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Uncertainty Estimation for SMAP Level-1 Brightness
Temperature Assimilation at Different Timescales

Alexander Gruber and Rolf H. Reichle

Abstract—Soil Moisture Active Passive (SMAP) mission bright-
ness temperature (Tb) observations are assimilated into NASA’s
Catchment Land Surface Model using an ensemble Kalman filter to
update simulations of surface and root-zone soil moisture. Different
time-series components of the Tb observations are assimilated,
including anomalies, interannual variations, and high-frequency
variations. To optimize the weights that the data assimilation (DA)
puts on the observations, the ratio between the uncertainties of
modeled and observed Tb is approximated using modeled and
observed soil moisture uncertainties estimated using triple col-
location analysis. In a benchmark experiment, Tb observations
are assimilated using a spatially constant 4-K observation uncer-
tainty, as in the operational SMAP Level-4 algorithm. All the DA
experiments exhibit notable skill improvements in most regions.
Improvements are largest for the interannual variations in the
simulations of both surface and root-zone soil moisture (mean
improvements in terms of Pearson correlation (–) are 0.08 and 0.06,
respectively). Anomaly simulations improve similarly (0.07), and
improvements in the high-frequency variations are only observed
for surface soil moisture simulations (0.06). No notable difference
in skill—neither improvement nor deterioration—is observed be-
tween the experiments that use optimized observation uncertainty
parameters and the 4-K benchmark experiment. This may be ex-
plained by the presence of large observation operator errors, which
are analytically shown to have the potential to render postupdate
uncertainty insensitive to inaccuracies in estimates of the Kalman
gain. These results have important implications for the design of
soil moisture DA systems, in particular for parameterizing model
and observation uncertainties.

Index Terms—Data assimilation, microwave remote sensing, soil
moisture, soil moisture active passive (SMAP).

I. INTRODUCTION

SOIL moisture is an essential climate variable. Knowledge
about its dynamics on a global scale is vital for many appli-

cations, from agricultural drought monitoring [1] to the study of
land–atmosphere interactions [2]. Updating soil moisture states
in numerical models by assimilating spaceborne microwave
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observations has proven useful in a variety of studies and can
be done in one of two ways: either by assimilating Level-2 (L2)
soil moisture estimates retrieved from the satellite observations,
i.e., updating the modeled soil moisture state directly [3], [4],
[5], [6], or by assimilating Level-1 (L1) backscatter (σ0, active
microwave) or brightness temperature (Tb, passive microwave)
measurements, i.e., using an observation operator to convert
model simulations into predictions of σ0 or Tb, updating these
predictions in the observation space, and propagating the updates
back into the model’s prognostic space through the inverse
operation operator [7], [8], [9], [10].

Comparison studies between L1 and L2 data assimilation
(DA) generally find very similar performance [7], [11], [12].
It has also been shown analytically that L1 and L2 DA can be
equivalent under certain conditions [13], [14]. Therefore, both
L1 and L2 DA schemes are being routinely used for operational
soil moisture analysis [15], [16]. Nevertheless, L1 DA has some
theoretical advantages. For example, many retrieval algorithms
require ancillary data (such as vegetation climatologies, soil
texture, and land cover information), and it is desirable that
these ancillary data are consistent with those used by the model
into which the retrievals are assimilated [14], [17], [18], [19].
Also, L1 DA can potentially exploit the entirety of information
about land surface variables that is contained in the assimilated
radiance measurements by distributing state updates among
model predictions of these variables (provided that they are also
simulated by the model) [17], [20].

Most relevant for the present study is the consideration of
how to best parameterize a Kalman filter (KF) that is used
for state updating. The parameters that need to be specified
in KF-based systems are the model and observation uncertain-
ties, which determine the amount by which model simulations
are corrected [21], [22]. The relative fraction by which model
simulations are “pulled toward the observations” is referred
to as Kalman gain and depends solely on the ratio between
model and observation uncertainties, so an optimal functioning
of the system (i.e., the maximum possible model uncertainty
reduction) can be attained only if this ratio is parameterized
accurately [23], [24].

L1 DA systems require the parameterization of uncertainties
in radiance space (e.g., Tb), whereas L2 DA systems require
the same in retrieval space (e.g., soil moisture). L1 Tb and σ0

observation uncertainties are fairly well known from calibration
activities in the laboratory (during instrument construction) and
calibration against stable targets such as the deep sky or Antarctic
snowfields (during operation), and they are relatively stable
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in both time and space [25], [26]. Crucially, however, in an
L1 DA system, the “optimal” weight that ought to be put on
L1 observations depends not only on the instrument noise but
also on uncertainties in the observation operator that is used
to convert between model prognostic space and observation
space [10], [11], [14], [27]. That is, in both L1 and L2 DA
systems, the “observation uncertainty” (from which to compute
the Kalman gain) always comprises both instrument error and
observation operator or retrieval algorithm error [14]. The latter
component, commonly referred to as representativeness error,
contains the totality of all errors other than instrument noise and
includes errors due to different representations of spatial and
temporal scale as well as errors due to different representations
of reality in the model and the observations [28].

A host of strategies to parameterize uncertainties in DA
systems have been proposed. The so-called adaptive DA ap-
proaches aim to estimate observation and forecast error covari-
ances during the analysis based on internal DA diagnostics, most
commonly utilizing the statistical properties of the innovations,
i.e., the observation-minus-forecast residuals [21], [22], [29],
[30], [31], [32]. For a comprehensive review of innovation-based
adaptive DA techniques, we refer the reader to [33]. Crow and
Reichle [34] further provide an overview of adaptive methods
for land surface DA in particular and tested various approaches
for soil moisture updating. A general pattern that seems to
emerge for adaptive DA techniques is that methods that work
best in reducing forecast uncertainty seem to exhibit excessively
slow convergence rates [28], [33], [34], [35], often to a de-
gree where they become computationally infeasible. Sufficiently
cost-efficient adaptive methods, in contrast, seem to be incapable
of estimating uncertainties accurately enough, probably due to
inappropriate assumptions made in their implementation [33],
[36], [37]. Owing to the difficulty in estimating forecast and
observation uncertainty parameters accurately “online,” many
studies instead provide the DA system with calibrated uncer-
tainty parameters that are constant in time and/or space [7],
[38], [39], [40], which has been shown to yield robust, albeit
not “optimal,” model simulation improvements.

One way of obtaining such static uncertainty parameters
“offline” is to leverage uncertainty estimates from external
sources that are independent of the internal functioning of the
system [28]. Triple collocation analysis (TCA) [41] is one such
approach that has been applied for the assimilation of soil
moisture retrievals. For example, Gruber et al. [4], Crow and
Van den Berg [37], Gruber et al. [42], and Wu et al. [43] have
successfully used TCA-based uncertainty estimates of simulated
and observed soil moisture to parameterize different KF-based
DA systems. An important limitation of this approach, however,
is that TCA has, so far, only been applied to retrievals of
biogeophysical variables [44] but not to remotely sensed L1 Tb

or σ0 data. This is because TCA requires three input datasets
of the same variable with mutually uncorrelated errors, which
are, at present, not available (globally) from currently available
sources.

In this study, we propose a hybrid strategy that parameterizes
the KF of an L1 Tb DA system with uncertainties estimated
from TCA in L2 soil moisture space. The key premise of this

approach is that the ratio between soil moisture forecast and
observation uncertainties estimated from TCA is a reasonably
accurate approximation for the ratio between Tb forecast and
observation uncertainties, even if their absolute magnitudes are
very different. Since the Kalman gain is determined exclusively
by this uncertainty ratio, such a hybrid approach could allow us
to harness L2 retrievals to attain a close-to-optimal functioning
of the filter while retaining all the potential benefits of an L1
DA system that were discussed earlier. Our approach implicitly
attributes uncertainties in the soil moisture retrieval algorithm to
theTb observations and, as a consequence, also accounts for rep-
resentativeness error in the observation operator [14], [28]. This
is, of course, only true to the degree to which representativeness
errors of the retrieval algorithm (from which uncertainties are
estimated) are comparable to those of the observation operator
(which is used to assimilate Tb observations).

