
Time-travelling State Machines for
Verifiable BPM

DIPLOMARBEIT

zur Erlangung des akademischen Grades

Diplom-Ingenieur

im Rahmen des Studiums

Software Engineering und Internet Computing

eingereicht von

Daniel Kleebinder, BSc
Matrikelnummer 51832684

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Mitwirkung: Dipl.-Ing. Thomas Preindl, BSc

Dipl.-Ing. Martin Kjäer, BSc

Wien, 1. Dezember 2022
Daniel Kleebinder Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Time-travelling State Machines for
Verifiable BPM

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering and Internet Computing

by

Daniel Kleebinder, BSc
Registration Number 51832684

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dipl.-Ing. Dr.techn. Wolfgang Kastner
Assistance: Dipl.-Ing. Thomas Preindl, BSc

Dipl.-Ing. Martin Kjäer, BSc

Vienna, 1st December, 2022
Daniel Kleebinder Wolfgang Kastner

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Daniel Kleebinder, BSc

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 1. Dezember 2022
Daniel Kleebinder

v

Danksagung

Ich möchte meinem Betreuer Wolfgang Kastner für all seine wertvollen Ratschläge
und die Möglichkeit, Teil der Automation Systems Group (ASG) zu werden, danken.
Die gemeinsame Arbeit an einigen Forschungsprojekten und das Miterleben echter
Wissenschaft war eine Erfahrung, für die ich sehr dankbar bin. Außerdem möchte ich
Thomas Preindl und Martin Kjäer für ihre Ausdauer, ihr kontinuierliches Feedback
und vor allem unsere spannenden Diskussionen danken. Aufgrund ihrer unermüdlichen
Unterstützung wurde diese Arbeit zu dem, was sie heute ist.

Darüber hinaus möchte ich mich bei allen anderen an der Universität Tätigen dafür
bedanken, dass ich die Chance erhalten habe, diese faszinierende Ausbildung genießen zu
dürfen. Das vielfältige Curriculum, das häufig mit Begeisterung und Freude gelehrt wurde,
führte so auch zu unvergesslichen Momenten, an die ich mich gerne zurückerinnere.

Abschließend möchte ich meinen Eltern Franz und Margit dafür danken, dass sie mir
während meines Studiums immer mit Rat und Tat zur Seite gestanden sind, meinen
Brüdern, mit denen ich auch in schwierigen Zeiten noch etwas zu lachen gefunden habe,
und meiner Freundin Cornelia für ihre Ermutigungen und Unterstützung. Danke, dass
ihr für mich da seid und mir geholfen habt, in dieser Arbeit wie auch in meinem Studium
bis zum Schluss mein Bestes zu geben.

vii

Acknowledgements

I want to thank my advisor Wolfgang Kastner for all his valuable input and the chance
to become part of the Automation Systems Group (ASG). The joint work on some of
the research projects and witnessing real scientific labor was an experience I am very
grateful for. Furthermore, I want to thank Thomas Preindl and Martin Kjäer for their
perseverance, constant feedback, and especially our exciting discussions. Due to their
relentless work and support, this thesis has become what it is today.

Moreover, I want to express my gratitude to everyone else being part of the university for
allowing me to attend this fascinating education and for developing a manifold curriculum
that was taught with enthusiasm, often leading to memorable moments.

Finally, I want to thank my parents, Franz and Margit, for their guidance, emotional
and financial support; my brothers, who were always up for laughter even when times
got tough; and my girlfriend, Cornelia, for her advice and encouragement. Thank you all
for being there for me and helping me finish this thesis and my studies.

ix

Kurzfassung

Bei der Verwaltung von Geschäftsprozessen sind Unternehmen häufig auf Dritte angewie-
sen, um Vertrauen zwischen allen Beteiligten schaffen zu können. Seit dem Aufkommen
der Blockchain-Technologie zielen Forschende weltweit darauf ab, Blockchains als eine
eben solche vertrauenswürdige dritte Partei einzusetzen, um auf deren strikte Nachvoll-
ziehbarkeit bauen zu können. Diese Ansätze sind allerdings meist sehr stark mit der
Blockchain selbst verzahnt, was zu mangelnder Flexibilität oder erhöhten Kosten führen
kann. Aus diesem Grund wird in dieser Arbeit ein neuartiges Konzept vorgestellt, das
die Ausführung und Überprüfung von Geschäftsprozessen mit Hilfe der Blockchain zwar
ermöglicht, Eigenschaften wie Flexibilität aber dennoch erfüllt.

Das Konzept selbst basiert auf einer modularen Softwarearchitektur, bei der jedes Modul
über ein Event-Sourcing-System lose mit anderen Modulen gekoppelt ist. Es zielt darauf
ab, die Vorteile einer Blockchain zu bewahren, indem es Beteiligten unter anderem
erlaubt, vergangene Zustände zu verifizieren, wobei der Beweis für die Korrektheit dieser
Zustände allerdings auf der Blockchain selbst zu finden ist. Dieser Ansatz wurde mithilfe
bestehender Literatur entwickelt und später als Prototyp umgesetzt.

Anschließend wurde das Konzept und der entsprechende Prototyp anhand qualitativer
Kriterien bewertet, und die Komplexität durch Anwendung formaler Methoden auf deren
statische Strukturen analysiert. Nachfolgend wurde der praktische Nutzen mithilfe von
vereinfachten Geschäftsprozessen aufgezeigt. Im Vergleich zu bestehenden Ansätzen erga-
ben sich drastische Verbesserungen in Bezug auf Flexibilität und Datenschutz. Weiters
beträgt die mittlere Dauer einer Geschäftsprozesstransaktion auf Ethereum etwa 18
Sekunden, was diesen Ansatz für, sowohl lang- als auch kurzlebige, Geschäftsprozesse
nutzbar macht. Dennoch bleiben auch Nachteile bestehen. Die Geschäftsprozesstrans-
aktionskosten korrelieren linear mit der Anzahl der Teilnehmenden, was bei kleineren
Geschäftsprozessen zwar zu einer Gesamtkostenreduktion führen kann, bei größeren
allerdings eine Teuerung darstellt.

Die Idee hinter dieser Arbeit ist nicht nur die Vorstellung eines neuen Konzepts zur
Ausführung und Verifizierung von Geschäftsprozessen mithilfe der Blockchain, sie soll auch
zukünftige Arbeiten dazu anregen, die Blockchain selbst nur noch als lose gekoppeltes
Subsystem zu betrachten, um den Nachteilen solcher Systeme begegnen zu können.

xi

Abstract

Inter-organizational business process management often relies on third parties to establish
trust between participants. Since the rise of blockchain technology and its associated
properties regarding traceability, research communities aim to integrate blockchains into
workflow execution engines in favor of a trusted third party. Frequently, these approaches
directly leverage upon the blockchain, which leads to shortcomings such as a lack of
flexibility or increased cost. Therefore, this thesis proposes a novel concept that allows
workflow execution and verification using the blockchain while preserving flexibility and
reducing transaction costs by utilizing present-day cryptography.

The concept relies on a modular software architecture where each module is loosely
coupled to others through an event-sourcing system. It aims to preserve the advantages
of a blockchain by enabling time travel to allow participants to verify past states while
keeping proof of the correctness of these states on the blockchain, which acts as a single
source of truth. The proposed approach was derived by discussing related literature and
exploring its practical utility by creating a prototypical implementation.

The proposed concept and its prototype were evaluated against qualitative criteria
extracted from related work, while the complexity was analyzed by applying formal
methods to static structures. Afterwards, their practical utility was exhibited by executing
simulations of simplified real-world business processes. The evaluation has shown dramatic
improvements regarding flexibility and privacy. Furthermore, the execution duration
per transaction was observed to be around 18 seconds on Ethereum. This qualifies the
proposed concept as a suitable approach for slow- and fast-paced business processes.
Nonetheless, some shortcomings remain. The execution cost linearly correlates to the
number of participants, which results in an overall cost reduction for smaller business
processes but breaks even and exceeds other approaches after reaching a certain threshold.

This work presents a novel idea for workflow execution that leverages on properties of
blockchains and instigates future work to demystify and treat blockchains only as loosely
coupled sub-systems of supportive nature.

xiii

Contents

Kurzfassung xi

Abstract xiii

Contents xv

1 Introduction 1
1.1 Aim of the Work . 2
1.2 Methodological Approach . 3
1.3 Structure of the Work . 4

2 Background 5
2.1 Consensus . 5
2.2 Blockchain-oriented Software Engineering 11
2.3 Onchain vs Offchain . 15
2.4 Business Process Management . 19
2.5 Baseline Protocol . 23

3 Related Work 27
3.1 Literature Review Methodology . 27
3.2 Concept Comparison . 39

4 Time-travelling State Machines 43
4.1 Design Science Methodology . 43
4.2 Proposed Concept . 45
4.3 Prototype Design . 60
4.4 Intrinsic Properties . 73

5 Evaluation 77
5.1 Qualitative Analysis . 77
5.2 Static Analysis . 84
5.3 Scenario Simulations . 88
5.4 Integration with Camunda’s Zeebe . 102

xv

6 Conclusion 107

List of Figures 109

List of Tables 111

List of Algorithms 113

List of Listings 115

Acronyms 117

Bibliography 119

CHAPTER 1
Introduction

Recent years have shown an ever-growing interest in Business Process Management
(BPM) from both industrial and research communities. Members of these can be
categorized into sub-groups with very different educational backgrounds, each applying
BPM in their own way and coming up with their own very specific requirements. Business
administrations, for example, aim to use methodical BPM to optimize workflows to reduce
cost and increase customer satisfaction. Software communities that must implement
such workflows using existing technologies strive for robust but flexible solutions to
keep up with changing requirements introduced by business administrations or by legal
authorities [Wes12b]. To bridge the gap between these two worlds, computer science
research communities devised notations and formal specifications that create a common
ground [OMG11, Wes12c, Wes12d, LFW20].
Nonetheless, some open problems still need to be solved, especially regarding inter-
organizational BPM due to a lack of mutual trust between counterparties. It is not
uncommon that cooperating participants are in a conflict of interest that hinders the
progression toward a set goal. The impact of trust missing as a key ingredient in
collaborative business processes like supply chains [JMSK04], health care [KJ21] or
logistics [FVB05] has been studied thoroughly where all research came to the same
conclusion of trust being a factor that cannot be underestimated; neither in social nor inter-
organizational relationships [PL09]. Recent years, however, have shown an innovation
emerge that has the potential to revolutionize how trust is handled — introducing
Blockchain Technology (BCT).
Roughly outlined as a tamper-proof series of timestamped transactions and famously
known for cryptocurrencies such as Bitcoin [Nak09] and Ethereum [But22], blockchains
are also a viable tool in the arsenal of BPM. A lot of potential use cases have been
discussed and demonstrated, ranging from the use in workflow execution systems to
monitoring of business processes, from governmental environments to the Internet of
Things (IoT) [MWA+18, WXR+16, SSSJ19, LBAG21, VXBP19]. However, almost all

1

1. Introduction

of these approaches leverage the blockchain as a first-level citizen and directly build on
top of it using smart contracts which inevitably leads to privacy concerns and drastically
increased cost [Woo22]. On blockchains, the execution of workflow steps, that only a
subset of participants is concerned with, must nonetheless be executed by all participants
in the same way. This exposes potentially confidential information and increases execution
cost. Keeping internal processes private, however, is of utmost importance for many
companies and organizations [FSM21, CRF18].

Furthermore, concepts tightly coupled to the blockchain, in the form of smart contracts,
for example, come with a rather significant flexibility penalty. Changing workflow
participants, the workflow definition, or adapting capabilities of the underlying workflow
execution system is a complex and costly task [Woo22, SAW20]. This means that business
processes that require a high level of flexibility can only take advantage of blockchain-
intrinsic properties, such as trust decentralization or transparency to some extent which
reduces acceptance of these approaches.

1.1 Aim of the Work
To tackle the aforementioned open problems in inter-organizational BPM and the lack of
standardized workflow system architectures [Pry16], this work proposes a novel concept for
a “time-travelling”1 state machine that enables execution of business processes including
multiple participants in an environment that provides unconditional mutual trust. The
concept aims to provide a modular software architecture that allows the integration
of different BCTs to leverage upon their diverse advantages and to enable integration
of future blockchains or layer-2 rollups to prevent participants from being locked to
a particular blockchain. Additionally, and in contrast to most existing approaches,
the concept provides a high level of flexibility regarding system architecture, workflow
participant selection, and workflow definition. To achieve this goal, the following research
questions are answered throughout the course of this work.

RQ1 What is the state of the art for BCT-based state machines for business process
engines?

RQ2 Which properties do BCT-based state machines require to allow time-travel verifi-
cation of business processes?

RQ3 Which aspects must be adapted to close the gap between the state of the art and a
privacy-preserving BCT-based state machine that allows time-travel verification?

The first research question is answered in section 3.2.1 after conducting a thorough
literature review in chapter 3. It should give the reader an overview of existing approaches
and identify the gaps in the state of the art. Building upon research question 1, the

1Being able to jump between active and past states to perform business process validation.

2

1.2. Methodological Approach

second research question is answered in section 4.4.1 by identifying unique properties of
the proposed concept derived from the state of the art and requirements identified in
real-world industrial use cases. The last research question aims to answer how well the
proposed concept can be integrated into existing solutions, a property much expected by
users of such a system, and which aspects to adapt in order to make it work.

1.2 Methodological Approach
The following methodologies are employed to answer the research questions, ensure
scientific rigor and allow for reproducibility of the results. Tailoring has been applied
and described in detail at the beginning of the related work chapter in section 3.1 and at
the beginning of the chapter that describes the proposed concept in section 4.1.

1.2.1 Literature Review
A narrative literature review is performed to accumulate background knowledge of topics
including BPM, BCTs, and blockchain-oriented software engineering. Furthermore, work
related to workflow execution on the blockchain is investigated and compared with each
other in more detail. A predefined set of search words and literature databases such as
IEEE and ResearchGate are used to improve reproducibility of the results [RA11, Str19].
The narrative literature review is used to answer RQ1 and lays the foundation for RQ2
and RQ3.

1.2.2 Design Science
The remainder of this work follows the design science research approach for information
systems [HMPR04]. A concept for a time-travelling state machine is derived in an iterative
process. The concept is implemented and evaluated against the state of the art by (1)
determining common metrics from related literature in a qualitative analysis process,
(2) performing a static analysis of the software architecture to derive its complexity,
and (3) simulating real-world use cases in experiments to determine the utility of the
produced artifacts. The artifacts produced are (1) a concept for a flexible and robust
time-travelling state machine and (2) an instantiation of this concept in the form of a
prototype that future work can extend upon and integrate into existing solutions. The
research results are communicated to management- and technology-oriented audiences
by publishing this work. Design science and the produced artifacts are used to answer
RQ2 and RQ3.

1.2.3 Software Engineering
Software engineering methodologies are employed during the design, implementation,
and evaluation phases. Requirements engineering is used in earlier stages of this work to
create and determine industrial real-world use cases that the concept is designed and
later evaluated against. BPMN and UML are used throughout the course of the entire

3

1. Introduction

work to visualize business processes and software architectures. Other methodologies
such as event sourcing, unit- and integration testing, object-oriented, functional and
reactive programming are used to implement the prototype. Following standard and
state-of-the-art software engineering approaches allow industry and research developers to
properly implement a time-travelling state machine, leveraging their existing knowledge
base. These methodologies help to answer RQ2 and RQ3.

1.3 Structure of the Work
The remainder of this work is structured in a way that introduces the reader to the topics
of BPM and BCTs, to then transition into a concept for a time-travelling state machine
followed by its evaluation. Background knowledge in chapter 2 gives a brief introduction
into BCTs and consensus algorithms in section 2.1 followed by a description of software
engineering approaches that are applicable for the domain of BCTs. The remainder of
this chapter focuses on notations commonly used in BPM in both industrial and research
settings.

Thereafter, the reader is introduced to approaches from literature related to this work’s
contribution in chapter 3. At the beginning of this chapter, the narrative literature
methodology and its tailoring are introduced, followed by detailed descriptions of some of
the more relevant approaches found. Each approach is briefly introduced and explained,
followed by a short discussion of advantages and disadvantages. The chapter concludes by
comparing the presented approaches with the proposed concept of this work in section 3.2
and answers RQ1 in subsection 3.2.1.

Chapter 4 then introduces the tailoring applied to the design science methodology in
section 4.1, followed by a thorough description of a time-travelling state machine in
section 4.2. This is the first artifact produced in this work. The second artifact, the
instantiation, is described in the prototype design in section 4.3. It introduces all used
technologies, followed by a per-module description of the implementation. This chapter
concludes by listing intrinsic properties of a time-travelling state machine as observed in
the proposed concept and the prototype design in section 4.4 and afterwards answers
RQ2 in subsection 4.4.1.

The evaluation in chapter 5 begins with a qualitative analysis where common metrics are
derived from related literature and are applied to the proposed concept. This is followed
by a static analysis in section 5.2 that focuses on formal metrics and the analysis of the
software architecture. Afterwards, real-world scenarios are simulated to demonstrate
utility in section 5.3, and the integration into existing systems in section 5.4. Each section
summarizes and discusses its results at the end. Chapter 5 concludes by answering RQ3.

The last chapter 6 concludes this work by briefly outlining the proposed concept and
summarizing the evaluation results. Furthermore, it states problems that remain unsolved,
follow-up research questions that came up during the course of this work, and opportunities
for future work are also discussed.

4

CHAPTER 2
Background

The background chapter introduces fundamental concepts that are required throughout
the rest of the work. This includes BPM, BCTs, consensus algorithms, notations and
blockchain-oriented software engineering approaches.

2.1 Consensus
The upcoming section will give a small glimpse behind the concept of blockchains, it will
introduce some consensus techniques for distributed computer systems, and explain the
difference between specific leader-election mechanisms for blockchains such as Proof of
Work (PoW) and Proof of Stake (PoS).

2.1.1 Blockchain
A blockchain is a linked list of records (so-called “blocks”), where each record itself
contains a list of transactions and the hash of the previous record originating from
the so-called “genesis block”. The links between records introduce unique properties
such as immutability, transparency, and produces a traceable list that others can verify
using cryptographic procedures. This creates an append-only data store that is typically
distributed over a peer-to-peer network where each peer keeps a (full) copy of the history
of transactions dispatched to the blockchain. In distributed environments, new blocks
are typically determined and attached to the blockchain using consensus protocols that
prevent Byzantine faults and establish trust. If blockchains are used in a financial
context, they are sometimes referred to as Distributed Ledger Technology (DLT) as
well [SLHK19, WZ18]. Satoshi Nakamoto was the first to utilize them in a decentralized,
trusted finance system in the form of Bitcoin. The core concept of Bitcoin is to provide
a solution that solves the double-spending problem of virtual currencies and does not
rely on a centralized, trusted third party [Nak09].

5

2. Background

2.1.2 Proof of Work (PoW)
Bitcoin relies on PoW to elect a trusted proposer. Proposers are allowed to create new
blocks (i.e., a list of transactions and some metadata) based on the entirety of collected
transactions so far. This block will then be distributed to the network using a form
of total order broadcasting, a technique that ensures, that all participants receive the
same blocks in the exact same order, and will be verified by other nodes that prevent
double-spending attacks in case the proposer wants to abuse the fact of being trusted by
others.

PoW is part of the Nakamoto consensus introduced in the Bitcoin whitepaper and is
one of the many consensus techniques available. Miners compete on who is allowed to
create the next block in the chain to earn (1) the right for coinbase transactions (the first
transaction in a block that creates new units of said currency) and (2) the transaction
fees. The more mining power a miner can utilize, the more often said miner will be elected
as block proposer. Typically, Bitcoin aims to keep a block time of around 10 minutes
(i.e., it should take the entire pool of miners 10 minutes to mine a new block). This is
achieved by dynamically adjusting the amount of work that has to be done depending on
the network’s total computing power. Therefore, the more computing power available,
the harder the problem will become to solve (and vice versa in case miners leave the
network). To be more formal, Nakamoto consensus (similar to Ethereum’s consensus
technique) wants miners to find a nonce n such that

H(n||H(b)) < l (2.1)

where l specifies the upper bound for the hash value produced by the hash of the
previous block b concatenated with the nonce. Once such an n is found, other miners can
easily validate the result. The algorithm adjusts the difficulty by adjusting how small
l is [SLHK19]. This technique, however, became a target of certain controversy. The
strong incentive of earning Bitcoins from mining new blocks leads to an uprise of miners
in the network. The more miners, the harder the problem will become to solve. This
increases the networks total energy consumption proportionally to the computational
power available, causing the entirety of the Bitcoin ecosystem to consume approximately
99.27 TWh in the year 2022. To put this in perspective, the country of Austria will
consume around 64.61 TWh in the same year according to predictions [Cam22].

Another controversy regarding PoW in the context of Bitcoin is an attack vector called
“Selfish Mining” that allows miners to earn disproportionately more revenue compared
to their provided computational power. The idea behind this attack is to assume that
miners will strategically collude in order to maximize the computing power to Bitcoins
earned ratio. This is achieved by hiding successfully mined blocks from the main net,
publishing them at certain times in the future, and thus wasting the computational power
of trustful miners because the main net will always switch to the subchain that requires
the most computational power (often referred to as the longest chain) [ES13].

6

2.1. Consensus

2.1.3 Proof of Stake (PoS)
PoS is one of the most popular alternatives to PoW. Even though it is similarly used as
a leader-election mechanism, it does this in a much more energy-efficient way and thus
overcomes one of the shortcomings of PoW. The idea behind this concept is that the
more a node has at stake (be it in the form of an arbitrary resource), the more invested
said one is to keep the system up and running correctly. This is achieved by choosing
the next proposer based on the number of coins and the age of each coin. Nodes with a
rather active wallet that contribute much to the network will thus be selected more often
to propose a new block. If some node acts maliciously, the chances of being selected are
reduced by the algorithm itself [SLHK19].

Even PoS comes with its quite unique downsides. One of those is the Nothing-at-Stake
problem. It states that the validators (the equivalent in PoS to miners in PoW) of the
network have an intrinsic financial incentive to participate in every fork of the network
because doing so has no downsides but only increases the amount of reward a validator
can collect. In practice, however, it is assumed that validators are aware that intentional
network forking would raise doubts about the system itself, decreasing the coin’s value.
Each fork would live with a separate ledger containing different values for each participant,
thus creating artificial inflation that further reduces the trust in the network. A reduced
coin value will inevitably hurt the holders. Since (in PoS) the set of coin holders is exactly
the set of participating nodes, it is intrinsic to the participant to prevent any value
reduction and therefore does not perform Nothing-at-Stake attacks. Nonetheless, the
Ethereum network introduced “slashing”, a mechanism to destroy a certain percentage
of the hostile participants stake, to further reduce the risk for such attacks [Sal20].

2.1.4 State Machine Replication (SMR)
State Machine Replication (SMR) is a concept at the heart of any distributed, fault-
tolerant consensus system. First introduced by Leslie Lamport in [Lam78], given a set of
rules, SMR ensures that each replica is in the same state after a message was sent from a
client to perform some action. Those rules are as follows:

• Each non-faulty replica starts in state s0

• Each non-faulty replica that applies operation o to state s will end up in state s′

• Each operation of each non-faulty client is executed

• Each non-faulty replica executes the same order of operations o0, . . . , oi

Each replica fulfills the first two properties without the need for any other distributed
protocol. The latter two require some sort of total order broadcasting. Given that total
order broadcasting can be reduced to the problem of consensus, some sort of distributed
consensus protocol is required to establish a common order of operations [SB12].

7

2. Background

2.1.5 Consensus Protocols

A problem that emerged with distributed computer environments is achieving consistency
in synchronous and asynchronous settings assuming that one or many nodes are faulty.
This is known as the consensus problem of computer science.

Lamport et al. [LSP02] exemplified this problem by using the metaphor of Byzantine
generals1 who have to decide on whether to attack or retreat in a battle. These generals,
however, can only communicate with each other indirectly, causing delays and the
possibility of messages getting lost. The authors have shown that at most f generals
are allowed to be traitors when there is a total of n = 3f + 1 generals on the field. If
there are more than f traitors, the consensus problem becomes undecidable. In computer
networks, computing nodes, or processes, represent the generals. A node that, either
intentionally or unintentionally, sends wrong messages to the other nodes or is holding
them back is therefore Byzantine faulty.

However, one has to distinguish between Byzantine fault tolerance and crash tolerance.
Byzantine faulty nodes typically cause more damage to the system than nodes that
simply crash. To make a system crash tolerant, it is sufficient if the total number of
nodes is n = 2f + 1. If f nodes crash, the remaining f + 1 nodes outnumber the crashed
ones, and the system can still come to a consensus (assuming that Byzantine faulty nodes
are no possibility in the given environment). Consensus protocols at least have to satisfy
the following properties to be Byzantine or crash tolerant [SB12]:

• Agreement. Each non-faulty node must agree on the same value. They must not
diverge; otherwise, the node is considered faulty.

• Integrity. Each non-faulty node can only decide once (i.e., once a value was
decided, it is finalized and cannot be changed).

• Termination. Each non-faulty node eventually makes a decision (i.e., clients will
get a response without the system getting stuck in an endless loop).

Additionally, to the properties above, some literature also adds the Validity property.
Validity ensures that the value a node decides on was proposed by some other node. This
rules out the trivial possibility that the deciding node always returns 0 (or some other
predetermined constant) for any arbitrary input given.

Agreement, integrity, and validity are typical safety properties of a system, whereas
termination is a liveness property [Kle17].

1Lamports initial intention was to name this problem “The Albanian Generals Problem”. In order
to offend no readers, he was advised to use some no longer existing nationality like Byzantium, for
example [Kle17].

8

2.1. Consensus

2.1.6 Synchronous vs. Asynchronous System Models
Consensus literature distinguishes between synchronous and asynchronous system models
and puts their work in either of both spotlights (or in both at the same time) to guarantee
certain properties such as termination, for example.

The main difference between both is that synchronous systems proceed in a step-by-step
manner. Those steps can be compared to moves in a chess game. Regardless of the time
it took for each player to make a move, after each move, the chessboard is in a new
and consistent state, and all participating parties (e.g., the referee, the players, and the
audience) are aware of said new state. In distributed computer systems, such steps are
often modeled with time frames where timeouts enable the system to proceed to the
next frame. Compared to synchronous systems, asynchronous systems do not need to
satisfy timeliness properties. Algorithms modeled with asynchronous systems in mind
are typically more general since they do not rely on the performance of the host system
they are operated on. Since no communication is instantaneous, asynchronous system
models typically reassemble the real world quite well. System models that have both
synchronous and asynchronous properties are typically referred to as semi-synchronous
or semi-asynchronous systems [Agu10, CL99, Kle17].

2.1.7 Public vs. Private
From a philosophical point of view, consensus protocols and DLTs can be classified into
three distinct categories. Namely public, private, and consortium networks. Each of
these has unique properties applicable to certain scenarios. Public DLTs, for example, are
usually favored in use cases where full decentralization and data integrity are desirable.
The open consensus process allows anyone to validate the state of the DLT at any given
point in time and report erroneous states if necessary [SLHK19]. Even though public
DLTs are highly decentralized in theory because participation is open to anybody, in
practice, some degree of centralization may occur in the form of colluding miner pools
nonetheless. This is something public DLTs (such as Bitcoin and Ethereum) must consider
to keep their system tamper-proof [Nak09, But22, ES13].

On the other hand, private DLTs are the complete opposite of public ones. Only
authorized nodes are allowed to participate in the consensus process of the system.
Some predetermined instances of a given organization will grant this permission to new
participants. Even though read-only access could be granted to the public, private
DLTs typically choose not to, which gives a better sense of privacy. On the other hand,
writing is entirely restricted to a pre-selected set of participants. This allows for finality
because the number of participating nodes is well known but also makes the system
prone to tamper attempts because trust is required in the organization that selects the
participants [SLHK19].

Consortium DLTs are DLTs where multiple organizations (that might be in conflict of
interest) come together to form a network that is partially decentralized and otherwise
shares most of the properties of private ones. Which kind of DLT and consensus

9

2. Background

protocol to choose from highly depends on the use case and who are the participants and
organizations involved [SLHK19].

2.1.8 Permissioned vs. Permissionless
In consensus, the terms permissioned and permissionless refer to whether participation
in a consensus protocol is restricted or unrestricted. Permissioned consensus requires
a central authority (or a group of authorized participants) that can (1) authenticate
each other as members of the group and (2) add new members. Permissioned consensus
protocols that are publicly available can be a target for Sybil attacks2 and are therefore
often replaced with permissionless consensus protocols (especially in the context of
Blockchain technology). In contrast to permissioned consensus, permissionless consensus
does not require any central authority. Bitcoin and Ethereum, for example, establish
permissionless consensus through PoW and PoS. Sybil attacks are therefore ruled out by
no longer relying on “who you are” but on “what you have” [Nak09, Sal20]. Permissionless
consensus is often favored in public networks, while permissioned consensus is favored
in private networks allowing a subset of members to strictly control who is allowed to
participate [SLHK19].

2.1.9 FLP Impossibility Result
Named after the authors (Fischer, Lynch, and Paterson), the FLP impossibility result
shows that consensus becomes undecidable in a purely deterministic and asynchronous
system if at least one node fails. Fischer et al. have been awarded with the Dijkstra prize
for the significance of this result [FLP85].

According to the FLP theorem, all asynchronous consensus protocols have to decide on
which two of the following three properties to guarantee [SLHK19]

• Safety. When given the same input, all nodes should produce the same output
(thus satisfying agreement, integrity, and validity).

• Liveness. A client will eventually receive a response to its request (and thus
satisfying the termination).

• Fault tolerance. Even though not a must for consensus protocols, fault tolerance
is still a property that is very much desirable. It allows a system to tolerate up to
a certain number of faults f [CL99, BKM18, BSA14].

In highly distributed environments (especially in Blockchain technologies), implementa-
tions cannot forfeit fault tolerance at any cost. The threat of nodes being faulty (or even
malicious in the sense of Byzantine faults) leads the implementation to choose between
the safety and the liveness property. Practical Byzantine Fault Tolerance (PBFT), for

2One entity pretends to be many.

10

2.2. Blockchain-oriented Software Engineering

example, strongly relies on the asynchronicity of safety and fault tolerance. In this case,
the synchronicity of liveness is achieved by using timeouts and view changes and thus
applying a step-by-step iteration as required in synchronous system models [CL99].

