1111b = 1023 DW
 00 0000 0000b = 1024 DW

In this designed Endpoint, the maximum payload size is 1 DW.

MWR/MRD HDR DW2 Register

In this register, shown in figure 3.41, the second DW of a transmitted Memory Write or Memory Read
TLP is stored.

CHAPTER 3. PCIe ENDPOINT DESIGN 62

Figure 3.41 - MWR/MRD HDR DW2 Register

MWR/MRD HDR DW2 [0:15]: Endpoint ID: Indicates the identification number of the device that
generates this TLP. This number is indicated for the purpose of returning a completion TLP.

MWR/MRD HDR DW2 [0:7]: Bus number,

MWR/MRD HDR DW2 [8:12]: Device number and

MWR/MRD HDR DW2 [12:15]: Function number.

MWR/MRD HDR DW2 [16:23]: Tag: These bits are used to identify each outstanding request issued
by the requester. Upon the sending of one request, the next sequential tag is assigned. By default, only
5 bits are used for this tag, which allows 32 outstanding transactions at a time. This number can be
extended to 256 tags by using 8 bits. This can be done by setting the extended tag bit in the PCIe
control register = 1, when configuring the PCIe core.

MWR/MRD HDR DW2 [24:27]: Last DW BE: These bits are used to qualify the bytes in the last sent
DW. These byte enables are active high. A value of "0" indicates that the concerned byte should not be
written by the completer of the TLP. It is written otherwise. Since we have the valid transferred data
are within only 1 aligned DW, the Last DW BE must be = 0000b.

MWR/MRD HDR DW2 [28:31]: 1st DW BE: These bits are used to qualify the bytes in the first sent
DW. Since we have the valid transferred data are within only 1 aligned DW, the 1st DW BE must be =
1111b.

MWR/MRD HDR DW3 Register

This register includes a 32-bit memory address to point to the system memory location, onto which the
payload accompanying the TLP should be stored. For the purpose of this diploma work, only 32-bit
addressing is allowed, although a 64-bit addressing is possible, by reconfiguring the PCIe core. This
64-bit addressing extends the header of the TLP to 4 DWs.

Figure 3.42 shows the MWR/MRD HDR DW3 Register. The bits 30 and 31 are reserved bits and must
be set to zero. Doing so forces the address to be a DW aligned.

Figure 3.42 - MWR/MRD HDR DW3 Register

0 15 16 23 24 27 28 31

1st DW BE Tag Last DW BEEndpoint ID

0 29 30 31

Addresse [0:29] 00

CHAPTER 3. PCIe ENDPOINT DESIGN 63

MWR PAYLOAD Register

This register holds the data payload to be transmitted across the PCIe link. This designed PCIe
Endpoint supports only 1 DW payload.

REC. MWR/MRD/CPLD DW1 Register

In this register, shown in figure 3.43, the first header's DW of a received Memory Write/ Read or
CPLD TLP is stored. This DW is sent to the Microblaze over the OPB. The bits allocation and
description are the same as those in the MWR/MRD HDR DW1 Register.

Figure 3.43 - REC. MWR/MRD/CPLD DW1 Register

REC. CPLD DW2 Register

The second received DW of a CPLD is stored in this register shown in figure 3.44. The following is a
detailed description of each bit in this register:

Figure 3.44 - REC. CPLD DW2 Register

REC. CPLD DW2 [0:15]: Completer ID: Indicates the identification number of the completer. This
information is not needed for routing the completion TLP.

REC. CPLD DW2 [0:7]: Completer bus number.

REC. CPLD DW2 [8:12]: Completer device number.

REC. CPLD DW2 [12:15]: Completer function number.

REC. CPLD DW2 [16:18]: compl_status: Indicates the status of the completion by the completer.
Encoding:

 000b = Successful Completion (SC)
 001b = Unsupported Request (UR)
 010b = Configuration Request Retry Status (CRS)
 100b = Completer Abort. (CA)

 0 1 2 3 7 8 9 11 12 15 16 17 18 19 20 21 22 31

length

FMT

Type

Attr

TD

TC

EP

0

0

0000

00

0 15 16 18 19 20 31

Byte Count

compl_
status

compl_
bcm

Completer ID

CHAPTER 3. PCIe ENDPOINT DESIGN 64

REC. CPLD DW2 [19]: compl_bcm (byte modified count): This value is set = 1, only by PCI-X
completers. This indicates that the byte count field reflects the first transfer payload rather than the
total payload remaining.

REC. CPLD DW2 [20:31]: Byte Count: This is the number of bytes to be returned with a completion
TLP. Normally, this value can be derived from the length of the TLP. For 1 DW, this value is set =
004x.

REC. CPLD DW3 Register

The third received DW of a CPLD is stored in this register shown in figure 3.45.

Figure 3.45 - REC. CPLD DW3 Register

REC. CPLD DW3 [0:15]: Requester ID: This identification number is copied from the request in order
to be used in routing the completion back to the original requester.

REC. CPLD DW3 [16:23]: Tag: 8-bit tag received with the request. These bits are used by the
requester to associate the incoming completion with an outgoing request.

REC. CPLD DW3 [25:31]: Lower Address: These 7 bits are the lower 7 bits of the address of the first
valid byte of the data. This address is calculated from the request length and byte enables. In our case,
this byte start address is the same as the starting address of the DW, since we only have 1 aligned DW.

REC. CPLD DW4 Register

The received completion data requested by the Endpoint as a consequence of a Memory Read TLP is
stored in this register.

REC. MWR/MRD DW2 Register

In this register, the second received DW of a Memory Read or Memory Write TLP is stored.
The contents of this register are shown in figure 3.46.

Figure 3.46 - REC. MWR/MRD DW2 Register

0 15 16 23 24 25 31

Lower Address

0

Tag

Requester ID

 0 15 16 23 24 31

Request BE

Request Tag

Requester ID

CHAPTER 3. PCIe ENDPOINT DESIGN 65

REC. MWR/MRD DW2 [0:15]: Requester ID: Indicates the identification number of the device that
generates this TLP (used for returning a completion TLP). In our design, this number is the
identification number of the Root Complex which generates a Memory Write/Read TLP to write/read
a DW to/from a memory mapped location within the PCIe Endpoint.

REC. MWR/MRD DW2 [16:23]: Request Tag: These bits are used to identify each outstanding
request issued by the requester.

REC. MWR/MRD DW2 [24:31]: Request BE: first and last DW Byte Enables, which are received
with the request to qualify the bytes in the first and last DW sent. In case of having only 1 DW, these
bits have to be set = 00001111b.

REC. MWR/MRD DW3 Register

The third received header's DW of a Memory Read/Write TLP is stored in this register. This 32-bit
address points to the memory mapped location within the PCIe Endpoint, to which the data Payload is
to be written, in case of a Memory Write TLP, or from which data is to be read, in case of a Memory
Read TLP.

REC. MWR DW4 Register

In case of a received Memory Write TLP, this register is used to store the data payload
associated with this TLP.

PCIe CONFIG. DATA READ Register

When the Microblaze generates a PCIe Configuration Read cycles, the required data received from the
configuration space of the PCIe core is loaded in this register. This data is the content of two
configuration registers within that space.

PCIe CONFIG. DATA WRITE Register

When the Microblaze generates a PCIe Configuration Write cycle, the required data to be written to
the addressed configuration register of the PCIe core is located in this register.

3.5.3.4 PCIe Transmission State Machine

The PCIe Transmission State Machine is responsible for transferring the information required to
generate a TLP to the transaction layer of the PCIe core. This information is written by the Microblaze
over the OPB onto the internal registers of the USER LOGIC module, in case of having a Memory
Write/read TLP, or assembled internally in the USER LOGIC, in case of a completion with data TLP.

CHAPTER 3. PCIe ENDPOINT DESIGN 66

In case of a Memory Write TLP, this information consists of the header and the data Payload. The
header is only needed when generating a Memory Read TLP. For the generation of a CPLD TLP, the
header and the completion data are required.

Figure 3.47 - PCIe Transmission State Machine

Figure 3.47 shows the interfaces of this state machine. The main purpose of this State Machine is to
generate the timing diagram depicted in figure 3.49. This figure shows a TLP with a header of 3 DWs
and a payload of 1 DW. This TLP can be an example of a 32-bit addressable Memory Write request,
or a CPLD TLP.

Table 3.13 illustrates a simplified transition table of this state machine. The corresponding state
diagram is shown in figure 3.48. As mentioned before, these states are required for sending Memory
Write, Memory Read, and CPLD TLPs.

In this state machine and in case of having the example of a Memory Write request as shown in figure
3.49, the following sequence of events has to be performed on the PCIe Transmit Transaction
interfaces:

Memory Write/read TLP
Header + Data Payload

from
MWR/MRD HDR_DW1
MWR/MRD HDR_DW2
MWR/MRD HDR_DW3

MWR PAYLOAD
Registers

Completion with Data CPLD
TLP

Control signals
from CONTROL Register

Status signals
to STATUS Register

trn_tsof_n

trn_tdst_dsc_n
trn_tsrc_dsc_n

 trn_tsrc_rdy_n
trn_terrfwd_n

trn_td[31:0]

trn_tdst_rdy_n

trn_teof_n

tn_tbuf_av
trn_tbuf_av

PCIe Transmission State
Machine

CHAPTER 3. PCIe ENDPOINT DESIGN 67

Table 3.13 - PCIe Transmission State Machine Transition Table*

Outputs

Inputs

N
ex

t S
ta

te
 O
ut

pu
t V

ec
to

r

trn
_t

sr
c_

ds
c_

n
 trn

_t
sr

c_
rd

y_
n

trn
_t

eo
f_

n
 trn

_t
so

f_
n

m
em

_r
d_

tra
ns

m
itt

ed
 m

em
_w

r_
tra

ns
m

itt
ed

cp
ld

_t
ra

ns
m

itt
ed

In
pu

t V
ec

to
r

co
m

pl
_g

en
 m

em
_w

r_
ge

n
 m

em
_r

d_
ge

n
 m

as
te

r_
en

ab
le

 trn
_t

ds
t_

ds
c_

n
 trn

_t
ds

t_
rd

y_
n

C
ur

re
nt

 S
ta

te

S0 a 0 1 1 1 0 0 0 A X X X X 0 X S0
S1 b 1 0 1 0 0 0 0 B 0 1 0 1 1 0 S0
S4 c 1 0 1 0 0 0 0 C 0 0 1 1 1 0 S0
S6 d 1 0 1 0 0 0 0 D 1 0 0 1 1 0 S0
S0 e 0 1 1 1 0 0 0 E X X X X 0 X S6

S7 f 1 0 1 1 0 0 0 F X X X X 1 0 S6

S6 g 1 0 1 1 0 0 0 G X X X X 1 1 S6

S0 h 0 1 1 1 0 0 0 H X X X X 0 X S7

S8 i 1 0 1 1 0 0 0 I X X X X 1 0 S7

S7 j 1 0 1 1 0 0 0 J X X X X 1 1 S7

S0 k 0 1 1 1 0 0 0 K X X X X 0 X S8
S0 l 1 0 0 1 0 0 1 L X X X X 1 0 S8
S8 m 1 0 1 1 0 0 0 M X X X X 1 1 S8
S0 n 0 1 1 1 0 0 0 N X X X X 0 X S1
S2 o 1 0 1 1 0 0 0 O X X X X 1 0 S1
S1 p 1 0 1 1 0 0 0 P X X X X 1 1 S1
S0 q 0 1 1 1 0 0 0 Q X X X X 0 X S2
S3 r 1 0 1 1 0 0 0 R X X X X 1 0 S2
S2 s 1 0 1 1 0 0 0 S X X X X 1 1 S2
S0 t 0 1 1 1 0 0 0 T X X X X 0 X S3
S0 u 1 0 0 1 0 1 0 U X X X X 1 0 S3
S3 v 1 0 1 1 0 0 0 V X X X X 1 1 S3
S0 w 0 1 1 1 0 0 0 W X X X X 0 X S4
S5 x 1 0 1 1 0 0 0 X X X X X 1 0 S4
S4 y 1 0 1 1 0 0 0 Y X X X X 1 1 S4
S0 z 0 1 1 1 0 0 0 Z X X X X 0 X S5
S0 η 1 0 0 1 1 0 0 γ X X X X 1 0 S5
S5 μ 1 0 1 1 0 0 0 σ X X X X 1 1 S5

* For the purpose of simplification, not all the inputs and outputs are specified in this table. For example, the
assignment of trn_td [31:0] is not included here.