One caveat of the proposed TCA-based approach is that it
estimates only spatial patterns of uncertainty, which represent,
at each location, the average uncertainty during the whole sample
period. While we can anticipate that uncertainties are, in reality,
nonstationary [45], [46], it may still be important progress
from the both spatially and temporally averaged uncertainty
parameters that are used most commonly.

An important related issue that limits the performance of many
state-of-the-art soil moisture DA systems is that errors in satellite
and model time series have been found to be nonwhite. That
is, they exhibit different error variance at different frequencies.
This has been demonstrated unequivocally by Draper and Re-
ichle [47], who found that updating soil moisture in a KF-based
land DA system using L2 satellite soil moisture retrievals yields
varying levels of improvement at different timescales. In their
study, updating modeled soil moisture with satellite retrievals
resulted in almost twice as large an improvement in unbiased
mean squared errors for predictions of interannual soil moisture
variations as for predictions of the mean seasonal cycle or
short-term soil moisture variations. This suggests that different
frequency components of the modeled and observed signals are
affected by different sources of uncertainty. In the soil moisture
forecasts of a land surface model, for example, low-frequency
(LF) errors might result from unmodeled processes such as
irrigation [48], whereas high-frequency (HF) errors may stem
from errors in transient atmospheric forcing events [47]. In the
satellite retrievals, on the other hand, LF errors may stem from
an insufficient separation of the soil moisture and the vegetation
signal [49], whereas HF error might be dominated by sensor
noise [50].

Most state-of-the-art soil moisture DA systems do not account
for this frequency dependence of model and observation error.
Instead, they parameterize model and observation uncertainties
using lumped estimates for the entire frequency spectrum. Using
such lumped estimates can only ever be a tradeoff in the degree
of uncertainty reduction that the DA can achieve. Even in the
best case, it will either be a balance that does not improve
either of the frequency components by as much as it potentially
could or improve one component as much as possible at the
expense of the other. For example, if a satellite product captures
interannual variations well but is very noisy in its HF variations,
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assimilating that product with the focus on optimizing the inter-
annual variations in the model will inevitably ingest the HF noise
as well and could, hence, deteriorate predictions of short-term
soil moisture changes.

In this study, we aim to account for this timescale dependence
of model and observation uncertainty by estimating uncertainties
at different timescales using the TCA-based approach described
above. We then investigate whether an EnKF-based DA system
that assimilates different frequency components separately using
timescale-dependent uncertainty parameters can outperform
one that assimilates a lumped anomaly signal using lumped
uncertainty parameters, which is the current state of the art.

Section II first summarizes all datasets that are used in this
study and describes how they are preprocessed for our experi-
ments. Section III describes the land surface DA setup used in
this study, how we assimilate different frequency components
of the Tb observations, and how we optimize the uncertainty
parameters for the state updating. Section IV summarizes our
evaluation strategy. Results are shown in Section V. Finally,
Section VI concludes this article.

II. DATASETS AND PREPROCESSING

The following datasets were used in this study:
1) meteorological forcing data from NASA’s Modern-Era

Retrospective analysis for Research and Applications,
Version 2 (MERRA-2; DOIs: 10.5067/RCMZA6TL70BG
and 10.5067/L0T5GEG1NYFA; available at https://disc.
gsfc.nasa.gov/datasets?project=MERRA-2) [51];

2) Tb observations from NASA’s Soil Moisture Active Pas-
sive (SMAP) mission (L1C Radiometer Half-Orbit 36 km
EASE-Grid Brightness Temperatures, Version 5, DOI:
10.5067/JJ5FL7FRLKJI; available at https://nsidc.org/
data/spl1ctb/versions/5) [52];

3) passive-microwave-based surface soil moisture
retrievals from SMAP (L2 Radiometer Half-Orbit
36 km EASE-Grid Soil Moisture, Version 5,
DOI: 10.5067/SODMLCE6LGLL; available at
https://nsidc.org/data/spl2smp/versions/5) [53];

4) active-microwave-based surface soil moisture retrievals
from the Advanced Scatterometer (ASCAT) onboard the
MetOp-A, -B, and -C missions (12.5-km Discrete Global
Grid H SAF soil moisture DR H115 and EXT H116,
DOI: 10.15770/EUM_SAF_H_0006; available at https://
hsaf.meteoam.it/Products/Detail?prod=DATAREC) [54],
[55];

5) surface and root-zone soil moisture measurements from
the Soil Climate Analysis Network (SCAN) and the U.S.
Climate Reference Network (USCRN), drawn from the
International Soil Moisture Network (ISMN; available at
https://ismn.earth) [56], [57], [58], [59]

For all the analyses (both assimilation and evaluation), data
points with a simulated snow mass >0 kg or soil temperature
<4 ◦C are masked out in all datasets. Only SCAN and USCRN
measurements that are flagged as “Good” by the ISMN internal
quality control [58] are used. ASCAT retrievals, which are
derived from ∼25 km observations and sampled onto a 12.5-km

grid using a 36-km-diameter hamming window, are matched
to the 36-km Equal Area Scalable Earth (EASE) Version 2
modeling grid [60] using a nearest-neighbor approach. Datasets
are collocated in time using a nearest-neighbor approach and
SMAP retrieval times as the reference, allowing a maximum
distance of 12 h.

III. EXPERIMENT SETUP

Our experiment setup is illustrated in Fig. 1 and detailed in
the following subsections.

A. DA Setup

SMAP Level-1CTb observations are assimilated into NASA’s
Catchment Land Surface Model (CLSM) [61] using the God-
dard Earth Observing System land data assimilation system
version 17.9.4 (available at https://github.com/GEOS-ESM/
GEOSldas/). CLSM land surface simulations are forced with
atmospheric simulations from MERRA-2. Model simulations
are made over the Contiguous United States (CONUS) on the
36-km EASE v2 grid in 7.5-min intervals and aggregated to
3-h time averages. This assures a maximum time difference
of 1.5 h between the model simulations and the assimilated
satellite observations. The assimilation period is from April
2015 until March 2021. Tb observations of both ascending and
descending orbits, each acquired at both horizontal and vertical
polarization, are assimilated using a spatially distributed (3-D)
ensemble Kalman filter (EnKF) with 24 ensemble members [39].
A horizontal observation error correlation length of 0.25◦ and
a localization support radius of 1.25◦ is assumed [11]. A zero-
order τ − ω model is used as the observation operator to convert
model soil moisture and temperature predictions into Tb space,
which has been calibrated following the approach of [62].