2.1.10 Tendermint

Recent years led to a boom of new Byzantine fault tolerant system proposals in academia
that suggest PoS as the “better-suited” alternative to PoW to overcome some of the
mentioned shortcomings. The Tendermint consensus protocol (based on PBFT [CL99]),
for example, suggests a purely deterministic and predictable algorithm based on who
owns how much money to decide who is allowed to propose the next block. This kind of
gossip protocol based on PoS reduces the overall electricity consumption and the system’s
complexity.

Similar to Bitcoin and Ethereum, Tendermint also relies on the strict assumption that
less than 1

3 of all nodes are Byzantine faulty (i.e., produce wrong results or none at
all either by accident or on purpose). Given that n ≥ 3f + 1 is the minimum number
of nodes, not more than f nodes are allowed to be faulty. Otherwise, the Tendermint
protocol cannot guarantee safety and liveliness properties for consensus [BKM18].

2.2 Blockchain-oriented Software Engineering

With the growing interest in DLTs, which allow users to run customized code in a
distributed and trustless environment in the form of Executable Distributed Code Con-
tracts (EDCCs) as Ethereum does with smart contracts, systematic software development
must be expanded upon in the context of blockchain technology [WEMG19]. Security,
reliability, software architecture, and privacy are central aspects that must be considered
when building applications using DLTs [PPMT17].

Methodical software engineering is an applicable approach to these kinds of challenges. It
is the engineering discipline that is concerned with all stages of building software products
and the application of systematic engineering approaches to software development itself.
Software engineering can be split into four distinct activities that are sometimes also
referred to as the software process [Som10, BF14]:

• Specification. Together with the customers and users, software requirement
engineers define constraints, functional and non-functional requirements that the
resulting software product has to fulfill in order to achieve some business value.

• Development. Software architects design the technical outline of the product
given a certain specification, and developers implement this architecture using a
set of requirements.

11

2. Background

• Validation. Software testers check if the product fulfills all specified requirements
and therefore the customers and users needs. If this is not the case, the product is
again modified according to the requirements.

• Evolution. The finished product is further iterated upon to reflect the changing
market and customer requirements.

The exact details of each software process step and the process itself depend on the
specific use cases and the domain in which the product is being developed in (e.g., the
software process of an e-commerce and a spacecraft control system are most likely going
to diverge) [Som10].

When building software applications in the context of blockchain technologies, these
process steps must be extended upon to deal with newly emerging challenges. Orga-
nizations focusing on blockchain-oriented software development will feel the urge to
introduce new professional roles that fill the gap between business and financial aspects
and technological expertise. Due to the strong focus on financials, security is also of
utmost importance [PPMT17]. EDCCs that malfunction may lead (and already have led)
to tremendous losses. Hence, new formal methods must be devised that can be used to
provide a profound tooling suite that is capable of analyzing, testing, and detecting pro-
gramming errors in EDCCs. Especially the open source community has already developed
some quite promising tools that are concerned with such issues. These tools are capable
of performing static or dynamic byte or source code analysis to detect common security
issues (examples of such are front-running, random numbers, or timestamp dependence),
exploits, or formal guarantees. However, even more, and better tools that build upon
existing open source technologies are expected to be developed in the future [dAS19].

Creating specifications, documentation, or test plans for blockchain-oriented applications
might require some modeling language to better visualize and understand certain problems.
Therefore, Blockchain-oriented Software Engineering (BoSE) suggests to expand existing
models such as UML into the domain of DLTs. The newly created modeling language can
then be further used to specify the software architecture. Besides defining a design notion,
software architects will also be concerned with choosing which blockchain to use and how
much blockchain truly is required for a certain use case (e.g., it might be sufficient if only
the hash values of some files are stored instead of storing the content of all files). Defining
new macro-architecture design patterns for the definition and development process will
also be of utmost importance. Some already existing patterns and design approaches are
discussed in the sections below [PPMT17, WEHG18].

2.2.1 Hybrid App Design
Complex software applications typically consist of multiple loosely coupled components
that each strive for high cohesion. A more informal definition for this circumstance
would be “what changes together, stays together” [New19]. These properties allow each
component to be reused through standardized APIs and maintained without affecting

12

2.2. Blockchain-oriented Software Engineering

other components, therefore keeping change concentrated in a single spot. Following the
low coupling high cohesion principle, new software engineering approaches, in particular
Chaos Engineering3 [RJ20], emerged in the industry that have been quickly adapted by
others. Other principles such as Acyclic Dependencies and Reuse Release Equivalence
are also rather common when talking about software application decomposition and
domain-driven design in modern software architecture [Mar17].

Building upon mentioned principles, a new approach was derived specifically for creating
hybrid applications where only certain components must communicate with the blockchain
directly. To achieve this goal, Florian Blum et al. [WEHG18] suggest a three-step process
to identify specific properties that are later used to derive the system architecture:

1. Identify participants. Defines the boundaries for a specific use case (and in
parts for the system itself) by identifying relevant actors (e.g., “contractor” or
“supervisor”).

2. Identify trust relations. Defines in what kind of trust relationship actors stand
to each other. Trust relations range from low trust classes (e.g., “trust in unknown
persons”) to high trust classes (e.g., “trust in the company one is employed at”)
and might be uni- or bidirectional.

3. Identify interactions. Defines which actors interact with each other and modify
shared data. This step might look quite similar to the previous one, but actors
that interact with each other might not have to trust each other and vice versa.

In the last step, the system architecture can be derived when all properties are eventually
identified. Precisely, the question is answered if blockchain technology is required in the
first place and, if so, where and how. Certain actors might already be in a mutual trust
relationship that nullifies the advantages of trustless and tamper-proof environments.
Adding blockchain technology would thus solely increase development overhead. Other
actors, however, might be in somewhat brittle trust relationships that require frequent
interactions nonetheless. Communication over the blockchain could be advised.

The third possibility are transitive trust relations. Let T be the homogeneous relation
between two participants in set P where trust is established either mutually or by using
blockchain-based technologies. Then, participants a and c are in an implicit transitive
trust relation if a trusts b and b trusts c. This circumstance is formally expressed in
first-order logic:

∀a, b, c ∈ P : (aTb ∧ bTc) =⇒ aTc (2.2)

Those kinds of relations build the transition points from blockchain-based trustless
environments (bTc) to environments with mutual trust properties (such as aTb w.l.o.g.)

3Initially developed by Netflix to provide system resiliency

13

2. Background

using the mediator participant b [WEHG18]. However, which specific kind of blockchain
technology (public vs. private or permissioned vs. permissionless, for example) to use
and where to employ them highly depends on the domain-specific use cases. Thus, users
of the framework should orient themselves towards the goals that stakeholders wish to
achieve with the software product (i.e., keep business strategies in mind) and use them
to derive architectural tactics using the described process [BSH+20]. It is only a first
step towards systematic blockchain-oriented software engineering, but already models an
intuitive way of deriving a macro-architectural draft for hybrid apps.

2.2.2 Transactional Patterns

Distributed applications as part of hybrid architectures typically consist of two compo-
nents: The business logic and the frontend facing the user. The communication between
those two components can be modeled in different ways where each introduces certain
advantages and disadvantages in either User Experience (UX) or trust. The goal of design
patterns, in general, is to provide some (adjustable) solution to non-trivial recurring
problems in software design that eventually lead to positive effects, especially regarding
non-functional requirements [Gei15a, WZ18]. Transactional patterns are design patterns
in the context of DLTs concerned with the communication between the frontend and the
blockchain, who verifies transactions, and who pays the transaction fees [WG18].

One common pattern in open source software are the so-called Self-Generated Transac-
tions. Users interact directly with the blockchain and the desired EDCC. This is achieved
in either of three ways: (1) sending transactions without detours to some blockchain
node (e.g., by using the geth client4), (2) using some low-level wallet web frontend (e.g.,
MyEtherWallet5) or (3) by using browsers with built-in wallets. This approach requires
little to no trust in any abstract system, but requires users to have at least some technical
knowledge (especially because this approach is quite error-prone). Furthermore, Applica-
tion Binary Interfaces (ABIs) must be publicly available. Self-generated transactions are
thus quite useful for testing EDCCs during development [WG18]

Self-Confirmed Transactions are an alternative to self-generated transactions. Instead
of the users creating the transactions themselves, the frontend application generates
them. This requires some trust towards the distributed app, but it is more convenient
since users only have to take care of their private key [WG18]. The third pattern are
Delegated Transactions. Users interact with the frontend without even noticing the usage
of blockchains as data storage in the backend. Frontends use an arbitrary technology to
communicate with the backend (e.g., REST or gRPC). The backend can then perform
off-chain computations and batch update the blockchain state if necessary. This allows for
further cost optimizations (because expensive storage and computation can be performed
off the blockchain) and does not require users to keep their own wallet [ET17]. An
extension to delegated transactions offers the Meta Transactions pattern. Users can still

4https://geth.ethereum.org/ (accessed on 2022-11-29)
5https://myetherwallet.com/ (accessed on 2022-11-29)

14

https://geth.ethereum.org/
https://myetherwallet.com/

2.3. Onchain vs Offchain

sign transactions with their private keys if necessary without the need for private wallets.
This allows for tracking transactions and offers extended transparency. Both delegated
and meta transactions undoubtedly offer the best UX but require a substantial amount
of trust in the established infrastructure beforehand. Which transaction technique to use
once again highly depends on the use cases, stakeholder requirements, and the target
audience of the system [BSH+20].

2.3 Onchain vs Offchain
Blockchains such as Bitcoin and Ethereum aim to transfer value in an environment that
does not rely on any centralized trusted third party. This kind of decentralization is
achieved by establishing a peer-to-peer network in which each node is a full replication of
the entire state of the system, guaranteeing, due to the intrinsic property that each node
is incentivized in some form to act trustworthy, that nodes validate one another regularly
and punish malicious behavior. In such an environment, however, transactions must be
executed on all peer nodes of the network equally. Blockchains that allow custom code to
be executed in the form of smart contracts must accommodate the additional execution
and storage requirements in some form. Ethereum, for example, associates each operation
with a fixed cost, which makes on-chain execution of more complex programs also more
expensive [But22].

The limited (and costly) on-chain storage furthermore does not allow developers to
store large files like images or videos directly on the blockchain since the cost would be
unproportionally high. Blockchains also do not accommodate for any privacy concerns.
Any information (even in the form of private variables in smart contracts) can easily be
accessed by any participant. Hence, the need for off-chaining storage and computation
solutions (sometimes referred to as blockchain tactics) was born [WEMG19, ET17].

2.3.1 Smart Contracts
Some blockchain implementations allow developers to write custom applications that are
executed enclosed by their trustless and tamper-proof environment. Those applications
are typically referred to as smart contracts or EDCCs. Ethereum was one of the first
technologies that provided a Turing-complete and tamper-proof programming language
by leveraging on their virtual machine with Solidity6 as their syntax.

Smart contracts7, however, are limited in their capabilities because they must be deter-
ministic and return the same results on every node of the network that executes the code.
This means that reading from HTTP sockets or a local file system, for example, is out
of scope. Even the task of producing pseudo-random numbers is a non-trivial challenge
in Solidity and has to be implemented with caution, otherwise causing severe security
issues. Allowing such operations would immediately render consensus undecidable since

6https://soliditylang.org/ (accessed on 2022-11-29)
7Not to confuse with legal contracts.

15

https://soliditylang.org/

2. Background

every node might produce another output for the same input and sequence of instructions
executed (one node times out on the network connection, while another computes the
result as expected, for example) [But22].

2.3.2 Offchaining Storage

Blockchains are typically maintained by a larger number of nodes where each node acts
as a replication that holds a copy of the chain’s current and previous state. This allows
all actors to perform operations in a trustless environment but comes at the cost of
information being redundantly stored on each node. Hence, a file with N bytes grows
linear with the number of nodes. On a chain with M nodes, a total of N · M bytes of
disc space is required. Besides being expensive, data on the blockchain is also publicly
available to anyone at any time [Nak09, But22].

One might conclude that storing a reference to a large data set which itself is stored on
a cloud-native storage solution like Amazons S38 or Google Cloud Storage9 might be
sufficient. Doing so, however, would allow users to change the data in the cloud, whereas
the reference in the blockchain stays the same. This might be a good approach if trust is
not of utmost importance for the participants using the data like, for example, for the
images used by the online platform for the CryptoKitties10 Non-Fungible Token (NFT).
In cases where participants are in a conflict of interest and rely on a blockchain’s trustless
and tamper-proof environment, this naive approach is no longer viable. Thus, one has
to find a solution that is manipulation resistant if storage of large amounts of data is
required [WEHG18, ET17, XWS19].

One way to achieve manipulation resistance in off-chain storage solutions is to make
stored data immutable (i.e., neither allowing manipulation nor deletion). However, this
must be enforced by the off-chain storage itself. Another, more convenient way is to use
the Content-Addressable Storage Pattern as proposed by Eberhardt et al. [ET17]. This
pattern aims to provide a solution that allows trustless outsourcing of large amounts of
data. This is achieved using so-called content-addressable storage in conjunction with
a smart contract. A content-addressable storage is a storage solution that references
all its data by a unique address derived from the hash value. Thus, if the content C of
some file F has been modified, a new address from H(C) will be derived (given practical
collision resistance). A smart contract can now use H(C) to reference the immutable file
F and validate if F has changed in a cost-efficient way either off- or on-chain. Off-chain
storage solutions must be highly available; otherwise, the system sacrifices its termination
property in the long run. Implementations of content-addressable storage solutions that
are available and durable are for example the Interplanetary File System [Ben14] and
Swarm11.

8https://aws.amazon.com/s3/ (accessed on 2022-11-29)
9https://cloud.google.com/storage (accessed on 2022-11-29)

10https://cryptokitties.co/ (accessed on 2022-11-29)
11https://ethersphere.github.io/swarm-home/ (accessed on 2022-11-29)

16

https://aws.amazon.com/s3/
https://cloud.google.com/storage
https://cryptokitties.co/
https://ethersphere.github.io/swarm-home/

2.3. Onchain vs Offchain

2.3.3 Offchaining Computation
Performing computation on blockchains is similarly expensive as storing data. Blockchains
that support EDCCs, as Ethereum does in the form of smart contracts, typically associate
a fixed fee to each operation performed in such a contract. Even the most trivial operations
such as multiplications or divisions come at some cost (i.e., one pays money to operate
a smart contract) [Woo22]. Data that one has to operate on might be private and
only available to a single user. This is an inherent problem of blockchains since all the
information has to be publicly available to anyone at any time to perform deterministic
computations on all nodes respectively. Naive off-chaining approaches, however, will
introduce trust problems. The result from the off-chain computation might be faulty, or
off-chain systems might send wrong computation results to gain an advantage. Careful
consideration of these possibilities is advised, and verification is required (which is
the minimum amount of computation that has to be performed on-chain to assure
trust) [EH18].

One way to preserve the trustlessness property of blockchains in off-chain computations
is the Challenge Response Pattern. First proposed by Eberhardt et al. [ET17], this
pattern aims to perform expensive computations off-chain while state transitions are
validated on-chain. One participant will generate a challenge transaction of some off-chain
computation (imagine checking the win conditions for a chess game). Other participants
are thereafter incentivized to check if the given challenge is indeed a valid claim. If
so, no further transactions must be sent to the blockchain. Some timeout (required to
fulfill the termination property) will trigger the on-chain state transition. Thus smart
contracts must not rely on on-chain checks themselves. The state transition is canceled if
participants send a valid response in time. The layer-2 rollup Optimism12 leverages upon
this pattern for example.

The Off-chain Signatures Pattern offers an alternative where state transition is performed
off-chain and implicitly agreed upon by all participants using their unique signatures.
The only purpose of smart contracts in this pattern is to validate the signatures, check
if all participants have signed a given transaction, and perform an immediate state
change derived directly from the new state information in the transaction. The off-chain
signatures pattern thus allows participants to perform as many off-chain peer-to-peer
transactions as required without the involvement of the blockchain itself. A state-
changing transaction is sent to the smart contract if all participants agree upon the new
state. Compared to the challenge response pattern, this pattern requires less blockchain
transactions overall, thus leading to a significant cost reduction. However, one has to
consider a certain loss of traceability since more transactions are performed off-chain
than on-chain [ET17, EH18]. Some implementations of this pattern already exist to cope
with the low throughput of modern blockchain technologies [XWS+17]. These include
state channel implementations such as the Perun13 or the Raiden14 network.

12https://optimism.io/ (accessed on 2022-11-29)
13https://perun.network/ (accessed on 2022-11-29)
14https://raiden.network/ (accessed on 2022-11-29)

17

https://optimism.io/
https://perun.network/
https://raiden.network/

2. Background

2.3.4 Offchaining Trust
Other techniques have been proposed to cope with the privacy issues of blockchains in
a similar fashion. Hybrid Distributed Applications (DApps) that only partially rely on
blockchains depending on the level of trust required for each stakeholder can reduce
the amount of transactions required [WEHG18]. Enclave-based off-chain computing
is another approach that utilizes Trusted Execution Environments (TEEs) to perform
computations in a fully trusted environment that guarantees source code confidentiality
and execution integrity. First defined by the OMTP [OMT09] in 2009, primarily for
use in mobile devices, they quickly became a promising technology for edge computing
and the IoT. Enclave-based computing also allows the usage of confidential information
without making it publicly available to the entire blockchain network [FWSZ21].

As a promising alternative to TEEs, privacy concerns can be tackled by leveraging on
Zero-Knowledge Proofs (ZKPs). This cryptographic technique allows participants to
prove to some third party that they know a specific value D without revealing D. The
level of confidence that the participants possess this kind of knowledge is comparable to
the confidence hash algorithms provide when showing that a specific piece of information
produces a particular hash value. In the context of blockchains, ZKPs can be used to prove
that off-chain computations have been performed according to a certain specification
without revealing the computation logic itself or to prove that a participant possesses
some confidential information without revealing it, for example. In order to generate
ZKPs, a zero-knowledge circuit is required, which implementation is very much use case
specific. The generation of such proofs is computationally rather expensive, but verifying
their correctness, on the other hand, is not [SYZ+21].

A third technology that allows participants to ensure trust to some extent without
revealing confidential information is Homomorphic Encryption. Homomorphic encryption
allows for computation to be performed on encrypted data. Such a system is formally
defined as ξ(x) ⊙ ξ(y) = ξ(x ⊙ y) where ξ is the encryption function, and ⊙ is an
arbitrary operation in this homomorphic system. One possible scenario for homomorphic
encryption is that a piece of information z is encrypted by participant A. Participant
B then performs an operation upon the encrypted piece of information ξ(z) resulting
in ξ(z̄) and participant A then extracts z̄ by decryption [JBS+20]. Depending on the
specifics of the computational problem, some of the mentioned alternatives might even
be combined [EH18].

2.3.5 Keeping a small footprint
Blockchain transactions are expensive operations. Developers should therefore minimize
the number of transactions to reduce the overall cost of their application. One option
to do so regarding smart contracts is to check the validity of state transitions off-chain
and only trigger an on-chain validity check if the off-chain one fails. Of course, such
an approach would require other techniques to guarantee trust, such as the Off-chain
Signatures Pattern or the Delegated Computation Pattern. Another option to reduce

18

2.4. Business Process Management

cost is to reduce the amount of storage required in smart contracts and to optimize for
writes instead of reads. This might look counter-intuitive to some developers because it
increases the amount of computations performed. However, this approach will move the
computation from the expensive blockchain nodes to cheap off-chain systems. In other
words: one should not store redundant information but compute derived information
locally. This is only possible because reading from the blockchain is feeless compared to
writing. These general guidelines are known as Low Contract Footprint Pattern [ET17].

2.4 Business Process Management
In recent years, BPM has received more and more attention from both the industrial
and computer science communities because it can not only be used to improve business
operations and decrease production costs, but it also gives an overview of the broader
requirements that a software system has to fulfill and therefore allows better planning
to improve scalability and robustness even considering the integration of blockchain as
a reliable source of truth. By definition, BPM assumes that every product a company
might produce is the result of a series of well-defined activities15 that are performed in
sequence or in parallel; ordering, structuring, and optimizing these activities according
to the needs of the company is one of the key concerns of BPM. This is achieved by
the concepts and methodologies that BPM provides to support the design and analysis
of activities. The resulting series of activities, jointly implementing a business goal,
is called a Business Process (BP). BPs typically encapsulate activities that are only
performed by a single company or organization. However, interactions with activities that
are performed by others are not prohibited and, in certain scenarios, even desirable, as
inter-organizational business process management shows [Wes12b]. One might consider
the role of a construction company instructed to refurbish the park in the city center
as an example of a BP that relies on external activities. The construction company
has to gather information about the surrounding environment (historical and protected
land sites, water pipes, and electrical infrastructure running underneath or beside the
existing park, etc.) from the city council, has to contract city planners to design the new
park and has to get in contact with suppliers that deliver required resources on-time.
Another example worth mentioning might be a building administrator (responsible for
large commercial or residential buildings) who has to contract maintainers for critical
facilities like elevators or escalators. Organizing these kinds of activities in a timely and
cost-optimized fashion is a typical use case for BPM and shows the need for activities that
interact and depend on the activities of other companies, suppliers, and organizations.
The upcoming sections introduce notations that are used to create sound models of such
BPs and inter-organizational BPs in the form of orchestrations and choreographies that
already integrate core concepts for software systems like data dependencies between
activities and object life-cycles in artifact-centric BPM16 [Wes12e].

15Later on also referred to as “tasks”.
16BPM that evolves around the resulting product and the produced artifacts of each activity and

sub-process instead of the entire series of activities. This approach might be beneficial when BPs are

19

2. Background

2.4.1 Business Process Model and Notation
The Business Process Model and Notation (BPMN) is a graphical specification language
for business process modeling maintained by the Object Management Group (OMG). It
consists of well-defined elements with very specific purposes such as [OMG11, OMG10]:

• Flow objects. Activities and events to be performed during the course of a BP.
This includes gateways that allow parallel process execution and exclusive process
execution.

• Connecting objects. Linking flow objects together to indicate transitions from
one object (e.g., a gateway) to another object (e.g., an activity). Connecting objects
also allow associating messages or notes to flow objects.

• Swim lanes. Grouping together coherent flow objects and connecting objects.
Swim lanes are typically used to depict companies, organizations, or departments
in inter-organizational BPs.

The upcoming paragraphs introduce more complex notations of BPMN by example,
by building upon the aforementioned BP of a building administrator contracting a
maintenance service. This exemplary BP is a simplification of a real-world scenario
and was derived from a model created with domain experts. Figure 2.1 shows the
simplified workflow of the facility maintainer. Maintenance is only started upon receiving
the message start event “receive maintenance request”. Afterwards, the maintenance
is performed, completed and, if accepted by the supervisor, an invoice together with a
maintenance report forwarded to all required parties.

Figure 2.1: A simplified business process of a maintenance contractor.

This BPMN diagram also makes use of some gateways. After the maintainer has
performed her first maintenance cycle on the facility, she has to report if any spare parts
are required to complete maintenance. If so, spare parts will be ordered; otherwise,
integrated into classical object-oriented software architectures due to the similarities of life-cycles of
objects in Object-oriented Programming (OOP) and real-world objects [LSNW20, LWW19].

20

2.4. Business Process Management

the maintenance is complete. For constructs like these, BPMN introduces the so-called
exclusive gateway that only allows execution of one of the subsequent activities. In
other words, either the spare parts must have been ordered, received, and replaced in
the facilities before maintenance can be completed, or no spare parts are required at
all. After maintenance has been completed by the maintainer and thus the maintenance
contractor, a third party (in this example, the building administrator) can either accept
or reject the maintenance. Waiting for activities of third parties to complete is achieved
with the event-based gateway. This gateway halts further process execution until one of
the subsequent events occurs [Wes12b, OMG10]. Single-party BPMN diagrams like these
are rarely useful because they do not highlight interactions with third parties and, thus,
possible conflicts of interest. Introducing a customer as a building administrator into
the diagram in figure 2.1 will improve the example and shows how interactions occur
in certain situations. Figure 2.217 depicts the full building administrator use case from
section 2.4.

Figure 2.2: More complex two-lane diagram with interactions between participants.

The facility maintenance workflow on the side of the building administrator is triggered
by the timer start event “facility maintenance is due”. This kind of event indicates that
a BP should be started whenever the time constraints associated with the event are met.
These might be abstract, as depicted in figure 2.2, or discrete in the form of a timely
interval or any other time constraint. When maintenance is triggered, the responsible
building administrator has to get in contact with the maintenance contractor and, at

17Created with https://bpmn.io/ (accessed on 2022-11-01)

21

https://bpmn.io/

2. Background

the same time, prepares the facility and the building for the upcoming maintenance and
notifies staff and local residents (e.g., by sending a notice that the elevator is not available
until maintenance is complete). Parallelization of activities in BPMN is achieved by
employing so-called parallel or split gateways. A join gateway is used afterwards to
merge all concurrent branches back together if they have been successfully completed.
When maintenance is done, the building administrator inspects the maintainer’s work and
either certifies the maintenance or reports further defects. Once again, this is achieved
by employing the exclusive gateway of the BPMN notation [OMG11, Wes12b].

2.4.2 Orchestration and Choreography
BPMN introduces a specification language that allows its users to define BPs on a
rather granular level using flow and connecting objects. Typically, these objects are
grouped into swim lanes where each swim lane defines a single party (e.g., a company
or organization). The business process defined for this party is also referred to as
orchestration or process orchestration [OMG11]. Orchestrations are used to provide
a more detailed view of activities (and their associated execution constraints) that
interact with both external and internal activities [Pel03, Wes12d]. While orchestrations
focus on one party’s perspective, choreographies focus on coordinating interactions
between multiple parties. Choreography diagrams that depict a sequence of messages
exchanged between parties typically represent a distributed process and activity flow.
In other words, the interactions between different orchestrations can be formalized
as choreography [AGI+19, Wes12c]. Choreography diagrams are especially useful in
business-to-business scenarios where activities of one business have to interact and
exchange messages with activities from other businesses [Pel03]. Due to the fact that
choreography diagrams are part of the BPMN specification, their notations are also
quite similar [OMG11]. Instead of describing activities, choreography diagrams focus on
so-called choreography tasks. Each choreography task represents the interaction between
two or more parties. These tasks are connected with each other by reusing BPMN
connecting objects. The building administrator and maintenance contractor example is
depicted as choreography diagram in figure 2.3.

Figure 2.3: Choreography diagram highlighting interactions between two participants.

Graphically, choreography tasks are denoted with boxes with rounded corners. The inside
of the box describes the message exchanged, and two bands, one at the top and one at

22

2.5. Baseline Protocol

the bottom of the box, represent the involved parties. The band of the initiating party
typically uses the same color as the box itself, whereas the darker band is dedicated to
the receiving party. Letter-like symbols connected to the bands of the parties attach
supplementary information to the message [AGI+19, OMG11]. In this example, an
invoice and report are added to the last choreography task before reaching the end event.

2.5 Baseline Protocol
The Baseline Protocol, a recently defined Enterprise Ethereum Alliance (EEA) standard
and OASIS open source project, tries to enable businesses and organizations to synchronize
complex BPs as well as associated data and messages and increase overall system resiliency.
The BP introduced in section 2.4.1 is only a simplification of a far more sophisticated
scenario. Synchronizing state between counterparties is, therefore, inevitably more
difficult than expected. The Baseline Protocol aims to solve this issue by leveraging
on the blockchain (or other forms of shared state machines) as an immutable and
traceable source of truth that involved participants can trust. Over time, this can
increase information security and operational integrity because systems of record no
longer have to share potentially confidential data or internal business processes but rely
on profound proofs that specific properties of BPs have been fulfilled [EEA22]. The
standard, however, is still in a volatile state and can introduce breaking changes at any
time. Therefore, the upcoming sections only give a rather broad overview of its concepts.

2.5.1 Architecture and State Synchronization
To ensure “workflow integrity, event ordering, and data consistency”, the Baseline Protocol
specifies that a compliant implementation must rely on a Consensus Controlled State
Machine (CCSM). Blockchains like Ethereum and Bitcoin are implementations of such.
The systems of record that the Baseline Protocol Implementation (BPI) communicates
with are only loosely coupled with the BPI itself in the form of a standardized API [EEA22].
Figure 2.4 shows a software architecture with a BPI integration.

Figure 2.4: Integration of a BPI into the two-party facility maintenance system.

23

2. Background

All involved participants (the building administrator and the maintenance contractor)
keep their own system of record that contains the current state of the workflow, required
documents, or even confidential data that is not allowed to leave the organization’s
network. Communication between participants is solely handled by the BPI to exchange
necessary information. The BPI generates a proof that the document to be exchanged
follows the service-level agreements and stores it on a CCSM to acquire properties such as
traceability, immutability, workflow integrity, or data consistency. On the other hand, the
data is transmitted entirely off-chain to keep the smallest footprint possible and reduce
transaction cost. This ensures that confidential data can be kept private if necessary and
allows sending large amounts of data to counterparties without breaking the blockchains’
block size limit. Figure 2.5 gives a more in-depth explanation of how communication
between counterparties can be realized according to the standard and shows the Baseline
Protocol compliant process of the maintenance contractor sending the maintenance report
to the building administrator in the form of a flow chart. A system of record that wants
to take advantage of the properties of the Baseline Protocol at least has to implement
the depicted communication.

Figure 2.5: Integration of the Baseline Protocol for the exchange of the maintenance
report between maintenance contractor and building administrator.

After maintenance has been completed, the maintenance contractor sends the maintenance
report to the BPI API to check its validity. This check is implemented using zero-
knowledge circuits18 that precisely portray the service-level agreements that both parties
accepted at the start of the BP. If the maintenance report complies, a proof (in the

18ZKPs and ZK circuits are out of scope of this work and will not be further discussed.