CHAPTER 3. PCIe ENDPOINT DESIGN 68

S0

S3

S1

S6

S4

S2

S5

S7

S8

Reset

State: APP_TX_RST_STATE
 Transmitting reset state

State: APP_TX_MEMWR_DW1
Transmit the 2nd DW in the Header

of a Memory Write TLP

State: APP_TX_MEMWR_DW2
Transmit the 3rd DW in the Header

of a Memory Write TLP

State: APP_TX_MEMWR_DW3
Transmit the PAYLOAD of a

Memory Write TLP
State: A

PP_T
X

_M
E

M
R

D
_D

W
1

Transm
it the 2nd D

W
 in the H

eader
of a M

em
ory R

ead TLP

State: A
PP_T

X
_M

E
M

R
D

_D
W

2
Transm

it the 3rd D
W

 in the H
eader

of a M
em

ory R
ead TLP

S0

S0

S0

State: APP_TX_CPLD_DW1
Transmit the 2nd DW in the Header

of a CPLD TLP

State: APP_TX_CPLD_DW2
Transmit the 3nd DW in the Header

of a CPLD TLP

State: APP_TX_CPLD_DW3
Transmit the completion Datar of a

CPLD TLP

S

Input Vector /
Output Vector

A/a

B/b
C/c

D
/d

E/e

F/f

G/g

H/h

I/i

J/j

K/k
M/m

N/n

O/o

P/p
Q

/q

R/r

S/s

T/t

V/v

W
/w

X/x

Y/y

Z/z

µ/ s

Figure 3.48 - PCIe Transmission State Machine State Diagram

CHAPTER 3. PCIe ENDPOINT DESIGN 69

Figure 3.49 - Memory Write TLP with a 3 DW Header and Payload [XUG167]

Firstly, after receiving a control signal (mem_wr_gen) from the processor indicating the availability of
all DWs of the packet, the machine asserts trn_tsof_n, trn_tsrc_rdy_n and presents the first TLP’s DW
on trn_td [31:0], as long as the PCIe core is indicating that it is ready to accept data on trn_rd [31:0] by
asserting trn_tdst_rdy_n.

Secondly, at the next clock cycle, the state machine deasserts trn_tsof_n and presents the rest of the
TLP’s DWs on trn_td [31:0]. The PCIe core keeps the assertion of trn_tdst_rdy_n.

Thirdly, this state machine asserts trn_tsrc_rdy_n and trn_teof_n together with the last DW of data.

Finally, at the next clock cycle, the state machine deasserts trn_tsrc_rdy_n to indicate the end of valid
transfer of data on trn_td [31:0].

In figure 3.50, a 3-DW TLP Header without data payload is shown. A 32-bit addressable Memory
Read request is an example of such TLP.

DATA

CHAPTER 3. PCIe ENDPOINT DESIGN 70

Figure 3.50 - Memory Read TLP with a 3 DW Header without Payload [XUG167]

3.5.3.5 PCIe Receiving State Machine

This PCIe Receiving State Machine is responsible for receiving TLPs from the PCIe core. The
received TLPs are stored in the internal register of the USER LOGIC before being transferred to the
Microblaze over the OPB.

Figure 3.51 shows the interfaces of this machine. The main purpose of this PCIe Transmission State
Machine is to enable the reception of TLPs coming from the PCIe core by generating the timing
diagram shown in figure 5.53. This figure shows a received TLP with a header of 3 DWs and a
payload of 1 DW. This TLP might represent an example of a received 32-bit addressable Memory
Write request, or a received CPLD TLP.

Table 3.14 illustrates a simplified transition table of this state machine. Figure 3.52 shows the
corresponding state diagram. As mentioned before, these states are required for receiving Memory
Write, Memory Read, and CPLD TLPs.

CHAPTER 3. PCIe ENDPOINT DESIGN 71

In this state machine and for the purpose of receiving a Memory Write TLP as shown in figure 3.53,
the following sequence of events has to be performed on the PCIe Receive Transaction interfaces:

Firstly, this state machine asserts trn_rdst_rdy_n whenever it is ready to receive data.

Figure 3.51 - PCIe Receiving State Machine

Secondly, the PCIe core asserts trn_rsrc_rdy_n when it is ready to transfer the data. At the same time,
it asserts trn_rsof_n and presents the first DW of the TLP on trn_rd [31:0].

Thirdly, at the next clock cycle, the PCIe core deasserts trn_rsof_n, asserts trn_rsrc_rdy_n, and
presents the rest of the TLP DWs on trn_rd [31:0] for the successive clock cycles. The state machine
keeps the assertion of trn_rdst_rdy_n.

Fourthly, the PCIe core asserts trn_reof_n with the simultaneous presentation of the last DW of the
TLP.

Fifthly, at the next clock cycle, the PCIe core deasserts trn_rsrc_rdy_n to indicate the end of valid
transfer of data on trn_rd [31:0].

Memory Write/read TLP
Header + Data Payload

To
REC. MWR/MRD/CPLD_DW1

REC. MWR/MRD DW2
REC. MWR/MRD DW3
REC. MWR/MRD DW4

REC. CPLD DW2
REC. CPLD DW3
REC. CPLD DW4

Registers

Control signals
from CONTROL Register

Status signals
to STATUS Register

trn_rd[31:0]

trn_lnk_up_n
trn_rerrfwd_n

trn_rbar_hit_n[6:0]
trn_rnp_ok_n

trn_rsrc_rdy_n
trn_reof_n
trn_rsof_n

tn_rdst_rdy_n
tn_rsrc_dsc_n

PCIe Receiving State
Machine

CHAPTER 3. PCIe ENDPOINT DESIGN 72

 Table 3.14 - PCIe Receiving State Machine Transition Table*

Outputs

Inputs

N
ex

t S
ta

te
 O
ut

pu
t V

ec
to

r

m
em

_r
d_

re
ce

iv
ed

 m
em

_w
r_

re
ce

iv
ed

cp
ld

_r
ec

ei
ve

d

In
pu

t V
ec

to
r

trn

_r
d

[3
0:

24
]

 trn
_r

sr
c_

rd
y_

n

trn
_r

so
f_

n

C
ur

re
nt

 S
ta

te

S6 a 0 0 0 A "1001010" 0 0 S0
S1 b 0 0 0 B "1000000" 0 0 S0
S4 c 0 0 0 C "0000000" 0 0 S0
.

S0
.

.
d
 .

.
0
.

.
0
.

.
0
..

.
D
.

.
Other combinations than above

.

.
0
.

.
0
.

.
S0
.

S0 e 0 0 0 E X 0 0 S0
S0 f 0 0 0 F X 1 0 S0

S0 g 0 0 0 G X 0 1 S0

S0 h 0 0 0 H X 1 1 S0

S5 i 0 0 0 I X 0 X S4

S4 j 0 0 0 J X 1 X S4

S0 k 1 0 0 K X 0 X S5
S5 l 0 0 0 L X 1 X S5
S2 m 0 0 0 M X 0 X S1
S1 n 0 0 0 N X 1 X S1
S3 o 0 0 0 O X 0 X S2
S2 p 0 0 0 P X 1 X S2
S0 q 0 1 0 Q X 0 X S3
S3 r 0 0 0 R X 1 X S3
S7 s 0 0 0 S X 0 X S6
S6 t 0 0 0 T X 1 X S6
S8 u 0 0 0 U X 0 X S7
S7 v 0 0 0 V X 1 X S7
S0 w 0 0 1 W X 0 X S8
S8 x 0 0 0 X X 1 X S8

 * For the purpose of simplification, not all the inputs and outputs are specified in this table.

In figure 3.54, a 3-DW TLP Header without data payload is shown. A 32-bit addressable Memory
Read request is an example of such TLP.

CHAPTER 3. PCIe ENDPOINT DESIGN 73

Figure 3.52 - PCIe Receiving State Machine State Diagram

S0

S3

S1

S6

S4

S2

S5

S7

S8

Reset

State: APP_RX_RST_STATE
 Receiving reset state

State: APP_RX_MEMWR_DW1
Receive the 2nd DW in the Header

of a Memory Write TLP

State: APP_RX_MEMWR_DW2
Receive the 3rd DW in the Header

of a Memory Write TLP

State: APP_RX_MEMWR_DW3
Receive the PAYLOAD of a

Memory Write TLP
State: A

PP_R
X

_M
E

M
R

D
_D

W
1

R
eceive the 2nd D

W
 in the H

eader
of a M

em
ory R

ead TLP

State: A
PP_R

X
_M

E
M

R
D

_D
W

2
Transm

it the 3rd D
W

 in the H
eader

of a M
em

ory R
ead TLP

S0

State: APP_RX_CPLD_DW1
Receive the 2nd DW in the Header

of a CPLD TLP

State: APP_RX_CPLD_DW2
Receive the 3nd DW in the Header

of a CPLD TLP

State: APP_RX_CPLD_DW3
Receive the completion Data of a

CPLD TLP

C/c
A

/a

B/b

D/d

E/e
F/f

G/g

H/h

I/i

J/jL/l

K/k

M/m

N/n

O/o

P/p
Q

/q

R/r

S/s

T/t

U/u

V/v

W/w X/x

CHAPTER 3. PCIe ENDPOINT DESIGN 74

Figure 3.53 - Received 32-bit Addressable Memory Write TLP [XUG167]

Figure 3.54 - Received 32-bit addressable Memory Read TLP [XUG167]

CHAPTER 3. PCIe ENDPOINT DESIGN 75

3.5.3.6 PCIe Configuration space Access READ/WRITE State Machine

Some of the registers within the PCIe configuration space can be accessed directly through the
interfaces provided by the PCIe core. The contents of these registers can only be modified by
Configuration Writes issued by the Root Complex. Changing the contents of these register from the
user side is not possible.

Table 3.15 lists the Command and Status registers mapped directly to the configuration ports of the
PCIe core.