The EnKF sequentially performs model forecasts and filter
updates, also referred to as filter analyses. At each analysis time
step, i.e., whenever an observation is available, the EnKF updates
the model forecasts as

x+
t,i = x−

t,i +Kt

(
yt,i −Hx−

t,i

)
(1)

where yt,i is the perturbed observation vector, and x−
t,i and x+

t,i

are the perturbed model forecast and analysis state vectors of
ensemble member i at time step t, respectively. The EnKF state
vector consists of CLSM prognostic variables for soil moisture
(surface excess and root-zone excess), surface (skin) tempera-
ture, and surface soil heat content as in the operational SMAP
Level-4 (L4) product [63]. Note that, for the evaluation of our
DA experiments, surface (0–10 cm) and root-zone (0–100 cm)
soil moisture estimates are diagnosed from these prognostic
soil moisture variables. The observation operator H converts
prognostic state variables into Tb predictions at both horizontal
and vertical polarization. The τ − ω model used here as the
operation operator is actually nonlinear, but to aid presentation
and without loss of generality, we use a linear operator H in the
equations shown here. Kt denotes the Kalman gain, which is
calculated as

Kt = P−
t H

ᵀ
t

(
HtP

−
t H

ᵀ
t +Rt

)−1
(2)
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Fig. 1. Illustration of the experiment setup. TCA is applied to SMAP, CLSM, and ASCAT soil moisture. Uncertainties are estimated separately for anomalies,
the LF signal, and the HF signal. These uncertainty estimates are used to optimize the Kalman gain for assimilating either anomalies (DAanom), the LF signal
(DALF), or the HF signal (DAHF) alone or for jointly assimilating both the LF and the HF signal (DAjoint). The CTRL experiment that serves as a benchmark
uses a constant observation error standard deviation of 4 K. The skill of the DA experiments is evaluated on the same timescales using both ASCAT retrievals and
ISMN measurements. TCA uncertainty estimates for ASCAT are used to mitigate the influence of ASCAT uncertainties on relative skill evaluation metrics.

where P−
t is the forecast error covariance matrix that is diag-

nosed from the model ensemble and includes both the propa-
gated analysis error and the model perturbation that is added at
each time step, andRt is the observation error covariance matrix
that is diagnosed from the observation ensemble. Note that by ex-
ploiting simulated (ensemble-based) error correlations between
the surface and root-zone excess reservoirs, the analysis also
includes updates to the modeled root-zone soil moisture [39].

B. Assimilation at Different Timescales

The KF is “bias-blind” [64]. That is, systematic biases be-
tween model forecasts and satellite observations can substan-
tially deteriorate DA performance. In such bias-blind systems,
systematic differences are thus typically removed by rescaling
the observations into the model space before assimilation [11],
[65], [66]. This is most commonly done by removing differences
between the model and observation climatology and causes the
system to assimilate so-called (climatological) anomalies, which
are the residuals from the mean seasonal cycle [67], [68], [69],
[70].

However, as demonstrated by Draper and Reichle [47], it
might be useful to break these anomalies down into two distinct
signal components at different frequencies: 1) interannual vari-
ations, which represent LF deviations from the climatic pattern
such as prolonged drought in a given year (hereinafter referred to
as the LF signal); and 2) HF variations that represent short-term

weather-driven soil moisture changes, e.g., due to individual
precipitation events (hereinafter referred to as the HF signal).
The different signal components are illustrated in Fig. 2 for an
example Tb model time series at a random location in our study
domain. Since these components are influenced by different
sources of error, assimilating them as separate signals allows us
to optimize the KF for their frequency-specific uncertainty (see
Section III-E). In this study, we test four ways of assimilating
the different frequency components of Tb observations:

1) assimilating anomalies, i.e., the lumped HF plus LF sig-
nals [see Fig. 2(b)], as it is commonly done;

2) assimilating the LF signals alone [Fig. 2(c), green];
3) assimilating the HF signals alone [Fig. 2(c), gold];
4) jointly assimilating the LF and HF components as sepa-

rate signals with separate uncertainty estimates [Fig. 2(c),
gold, green].

The different frequency components are estimated follow-
ing [71], separately for the model estimates and the observations.
First, a 35-day moving-average filter is applied to the Tb time
series. The HF signal component [see Fig. 2(c), gold] is then
calculated by subtracting this moving-average time series from
the rawTb time series. Next, a seasonally varyingTb climatology
[see Fig. 2(a), blue] is derived by averaging the moving-average
Tb time series for each calendar day across all years of the
study period. The anomalies [see Fig. 2(b)] are then estimated
by subtracting this mean seasonal cycle from the raw Tb time
series. Finally, the LF signal component [see Fig. 2(c), green]
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Fig. 2. Illustration of the most relevant frequency components in a Tb time series (in Kelvin). (a) Raw Tb time series and its mean seasonal cycle, i.e., the
climatology. (b) Anomalies, i.e., residuals from the climatology. (c) Separate LF and HF components contained in the anomalies.

is estimated by subtracting the HF signal from the anomaly
time series. The same approach is used to estimate anomalies,
LF signals, and HF signals for soil moisture time series (see
Section III-E1). Note that the use of 35-day window filters
limits the application of the proposed approach in near real-time
applications to a minimum of 17.5-day latency.

C. Observation Rescaling

The Tb observations are rescaled prior to assimilation fol-
lowing the approach of [16]. This rescaling causes the DA
innovations to retain only the bias-corrected differences between
the modeled and observed signal components that are assimi-
lated. More specifically, observations are rescaled by subtracting
the differences between those components of the observed and
modeled signals that are not assimilated. That is, to assimilate
anomalies, the differences between the observed and simulated
Tb climatologies are subtracted from the Tb observations; to
assimilate the LF signal, differences between observed and
simulated Tb climatologies as well as HF variations are sub-
tracted from theTb observations; and to assimilate the HF signal,
differences between observed and simulated Tb climatologies as
well as LF variations are subtracted from the Tb observations.

D. Experiment Summary

The DA experiments that we run are summarized in Table I.
In the experiments labeled DA∗, we test the various ways of as-
similating different Tb frequency components described above.
In each of these experiments, the EnKF is optimized for the
uncertainties of the assimilated frequency components using the
approach described in the following subsection. The CTRL ex-
periment serves as a benchmark and assimilates anomalies using
a constant value of 4 K for the observation error standard devia-
tion in the entire study domain, as it is done in the generation of
the operational SMAP L4 product [39], [63]. These 4 K comprise
∼1.3 K instrument error and ∼3.8 K representativeness error.
For all the experiments, we use the CLSM model perturbation

TABLE I
EXPERIMENT OVERVIEW

settings and model parameters (boundary conditions) of the
SMAP L4_SM Version 4 product. Note, however, that we run
our model simulations at a 36-km spatial resolution instead of a
9-km resolution.

E. KF Optimization

As mentioned, the optimal functioning of a KF-based DA
system requires the correct parameterization of the ratio between
the forecast and observation error covariance matrices (Pt and
Rt), which determines the Kalman gain [see (2)]. For simplicity,
we will refer to this ratio hereinafter as the P-to-R ratio, or
P/R, for short. In this study, we propose to approximate P/R
in L1 Tb space—as required by our L1 DA system—with P/R
values estimated from model forecasts and observations in L2
soil moisture space. To optimize our system for the different
DA experiments described above (see Table I), P/R values are
estimated separately for each assimilated signal component (i.e.,
LF variations, HF variations, and anomalies, which comprise
both LF and HF variations; see Section III-B and Fig. 2).

1) Soil Moisture Uncertainty Estimation: Soil moisture un-
certainties are estimated by applying TCA [41], [72] to CLSM
“open-loop” (OL, i.e., model-only) ensemble simulations with-
out DA and L2 surface soil moisture retrievals from SMAP and
ASCAT. TCA provides estimates for the “true” random error
variances of three datasets, that is, uncertainty estimates for
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one dataset do not depend on which other datasets are chosen
to complete the triplet. This requires a set of assumptions to
be met, most importantly that the errors of the three datasets
are independent of one another [44]. The triplet used here
is commonly assumed to meet these assumptions [71]. TCA
estimates random error variances v̂ar(εΘ,i) (where Θ, i refers
to soil moisture estimates of dataset i, and ε to their associated
random errors) for CLSM OL surface soil moisture simulations
and SMAP surface soil moisture retrievals as

v̂ar(εΘ,clsm) = var(Θclsm)

− cov(Θclsm,Θascat) cov(Θclsm,Θsmap)

cov(Θascat,Θsmap)

v̂ar(εΘ,smap) = var(Θsmap)

− cov(Θsmap,Θascat) cov(Θsmap,Θclsm)

cov(Θascat,Θclsm)
(3)

where var(·) and cov(·) denote the temporal variance and covari-
ance, respectively. Note that v̂ar(εΘ) represents time-average
uncertainties. Equations in (3) are applied separately to estimate
uncertainties of modeled and observed time-series anomalies,
LF signal components, and HF signal components. Since TCA
estimates are unreliable if not all three datasets are sufficiently
related to one another, grid cells where any two of the considered
time series in the triplets exhibit a Pearson correlation <0.2 are
masked out in all subsequent analyses. The following section
describes how we use these TCA-based uncertainty estimates
to tune P/R for our DA system in Tb space. For more details
about TCA, we refer the reader to [44].