24

2.5. Baseline Protocol

form of zero-knowledge) is returned, and the maintenance report is being transmitted,
including the newly generated proof, to the building administrator. Generating proofs,
however, is a rather computationally expensive task. Performing it on-chain is therefore
unfeasible, considering that hundreds of thousands of proofs must be generated for BPs
of large companies and organizations. Thus, layer-2 rollup blockchains like Baseledger19

must be employed that are optimized to generate such proofs in a more cost-efficient way.
Layer-2 rollups like these, again, only store a ZKP of the correctness of all BP proofs
on layer-1 CCSMs like Ethereum, to take advantage of the vast amount of participants
of such blockchains without exposing any privacy critical data. After receiving the
maintenance report with its corresponding compliance proof, the building administrator
can now validate the compliance proof to check (1) if the transmitted maintenance report
is the one issued by the maintenance contractor and (2) if it is compliant with the
previously agreed upon service-level agreement. If the validity check passes, the building
administrator can generate a proof that confirms that she accepts the maintenance report
in the given form. This proof, once again, can be validated by the other party (in this
case, the maintenance contractor) [EEA22].

Even though the Baseline Protocol is still under heavy development and some of its
implementation details are out of scope of this work, given its capabilities, it still holds a
lot of potential considering inter-organizational BPM and choreographies. Thus, later
sections of this work will also investigate possible integrations of the Baseline Protocol
into a state machine concept that allows time-traveling verification of BPs.

19https://baseledger.net/ (accessed on 2022-11-01)

25

https://baseledger.net/

CHAPTER 3
Related Work

This chapter will briefly discuss the methodology used to conduct the literature review
and outlines relevant related work in the field of business process management that
utilizes BCT to establish properties such as trust and tamper-proofness. At the end
of the chapter, the described concepts will be compared with each other and with the
proposed approach of this thesis.

3.1 Literature Review Methodology
The following literature review has been performed using the narrative review methodology
with its focus on the state of the art [Str19]. Since BCTs, and especially the utilization
of BCTs in the area of BPM, are rather new research topics, only literature of the
last 10 years (i.e., 2012 – 2022) is considered relevant. The literature review is used to
answer RQ1. Table 3.1 shows a list of primary, secondary and tertiary search terms that
were used during the narrative review in the databases of Elsevier, Springer, IEEE and
Researchgate.

A B C

Blockchain
Collaborative
Choreography

Inter-organizational

Business Process
Business Process Management

Table 3.1: Search terms used during the narrative review

The formal definition on how these search terms were combined is shown in equation 3.1.

E = [(
1≤i≤1

Ai) ∧ (
1≤i≤3

Bi)] ∧ (
1≤i≤2

Ci) (3.1)

27

3. Related Work

Narrative literature reviews do not claim (semi-)completeness on the coverage of a certain
topic but give more of a rather unstructured overview of what already exists [RA11].
Systematic literature reviews such as [GGSGL+20] found using equation 3.1 were used
as starting point. Furthermore, the snowballing approach was applied to extract primary
sources.

3.1.1 Untrusted Business Process Monitoring and Execution Using
Blockchain [WXR+16]

The ground-laying work for business process execution utilizing the blockchain published
by Weber et al. (regularly cited in subsequent work such as [PSHW20, KJ21, LPGBDW17,
LWW19, RCDF20]), aims to find agreements between counterparties on a shared state
without the use of a trusted third party. In their exemplary use case, the authors outline
a situation where a manufacturer orders supplies via a middleman, and the entire supply
chain gets delayed because of production issues on the suppliers’ side. Due to the delay,
the manufacturer now refuses to accept the supplies from the carrier, which makes the
carrier eligible for compensational payments from the supplier or the middleman. To
tackle common [PL09], trust-related, supply chain issues like these, Weber et al. suggest
the integration of business processes into BCT. Their approach is split into design and
run-time decisions. During design-time, a formal model of the business process has to
be outlined using a description language similar to BPMN or more blockchain-specific
alternatives such as the one described by Ladleif et al. in [LWW19]. This model is
then translated into a factory smart contract containing all relevant business process
information. The component-based design of this concept allows implementers to use
custom translators, such as the one described by Nakamura et al. [NMK18], as well.
During run-time, the factory smart contract is used to instantiate and deploy instance
contracts that additionally contain information about the roles of the participants (which
might not be obvious during design-time). Participants only communicate with each
other (and send data) through the blockchain and the deployed instance contracts. These
contracts are available in two different forms: (1) a choreography monitor, which will
check conformance with the business process, and (2) an active monitor which is an
extension of the choreography monitor and can perform additional data transformations
or calculations on-chain. Which one to choose depends on the use case and if the data
is encrypted. Instance contracts hold and advance the status of the business process
and the choreography rules and can trigger external APIs using triggers. Triggers are
programs that run on full-nodes and listen to smart contract events. Participants will
then further process data off-chain that was sent over the blockchain. Due to the payload
limitations of transactions on blockchains like Ethereum [Woo22], only smaller payloads
might be transferred directly. For larger payloads, just the hash of the data is attached
to the transaction, and the data itself is made available using off-chain storage solutions
such as Amazon S31 or Google Cloud Storage2.

1https://aws.amazon.com/de/s3/ (accessed on 2022-11-29)
2https://cloud.google.com/storage (accessed on 2022-11-29)

28

https://aws.amazon.com/de/s3/
https://cloud.google.com/storage

3.1. Literature Review Methodology

However, the on-chain logic and complexity of business processes are limited due to the 24
KB size limit of smart contracts on Ethereum [Woo22]. This issue can be circumnavigated
by applying the diamond pattern3, but will inevitably add overall complexity and cost
due to the increased amount of smart contracts that have to be deployed. For fairness,
the authors suggest that participants may want to split gas money (including smart
contract deployments) differently rather than relying on the implicit split of the business
process itself. For their prototype, Weber et al. rely on the public Ethereum blockchain.
In their benchmarks, the authors ran around 7932 transactions in 32 instances where
each business process executed from start to end produced costs of around 0.0347 Ether,
which, in 2016, translated to around 0.40 USD but are 109.49 USD at the time of writing
this work in 2022. With the fluctuation of prices of cryptocurrencies [PG17, SAW20],
conflicts between counterparties might be an aspect to consider when running long-term
business processes. Regarding privacy, the authors suggest the usage of asymmetric
encryption of data transferred over the blockchain or to rely entirely on permissioned
blockchains. Private permissioned blockchains, however, are typically less accepted
by industry partners [Bro19], which will lead to centralization and thus nullifies the
advantages of blockchains in the first place.

The authors utilized and extended upon their approach to implement a prototypical
Business Process Management System (BPMS) as proof-of-concept called Caterpillar4.
Caterpillar allows the factory and instance smart contract creation from BPMN models
and deploys them on the blockchain. When generating smart contracts from BPMN, the
system creates an intermediary representation of the business process using Petri nets
to allow further optimization of the created smart contracts [GBPDW17]. Furthermore,
their system exposes a REST API to make working with business processes more
convenient [LPGBDW17, LPGBD+19].

3.1.2 An Architecture for Multi-chain Business Process
Choreographies [LFW20]

Leveraging on the aforementioned concept of Weber et al. [WXR+16], Ladleif et al.
presented a software architecture that aims to enable the usage of different blockchain
technologies (e.g., Ethereum, Hyperledger, Tezos, and others) in a single business process
instance. To achieve this goal, the authors only used the blockchain and its smart
contracts to store the state and all allowed state transitions of a business process instance.
The event and transaction logs provided by most blockchain implementations with smart
contract capabilities are used to verify if the Service-Level-Agreements (SLAs) are fulfilled.
To enable multi-chain capabilities, the adapter software design pattern is utilized where
each blockchain, that participants want to integrate, has to implement its own adapter
that is able to generate smart contract code, deploy it autonomously and interact with
it later on. In most choreographies, not all participants are required to be part of each

3https://eips.ethereum.org/EIPS/eip-2535 (accessed on 2022-11-29)
4https://github.com/orlenyslp/Caterpillar (accessed on 2022-11-29)

29

https://eips.ethereum.org/EIPS/eip-2535
https://github.com/orlenyslp/Caterpillar

3. Related Work

individual sub-process. Therefore, the system itself determines which parts are relevant
for each participant and only connects to the respective smart contracts and blockchains.

The presented concept gives involved participants more freedom over which blockchain to
choose and therefore allows for a more fine-grained adjustment of levels of confidentiality or
risk tolerance. Being able to combine different blockchains in a single choreography might
be a desirable property depending on the use case and the business needs. Nonetheless,
cross-chain communication is still an open problem that might increase the complexity
of such a system unnecessarily. Thus, one must consider whether such a system is
appropriate for the business process in use.

3.1.3 Runtime verification for business processes utilizing the Bitcoin
blockchain [PSHW20, Pry16]

The conceptual model and the prototype presented by Prybila et al. aim to utilize and
integrate business processes directly into the Bitcoin blockchain. Therefore, establish
trust between counterparties by enabling time-independent verifiability of decentralized
choreographies. Their rather flexible approach to this problem allows the process owner to
select participants during runtime. This is a useful trait to have considering long-running
processes where participants may drop out or get replaced due to changing requirements.
At the start of a new business process, the process owner has to select a free Bitcoin
transaction output5 which is used as control token. This control token will be handed
over (by using a Bitcoin transaction) to the party that has to perform the next task (i.e.,
the token holder is fully responsible for the continuation of the business process). In order
to enable parallelization of tasks, this concept not only allows process-start, -end, and
-handover transactions but also -split and -join transactions. A process-split transaction
is performed by the current token holder and contains 1 to N new process tokens in the
form of Bitcoin transaction outputs. The new token owners perform their tasks before
joining the process back together. It is assumed that a single process-split corresponds
to exactly one process-join later on. The authors defined a process-end transaction as a
transaction with only a single input which means that a process-join must be performed
before a process can complete (if the process was split earlier on). To define the different
enriched transaction types, the data output and the Pay-to-Script-Hash standard Bitcoin
transactions are used. The latter of both can carry additional data if necessary. The data
will be transferred off-chain, and the transaction itself will only include a hash of the data
due to privacy concerns and the fact that Bitcoin is a public permissionless blockchain.
Due to the process timestamps and the publicly available data on the blockchain, process
owners can monitor the progress of the entire business process and even of single tasks if
made available by the current control token owner. The immutability of data on-chain
allows the process owner to monitor the progress and verify if predefined SLAs are fulfilled
accordingly.

5While Bitcoin transaction inputs determine how much value is transferred from one or more addresses,
Bitcoin transaction outputs determine to which addresses the value is sent. Typically the input value is
larger than the output value. This difference is the block miners reward.

30

3.1. Literature Review Methodology

Due to a median transaction confirmation time of around 7.74 minutes of Bitcoin mea-
sured by the authors, only long-running business processes and tasks are viable [PSHW20].
However, their concept also includes a greedy mode that allows handover of the con-
trol token even if a transaction was not yet confirmed and included in a block. This
is because Bitcoin miners accept transactions with references to other, still pending,
transactions [Nak09]. Greedy transactions, however, pose the threat of being entirely
dropped if something goes wrong or malicious participants propose alternative handover
transactions. Thus imposing possible consistency issues upon the entire business process
and making greedy mode practically unviable if trust is of utmost importance. The
use of the Bitcoin network itself is also questionable because newer, second-generation
blockchains, such as Ethereum, provide Turing-complete scripting languages that can
depict requirements directly on-chain and can be used to share digital assets between or-
ganizations more easily [KJ21, But22, Woo22]. Also the way data is transferred between
participants might pose certain security issues. Once written to the blockchain, the hash
cannot be changed and will be available to the public as long as the blockchain itself is
available. Even though not a main concern, malicious participants could still abuse this
fact at a later point in time and present different data by using collision attacks posing
certain security and trust issues. Data once hashed using MD5 or SHA-1 might no longer
be reliably verifiable [YJD09, SBK+17].

3.1.4 Blockchain-oriented Inter-organizational Collaboration between
Healthcare Providers to Handle the COVID-19 Process [KJ21]

Ilyass El Kassmi and Zahi Jarir presented a conceptual model with a proof-of-concept
implementation to handle trust issues when sharing sensitive data in the healthcare sector
on a national scale. The authors oriented themselves on a large-scale pandemic use case
regarding COVID-19. This concept is especially interesting because it aims to deal with
large amounts of data, a changing business process, and privacy concerns. However, it
does not focus on the security aspects. To handle ever-changing business processes, the
authors use finite state automata modeling and map the model to a Service-oriented
Architecture (SOA) to abstract functional and non-functional requirements onto the
software architecture. The blockchain, in this case, Hyperledger, is dynamically plugged
into the system as a third-party service that introduces a new level of indirection. This
Blockchain-as-a-Service (BaaS) approach allows for other blockchains to be used as well
and enables a higher level of decentralization since private permissioned blockchains are
typically considered to be more centralized since network maintainability is typically
ensured by one authority only. The authors introduced the blockchain to depict non-
functional requirements, like enabling trust for inter-organizational collaboration only.
In this approach, blockchain interactions are seen as a way to fulfill those predefined
behavioral non-functional requirements. After processing a workflow step locally, the
SOA will forward certain sub-tasks to the blockchain and corresponding smart contracts.
Other participants will (automatically) react to those changes in the smart contract
and dispatch new events themselves if necessary. In the case of their COVID-19 use

31

3. Related Work

case, this might be a PCR test result published by the regional epidemiological center
that, depending if the test was positive or negative, is being further processed by the
governmental healthcare provider.

Although this novel approach fits this specific use case, it does not generalize well.
The authors conclude, that it still heavily depends on the chosen blockchain platform
and its limitations in terms of security, scalability, performance, and other key aspects.
This might cause issues, especially with short-running business processes. The usage of
permissioned blockchains also comes with certain restrictions. Due to the small number
of participants compared to public permissionless blockchains, misuse of the blockchain
by one participant could render the system untrustworthy because it entirely relies on
the integrity of the collaborators [LSP02, SB12]. Hence, the proposed approach assumes
a form of common interest in which all members trust each other to at least some
extent. Using public permissionless platforms in this context might be viable for use cases
where data privacy is not of utmost importance. This, however, cannot be said about
healthcare-related data. The authors directly encoded information about the patient and
her COVID-19 process into the smart contracts. This means that the information would
be publicly available to anybody on a public permissionless blockchain, which contradicts
the GDPR6. Thus, other storage solutions have to be applied if privacy critical data has
to be shared with counterparties.

3.1.5 Blockchain-based controlled information sharing in
inter-organizational workflows [RCDF20]

Rondanini et al. inspired their work by the trust problems associated with sharing
information in inter-organizational scientific choreographies. Especially when APIs of
counterparties and other participants have to be consumed, ensuring that the least
privilege principle7 is being followed, might be of utmost importance. To achieve this
goal, the authors solely rely on the distributed consensus algorithm of blockchains to
guarantee a correct order of execution of business processes (as shown in [CFR18]). They
split their smart contracts into two layers that are tightly coupled with each other: (1)
The coordination layer that ensures a correct order of execution of the choreography and
(2) the authorization layer that handles resource access on a per sub-task basis. To be
more specific, the authors tackle temporal authorization management (authorization can
be revoked) and the least privilege principle with their novel concept. On choreography
initialization and smart contract deployment, each participant has to announce, in the
form of transactions with a specific payload format, which resources (for example, APIs)
they provide. When participants want to start working on a certain sub-task of the
business process, they have to send a transaction containing all required resources to the
smart contract that handles this sub-task. The smart contract will then check which
resources are applicable and grants access. The resource providers listen to the smart
contracts event log and will automatically toggle access to their off-chain resources for

6https://gdpr.eu/ (accessed on 2022-11-13)
7A participant is only given exactly those privileges needed to complete a task.

32

https://gdpr.eu/

3.1. Literature Review Methodology

this particular participant. The smart contract will revoke resource access once the
sub-task executor announces that their work has been completed. Later on, participants
can check what kind of resources counterparties used by examining the log of transactions
during execution.

The authors’ approach to the least privilege principle and the trust problems associated
with choreographies allows for automated authorization management and post-execution
verifiability of business processes. However, their concept requires choreographies to
be relatively inflexible. Participants have to be assigned to sub-tasks they will work
on before the business process even starts. Due to the properties of blockchains and
transactions, once revealed, resources cannot be revoked either. Drawbacks like these
might have severe consequences, especially for long-running business processes where
organizations have to comply with changing legal requirements. Revoking access to
resources only off-chain might break the entire business process if other participants still
require those resources to complete their sub-tasks.

3.1.6 A Lean Architecture for Blockchain Based Decentralized Process
Execution [SSSJ19]

In their work, Sturm et al. try to leverage on the work of Weber et al. [WXR+16] by
generalizing the smart contracts in use for a “source-code optimized solution” that is
open for extension if necessary. The smart contract is deployed per instance of a business
process and only serves as scaffolding. This scaffolding smart contract holds a list of
participants and sub-tasks where each sub-task contains a description of the action that
has to be performed, the wallet address of the participant that is allowed to complete
the task, and a list of predecessor tasks that must be completed before this task can
be tackled. After the scaffolding smart contract deployment, the participants and the
tasks are added using functions defined in the contract (i.e., blockchain transactions). To
partially conform with BPMN, tasks can be defined (1) as simple TASK, which only has
one predecessor, (2) as AND-task, where a list of predecessors has to be completed, or
(3) as OR-task, where at least one of the predecessor tasks has to be completed before
the task itself can be completed. The formal definition of the function C(t) that checks
if task t can be completed is depicted in equation 3.2.

C(t) =

C(Pt) for simple tasks

tp∈Pt
C(tp) for AND-tasks

tp∈Pt
C(tp) for OR-tasks

(3.2)

Where Pt is the set of predecessor tasks and C(t) is defined as recursive function. The
authors circumnavigated the recursiveness by adding a completed flag to each task to
prevent the smart contract from performing redundant computation on-chain. The
capabilities of error handling in Solidity, the smart contract programming language of
Ethereum, specifically allows participants to communicate with the smart contract more

33

3. Related Work

directly. Thus, the authors were able to create a cleaner concept compared to [WXR+16].
Due to the way the scaffolding smart contract works, Sturm et al. proposed, that for
their concept, a BPMN translator would not output smart contract code directly, but
would generate a list of blockchain transactions that add participants and tasks that
depict the business process itself.

This concept tries to solve the lack of trust in choreographies between counterparties by
storing as much information on-chain as possible. The authors even mention, that they do
not want to rely on off-chain storage solutions. Thus, even large files and datasets would
be attached to tasks on-chain. Not only could the transaction and block size limit cause
issues, but participants might also be concerned with privacy regarding their data being
published. To deal with associated privacy and security issues, the authors recommend
the usage of consortium blockchains8. However, consortium and private blockchains
will inevitably weaken the tamper-proofness to some extent because the voting power
is concentrated to preselected nodes. Another disadvantage of this approach is that it
relies on the inflexibility of its business processes. Due to the immutability of blockchain
transactions [Nak09], tasks and participants cannot be changed in the proposed concept.
Even though the scaffolding smart contract could be extended to allow such behavior,
the authors did not establish a sound concept of how participants agree to changes in
the process.

3.1.7 Interpreted Execution of Business Process Models on
Blockchain [LPDGBW19]

Concepts where BPMN models are compiled to smart contracts (as proposed in [WXR+16,
KJ21, RCDF20]) do have certain flexibility limitations. To overcome these limitations,
López-Pintado et al. proposed a concept that utilizes smart contracts to interpret business
processes on the blockchain, similar to the previous work of Sturm et al. [SSSJ19]. To
reduce the footprint on the blockchain and allow dynamic modification of the business
process during run-time, the authors recommend the usage of a space-optimized tree-like
data structure that encapsulates the workflow. Even though the interpreter that encodes
the BPMN semantics only has to be deployed once, each sub-process that participants
want to add to the choreography will automatically deploy additional smart contracts (one
responsible for the sub-process workflow and another one holding associated model data).
Therefore, the proposed concept cannot scale well due to the vast amount of associated
contracts deployed [LBAG21]. Furthermore, allowing participants to dynamically modify
the workflow data structure during run-time might lead to consistency issues (e.g., due to
the order in which transactions are accepted by the blockchain [Nak09, Woo22]). Even
though the concept enables access restrictions for participants, modification might still
lead to inconsistent state. The usage of systems, that should establish trust between
counterparties, but might still produce inconsistent state on the blockchain, is questionable.
Participants might see different state representations of the same business process, which
nullifies the usage of blockchain in the first place.

8Blockchains where all miners/validators are predefined and cannot change.

34

3.1. Literature Review Methodology

3.1.8 Decentralized Collaborative Business Process Execution Using
Blockchain [LBAG21]

Building upon the work of [SSSJ19] and [LPDGBW19], Loukil et al. aim to further reduce
the inflexibility of business process management on the blockchain with their concept.
To achieve this goal, three types of smart contracts are deployed in a 3-layer architecture.
The central smart contract is called the interpreter. It is only deployed once, holds
references to the business process instance and the resource instance smart contracts
and implements the facade pattern9 to access the business process. When a business
process is triggered, the interpreter generates a new business process instance smart
contract. Participants then dynamically add the BPMN-based configuration to the newly
created smart contract through the interpreter using blockchain transactions. Similarly
to the business process instance smart contract, the resource instance smart contract
that holds and manages the roles of participants, is also generated by the interpreter
itself. As mentioned before, these smart contracts are embedded in a 3-layer architecture.
The first layer, the conceptual layer, is solely responsible for translating BPMN models
to an intermediary JSON representation to be more blockchain agnostic. The JSON
configuration is then fed into the interpreter smart contract that is part of the data layer.
The data layer statically encodes a basic business process workflow data structure that
is the same for all instances. The routing logic and the process workflow are added to
the created business process instance smart contracts in the flow layer. Business process
instance and resource instance smart contracts can only be accessed and configured by
the interpreter. This gives the interpreter more leverage over the entire choreography
and enables handling whether or not certain participants are allowed to perform certain
tasks or if they are allowed to modify the roles or the business process itself.

The evaluation of the concept shows that business process instance deployment typi-
cally leads to higher costs regarding gas compared to compiled approaches such as the
one proposed by Weber et al. [WXR+16]. The tight coupling and integration with the
blockchain itself also leads to a dependence on the chosen blockchain technology regarding
the transaction confirmation time. These two aspects make the concept rather disad-
vantageous for short-running business processes where many business process instance
and resource instance smart contract deployments are required, and state transitions
must be performed quickly. Similarly to other proposals, the authors of this concept
are also reluctant to tackle the privacy concerns of participants. They advise the usage
of consortium blockchains to keep the business process and the associated data private.
However, due to the capabilities of the approach to change participants and their roles
during run-time, consortium blockchains will inevitably lead to more management over-
head since new participants are advised to run their own full node of the blockchain.
If participants decline, the usage of blockchain becomes questionable due to security
issues like 51% attacks opening up. Nonetheless, the novel architecture presented by the
authors gives opportunity for future work to tackle the issues mentioned above, and its
loose coupling allows the integration of other approaches as well.

9https://en.wikipedia.org/wiki/Facade_pattern (accessed on 2022-11-13)

35

https://en.wikipedia.org/wiki/Facade_pattern

3. Related Work

3.1.9 Inter-organizational Business Processes Managed by
Blockchain [NMK18]

Due to certain limitations of blockchain technologies like throughput, latency, or size
restrictions, Nakamura et al. proposed a statechart transformation algorithm for BPMN
that allowed the authors to bring down the number of dispatching and receiving events by
up to 74% and 65%. Their approach is structured in three subsequent steps. In the first
step, a BPMN model is transformed into one statechart for the shared business process
on the blockchain and one statechart for each participant. Each statechart represents
all states a participant can be in and all corresponding state transitions where state
transitions are triggered in the form of events dispatched by any of the participants
involved. The authors define a state transition as e/a1, . . . , an with e, a ∈ E where E is
the set of events that may occur in the business process, e being the receiving event (that
starts the state transition) and a1, . . . , an being the events dispatched after the state
transition is completed. Thus, a statechart can be formalized as 5-tuple ⟨S, s0, F, E, T ⟩
where S is the set of possible states, s0 ∈ S the initial state, F ⊆ S being the set of final
states and T is the set of transitions. An event dispatched by the statechart of the shared
business process on the blockchain might be used as a state transition starting event
for the statechart of one of the participants and thus allows communication between
independent statecharts solely relying on a predefined set of events E that all participants
share. The proposed algorithm reduces the produced statecharts in the second step. The
authors focus on two consecutive state transition where none of them dispatches any
events on completion (as depicted in equation 3.3).

s1
e1/∅−−−→ s2

e2/∅−−−→ s3 (3.3)

Suppose the first state transition from s1 to s2 is removed (including the receiving event
e1 that triggers the transition) and the statechart is rewritten to only allow immediate
transitions from s1 to s3 using e2 as starting event (as depicted in equation 3.4). In that
case, the observed behavior from outside the statechart will not change because neither
less nor more events are being dispatched, and the resulting state is the same.

s1
e2/∅−−−→ s3 (3.4)

This transformation will not only allow the removal of the no longer used state s2 but
will also allow the removal of the dispatching event e1 if and only if no other participant
or the shared business process itself requires it. One might even consider a generalization
of the transformation algorithm for more than two consecutive state transitions without
dispatching events as well. The third step proposed by Nakamura et al. then includes a
transformation of the statecharts to smart contracts and automatically generated web
user interfaces that allow interaction with the business process.

Even though this novel approach only considers consecutive state transitions and does not
include process forks and joins such as the concept proposed by Prybila et al. [PSHW20,

36

3.1. Literature Review Methodology

Pry16], the algorithm still holds potential for adaptation in future work due to the vast
reduction of dispatching events and the extraction of a dedicated statechart representing
the interactions with the blockchain.

3.1.10 Data-Driven Process Choreography Execution on the
Blockchain: A Focus on Blockchain Data Reusability [LSNW20]

An approach that focuses more on the artifacts produced by a business process and
their reusability across instances, was proposed by Lichtenstein et al. The authors’
concept focuses on three smart contract types that loosely interact with each other. The
first smart contract is the participants interface. These interfaces are deployed by each
participant involved in the choreography individually and only expose functionality that
is relevant for the respective participant to advance the business process instance. The
participants’ interface further communicates with the data object store. This kind of
smart contract is deployed once per choreography, holds an instance ID that is increased
for each new instance of a business process, and references all required data object smart
contracts. The data objects are use case and domain-specific smart contracts that depict
certain business process artifacts10. These data objects are reused throughout multiple
business process instances, which will reduce the number of smart contracts deployed
per business process instance dramatically compared to other concepts such as the one
proposed by Weber et al. [WXR+16] or the one proposed by Ilyass El Kassmi and Zahi
Jarir [KJ21]. Data objects are modified through the participants’ interface and directly
represent the current state of the business process instance. This decoupling of process
logic and data objects allows the reuse of data objects in new business process instances
and even across choreographies. Therefore, new choreographies with a different process
logic and different participant interfaces can import external data objects that were
produced by other choreographies previously. These external data objects can be used as
an additional source of information for newly deployed choreographies.

The dynamic approach proposed is highly beneficial for short-running choreographies
where similar business processes are instantiated regularly. Even though the deployment
cost is typically higher compared to similar approaches due to the vast amount of data
object smart contracts required, the authors could still show a linear decrease in business
process instantiation cost. This is due to the circumstance that other approaches deploy
all required smart contracts per business process instance, while the approach proposed
by Lichtenstein et al., reuses all smart contracts and only has to increase a single variable
per instantiation in the data object store. Nonetheless, the approach lacks access rights
management and the option to encrypt sensitive data. Thus, further research still has to
be conducted considering that data objects are on-chain, and their progression throughout
a business process instance is of utmost importance for this approach.

10Imagine a car rental business process. In such a scenario, typical data objects would be the car, the
driver’s license, or the order with its corresponding invoice. Each data object has its own lifecycle with
its own custom properties.

37

3. Related Work

3.1.11 Modeling and Enforcing Blockchain-Based
Choreographies [LWW19]

Most of the aforementioned concepts rely on choreography or business process diagrams
defined in the BPMN 2.0 standard. However, choreography diagrams are regarded to
be purely descriptive and thus lack properties required in model-driven engineering to
allow process execution. Moreover, the current standard of BPMN does not reflect
most blockchain capabilities directly. Thus, Ladleif et al. proposed a fully backwards-
compatible extension to BPMN 2.0 choreography diagrams that enable execution by
adapting existing and introducing two new elements that allow the representation of
data and logic directly on the blockchain. Data is being stored and shared between
participants using two different concepts:

• Message exchanges: Messages that are attached to choreography tasks, and are
either sent by the task initiator or the task respondent, are represented by blockchain
transactions. Due to the circumstance that all transactions are automatically
attached to the immutable event log of the blockchain, all participants can verify
the state of the choreography at a later point in time. Messages are converted to
byte sequences by the client to allow arbitrary data structures being exchanged.

• Data objects: The rather artifact-centric approach of this concept introduces so-
called data objects in the form of variables inside choreography smart contracts.
This gives participants more flexibility when sharing information for the progression
of the choreography. The append-only data structure that a blockchain is, allows
participants to verify if necessary information was shared and if the data objects
have been in the correct state to allow a specific state transition, for example.

To ensure correctness of the choreography, smart contracts directly embed the control
flow logic derived from the choreography diagram. The extension, however, also allows
participants to define custom logic in the form of script tasks. These script tasks can
access message logs or data objects to check if a task can be completed or if the next task
can be started. To enable authorization management and verify if certain participants
are allowed to perform state transitions in the choreography, the authors proposed using
an additional smart contract called the participants registry where each participant has
to be registered prior to choreography instantiation.

Even though the proposed concept performs well regarding correctness of the choreography,
traceability, and run-time verification, flexibility is still an issue due to the immutability
of smart contracts and, thus, not being able to extend or change data objects once
deployed and in use. Even though patterns exist for changing data objects (as proposed
by Lichtenstein et al. [LSNW20]), the integration is still an open problem due to the
tight coupling of logic, data objects, and smart contracts. Another issue discussed
by the authors is the current limitation of smart contracts not being able to trigger
tasks automatically, which is a valuable property, given that the choreography relies

38

3.2. Concept Comparison

on recurring tasks such as monthly settlements. These problems and the privacy and
confidentiality issues of storing data on-chain still give opportunities for future work and
improvements.

3.2 Concept Comparison
The concepts mentioned above are compared with the concept proposed in this work by
some of their most distinctive properties in table 3.2. The compared characteristics are
as follows: (1) The execution type of the concept on the blockchain. Compiled solutions
typically generate smart contracts from some descriptive specification language like BPMN
or choreography diagrams and automatically deploy them for each instantiation of the
BP. On the other hand, interpreted solutions generate scaffolding smart contracts, deploy
them once, and get populated through transactions that inject the BP configuration. (2)
The architecture property characterizes which kind of blockchain is required to allow
optimal execution of BPs. (3) The platform specifies for which blockchain implementation
the concept was proposed and primarily tested on. (4) The privacy property categorizes
if data privacy is ensured, and if so, lists which mechanism is employed, and (5) often
tightly entangled with the previous property, the on-chain property indicates what data
is stored on the blockchain.