 Table 3.15 - Registers mapped directly onto the configuration Interface of the core

Register Name

Description

cfg_bus_number[7:0]

Configuration Bus Number: This register provides the
assigned bus number to the core. Default value is 00h and
over written whenever a Type0 configuration packet is
received.

cfg_device_number[4:0]

Configuration Device Number: This register provides the
assigned device number to the core. Default value is 00000b
and over written whenever a Type0 configuration packet is
received.

cfg_function_number[2:0] Configuration Function Number: This register provides the
function number of the core. This is hard wired to 000b.

cfg_status[15:0] Configuration Status: PCI status register from the
configuration space header.

cfg_command[15:0]

Configuration Command: PCI command register of the
configuration space header.

cfg_dstatus[15:0]

Configuration Device Status: PCI Express PIPE device status
register output.

cfg_dcommand[15:0]

Configuration Device Command: PCI Express PIPE device
command register output.

cfg_lstatus[15:0]

Configuration Link Status: PCI Express PIPE link status
register output.

cfg_lcommand[15:0]

Configuration Link Command: PCI Express PIPE link
command register output.

A combination of cfg_bus_number [7:0], cfg_device_number [4:0] and cfg_function_number [2:0]
forms the PCIe core identification. This ID is written by the Root Complex through the generation of
Type0 Configuration Write. The designed Endpoint uses this number as a Requester ID for all the
TLPs it generates, or as a Completer ID for all the TLPs it completes. The used PCIe core supports
only one function. Therefore, the function number is hard wired to 000b.

cfg_status [15:0] advertises the Status Register of the PCI configuration space header. cfg_command
[15:0] allows the user to see the value stored in the Command Register of the PCI configuration space,
where cfg_command [0] indicates whether the IO Address Space Decoder is enabled or not, while
cfg_command[1] specifies whether the memory address space decoder is activated or not.
cfg_command [2] reflects enabling the PCIe core as a bus master.

CHAPTER 3. PCIe ENDPOINT DESIGN 76

cfg_dcommand [15:0] contains the information exists in the Device Control Register of the PCI
Express Extended Capabilities. For example, cfg_dcommand [7:5] determines the maximum payload
size allowed by this PCIe core.1

In order to access the other registers, within this configuration space, the PCIe configuration space
Access State Machine was developed. In this state machine, the required events to generate Read and
Write cycles are implemented. Writing access implemented in this machine does not work properly,
because the PCIe core specifications do not allow writing to its configuration space.

When user wants to write the configuration space, the write cycle does not finish correctly, because
the PCIe core does not provide the required reaction on the interfaces.

Figure 3.55 - PCIe Configuration Space Access READ/WRITE

State Machine

Figure 3.55 shows the interfaces of the PCIe Configuration space Access Read/Write State Machine.
Table 3.16 illustrates a simplified transition table of this state machine. Its corresponding state diagram
is depicted in figure 3.56.

The main functionality of this state machine is to enable the accessing of the PCIe configuration space
for the purpose of reading from this space by generating the subsequent events shown in figure 3.57.

In order to read the content of any register in the configuration space of the PCIe core, the state
machine places the DWORD address of the required register on cfg_dwaddr [9:0]. This address points
to two registers within this space. The required register can then be separated in the application
program. The state machine simultaneously asserts cfg_rd_en_n. Once the PCIe core receives this
signal, it loads the content of the addressed register on cfg_do [31:0].

1 Refer to the PCI Express Base Specification [PXS05] for a detailed description of these Registers.

TO
PCIe CONFIG. DATA READ
PCIe CONFIG. DATA WRITE

Registers

Control signals from CONTROL Register

PCIe Configuration
space Access

READ/WRITE
State Machine

cfg_dwaddr[9:0]

cfg_do[31:0]

cfg_wr_en_n
cfg_di[31:0]

cfg_rd_en_n

cfg_rd_wr_done_n

CHAPTER 3. PCIe ENDPOINT DESIGN 77

The state machine waits until cfg_rd_wr_done_n is asserted by the PCIe core. After the assertion of
this signal, it reads the configuration data from cfg_do [31:0] as shown in figure 3.57. This figure
shows an example of two consecutive reads from the Configuration Space.

 Table 3.16 - PCIe Configuration Space Access READ/WRITE State
 Machine Transition Table*

Outputs

Inputs

N

ex
t S

ta
te

O

ut
pu

t V
ec

to
r

cf
g_

w
r_

en
_n

cf
g_

rd
_e

n_
n

In
pu

t V
ec

to
r

cf
g_

rd
_w

r_
do

ne
_n

co
nt

ro
l [

4:
5]

C
ur

re
nt

 S
ta

te

S0 a 1 1 A X "00" S0
S0 b 1 1 B X "11" S0
S1 c 1 1 C X "10" S0
S16 d 1 1 D X "01" S0

S1 e 1 0 E 1 X S1
S2 f 1 1 F 0 X S1

S3
.
.
.

S0

g
.
.
.
g

1
.
.
.
1

1
.
.
.
1

G
.
.
.
G

X
.
.
.
X

X
.
.
.
X

S2
.
.
.

S15

S16 h 0 1 H 1 X S16
S17 i 1 1 I 0 X S16
S18 j 1 1 J X X S17
S19

.

.

.
S0

j
.
.
.
j

1
.
.
.
1

1
.
.
.
1

J
.
.
.
J

X
.
.
.
X

X
.
.
.
X

S18

.

.

.
S23

 * For the purpose of simplification, not all the inputs and outputs are
 specified in this table.

CHAPTER 3. PCIe ENDPOINT DESIGN 78

S0

S3

S4

S1

S16
S2

S17

S18

Reset

State: RST_CFG
Config. READ/WRITE reset state

State: READ_CFG
Configuration Register Read

State: READ_CFG_WAIT_1
Delay 1 clock cycle

State: WRITE_CFG
Configuration Register Write

State: WRITE_CFG_WAIT_1
Delay 1 clock cycle

S14

S13

S15

State: READ_CFG_WAIT_2
Delay 1 clock cycle

State: READ_CFG_WAIT_3
Delay 1 clock cycle

State: READ_CFG_WAIT_12
Delay 1 clock cycle

State: READ_CFG_WAIT_13
Delay 1 clock cycle

State: READ_CFG_WAIT_14
Delay 1 clock cycle

State: WRITE_CFG_WAIT_2
Delay 1 clock cycle

S19State: WRITE_CFG_WAIT_3
Delay 1 clock cycle

S22

S23

State: WRITE_CFG_WAIT_6
Delay 1 clock cycle

State: WRITE_CFG_WAIT_7
Delay 1 clock cycle

A/a
B/b

C/c

D/d E/e

F/f

G/g

G/g

G/g

G/g

G/g

G
/g

H/h

I/i

J/j

J/j

J/j

J/j

J/j

Figure 3.56 - PCIe Configuration space Access READ/WRITE

State Machine Bubble Diagram

CHAPTER 3. PCIe ENDPOINT DESIGN 79

Figure 3.57 - Reading of PCIe Configuration Space [XUG167]

80

4 PCIe Endpoint Simulation

4.1 PCIe Testbench

The designed PCIe Endpoint was integrated in a top level Testbench to simulate its functionality.
Figure 4.1 shows the top level of this Testbench (which is written in Verilog HDL). The figure depicts
the hierarchy of this Testbench. In the top level named boardx01 (indicates a x1 PCIe design), the
PCIe Downstream Port model, the Philips PHY and the Design Under Test (DUT) are instantiated.

Figure 4.1 - PCIe Testbench Top-level

The following subsections explain each of these simulation models in details.

Boardx01

PXPIPE
Interface

PCIe

 Link

Philips
PHY

PX1011A

Design Under

Test (DUT)

PCIe

Downstream
Port Model

Output logs
.txt

Application
Program

.elf

Test Program
.v

CHAPTER 4. PCIe ENDPOINT SIMULATION 81

4.1.1 Philips PHY Simulation Model

The PX1011A behavioral model is a
packaged model, which can be simulated
in ModelSim or other standard Hardware
Description Language (HDL) simulators.
The IP Model Packager from Cadence
was used to generate this model.

This model can be integrated in any
simulator that supports either the IEEE
standard 1499 – the open Model
Interface, or the IEEE standard 1364 –
the Verilog PLI 1.0 (Programming
Language Interface).

The ModelSim simulator supports the
PLI. PLI is a kind of an interface that
defines a way for implementing tasks
and functions that communicates with
the used simulator through a defined C
procedural interface.

Figure 4.2 - PX1011A Packaged Model [PUG05]

For the model usage in ModelSim, one can either use the precompiled version "libpli.dll" provided
with the package, or by compiling and linking of the adapter delivered with the package. For the
purpose of this diploma work, the precompiled version, provided by NXP Semiconductors, was used
as shown in figure 4.2.

4.1.2 Xilinx PCIe Downstream Port Simulation Model

In a PCIe Testbench, a simulation model is needed to implement the functionality of the Root
Complex and the PCIe switch in the PCIe topology shown in figure 4.3.

The Xilinx PCIe Downstream Port simulation model, offered by Xilinx when generating the core, was
used for the purpose of simulation in the PCIe based system.

The main functionality of this model is to generate downstream TLPs from the CPU to the PCIe
Endpoint and to receive upstream TLPs from the PCIe Endpoint to the CPU.

CHAPTER 4. PCIe ENDPOINT SIMULATION 82

In addition to the main functionality, this
model does the initialization of the PCIe
core's configuration registers, verifies the
transmission and reception of TLPs by
generating TLP logs, and provides a kind
of Test Programming Interface (TPI),
which enables the simulation of PCIe
Endpoint device.

This model is written in Verilog HDL, all
source codes are provided to give the
designer the possibility to customize the
test cases for the best usage and to save
time in the creation of PCIe testbench.

Figure 4.4 depicts the different components of the PCIe Downstream Port model. DSPORT
implements the functionality of the physical and the Data Link Layers of the PCIe protocol, which are
responsible for the electrical signalling interfaces to the PCIe link and the reliable transport of TLPs
across the PCIe link, respectively.

PCIe

Downstream

Port Model

GraphicsGraphics

x1 PCIe EPx1 PCIe EP

MemoryMemory

CPUCPU

PCIePCIe

SwitchSwitch

Root ComplexRoot Complex

PCI ExpressPCI Express

PCIe

Downstream

Port Model

GraphicsGraphics

x1 PCIe EPx1 PCIe EP

MemoryMemory

CPUCPU

PCIePCIe

SwitchSwitch

Root ComplexRoot Complex

PCI ExpressPCI Express

GraphicsGraphics

x1 PCIe EPx1 PCIe EP

MemoryMemory

CPUCPU

PCIePCIe

SwitchSwitch

Root ComplexRoot Complex

PCI ExpressPCI Express

Figure 4.3 - PCIe Downstream Port Model

Output LogsOutput Logs

Test ProgramTest Program

Xilinx PCIe Downstream Port

D
 S P

 O
R

 T

D
 S P

 O
R

 T

Usrapp_comUsrapp_com

Usrapp_rxUsrapp_rx

Usrapp_txUsrapp_tx

P
C

I
E

xp
re

ss
 L

in
k

Output LogsOutput Logs

Test ProgramTest Program

Xilinx PCIe Downstream Port

D
 S P

 O
R

 T

D
 S P

 O
R

 T

Usrapp_comUsrapp_com

Usrapp_rxUsrapp_rx

Usrapp_txUsrapp_tx

P
C

I
E

xp
re

ss
 L

in
k

Figure 4.4 - Functional Block Diagram of the
 PCIe Downstream Port Model

[XUG341]

CHAPTER 4. PCIe ENDPOINT SIMULATION 83

The Usrapp_tx demonstrates a transmission engine, which is responsible for the generation of
downstream TLPs to simulate the functionality of the PCIe Endpoint. The Usrapp_rx implements all
the functions needed to receive upstream TLPs generated by the PCIe Endpoint.

Both Usrapp_tx and Usrapp_rx models use common tasks, which are implemented by the Usrapp_com
model.