2) Filter Parameterization: As mentioned, we aim to
use the ratio between TCA-based uncertainty estimates
of modeled and observed soil moisture—that is, P/R=
v̂ar(εΘ,clsm)/v̂ar(εΘ,smap)—to parameterize the ratio between
the KF uncertainty parameters associated with model simu-
lations and satellite observations of Tb, thus optimizing the
Kalman gain. In an EnKF, the forecast and observation error
covariance matrices (P−

t and Rt) that are used to calculate the
Kalman gain are diagnosed from the ensembles, i.e., calculated
as the forecast and observation ensemble (co)variances, re-
spectively. Ensemble (co)variances result from assumed model
and observation perturbations, i.e., errors that are drawn from
assumed probability distributions and added to the model simu-
lations (and their forcing variables) and the observations at each
time step. Optimizing P−

t and Rt, and hence P/R, therefore
requires changing the perturbation parameters so that the en-
semble variances will take on the values we desire for P−

t and
Rt, respectively.

Adjusting the observation ensemble spread to a target value
is straightforward because errors are assumed to be temporally
white, zero-mean, and Gaussian distributed. Therefore, choos-
ing a particular value for the perturbation variance causes the
observation ensemble to exhibit precisely that variance (within
the sampling noise afforded by the finite ensemble size). Tuning
the ensemble variance of Tb model simulations, however, is
more complicated. This is because realistic variability in the soil

moisture and temperature simulations (from which Tb simula-
tions are diagnosed using the observation operator) is typically
achieved by perturbing both model forcing variables (to account
for forcing data uncertainty) and model soil moisture predictions
(to account for model deficiencies). The Tb ensemble spread
is, thus, the result of an autocorrelated blend of forcing and
(prognostic) state perturbations, and it is virtually impossible to
predict a priori how exactly this Tb ensemble spread will change
when the model perturbation parameters are altered. Therefore,
we tune our EnKF toward a desired P/R value by keeping
P as it is and changing R only. Before describing the exact
optimization of R in detail, the following section summarizes
the model perturbations that we have used for all experiments.

3) Model Perturbation: Model diagnostic Tb simulations are
perturbed indirectly by: 1) perturbing precipitation forcing with
a multiplicative log-normal factor (mean of 1 and standard
deviation of 0.5); 2) perturbing short-wave radiation forcing
with a multiplicative log-normal factor (mean of 1 and standard
deviation of 0.3); 3) perturbing long-wave radiation forcing with
an additive error (standard deviation of 20 W/m2); and 4)
perturbing the model prognostic catchment deficit and root-zone
excess simulations with an additive error (standard deviation of
0.24 and 0.16 kg/m2/h, respectively). Model forcing perturba-
tions are assigned a spatial and temporal autocorrelation of 0.5◦

and 24 h, respectively, and model prognostic perturbations of
0.3◦ and 3 h, respectively. Error cross-correlation is assumed
between precipitation and short-wave radiation (−0.8), between
precipitation and long-wave radiation (0.5), and between short-
wave and long-wave radiation (−0.5). These values have been
established by previous studies and are considered to lead to
a realistic spread for both soil moisture and Tb ensemble sim-
ulations [66]. Keeping them at these established values, thus,
likely helps us to maintain a realistic propagation of forecast
uncertainty between state updates.

4) Observation Perturbation: To tune P/R for our filter
toward the uncertainty ratio that we estimate in soil moisture
space, Tb observation uncertainties are calculated as follows.
First, a time-average model uncertainty P̂ is diagnosed from the
CLSM OL Tb ensemble variances that result from the model
perturbations described above:

P̂ =
〈
var

(
Hx−)〉 . (4)

The Gaussian brackets 〈·〉 denote the temporal average; here,
var(·) denotes the ensemble variance. An optimized value R̂opt

for the observation uncertainty is then obtained as

R̂opt = P̂
v̂ar(εΘ,smap)

v̂ar(εΘ,clsm)
. (5)

This optimized observation uncertainty R̂opt is estimated at each
grid cell for each frequency component that we consider in
the different experiments described above (see Section III-D,
Table I). It is worth emphasizing that the (spatial) tuning of
P/R is not intended to account for (spatial) variations in Tb

measurement error, which is known precisely and fairly stable
in both space and time [26], but predominantly for variations
due to representativeness error in the observation operator [14].



GRUBER AND REICHLE: UNCERTAINTY ESTIMATION FOR SMAP LEVEL-1 BRIGHTNESS TEMPERATURE ASSIMILATION 9133

F. Caveats

A few caveats of the proposed P/R tuning approach need to
be discussed.

1) Our TCA-based estimates represent temporal averages of
model and observation uncertainty. Equation (5), thus,
provides only a single, time-invariant estimate for the
observation uncertainty, which will lead to a stationary
observation ensemble variance. Model background uncer-
tainty (P−

t ), however, is evolving and generally reduced
whenever observations are assimilated. This will likely
cause the Kalman gain to be underestimated in some
instances and overestimated in others.

2) Kalman gains are optimized for the performance of the
observations relative to OL model simulations. Since the
assimilation should progressively reduce model back-
ground uncertainty throughout the assimilation period,
our optimized Kalman gains will likely be systematically
overestimated.

3) The observation operator that we use (a zero-order τ − ω
model) is nonlinear. Consequently, the optimal value for
the Kalman gain depends on the state of the prognostic
variables themselves. Using temporally constant observa-
tion uncertainties will, thus, inherently lead to suboptimal
filtering performance. Note, however, that this issue af-
fects not only the uncertainty tuning approach proposed
here in particular but also any DA system that uses static
observation uncertainties together with a nonlinear state-
variable-dependent observation operator.

4) For the L1Tb DA system,P/R is tuned using soil moisture
uncertainties estimated from L2 soil moisture retrievals
through TCA. Representativeness errors of the L2 retrieval
algorithm are, thus, used as a proxy for representativeness
error in the observation operator of our L1 DA system. For
TCA, we use the official SMAP L2 soil moisture product,
which employs a retrieval algorithm (including ancillary
data) that is similar, but not identical, to the radiative
transfer model that constitutes our observation operator.
Therefore, P/R may be either over- or underestimated,
depending on whether the official SMAP L2 retrieval
algorithm is more or less accurate than our observation
operator.

5) Uncertainty in model simulations of soil temperature
also leads to uncertainty in simulations of Tb. These
temperature-induced uncertainties are not accounted for
in our TCA-based proxy estimates for P , which are
derived from just soil moisture estimates. At the same
time, TCA-based uncertainty estimates for SMAP soil
moisture retrievals implicitly account for potential soil
temperature input uncertainties in the retrieval algorithm.
Taken together, this will cause the DA system to put too
little weight on the observations when using TCA-based
estimates for tuning P/R.

6) TCA provides us with a single estimate for the uncertainty
of modeled and observed soil moisture, yet we assimilate
SMAP Tb observations from both ascending and descend-
ing orbits, acquired at both H and V polarization, all of

which are likely to exhibit slightly different uncertainties.
Even though we apply (5) separately for all these observa-
tion types to estimate the observation uncertainties, these
estimates are likely to be slightly inaccurate in each case.