Concept Execution Architect. Platform Privacy On-chain
[WXR+16] Compiled Private Ethereum Hashed All
[PSHW20] Interpreted Public Bitcoin Hashed Flow
[KJ21] Compiled Private Hyperledger None All
[RCDF20] Compiled Private Hyperledger Authorized Flow
[SSSJ19] Interpreted Consortium Ethereum None Flow
[LPDGBW19] Interpreted Private Ethereum None Flow
[LBAG21] Interpreted Consortium Ethereum None Flow
[NMK18] Compiled Private Hyperledger None Flow
[LSNW20] Compiled Private Ethereum None All
[LWW19] Compiled Private Ethereum None All
Proposal Interpreted Public Dynamic Preserved Dynamic

Table 3.2: Comparison between different conceptual models and their properties

Most of the aforementioned related work, as well as concepts not listed above, heavily
rely on BPMN, choreography diagrams, or extensions to one of both to derive their
data models and smart contracts. However, because BPMN does not provide any native
elements for blockchain integration, some non-functional and functional requirements
can not be derived directly. Therefore, some concepts must rely on assumptions that
hinder generalization. Nonetheless, recent years have shown a trend from compiled
approaches towards interpreted approaches that partially extend existing standards such
as BPMN to allow easier integration of trusted third parties in the form of blockchains
(an example being [LWW19]). Another interesting observation from table 3.2 is the rather

39

3. Related Work

homogeneous distribution of integrated blockchain platforms. Most concepts either rely
on Ethereum or Hyperledger Fabric due to their capabilities of allowing distributed code
execution in the form of smart contracts. However, these platforms do come with certain
limitations. Two of the most important ones are the transaction limit of Ethereum
and the privacy issues of data stored on the blockchain in both cases. A lot of the
related work mentioned tries to circumnavigate both issues by either employing private
or consortium blockchains. Yet, these kinds of architectures have proven less reliable
than their public counterparts. The amount of maintenance and setup required, the fact
that blockchains still have not fully arrived in the industry and commerce sector, and
the lack of experts in this domain led to a decline in the usage of blockchain solutions.
Furthermore, private and consortium blockchains are more prone to be attacked due to
the overall lower amount of participants11 [Bro19]. Over time, concepts that become
less trustworthy run into privacy and confidentiality issues. Even though some concepts
rely on hashing algorithms to ensure some degree of privacy, most of them do not. This
might not be an issue if only the state of the overall choreography is shared between
participants on the blockchain; it becomes an issue, however, if the orchestration state or
data is visible on-chain. Some data or internal BP workflows want to be kept concealed
by some participants. Reasons for this can be versatile [PL09]. Thus, rendering concepts
that share such data on-chain unacceptable.

3.2.1 Research Question 1
To answer the first research question:

What is the state of the art for BCT-based state machines for business process
engines?

Blockchains, and their integration into BPs, are hot topics in the research community
right now and are gaining ever more attention due to their huge potential [MWA+18].
However, a lack of awareness for privacy and confidentiality issues is widely present in a
lot of concepts and proposals. Even though some ideas arise on how this problem can
be solved [CFR18], most related work tackles it by employing private and consortium
blockchains. This leads to solutions where the entire state, the BP itself, and sometimes
even highly critical data, is kept on the blockchain only to leverage on its traceability
and immutability properties. To do so, the state of the art heavily relies on two primary
concepts: (1) either by compiling a specification (mostly in the form of BPMN) to smart
contracts and deploying them on the blockchain for each instantiation of the BP or
by (2) deploying scaffolding smart contracts that are later on saturated with the BP
configuration using blockchain transactions. Especially the latter one has gained more
attention in recent years due to the cheaper instantiation cost. Both the compiled and

11In a three-party consortium or private blockchain, it is enough if the participant with the most
computing power, or the most at stake, wants to corrupt the entire network. Scenarios like these, again,
require trust between participants and thus nullifies most of the advantages of blockchains [LSP02].

40

3.2. Concept Comparison

the interpreted concepts create a state machine on the blockchain that is as close to the
BPMN specification as possible to allow (more or less) direct mappings between both
of them. The execution state of the BP, as well as related and shared data (especially
in artifact-centric solutions), is stored on the blockchain in most of the concepts and
advanced with each process step as described in the related work chapter before.

Nonetheless, a gap was identified in the state of the art that requires a traceable and
immutable solution leveraging on the properties and advantages of public blockchains,
that ensures data (and partially even internal workflow) privacy and confidentiality.
The upcoming sections discuss and propose a new concept for a partially off-chain
state machine that builds upon related work and well-established software engineering
approaches to fill the abovementioned gap in the state of the art.

41

CHAPTER 4
Time-travelling State Machines

This chapter briefly introduces the methodology used to derive an applicable concept
for a BCT-based Time-travelling State Machine (TTSM) that allows verification of
BPs. Furthermore, it discusses why this methodology has been chosen and what kind
of tailoring has been applied. Afterwards, the proposed concept, as well as its software
architecture, are described in detail and design decisions are discussed. The remainder
of this chapter focuses on the implementation of a prototype that is later on used for
evaluation of the concept.

4.1 Design Science Methodology
The concept proposed in this work was designed and developed using the design science
methodology for information systems research described by Hevner et al. Design science,
sometimes referred to as design research, is a constructive research methodology rooted in
engineering and the study and evaluation of the artificial. It fundamentally is a problem-
solving paradigm that aims to change the existing by creating artifacts such as constructs,
models, methods, and instantiations and by providing utility. Produced artifacts are
evaluated against metrics and use cases derived from a predefined (organizational) problem
space in a so-called design cycle [HMPR04]. According to Denning et al. [Den97] and
Hevner et al. [HMPR04], design science seeks to

“create innovations that define the ideas, practices, technical capabilities,
and products through which the analysis, design, implementation, man-
agement, and use of information systems can be effectively and efficiently
accomplished.” [HMPR04, p. 76]

The problem space of efficient privacy-preserving BCT-based state machines that allow
traceability, as well as the search process paved by related literature and existing business

43

4. Time-travelling State Machines

process engines, makes design science a well-fit methodology to create a novel approach
for a TTSM. The following outlines the need for a BCT-based TTSM approach from an
industrial and a research-based point of view. Furthermore, for better reproducibility
of the results, the upcoming sections give an overview of the tailoring performed to the
design science methodology and its guidelines, as described by Hevner et al. [HMPR04],
in order to exactly fit the needs of this work.

Guideline 1: Design as an Artifact

This work produces two distinct artifacts during the course of its design science research
approach. The first one is the concept proposed for a privacy-preserving BCT-based
TTSM that allows verification of (inter-organizational) workflows and business processes
in the form of an abstract software architecture and design. The second artifact is the
instantiation of the aforementioned model in the form of a prototype system also used
for evaluation.

Guideline 2: Problem Relevance

As stated above, recent years have not only shown an ever-growing interest in BCTs
alone but also in their usage for managing workflows and BPs due to some favorable
characteristics such as fault tolerance and traceability. Nonetheless, limitations of
BCTs, like block size limits, transaction limits, cost, privacy concerns, and a lack of
experts, hinder businesses from adapting and using such technologies in the long run.
However, they still recognize the potential of BCTs to replace trusted third parties in
inter-organizational BPs in order to not only reduce capital expenses but also create a
mutual trust basis for everyone to equally participate in regardless of size or resources
available [MWA+18, VXBP19, PL09, WXR+16, Bro19, EEA22].

Guideline 3: Design Evaluation

In chapter 5, the prototype, and thus the proposed concept, are evaluated against
simplified real-world BPs (e.g., the facility maintenance use case) to demonstrate its
practical utility. Furthermore, qualitative and quantitative software engineering testing
methodologies were employed to allow better reproducibility of results in future work,
including analytical, experimental, and descriptive evaluation methods.

Guideline 4: Research Contributions

The research contributions of this work are the design artifacts. This includes the proposed
concept for a TTSM introduced in section 4.2 and the prototypical implementation as
instantiation in section 4.3. Additionally, future work can rely on the introduced BPs for
evaluation.

44

4.2. Proposed Concept

Guideline 5: Research Rigor

This work is based upon a formal background in BCTs, distributed systems and state ma-
chine replication [SLHK19, Nak09, Woo22, FLP85]. The formal semantics of statecharts
allow for sophisticated analysis and evaluation of the proposed concept [NMK18]. BPMN
and choreography diagrams are employed as a common basis for BP specification. Further-
more, chapter 3 provides an overview of state-of-the-art knowledge regarding formalism
and pragmatism around workflow execution and state machines on the blockchain.

Guideline 6: Design as a Search Process

The BCT-based TTSM for verifiable BPs concept is designed by (1) performing a related
work literature review of state machines and workflow execution engines on the blockchain
in chapter 3. This step is followed by (2) deriving simplifications of real-world BPs using
requirements engineering methodologies such as requirements elicitation [CK92] in the
form of problem scoping, understanding, and visualization using BPMN and choreography
diagrams. Thereafter, the (3) iterative search for an applicable concept is performed by
evaluating different prototypical implementations for their utility against aforementioned
BPs, deriving software architecture diagrams to perform architectural analysis as well as
using other analytical and experimental methods mentioned later on in chapter 5.

Guideline 7: Communication of Research

The artifacts produced are described in detail in sections 4.2 and 4.3. Additionally,
chapter 5 provides context in the form of a simplified real-world scenario that the
proposed concept is being evaluated against. This enables technology-oriented audiences
to implement and extend upon the proposed concept. Furthermore, the problem statement
has been described in detail in chapter 1 to allow management-oriented audiences to
determine if organizational resources should be committed.

4.2 Proposed Concept
Based on the aforementioned gap in the state-of-the-art in section 3.2 and the described
motivational scenario of a building administrator contracting a facility maintenance
service provider in section 2.4.1, a novel approach for a BCT-based TTSM1 that allows
time-travel verification of BPs is proposed by this work. The concept aims to provide a
(partially) privacy-preserving state machine that allows the definition and instantiation
of workflows and the transition between states of workflows while ensuring consistency
and traceability by leveraging BCT. Furthermore, it aims to provide a straightforward
interaction mechanism for past workflow states. In other words, participants should be
able to easily verify the correctness of a workflow’s past states and state transitions.

1Later on only referred to as TTSM.

45

4. Time-travelling State Machines

The main objective of this chapter is to describe a TTSM that enables off-chain workflow
execution that smoothly integrates with existing blockchain solutions to make use of
some of the properties of BCTs. Additionally, the concept should be integratable into
existing systems of record. Before describing the concept in more detail, the goals and
non-goals are clarified. This chapter does not aim to describe a concept:

Code Description Reason
NG1 for a blockchain, layer-2 rollup or smart contract BCT
NG2 that itself ensures safety and liveness properties BCT
NG3 that itself ensures (Byzantine) fault tolerance BCT
NG4 that itself establishes consensus between participants BCT
NG5 for validating supplementary rules OoS
NG6 that determines how data is persisted on the blockchain OoS
NG7 that translates descriptive diagrams to TTSM configurations OoS
NG8 that determines and ensures the identities of participants OoS

Table 4.1: List of non-goals for the proposed concept

Some of the declared non-goals mentioned above originate from properties blockchains
ensure, and the TTSM concept only leverages upon (indicated by reason BCT). Other
non-goals are simply out of scope (OoS) of this work due to their significant complexity.

Instead of utilizing smart contracts or EDCCs that are directly executed on the blockchain,
the proposed concept aims to create an abstraction layer for these kinds of technologies
to make the system blockchain agnostic. This allows the usage of the most suitable
blockchain for a given workflow. Furthermore, it permits developers to integrate yet-
to-be-developed blockchains or layer-2 rollups without being vendor-locked. Not only
does this increase the flexibility of possible implementations tremendously, but it also
helps mitigate future security issues. In case of a newly discovered security threat in
the currently used blockchain, developers can decide at any time whether the blockchain
used is still suitable or if they might change to newer versions or entirely other solutions.

This, however, requires the TTSM to keep track of its workflows while still having to
provide traceability, immutability, consistency, and persistence properties at the same
time. One part of the solution to this challenge is to retain all events that ever occurred
in a persistent storage. Thus, an event-driven software architecture is proposed where
its event bus is used for communication between modules. Each event dispatched into
the event bus is permanently stored. Modules interested in these events subscribe to the
event bus and execute their domain-specific logic (e.g., performing validation or creating
statistics). The results are either directly fed back into the event bus as events for usage
in other modules or kept separated from the rest of the workflow (e.g., in the form of
logs inside a logging system2).

Figure 4.1 shows a software architecture diagram that visualizes the aforementioned
macro software architecture of a TTSM. To allow for a better separation of concerns, the

2Using Prometheus or the Elastic Stack, for example (links accessed on 2022-08-14)

46

https://prometheus.io/
https://elastic.co/

4.2. Proposed Concept

architecture is split into four modules where each module is fully encapsulated by itself
and only loosely coupled with others.

• The Workflow module is solely concerned with the semantics of workflow execution,
conversion from arbitrary process models to statecharts and optimization of such.

• The Rules module enables supplementary (pragmatic) rules that might even span
over the entire lifetime of a single workflow instantiation.

• The Persistence module permanently stores all workflow commands and events3,
that ever occurred during workflow execution.

• The Consistency module communicates with the blockchain and is the only module
that also communicates with other participants in the workflow.

Each module materializes its own view of the data dispatched over the event bus and
can consist of multiple sub-components if necessary. The architecture shown in figure 4.1
can technically be extended by any number of modules that the specific domain requires.

Figure 4.1: Macro architecture and event store design of a TTSM.

In this software architecture, modules only communicate with each other over the event
bus using predefined interfaces. It not only tries to provide a clear separation of concerns
but also aims to keep stuff that changes together in close proximity to each other to

3Commands are actions that the users actively dispatch (e.g., “create workflow”), while events are
actions that passively occurred during the execution of a software artifact (e.g., “workflow checked”).
Commands are typically in present-tense, while events are in past-tense [Car22].

47

4. Time-travelling State Machines

improve maintainability and overall system stability. Larry Constantine, a US software
engineer, shaped Constantines law, being that:

“A structure is stable if cohesion is high, and coupling is low.” [New19, p. 16]

To better illustrate the proposed concept, the remainder of this section follows along the
life cycle of a single command. Commands include the creation of workflow definitions,
the instantiation of workflows, and state transitions. Figure 4.2 outlines the steps that
each TTSM command has to successfully pass before consensus between participants can
be reached, starting with the syntax and semantic check.

Figure 4.2: Life cycle of a command dispatched in a TTSM.

Similar to figure 4.2, the upcoming subsections begin with the conversion of business
processes to statecharts and a check for syntactic and semantic correctness of a command.
Afterwards, the rules module verifies if the command passes the employed pragmatic rules.
This is followed by the distribution and persistence of the command in each participant’s
TTSM. Eventually, when all participants checked and accepted the command, consensus is
reached, and the system devolves into a consistent state. Note that the command life cycle
is similar to the data flow in a TTSM, where a command starts at the workflow module,
passes through the rules module, and eventually reaches the consistency module. All while
leaving its footprints (in the form of events) on the event bus inside the persistence module
with each step. If module internal processes of defining new workflows, instantiating
workflows, or performing state transitions diverge from the presented life cycle, this is
stated explicitly.

48

4.2. Proposed Concept

4.2.1 From workflow models to statecharts
Once the participant’s chosen command arrives at the workflow module, it must be con-
verted into a statecharts-compliant format. Statecharts are used as the TTSMs internal
representation of workflows due to a vast amount of advantages, compared to Finite-State
Machines (FSMs), for example, regarding workflow execution. This not only includes
extensions for concurrency4, but also communication between multiple participants using
events [Har87]. Furthermore, statecharts are standardized in [BAA+15], which allows
developers to create appropriate tooling5 and the formal definition makes composition,
optimization, and evaluation of statecharts more precise [NMK18]. Additionally, trans-
formation algorithms from UML sequence diagrams to statecharts [ZHJ04] and from
process models to statecharts [NMK18] have been proven viable. Given the concurrency
properties of statecharts, even BPMN and choreography diagrams can be converted;
however, a proof of semantic completeness for these transformations is still outstanding.
Given the capabilities of statecharts and the abstraction that this transformation provides,
a magnitude of modeling languages can potentially be integrated into a TTSM. For
simplicity reasons, and due to the complexity of such transformations, the remainder
of this work (including the prototypical implementation in section 4.3) assumes that
participants only input statecharts compliant workflows and state6.

After the transformation, the resulting statecharts are fed into the optimizer. Given a
list of optimization algorithms, the TTSM must guarantee that the specified algorithms
are executed in order. A simple example of how this could be achieved is given in
algorithm 4.1.

Algorithm 4.1: Ensure optimization algorithm order
Input: An un-optimized statechart s, and a list of optimization algorithms O
Output: Optimized statechart s′

1 s′ ← s;
2 forall o ∈ O do
3 s′ ← o(s′);
4 end
5 return s′;

Optimizers that ignore the given order can cause undesirable side effects because opti-
mization algorithms have no means of being commutative7. The optimizer only runs
once per workflow definition and always returns valid statecharts. There is no limitation
to the amount of optimization performed; however, the semantics of the output s′ should
always be the same as the semantics of the input s. An example of such an optimization

4An essential property for workflow execution because activities can be performed in parallel or even
non-deterministic.

5e.g., https://xstate.js.org/ (accessed on 2022-08-15)
6Extensions for other formats (like BPMN) are highly encouraged to be part of future work.
7i.e., o1 ◦ o2 ̸= o2 ◦ o1

49

https://xstate.js.org/

4. Time-travelling State Machines

algorithm was published by Nakamura et al. [NMK18] (see related work section 3.1.9).
Eventually, the optimization step aims to reduce the number of events emitted to the
blockchain to reduce overall cost. Optimization algorithms themselves, however, are out
of scope of this work. Figure 4.3 shows the described data and process flow inside the
workflow module as sequence diagram.

Figure 4.3: Sequence diagram for the creation of a workflow definition inside the workflow
module.

Once optimization is complete, the workflow module checks if the given statecharts
configuration is valid. Similar semantic checks are employed for workflow instantiations
as well as state transitions because the state of the entire system and all workflows
are known at any time and exposed by the persistence module. If the command is not
allowed in the current state of the system or the workflow, it is rejected. Otherwise, it is
forwarded to the event bus.

4.2.2 Distinction of workflows and instantiations

As depicted in figure 4.1, a TTSM is separated into four distinct modules. Clients,
to be more precise workflow participants, solely interact with the system by talking
to the exposed API of the workflow module. This intended abstraction aims to hide
implementation details such as the used blockchain in the consistency module or the
attached rule services in the rules module. A TTSM workflow module exposes three
fundamental commands that participants can trigger at any point in time: (1) participants
can propose an entirely new workflow definition with new activities and interactions
between participants in the case of a choreography, (2) they can launch a new instance
of a previously defined workflow definition and (3) they can initiate a state transition
on a previously launched workflow instance. The separation of workflow definitions and
workflow instantiations allows the association of data to a specific instantiation and
thus improves flexibility [Wes12a]. This is similar behavior to a lot of artifact-centric

50

4.2. Proposed Concept

approaches such as the ones proposed by Ladleif et al. [LWW19] or Lichtenstein et
al. [LSNW20]. Furthermore, the separation of workflow definitions and instantiations
has been shown to be rather advantageous compared to other approaches in interpreted
BCT-based workflow execution engines due to the smaller footprint left behind on the
blockchain itself [SSSJ19, LPDGBW19, LBAG21].

4.2.3 Persisting system state

After the successfully converted and optimized statecharts have been returned to the
user for further insight, a single event is dispatched for each action to be performed
(defining a new workflow, instantiating a previously defined workflow, and performing
state transitions on a workflow instance) to the persistence module. The persistence
module stores the entire state transition event, including its payload if present, without
further processing. Technically, this allows participants to implement and add custom
storage solutions without having to modifying the TTSM itself. For large payloads, for
example, state transition events may only want to reference hashes to more domain-specific
databases8 [XWS19, ET17].

Storing state transition events (and commands in general) persistently is of utmost
importance for a TTSM. All kinds of events dispatched in the system represent a delta ∆
(or difference) that advances a particular workflow state and, therefore, the overall system
state9. Besides delta events, there also exist fact events that tell the system in which
state a particular sub-state has been at a certain point in time. Unlike delta events, fact
events are not used in TTSMs because they can only be undone by entirely deleting them.
On the other hand, when using delta events, one can define an inverse operation10, which
allows jumping forwards and backwards in time without modifying the event log itself.
Therefore, the sum of commands (including state transitions or workflow instantiations)
represents the current state of the system [Bel22, BDM+13].

So-called event-driven software architectures not only allow time travel but also promote
loosely coupled sub-systems and enable even better scalability. In other words, dispatched
events do not require to be captured and processed by anyone. This allows modules
to write events on a more fine-grained level and only consume data that is required.
Additionally, due to the already employed event bus system, event sourcing can be used
effectively and efficiently to create projections from the stored events and thus derive not
only workflow critical information (such as the current state of a workflow instance) but
also meta-data around the execution of workflows and the TTSM itself. Furthermore,
the event bus allows TTSMs to be split into multiple microservices11 if necessary. Not

8Such as Speckle for Building Information Modelling (BIM) data or the Interplanetary File System
(IPFS) [Ben14] as content-addressable storage (links accessed on 2022-08-21)

9Imagine a counter that adds one to the current value each time the user presses a button. In this
scenario, +1 is the ∆ to the current state, which in this case, is a counter c that is initialized with 0.

10Recall the counter example from before. The inversion of the +1∆ would be the −1∆.
11One microservice per module.

51

https://speckle.systems/

4. Time-travelling State Machines

only can this improve scalability and availability, but also maintainability of the entire
system dramatically [BDM+13].

Due to the already employed event bus, a TTSM aims to strictly separate between actions
that modify the state and actions that solely accumulate and read the state to improve
security and flexibility. Therefore, the persistence module embraces the Command-Query
Responsibility Segregation (CQRS)12 pattern as one of its design principles. At its core,
CQRS aims to separate database reads from database writes (i.e., a question should not
alter the state of the system) [Mey88]. Separating reads from writes further improves
scalability because each state transition allows an arbitrary payload with an arbitrary
data structure to be attached. This means that the output of the event sourcing stage (i.e.,
the current or any past state of a workflow instance or the system itself) can permanently
be stored using a suitable database technology that is optimized for reads, for example.
Event sourcing, combined with CQRS, furthermore enables asynchronous communication
with external services. To put this into the perspective of a TTSM, participants can
advance the state independently from a blockchain’s required block transaction time
(which can be up to 20 minutes on some blockchains [Nak09]). Nonetheless, the system
must expect rollbacks if workflow instances are advanced without confirmation from the
rules or consistency module.

4.2.4 Travelling through time
The persistence module is the part of the system that enables time-travelling due to its
event sourcing and CQRS capabilities. If participants want to check if a specific event
occurred or a workflow instance has fulfilled a particular property, all they have to do is
(a) either search for this specific event by traversing all dispatched events forwards or
backwards or (b) replay all previously dispatched events until a certain point in time is
reached. The following exemplary list of events is used to better visualize this concept:

E1 (12:00) – Create workflow W

E2 (12:10) – Create workflow instance I of workflow W

E3 (12:20) – Perform state transition from state A to state B on I

E4 (12:30) – Perform state transition from state B to state C on I

If participants want to know, what the state of workflow instance I was at 12:25, they
have to replay all events that happened before or precisely at 12:25 in the correct order.
Given the example above, this includes E1, E2, and E3. If participants want to know if
a state transition from state A to state B happened prior to the state transition from
state B to state C, they have to go back in time and check if they can find appropriate
events in the expected order (i.e., E3 has to have happened before E4).

12https://en.wikipedia.org/wiki/Command-query_separation (accessed on 2022-08-21)

52

https://en.wikipedia.org/wiki/Command-query_separation

4.2. Proposed Concept

To allow these kinds of time-travelling capabilities, the TTSM and the persistence module
have to ensure causal ordering for all events dispatched. This means that some event A
has to happen before another event B can even occur - they are causally ordered [Bra12].
In the example given above, event E2 can only occur after event E1 has occurred because
the creation of a workflow instance requires a workflow to exist in the first place, and
thus, they are causally linked. A formal representation of this circumstance is given in
equation 4.1.

A −→ B (4.1)

Since TTSMs ensure causal ordering, reliable transitive relations can be derived. The
persistence module knows that certain events must occur before others. An example of
such a transitive relation of events is given in equation 4.2:

(A −→ B ∧ B −→ C) =⇒ A −→ C (4.2)

Hence, one can express the transitive relation of events in a TTSM as a relation T over
the set of events E in first-order logic as follows:

∀a, b, c ∈ E : (aTb ∧ bTc) =⇒ aTc (4.3)

This is an assumption that the TTSM concept and its corresponding persistence module
rely upon that allows consistent replaying of events, enhanced rule checking, and more
in-depth optimizations before and during workflow execution.

4.2.5 Validating workflow rules
After the persistence module has eventually stored the events, the rules module consumes
them. As mentioned above, this module enables participants to create supplementary
and often more pragmatic rules for the entire workflow. In other words, when the
workflow module checks if state transitions can be performed based on given statecharts,
the rules module checks if state transitions can be performed based on previous state
transitions and payloads attached. Since the rules module can directly communicate
with the persistence module, it can also time-travel and check, for example, if certain
state transitions have been performed or if the payload, which was previously attached
to one of the state transitions, fulfills certain criteria13.

As depicted in figure 4.1, the rules module communicates with external rule engines via
a predefined interface. This interface allows the registration of rule engines that are
triggered as soon as the participant proposes a new workflow definition, workflow instance,

13Specifying these criteria is up to the participants themselves, because they are very much domain
specific.

53

4. Time-travelling State Machines

or state transition. The rules defined by the rule engines must all be unconditionally
true. If one or more rules cannot be checked due to unexpected circumstances (e.g., a
network timeout or the rule check returns an incomprehensible result), the rule check is
evaluated to false. A more formal representation can be found in equation 4.4. If the
set of registered rule engines R is empty, the rules valid function RV (t) is immediately
evaluated to true:

RV (t) = ⊤ ∧
r∈R

check(r, t) (4.4)

Each successful, failed, or erroneous response of check(r, t) is re-emitted to the persistence
module as a new event to allow for better traceability. This allows the executing
participant to better trace configuration or network errors if, for example, one registered
rule engine always fails for one specific state transition. After a response has been received
from all registered rule engines, another event has to be emitted, which is created by the
rules module, to indicate that the action to be performed is indeed allowed according to
all previously defined rules. An exemplary algorithm for checking a state transition is
provided in 4.2.

Algorithm 4.2: Rules checking algorithm
Input: A state transition t, and an unordered set of registered rule engines RE

1 a ← ⊤;
2 forall re ∈ RE do
3 v ← check(re, t);
4 if v is valid then
5 emit(valid(re, v, t));
6 else
7 a ← ⊥;
8 emit(invalid(re, v, t));
9 end

10 end
11 if a = ⊤ then
12 emit(all_valid());
13 else
14 emit(some_invalid());
15 end

In this algorithm, the variable a is used as a tracking variable to flag if at least one rule
check failed. If this is the case, the function emit writes the event some_invalid to the
persistence module to inform other modules of the failed rule check and allow better
traceability later on. Compared to the optimizer, which is part of the workflow module,
the rules module does not have to ensure ordering. This is because the overall validity

54

4.2. Proposed Concept

check of a state transition shown in equation 4.4 is commutative due to the properties of
the logical and (∧) operator.

Building upon the definition of the rules module, the number of events emitted per action
can be computed using the total amount of rule engines registered |RE|. Each rule engine
produces exactly one event, and an additional event is dispatched by the rules module
after all rule checks have been performed. This circumstance is depicted in equation 4.5:

ECrl(RE) = |RE| + 1 (4.5)

4.2.6 Sending workflow commands and ensuring consistency
Once the rules have been checked and the appropriate events dispatched, the consistency
module consumes these follow-up events. In a TTSM without a rules module (technically
possible due to loose coupling), the consistency module might directly consume workflow
events. One of the requirements that a consistency module in a TTSM has to fulfill is
multi-chain support because of the rapidly changing ecosystem of BCTs. Therefore, it
has to provide some abstraction that allows the usage of different consistency strategies.
In a TTSM, this might be achieved by relying on the behavioral strategy design pattern.
This pattern allows the exchange of an algorithm during run-time without changing the
interface [Gei15c].

Combined with the approach proposed by Nakamura et al. in [NMK18], where a shared
state machine and one for each participant are derived from a given workflow definition,
and the approach proposed by Ladleif et al. in [LFW20] for multi-chain support in
workflow engines, the consistency module enables the usage of different blockchains not
only in different workflow instantiations or definitions but also depending on the payload
attached to state transitions, for example. Therefore, if participants agreed upon using
different blockchains for different message types prior to workflow execution, the module
can choose the applicable strategy implementation during runtime. As an example, the
module might rely on an Ethereum-based strategy for larger BIM models, where only the
hash of the model and a signature that proves that all relevant participants have seen the
model is stored on the blockchain, while it might switch to a Baseledger-based strategy
if documents must be proven correct using zero-knowledge. This, however, requires
participants to agree on certain BCTs for certain use cases.

If an appropriate strategy has been chosen, the consistency module dispatches the message
to all participants involved in the state transition. However, all messages must have at
least one participant as recipient. This ensures that the internal workflow activities of
one participant are not exposed to other participants. In such a case, the consistency
module might even choose a noop14 strategy to immediately feed back the message to
the sender to prevent any network utilization at all and, thus, ensures separation of the
shared state machine from the participants one.

14no operation

55

4. Time-travelling State Machines

Even though the strategy implementations can diverge, the messages exchanged always
follow a strict format which is depicted in figure 4.4.

Figure 4.4: Format of a consistency message exchanged by participants.