Customized tests can be included by the mean of Test Program Interface (TPI). These tests are written
in Verilog HDL. The user can indicate the test case to be carried out, when invoking the simulator.

For the purpose of functional verification, the model implements an output logging mechanism. Three
different text files are generated, when running a defined task. One of the files summarizes the received
TLPs, another shows the transmitted TLPs, and the third file includes error messages, in case any
errors are detected.

4.1.3 Design Under Test (DUT)

Figure 4.5 shows a top level of the DUT, which consists of two sub-models: the Microblaze based
system and the PCIe core simulation models.

Figure 4.5 - Top level of DUT Model

4.1.3.1 Xilinx PCIe Core Simulation Model

The generation of the core using Xilinx CORE Generator resulted in several models, one of these
model was the PCIe core simulation model. This simulation model is a VHDL structural verification
model that uses simulation primitives, which may not truly implement the device. Such a model is not
synthesizable.

x1 PCIe Endpointx1 PCIe Endpoint

XilinxXilinx

PCIe PCIe

CoreCore

Microblaze based
System

x1 PCIe EndpointDUT

Xilinx
PCIe
Core

Microblaze
based System

PX
PIPE

PH
IL

IPS PH
Y

CHAPTER 4. PCIe ENDPOINT SIMULATION 84

4.1.3.2 Microblaze based system Simulation Model

The Microblaze based simulation model is illustrated in figure 4.6. Shown are the different
components building up this system. This simulation model was generated using the Xilinx Platform
Studio (XPS). This tool allows the initialization of the on-chip BRAM with the compiled application
program in the Executable Link Format (ELF). This application program is executed by the
Microblaze.

Figure 4.6 - Top level of Microblaze based System Simulation Model

4.2 C Application Program

The BRAM is initialized with the application program described next. This program is written in C,
using special C-functions provided by Xilinx. It is compiled into an executable link format and loaded
onto the on-chip BRAM.

The application program is divided into several segments. Theses segments are executed sequentially
by the embedded processor. The following is an explanation of each segment in this program, a
flowchart is provided for each of these segments.

U
SE

R
 L

O
G

IC

O
PB

_I
PI

F

O
n-

C
hi

p
Pe

rip
he

ra
l B

us

MicroBlaze

ILMB
Controller

DLMB
Controller

ilm
b

dl
m

b

OPB_PCIe_Bridge

BRAM

Instruction
BRAM

Data BRAM

XILINX
PCIe Core

CHAPTER 4. PCIe ENDPOINT SIMULATION 85

Segment 1: Initialization and configuration of the PCIe Core

Figure 4.7 shows the flowchart of this segment. In this segment, the assigned address to the PCIe
peripheral is obtained. A time delay is required to allow the plug and play software to configure the
PCIe core. During this time delay, the following actions take place:

• System Reset deassertion.

• Transaction Reset deassertion

• Transaction Link Up activation.

• Configuration of the PCIe core.

• Endpoint configuration as Bus master.

Figure 4.7 - Segment 1: Initialization and configuration of the PCIe Core

Segment 2: PCIe Core Configuration Space Read

In this segment, shown in figure 4.8, the Microblaze generates a PCIe configuration space read cycle
to read one of the configuration registers within the PCIe configuration space. In order to generate
such a read cycle, the Microblaze does the following actions:

• Firstly, it generates a write cycle to access the CONTROL register. It set cfg_read to "1"
within this register to enable the PCIe configuration space read process and writes the
DWORD address of the targeted configuration register.

• Secondly, it reads the required data by generating a read cycle to access the PCIe CONFIG
DATA READ register.

• Finally, it generates a write cycle to access the CONTROL register. It sets cfg_read to "0" to
disable the PCIe configuration space read process.

START

Initialization,
Get the Base Address of PCIe Peripheral

Wait for:
1) System Reset to be de-asserted
2) Transaction Reset to be deasserted
3) Transaction Link Up
4) The core get configured
5) The Endpoint get configured as a bus
Master

CHAPTER 4. PCIe ENDPOINT SIMULATION 86

Figure 4.8 - Segment 2: PCIe Core Configuration Space Read

Segment 3: PCIe Core Configuration Space Write

Figure 4.9 shows the flow diagram of this segment. In this segment, the Microblaze generates a PCIe
configuration space write cycle to write onto one of the configuration registers within the PCIe
configuration space. In order to generate such a write cycle, the Microblaze does the following
actions:

• Firstly, it generates a write cycle to access
the CONTROL register. It sets cfg_write to
"1", within this register, to enable the PCIe
configuration space write process and writes
the DWORD address of the targeted
configuration register.

• Secondly, it writes the required data by
generating a write cycle to write the data
onto the PCIe CONFIG WRITE READ
register.

• Finally, it generates a write cycle to access
the CONTROL register. It sets cfg_write to
"0" to disable the PCIe configuration space
write process.

Figure 4.9 - Segment 3: PCIe Core Configuration Space Write

Read PCIe Configuration Space

Microblaze writes CONTROL
Register (Enable and Address)

Microblaze writes PCIe CONFIG.
DATA WRITE Register

Microblaze writes CONTROL
Register (Disable)

Read PCIe Configuration Space

Microblaze writes CONTROL
Register (Enable and Address)

Microblaze reads PCIe CONFIG.
DATA READ Register

Microblaze writes CONTROL
Register (Disable)

CHAPTER 4. PCIe ENDPOINT SIMULATION 87

Segment 4: Bus Master Enable

Figure 4.10 shows the flow diagram of this segment.
In this segment, the Microblaze checks whether the
core is configured as a bus master or not. It reads the
STATUS register and then checks cfg_command (2)
for bus mastering.

 Figure 4.10 - Segment 4: Bus Master Enable

Segment 5: Generating of a Memory Write TLP

Figure 4.11 shows the flow diagram of this segment. In this segment, the Microblaze sends the Header
and the data Payload to the USER LOGIC model, in order to generate a Memory Write TLP. In this
segment, the Microblaze does the following actions:

• Firstly, if the core is enabled as a bus master, it starts sending the Header and Payload by
carrying out the following events:

1 It writes the first DW in the Header onto the MWR/MRD HDR DW1 register.

2 It writes the second DW in the Header onto the MWR/MRD HDR DW2 register.

3 It writes the third DW in the Header onto the MWR/MRD HDR DW3 register.

4 It writes the data Payload onto the MWR PAYLOAD register.

• Secondly, it generates a write cycle to access the CONTROL register. It sets both
mem_wr_gen and master_enable to "1" in order to activate the Memory Write TLP
generation process and to confirm the enabling of the core as bus master.

• Thirdly, it reads the STATUS register to check whether the TLP was sent or not. It checks
mem_wr_transmitted. If this signal is = 1, it continues to the next segment. Otherwise, it
keeps reading this register and controlling this signal.

PCIe
configured

as Bus
Master

 No

 Yes

Microblaze reads STATUS Register

CHAPTER 4. PCIe ENDPOINT SIMULATION 88

Figure 4.11 - Segment 5: Generating of a Memory Write TLP

Segment 6: Generating of a Memory Read TLP

Figure 4.12 shows the flow diagram of this segment. In this segment, the Microblaze sends the Header
to the USER LOGIC model in order to generate a Memory Read TLP. In this segment the Microblaze
does the following actions:

Microblaze reads STATUS Register

Microblaze sends a Memory Write TLP

Microblaze writes MWR/MRD
HDR DW1 Register

Microblaze writes MWR/MRD
HDR DW2 Register

Microblaze writes MWR/MRD
HDR DW3 Register

Microblaze writes MWR
PAYLOAD Register

Memory
Write TLP

sent

 No

 Yes

Microblaze writes CONTROL Register
(activates mem_wr_gen signal)

CHAPTER 4. PCIe ENDPOINT SIMULATION 89

• Firstly, if a Memory Write TLP was sent, it waits for a while then starts sending the first
DW in the Header of the Memory Read TLP to the MWR/MRD HDR DW1 register. The
same information stored in the registers MWR/MRD HDR_DW2 and MWR/MRD
HDR_DW3, are used as the second and third DWs of the Header.

• Secondly, it generates a write cycle to access the CONTROL register. It sets mem_wr_gen to
"0" and mem_rd_gen to "1" in order to deactivate the Memory Write TLP generation process
and to activate the Memory Read TLP generation process. It also confirms the enabling of
the core as bus master.

• Thirdly, it reads the STATUS register to check whether the Memory Read TLP was sent or
not. It checks mem_rd_transmitted. If this signal is = 1, it continues to the next segment.
Otherwise, it keeps reading this register and controlling this signal.

 Figure 4.12- Segment 6: Generating of a Memory
 Read TLP

Microblaze sends a Memory Read TLP

Microblaze modifies MWR/MRD
HDR DW1 Register

Microblaze writes CONTROL Register
(deactivates mem_wr_gen and activates

mem_rd_gen)

Microblaze reads STATUS Register

Memory
Read TLP

sent

 No

 Yes

Delay

CHAPTER 4. PCIe ENDPOINT SIMULATION 90

Segment 7: Receiving of a CPLD TLP

The Memory Read TLP is a non-posted transaction, which requires a completion TLP either with Data
(CPLD) or without data (CPL). In this segment, the Microblaze receives a CPLD as a consequence of
its Memory Read request. In this segment, the Microblaze does the following actions:

• Firstly, it reads the STATUS register to check whether a CPLD TLP was received or not. It
checks cpld_received. If this signal is = 1, it starts receiving the CPLD TLP. Otherwise, it
keeps reading this register and controlling this signal.

• Secondly, if CPLD TLP was received, it reads the four registers, REC. MWR/MRD/CPLD
DW1, REC. CPLD DW2, REC. CPLD DW3, and REC. CPLD DW4 Registers,
successively, as shown in figure 4.13.

Figure 4.13 - Segment 7: Receiving of a CPLD

Microblaze reads STATUS Register

CPLD
received

 No

 Yes

Microblaze receives a CPLD TLP

Microblaze reads REC.
MWR/MRD/CPLD DW1 Register

Microblaze reads REC. CPLD DW2
Register

Microblaze reads REC. CPLD DW3
Register

Microblaze reads REC. CPLD DW4
Register

CHAPTER 4. PCIe ENDPOINT SIMULATION 91

Segment 8: Receiving of a Memory Write TLP

In this segment, the Microblaze receives a Memory Write TLP. It does the following actions:

• Firstly, it reads the STATUS register to check whether a Memory Write TLP was received
or not. It checks mem_wr_received. If this signal is = 1, it starts receiving the TLP.
Otherwise, it keeps reading this register and controlling this signal.

• Secondly, if a Memory Write TLP was received, it reads the four registers, REC.
MWR/MRD/CPLD DW1, REC. MWR/MRD DW2, REC. MWR/MRD DW3, and REC.
MWR/MRD DW4 Registers, successively, as shown in figure 4.14.

Figure 4.14 - Segment 8: Receiving of a Memory Write TLP

Memory
Write TLP
received

 Yes

Microblaze reads STATUS Register

Microblaze receives a Memory Write TLP

Microblaze reads REC.
MWR/MRD/CPLD DW1 Register

Microblaze reads REC. MWR/MRD
DW2 Register

Microblaze reads REC. MWR/MRD
DW3 Register

Microblaze reads REC. MWR/MRD
DW4 Register

No

CHAPTER 4. PCIe ENDPOINT SIMULATION 92

Segment 9: Receiving of a Memory Read TLP

In this segment, the Microblaze receives a Memory Read TLP. It does the following actions:

• Firstly, it reads the STATUS register to check whether a Memory Read TLP was received or
not. It checks mem_rd_received. If this signal is = 1, it starts receiving the TLP. Otherwise,
it keeps reading this register and controlling this signal.