All of these issues can lead to inaccuracies in the Kalman
gain and, therefore, adversely impact DA performance. In this
study, we test whether their combined effect is small enough
so that our proposed observation uncertainty tuning approach
leads to a better filtering performance than using a single lumped
observation error for the entire assimilation domain as is the
current state of the art.

IV. EVALUATION STRATEGY

For all DA experiments (see Table I), we evaluate the skill gain
(or loss) relative to OL simulations of the frequency components
that are affected by the assimilation and for which they are
optimized. That is, for the CTRL and DAjoint experiments,
we evaluate their skill in predicting each frequency component,
including anomalies, LF variations, and HF variations. For the
DAanom, DALF, and DAHF experiments, we evaluate only their
skill in predicting anomalies, LF variations, and HF variations,
respectively.

A. In Situ Evaluation

DA skill is evaluated directly against 186 and 106 ground ref-
erence stations from the SCAN and USCRN networks, respec-
tively, which are distributed homogeneously over the CONUS
(see Fig. 3). DA skill is evaluated for both surface (0–10 cm)
and root-zone (0–100 cm) soil moisture simulations at different
timescales using the Pearson correlation coefficient as a perfor-
mance metric.

B. ASCAT Evaluation

DA skill over the entire CONUS is further evaluated using
ASCAT surface soil moisture retrievals. Ideally, this would be
done using TCA. But, since the errors of the DA analyses are
correlated with errors in both SMAP soil moisture retrievals and
the CLSM OL simulations, we are no longer able to construct
a triplet from model and satellite data (with CONUS-wide
coverage) that meet the basic assumption of uncorrelated errors.
To circumvent this issue, we employ the approach proposed by
Gruber et al. [73]: We first evaluate DA skill in terms of the
relative Pearson correlation with respect to ASCAT retrievals,
which we then correct for the influence of ASCAT uncertainty
obtained from TCA applied to ASCAT, SMAP, and CLSM OL
soil moisture:

ρDA =
ρDA,ASCAT

ρASCAT
(6)

where ρi,j denotes the Pearson correlation coefficient and ρi de-
notes the (TCA-based) correlation coefficient w.r.t. the unknown
truth [74].

C. DA Diagnostics

Many studies utilize internal DA diagnostics to verify the
optimal functioning of their DA systems [16], most commonly
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Fig. 3. Locations of the 186 SCAN (red dots) and 106 USCRN (blue crosses) sites that provide valid ground measurements during our study period.

the behavior of the innovations, i.e., the differences between
the observations and the pre-update forecasts (yt −Hx−

t ). Of
particular interest for this study is the temporal innovation au-
tocorrelation (IAC), which holds information about the correct
parameterization of P/R. The IAC indicates whether the KF
sufficiently pulls the model predictions toward the observations:
if observation uncertainty is overestimated (relative to model
uncertainty) and the Kalman gain is too low, the IAC should
be positive; if observation uncertainty is underestimated and the
Kalman gain is too high, the IAC should be negative; and if
P/R and, hence, the Kalman gain are parameterized correctly,
the IAC should be zero [34]. However, this is true only if errors
are not temporally autocorrelated. If they are—and in our case,
they are likely to be—the IAC will take on a positive value even
if the KF is working optimally [37]. We calculate the IAC (as
the lag-1 Pearson correlation in the innovation series) for our
DA experiments nonetheless, assuming that a reduction in IAC
between experiments is still indicative of an improvement in
filtering performance.

V. RESULTS AND DISCUSSION

A. TCA-Based Uncertainties

Fig. 4 shows the TCA-based estimates for the error standard
deviations of the anomalies (a, d), the LF signal component (b,
e), and the HF signal component (c, f) of SMAP soil moisture
retrievals (a–c) and CLSM OL surface soil moisture simulations
(d–f). Notice that in many areas where SMAP exhibits lower or
higher uncertainties in the LF signal than in the HF signal, it is
the other way around for CLSM simulations. This suggests that
the DA system should indeed benefit from assigning different
weights to the different frequency components.

HF and LF signal errors can reasonably be assumed to be
orthogonal (i.e., mutually uncorrelated) because they are largely
caused by different mechanisms (see Section I). Hence, since the
anomalies are the sum of the HF and the LF signals, their error
variance too should be the sum of the LF and HF error vari-
ances. However, some error cross-correlations between the two
frequency components may be introduced by the nonorthogonal
transformation (i.e., the moving-average based approach de-
scribed in Section III-B) that we use to decompose the frequen-
cies of the raw time series [47]. To assess whether (or to which
degree) this is the case, we calculate the difference between the
anomaly error standard deviation and the square root of the sum
of the HF and LF error variances (ŝtd(εΘ,anom)− (v̂ar(εΘ,HF) +
v̂ar(εΘ,LF))

1/2). Fig. 5 shows these differences for SMAP and
CLSM, respectively. The differences are very small, implying
that no noteworthy cross-correlations exist. We can, therefore,
confidently assimilate the LF and HF signals together without
having to take error cross-correlations into account.

B. Observation Uncertainties

Fig. 6 shows the optimized observation uncertainties (R̂opt)
that are derived for each observation type (orbit direction and
polarization) from the TCA-based soil moisture uncertainty esti-
mates for the different timescales (see Fig. 4) using the proposed
P/R tuning approach [see (5)]. Differences between the uncer-
tainties of ascending and descending orbits appear negligible,
whereas H-polarized observations are assigned uncertainties that
are larger (by ∼0.7 K on average) than those of V-polarized
observations. Remember, however, that the observation uncer-
tainties are determined from soil moisture uncertainties that do
not distinguish between polarizations. The apparent difference
in the uncertainties for H- and V-polarized observations results
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Fig. 4. TCA-based error standard deviation estimates (m3/m3) for (a)–(c) SMAP soil moisture retrievals and (d)–(f) CLSM OL soil moisture simulations. Errors
are estimated for (a), (d) anomalies, (b), (e) LF soil moisture variations, and (c), (f) HF soil moisture variations. Grid cells with unreliable TCA estimates are
masked out (see Section III-E1).

Fig. 5. Differences between the TCA-based error standard deviation estimates (m3/m3) of anomalies and the square root of the sum of error standard deviation
estimates of the LF and HF signals, for (a) SMAP and (b) CLSM. Grid cells with unreliable TCA estimates in any of the frequency components are masked out
(see Section III-E1).

from larger uncertainties in H-polarized model Tb simulations.
These are counterbalanced by (5) with larger observation uncer-
tainties that lead to the same P/R values for both polarizations.
As a result, the Kalman gain is the same for the assimilation of
H- and V-polarized observations. As mentioned in Section III-F,
not accounting for the polarization dependence of observation
uncertainties might adversely impact DA performance.

Apart from the differences between polarizations, clear spatial
patterns exist in the observation uncertainties that are distinctly
different at each timescale. Uncertainties of the LF signals are
generally lower than those of the HF signals, which indicates
that larger skill gains can be expected on the LF timescale.
This is consistent with what has been observed by Draper
and Reichle [47]. Blue colors in Fig. 6 indicate regions where
observation uncertainties are lower than the spatially constant
4 K that are used in the CTRL experiment (i.e., more weight
is put on them in the assimilation) and yellow colors indicate
regions where they are higher (i.e., less weight is put on them

in the assimilation). Mind, however, that the spatial observation
uncertainty patterns shown in Fig. 6 do not directly reflect the
spatial patterns of the observation weights (which will be shown
later) because these depend on P/R, which also accounts for
the uncertainty of the model.