This rather simplistic configuration is split into two distinct sections: (1) the message
header, which contains a unique type identifier in the form of a text string and a
commitment reference that references the location where the message is stored (e.g.,
a ZKP when using the Baseline Protocol, or a transaction reference for Ethereum or
Bitcoin). (2) the message data contains an arbitrary payload using an arbitrary data
structure. This might be a Base64-encoded file or even just some JSON data, for example.
Depending on the message, the payload block might also contain meta information. In
the case of a state transition, it stores not only the attached payload but also a unique
identifier for the workflow instance on which the state transition is performed upon, the
current state, the transition event name, and the expected state. Figure 4.5 shows an
exemplary setup of multiple TTSMs to illustrate message flow between participants:

Figure 4.5: Setup of multiple TTSMs with counterparties interacting with each other.

Every participant has her own instance of a TTSM. Each TTSM communicates with
other TTSMs by sending messages through the consistency module (by establishing TCP
connections, for example). It is also the only module that directly communicates with
the blockchain, in order to provide data consistency between participants.

56

4.2. Proposed Concept

4.2.7 Processing workflow commands from other participants
After a connection has been established (in one way or the other, depending on the
implementation of the consistency module), a message has to be dispatched to all relevant
participants of a state transition. Participants that receive this message dispatch an
internal event containing the payload, the action to be performed on the workflow instance,
and the commitment reference (see section 4.2.6). This ensures that all participants have
undeniable proof of what happened in which order.

It is important to notice that the internal events of the TTSM used in the persistence
module are NOT the same events (or messages) dispatched in the consistency module
and transmitted (over the blockchain) to other participants. For more complex business
processes, this enables that not every single process step (including internal activities)
must be written to the blockchain. This is a design constraint of the TTSM proposal.
Therefore, there can only be, at most, as many consistency events dispatched as there
are persistence events. In other words, each consistency event dispatched must have at
least one corresponding internal persistence event being dispatched afterwards. However,
not every internal persistence event must be distributed to all other participants. This
circumstance is depicted more formally in equation 4.6, where CECtotal refers to the
total number of consistency events dispatched, and PECtotal to the total number of
persistence events processed internally by the TTSM.

CECtotal ≤ PECtotal (4.6)

After receiving the message and converting it into an internal persistence event, each
TTSM of each participant has to perform two checks:

• Syntax and semantics verification: This check is performed by the workflow
module on the transmitted data. This ensures that no incorrect state transitions,
workflow definitions, or workflow instantiations can be injected by potentially hostile
participants.

• Rules verification: The rules module, if present, has to perform a pragmatic
verification of not only the transmitted data and its payload but also if the command
is allowed in the current context regarding previously performed state transitions
and their payloads. As mentioned afore, the rules module has the ability to
time-travel to perform these checks.

This two-step process is the same for every command performed, even if it only regards
internal workflow activities. Therefore, a participant sending a command to other
participants has to perform the syntactic, semantic, and rules verification twice. Once
before the consistency module transmits the command to other participants and a second
time after receiving her own command. This redundant verification check ensures that
commands are correctly written to the blockchain and transmitted over the network.

57

4. Time-travelling State Machines

Furthermore, it guarantees consistency because all participants work with the same
commands and payloads, regardless of being sender or receiver. After verifying the
command, participants generate an acceptance or rejection response. This response must
be sent to all involved participants.

• Acceptance: The participant accepts the command and advances her own TTSM
accordingly.

• Rejection: The participant rejects the command because either the syntax and
semantics, the rules check, or both have failed. Denying a command restores the
previous state.

If neither of both responses is sent, other participants cannot further advance their state.
Handling these error cases is up to the implementation. Notice that these acceptance
or rejection responses do not wait for user input. The response is entirely determined
by the TTSM internally. This means that TTSMs do not directly support user-based
decisions in workflows (e.g., by asking a user in an appropriate UI if she accepts a state
transition given a certain payload). However, this is entirely by design. Such user-based
decisions must be modeled as part of the workflow definition itself. Statecharts, and
other modeling languages that can be transformed to statecharts (such as BPMN, for
example), already include decision elements as an integral part of their specification.
Therefore, user input must be handled purely declaratively on the workflow definition
level by the participants themselves and is not the responsibility of the TTSM. In other
words, if a document must be shared or a decision has to be made, an applicable gateway
or task must be added to the workflow.

4.2.8 Eventually reaching consensus
Once a response has been sent by an involved participant15, she has to wait until all other
participants have sent their responses as well. A command that concerns N participants
produces at most N responses. At this point, the TTSM has to handle one of three
scenarios:

• Acceptance from all participants involved: All participants accepted the
command and advanced their state accordingly. Thus, consensus has been reached,
and the execution of the command is complete.

• Rejection from at least one participant involved: One or more participants
rejected the command and restored their previous state. Thus, all other participants
must also restore their previous state to assure consistency across all parties. In
other words, a rejection from at least one participant rolls back the entire command
for all participants involved.

15Notice that the distinction between command sender and receiver is no longer relevant at this point.

58

4.2. Proposed Concept

• No response from at least one participant involved16: This work is not
concerned with this case in particular because it highly depends on implementation
details and non-functional requirements such as availability, reliability, resiliency,
or fault tolerance, for example.

Given these three scenarios, especially the second one is prone to attacks from hostile
participants because they can deny a command infinitely many times. This threat,
however, is more of a theoretical attack. Similar to the Nothing-at-Stake attack described
in section 2.1.3, hostile participants lose more than their potential victims. Other
participants are fully aware of who rejects and who accepts commands due to the strong
traceability properties of TTSMs. Thus, the credibility of these participants suffers in
the long term.

The algorithm of the consistency module, which determines the outcome of a command, is
rather similar to algorithm 4.2 described in section 4.2.5 used to determine if a command
passes the rules module. The TTSM-consensus algorithm 4.3 is concerned with the first
two scenarios described above:

Algorithm 4.3: TTSM-consensus algorithm
Input: A command c, and the number of involved participants N

1 a ← ⊤;
2 forall i ← 1 to N do
3 r ← next_response();
4 if r is acceptance then
5 emit(accepted(c, r));
6 else
7 emit(rejected(c, r));
8 if a = ⊤ then
9 emit(some_rejected());

10 end
11 a ← ⊥;
12 end
13 end
14 if a = ⊤ then
15 emit(all_accepted());
16 end

Once again, a is used as a tracking variable to flag if at least one participant rejected the
command. In this case, two internal events are emitted: (1) a rejected event that contains
not only the commitment reference but also the participant and the command itself and
(2) a some_rejected event that is immediately dispatched afterwards to indicate that the

16See FLP impossibility result in section 2.1.9.

59

4. Time-travelling State Machines

command must be rolled back and the previous state restored. The algorithm, however,
does not stop after one participant rejected the command. This is because all rejection
responses should also be stored locally as internal events in the persistence module for
better traceability.

TTSMs leverage on the concept of “soft state”, which means that data might be inconsis-
tent between participants for a certain amount of time but eventually reaches consistency
when things have settled [Vog09]. This is due to the handling of participants that do
not respond immediately and the block transaction time of BCTs. However, after all
involved participants accepted the command, consensus has been reached and consistency
archived. Therefore, the order of commands is typically determined by the consensus
algorithm of the chosen BCT. Even though TTSMs have to deal with soft state and
rollbacks of commands, this single source of truth takes care of command ordering and
establishing consistency between all participants.

4.3 Prototype Design
In contrast to the previous section 4.2, this section describes a practical implementation of
the proposed concept that is used for evaluation later on. Notice that not all functionalities
that are theoretically possible in a TTSM are implemented to their full extent in this
prototype because it only serves as proof of concept. The prototype described uses state-
of-the-art technologies and well-established industry standards to show that it is possible
to implement a fully functional TTSM leveraging on existing know-how. The upcoming
sections describe a potential implementation of each module of a TTSM. This diverges
from how section 4.2 described the overall concept because this section focuses more on
implementation details compared to the interoperability of the individual modules. The
prototype described here is available on Zenodo17 and GitHub18. It makes use of the
following technologies:

• Node.js 16.1419: A runtime for JavaScript, built on top of the V8 JavaScript
engine. It is used as an execution environment for the TTSM itself because its
event-based design makes it a good fit for systems that heavily communicate
asynchronously with other systems.

• npm 7.8.020: A package manager for JavaScript and Node.js that handles depen-
dencies using a centralized registry. Furthermore, npm also supports scripting of
smaller tasks and a clear distinction between dependencies required during runtime
and dependencies required during development. This allows bundled artifacts to be
smaller and execute faster.

1710.5281/zenodo.7375788 (accessed on 2022-11-29)
18https://github.com/danielkleebinder/ttsm-prototype (accessed on 2022-11-29)
19https://nodejs.org/ (accessed on 2022-11-29)
20https://npmjs.com/ (accessed on 2022-11-29)

60

https://zenodo.org/badge/latestdoi/521292268
https://github.com/danielkleebinder/ttsm-prototype
https://nodejs.org/
https://npmjs.com/

4.3. Prototype Design

• TypeScript 4.7.421: A strongly typed programming language and superset of
JavaScript developed by Microsoft. It is a well-established industry standard,
and its sophisticated type system enables developers to create stable software for
complex problems.

• NestJS 8.4.722: A Node.js framework that leverages on TypeScript for server-side
applications that aims to be scalable and reliable. The frameworks module system
allows dependencies between modules to be explicitly specified and, thus, creates a
clear separation of concerns. This mechanism is heavily made use of to separate
modules from each other.

• XState 4.31.123: A popular, lightweight FSM and statecharts library for Type-
Script and JavaScript. It is used internally to represent statecharts derived from
workflow definitions and to perform stateless state transitions in workflow instances.
Statelessness is a much-wanted property given the time-travelling capabilities of a
TTSM.

• EventStoreDB 21.6.024: An event-based database that enables event sourcing.
Event databases like these are a perfect fit for TTSMs because they are not only
scalable due to their built-in command-query separation and immutable state, but
they also support time-travel based on previously dispatched events (see section 4.2.3
for more details on why event sourcing and CQRS are used as core concepts in
TTSMs).

• Docker 20.10.1325: A software containerization technology, that allows the
TTSM-prototype to be launched on any system.

The upcoming sections describe, in detail, how these technologies are used to create a
state-of-the-art TTSM, based on the concept proposed in section 4.2.

4.3.1 Workflow Module
The structure of the workflow module, and all modules in general, is determined by
an internal three-layer software architecture, where (1) the presentation layer exposes
the endpoints that users interact with to dispatch commands such as creating new
workflow definitions or performing state transitions on existing workflow instances. (2)
The application layer performs the systems workflow logic, such as converting BPMN
workflow definitions to statecharts or optimizing statecharts. And, (3) the data layer
which is responsible for storing all processed information in an immutable and append-
only event log. Figure 4.6 depicts the software architecture of the workflow module as

21https://typescriptlang.org/ (accessed on 2022-11-29)
22https://nestjs.com/ (accessed on 2022-11-29)
23https://xstate.js.org/ (accessed on 2022-11-29)
24https://eventstore.com/ (accessed on 2022-11-29)
25https://docker.com/ (accessed on 2022-11-29)

61

https://typescriptlang.org/
https://nestjs.com/
https://xstate.js.org/
https://eventstore.com/
https://docker.com/

4. Time-travelling State Machines

Unified Modeling Language (UML) class diagram. The presentation layer involves the
WorkflowEndpoints class that uses the NestJS runtime environment to expose HTTP
REST endpoints using distinct Data Transfer Objects (DTOs)26, that are only available
in the presentation layer itself. The application layer exposes the WorkflowService that
relies on the ConverterService and the OptimizerService to generate TTSM-compliant
statecharts. Finally, the data layer persists the produced internal events by directly
accessing the EventStore. Notice that the arrows are unidirectional between these three
layers. This is a design decision that prevents circular dependencies and enables loose
coupling.

Figure 4.6: UML class diagram of the workflow module of a prototypical TTSM.

The WorkflowEndpoints class also generates a fully fetched OpenAPI definition that is
rendered with Redoc27, a web-based tool, that creates beautiful single page applications
that group and describe exposed endpoints in detail. Generally speaking, the Work-
flowEndpoints class receives HTTP REST commands with endpoint-specific payloads
in the form of DTOs28. These DTOs are then converted and fed forward to the Work-
flowService. Employing such a conversion allows the definition of multiple, independent
endpoint classes, where each endpoint class might satisfy different specifications. This
further simplifies the integration of existing solutions since the WorkflowService class

26Used to decouple the presentation from the application layer and only expose data that the API
consumer requires.

27https://github.com/Redocly/redoc (accessed on 2022-10-29)
28Notice that all DTOs are marked as interfaces in figure 4.6. This is a peculiarity of the chosen

programming language, TypeScript. After compiling TypeScript to JavaScript, the interfaces no longer
exist because JavaScript is a dynamically typed language, and TypeScript, in contrast, is a statically typed
one. Using interfaces instead of classes is, therefore, an optimization that reduces the final application
size.

62

https://github.com/Redocly/redoc

4.3. Prototype Design

independently works with entities instead of DTOs. The endpoints exposed by the
WorkflowEndpoints class, which allow the definition of new workflows, are listed and
briefly described in table 4.2.

Method Path Description
POST /workflows Creates a new workflow and its statecharts.
GET /workflows Returns all workflows.
GET /workflows/{id} Returns the workflow with the given ID.
POST /workflows/{id}/launch Launches a new instance of a workflow.

Table 4.2: List of workflow definition endpoints

Based on the concept of separation between workflow definitions and workflow instan-
tiations in section 4.2.2, workflows must be defined before they can be launched. All
GET endpoints also allow time travel by supporting an additional query parameter called
until that must be supplied with an ISO-based timestamp [ISO04]. With this utility,
participants can trace a workflow definition’s progress, for example. Similar endpoints
are exposed for workflow instantiations listed in table 4.3.

Method Path Description
GET /instances Returns all instances.
GET /instances/{id} Returns the instance with the given ID.
GET /instances/{id}/payloads Returns all payloads of a particular instance.
POST /instances/{id}/advance Performs a state transition.

Table 4.3: List of workflow instance endpoints

After a workflow definition is launched, a workflow instantiation is created. This workflow
instantiation, and its progress, can also be queried using time travel. To further advance
a workflow instantiation (i.e., to perform a state transition), the participant calls the
advance endpoint on the appropriate instance.

Newly created workflow definitions, instantiations, or state transitions, are then forwarded
to the WorkflowService. This service contains the actual logic of the workflow module.
Since, technically, it should be possible to not only allow statecharts for workflow
definitions but also BPMN or choreography diagrams, the WorkflowService has to
choose an applicable converter. Once the workflow definition was forwarded through the
WorkflowService to the ConverterService, the ConverterService determines29 in which
format the workflow is defined and selects the correct converter strategy. The converter
then outputs statecharts, where semantics are the same as the ones previously defined
by the participant. Therefore, the prototype internally only ever has to work with
statecharts rather than supporting a heterogeneous set of workflow definition languages.
Even though it has been proven that transformations from different process definition
models to statecharts are possible [ZHJ04, NMK18], this prototype only implements

29By reading a flag that participants have to add to the workflow definition configuration.

63

4. Time-travelling State Machines

the NoopWorkflowConverter strategy that inputs statecharts and immediately, without
any further transformations, outputs it. This is due to the complexity associated with
converter algorithms; however, it shows the feasibility that different strategies could be
supported. The algorithm for determining which converter to use is given in algorithm 4.4.

Algorithm 4.4: Choosing a converter strategy
Input: A workflow definition configuration w, and a list of converters C

1 forall c ∈ C do
2 if wtype = ctype then
3 return c(w);
4 end
5 end
6 return null;

In the algorithm implemented, ctype represents the supported input type of the converter,
and wtype is the type specified by the participant for this particular workflow definition.
After the conversion is complete, the WorkflowService forwards the generated statecharts
to the OptimizerService. This service then picks the appropriate optimizer strategies,
which are also part of the workflow definition configuration. However, compared to the
ConverterService, the OptimizerService might not only perform a single optimization
algorithm but multiple in a specified order (total ordering is guaranteed by the proposed
TTSM concept). The algorithm for this process is defined in the concept in section 4.2.1
in algorithm 4.1. An exemplary definition of a simple pedestrian traffic light workflow
with appropriate configuration is given in listing 4.1.

{
"config": {

"optimizer": ["noop"],
"type": "STATECHARTS"

},
"workflow": {

"initial": "green",
"states": {

"green": { "on": { "TIMER": "red" } },
"red": { "on": { "TIMER": "green" } }

}
}

}

Listing 4.1: Exemplary workflow definition of a pedestrian traffic light

The prototype only supports the NoopWorkflowOptimizer. It immediately returns the
input statecharts without modifications to show the feasibility of this multi-optimizer
approach. Similar to the converter, optimizers are also rather complex and, therefore,
out of scope of this work.

64

4.3. Prototype Design

The generated statecharts are then fed into the XState library to verify their syntactic
and semantic validity. The library is used to depict the current state of a workflow
instance and enables “stateless” state transitions. In the context of a TTSM, this means
that the workflow module only has to store the workflow model in the form of statecharts,
as generated by the converter and the optimizer, and the current state of the workflow
instance. Note that this “statelessness” also allows easy reconstruction of previous state
machines by time-travelling and extracting the state at another point in time. If a
participant wants to perform a state transition, the state machine is reconstructed by
the TTSM by feeding the workflow model and the current state into XState. If the state
transition on the reconstructed state machine fails, the workflow module responds with
an error.

After conversion, optimization, and validation of workflow definitions, instantiations, and
state transitions, the workflow module, and in this case the WorkflowService in particular,
dispatches a single follow-up event to the persistence module by directly connecting to
the event bus of EventStoreDB. The list of events is given below:

• Client.Workflow.Propose: The participant wants to propose a new workflow
definition for the entire network. This event includes the converted and optimized
statecharts.

• Client.Instance.Launch: The participant wants to launch a new instance of a
previously proposed and accepted workflow definition.

• Client.Instance.Advance: The participant wants to perform a state transition
on a previously launched and accepted workflow instance.

• Client.Instance.TransitionAccepted: Some participant wants to perform a
state transition, and the state machine has already incorporated it locally.

• Client.Instance.TransitionFailed: Some participant wants to perform a state
transition, but the local state machine rejects it due to syntactic or semantic errors.

The connection to the event bus is also used inside the WorkflowService to create
projections of the dispatched events. These projections accumulate all events until a
certain point in time (thus enabling time travel) and return the state of a particular
workflow definition or instantiation.

4.3.2 Persistence Module
The persistence module, as mentioned afore, is an implicit module that is created by the
external EventStoreDB system. Modules that need to communicate with the event bus
or the event store directly connect using the provided EventStoreDB Client30. The client

30https://npmjs.com/package/@eventstore/db-client used in version 3.4.0 (accessed on
2022-11-29)

65

https://npmjs.com/package/@eventstore/db-client

4. Time-travelling State Machines

comes with full TypeScript type support and exposes a list of database command and
query functions that are executed using gRPC31, an open source framework for remote
procedure calls that is optimized for performance and throughput. To write new events
to the event bus, the client provides the appendToStream function. This function takes
the name of the stream and a JSON-based payload (the event) that should be dispatched.
The prototype generates an entirely new stream for each newly defined workflow definition
with the name workflows.{id}, to which associated events are appended. This increases
performance because the overall stream size is reduced and makes reading and generating
projections easier. The system does not have to filter for events with specific workflow
IDs but, instead, can consume the entire stream at once. A similar mechanism has
been employed for workflow instantiations. The prototype generates a new stream with
the name instances.{id} for each newly launched workflow instance. The IDs used for
workflow definitions and instantiations are generated on the client side using UUIDv4.

Another important concept that the TTSM-prototype heavily relies on are projections.
To create projections, the EventStoreDB client exposes the function createProjection
that inputs a unique projection name and the projection source code in the form of
simplified JavaScript. Projections are typically executed for each new event dispatched
to the stream it relies upon. These events are then accumulated32 over time and stored
in a so-called materialized view. Figure 4.7 shows the basic architecture and interaction
between an external connector and the EventStoreDB itself. The unidirectional arrows
denote message flow direction.

Figure 4.7: Persistence module and event store architecture.

The event store reads and persists all events dispatched to the event bus and its streams.
Since projections are executed on the database side as part of the materializer, events can
be directly read from the event store without any network delay involved. Therefore, this
prototype could technically be scaled horizontally for large-scale systems by increasing
the number of EventStoreDB nodes. On the client side, projections generated by the

31https://grpc.io/ (accessed on 2022-09-06)
32Imagine an event called increaseByOne that is dispatched by some client on an irregular basis. A

projection that should count the total amount would then be initialized with value 0 and adds 1 to the
current value each time this event has been recognized.

66

https://grpc.io/

4.3. Prototype Design

materializer can be queried directly using functions like getProjectionResult or subscribed
to get notified each time the projection is updated. The second approach is typically the
preferred way for event-sourcing systems because projections can be stored directly in
appropriate database systems. For example, this might be a relational database system
for workflow definitions or an object storage for large data sets like BIM models. For
simplicity reasons, the prototype queries projection results only on demand.

In case a participant, the rules module, or any other potential client needs to verify a
previous state, time travel is performed locally in the TTSM by accumulating all events
from the beginning until a given point in time. This is only possible because the TTSM
concept guarantees certain properties such as total and causal ordering of events (see
section 4.2.3), or separation between the persistence of the event history and the current
TTSM-state [Pry19].

4.3.3 Rules Module
This module is similar in structure to the workflow module described in section 4.3.1. It
uses a three-layer architecture, namely, presentation, application, and data layer. The
presentation layer exposes the endpoints used to register external rule validation engines,
the application layer performs the asynchronous validation whenever new workflow
definitions, workflow instances, or state transitions are received, and the data layer, which
persists validation results. These three layers are, once again, loosely coupled by the
dependency injection mechanism provided by NestJS. Figure 4.8 shows the UML class
diagram of the rules module.

Figure 4.8: UML class diagram of the rules module of a prototypical TTSM.

The RulesEndpoints class allows a participant that runs a particular instance of the TTSM
prototype to register rule validation engines that are later on invoked by the RulesService
if necessary. These engines are used to validate and verify if workflow definitions can be
created, workflow instantiations can be launched, and state transitions can be performed
under a predefined set of constraints called “rules”. Furthermore, systems like these are
technically able to connect to the persistence module directly and the endpoints exposed
by the EventStoreDB described in section 4.3.2. This enables time-travelling capabilities

67

4. Time-travelling State Machines

inside rule validation engines. Thus, state transition and their payloads, for example,
can be verified against previous state transitions and payloads33. The implementation of
such rule validation engines and how these kinds of systems let participants define rules
are not part of the TTSM itself and are out of scope of this work. Therefore, the TTSM
exposes HTTP REST endpoints that allow the registration of such systems in a loosely
coupled fashion. The endpoints supported by this prototype are listed in table 4.4.

Method Path Description
POST /rules Registers a new rule service with a callback URL.
GET /rules Returns all registered rule services.
GET /rules/{id} Returns the rule service with the given ID.
PUT /rules/{id} Updates and changes details of a particular rule service.
DELETE /rules/{id} Removes a particular rule service.

Table 4.4: List of rules endpoints

Rule validation engines register themselves at the TTSM with a callback URL invoked
later on by the RulesService to validate commands. The endpoints that rule validation
engines must implement in order to be able to interact with the prototype properly are
listed in table 4.5.

Method Path Description
POST /check-new-workflow Verifies, if the given workflow can be created.
POST /check-new-instance Verifies, if the given instance can be launched.
POST /check-state-transition Verifies, if the given state transition is allowed.

Table 4.5: List of required rule validation engine endpoints

As described in sections 4.2.5 and 4.2.7, there are two sources of commands that the
RulesService listens to and sends to all rule validation engines: (1) local commands, that
have not yet been transmitted over the network, and (2) the commands received from
other participants. In both cases, the RulesService subscribes to the event bus of the
persistence module in order to properly validate new workflow definitions, instantiations,
and state transitions. The command, regardless of its source, is then sent to all rule
validation engines registered. Afterwards, the RulesService collects all responses and
computes the result of the validation and verification process by algorithm 4.2 from
section 4.2.5. If the command has been dispatched locally and the result of the validation
process is negative, it never enters the network in the first place to prevent blockchain
cluttering and to keep a small footprint (see section 2.3.5). If another participant
dispatches a command and the validation process is negative, the rules module creates

33For example, a facility maintenance contractor has to complete maintenance on an elevator and
transmit a document that lists all maintenance steps performed in a predefined structure and order,
before the building administrator can perform an inspection. This requires semantic correctness of process
execution and the rule validation engines to verify that all required documents are present in the correct
form as payloads of previous state transitions.

68

4.3. Prototype Design

a rejection event. A list of events that are dispatched depending on the results of the
validation process is given below:

• Rules.Instance.LocalTransitionAccepted: A local state transition has been
accepted by all rule validation engines.

• Rules.Instance.LocalTransitionRejected: At least one rule validation engine
has rejected a local state transition.

• Rules.Instance.ReceivedTransitionAccepted: All local rule validation engines
have accepted a state transition proposed by another participant.

• Rules.Instance.ReceivedTransitionRejected: At least one local rule validation
engine has rejected a state transition proposed by another participant.

Similar events are dispatched for workflow definitions and workflow instantiations. Note
that, as described in the concept in section 4.2.7, participants that dispatch a command
(like a state transition, for example) do have to validate it twice, once as a local command
and the second time after receiving it through the network. This is because all commands
are dispatched to all involved participants. This includes the sender of the command
as well. Figure 4.9 illustrates the decision-making process of the rules module on which
event has to be dispatched as a response.

Figure 4.9: UML flowchart diagram of the rules modules decision-making process.

Since the prototype implements the communication with rule validation engines using
HTTP, unexpected network timeouts might occur. In this case, the prototype immediately
rejects the command, regardless of the response of other rule validation engines, to prevent
the command from being accepted that would otherwise have been rejected. This is a
design decision made in the prototype since the TTSM concept explicitly delegates the
handling of network errors to the implementation (see section 4.2.8). The dispatched
events are then further processed by the consistency module.

69

4. Time-travelling State Machines

4.3.4 Consistency Module
The consistency module, responsible for exchanging messages between participants, is
implemented in this prototype using two layers: (1) the application layer being responsible
for determining if a message has to be exchanged, and if so, which consistency strategy to
use, and (2) the data layer that directly connects to the EventStoreDB to listen for events
triggering message exchanges. Figure 4.10 depicts the architecture of the consistency
module.

Figure 4.10: Consistency module architecture that enables multi-chain support.

As described in the proposed concept in section 4.2.6, the consistency module receives
approval events from the rules module through the persistence module. Depending on
the persistence event received, an applicable consistency message is generated. In this
prototypical implementation, this is accomplished by the ConsistencyService, which sub-
scribes to the event bus. In a fully-fledged TTSM implementation, the ConsistencySerivce
would now pick an appropriate ConsistencyStrategy depending on implementation-specific
metrics such as payload structure or consistency message type. However, to keep the
complexity of this prototype design at a reasonable scale, the ConsistencyStrategy that
is being used is predefined on start-up by the developer. This approach might even be
sufficient for most TTSM implementations.

Consistency strategies require at least two functions and one field to be implemented. Each
consistency strategy implementation has to provide the messages$ field that implements
the observer pattern and emits a new message for each message sent to other participants.
It, therefore, represents a constant and congruent stream in each participant’s TTSM.
The getStatus function that returns the status of all required external services (in the

70

4.3. Prototype Design

case of Ethereum, for example, the status of the node used to write to the blockchain),
and the dispatch(Message) function that distributes the given message to all participants
involved. Some strategies are rather specific, like the NoopStrategy, which immediately
feeds back the message to the sender (i.e., it can only be used for consistency messages
that involve exactly one participant), or the Point2PointStrategy that uses HTTP to
exchange messages with other participants. A potential use case for the latter one might
be the distribution of messages between participants that are not in a conflict of interest,
for example. However, most of the communication relies on BCT-based strategies. How
these strategies are implemented and what properties these have to fulfill is out of scope
of this work. Nonetheless, they are obligated by the TTSM to exchange dispatched
messages with other workflow participants reliably and to provide a consistent view of
workflows throughout all participants. In this prototypical implementation, BCT-based
strategies are primarily implemented in a rather simplistic way.

• The EvmStrategy generates a smart contract that only stores hashes of the
exchanged messages and returns the transaction address as commitment reference.
The messages themselves are exchanged using an HTTP-based REST API. It is
forwarded to other participants only if the hash was written successfully to the
smart contract and, depending on the execution mode, if the commitment reference
was attached.

• The BaseledgerStrategy works in a pretty similar fashion; however, most of the
implementation of this strategy is part of the external baseledger proxy34. Baseledger
implements the Baseline Protocol. As described in section 2.5, baseledger uses an
internal message bus (in this case NATS35, a message bus for the edge) to exchange
messages between participants. A ZKP is generated as a commitment reference and
written to the blockchain, proving that the message was dispatched and distributed
correctly.

Once the command that was converted to a consistency message has been distributed to
all involved participants using the chosen consistency strategy, the ConsistencyService
receives the dispatched message (this includes the ConsistencyService of the sender as well -
no distinction between sender and receiver has to be made from here on out). The message
is then converted from a consistency message transmitted over the network and exchanged
between participants to an internal persistence event. Afterwards, the persistence event
(and the associated command) is evaluated and validated by the rules and the workflow
module for syntactic, semantic, and workflow-specific pragmatic correctness as mentioned
in the proposed concept in section 4.2.7. As soon as all involved modules have given their
feedback, the ConsistencyService dispatches another event into the network that indicates
that this TTSM either accepts or rejects the command. All participants must wait until N
responses were dispatched into the network from N involved participants. If one of these

34https://github.com/Baseledger/baseledger-proxy (accessed on 2022-09-07)
35https://nats.io/ (accessed on 2022-09-07)

71

https://github.com/Baseledger/baseledger-proxy
https://nats.io/

4. Time-travelling State Machines

N participants rejects the command, it is immediately rolled back. Figure 4.11 shows
the simplified network communication between two participants exchanging messages
using the TTSM prototype.

Figure 4.11: Sequence diagram of two participants exchanging messages using the
consistency module.

The consistency messages required to perform state transitions are listed below36. Each
message, as shown in figure 4.4 in section 4.2.6 consists of a message header and an
arbitrary payload that is extended by message and command specific metadata.

• Perform Transition: Some participant wants to perform a state transition on a
given workflow instance. The metadata consists of the name of the state transition
(unique identifier), the starting state, and the resulting state.

• Accept Transition: Response message of participants if they accept the state
transition. Contains the same metadata as the perform transition message.