• Secondly, if a Memory Read TLP was received, it reads the four registers, REC.
MWR/MRD/CPLD DW1, REC. MWR/MRD DW2, REC. MWR/MRD DW3, and REC.
MWR/MRD DW4 Registers, successively, as shown in figure 4.15.

Figure 4.15 - Segment 9: Receiving of a Memory Read TLP

No Memory
Read TLP
received

 Yes

Microblaze reads STATUS Register

Microblaze receives a Memory Read TLP

Microblaze reads REC.
MWR/MRD/CPLD DW1 Register

Microblaze reads REC. MWR/MRD
DW2 Register

Microblaze reads REC. MWR/MRD
DW3 Register

Microblaze reads REC. MWR/MRD
DW4 Register

CHAPTER 4. PCIe ENDPOINT SIMULATION 93

Segment 10: Generation of a CPLD TLP

Figure 4.16 shows the flow diagram of this segment. In this segment, the Microblaze enables the
generation of a Completion with Data TLP. This CPLD is generated in the USER LOGIC model. In
this segment, the Microblaze does the following actions:

• Firstly, it generates a write cycle to access the CONTROL register. It sets compl_gen to “1”,
mem_rd_gen and mem_wr_gen to “0” in order to deactivate both the Memory Write and
Read TLP generation processes and to activate the CPLD TLP generation process. It also
confirms the enabling of the core as bus master.

• Secondly, it reads the STATUS register to check whether the TLP was sent or not. It checks
cpld_transmitted. If this signal is = 1, it finishes. Otherwise, it keeps reading this register and
controlling this signal.

Figure 4.16 - Segment 10: Generation of a CPLD TLP

Microblaze reads STATUS Register

Microblaze generates CPLD TLP

Microblaze writes CONTROL
Register (activates compl_gen)

 Yes

NoCPLD TLP
transmitted

FINISH

CHAPTER 4. PCIe ENDPOINT SIMULATION 94

Running test {EndPoint_test}......

[0] : System Reset Asserted...

[4995000] : System Reset De-asserted...

[8522100] : Transaction Reset Is De-asserted...

[80186100] : Transaction Link Is Up...

[80186100] : Inspecting Core Configuration

Space...

.

.

.

Selected when invoking the simulator

vsim +TESTNAME=EndPoint_test work.boardx01

SEGMENT 1

STARTSTART

Time in PSTime in PS ActionAction

4.3 Simulation Flow

Figures 4.17, 4.20, 4.26, 4.28, and 4.31 show the simulation flow carried out to verify the functionality
of the designed Endpoint. In these figures the transcript window of the ModelSim Simulator is shown.
Each of these figures is related to one or more of the C application program segments executed by the
Microblaze. One should differentiate between this C application program executed by the Microblaze
and the test program executed by the PCIe Downstream Port simulation model. The simulation flow is
divided into the following stages:

Stage 1: Initialization and configuration of the PCIe Core

The simulation starts by selecting the required test when invoking the simulator as shown in figure
4.17. This stage of the simulation flow is related to segment 1 of the C application program. In this
stage, the test program of the PCIe Downstream Port Simulation model waits the system reset to
deassert as well as the endpoint's trn_lnk_up signal to assert, before it starts configuring the Endpoint.

The waveforms shown in figure 4.18 depict the PXPIPE Interfaces. In this figure, shown are the
Physical Layer Packets (PLPs) which issued by the physical layer of the Downstream port and
terminated at the physical layer of the PCIe Endpoint. Such PLPs are used during the Link Training
and Initialization.

The cursor in this figure indicates the moment when RXVALID changes from “0” to “1”, at this
moment, symbol lock takes place and valid data are available on RXDATA and RXDATAK.

Figure 4.17 - Simulation Flow Stage 1

Figure 4.19 shows the interfaces of the Downstream Port model. In this figure, the system reset is
indicated by the first cursor on the most left. The second cursor shows the moment when trn_lnk_up is
activated.

CHAPTER 4. PCIe ENDPOINT SIMULATION 95

Figure 4.18 - Symbol Lock/PXPIPE Waveforms

The test program then carries out a series of Type 0 Configuration Writes and Reads to the Endpoint's
PCI configuration space shown in figure 2.6. It determines the memory and IO requirements of the
Endpoint, and then programs the Endpoint's Base Address Registers in order to make the Endpoint
device ready to receive TLPs from the PCIe Downstream Port model. These Configuration Write and
Read TLPs are indicated between the second and the third cursors shown in figure 4.19.

The test program cycles through all the Endpoint's BARs and determines whether they are enabled or
disabled. If they are enabled, it determines their type, whether they are 32-bit memory, 64-bit memory
or IO spaces as shown in figure 4.20.

Referring to figure 3.15, the PCIe core was configured to support only 32-bit memory space of 64
Kbytes and a starting address of ffff0000h, by configuring BAR0. Figure 4.20 emphasizes that the test
program found the same configuration. After this inspection the test program starts setting the core
configuration space. The procedure of setting this space is illustrated in figure 4.21.

CHAPTER 4. PCIe ENDPOINT SIMULATION 96

.

.

.

[126330000] PCI EXPRESS BAR MEMORY/IO MAPPING PROCESS BEGUN...

BAR 0: VALUE = 00000000 RANGE = ffff0000 TYPE = MEM32 MAPPEDBAR 0: VALUE = 00000000 RANGE = ffff0000 TYPE = MEM32 MAPPED

BAR 1: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED

BAR 2: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED

BAR 3: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED

BAR 4: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED

BAR 5: VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED

EROM : VALUE = 00000000 RANGE = 00000000 TYPE = DISABLED

[126330000] : Setting Core Configuration Space...

.

.

[184890000] : PCIe core is configured as Bus Master

.

.

64 KB

Figure 4.19 - PCIe Downstream Port Waveforms

Figure 4.20 - Simulation Flow Stage 1 (Continued)

CHAPTER 4. PCIe ENDPOINT SIMULATION 97

0000

0123415

0000000000001111111111111111

31

0000

0123415

0000000000001111111111111111

31

Setting up BAR0Setting up BAR0

0000

0123415

000000000000XXXXXXXXXXXXXXXX

31

0000

0123415

000000000000XXXXXXXXXXXXXXXX

31

(1) After power-up or a reset „Uninitialized BAR0“

(2) Test program writes all 1‘s.

0000

0123415

0000000000001111111111111111

31

0000

0123415

0000000000001111111111111111

31

(3) Test program reads BAR0 to check the request

0000

0123415

0000000000001111111111111111

31

0000

0123415

0000000000001111111111111111

31

0 = Memory request,

1 = IO request

10 = 64 bit address

00 = 32 bit address

1 = prefetchable

0 = non-prefetchable

0 = Memory request,

1 = IO request

10 = 64 bit address

00 = 32 bit address

1 = prefetchable

0 = non-prefetchable

(4) Test program writes Start Address

Figure 4.21 - Setting of PCIe Configuration Space

The Type0 Configuration Write to and Read from Endpoint's PCI Base Address Register 0 (BAR0)
TLPs are logged out in the transmitting text file generated when running a defined task as shown in
figure 4.22. The PCIe Endpoint completes the Read request with a completion without data TLP
(CPL), which is received by the Downstream Port model. Figure 4.23 depicts this TLP which is
logged out in the receiving text file. The waveform of this TLP is depicted in figure 4.25.

The final step in setting up the BAR0 (as illustrated in figure 4.21) is to write the starting address for
BAR0. This Configuration Write TLP is depicted in figure 4.24 which again shows the transmitting
output logging.

The procedure of setting BAR0 is illustrated here. The same steps are carried out when setting BAR1
to BAR5 and the expansion ROM Base Address.

CHAPTER 4. PCIe ENDPOINT SIMULATION 98

[80282000]: Config Write Type 0 Frame

Traffic Class: 0x0
TD: 0
EP: 0
Attributes: 0x0
Length: 0x001
Requester Id: 0x01a0
Tag: 0x00
Last and First Byte Enables: 0x0f
Completer Id: 0x01a0
Register Address: 0x010

0xff
0xff
0xff
0xff

[83578000]: Config Read Type 0 Frame

Traffic Class: 0x0
TD: 0
EP: 0
Attributes: 0x0
Length: 0x001
Requester Id: 0x01a0
Tag: 0x01
Last and First Byte Enables: 0x0f
Completer Id: 0x01a0
Register Address: 0x010

Figure 4.22 - Transmission Output Logging

[83866000]: Completion Without Data Frame

Traffic Class: 0x0

TD: 0
EP: 0
Attributes: 0x0
Length: 0x000
Completer Id: 0x01a0
Completion Status: 0x0
Requester Id: 0x01a0
Tag: 0x00

Figure 4.23 - Reception Output Logging

CHAPTER 4. PCIe ENDPOINT SIMULATION 99

[126426000]: Config Write Type 0 Frame

 Traffic Class: 0x0
 TD: 0
 EP: 0
 Attributes: 0x0
 Length: 0x001
 Requester Id: 0x01a0
 Tag: 0x00
 Last and First Byte Enables: 0x0f
 Completer Id: 0x01a0
 Register Address: 0x010

 0x00
 0x00
 0x00
 0x00

Figure 4.24 - Transmitting Output Logging/Writing BAR0 Starting Address

Figure 4.25 - Waveforms of Configuration Write and CPL TLPs

CPL. TLP

CFG. Write TLP

CHAPTER 4. PCIe ENDPOINT SIMULATION 100

.

.
** Note: Microblaze reads PCIe Core Configuration Space
Time: 187018568 ps Iteration: 4 Instance:
/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_i
_0/pcie_ip_0/user_logic_i
** Note: Microblaze writes PCIe Core Configuration Space
Time: 187514568 ps Iteration: 4 Instance:
/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_i
_0/pcie_ip_0/user_logic_i
[187962000] : TSK_PARSE_FRAME on Receive

.

.

In addition to assigning the starting address of BAR0, the test program writes to both the PCIe
command and device control registers in order to configure the core as bus master (as illustrated in
figure 4.20) and to indicate the maximum payload size.

Stage 2: PCIe Core Configuration Space Access

This stage is related to segments 1 and 2 of the C application program. In this stage the Microblaze
accesses the PCIe configuration space, reading from and writing to this space as shown in figure 2.26.
The waveforms of this stage are illustrated in figure 4.27. As mentioned before, the write cycle does
not finish properly due to the fact of having the PCIe core does not allow such a write access to it’s
configuration space.

Figure 4.26 - Simulation Flow Stage 2

Figure 4.27 - PCIe Core Configuration Space Access Waveforms

Read

Write

CHAPTER 4. PCIe ENDPOINT SIMULATION 101

Stage 3: Endpoint generates Memory Write/Read TLPs

This stage is related to segments 5 to 7 of the C application program. Figure 4.28 depicts this stage,
where the Endpoint transmits a Memory Write TLP followed by a Memory Read TLP. The PCIe
Downstream Port Model receives these TLPs and responds with a CPLD TLP as shown in the figure.

.

.

.