To account for possible systematic differences between P/R
in soil moisture andTb space, we tested adding synthetic inflation
and deflation factors to the Tb uncertainties before assimilation
(both additive and multiplicative with varying magnitudes), but
the uncertainty values derived initially (see Fig. 6) achieved
the best performance in the DA skill evaluations. Results are,
therefore, only shown for these experiments.

C. Weight Verification

To verify whether the observation uncertainties R̂opt shown
in Fig. 6 correctly calibrate P/R in Tb space toward the ratio
between model and observation uncertainties in soil moisture
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Fig. 6. Standard deviation of the Tb uncertainties (K) used for different observation types (orbit direction and signal polarization; y-axis), optimized for the
assimilation of anomalies [DAanom; (a), (d), (g), and (j)], LF Tb variations [DALF and DAjoint; (b), (e), (h), and (k)], and HF Tb variations [DAHF and DAjoint;
(c), (f), (i), and (l)], respectively. The color scale is centered on the 4 K error standard deviation that is used in the CTRL experiment. Blue (yellow) colors indicate
that the optimized DA experiments (DA∗) put more (less) weight on the observations than the CTRL run. Grid cells with unreliable TCA estimates are masked
out (see Section III-E1).

space (see Fig. 4), as intended by (5), we diagnose the actual
Tb forecast and observation ensemble standard deviations (i.e.,
var(Hx−) and var(y)) that result from using the estimated R̂opt

values in an OL model simulation. Fig. 7(a)–(c) shows the
TCA-based soil moisture uncertainty ratios at each timescale,
and Fig. 7(e)–(g) shows the corresponding ratios between Tb

forecast and observation ensemble standard deviations averaged
over all time steps and observation types (i.e., orbit direction and
polarization). To aid visual interpretation, ratios are linearized
by converting them into decibel (dB) units (zero dB means that
the ratios are equal to one and every additional±3 dB correspond
to an additional doubling or halving of the ratio). Yellow colors
indicate regions where model simulations have larger errors than
the satellite observations (resulting in large weights for the obser-
vations) and blue colors indicate areas where it is the other way
around (resulting in small weights for the observations). We can
see that (5) can reliably estimate observation uncertainties R̂opt

that lead to a desired Tb ensemble variance and, hence, P/R.
For comparison, Fig. 7(d) shows the ensemble variance ratio

for the CTRL experiment that results when using the constant
4 K observation uncertainty everywhere. The overall P/R

pattern in the CTRL experiment is similar to that of the tuned
P/R patterns in the anomaly and HF frequency components
[see Fig. 7(e) and (g)] but differs markedly from the P/R
pattern of the LF component [see Fig. 7(f)].

Fig. 7 is also a (nonlinear, monotonic) proxy for the spatial
distribution of the weights that the KF will put on the observa-
tions. On average, the CTRL experiment assigns less weight to
the observations than do DA experiments with the tuned P/R
values (i.e., DA∗), especially in the Western U.S. Clear differ-
ences exist between the spatial weight patterns for the different
signal components. While the weights estimated for anomalies
[see Fig. 7(e)] and the HF signals [see Fig. 7(g)] exhibit very
similar patterns—albeit with a generally lower magnitude for the
latter—the spatial distribution of weights estimated for the LF
signals [see Fig. 7(f)] is distinctively different. Most noticeable,
SMAP observation weights for the LF signal remain relatively
high over the Eastern U.S., whereas those of the other frequency
components are small or close to zero.

Many soil moisture retrieval assimilation studies mask out
these areas because increasing vegetation density has been as-
sociated with increasing uncertainty in microwave soil moisture
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Fig. 7. P/R ratios expressed in dB units: between TCA-based soil moisture uncertainty estimates for OL model and observation anomalies (a), LF signal
variations (b), and HF signal variations (c); and between (average) OL model and observation Tb ensemble standard deviations when using a constant 4 K
observation uncertainty (d) or an observation uncertainty that has been optimized for assimilating anomalies (e), the LF signal component (f), or the HF signal
component (g). Yellow (blue) colors indicate that observation uncertainties are smaller (larger) than OL forecast uncertainties. Grid cells with unreliable TCA
estimates are masked out (see Section III-E1).

Fig. 8. IAC (–) of H-polarized (a)–(c) and V-polarized (d)–(f) data from ascending orbits for theOL run (a), (d), theCTRL experiment (b), (e), and theDAanom

experiment (c), (f), respectively. Grid cells with unreliable TCA estimates are masked out (see Section III-E1).

retrievals [75]. While there might indeed be a point where too
dense vegetation attenuates microwave signals to a degree where
they are no longer sensitive to soil moisture, this appears to be
the case only over tropical rain forests [76]. Notwithstanding,
it has been posited that apparent soil moisture information
contained in microwave measurements over densely vegetated
areas may be a result of the correlation between soil moisture
and vegetation water content dynamics [77]. This conjecture
is consistent with the fact that our optimization strategy esti-
mates large observation weights only on the LF timescale and
does so not as a result of excessively large model error but
because of small observation error (see Fig. 4). Whatever the
mechanism, it seems that SMAP Tb observations may still con-
tain useful soil moisture information on the LF timescale (i.e.,
about interannual variations), which will be explored further in
Section V-E.

D. Internal Diagnostics

Fig. 8 shows the IAC (see Section IV-C) of both H- and
V-polarized Tb for the OL run, the CTRL experiment, and
our DA experiment that has been optimized for the assimilation
of anomalies (DAanom). We do not show IAC estimates for the
other optimized DA runs becauseDAanom is the only experiment
whose innovations can be compared directly to those of the
CTRL run. Only IAC estimates for ascending orbits are shown
because they are virtually identical to those of descending orbits
(as is expected from Fig. 6).

Both DA experiments substantially reduce the IAC compared
to the OL run: spatial averages of the IAC for DAanom, CTRL,
and OL are 0.28, 0.35, and 0.69 for H polarization and 0.25,
0.28, and 0.70 for V polarization, respectively. This indicates a
proper functioning of the filter in both DA cases. The fact that
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Fig. 9. Skill ρ∗ (–) of the OL run [(a)–(c)]; the CTRL experiment [(d)–(f)]; the optimized DA experiments that assimilate either anomalies [DAanom; (g)], LF
Tb variations [DALF; (h)], or HF Tb variations [DAHF; (i)]; and the optimized DA experiment that jointly assimilates both LF and HF Tb variations [DAjoint;
(j)–(l)]. The skill is shown for estimates of surface soil moisture anomalies [ρanom; (a), (d), (g), and (j)], LF variations [ρLF; (b), (e), (h), and (k)], and HF variations
[ρHF ; (c), (f), (i), and (l)]. Grid cells with unreliable TCA estimates are masked out (see Section III-E1).

DAanom consistently yields lower IACs than CTRL suggests
that our optimized uncertainties are closer to the “truth” than
is the constant 4 K uncertainty used in CTRL. However, the
differences in IAC between DAanom and CTRL are small.

E. Reference Data Comparison

1) ASCAT Evaluation: Fig. 9 shows the skill of the OL
run (a–c), the CTRL run (d–f), and the DA∗ experiments
with optimized observation uncertainty parameters (g–l). “Skill”
refers to the Pearson correlation of the anomalies (ρanom), LF
variations (ρLF), and HF variations (ρHF) with respect to ASCAT,
corrected for the uncertainty in ASCAT observations [see (6)].
Fig. 10 further shows the relative skill differences between the
optimized DA∗ experiments and the OL run (a–f) and between
the optimized DA∗ experiments and the CTRL run (g–l). Blue
colors represent areas where the optimized DA∗ experiments
perform better than the OL simulations or the CTRL run, and
red colors represent areas where they perform worse.