• Reject Transition: Response message of participants if their workflow or rules
module produced an error while evaluating the state transition. Contains the same
metadata as the perform transition message.

If an accept or reject message is received, a follow-up persistence event is dispatched
by the ConsistencyService to allow an examination of participants who rejected and
accepted the command. After all responses have been collected, a completion persistence
event is emitted as described in algorithm 4.3 in section 4.2.8. It is used to allow the

36Similar messages are exchanged for new workflow definitions or instantiations.

72

4.4. Intrinsic Properties

consistency module to itself determine when consensus between participants is reached.
The persistence events dispatched by the ConsistencyService are given below37:

• Consistency.Instance.TransitionReceived: Created from perform transition
consistency messages and only dispatched if the workflow instance on which the
transition should be performed upon and its workflow definition exist locally.

• Consistency.Instance.TransitionAcceptedByParticipant: Created from ac-
cept transition consistency messages if any of the involved participants approve the
state transition.

• Consistency.Instance.TransitionRejectedByParticipant: Created from Re-
ject Transition consistency messages if any of the involved participants could not
perform the state transition due to some issues.

• Consistency.Instance.TransitionAccepted: Dispatched by the Consisten-
cyService, if for all N participants involved in the state transition, a Consis-
tency.Instance.TransitionAcceptedByParticipant persistence event has been dis-
patched.

• Consistency.Instance.TransitionRejected: Dispatched by the Consistency-
Service, if for any of the N participants involved in the state transition, a Con-
sistency.Instance.TransitionRejectedByParticipant persistence event has been dis-
patched.

To dispatch persistence events, the ConsistencyService connects to EventStoreDB in the
same fashion as the workflow and rules modules do. This includes creating projections
(if necessary) and writing workflow definition events to the workflows.{id} stream and
workflow instance events, like state transitions, to the instances.{id} stream.

4.4 Intrinsic Properties
The knowledge accumulated in the background section 2, together with the research
conducted to extract related work in section 3, led to a new concept for workflow execution
that leverages on BCTs for verifiability and traceability. This concept, as described in
detail in section 4.2, and its prototypical implementation described in section 4.3 gave a
sophisticated overview of properties that TTSMs that allow time-travel verification of
executed workflows need to fulfill to be viable. The following lists five distinct properties
derived from the concept and the implemented prototype and describes them in more
detail.

37Similar persistence events are dispatched for new workflow definitions or instantiations proposed by
other participants.

73

4. Time-travelling State Machines

Consistent

The consistency property guarantees that all participants eventually reach consensus and
work with the exact same state for all workflows being defined or executed. As described
at the beginning of section 4.2, this property is partially enabled by the involved BCTs
because their consensus protocols must guarantee at least agreement, integrity, and
termination when exchanging messages and advancing the state of a blockchain (see
section 2.1.5). The TTSM-consensus algorithm described in section 4.2.8 shows that
the TTSM itself can also reach consensus between all involved participants, leveraging
on the aforementioned properties that BCTs and their consensus protocols bring to the
table. However, due to the increased block time of certain blockchains, consistency can
only be archived in the form of eventual consistency. Nonetheless, TTSMs that have
reached finality can never be inconsistent. If participants, for example, request invalid
state transitions, they are rejected immediately, which forces everyone involved to roll
back. A similar scenario occurs if two or more participants aim to perform the same
state transition simultaneously. Because these participants already locally advanced their
state, the same transition cannot be performed twice. Even though the state transition is
technically idempotent, the TTSM still rolls back due to potentially diverging payloads.
This is ensured by the workflow logic, the persistence module, and the BCT itself.

Persistent

All changes performed within a TTSM and messages exchanged between participants
must be available in the form of an event history. This is referred to as the persistency
property. Persistence in the context of a TTSM is two-fold: (1) the event bus and the
event store of each participant are responsible for persisting all exchanged messages
and internal TTSM events. Since hostile participants could technically modify this
data in their favor, (2) the BCTs also store certain proofs of messages that have been
exchanged. Even if a hostile participant tampers their data, the other participants still
have undeniable proof that specific actions have been performed. This splits persistence
into two distinct areas of concern:

• Tamper-proofness: Hinders hostile participants to change workflow execution in
their favor in hindsight and generates undeniable proof (see section 4.2.6).

• Storage: Enables participants to execute large workflows with varying payloads on
public blockchains without exposing privacy critical information (see section 4.2.3)
and reducing the footprint on the blockchain, which reduces overall cost (see
section 2.3.5).

Both properties are tightly coupled in a TTSM to give participants access to persistence
proofs on the blockchain. Due to the employed design principles of the persistence
and consistency modules (such as CQRS, event sourcing, or causal ordering), invalid
commands can never become a part of the eventually consistent state of a workflow or

74

4.4. Intrinsic Properties

even the entire system. Such commands are stored in the event history for traceability
reasons, but are never incorporated into the state.

Verifiable

Whenever multiple participants in a conflict of interest are involved in the execution
of a workflow, the verifiability property is of utmost importance because it gives proof
that certain events have happened in a particular order at a certain point in time. This
property is tightly coupled with the aforementioned consistency property 4.4 and the
persistency property 4.4. Even though hostile participants might modify their local state,
the global state, which is stored to some extent on the blockchain, cannot be tampered
with38. If participants want to prove that some action happened in the past, they can
go back in time using the time-travelling capabilities of the TTSM and access the proof
on the blockchain associated with the events. Even though not all events might be
incorporated into the current system state, they are still part of the event history and
hence something participants can verify. Therefore, verifiability is once again a property
backed by the underlying BCT and leveraged upon in the proposed concept of a TTSM.
The consistency property ensures that the state is consistent in the first place, which
guarantees that verification produces the same results for all participants, while the
persistency property enables time travel which allows the verification of past states.

Declarative

In order to keep development cost in case of changing requirements at a minimum, and
to allow management-oriented users to define new workflows, a TTSM has to fulfill the
declarative property. Being declarative means that users of a TTSM can entirely configure
the execution of workflows without the need for additional software development effort39.
Being configurable and purely declarative not only enables software architects to use
TTSMs as underlying sources of truth for workflow execution, but it also simplifies the
integration into existing systems. As described in sections 4.2.1 and 4.3.1, fully-fledged
TTSMs might not only support statecharts as the language of workflow modeling but also
BPMN, choreography or even process diagrams. Supporting well-established modeling
languages further improves the practical value of such a system.

Optimized

Due to highly fluctuating transaction fees of blockchains, the TTSM should reduce the
number of messages exchanged to also reduce overall cost [PG17]. This is referred to as
the optimization property and is enabled by the optimizer described in section 4.2.1 of the
proposed concept. Optimizing workflow statecharts can change the syntactic meaning of
workflows; however, they must preserve semantics.

38Given, that the underlying BCT has enough participants and implements a proper consensus
protocol [Bro19].

39An example of such a configuration is given in listing 4.1 in the prototype design section 4.3.

75

4. Time-travelling State Machines

4.4.1 Research Question 2
To answer the second research question:

Which properties do BCT-based state machines require to allow time-travel
verification of business processes?

As mentioned above, blockchains already support a vast majority of properties required
in BCT-based state machines that allow time-travel verification. However, most related
work (as described in section 3.2) leverages on these properties by directly executing
workflows on the blockchain. Even though tamper-proofness and consistency are assured,
these approaches suffer from a lack of privacy-preserving mechanisms, longer transaction
times, a lack of blockchain-acquainted developers, or restrictions to the payload size40.
Therefore, the set of properties defined for the concept proposed in this work tries to
leverage on characteristics of BCTs without creating tight coupling between the blockchain
and the workflow execution engine. Properties that TTSMs must fulfill in order to
be fully functional and to allow time-travel verification of business processes are: (1)
the consistency property, that ensures that eventually, all participants read the same
state of a workflow execution, (2) the persistency property, that stores the state in an
undeniable and tamper-proof fashion without exposing privacy critical information to
uninvolved participants and (3) the verifiability property, that enables traceability through
time-travel. Properties that should be fulfilled in order to make the concept suitable for
real-world scenarios are the (1) optimization property and (2) the declarative property.

Nonetheless, the question remains on how the state of the art must be adapted to fulfill
these properties and if integrating a TTSM in existing systems is viable. Therefore, the
upcoming sections evaluate the concept by using analytical and architectural analysis
and by investigating its utility in simplified real-world scenarios.

40Primarily due to native block size limits.

76

CHAPTER 5
Evaluation

This chapter aims to thoroughly evaluate the practical feasibility of the proposed concept
described in chapter 4. To do so, it obeys design science guidelines and, thus, uses
methodologies already available in the knowledge base of workflow execution on the
blockchain [HMPR04]. This ensures better reproducibility of the presented results and
allows in-depth comparison to other approaches. Two artifacts are evaluated in the
following: (1) the proposed concept of a TTSM as described in section 4.2 and (2)
the instantiation of the concept in the form of the prototype described in section 4.3.
Qualitative and static analysis methodologies are applied to the former, while the latter
is used for experimental analysis to show real-world utility of the proposed concept.

5.1 Qualitative Analysis
Extracting criteria for qualitative analysis is a rather tricky task, given the heterogeneous
landscape of workflow execution approaches that target the blockchain (see related work
chapter 3). However, the most often used criteria in related literature can be categorized
in flexibility and privacy or security criteria. The following list of criteria was extracted
from related literature to allow comparison between different approaches. To name a few,
this includes [Pry16, PSHW20, CFR18, SSSJ19, LFW20, WXR+16].

5.1.1 Flexibility Criteria

In BCT-based software, flexibility is a rare trait due to the cost associated with change
on the blockchain [Nak09, But22]. Therefore, qualitative evaluation is performed using
the upcoming flexibility criteria by creating classes ranging from low flexibility to high
flexibility to put the proposed concept into perspective. Notice that higher flexibility
typically comes with increased architectural complexity.

77

5. Evaluation

Blockchain Selection

For many more simple real-world scenarios, predetermining a specific blockchain to be
used for the entirety of the system or particular workflow instance should be enough.
However, for larger and more complex workflows, there is no singular blockchain that
fulfills all necessary requirements [LFW20]. Taking this into consideration, and the fact
that BCTs are a rather quickly evolving sector, being able to adapt different blockchains
becomes a significant point of concern for BCT-based software. Figure 5.1 shows a
classification of this particular criteria.

Figure 5.1: A classification for blockchain selection.

Even though there are concepts that enable multi-chain workflow execution1 like the
one proposed by Ladleif et al. [LFW20], most approaches rely on a single blockchain to
not only execute workflows but also to tightly integrate the workflow execution system
itself with the it [WXR+16, PSHW20, KJ21]. The proposed concept, however, enables
participants to select their preferred blockchain, and the associated desired properties,
either before or dynamically during workflow execution depending on the workflow itself
and the messages exchanged. This increases flexibility but also complexity due to the
abstraction required.

Participant Selection

Short-running business processes and their corresponding workflows might rely on a fixed
set of participants without threatening the stability or flexibility of a system or workflow.
However, more volatile workflows with a considerably larger amount of participants
involved need a more flexible system that enables the executing participants to select
who executes certain activities on demand [FRMR12]. Furthermore, it is advantageous
for the overall workflow to select participants only after the workflow has already been
launched. This allows executing participants, especially in longer-running workflows, to
take environmental and political change into consideration when selecting a contractor
or supplier that is required later in the workflow, for example. The classification for
participant selection depicted in figure 5.2 differentiates between three classes ranging
from least to most flexibility.

1i.e., using multiple blockchains at once that are interconnected with each other and can even exchange
messages.

78

5.1. Qualitative Analysis

Figure 5.2: A classification for participant selection.

Systems that predetermine all participants that are involved in the execution of workflows
have not been found in related literature; however, the number of approaches that require
participants to be determined before the workflow is instantiated (e.g., in [LWW19,
NMK18]), and the number of approaches that allow dynamic, or even on-demand
participant selection during execution (e.g., in [LSNW20, PSHW20]), is about even.
However, the concept proposed in this work does not explicitly state how participant
selection should be implemented. Even though workflow definitions must specify the
number of parties involved and which role they play in the overall choreography, choosing
a tangible TTSM of a participant that has been selected at a later point in time during
workflow execution is still viable. This is because roles are only loosely coupled to the
actual participants that carry them out. However, actions performed by participants
that are no longer part of a workflow execution remain on the blockchain. This is a trait
required by the persistency and verifiability properties of a TTSM that might contradict
privacy concerns to some extent2. Nonetheless, the proposed concept technically allows
any participant selection mechanism to be implemented.

Workflow Mutability

Being able to update workflows during execution increases flexibility even further; however,
it also creates additional complexity in the form of potential issues regarding (eventual)
consistency. Figure 5.3 shows a potential classification for workflow mutability.

Figure 5.3: A classification for workflow mutability.

Besides predetermining workflows as part of the system being the most inflexible solution,
allowing participants to define workflows themselves before execution and instantiation

2Given that no longer involved participants request data that has been associated with their partici-
pation, to be entirely removed according to the European GDPR for example.

79

5. Evaluation

of the workflow itself, is the most common approach [WXR+16, KJ21, SSSJ19]. The
proposed concept of this work also falls in this category performing a balancing act
between complexity and reusability. Even though technically possible to adapt, allowing
workflow mutability during execution or even partial reusability of already executed
workflows (as described in [LSNW20], for example) requires some changes to the concept
itself. In this context, open questions like eventual consistency and participants working
on different states of a workflow caused by an increased transaction inclusion duration3

on certain blockchains or how to adapt reusability in BP-centric workflow execution
engines remain yet to be answered.

Modelling Language

Support for a wider range of modelling languages for workflow definitions not only
improves flexibility, but also readability and reusability, because already existing process
models in organizations can directly be fed into the system without the need of further
adaptation. This prevents possible errors from being introduced while manually converting
said models. Figure 5.4 includes two classifications for modelling language flexibility.

Figure 5.4: A classification for modelling language support.

While systems, where the modelling language is tightly integrated, are strictly bound to
the language semantics, dynamic approaches might require translation from one language
to another. The dedicated conversion step in the workflow module (see section 4.2.1),
puts the proposed concept on the most dynamic end of the spectrum compared to related
work. Due to the internal usage of statecharts, all process models, that can be reduced
to statecharts, can technically be supported. Transformations to statecharts, however,
are out of scope of this work due to their complexity. Nonetheless, algorithms have
been published in recent years and are publicly available for possible adaptation in a
TTSM [NMK18, ZHJ04].

5.1.2 Privacy and Security Criteria
Privacy is an often neglected criterion regarding workflow execution on the blockchain.
In most related work, authors advise the usage of private blockchains to counteract
this problem [WXR+16, KJ21, RCDF20, SSSJ19, LSNW20, LBAG21]. However, this
approach only partially solves the issue, and some open problems remain. Companies
might want to treat parts of internal workflows as a trade secret because they are of

3A commitment reference is not yet available and the command therefore not multicasted.

80

5.1. Qualitative Analysis

utmost importance to the business’s success or because they are simply not relevant to the
shared BP. Another example is confidential information that is only allowed to be shared
between two particular participants and must never be exposed to others4. Furthermore,
the usage of private blockchains can threaten security, as previously discussed in chapter 3,
due to the increased voting power per participant compared to public blockchains. Similar
to the flexibility criteria, the upcoming privacy and security criteria are also divided into
classes to put the proposed concept into perspective.

Workflow Structure Sharing

Workflows that involve multiple independent participants do require sharing of workflow
structures in some form to create a common frame of reference. Figure 5.5 differentiates
between three public and one private classification. First, public workflows that share
not only their structure but also their execution context5. Second, public actions, where
only state transitions are exposed; and third, public metadata, where only (encrypted)
metadata about the workflow is shared publicly. Purely private workflows are the fourth
class, in which no information is put on a blockchain that is used by more than one
participant.

Figure 5.5: A classification for sharing workflow structures.

Depending on the implementation of the consistency module of a TTSM and the chosen
consistency strategy, the proposed concept might either fall into the second or third
category — sharing actions or metadata on the public blockchain, but is never executing
entirely on-chain (restricted by the architecture by separating the workflow module from
the consistency and persistence modules). Strategies for sharing workflow structures
might include transmitting actions off-chain but storing hashes or ZKPs of actions
being performed on-chain. Furthermore, the proposed concept aims to only share
choreography structures that determine the required interactions between participants.
Internal workflow structures can be kept entirely private or semi-private by leveraging on
homomorphic encryption or ZKPs, for example.

4Imagine a four-party scenario where three banks and the government are involved. All participants
agree on using a blockchain as a trusted third party. Some information about customers, however, is only
allowed to be shared with the governmental instance and not with any other participant due to privacy
regulations. Private blockchains cannot solve this issue if the privacy critical data is stored on-chain
because all four participants can investigate the state of the blockchain at any point in time.

5In the form of smart contracts, for example.

81

5. Evaluation

Data Sharing

The way workflow execution engines share data associated with workflows and state
transitions is categorized by the classification given in figure 5.6. It differentiates
between data being shared over a public network and thus being available to all workflow
participants, only sharing (encrypted) metadata or keeping data entirely private.

Figure 5.6: A classification for sharing data between participants.

Most approaches found in related literature either require participants to share data
entirely off-chain or entirely on-chain. The former approach neglects traceability capa-
bilities of BCTs, and the latter restricts payload size to the maximum allowed block
and transaction size of the (most often) predetermined blockchains being used. Other
approaches, like the ones proposed by Lichtenstein et al. [LSNW20], and Ladleif et
al. [LWW19], which are laying their focus on the artifacts produced by workflows, also
store the state and life cycle of the entire artifact on-chain and thus, makes them publicly
(in the sense of “for all participants”) available. However, the concept proposed in this
work aims to bridge the gap in the related literature by only storing metadata on-chain.
Similar to the workflow structures described in the previous criteria 5.1.2, a TTSM only
stores hashes of actions and their associated payload data or ZKPs, for example, that
ensure, that the data fulfills specific properties. Open questions, especially regarding
techniques like ZKPs or homomorphic encryption, must still be solved in future work to
fully leverage on the capabilities of the proposed concept.

Trust

Trust between participants is vital when they are in a conflict of interest. Studies have
shown that incorporating trust as a key ingredient into workflow systems might increase
workflow performance, particularly in supply chain management and logistics [FVB05,
JMSK04]. A common solution to establish trust is to utilize trusted third parties [PL09,
AGI+19]. All approaches discussed in chapter 3 build upon the blockchain to take up this
particular role. So does the concept proposed in this work. To enable traceability through
the blockchain, the consistency module of a TTSM associates exchanged messages
with commitment references. This ensures that all actions that require multi-party
participation are undeniably persisted and can be verified. However, the proposed
concept does not support authentication mechanisms. This means that participants
occupying a particular workflow role might not be who they pretend they are. Even
though workflow execution does not inflict trust-related issues, the open authentication
problem might. To participate in a workflow that is handled by a BCT-based TTSM,

82

5.1. Qualitative Analysis

participants require a blockchain wallet in some form to at least provide a pseudo-identity6.
However, more is needed to authenticate participants trustfully because a wallet might
also belong to an attacker pretending to be a particular participant. Thus, authentication
remains an open problem which is out of scope of this work due to its complexity. Future
work might consider the usage of asymmetric cryptography and signatures in order to
solve this issue.

Conflict Resolution

Resolving conflicts between participants using undeniable proofs is one of the cornerstones
that blockchains provide. The proposed concept leverages on this property by referencing
commitments on the blockchain for each action performed by any of the participants.
Therefore, conflicts can be resolved by the time-travel capabilities of a TTSM - participants
involved in a conflict can travel back in time to the point where the conflict arose. The
workflow at this point in time contains all actions that led to the current state and, thus, all
associated commitment references on the blockchain, which in fact, are undeniable proof
of what happened7. Nonetheless, a follow-up issue arises regarding the authentication of
participants mentioned before in criteria 5.1.2. Even though a role might have performed
an action according to the blockchain, this does not give proof that the action has
indeed been performed by the correct participant. Due to the pseudo-anonymity of
blockchains, one can not easily prove the identity of contributors without further usage of
off-chain techniques such as legal contracts associating a participant to a wallet address,
for example. Resolving the authentication and identity issue in future work might also
solve the conflict resolution issue mentioned in this section.

5.1.3 Summary and Discussion

The qualitative analysis performed in this section has shown significant traits of the
proposed concept regarding flexibility compared to existing solutions. For the most
part, this can be traced back to the role of the blockchain that is only of supportive
nature, a characteristic that has not been investigated in related work and BCT-based
workflow execution yet. By leveraging on the blockchain without statically integrating
it as a software architectural cornerstone, TTSMs are not bound to restrictions given
by the blockchain ecosystem. Compared to other concepts, this allows the concept
proposed in this work to be more flexible and extensible, resulting in a highly modular
architecture where components are only loosely coupled and interchangeable at any
point in time. This kind of flexibility has been an unseen trait in BCT-based workflow
execution engines and results in a list of advantages that are otherwise difficult to obtain,
including TTSMs switching blockchains during workflow execution without significant

6BCTs provide pseudo-anonymity, thus, it is practically almost impossible to authenticate a participant
by her wallet information.

7Given that the blockchain itself is tamper-proof (see consensus section 2.1 for more details).

83

5. Evaluation

complexity overhead8, dynamically selecting participants on-demand, or changing the
(shared or internal) workflow definition during runtime. However, two gaps in the state
of the art and the proposed concept have been identified regarding blockchain interaction
and authentication of participants:

• Investigation of applicable techniques that store minimum amounts of data on-chain
but provide maximum traceability and verifiability.

• Investigation of authentication techniques for blockchain participants, to prove
identity (also referred to as decentralized identifiers9), to seal attack vectors like
Sybil attacks.

Solving these two research problems (1) further reduces transaction cost while not
endangering the traceability and verifiability that TTSMs already provide, and (2) being
able to undeniably associate actions being performed by participants with real-world
identities. Nonetheless, the qualitative analysis has shown that the proposed concept
combines traits from different approaches while reducing the footprint on the blockchain,
preserving privacy to some extent, and improving flexibility.

5.2 Static Analysis
In this section, the static structure of the proposed concept is analyzed by deriving formal
metrics and taking a closer look at the macro software architecture. It aims to give insight
into the complexity and cost of a TTSM. In order to do so, the remainder of this section
assumes the usage of a layer-1 BCT-based consistency strategy in the consistency module
to assure comparability with related work [WXR+16, LBAG21, PSHW20, LPDGBW19].
The BCT-based consistency strategy creates a peer-to-peer network where each participant
is directly connected to all the other participants. An additional connection to the
blockchain is established that is used to prove the integrity of each message exchanged.
Other technologies, such as layer-2 rollups or using ZKPs, might yield other results.

5.2.1 Network Topology
The TTSM network topology is determined by the number of workflow participants,
only including the ones that are relevant to perform a specific command. Even if the
workflow requires a total of N roles, certain state transitions might only interact with
n < N participants occupying a subset of the N roles. In the following, state transitions
are used exemplary for any kind of command w.l.o.g. Given a state transition that

8Note that, regarding practical feasibility, participants have to determine which blockchain is best
suited for which message types in order to guarantee flawless transitions during execution. Furthermore,
data remains on the blockchains it was initially written to. Time travel and verification, therefore, also
includes switching between blockchains.

9https://w3.org/TR/did-core/ (accessed on 2022-11-29)

84

https://w3.org/TR/did-core/

5.2. Static Analysis

requires interaction with n participants, the maximum number of connections each
participant has to establish can be derived from the fact that the TTSM concept operates
on a peer-to-peer network. Thus n − 1 connections must be established, excluding the
participant that proposed the state transition. Therefore, the total number of connections
required is equal to the number of edges in a complete graph. The computation is given
in equation 5.1 with Cmax being the total number of connections required.

Cmax(n) = n(n − 1)
2 (5.1)

The proposal of a single state transition only requires the proposing participant to connect
to n − 1 (excluding self) involved participants. Each involved participant, excluding the
proposing one, has to establish precisely one connection resulting in a total amount of
n − 1. However, after receiving the state transition, each participant has to send an
accept or reject message to all other n − 1 participants. Thus, resulting in a complete
graph or “fully connected mesh”. One can now derive the total number of messages
exchanged M when performing a state transition10 using equation 5.2.

M(n) = n2 + n (5.2)

The number of messages per state transition is therefore quadratically bound to the
number of involved participants assuming that a message is not only sent to the other
n − 1 participants but also to one self11. Expressed in Landau notation, this results in an
overall communication complexity of O(n2) given that n > 1 when performing actions
w.l.o.g.

5.2.2 Blockchain Transactions
Similar to the network topology, the maximum number of blockchain transactions is
also determined by the number of involved participants required for a specific command.
Given a total of N roles and n participants, launching a workflow might involve n ≥ N
participants12, however, performing state transitions most of the time requires n ≤ N
participants. Thus, the maximum number of transactions on the blockchain is linear to
the number of involved participants, as shown in equation 5.3 where TC is the blockchain
transaction count and tp the number of participants involved in the command.

10Starting in the proposal phase until the transaction has been included into a block.
11Imagine an exemplary scenario, where four parties are involved: (1) the product manufacturer,

(2) the reseller, (3) the customs authorities and (4) the freight forwarder. When the reseller orders a
product, only the reseller, and the manufacturer have to perform and accept the state transition (i.e.,
all participants involved in an activity). Given that N = 4 and n = 2, the total number of messages
exchanged over the network is 22 + 2 = 6 and the number of connections is 2(2−1)

2 = 1. The customs
authorities and the freight forwarder may not receive any messages at all at this point.

12A single role might be fulfilled by different participants at different points in time.

85

5. Evaluation

TC(t) = 0 for tp < 1
tp + 1 for tp ≥ 1

(5.3)

Commands involving one participant (i.e., themselves) typically do not require blockchain
interaction. However, in certain scenarios, a participant might want to prove to an
external party that a specific artifact existed at a particular point in time. Given that
a TTSM solely operates on statecharts, one can derive the total number of blockchain
transactions per workflow instance as follows. Let W be a workflow defined as statechart
and formalized as 5-tuple ⟨S, s0, F, E, T ⟩ where S is the set of possible states, s0 ∈ S the
initial state, F ⊆ S being the set of final states and T is the set of transitions. Then, the
total amount of required blockchain transactions is linear to the cardinality of T denoted
as |T | and, in case of loops or decisions in a workflow, the number of state transitions tc

performed per t ∈ T with TCtotal being the total transaction count on the blockchain.

TCtotal =
t∈T

TC(t) · tc (5.4)

Equation 5.4 computes the maximum number of blockchain transactions in a workflow
instance as a summation of state transitions t ∈ T and the associated number of required
participants. Leveraging on the notation defined above, one can derive the average
number of participants involved per state transitions n as follows.

n =
t∈T

tp

tc
(5.5)

Given n participants that have been required to complete workflow instance I on average
and m being the total number of state transitions performed, the overall communication
complexity is linear and comes down to O(n · m) which simplifies to O(m) assuming n
being the smaller factor.

5.2.3 Persistence Events
The number of persistence events dispatched by a TTSM always has to equal or be
greater than the number of blockchain transactions (see section 4.2.7). This is a constraint
required by the persistence and verifiability properties described in section 4.4 and can
be formally expressed as TCtotal ≤ ECtotal. To compute ECtotal, one must first compute
the number of persistence events per state transition. Let T be the set of possible state
transitions in an arbitrary statechart defined as ⟨S, s0, F, E, T ⟩. Then, the number of
persistence events dispatched per state transition t ∈ T is computed as follows.

EC(t) = (tp + 1) + (tr + 1) + 1 (5.6)

86

5.2. Static Analysis

In the first step, a single participant requests a state transition. This state transition
is received and persisted by all involved participants. Afterwards, the local rule system
dispatches a persistence event (including the validation results) for each rule engine
registered tr and one that indicates if the overall validation process was successful. In
the last step, each participant has to either send an accept or reject message over the
network, which results in a single persistence event per participant tp. An additional
event is dispatched to indicate if all involved participants accepted or at least one rejected
the proposed state transition. Participants not involved in a state transition do not emit
any persistence events. Therefore, the total number of persistence events ECtotal can be
computed as the sum of persistence events per state transition performed.

ECtotal =
t∈T

EC(t) · tc (5.7)

One observation when comparing ECtotal to TCtotal is that ECtotal is always larger than
TCtotal because, in addition to the events dispatched per participant, EC(t) also includes
the events dispatched by the rules module and an additional event that indicates the
final status of the command.

5.2.4 Summary and Discussion
The formal static analysis performed in this section has shown that the overall complexity
of the network, required in a TTSM, is bound quadratically to the number of participants
due to the underlying “fully connected mesh” topology. This increases resiliency because,
in theory, participants can forward messages to other participants, but it also increases
the complexity of the required infrastructure. Figure 5.7 depicts a possible setup between
three participants, namely Alice, Bob, and Mallory, where the direct link between Alice
and Bob has been lost, and Mallory must forward messages.

Figure 5.7: Mallory forwards messages from Alice to Bob.

Setups like these are one possible mechanism supported by a TTSM network that allows
compensation of direct peer-to-peer links being lost. However, each participant must

87

5. Evaluation

retain her connection to the blockchain to persist proof of data being exchanged and to
verify the integrity of (forwarded) messages. Imagine a scenario where Alice dispatches a
state transition request that Mallory must forward to Bob to complete the state transition.
Instead of forwarding the original request dispatched by Alice, Mallory modifies it to
make Bob accept the message and tamper with the state in a way that favors Mallory
slightly and puts Bob at a disadvantage. Even though such attacks might be dangerous
because they reduce the overall trust in the network, it is possible for Alice, and especially
Bob, to verify the integrity of the forwarded message using the blockchain13.

To better integrate compensation mechanisms into the TTSM concept, a new consistency
message that proves that a participant has indeed forwarded a message could be introduced.
Two opportunities for future work have been identified:

• The investigation of compensation mechanisms for lost peer-to-peer or even peer-
to-blockchain connections to further increase resiliency.

• The investigation of algorithms with a small on-chain footprint that allow partici-
pants to verify message integrity.

Furthermore, this section has shown that the number of blockchain transactions required
is linear to the number of participants involved in a particular state transition and that the
number of persistence events dispatched internally by a TTSM is strictly larger. Internal
persistence events are not only dispatched for each blockchain transaction (associated
with a commitment reference), but they can also be used for everything that happens
only on the side of a single participant that is irrelevant for other participants. This
enables a TTSM to give participants a much finer granularity on traceability without
polluting the blockchain.