[185210000] : PCIe Downstream Port expect a Memory write TLP

[187962000] : TSK_PARSE_FRAME on Receive

** Note: PCIe Core transmitted a MEM_WR32 TLP

Time: 188522568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i

** Note: PCIe Core transmitted a MEM_RD32 TLP

Time: 189002568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i

[190042000] : TSK_PARSE_FRAME on Receive

[190042000] : Received MEMWR --- Tag 0x01

[190042000] : TEST PASSED --- received MEMWR with written Data: 55555555

[190362000] : PCIe Downstream Port expect a Memory read TLP

[190490000] : TSK_PARSE_FRAME on Receive

[190490000] : Received MEMRD --- Tag 0x01

[190490000] : TEST PASSED --- PCIe Downstream Port received MEMRD

[192186000] : TSK_PARSE_FRAME on Transmit

[192186000] : PCIe Downstream Port transmitted a CPLD

** Note: PCIe Core received a CPLD TLP

Time: 193514568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i

** Note: PCIe Core succeed in receiving a CPLD with the required Data

Time: 193562568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i

.

.

.

Figure 4.28 - Simulation Flow Stage 3

The waveforms of the transmitted Write and Read TLPs from the PCIe Endpoint are illustrated in
figure 4.29 which also shows the PCIe transmitting state machine.

SEMGMENT 5

SEMGMENT 6

SEMGMENT 7

CHAPTER 4. PCIe ENDPOINT SIMULATION 102

Figure 4.29 - Simulation Flow Stage 3 Waveforms

Stage 4: PCIe Downstream Port Model generates Memory Writes/Reads TLPs

This stage is related to segments 8 to 10 of the C application program. Figure 4.31 shows this stage,
where the PCIe Downstream Port Model transmits a Memory Write TLP followed by a Memory Read
TLP. The Endpoint receives these TLPs and responds with a CPLD TLP as depicted by the waveform
shown in the figure 4.30.

Figure 4.30 - Simulation Flow Stage 4 Waveforms

MEMWR TLP MEMRD TLP

CHAPTER 4. PCIe ENDPOINT SIMULATION 103

.
.
.
.
.
.

[193882000] : TSK_PARSE_FRAME on Transmit

[193882000] : PCIe Downstream Port transmitted a MEMWR TLP

[194298000] : TSK_PARSE_FRAME on Transmit

[194298000] : PCIe Downstream Port transmitted a MEMRDR TLP

[194298000] : PCIe Downstream Port expects a CPLD from PCIe Core

** Note: PCIe Core received a MEM_WR32 TLP

Time: 195210568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/pcie_ip_0/pcie_ip_0/user_logic_i

** Note: PCIe Core received a MEM_RD32 TLP

Time: 195610568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/

pcie_ip_0/pcie_ip_0/user_logic_i

** Note: PCIe Core transmitted a CPLD TLP

Time: 196922568 ps Iteration: 4 Instance:

/boardx01/xilinx_pci_exp_1_lane_epipe_ep/system_conf/

pcie_ip_0/pcie_ip_0/user_logic_i

[198458000] : TSK_PARSE_FRAME on Receive

[200698000] : Test PASSED --- Write Data: 01020304 successfully received

[200698000] : Finished transmission of PCI-Express TLPs

** Note: $finish : ../tests/sample_tests1.v(336)

Time: 200698 ns Iteration: 5 Instance:

/boardx01/xilinx_pci_exp_1_lane_downstream_port/tx_usrapp

1

FFIINNIISSHH

Figure 4.31 - Simulation Flow Stage 4

SEMGMENT 8

SEMGMENT 9

SEMGMENT 10

CHAPTER 4. PCIe ENDPOINT SIMULATION 104

4.4 Test Cases Summary

Several test cases were conducted to verify the functionality of this system. The following is a
summary of these test cases:

Test case 1:

In this test case (shown in figure 4.32), the CPU generates a Memory Write TLP to write data of 1 DW
payload size to a memory mapped location within the Endpoint. It then generates a Memory Read TLP
to read this data.

The Endpoint responds to this Memory Read request by generating a Completion with the required
Data CPLD TLP. The CPU receives this TLP and terminates the transaction.

Test case 2:

In this test case, the Endpoint, which is
configured as a bus master, generates a
Memory Write TLP to write data of 1 DW
payload size to a location within the System
Memory. The Root Complex receives this
TLP and writes the data onto the specified
location. The Endpoint then generates a
Memory Read TLP to read the same data, it
has written. The Root Complex receives this
TLP and in turn accesses the System Memory
to get the required data, once it has the data, it
generates a Completion with this Data CPLD
TLP. This TLP is downstream steered to the
Endpoint, which in turn receives this TLP and
terminates the transaction.

Figure 4.32 - Test Cases 1 and 2

Microblaze

OPB

OPB_
PCIe_
Bridge

BRAM

Xilinx
PCIe

Philips
PHY

Spartan-3 PCIe Starter Kit

Root Complex

CPU

PCIe
Switch

System Memory

CHAPTER 4. PCIe ENDPOINT SIMULATION 105

Test case 3:

The purpose of this test case is to verify the ability of the Microblaze to read the PCIe configuration
space. In this test case, the Microblaze reads one of the registers within this space.

Test case 4:

In this test case, the Microblaze tries to write to one of the PCIe configuration registers. In this case,
the Microblaze fails to write because the version of the PCIe core used to implement the PCIe protocol
layers does not allow such an access. This feature might be implemented in newer version of this core.

106

5 PCIe Endpoint Implementation

The designed PCIe Endpoint was synthesized using the Xilinx Integrated Software Environment
(ISE). The different phases of the design implementation (Translation, Mapping, and Place & Route)
were also performed.

The generation of a programming file to configure the targeted FPGA device (which is located on the
Xilinx PCIe Spartan-3 Starter Kit) was not performed. Therefore, a board level functional verification
was not carried out. The reason behind this was the unavailability of a windows software driver for the
regarded kit.

Table 5.1 summarizes some of the resulted device utilization (FPGA family: Spartan-3, Target Device:
xc3s1000, Target Package: fg676, and Target Speed: -4). These results are obtained from the
generated Map and Place & Route reports. All the time requirements and constraints were met.

Table 5.1 - Device Utilization

Name

Nr. out of total
resources Nr.

Percentage
(%)

Description

BUFGMUXs 5 out of 8 62 Global clock buffer Multiplexers associated with
the clock distribution tree.

DCMs 1 out of 4 25 Data Clock Managers

External IOBs 35 out of 391 8 Input/Output Blocks

LOCed IOBs 35 out of 35 100 Located Input/Output Blocks

MULT18X18s 3 out of 24 12 18X18 Multipliers

Block RAMs 16 out of 24 66 Block Random Access Memory

GCLKs 5 out of 8 62 Global Clocks

4 input LUTs 7668 out of 15360 49 4 input Look Up Tables

Slice Flip Flops 5796 out of 15360 37 Flip Flops

Slices 6209 out of 7680 80 Area utilization

107

6 Conclusion and Future Work

Within this diploma work, the various capabilities of the PCIe bus protocol were demonstrated. The
theory of PCIe was summarized and presented in monthly-based presentations (PCIe tutorials). Some
of the available PCIe IP solutions in the market were studied and compared.

In a platform based on PCIe topology, an Endpoint device was designed. This Endpoint embeds the
Microblaze soft core of Xilinx, which is bridged to the PCIe protocol layers implemented by the PCIe
core, to serve the data communication between this intelligent Endpoint and the CPU/system memory
through the Root Complex.

The Xilinx Platform Studio (XPS), a part of the Xilinx Embedded Development Kit (EDK), was used
to specify and design the Microblaze based system. A basic and simplified OPB to PCIe Bridge was
developed to bridge the Microblaze and the PCIe protocol layers. The PCIe core was generated,
configured and customized using the Xilinx CORE generator. A packaged simulation model, provided
by NXP Semiconductors, was used to simulate the functionality of the PCIe physical layer. This
model interfaces the simulation tool using the Verilog HDL Programming Language Interface (PLI).

In a modified version of a PCIe Testbench (provided by Xilinx) and with the help of the simulation
tool ModelSim, the functionality of the designed Endpoint was simulated and verified.

In addition to that, the designed Endpoint was synthesized using the Xilinx Integrated Software
Environment (ISE). The synthesized system was prepared to be implemented in the Xilinx Spartan-3
FPGA, located on the Xilinx PCIe Spartan-3 Starter Kit. The implementation itself was not carried
out. The reason behind this was the unavailability of a windows software driver for this Kit. Therefore,
the system functionality was not verified on the board level. This motivates the developing of a
software driver to enable the future implementation (with the available results) and the board level
verification of the designed PCIe Endpoint.

It can also be concluded that working with PCIe requires the knowledge of the PCIe protocol, because
most of the available PCIe IP cores don’t provide a compatible interfaces, which allow them to be
directly connected to the regarded processor. Therefore, in most cases, an effort must be made to
develop a bridge that allows an easy connection of the PCIe peripheral to the processor.

Furthermore, the functionality of this designed Endpoint can be more complicated than this simple
data transfer task. One can further extend the capabilities of this Endpoint by reconfiguring the PCIe
core to include IO mapped space, as well as to allow some of the advanced features of this PCIe
Endpoint.

108

Appendix A: PCI Express IP Providers

Many FPGA vendors and third party companies provide tested and optimized PCIe IPs as shown in
figure A.1. Provided features for each layer of the PCIe structure differ from one provider to another.

Within this diploma work, some of the PCIe IPs available in the market were studied and compared.

Figure A.1 - PCIe IP Providers

The comparison was held in three different tables. In the first table, the various features of the physical
and data link layers were compared. Features such as the number of the implemented Lanes, the line
speed, the link Initialization and Training, the configuration of the physical layer (whether being built-
in or external), the type of the interface to the PCIe IP, and the inclusion of a retry (replay) buffer and
its size were considered in this table.

 Appendix A: PCI Express IP Providers 109

The second table compares the features implemented for the transaction layer. The features considered
here are: the transmitter buffer and its size, the data bus width, the availability of virtual channel
buffers, whether quality of services protocol is implemented or not, the data payload (Max. of bytes),
flow control, TLP order rules, and the type of interface the core has when attached to a
microprocessor.

In the third table, the general key features were compared. Features such as the functionality of the IP
cores, the PCIe base specification version the cores meet, the targeted devices, the implemented
features for data integrity, Compatibility with PCI-Special Interest Group (PCI-SIG), the power
management features, and the configuration possibilities were considered in this table.

 Appendix A: PCI Express IP Providers 110

Table A.1 - Features of the Physical Layer and Data Link Layer 1

IP Provider

Core Name

Nr. of
Lanes

Line
speed

(Gbps)

Link

initialization
and Training

Built-in

PHY

External

PHY

PIPE

Interface

Replay (Retry) Buffer

Pci_exp_1_Lane_64b_ep

X1

2.5

1 MGTs2

Pci_exp_4_Lane_64b_ep X4 10 4 MGTs
Pci_exp_8_Lane_64b_ep X8 20 8 MGTs
Pci_exp_1_Lane_32b_ep X1 2.5 1 MGTs
Pci_exp_4_Lane_32b_ep X4 10

Link width &
Link data rate

4 MGTs

NA

NA

PCI Express PIPE
Endpoint 1-Lane

X1 2.5 Polarity
Inversion

NA Philips PX1011A 8-bit

NA

PCI Express Endpoint
Block

x1,x2,
x4,x8

2.5,10,20 NA Rocket IO
GTP

NA NA 1 up to 8 (32kbit RAM
Block)

PCI-Express CTLR

x1, x2,
x4,x8

2.5,10,20

Lane and
polarity
Reversal
LTSSM

NA

Support for 8 or
16 bit PIPE
interface for

SerDes

8-bit or 16

Supported

PCI-Express Bus
Controller

EC310

x1,x4 2.5,10 Full LTSSM Rambus
and Xilinx

PHY

Philips’
PX1011A, PHY

from
Genesys Logic

Standard

PIPE
Interface

Supported

PCI Express Endpoint
Core

x1,x2,x4
,x8,x12,

x16

2.5,5,10,2
0,30,40

Full LTSSM

NA

Any PIPE 1.0

compliant PHY.