Overall, assimilating SMAP Tb observations yields large
skill improvements in the LF component of the soil moisture

predictions [see Fig. 10(b) and (e)]. Improvements in predicting
soil moisture anomalies [see Fig. 10(a) and (d)] are about
half that of the LF skill gains, and average skill differences
are negligible for predicting HF soil moisture variations [see
Fig. 10(c) and (f)]. This is, of course, only true for the experi-
ments that actually assimilate the respective signal components.
The lack of improvements in the HF signal component might
be explained by the fact that our land surface model applies a
rain gauge correction to the meteorological forcing, and that
the gauge coverage over our study domain (the CONUS) is
substantial. It is, therefore, not unexpected that the assimilation
of satellite observations does not add additional information
about individual rainfall events. Much larger skill improvements
in the HF component upon assimilation can be expected in
regions with poor rain gauge coverage such as most developing
countries [78], [79].

Using optimized observation uncertainties leads to consis-
tently larger skill gains than are obtained with the 4 K observa-
tion uncertainty used in the CTRL experiment [see Fig. 10(g)–
(l)]. However, differences in skill between the optimized DA∗
and CTRL experiments are very small, if not negligible, except
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Fig. 10. Skill differences Δρ∗ (–) between the optimized DA∗ experiments and the OL run [(a)–(f)] and between the optimized DA∗ experiments and the
CTRL run [(g)–(l)]. Skill differences are shown for estimates of surface soil moisture anomalies [Δρanom; (a), (d), (g), and (j)], LF variations [ΔρLF; (b), (e), (h),
and (k)], and HF variations [ΔρHF; (c), (f), (i), and (l)]. Grid cells with unreliable TCA estimates are masked out (see Section III-E1).

for predictions in the HF signal component, and then only
when jointly assimilating both the LF and the HF part of the
signal [see Fig. 10(l)]. In this case,DAjoint performs consistently
(albeit only slightly) better than the CTRL run. The fact that
additionally assimilating the LF signal benefits HF soil mois-
ture predictions hints at some residual error cross-correlations
between the two.

Irrigated areas such as the Corn Belt or the Mississippi river re-
gion stand out as regions with large skill improvements over the
OL simulations (predominantly for the LF signal and anomalies,
but to a smaller degree also for HF variations). This is true for
both our optimized DA∗ experiments and the CTRL run, and
it is in line with studies that suggest that satellite observations
hold valuable information about anthropogenically driven soil
moisture changes that are not accounted for in CLSM (or in
other common models) [48], [80]. Particularly noteworthy is
that we see large skill improvements, especially for predicting
LF signal variations, in the more densely vegetated areas of the

Southeast of our domain. As mentioned earlier, these regions
are often masked out in soil moisture retrieval assimilation stud-
ies because microwave signals are presumed to be insensitive
to soil moisture in these regions, but our results suggest that
SMAP observations indeed contain valuable information about
interannual soil moisture variability even over dense vegetation.
Nevertheless, this information can only be leveraged fully when
assimilating—and weighting—the LF signal separately. This is
because assigning a similarly large weight to the HF compo-
nent of the observations—which are much more uncertain (see
Fig. 4)—substantially deteriorates the performance of HF model
simulations upon assimilation (not shown).

More generally, areas of notable skill gain coincide well with
areas with largeP/R values (i.e., areas where CLSM OL skill is
significantly lower than that of SMAP; see Fig. 7). Even though
large skill gains can only be expected where the Tb observations
are given large weights, the fact that these anticipated skill
improvements are indeed realized indirectly validates our tuned
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Fig. 11. Histograms of the DA skill differences Δρ∗ (–) between the CTRL experiment and the OL run (blue) and between the optimized DA∗ experiments and
theOL run (orange). “Skill” refers to the correlation against surface soil moisture [SSM; (a)–(f)] and root-zone soil moisture [RZSM; (g)–(l)] ground measurements
from the ISMN . Histograms are shown for predictions of anomalies [Δρanom; (a), (d), (g), and (j)], the LF signal component [ΔρLF; (b), (e), (h), and (k)], and
the HF signal component [ΔρHF; (c), (f), (i), and (l)].

uncertainty estimates. This is because if the tuned observation
uncertainties were underestimated, assimilating the observations
would deteriorate model performance instead of benefiting it,
and if observation uncertainties were overestimated, we would
not see large skill improvements in the first place. On the
other hand, the fact that the skill remains virtually unchanged
when using optimized observation uncertainties versus using
a constant value of 4 K everywhere, even though there are
substantial differences between them (see Fig. 6), suggests that
our EnKF system is actually insensitive to the parameterization
of model and observation uncertainties. This will be further
explored analytically in Section V-F.

2) In Situ Evaluation: Fig. 11 shows histograms of the DA
skill improvement (or degradation) with respect to the OL skill
for the CTRL (blue) and DA∗ (orange) experiments at the

SCAN and USCRN locations (see Fig. 3). “Skill” refers to the
correlation against surface soil moisture [SSM; Fig. 11(a)–(f)]
and root-zone soil moisture [RZSM; Fig. 11(g)–(l)] ground
measurements. For comparison, Fig. 12 shows the histograms
of the correlations against SSM retrievals of ASCAT (instead
of ground measurements) for the same experiments over the
same locations. Note that histograms of the correlations against
ASCAT are virtually identical when calculated over the whole
study region rather than over the site locations only (not shown).
The skill assessments against the in situ measurements can thus,
in turn, be considered representative for the entire domain.

Results are largely consistent with the ASCAT-based evalua-
tion shown earlier. DA generally improves model performance
compared to theOL run (both in the optimizedDA∗ experiments
and in theCTRL run). This is true for both surface and root-zone
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Fig. 12. As in Fig. 11(a)–(f), but for skill differences Δρ∗ calculated against surface soil moisture retrievals from ASCAT instead of ISMN ground measurements.
Histograms are calculated over the same ISMN site locations as Fig. 11(a)–(f).

Fig. 13. Fractional change in the postupdate uncertaintyP+ (–) that results from a 10% deviation from the optimal Kalman gain as a function of: 1) the observation
error relative to model forecast error (x-axis); 2) the representativeness error relative to model forecast error (y-axis); and 3) the magnitude of the model state. The
latter is shown for states being 0 (top left), 0.5 (top right), 1 (bottom left), and 2 (bottom right) times the representativeness error standard deviation.
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soil moisture. Skill improvements in the LF signal component
[see Fig. 11(b), (e), (h), and (k)] are larger than for anomalies [see
Fig. 11(a), (d), (g), and (j)], although this is less evident in the in
situ evaluation (where the skill of the anomalies improves almost
as much as that of the LF variations) than it is in the evaluation
against ASCAT [see Fig. 12(b), (e) and (a), (d)]. While the DA
does not seem to benefit HF soil moisture predictions when
evaluated against ASCAT [see Figs. 10 and 12(c) and (f)],
correlations of the HF signal against in situ measurements do
indeed improve notably, albeit only for surface soil moisture
predictions [see Fig. 11(c) and (f)]. HF signal improvements in
root-zone soil moisture predictions are not expected, however,
because root-zone soil moisture does not vary rapidly. The
fact that HF soil moisture predictions improve when evaluated
against in situ data but not when evaluated against ASCAT
suggests that SMAP may be able to capture precipitation events
that are not accurately retrieved by ASCAT (possibly due to
its generally lower signal-to-noise ratio) nor properly modeled
in the CLSM. However, it may also be that ASCAT is simply
not a well-suited reference to evaluate improvements in the HF
soil moisture predictions because of its temporal misalignment
with SMAP observations and coinciding or shortly preceding
precipitation events.