5.3 Scenario Simulations
The aim of this section is to show the real-world utility of the approach proposed in this
work. Different use cases are therefore simulated to conduct an experimental analysis
of the concept and its prototypical implementation. Furthermore, with a strong focus
on execution cost and latency, the results are compared with approaches from related
work. The primary sources, used as baseline references for the upcoming evaluation,
include the approaches proposed by Prybila et al. [PSHW20], who conducted a thorough
evaluation of the execution duration of their approach, Weber et al. [WXR+16] who gave
an overview of the execution cost and latency when applying their concept to a supply
chain and incident management use case, and Loukil et al. [LBAG21] who evaluated
their approach against two compiled and two interpreted concepts from related literature
regarding execution cost.

13For example, by comparing the hash of the forwarded message with the hash stored on the blockchain.

88

5.3. Scenario Simulations

5.3.1 Prototype Adaptations
Even though the high flexibility of the proposed concept, as shown in section 5.1.1, would
allow the usage of an arbitrary blockchain or layer-2 rollup, an Ethereum Virtual Machine
(EVM)-based approach is used to improve comparability with existing approaches from
related literature. Using the EVM furthermore allows Solidity byte code to be converted
and ported to other blockchains and rollups such as zkSync14 or Optimism15 as well.
The EVM consistency strategy implemented for this evaluation creates a fully connected
peer-to-peer mesh network where each participant directly communicates with all the
other participants. In addition, each participant establishes a connection to the EVM
to store the SHA-256 hash of the exchanged message on-chain. The smart contract
developed and deployed for this purpose is shown in code listing 5.1.

pragma solidity >=0.7.0 <0.9.0;

/**
* @title Hash Storage

* @dev Store 256-bit hash values as event log

*/
contract HashStorage {

/**
* @dev Stores all hashes in an event log. Using events reduces

→ gas cost dramatically.

*/
event StoreHash(bytes32 hash);

/**
* @dev Stores the given hash values as event log.

*/
function store(bytes32 hash) public {

emit StoreHash(hash);
}

}

Listing 5.1: Implementation of a smart contract that stores message hashes

This very simplistic smart contract only allows the storage of 256-bit values, which is
exactly the amount of data an SHA-256 hash requires. To further reduce cost, the
hashes are stored as event logs only. This enables traceability but omits the need for
expensive Gsset operations with a gas cost of 20000, only leaving a Gtransaction operation
as the single most expensive operation with 21000 gas in this smart contact. With Glog

and Glogtopic requiring 375 gas, and Glogdata only requiring 8 gas per byte stored, each
hash persisted on the EVM requires less than 23000 gas [Woo22]. The integrity of an

14https://zksync.io/ (accessed on 2022-11-25)
15https://optimism.io/ (accessed on 2022-11-25)

89

https://zksync.io/
https://optimism.io/

5. Evaluation

exchanged message can then be verified by fetching the transaction receipt and testing
if the hash stored on the EVM is the same as the hash of the message’s payload. This
process is part of the EVM strategy and is depicted in code listing 5.2.

async receiveConsistencyMessage<T>(msg: ConsistencyMessage<T>) {

// Retrieve transaction receipt to check if log contains correct
→ message hash.

const txHash = msg.commitmentReference.transactionHash;
const tx = await Web3.eth.getTransactionReceipt(txHash);

// Reject the message if the expected and the actual hash of the
→ message payload differ.

const expectedHash = tx.logs[0].data;
const actualHash = sha256(JSON.stringify(msg.payload));
if (expectedHash !== actualHash) {

return 'INVALID_HASH';
}

// Pass the message on to other modules.
actions$.next(msg);
return 'OK';

}

Listing 5.2: Implementation of the verification process of messages received

If the hash differs from what has been stored on the EVM, the message is entirely omitted
because its integrity cannot be verified. For reproducibility reasons, the simulations
rely entirely on the EVM strategy described above. The prototypical implementation
used for this evaluation is available GitHub16. The upcoming sections introduce the use
cases the prototype is evaluated against, derive corresponding BPMN diagrams, and
afterwards discuss the results of the simulation runs and compare them to results from
related literature.

5.3.2 Scenario Descriptions
Three distinct scenarios have been chosen for the evaluation of the proposed concept.
The first one simulates a simplified facility maintenance use case that has been created
throughout the course of this work by conducting interviews with domain experts -
introduced in section 2.4.1, this scenario aims to show real-world utility of the proposed
concept. The second scenario simulates a supply chain, and the third a software incident
management use case as described and adapted by Weber et al. [WXR+16], López-
Pintado et al. [LPDGBW19], and Loukil et al. [LBAG21] to improve comparability and
reproducibility of the results. The second and third scenarios are only briefly outlined
and not further discussed.

16https://github.com/danielkleebinder/ttsm-prototype (accessed on 2022-11-29)

90

https://github.com/danielkleebinder/ttsm-prototype

5.3. Scenario Simulations

Facility Management

The facility maintenance use case, as already partially introduced in section 2.4.1, has
been derived from interviews conducted with real-world domain experts. It describes
a scenario where a building administrator has been notified17 that maintenance on
a facility inside the building18 is due. The building administrator now contacts an
external maintenance contractor and prepares the facility for further inspections and
the maintenance itself19. Afterwards, the contractor starts performing the maintenance,
orders spare parts if repairs are required, and sends the building administrator a notice
that maintenance has been completed. After the administrator’s successful inspection of
the facility, the maintenance contractor sends an invoice and a maintenance report. The
BPMN diagram of this scenario is depicted in figure 5.8.

Figure 5.8: BPMN diagram of the facility maintenance use case introduced in 2.4.1.

This use case should demonstrate the real-world utility of the proposed TTSM approach.
It has been simplified to some extent to use it as a stepping stone towards more complex
scenarios. However, it illustrates the use of parallel and exclusive gates and the exchange
of messages between participants. Therefore, the facility management scenario is an
excellent first scenario to show that the proposed concept would indeed be functional in
real-world environments.

17Either through a timely trigger or thorough inspection conducted by a third party, for example.
18This might be an elevator, a vending machine, or an escalator, for example
19By closing off the facility site, for example.

91

5. Evaluation

Supply Chain

The supply chain use case is commonly used in related work to demonstrate the utility
of a new approach and to compare its cost with other approaches. First introduced
by Fdhila et al. [FRMKR15], Weber et al. adapted and simplified this scenario in their
work [WXR+16]. It consists of five participants interacting with each other. A bulk
buyer orders a product from a manufacturer. The manufacturer then calculates what
supplies in the form of raw materials and basic resources are required to produce this
product and orders them from a middleman. The middleman forwards the order for the
required supplies, and a carrier transports them from the supplier to the manufacturer.
The manufacturer then produces the requested product and delivers it to the bulk buyer.

Figure 5.9: BPMN diagram of a supply chain adapted from Weber et al. [WXR+16].

One might realize that this supply chain has much conflict potential. Imagine the bulk
buyer ordering a product that must arrive before a deadline. If the deadline is not met
by the manufacturer, she has to pay penalties. To be on time, the manufacturer orders
supplies through the middleman. However, the requested supplies arrived three days
later than expected and were not in the correct quantity. This puts the manufacturer,
whose time frame now has shifted, in a tough spot and the carrier since the manufacturer
might refuse to accept the incomplete delivery. Therefore, the supply chain scenario can
be used quite well to demonstrate conflict resolution capabilities [WXR+16, LBAG21].

92

5.3. Scenario Simulations

Incident Management

The incident management use case is, similar to the supply chain use case, a commonly en-
countered scenario in related work. First discussed in “BPMN 2.0 by Example” [OMG10],
it found its way into the domain of workflow execution on the blockchain through Weber
et al. [WXR+16] and was then further adapted by many more authors in the sense of
design science for comparability reasons [GBPDW17, LPDGBW19, SSSJ19, LBAG21].

Figure 5.10: BPMN diagram of the incident management use case adapted from “BPMN
2.0 by Example” [OMG10].

Figure 5.10 depicts the BPMN diagram of the entire incident management use case.
It follows an issue reported by a customer who noticed a problem with a particular
software component. The issue then goes through multiple support layers, starting with
the key account manager. If the key account manager cannot solve the issue by herself,
she hands it over to the 1st level support. If the 1st level support cannot resolve the

93

5. Evaluation

issue, it is passed on to the 2nd level support who either asks a software developer for
assistance or immediately creates a ticket and puts it into the products backlog. This
relatively sophisticated business process includes more gateways and a strict separation
of participants20.

5.3.3 Discussion of Results
The evaluation results in the upcoming sections have been obtained by extracting only
the communication between participants as choreography diagrams. The choreography
diagram for the facility management scenario is depicted in figure 2.3. For the supply
chain and incident management scenarios, the same choreography diagrams have been
used as in the related literature. These diagrams are both depicted in the work of Loukil
et al. [LBAG21]. Afterwards, semantically equivalent statecharts have been derived using
the Stately editor21 and fed into the TTSM prototype. Finally, a script was employed to
automate the process of deploying, instantiating, and executing the scenarios to ensure
that each sample is executed with comparable constraints and conditions. Table 5.1 gives
a brief overview of the structure of each scenario.

Scenario Participants Tasks Gateways
Facility Maintenance 2 5 1
Supply Chain 5 10 2
Incident Management 5 9 6

Table 5.1: Structural comparison of the choreography diagrams and statecharts of the
evaluated scenarios

The supply chain and incident management scenarios used in this work have the same struc-
tural properties as those used for evaluation in related literature [WXR+16, GBPDW17,
LPDGBW19, SSSJ19, LBAG21]. This not only improves comparability but also repro-
ducibility of the results. The evaluation itself is also fully automated and can be triggered
after setting up the prototype project and specifying an applicable consistency strategy.

Confirmation Correctness

The capabilities of detecting incorrect workflow traces have been evaluated according
to the methodologies defined by Weber et al. [WXR+16] and Loukil et al. [LBAG21]. A
workflow trace is a path from one task in a workflow instance to another final task. For
the evaluation, 500 traces have been randomly generated by shuffling a predefined set
of all state transitions T of a given workflow W to generate a new set of distinct traces
D, where D has a cardinality of 500. Furthermore, ∀T ′ ∈ D : T ′ = T , however, T ′ has a
unique permutation of elements in D. This results in two subsets Dc ⊆ D and Dn ⊆ D,

20Developers can only talk to 2nd level support, 2nd level support can only talk to developers and 1st

level support and so on.
21https://stately.ai/ (accessed on 2022-10-10)

94

https://stately.ai/

5.3. Scenario Simulations

where Dc is the set of conforming traces22 and Dn the set of non-conforming traces23

such that Dc ∩ Dn = ∅. All traces have been correctly identified by the TTSM prototype
according to their correctness. A list of the results per scenario can be found in table 5.2.

Scenario Type Samples Correctness
Facility Maintenance Conforming 206 100%

Non-Conforming 294 100%
Supply Chain Conforming 180 100%

Non-Conforming 320 100%
Incident Management Conforming 197 100%

Non-Conforming 303 100%

Table 5.2: Average execution duration of each scenario

The results show that the proposed concept performs equally as well as existing solu-
tions regarding the identification of correct and incorrect traces [WXR+16, LBAG21].
Nonetheless, the TTSM prototype has shown better resiliency and a higher tolerance for
conforming traces because it can recover when an invalid state transition event has been
dispatched. This is caused by the underlying XState library that ignores invalid state
transitions and preserves the current state. Overall, the results presented in this section
are in line with expectations.

Blockchain imposed Latency

Overall latency of the system and ensuring finality or even just inclusion of commands
into blocks by a TTSM are expected to be tightly coupled to the block time of the
chosen BCT. Methodologies from related work such as Prybila et al. [PSHW20], and
Weber et al. [WXR+16] have been employed to further investigate latency imposed by
the transaction inclusion duration24 of the system. For the evaluation, it is assumed that
all participants are available at any time.

As of section 4.2, commands in a TTSM are dispatched into the network of workflow
participants and accepted or rejected by each of them. This is a two-step process which,
if transactions are required to be included into a block of a blockchain before the TTSM
can continue, requires at least two blocks to be produced — one in which the command is
proposed and one in which participants accepted or rejected the command. The average
transaction inclusion time is determined by the central limit theorem given in equation 5.8
where µ is the overall mean of the random samples X1, X2, . . . , Xn, . . ., while X̄n is the
mean of the first n samples and σX̄ = σ/

√
n with σ2 being the variance.

Z = lim
n→∞

X̄n − µ

σX̄

(5.8)

22Traces that can be used in a given workflow.
23Traces that cannot be used in a given workflow.
24Also referred to as consistency and persistence properties of a TTSM (see section 4.4).

95

5. Evaluation

Given that completely finalizing a command takes at least two blocks, the median of
the normal distribution is 3

2 · bt where bt is the average block time. This assumption
is supported by the empirical evaluation results in table 5.3 equally for all types of
commands across all scenarios. Regarding the simulation itself, at the time of writing
this work, there are two proof-of-stake test networks available for Ethereum in particular,
namely Sepolia25 and Goerli26. In conjunction with Alchemy27, a platform that provides
tooling for web3 development, Goerli was used to run the simulations. All simulations
used the same smart contract which was previously deployed — this is similar to how
a TTSM would operate on the Ethereum main network in real-world scenarios as well.
Afterwards, the workflow for each use case (facility management, supply chain and
incident management) were created and instantiated exactly 50 times. After successful
instantiation, each workflow was executed 10 times which results in the depicted number
of samples in table 5.3 below.

Facility Management
Samples Av. Duration Std. Dev. (σ)

Workflow Definition 50 18.209 s 3.8 s
Workflow Instantiation 50 17.847 s 3.6 s
State Transition 50 17.921 s 3.1 s

Supply Chain
Samples Av. Duration Std. Dev. (σ)

Workflow Definition 50 17.383 s 3.5 s
Workflow Instantiation 50 18.619 s 3.9 s
State Transition 100 17.441 s 3.5 s

Incident Management
Samples Av. Duration Std. Dev. (σ)

Workflow Definition 50 17.538 s 3.4 s
Workflow Instantiation 50 17.112 s 3.7 s
State Transition 90 17.985 s 3.3 s

Table 5.3: Average duration of each operation type

The results were extracted from multiple test runs of the TTSM prototype. Given that
the block time of Ethereum, and in this case the Goerli test network, averages at around
12 seconds, it takes at least 3

2 · 12 = 18 seconds to ensure that a command, including the
participants responses, has been integrated into a new block on the blockchain. However,
the standard deviation σ of the samples is rather large. This distribution originates from
the randomization of execution times for each command resulting in a 12 to 24 seconds
execution duration. Some commands have been dispatched immediately after a new
block has been mined, resulting in an overall duration of around two block times (i.e., 24
seconds), while others have been dispatched at the end of a block and thus have been

25https://sepolia.dev/ (accessed on 2022-11-25)
26https://goerli.net/ (accessed on 2022-11-25)
27https://alchemy.com/ (accessed on 2022-11-25)

96

https://sepolia.dev/
https://goerli.net/
https://alchemy.com/

5.3. Scenario Simulations

integrated into said block almost immediately after dispatching, resulting in a duration
of just above one block time (i.e., > 12 seconds). The execution duration distribution is
depicted as box plot in figure 5.11.

Figure 5.11: Box plot illustrating a one to two block time (12 s – 24 s) command duration
imposed by the blockchain.

Nonetheless, the proposed TTSM concept technically also supports optimistic workflow
execution. This kind of execution aims to eliminate the latency introduced by the
blockchain. It enables participants to dispatch and distribute new commands to the
workflow network without having to wait until the blockchain has produced a new block
in which an integrity proof of the command is included. The aim of optimistic workflow
execution28 is to create a system that is close to the status quo of off-chain BPM engines
regarding workflow execution duration and performance. While enforced transaction
inclusion29 halts workflow execution while waiting for the command integrity transaction
to be included in the next block30, optimistic execution immediately sends the command
to all involved participants and afterwards waits for the blockchain response.

If the participant who dispatched the optimistic command eventually receives the transac-
tion receipt, she creates a new consistency event that associates the optimistic command
with the commitment reference from the receipt. Even though optimistic execution is
much faster than enforced inclusion, participants must expect rollbacks at a later point
in time when the blockchain catches up. If the integrity transaction cannot be included
in a block on the blockchain or if any of the participants notice that an outstanding
optimistic command is still missing its commitment reference after a predefined period
of time, the command becomes invalid. This rolls the entire workflow state back to the

28Later on also referred to as optimistic execution.
29Later on also referred to as enforced inclusion.
30Which is required to generate a blockchain transaction receipt holding the commitment reference.

97

5. Evaluation

point in time where it was still valid. The consistency and persistence events stored are
still preserved inside the event bus for traceability reasons; however, the event sourcing
systems of each particular module, which require a correct and consistent state, only
accumulate events until the invalid one is reached. All events received after the rollback
are then, once again, treated as valid ones.

Only a superficial optimistic execution implementation is provided in the TTSM prototype
that eliminates the latency introduced by the blockchain but does not incorporate a
rollback mechanism due to its complexity. Nonetheless, all scenarios have also been
executed in this superficial optimistic execution mode. The evaluation results are given
in table 5.4.

Facility Management
Samples Av. Duration Std. Dev. (σ)

Workflow Definition 50 0.019 s 0.008 s
Workflow Instantiation 50 0.331 s 0.033 s
State Transition 50 0.114 s 0.055 s

Supply Chain
Samples Av. Duration Std. Dev. (σ)

Workflow Definition 50 0.018 s 0.005 s
Workflow Instantiation 50 0.041 s 0.019 s
State Transition 100 0.079 s 0.033 s

Incident Management
Samples Av. Duration Std. Dev. (σ)

Workflow Definition 50 0.019 s 0.005 s
Workflow Instantiation 50 0.023 s 0.006 s
State Transition 90 0.184 s 0.069 s

Table 5.4: Average duration of each operation type using optimistic execution

The execution duration per command has been reduced to the workflow logic and network
latency itself, entirely omitting the delay imposed by the blockchain. Table 5.5 compares
the total workflow execution duration of each scenario using enforced transaction inclusion
and optimistic workflow execution modes.

Scenario Enforced Inclusion Optimistic Execution
Samples Av. Dur. σ Samples Av. Dur. σ

Facility Management 10 57 s 3.1 s 10 0.57 s 0.3 s
Supply Chain 10 181 s 16.8 s 10 0.79 s 0.3 s
Incident Management 10 149 s 10.3 s 10 1.65 s 0.5 s

Table 5.5: Total duration of finality enforced and optimistic workflow execution

As illustrated before, choosing one execution mode over the other has a significant impact
on the overall duration. When using enforced inclusion mode, waiting for the command

98

5.3. Scenario Simulations

integrity transaction to be included in a new block on the Ethereum blockchain imposes
a noteworthy latency. Figure 5.12 shows a pie chart depicting the duration required for
the execution of the workflow logic (including network delays) and puts it against the
downtime that transaction inclusion requires when explicitly enforced.

Figure 5.12: Pie chart illustrating a significant increase in workflow execution duration
due to enforced transaction inclusion on the blockchain.

Relying on enforced transaction inclusion has a significant impact on practical usability.
Therefore, it should primarily be used for moderately to slow-paced workflows (requiring
no more than 2 to 3 state transitions per minute). On the other hand, optimistic execution
should only be used for very fast-paced workflows (more than four state transitions per
minute), where little to no conflicts are expected. Fast-paced workflows that do produce
conflicts between participants (due to conflicting rules being employed on each side,
for example) must expect frequent rollbacks, which halts execution for a brief moment.
Another scenario applicable for optimistic execution are tasks that only involve one
participant because no two parties can disagree on a new workflow state31.

Nonetheless, it must be noted that these observations are only applicable when relying
on an Ethereum-based consistency strategy. Optimistic execution might not even be
considered viable when employing a strategy that, for example, leverages on a layer-2
rollup because the transaction inclusion duration is short enough to be neglected in the
first place. Compared to existing approaches, a TTSM with an EVM-based strategy
typically performs between 20% [WXR+16] and 25-times [PSHW20] better regarding
execution duration.

31This also includes workflows only consisting of single party tasks (i.e., entirely private workflows).

99

5. Evaluation

Execution Cost

Unlike execution duration, execution cost is tightly coupled with the number of par-
ticipants involved in a certain operation, as discussed in the static analysis in sec-
tion 5.2.2. Even though the cost of creating a workflow definition, an instantiation of
such, and performing state transitions is linear in growth, deploying the required smart
contract that stores the hashes of these operations remains constant. The evaluation
for execution cost was conducted according to the methodologies used by Weber et
al. [WXR+16, GBPDW17], López-Pintado et al. [LPDGBW19], Sturm et al. [SSSJ19],
Loukil et al. [LBAG21].

Table 5.6 shows the gas cost of each operation for each of the three scenarios. Given
that the supply chain and incident management scenarios have the same number of
participants but a different number of tasks (see table 5.1), one clearly identifies a strong
correlation. The increasing costs come from the two-step process that each operation has
to go through: (1) proposing a new definition, instantiation, or state transition, and (2)
requiring all participants to send an accept or reject message.

Facility Management
Op. gas cost

Smart Contract 95,337
Workflow Definition 68,502
Workflow Instantiation 68,502
State Transition 68,502

Supply Chain
Op. gas cost

Smart Contract 95,337
Workflow Definition 137,004
Workflow Instantiation 137,004
State Transition 137,004

Incident Management
Op. gas cost

Smart Contract 95,337
Workflow Definition 137,004
Workflow Instantiation 137,004
State Transition 137,004

Table 5.6: Total gas cost of each operation type per scenario

Even though the cost for a single blockchain transaction is rather small, with 22,834
gas, scenarios involving a lot of participants may be at a disadvantage. Nonetheless, the
TTSM prototype still performs better cost-wise than most other interpreted [LBAG21,
LPDGBW19], and far better than most compiled approaches [WXR+16, GBPDW17]
considering the three scenarios described above. Table 5.7 summarizes the total execution
cost of each scenario, including smart contract deployment (even though only required

100

5.3. Scenario Simulations

once), workflow definition, instantiation, and all state transitions where each state
transition is dispatched to every participant.

Scenario Total gas cost
Facility Management 574,851
Supply Chain 1,739,385
Incident Management 1,602,381

Table 5.7: Total gas cost of each scenario

Notice that the total cost is still relatively high even though smart contract deployment is
much more cost-efficient compared to existing approaches [LBAG21, LPDGBW19]. This
gives an opportunity for future work to improve the concept of a TTSM by decoupling
the execution cost from the number of involved participants. In particular, two areas for
further research have been identified:

• Investigation of applicable techniques to reduce the number of participants involved
in an operation to a minimum32.

• Investigation of applicable blockchain-oriented software design patterns that allow
decoupling of execution cost and the number of participants.

The first research challenge might require an in-depth analysis of statecharts and concepts
such as the one proposed by Nakamura et al. [NMK18], where the interaction between
participants is split into multiple statecharts. An interesting approach for the latter one,
on the other hand, might be the off-chain signatures design pattern where all involved
participants sign a proposed operation before writing the hash of the operation itself
and the signatures to the blockchain [ET17, XWS19]. Others, such as Carminati et
al. [CFR18], or Sun et al. [SYZ+21] motivate the usage of ZKPs, homomorphic encryption,
or TEEs for concepts similar to a TTSM in order to improve privacy and confidentiality
and, regarding the challenges mentioned above, to reduce execution cost. Nonetheless,
the proposed concept and the TTSM prototype have shown their viability for use in
real-world scenarios by demonstrating a rather low overall execution cost and exhibiting
the potential for future improvements.

Practical Conflict Resolution

Scenarios such as the supply chain example described in section 5.3.2 are typically prone
to create conflicts between participants. Resolving these, however, is rather trivial when
properly employing a TTSM due to its consistency, persistence, and verifiability properties.
To demonstrate this, a conflict was simulated for the supply chain scenario, where a
deadline was not met. It was successfully resolved by leveraging the time-travelling

32Only the middleman and the carrier have to accept or reject a state transition if supplier, manufacturer,
and buyer are not involved in this process step, for example.

101

5. Evaluation

capabilities of the proposed concept and the prototype. By going back in time, the exact
moment when delays were introduced was identified by the corresponding blockchain
commitment reference. The hashes stored on-chain were then compared to the hashes of
the operations stored off-chain. Therefore, the conflict was resolved by determining who
introduced the delays by utilizing the auditability property of the blockchain.

Privacy and Flexibility

Privacy was demonstrated thoroughly throughout the simulation of all three scenarios. All
data is stored in hashed form on the blockchain when using the EVM-strategy. Therefore,
even on public blockchains, only participants involved in the workflow can read and verify
workflow-specific data. Leveraging on the concept’s flexibility, future work may replace
the EVM-strategy with a strategy based on ZKPs, layer-2 rollups, or homomorphic
encryption, for example. Strategies like these hold potential regarding sharing and
proving specific properties fulfilled by private workflow tasks without exposing confidential
information [CFR18, SYZ+21]. Especially rollups, where many try to establish EVM
compatibility, would enable the portability of the proposed approach and the smart
contract presented in code listing 5.1. Throughout the prototype implementation and
evaluation, different strategies were employed to demonstrate the consistency module’s
flexibility. Nonetheless, metadata, such as hashes or ZKPs, still end up on the blockchain.
Solving this issue is a topic for future research, especially regarding GDPR compliance.

5.4 Integration with Camunda’s Zeebe
An aspect unneglectable in Design Science research is showing real-world utility of the
produced artifacts [HMPR04]. One facet not discussed in this context until now is the
integration of a TTSM into an existing and well-established BPM system to improve
practical acceptance33. Therefore, this section briefly introduces a possible adaptation
of the existing TTSM prototype in order to integrate it with Camunda’s34 workflow
execution engine Zeebe35, to then discuss further opportunities. Camunda cloud36 was
used to provide access to instances of Camunda and Zeebe.

5.4.1 Prototype Adaptations
An integration requires some minor adaptations in the form of extensions to the prototype.
The open-closed principle, that the proposed concept for a TTSM strictly follows, together
with the modular design and the established event bus system, make it straightforward to
create and attach new subsystems [Mey97, Mar96, Gei15b]. A new module called Integra-
tionsModule has been added, to enable participants to dynamically integrate workflows

33Exchanging an existing solution with a new one is often times more complex and time consuming
than integrating one into the other.

34Camunda Website (accessed on 2022-10-29)
35Camunda Docs: Zeebe (accessed on 2022-10-29)
36Camunda Cloud Console (accessed on 2022-10-29)

102

https://camunda.com/
https://docs.camunda.io/docs/components/zeebe/zeebe-overview/
https://console.cloud.camunda.io/

5.4. Integration with Camunda’s Zeebe

and workflow instances into existing BPM systems. It determines during runtime and,
based on a given configuration which integrations to use. Furthermore, it also exposes
the new ZeebeModule. The ZeebeModule is solely commissioned with the interaction
between the TTSM prototype and Camunda’s Zeebe workflow execution engine. It stores
its local data in the form of event logs as part of the global event bus and accesses
it by aggregation by using projections37. For the interaction between the prototype
and Zeebe, the ZeebeModule relies on the zeebe-node 8.1.238 NodeJS library which
allows the implementation of hooks that are triggered by Zeebe using gRPC. The code
that links a TTSM workflow instance with a Zeebe process instance is shown in listing 5.3.

async linkProcessInstance(instance: WorkflowInstanceProposal) {

// Job worker function to advance TTSM workflows.
const handler: ZBWorkerTaskHandler = (job: ZeebeJob) => {

try {
this.workflowService.advanceWorkflowInstance(
instance.id,
{

event: job.type,
payload: job.variables

}
);

} catch (error) {
return job.fail(error.message);

}
return job.complete();

};

// Each workflow has a list of state names (strings).
for (const nextStateName of instance.workflow.states) {

// Register a job worker for each consistency task.
this.zeebeClient.createWorker({

taskType: nextStateName,
taskHandler: handler

});
}

}

Listing 5.3: Implementation of dynamic Zeebe job worker registration

The ZeebeModule creates a new worker for each state in the given workflow. Whenever a
participant advances the state inside Camunda, the corresponding worker is triggered
and either returns a fail or complete response to Zeebe. Note that this is only a basic

37This is similar to the behavior of the rules module, for example.
38https://npmjs.com/package/zeebe-node (accessed on 2022-11-29)

103

https://npmjs.com/package/zeebe-node

5. Evaluation

prototypical implementation of such an integration that should serve as proof of concept.
It is not part of the actual TTSM concept itself. In a full-fledged implementation, the
ZeebeModule should await inclusion of the transaction into a block on the blockchain before
returning a response and notify all participants to keep the workflow state synchronized.
The adaptations described above are also available on GitHub39.

5.4.2 Workflow Execution
In order to leverage on the properties of a TTSM, the BPMN diagrams used in Camunda
must follow a certain format. Each task in Camunda that wants to interact with the
TTSM must be defined as a “service task” to trigger a job worker. These are tasks
dedicated to ensure consistency and traceability using a TTSM and mark the interfaces
between participants. An example of such a BPMN diagram is given in figure 5.13.

Figure 5.13: Exemplary reseller-supplier scenario with service tasks before each interac-
tion.

A reseller counts her stock and, depending on the result, orders products from the
supplier. The “Order products” activity is a service task that triggers a TTSM job
worker, which handles the consistency concerns and the interaction between participants.
After the supplier received the order and produced all required products, the deliver
products service task is invoked, eventually leading to product delivery and completing the
workflow. For the TTSM to properly interact with Camunda and Zeebe, a choreography
diagram solely concerned with the interactions between participants must be derived.
Such an integration-compliant diagram only contains the service tasks and the names of
the participants. Other activities are treated as private. A dedicated consistency service
task must be specified if private activities require consistency. This means that service
tasks that trigger a job worker in a TTSM are not limited to interactions between two
or more participants; however, they are predestined for it. Private service tasks require

39https://github.com/danielkleebinder/ttsm-prototype (accessed on 2022-11-29)

104

https://github.com/danielkleebinder/ttsm-prototype

5.4. Integration with Camunda’s Zeebe

choreography activities to specify the same party as initiator and receiver. Figure 5.14
shows the choreography diagram of the reseller-supplier scenario from figure 5.13 above.

Figure 5.14: Choreography of the reseller-supplier scenario.