8-bit or 16

Single

1 NA stands for Not Available. The feature is either not available, or no information are provided
2 MGTs: Multi-Gigabit Tranceivers

http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm
http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm

 Appendix A: PCI Express IP Providers 111

Table A.1 - Features of the Physical Layer and Data Link Layer (Cont.) 1

IP Provider

Core Name

Nr. of
Lanes

Line
speed
(Gbps)

Link

initialization
and Training

Built-in

PHY

External

PHY

PIPE

Interface

Replay (Retry) Buffer

Endpoint

Root port

Dual Mode(EP/RC)

Switch Port (Up-
/Downstream)

x1, x2,
x4,x8
or x16

2.5,5,10,20
,40

NA

NA

PIPE or Non-
PIPE PHY

logic

8-bit and 16-
bit PIPE

Configurable

PCIe-EP

x1,x4

2.5,10

Link width, lane
order, Lane

Reversal and
polarity

Inversion

NA

Any 16-bit
PIPE-

compliant
PHY

16-bit

NA

PCI Express Core

x1,x4,
x8

2.5,10,20

NA

Integrated
PHY

FPGAs

Discrete PHY
(Genesys,

Philips, TI) and
PIPE-

compliant
ASIC PHY

Standard
PIPE

NA

GPEX-EP

x1, x2,
x4,x8
or x16

2.5,5,10,20

,40

Flexible Lane
ordering and

Lane Reversal

NA

PIPE spec

v1.0
compliant

8-bit or 16-bit

Configurable

 1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.rambus.com/us/
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.rambus.com/us/

 Appendix A: PCI Express IP Providers 112

Table A.1 - Features of the Physical Layer and Data Link Layer (Cont.) 1

IP Provider

Core Name

Nr. of
Lanes

Line
speed
(Gbps)

Link

initialization
and Training

Built-in

PHY

External

PHY

PIPE

Interface

Replay (Retry) Buffer

PCI Express Endpoint
Core

PCI Express 2.0
Endpoint Core

x1, x2,
x4,x8
or x16

2.5,5,10,20
,40

Complete Link
Training
(LTSSM)

Automatic Lane
Reversal and

polarity
Inversion

NA

Rocket I/O
for example.

8-bit or 16-bit

Configurable

PCI Express IP core

IP7001

x1, x2,
x4, x8
future

2.5,5,10,20

NA

FPGA On-
Chip
PHY

through
wrapper

Intel
compatible
PIPE PCIe

PHY

NA

NA

Databahn™ PCI
Express IP

x1, x2,
x4, x8

2.5,5,10,20

NA

NA

Compliant
with Intel

PIPE
Specification

v1.86

8-bit or 16-bit

PIPE

NA

PCI Express End Point

(GPEX-EP)

PCI Express Root
Complex

GPEX-RC

 PCI Express Switch
Controller (GPEX-SW)

x1, x2,
x4, x8
or x16

2.5,5,10,20
,40

Flexible lane
ordering and

support for lane
reversal

NA

PIPE based
PHY

PIPE based
PHY

Efficient
Flexible and configurable

1 NA stands for Not Available. The feature is either not available, or no information are provided
2 LTSSM: Link Training and Status State Machine

http://www.denali.com/
http://www.gdatech.com/default.shtml
http://www.denali.com/
http://www.gdatech.com/default.shtml

 Appendix A: PCI Express IP Providers 113

Table A.2 - Features of the Transaction Layer 1

IP Provider

Core Name

Tx Buffers
Width/bit

Data
Bus

Width

Virtual

Channel
Buffers

Quality of
Services
Protocol

Data Payload

(Max. of bytes)

Flow Control

TLP

Ordering
Rules

Standard

Bus
Interface

Pci_exp_1_Lane_64b_ep

16 (5)

64

Pci_exp_4_Lane_64b_ep 16 (5) 64
Pci_exp_8_Lane_64b_ep 32 (6) 64
Pci_exp_1_Lane_32b_ep 8 (5) 32
Pci_exp_4_Lane_32b_ep 16 (5) 32

PCI Express PIPE Endpoint
1-Lane

6 32

NA

NA

512

PCI Express Endpoint Block

Min. 1 and
max. 16
(36K-bit

block RAM)

32

UP to 2 VCs

NA

From 128 to 4000

Receive and
Transmit

Fully
compliant

NA

PCI-Express CTLR

Configurable

32,64 or

128

Default
TC0/VC0

VC capability

NA

NA

Receive and

Transmit

Compliant

NA

PCI-Express Bus Controller

EC310

NA

NA

NA

NA

NA

Receive and

Transmit

Compliant

NA

PCI Express Endpoint Core

Flexible and
configurable

64 or
128

Up to 8 VCs
and 8 TCs

provided

NA

Flow control in both

direction

Compliant

NA

1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm
http://www.xilinx.com/
http://www.eurekatech.com/
http://www.tallika.com/index.htm

 Appendix A: PCI Express IP Providers 114

Table A.2 - Features of the Transaction Layer (Cont.) 1

IP Provider

Core Name

Tx Buffers
Width/bit

Data
Bus

Width

Virtual

Channel
Buffers

Quality of
Services
Protocol

Data Payload

(Max. of bytes)

Flow Control

TLP

Ordering
Rules

Standard

Bus
Interface

Endpoint

Root port

Dual Mode(EP/RC)

Switch Port

NA

32/64/
128 bit

Up to 8 VC/8
TC

Provided

NA

NA

NA

NA

PCIe-EP

Configurable

64

Up to 8

NA

From 128 to 4000

Receive and Transmit

Supported

Wishbone

AMBA

PCI Express Core

Flexible
sizing

NA

Multiple VCs

NA

NA

NA

NA

NA

PCI Express IP core

IP7001

NA

NA

NA

NA

From 64 to 4000

NA

NA

NA

 1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml

 Appendix A: PCI Express IP Providers 115

Table A.2 - Features of the Transaction Layer (Cont.) 1

IP Provider

Core Name

Tx Buffers
Width/bit

Data
Bus

Width

Virtual

Channel
Buffers

Quality of
Services
Protocol

Data Payload

(Max. of bytes)

Flow Control

TLP

Ordering
Rules

Standard

Bus
Interface

GPEX-EP

GPEX-RC

GPEX-SW

GPEX-EP/RC

Configurable

32,64 or
128

Configurable
up to 8

Provided

From 128 to 4000

Flow control logic for
both directions

Compliant

NA

Databahn™ PCI

Express IP

NA

NA

NA

NA

NA

NA

NA

NA

PCI Express End Point

(GPEX-EP)

configurable

From 64 to 4000

Flow control in both

direction

PCI Express Root
Complex

GPEX-RC

Configurable

up to 8

NA

PCI Express Switch
Controller
GPEX-SW

NA

32,64 or
128

configurable

NA

From 128 to 4000

Flow control in both

direction

Compliant

NA

 1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.rambus.com/us/
http://www.denali.com/
http://www.gdatech.com/default.shtml
http://www.rambus.com/us/
http://www.denali.com/
http://www.gdatech.com/default.shtml

 Appendix A: PCI Express IP Providers 116

Table A.2 - Features of the Transaction Layer (Cont.) 1

IP Provider

Core Name

Tx Buffers
Width/bit

Data
Bus

Width

Virtual

Channel
Buffers

Quality of
Services
Protocol

Data Payload

(Max. of bytes)

Flow Control

TLP

Ordering
Rules

Standard

Bus
Interface

PCI Express Endpoint
Core

Configurable

32,64 or
128

Configurable

up to 8
And up to 8

TCs

NA

From 128 to 4000

Flow control in both
direction

AMBA™
2.0

AHB™
and

AMBA™
3 AXI™

PCI Express 2.0
Endpoint Core

NA

NA

NA

NA

NA

NA

Compliant

NA

1 NA stands for Not Available. The feature is either not available, or no information are provided

 Appendix A: PCI Express IP Providers 117

Table A.3 - General Key Features 1

IP Provider

Core Name

Function

PCIe
Base
Spec.

Targeted

Device

Data integrity, Message and

Interrupt

PCI-SIG

Power Management and

Configuration

Pci_exp_1_Lane_64b_ep

Virtex-4,

Virtex-II Pro
Pci_exp_4_Lane_64b_ep Virtex-4,

Virtex-II Pro
Pci_exp_8_Lane_64b_ep Virtex-4
Pci_exp_1_Lane_32b_ep Virtex-4
Pci_exp_4_Lane_32b_ep Virtex-4

PCI/PCIe power management

PCI Express PIPE
Endpoint 1-Lane

Endpoint

Spartan-3™
Spartan-3E

Active State Power management
Programmed Power management

PCI Express Endpoint

Block

PCIe
Endpoint

block

v1.1

Virtex™-5
LXT

Error detection, recovery and
Reporting

Compliant

Up to 6 x 32-bit or 3 x 64-bit BARs (or
a combination of 32 bit and 64 bit) and
BARs configurable for memory or I/O

PCI-Express CTLR

Endpoint
or Root
complex

v1.1

ASIC
FPGA

MSI or Legacy Interrupt Message

Optional End-to-end CRC
(ECRC)

Optional parity protection

Compliant

NA

PCI-Express Bus

Controller
EC310

Endpoint

v1.1

ASIC,FPGA:
Virtex II Pro

Virtex 4

LCRC, error checking

Compliant

all PCI Express configuration and power

management registers

1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.xilinx.com/
http://www.eurekatech.com/
http://www.xilinx.com/
http://www.eurekatech.com/

 Appendix A: PCI Express IP Providers 118

Table A.3 - General Key Features (Cont.) 1

IP Provider

Core Name

Function

PCIe
Base
Spec.

Targeted

Device

Data integrity, Message and

Interrupt

PCI-SIG

Power Management and

Configuration

PCI Express Endpoint
Core

Endpoint
configuration.
extensible to
support root
complex and

switch
solutions

v1.1

Virtex II Pro
and Virtex 4
and 0.18u or

below

Optional ECRC

Optional Advanced Error Reporting
support

Complete message support for
INTx, MSI,PME

Compliant

Optional Power Budgeting

capability support.
Supports Active State Power

Management
(ASPM) and Software compatible

PCI-PM.

Endpoint

Endpoint

v1.1
and

v2.0,
Rev
0.7

Root port Root Complex

Dual Mode(EP/RC) Dual
(Endpoint/Ro

ot)

Switch Port (Up-
/Downstream)

Switch

ASIC FPGA

Selectable ECRC and Advanced
Error Reporting Support

Compliant

Supports all power management
states L0,L0s,L1,L2 & L3

Supports Beacon and Wake-Up
mechanism

Configurable Type-0 (Endpoint) or
Type-1 (Root Port, Switch Port)

Config Headers

PCIe-EP

Endpoint

1.0a

ASIC(TSM
C 0.13 and
0.18 µm),

FPGA
(Virtex-II

Pro, Startix
GX)

Advanced error reporting
ECRC

Compliant

PCI configuration space type 0
header
MSI

1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.tallika.com/index.htm
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml
http://www.tallika.com/index.htm
http://www.asic-architectinc.com/
http://www.cast-inc.com/index.shtml

 Appendix A: PCI Express IP Providers 119

Table A.3 - General Key Features (Cont.) 1

IP Provider

Core Name

Function

PCIe
Base
Spec.