Improvements in ρanom, ρLF, and ρHF are slightly larger in the
DAanom, DALF, and DAHF experiments, respectively, than they
are in the DAjoint experiment. This is particularly true for ρHF

and hints at residual error cross-correlations in the LF and HF
signal components. These most likely result from the nonorthog-
onal transformation used to decompose the signal into different
frequencies (see Section III-B). Nevertheless, consistent with
the CONUS-wide evaluation is the fact that the optimized
observation uncertainties—especially for DAanom, DALF, and
DAHF—do not appear to yield better or worse outcomes than
using a constant 4 K observation error. This, again, suggests
that our EnKF system is not very sensitive to the parameter-
ization of the model and observation uncertainties, which is
perhaps the most striking result of our study. Earlier studies that
compared different uncertainty optimization approaches have
reported similar findings [81], yet the reason for this behavior
remained elusive.

F. Skill Gain Dependence on Representativeness Error

A plausible explanation for the apparent lack of sensitivity of
DA skill to the observation uncertainty parameterization might
lie in the common oversimplification of representativeness error.
It has been long known that representativeness error (i.e., error
in the observation operator) is state variable-dependent [14],
yet most studies—including the one presented here—treat it as
a state-invariant term that can simply be added to measurement
error [28]. Doing so, however, could cause the representativeness
error to limit the amount of observational information that can
be gleaned from assimilating L1 observations, regardless of how
well model and measurement uncertainties are parameterized. In
this section, we attempt to demonstrate this by analytical means.
A complete analytical account on the influence of representative-
ness error for the complex DA system employed here is beyond

the scope of this article, but substituting a simple derivation of the
main idea assuming linearity may provide helpful insights [28].

Let us, therefore, revisit the KF update equation and the defini-
tion of the associated Kalman gain [see (1) and (2)] considering
a scalar case with a linear observation operator

x+ = x− +K (y −Hx−) (7)

where x− and x+ are the (scalar) forecast and the analysis,
respectively, H is the (linear) observation operator, and K is
the Kalman gain. The analysis uncertainty follows from the law
of the propagation of uncertainties as

P+ =

(
∂x+

∂x−

)2

P− +

(
∂x+

∂y

)2

R+

(
∂x+

∂H

)2

Σo

= (1−HK)2P− +K2R+K2x−2Σo (8)

where P− and P+ are the forecast and analysis error variance,
respectively, and Σo is the operation operator error variance
(i.e., the representativeness error). In the standard derivation
of the KF equations, Σo is neglected (or approximated sim-
ply by inflating R) and (8) takes on the well-known form
of P+ = (1−HK)P−. The optimal observation weight (i.e.,
Kalman gain) is obtained by setting the derivative of the analysis
uncertainty with respect to the Kalman gain to zero (∂P

+

∂K = 0)
and then solving for the Kalman gain, which yields

K =
HP−

H2P− +R+ x−2Σo
. (9)

Equation (9) differs from the standard definition of the Kalman
gain [see (2)] by the additional third term in the denominator
(x−2Σo), which is state variable dependent. As mentioned, this
state variable dependence of K and P+ is often ignored [28].

An elaborate account of the implication of this term can
be found in [14]. Here, we are particularly interested in how
sensitive the postupdate uncertainty P+ is to uncertainties in
estimates ofK. To demonstrate this, Fig. 13 shows the fractional
change in P+ given a 10% deviation from the optimum value
of K for different levels of x− and for varying ratios between R
andP−, and betweenΣo andP−, respectively. It is clear that the
sensitivity of P+ to suboptimality in the Kalman gain vanishes
the larger x− or Σo become. In other words, the larger the repre-
sentativeness error, the less important it is how accurately model
and observation uncertainties (i.e., P/R) are parameterized,
especially if representativeness error is accounted for as part
of the observation uncertainty (which is the common thing to
do).

It should be noted, however, that the exact numbers shown
in Fig. 13 are certainly not representing the exact behavior
of the system used in this study; remember that we substitute
a multivariate, nonlinear, state-variable-dependent observation
operator with a scalar linear one. For a soil moisture DA system,
the x−2Σo term in (8) would intuitively suggest that wetter states
lead to higher analysis uncertainty. In reality, however, things
are likely more complex because the observation operator is a
nonlinear operator applied to x− , and x− is a state vector that
contains a combination of different surface and root-zone soil
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moisture and temperature-related variables. Notwithstanding, it
is plausible that the general behavior observed in Fig. 13 still
applies. That is, representativeness error can render the posterior
uncertainty insensitive to small changes in the Kalman gain.
This would at least partly explain why the significant differences
between the observation uncertainties used in the DA∗ and the
CTRL experiments do not lead to noteworthy differences in
analysis skill.

VI. CONCLUSION

In this study, we assimilate SMAP Tb observations into
NASA’s CLSM using an EnKF with the goal of optimizing
the uncertainty parameterization to achieve optimal filter per-
formance. To account for the nonwhiteness of forecast and
observation errors, Tb observations are assimilated on differ-
ent timescales including: 1) anomalies (i.e., residuals from the
mean seasonal cycle); 2) LF signal variations (i.e., interannual
variations); and 3) HF signal variations (i.e., subseasonal varia-
tions). We assimilateTb observations on each of these timescales
separately as well as the LF and HF signal together, in each case
optimizing the KF for the uncertainty of each assimilated signal
component. As a benchmark, we assimilate Tb observations
using a spatially constant observation error of 4 K, as is used
for the generation of the operational SMAP L4 product.

To optimize the weights that the DA system puts on the
observations, the ratio between the uncertainties of modeled and
observed Tb is approximated using modeled (OL) and observed
soil moisture uncertainties estimated using TCA. This approach
is based on the premise that the optimal weight for assimilating
Tb observations is likely very similar to the optimal weight for
assimilating soil moisture retrievals. It also leverages SMAP soil
moisture retrieval uncertainty estimates to account implicitly for
representativeness error in the observation operator that our DA
system uses to convert between soil moisture and Tb space. We
discuss various caveats (e.g., the fact that using OL soil moisture
uncertainty estimates will lead to systematically overestimated
Kalman gains) and test whether their combined effect is small
enough to still yield noteworthy skill improvements compared
to the benchmark DA experiment.

All the experiments are evaluated using internal DA diagnos-
tics and against both ground and satellite reference data. As-
similating SMAP Tb observations leads to significant improve-
ments in both surface and root-zone soil moisture simulations of
anomalies and LF signal variations. Simulations of HF surface
soil moisture variations also benefit from the assimilation but to
a smaller degree, and these improvements are only observed in
the comparison against ground reference data.

Perhaps the most striking finding of this study is that the
skill gain of our DA experiments that use optimized observation
uncertainties differs, on all timescales, only marginally from
that of the benchmark experiment that uses a spatially constant
observation error of 4 K. In fact, changing the Kalman gain
(within reasonable boundaries) does not seem to affect the
“optimality” of the KF at all. We show, by analytical means, that
one plausible explanation for this might be that the skill gain of a
DA system is inherently restrained by representativeness errors.

This is because they have the potential to render the postupdate
uncertainty insensitive to small changes in the Kalman gain.
Further evidence for this could be obtained by testing for consis-
tency in the results when assimilating L2 soil moisture retrievals
using the same TCA-based uncertainty tuning approach, but this
is beyond the scope of this article.

One important source for representativeness error in observa-
tion operators is vegetation. Several studies have shown recently
that shortcomings in the accounting for vegetation effects might
be the most limiting factor in radiative transfer modeling [49],
[82], [83]. Some of these shortcomings could be addressed by
better exploiting both soil moisture and vegetation information
contained in remotely sensed microwave signals in joint soil
moisture and vegetation DA systems [84].

In conclusion, our results suggest that the focus of future
research should shift from searching for more sophisticated
uncertainty tuning approaches to improving observation oper-
ators that better bridge the gap between modeling systems and
real-world observations. Such improvements may come from the
physical modeling community [82], [83] but also be fostered by
data-driven approaches [9], [27].
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