Targeted

Device

Data integrity, Message and

Interrupt

PCI-SIG

Power Management and

Configuration

PCI Express Core

Endpoint

v1.1

ASIC and
FPGA

Complete error-handling (detection
and reporting)

Compliant

User expansion of Config. space

GPEX-EP Endpoint
Controller

GPEX-RC Root Complex
Port controller

GPEX-SW Switch Port
Controller

GPEX-EP/RC Dual Mode
Controller

v1.1
and

v1.0a

ASIC and
FPGA

Baseline and advanced error and
reporting

Compliant

All configuration capabilities
Memory/IO /Expansion ROM

BARs

PCI Express Endpoint

Core

v1.1

ASIC (0.18
micron or

below)
and FPGA

PCI Express 2.0
Endpoint Core

Endpoint,

Root
Complex,

Dual mode,
Switch/Bridge

v1.1
and
v2.0

ASIC (90nm
or below)
and FPGA

Optional advanced PCI Express

error reporting, Optional ECC for
RAM, Configurable ECRC

generation and checking
All in-band messages supported for

Endpoint, Legacy PCI, MSI, and
MSI-X interrupt support

Compliant

Configurable EP filtering rules for
posted, non-posted and

completion traffic
Configurable BAR filtering (up to

6), IO filtering, configuration
filtering and completion
lookup/timeout for EP

Supports expansion ROM
Type 0 configuration space

1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.rambus.com/us/
http://www.rambus.com/us/

 Appendix A: PCI Express IP Providers 120

Table A.3 - General Key Features (Cont.) 1

IP Provider

Core Name

Function

PCIe
Base
Spec.

Targeted

Device

Data integrity, Message and

Interrupt

PCI-SIG

Power Management and

Configuration

PCI Express IP core
IP7001

Endpoint

NA

NA

NA

Compliant

NA

Databahn™ PCI

Express IP

Root
Complex,
Endpoint,

Dual Mode
(RC/EP)

v1.1
and

prelim
inary
v2.0

ASIC or
FPGA

Advanced Error Reporting

Compliant

AN

PCI Express End Point
(GPEX-EP)

Endpoint,
bridge, switch,
Root Complex

NA

X
PCI Express Root

Complex
GPEX-RC

NA

Message manager to map error
messages to local events

Efficient error management scheme

Hardware assisted power
management scheme

PCI Express Switch

Controller
GPEX-SW

NA

v1.0a

0.18u ASIC
or better,

FPGA

NA

Compliant

ASPM L1 / Wake support,
Auxiliary power support

Supports Type1 configuration
space

Supports Type0/1 configuration
conversions

1 NA stands for Not Available. The feature is either not available, or no information are provided

http://www.denali.com/
http://www.gdatech.com/default.shtml
http://www.denali.com/
http://www.gdatech.com/default.shtml

121

Appendix B: Xilinx WebCases

WebCase 668804

Table B.1: WebCase Summary

Title: Working with PCI Express
PIPE v1.5 Case Type: Technical Support

Owner: Mark Noble Severity: No Rush

Contact: Faraj Nassar Condition: Closed

Phone: 6504394756 Status: Closed

Site ID: 249680 Service Pack: sp2

Site Name: Technical University Of
Vienna Device Family: Spartan-3

 Software Version: 8.2i

 Os Type: WinXP

Attachments:
 There are no attachments for
this case.

The following topics were discussed in this WebCase:

• Simulation without the Philips PHY

• Configuration of the PCIe Core

• Simulation of the reference design

• Link Training and Initialization

• Xilinx training courses on how to design and develop the PCIe interfaces with the Xilinx Core

For more details, refer to the file xilinx_webcase_history.doc, located in the documentation sub-
directory of the project’s directory (C: /pcie_based_system/doc/).

122

Appendix C: Project Directory Structure

Figures C.1 shows the PCIe based System directory structure.

Figure C.1 – Project Directory Structure

Pcie_based_system

C:

doc

implementation

simulation

downstream_port

DUT_pcie_endpoint

mb_system

__XPS

data

drivers

opb_pcie_bridge_v1_00_a

data

scr

microblaze_0

code

include

lib

libsrc

pcieApp_program

src

data sheets

ppt

bibliography

ISE XST

pcie ep

EDK XST

pcie ep

 APPENDIX C: PROJECT DIRECTORY STRUCTURE 123

Figure C.1 - Project Directory Structure (Cont.)

Due to the license agreements with the companies Xilinx and NXP Semiconductors, the contents
of the project directory, are kept for SIEMENS use only. Table C.1 lists the provided materials,
to be found on a compact disc (CD) included with this thesis.

Table C.1- Project Directory Structure

Name

Description

C:/pcie_based_system/

Main project’s directory

C:/pcie_based_system/doc/

System Documentations

pcie_based_system.pdf PDF version of the Master’s thesis.
C:/…/…/data_sheets/ Data sheets of PCIe IP solutions.
C:/…/…/ppt/ PCIe tutorial as PowerPoint presentations.
C:/…/…/bibliography/ References.

pcie_peripheral_v1_00_a

functional

PX1011A-Generic-Behavioral-Model-v1.3

tests

doc

px1011a

tools

tools.hppa

tools.lnx86

px1011a

tools.sun4v

pcores

data

devl

bfmsim

projnav

synthesis

hdl

vhdl

simulation

behavioral

implementation

124

Bibliography

A
[AA05] A Low-Cost PCI Express Solution, Abhijit Athavale, Xcell Journal, Second Quarter
 2005

[ABS04] PCI Express System Architecture, Don Anderson, Ravi Budruk and Tom
 Shanley, MINDSHARE, INC., 2004

[AS99] PCI System Architecture, Don Anderson and Tom Shanley, MINDSHARE, INC.,
 1999

B
[BTRL02] Creating a PCI Express™ Interconnect, Ajay V. Bhatt, Technology and Research
 Labs, Intel Corporation, 2002

C
[CUG03] Cadence® IP Model Packager Guide for Model Users, For Windows2000 and XP,
 Product Version 5.1w, September 2003

[GL05] A Low-Cost Programmable PCI Express Solution, David “Andrew” Brierley-
 Green and Ho Wai Wong-Lam, Xcell Journal, Third Quarter 2005

H
[HS04] The Design of PCI Express for Future Communication Platform, Eugin Hyun and
 Kwang-Su Seong, IEEE, 0-7803-8639-6/2004

[HS05] Design and Verification for PCI Express Controller, Eugin Hyun and Kwang-Su
 Seong, IEEE, 0-7695-2316-1/2005

J
[JW01] Digital Design, Principles & Practices, John F. Wakerly, Prentice Hall international,
 Inc., 2001

K
[KP03] Advanced Switching Extends PCI Express, Kiran S. Puranik, Xcell Journal, Fall
 2003

[KPE05] PXPIPE White Paper, Application note, AN10372, Koninklijke Philips Electronics
 N.V, April 2006

BIBLIOGRAPHY 125

[KPE06] NXP x1 PHY single-lane transceiver PX1011A (I), Koninklijke Philips Electronics
 N.V, September 2006

L
[LB] An Interface Methodology for Retargettable FPGA Peripherals, Tien-Lung and
 Neil W. Bergmann, School of ITEE, The University of Queensland, Brisbane
 Australia

M
[MB99] “Programmable Logic: What it to Ya?”, Michael Barr, Embedded Systems
 Programming, pp. 75-84, June 1999

[MD06] Debugging and Validating PCI Express I/O, Richard Markley and Marco Davila,
Agilent Technologies, I/O Magazine, January 2006

N
[NR06] Lower System Cost with Spartan-3 based PCI Express Solutions, Navneet Rao,
 Xilinx, Inc., September 26, 2006

P
[PM04] Evaluating Xilinx MicroBlaze for Network SoC solutions, Master's Thesis in
 Computer Engineering, Peter Magnusson, 10th January 2004

[PPHY] Philips PCI Express PHY, Philips

[PUG05] PX1011A Behavioral Model User Guide, PHILIPS, July 11th, 2005

[PXS02] PCI Express Base Specification, Revision 1.0, April 29, 2002

[PXS05] PCI Express™ Base Specification, Revision 1.1, March 28, 2005

S
[SD05] Introduction to PCI Express –A New High Speed Serial Data Bus, Satish K.
 Dhawan, IEEE, 0-7803-9221-3/2005

[SS06] Achieve Performance Increases and Product Differentiation with OPB
 Mastering, Steven M. Spano, Embedded Magazine, November 2006

U
[UG197] Virtex-5 Integrated Endpoint Block for PCI Express Designs, User Guide
 UG197 (v1.1) March 20, 2007

[UG2565] Spartan-3 PCI Express Starter Kit Board, User Guide v1.2, UG2565 July 21,
 2006

BIBLIOGRAPHY 126

X
[XAPP473] Using the ISE Design Tools for Spartan-3 Generations FPGAs, Xilinx Application

Note, XAPP473 (v1.1) May 23, 2005

[XAPP516] Bus Functional Model (BFM) Simulation of Processor Intellectual Property,
 Lester Sanders, XAPP516 (v1.0) May 25, 2006

[XDS321] PCI Express PIPE Endpoint 1-Lane Core v1.5, Product Specification, DS321
 September 21, 2006

[XDS401] On-Chip Peripheral Bus V2.0 with OPB Arbiter (v1.10c), Xilinx LogiCORE,
 DS401, Product Specification, August 31, 2006

[XDS414] OPB IPIF Architecture, Xilinx LogiCORE, DS414 (v1.3), Product Specification,
 January 13, 2003

[XDS444] Block RAM (BRAM) Block (v1.00a), Xilinx LogiCORE, DS444, Product
 Specification, August 21, 2006

[XDS445] Local Memory Bus (LMB) V1.0 (v1.00a), Xilinx LogiCORE, DS445, Product
 Specification, February 22, 2006

[XDS452] LMB BRAM Interface Controller (v1.00b), Xilinx LogiCORE, DS452, Product
 Specification, February 22, 2006

[Xilinx] Xilinx, www.xilinx.com

[XP05] Low Cost Programmable PCI Express Solution, Xilinx and Philips Semiconductors
 September 27, 2005

[XTU] Custom Peripheral Design Guide, Xilinx Tutorial

[XTU02] Designing Custom OPB Slave Peripherals for MicroBlaze, Xilinx Tutorial,
 February 8, 2002

[XTU06] EDK 8.2 MicroBlaze Tutorial in Spartan 3, WT001 (v4.0) August 30, 2006

[XUG05] Processor IP Reference Guide, Xilinx, February 2005

[XUG167] LogiCORE™ PCI Express PIPE Endpoint 1-Lane v1.5, User Guide, UG167
 September 21, 2006

[XUG341] LogiCORE™ PCI Express® Endpoint Block Plus v1.2, Xilinx User Guide UG341
February 15, 2007

[XUG081] MicroBlaze Processor Reference Guide, Embedded Development Kit (EDK 8.2i),
 UG081 (v6.3), August 29, 2006

http://www.xilinx.com/