This choreography diagram is then converted to statecharts and deployed by the TTSM.
Even though the deployment and instantiation are directly executed on the TTSM,
the workflow instance execution is performed using the graphical UI of Camunda. All
necessary configuration of the Zeebe-integration is part of the deployment and the
instantiation of the workflow.

5.4.3 Summary and Discussion
The evaluation performed in this section has introduced some minor extensions to the
TTSM prototype by adding a ZeebeModule for integration into Camunda’s Zeebe workflow
execution engine. It allows participants to execute workflow instances using the graphical
UI of Camunda while keeping auditability, traceability, and consistency properties of
a TTSM. However, the integration of workflow deployment was not possible. The
evaluation of Camunda connectors40 and Zeebe job workers41 shows that they are no
suitable solutions, because they are not concerned with the entirety of the workflow, but
only with single tasks. This yields the following research challenge for future work:

• Investigation of integration strategies that allow participants to deploy and instan-
tiate new workflows using Camunda and its underlying workflow execution engine
Zeebe instead of relying on the TTSM.

Answering this research challenge might include writing a custom Camunda plugin42.
Nonetheless, the integration seems to hold great potential. Therefore, a more in-depth
investigation considering the integration of a TTSM into Camunda and Zeebe is advised
as part of future work. This might include replacing parts of the Zeebe or Camunda
architectures with concepts proposed in this work or vice versa by replacing the workflow
module with Zeebe, for example. Even though the integration evaluation in this work has
only been a proof of concept with very little functionality, it demonstrated interesting
prospects that future work could leverage on.

40Camunda Docs: Connectors (accessed on 2022-10-29)
41Camunda Docs: Job Workers (accessed on 2022-10-29)
42Camunda Docs: Custom Plugins (accessed on 2022-10-29)

105

https://docs.camunda.io/docs/components/integration-framework/connectors/use-connectors/
https://docs.camunda.io/docs/components/concepts/job-workers/
https://docs.camunda.org/how-tos/cockpit/develop-a-plugin/

5. Evaluation

5.4.4 Research Question 3
To answer the third research question:

Which aspects must be adapted to close the gap between the state of the art
and a privacy-preserving BCT-based state machine that allows time-travel
verification?

Existing workflow execution systems already hold great potential when it comes to the
integration of the concept for a TTSM. Not only is this a viable option when auditability
or traceability are required, but the expenditure for such a venture also seems to be
relatively low. Concepts proposed in related work that leverage on blockchains, however,
have shown a formidable lack of flexibility and privacy. This can be traced back to the
fact that almost all concepts rely on running code directly on layer-1 blockchains. Even
though some concepts aim to circumnavigate or even solve the shortcomings imposed
by layer-1 blockchains, neither can mitigate the majority of them. To close the gap
between the state of the art and a privacy-preserving BCT–based state machine that
allows time-travel verification, future concepts might want to start building on layer-2 or
even start targeting layer-2 rollups and build on layer-3 instead of directly leveraging
on blockchains. Using the blockchain as a supportive third-party system that provides
certain properties increases the flexibility of the system built on top of it and reduces its
cost. Nonetheless, the potential imposed by a BCT–based state machine that only takes
advantage of blockchain properties without directly building, and thus constraining itself
by it, is not to be neglected.

106

CHAPTER 6
Conclusion

Computer-aided BPM is a hot topic for both industrial and research communities. With
the uprise of blockchains in recent years, the latter started an endeavor towards blockchain-
based BPM to leverage on one of its unique properties of BCTs — trust. Organizations
and companies can now cooperate with each other without the need for a centralized,
trusted third party. Nonetheless, research has been following a strict trend where software
has been tightly coupled to the underlying blockchain resulting in a lack of flexibility
and privacy. By performing a narrative literature review and applying design science,
this work created a novel concept for building BPM systems that take advantage of the
properties blockchains provide without restricting themselves by their shortcomings.
The concept proposes a four-module architecture where each module ensures specific
properties. The workflow module is solely responsible for the creation and execution of
workflows. By extending its interface, it can support a vast range of different BP modeling
languages and is, therefore, very much declarative; a desirable property regarding the
practical value of such systems. As the second one, the rules module allows participants
to verify if rules beyond simple workflow semantics are fulfilled. The third module, the
consistency module, provides an abstract interface to the underlying BCT. There are no
strict requirements for this module. Usage of the Bitcoin network is as viable as the
usage of layer-2 rollups, for example. The last module provides persistent storage and a
convenient interface that allows participants to time travel between different workflow
states. During the course of this work, the concept was continuously evaluated against
qualitative metrics and predefined BPs to constantly improve its practicality.
The evaluation has shown significant traits regarding flexibility without forfeiting trust,
traceability, or auditability provided by the underlying BCT. This was traced back
to the TTSM operating one layer above the BCT without requiring tight coupling; a
characteristic that has not yet been investigated in much detail in related literature. This
allows for a highly modular architecture where components are only loosely coupled,
interchangeable and extensible, resulting in a list of advantages, including the option to

107

6. Conclusion

switch between blockchains if needed, dynamic participant selection, or adjusting the
workflow structure while being executed. Furthermore, during the execution of exemplary
scenarios, it has been shown that, depending on the requirements of the participants,
privacy can be fully preserved or only in parts if needed. In what detail conflicts between
participants can be resolved then weakly correlates with the level of privacy.

Additionally, the proposed concept also reduces the overall execution cost of workflows.
For the scenarios simulated in the evaluation, the TTSM prototype performed better
than most existing solutions. However, the cost correlates linearly with the number of
participants involved and will break even if this number exceeds a certain threshold.
Nonetheless, there are promising BoSE software design patterns that can solve this issue.
Further investigation in future work is advised.

Even though introducing an architecture that separates the blockchain and the workflow
execution engine increases the system’s complexity to some extent, it brings forth
desirable properties, as mentioned above. Related literature and existing solutions,
however, broadly introduce a tight coupling between both. Therefore, future work might
want to investigate further into building blockchain-based BPM systems as layer-2 or
layer-3 applications instead of directly leveraging on the blockchain and running code on
layer-1. However, this requires preliminary work identifying desirable layer-1 properties
and how they can be transferred and used on layer-2 or layer-3. In this context, one
might extend and leverage upon the consistency module as proposed in this work.

Another topic future work should extend upon is the investigation of compensation mech-
anisms for lost peer-to-peer or even peer-to-blockchain connections. Solving this problem
from the distributed systems domain further improves resiliency of the choreography but
requires preliminary research of algorithms with small on-chain footprint that enables
participants to verify the integrity of messages exchanged between participants.

Regarding the integration into other systems, a couple of open problems are still to
answer. One is the handling of large or exotically structured payloads in state transitions.
They cannot be part of the persistence module itself because it would clutter storage
and transfer potentially unnecessary information between participants. A solution one
might investigate is content-addressable storage where only the reference to the data is
exchanged and stored on-chain. Another aspect to consider is the integration into existing
BPM systems. Even though the integration into Camunda’s Zeebe workflow execution
engine has been shown to be viable during the evaluation, a thorough investigation is
still outstanding.

Nonetheless, the idea of a TTSM that operates off-chain, but leverages upon the unique
properties of BCTs, has been demonstrated. Especially improved flexibility is a trait
future systems might build upon. This work should be considered as a starting point for
BPM systems that take advantage of the blockchain as a source of trust, traceability,
and auditability while treating it as a loosely coupled sub-system of supportive nature.

108

List of Figures

2.1 A simplified business process of a maintenance contractor. 20
2.2 More complex two-lane diagram with interactions between participants. . . 21
2.3 Choreography diagram highlighting interactions between two participants. 22
2.4 Integration of a BPI into the two-party facility maintenance system. . . . 23
2.5 Integration of the Baseline Protocol for the exchange of the maintenance

report between maintenance contractor and building administrator. 24

4.1 Macro architecture and event store design of a TTSM. 47
4.2 Life cycle of a command dispatched in a TTSM. 48
4.3 Sequence diagram for the creation of a workflow definition inside the workflow

module. 50
4.4 Format of a consistency message exchanged by participants. 56
4.5 Setup of multiple TTSMs with counterparties interacting with each other. 56
4.6 UML class diagram of the workflow module of a prototypical TTSM. . . . 62
4.7 Persistence module and event store architecture. 66
4.8 UML class diagram of the rules module of a prototypical TTSM. 67
4.9 UML flowchart diagram of the rules modules decision-making process. . . 69
4.10 Consistency module architecture that enables multi-chain support. 70
4.11 Sequence diagram of two participants exchanging messages using the consis-

tency module. 72

5.1 A classification for blockchain selection. 78
5.2 A classification for participant selection. 79
5.3 A classification for workflow mutability. 79
5.4 A classification for modelling language support. 80
5.5 A classification for sharing workflow structures. 81
5.6 A classification for sharing data between participants. 82
5.7 Mallory forwards messages from Alice to Bob. 87
5.8 BPMN diagram of the facility maintenance use case introduced in 2.4.1. . . 91
5.9 BPMN diagram of a supply chain adapted from Weber et al. [WXR+16]. 92
5.10 BPMN diagram of the incident management use case adapted from “BPMN

2.0 by Example” [OMG10]. 93
5.11 Box plot illustrating a one to two block time (12 s – 24 s) command duration

imposed by the blockchain. 97

109

5.12 Pie chart illustrating a significant increase in workflow execution duration due
to enforced transaction inclusion on the blockchain. 99

5.13 Exemplary reseller-supplier scenario with service tasks before each interaction. 104
5.14 Choreography of the reseller-supplier scenario. 105

110

List of Tables

3.1 Search terms used during the narrative review 27
3.2 Comparison between different conceptual models and their properties . . 39

4.1 List of non-goals for the proposed concept 46
4.2 List of workflow definition endpoints . 63
4.3 List of workflow instance endpoints . 63
4.4 List of rules endpoints . 68
4.5 List of required rule validation engine endpoints 68

5.1 Structural comparison of the choreography diagrams and statecharts of the
evaluated scenarios . 94

5.2 Average execution duration of each scenario 95
5.3 Average duration of each operation type 96
5.4 Average duration of each operation type using optimistic execution 98
5.5 Total duration of finality enforced and optimistic workflow execution . . . 98
5.6 Total gas cost of each operation type per scenario 100
5.7 Total gas cost of each scenario . 101

111

List of Algorithms

4.1 Ensure optimization algorithm order . 49

4.2 Rules checking algorithm . 54

4.3 TTSM-consensus algorithm . 59

4.4 Choosing a converter strategy . 64

113

List of Listings

4.1 Exemplary workflow definition of a pedestrian traffic light 64
5.1 Implementation of a smart contract that stores message hashes 89
5.2 Implementation of the verification process of messages received 90
5.3 Implementation of dynamic Zeebe job worker registration 103

115

Acronyms

ABI Application Binary Interface. 14

BaaS Blockchain-as-a-Service. 31

BCT Blockchain Technology. 1–5, 27, 28, 40, 43–46, 51, 55, 60, 71, 73–78, 82–84, 95,
106–108

BIM Building Information Modelling. 51, 55, 67

BoSE Blockchain-oriented Software Engineering. 12, 108

BP Business Process. 19–25, 39–41, 43–45, 80, 81, 107

BPI Baseline Protocol Implementation. 23, 24, 109

BPM Business Process Management. 1–5, 19, 25, 27, 97, 102, 103, 107, 108

BPMN Business Process Model and Notation. 20–22, 28, 29, 33–36, 38–41, 45, 49, 58,
61, 63, 75, 90, 91, 93, 104

BPMS Business Process Management System. 29

CCSM Consensus Controlled State Machine. 23–25

CQRS Command-Query Responsibility Segregation. 52, 61, 74

DApp Distributed Application. 18

DLT Distributed Ledger Technology. 5, 9, 11, 12, 14

DTO Data Transfer Object. 62, 63

EDCC Executable Distributed Code Contract. 11, 12, 14, 15, 17, 46

EEA Enterprise Ethereum Alliance. 23

EVM Ethereum Virtual Machine. 89, 90, 99, 102

117

FSM Finite-State Machine. 49, 61

IoT Internet of Things. 1, 18

IPFS Interplanetary File System. 51

NFT Non-Fungible Token. 16

OOP Object-oriented Programming. 20

OoS out of scope. 46

PBFT Practical Byzantine Fault Tolerance. 10, 11

PoS Proof of Stake. 5, 7, 10, 11

PoW Proof of Work. 5–7, 10, 11

SLA Service-Level-Agreement. 29, 30

SMR State Machine Replication. 7

SOA Service-oriented Architecture. 31

TEE Trusted Execution Environment. 18, 101

TTSM Time-travelling State Machine. 43–53, 55–62, 64–77, 79–88, 91, 94–109, 113

UML Unified Modeling Language. 62, 67

UX User Experience. 14, 15

ZKP Zero-Knowledge Proof. 18, 24, 25, 56, 71, 81, 82, 84, 101, 102

118

Bibliography

[AGI+19] Marco Autili, Francesco Gallo, Paola Inverardi, Claudio Pompilio, and
Massimo Tivoli. Introducing trust in service-oriented distributed systems
through blockchain. In 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), pages 149–154, 2019.

[Agu10] Marcos K. Aguilera. Stumbling over Consensus Research: Misunder-
standings and Issues, pages 59–72. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2010.

[BAA+15] Jim Barnett, Rahul Akolkar, RJ Auburn, Michael Bodell, Daniel C.
Burnett, Jerry Carter, Scott McGlashan, Torbjörn Lager, Mark Helbing,
Rafah Hosn, T.V. Raman, Klaus Reifenrath, No’am Rosenthal, and Johan
Roxendal. State chart xml (scxml): State machine notation for control
abstraction. [Online] Available: https://www.w3.org/TR/scxml/,
09 2015. (Accessed 2022-08-15).

[BDM+13] Dominic Betts, Julian Dominguez, Grigori Melnik, Fernando Simonazzi,
and Mani Subramanian. Exploring CQRS and Event Sourcing: A Journey
into High Scalability, Availability, and Maintainability with Windows
Azure. Microsoft patterns & practices, 1st edition, 2013.

[Bel22] Adam Bellemare. Fact vs. delta event types. [Online]
Available: https://developer.confluent.io/learn-kafka/
event-design/fact-vs-delta-events/, 10 2022. (Accessed 2022-
11-20).

[Ben14] Juan Benet. IPFS - content addressed, versioned, P2P file system. CoRR,
abs/1407.3561, 2014.

[BF14] Pierre Bourque and Richard E. Fairley, editors. SWEBOK: Guide to the
Software Engineering Body of Knowledge. IEEE Computer Society, Los
Alamitos, CA, version 3.0 edition, 2014.

[BKM18] Ethan Buchman, Jae Kwon, and Zarko Milosevic. The latest gossip on
BFT consensus. CoRR, abs/1807.04938, 2018.

119

https://www.w3.org/TR/scxml/
https://developer.confluent.io/learn-kafka/event-design/fact-vs-delta-events/
https://developer.confluent.io/learn-kafka/event-design/fact-vs-delta-events/

[Bra12] Jamie Brandon. Causal ordering. [Online] Available: https://www.
scattered-thoughts.net/writing/causal-ordering/, 08
2012. (Accessed 2022-08-21).

[Bro19] Paul Brody. How public blockchains are making private blockchains
obsolete. [Online] Available: https://go.ey.com/2EbwphF, 12 2019.
(Accessed 2022-10-17).

[BSA14] Alysson Bessani, João Sousa, and Eduardo E.P. Alchieri. State machine
replication for the masses with bft-smart. In 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages
355–362, 2014.

[BSH+20] Florian Blum, Benedikt Severin, Michael Hettmer, Philipp Hückinghaus,
and Volker Gruhn. Building hybrid dapps using blockchain tactics -the
meta-transaction example. In 2020 IEEE International Conference on
Blockchain and Cryptocurrency (ICBC), pages 1–5, 2020.

[But22] Vitalik Buterin. A next-generation smart contract and decentralized
application platform. [Online] Available: https://ethereum.org/
en/whitepaper/, 10 2022. (Accessed 2022-10-17).

[Cam22] Cambridge Bitcoin electricity consumption index. [Online] Available:
https://cbeci.org/, 10 2022. (Accessed 2022-10-05).

[Car22] J.D. Carlston. What’s in an (event) name? [Online] Available: https://
www.eventstore.com/blog/whats-in-an-event-name, 01 2022.
(Accessed 2022-10-17).

[CFR18] Barbara Carminati, Elena Ferrari, and Christian Rondanini. Blockchain as
a platform for secure inter-organizational business processes. In 2018 IEEE
4th International Conference on Collaboration and Internet Computing
(CIC), pages 122–129, 2018.

[CK92] Michael Christel and Kyo Kang. Issues in requirements elicitation. Techni-
cal Report CMU/SEI-92-TR-012, Software Engineering Institute, Carnegie
Mellon University, Pittsburgh, PA, 09 1992.

[CL99] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance.
OSDI, 03 1999.

[CRF18] Barbara Carminati, Christian Rondanini, and Elena Ferrari. Confidential
business process execution on blockchain. In 2018 IEEE International
Conference on Web Services (ICWS), pages 58–65, 2018.

[dAS19] Monika di Angelo and Gernot Salzer. A survey of tools for analyzing
ethereum smart contracts. In 2019 IEEE International Conference on

120

https://www.scattered-thoughts.net/writing/causal-ordering/
https://www.scattered-thoughts.net/writing/causal-ordering/
https://go.ey.com/2EbwphF
https://ethereum.org/en/whitepaper/
https://ethereum.org/en/whitepaper/
https://cbeci.org/
https://www.eventstore.com/blog/whats-in-an-event-name
https://www.eventstore.com/blog/whats-in-an-event-name

Decentralized Applications and Infrastructures (DAPPCON), pages 69–78,
2019.

[Den97] Peter J. Denning. A new social contract for research. Communications of
the ACM, 40:132–134, 02 1997.

[EEA22] Baseline Protocol Specifications. [Online] Available: https://github.
com/eea-oasis/baseline-standard, 09 2022. (Accessed 2022-10-
17).

[EH18] Jacob Eberhardt and Jonathan Heiss. Off-chaining models and approaches
to off-chain computations. In Proceedings of the 2nd Workshop on Scalable
and Resilient Infrastructures for Distributed Ledgers, 12 2018.

[ES13] Ittay Eyal and Emin Gün Sirer. Majority is not enough: Bitcoin mining
is vulnerable. CoRR, abs/1311.0243, 2013.

[ET17] Jacob Eberhardt and Stefan Tai. On or Off the Blockchain? Insights on
Off-Chaining Computation and Data, pages 3–15. Service-Oriented and
Cloud Computing. Springer International Publishing, 2017.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. Im-
possibility of distributed consensus with one faulty process. J. ACM,
32(2):374—-382, April 1985.

[FRMKR15] Walid Fdhila, Stefanie Rinderle-Ma, David Knuplesch, and Manfred
Reichert. Change and compliance in collaborative processes. In 2015
IEEE International Conference on Services Computing, pages 162–169,
2015.

[FRMR12] Walid Fdhila, Stefanie Rinderle-Ma, and Manfred Reichert. Change
propagation in collaborative processes scenarios. In 8th International
Conference on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), pages 452–461, 01 2012.

[FSM21] Abdmeziem Farah, Boukhedouma Saida, and Oussalah Chabane Mourad.
On the security of business processes: classification of approaches, com-
parison, and research directions. In 2021 International Conference on
Networking and Advanced Systems (ICNAS), pages 1–8, 2021.

[FVB05] Brian Fynes, Chris Voss, and Seán Búrca. The impact of supply chain
relationship quality on quality performance. International Journal of
Production Economics, 96:339–354, 02 2005.

[FWSZ21] Xiang Fu, Huaimin Wang, Peichang Shi, and Xunhui Zhang. Teegraph:
A blockchain consensus algorithm based on tee and dag for data sharing
in iot. Journal of Systems Architecture, 122:102344, 11 2021.

121

https://github.com/eea-oasis/baseline-standard
https://github.com/eea-oasis/baseline-standard

[GBPDW17] Luciano García-Bañuelos, Alexander Ponomarev, Marlon Dumas, and
Ingo Weber. Optimized execution of business processes on blockchain.
In Josep Carmona, Gregor Engels, and Akhil Kumar, editors, Business
Process Management, pages 130–146, Cham, 2017. Springer International
Publishing.

[Gei15a] Matthias Geirhos. Entwurfsmuster – Das umfassende Handbuch. Rhein-
werk Computing, Rheinwerkallee 4, 53227 Bonn, Germany, 2015.

[Gei15b] Matthias Geirhos. Entwurfsmuster – Das umfassende Handbuch. Rhein-
werk Computing, Rheinwerkallee 4, 53227 Bonn, Germany, 2015.

[Gei15c] Matthias Geirhos. Verhaltensmuster. In Entwurfsmuster – Das umfassende
Handbuch [Gei15b], pages 343–350.

[GGSGL+20] Julian Alberto Garcia-Garcia, Nicolás Sánchez-Gómez, David Lizcano,
M. J. Escalona, and Tomás Wojdyński. Using blockchain to improve
collaborative business process management: Systematic literature review.
IEEE Access, 8:142312–142336, 2020.

[Har87] David Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231––274, 06 1987.

[HMPR04] Alan R. Hevner, Salvatore T. March, Jinsoo Park, and Sudha Ram. Design
science in information systems research. MIS Quarterly, 28:75–105, 03
2004.

[ISO04] Data elements and interchange formats – information interchange – rep-
resentation of dates and times. [Online] Available: https://www.iso.
org/standard/40874.html, 2004. (Accessed 2022-09-05).

[JBS+20] Chandra Priya Jayabal, Ponsy Bhama, S. Swarnalaxmi, A. Safa, and
I. Elakkiya. Blockchain Centered Homomorphic Encryption: A Secure
Solution for E-Balloting, pages 811–819. Springer International Publishing,
01 2020.

[JMSK04] David A Johnston, David M McCutcheon, F.Ian Stuart, and Hazel Ker-
wood. Effects of supplier trust on performance of cooperative supplier
relationships. Journal of Operations Management, 22(1):23–38, 2004.

[KJ21] Ilyass El Kassmi and Zahi Jarir. Blockchain-oriented inter-organizational
collaboration between healthcare providers to handle the covid-19 process.
International Journal of Advanced Computer Science and Applications,
12:762–780, 2021.

[Kle17] Martin Kleppmann. Designing data-intensive applications: The big ideas
behind reliable, scalable, and maintainable systems. "O’Reilly Media, Inc.",
2017.

122

https://www.iso.org/standard/40874.html
https://www.iso.org/standard/40874.html

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558—-565, July 1978.

[LBAG21] Faiza Loukil, Khouloud Boukadi, Mourad Abed, and Chirine Ghedira.
Decentralized collaborative business process execution using blockchain.
World Wide Web, page 19, 09 2021.

[LFW20] Jan Ladleif, Christian Friedow, and Mathias Weske. An architecture for
multi-chain business process choreographies. In Witold Abramowicz and
Gary Klein, editors, Business Information Systems, pages 184–196, Cham,
2020. Springer International Publishing.

[LPDGBW19] Orlenys López-Pintado, Marlon Dumas, Luciano García-Bañuelos, and
Ingo Weber. Interpreted execution of business process models on
blockchain. In 2019 IEEE 23rd International Enterprise Distributed
Object Computing Conference (EDOC), pages 206–215, 2019.

[LPGBD+19] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, Ingo
Weber, and Alexander Ponomarev. Caterpillar: A business process ex-
ecution engine on the ethereum blockchain. Software: Practice and
Experience, 49:1162–1193, 2019.

[LPGBDW17] Orlenys López-Pintado, Luciano García-Bañuelos, Marlon Dumas, and
Ingo Weber. Caterpillar: A blockchain-based business process management
system. In BPM, 2017.

[LSNW20] Tom Lichtenstein, Simon Siegert, Adriatik Nikaj, and Mathias Weske.
Data-driven process choreography execution on the blockchain: A focus on
blockchain data reusability. In Witold Abramowicz and Gary Klein, edi-
tors, Business Information Systems, pages 224–235, Cham, 2020. Springer
International Publishing.

[LSP02] Leslie Lamport, Robert Shostak, and Marshall Pease. The byzantine
generals problem. ACM Trans. Program. Lang. Syst., 4, 02 2002.

[LWW19] Jan Ladleif, Mathias Weske, and Ingo Weber. Modeling and enforcing
blockchain-based choreographies. In Thomas Hildebrandt, Boudewijn F.
van Dongen, Maximilian Röglinger, and Jan Mendling, editors, Business
Process Management, pages 69–85, Cham, 2019. Springer International
Publishing.

[Mar96] Robert Cecil Martin. The open-closed principle. [Online] Available:
https://courses.cs.duke.edu/fall07/cps108/papers/ocp.
pdf, 01 1996. (Accessed 2022-10-29).

[Mar17] Robert C. Martin. Clean Architecture: A Craftsman’s Guide to Software
Structure and Design. Prentice Hall Press, USA, 1st edition, 2017.

123

https://courses.cs.duke.edu/fall07/cps108/papers/ocp.pdf
https://courses.cs.duke.edu/fall07/cps108/papers/ocp.pdf

[Mey88] Bertrand Meyer. Eiffel: A language and environment for software engi-
neering. Journal of Systems and Software, 8(3):199–246, 1988.

[Mey97] Bertrand Meyer. Object-Oriented Software Construction (2nd Ed.).
Prentice-Hall, Inc., USA, 1997.

[MWA+18] Jan Mendling, Ingo Weber, Wil Van Der Aalst, Jan Vom Brocke, Cristina
Cabanillas, Florian Daniel, Søren Debois, Claudio Di Ciccio, Marlon Du-
mas, Schahram Dustdar, Avigdor Gal, Luciano García-Bañuelos, Guido
Governatori, Richard Hull, Marcello La Rosa, Henrik Leopold, Frank Ley-
mann, Jan Recker, Manfred Reichert, Hajo A. Reijers, Stefanie Rinderle-
Ma, Andreas Solti, Michael Rosemann, Stefan Schulte, Munindar P. Singh,
Tijs Slaats, Mark Staples, Barbara Weber, Matthias Weidlich, Mathias
Weske, Xiwei Xu, and Liming Zhu. Blockchains for business process
management - challenges and opportunities. ACM Trans. Manage. Inf.
Syst., 9(1), 02 2018.

[Nak09] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. Cryp-
tography Mailing list at https://metzdowd.com, 03 2009. (Accessed 2021-
09-15).

[New19] Sam Newman. Just enough microservices. In Monolith to Microservices:
Evolutionary Patterns to Transform Your Monolith, pages 1–32. O’Reilly
Media, Incorporated, 1005 Gravenstein Highway North, Sebastopol, CA
95472, USA, 11 2019.

[NMK18] Hiroaki Nakamura, Kohtaroh Miyamoto, and Michiharu Kudo. Inter-
organizational business processes managed by blockchain. In Hakim Hacid,
Wojciech Cellary, Hua Wang, Hye-Young Paik, and Rui Zhou, editors,
Web Information Systems Engineering – WISE 2018, pages 3–17, Cham,
2018. Springer International Publishing.

[OMG10] Bpmn 2.0 by example. [Online] Available: http://docenti.ing.
unipi.it/m.cimino/gpa/res/BPMN_by_example.pdf, 06 2010.
(Accessed 2022-10-08).

[OMG11] Business Process Model and Notation (BPMN) - Version 2.0. [Online]
Available: https://www.omg.org/spec/BPMN/2.0/PDF, 01 2011.
(Accessed 2022-04-20).

[OMT09] Advanced Trusted Environment: OMTP TR1. [Online] Avail-
able: http://www.omtp.org/OMTP_Advanced_Trusted_
Environment_OMTP_TR1_v1_1.pdf, 05 2009. (Accessed 2022-
10-31).

[Pel03] C. Peltz. Web services orchestration and choreography. Computer,
36(10):46–52, 2003.

124

http://docenti.ing.unipi.it/m.cimino/gpa/res/BPMN_by_example.pdf
http://docenti.ing.unipi.it/m.cimino/gpa/res/BPMN_by_example.pdf
https://www.omg.org/spec/BPMN/2.0/PDF
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf
http://www.omtp.org/OMTP_Advanced_Trusted_Environment_OMTP_TR1_v1_1.pdf

[PG17] Ross C. Phillips and Denise Gorse. Predicting cryptocurrency price
bubbles using social media data and epidemic modelling. In 2017 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 1–7, 11
2017.

[PL09] Photis Panayides and Y.H. Lun. The impact of trust on innovativeness and
supply chain performance. International Journal of Production Economics,
122:35–46, 11 2009.

[PPMT17] Simone Porru, Andrea Pinna, Michele Marchesi, and Roberto Tonelli.
Blockchain-oriented software engineering: Challenges and new directions.
In 2017 IEEE/ACM 39th International Conference on Software Engineer-
ing Companion (ICSE-C), pages 169–171, 2017.

[Pry16] Christoph Prybila. Runtime verification for business processes utilizing
the blockchain. Master’s thesis, TU Wien, 1040 Wien, Austria, 12 2016.

[Pry19] Nat Pryce. Mistakes we made adopting event sourcing (and how we
recovered). [Online] Available: http://natpryce.com/articles/
000819.html, 06 2019. (Accessed 2022-09-06).

[PSHW20] Christoph Prybila, Stefan Schulte, Christoph Hochreiner, and Ingo Weber.
Runtime verification for business processes utilizing the bitcoin blockchain.
Future Generation Computer Systems, 107:816–831, 2020.

[RA11] Ellen Rhoades and Ellen A. Literature reviews. The Volta Review,
111:354–369, 09 2011.

[RCDF20] Christian Rondanini, Barbara Carminati, Federico Daidone, and Elena
Ferrari. Blockchain-based controlled information sharing in inter-
organizational workflows. In 2020 IEEE International Conference on
Services Computing (SCC), pages 378–385, 11 2020.

[RJ20] C. Rosenthal and N. Jones. Chaos Engineering: System Resiliency in
Practice. O’Reilly Media, 2020.

[Sal20] Fahad Saleh. Blockchain without waste: Proof-of-stake. The Review of
Financial Studies, 34, 07 2020.

[SAW20] Siti Saadah and A.A Ahmad Whafa. Monitoring financial stability based
on prediction of cryptocurrencies price using intelligent algorithm. In 2020
International Conference on Data Science and Its Applications (ICoDSA),
pages 1–10, 08 2020.

[SB12] João Sousa and Alysson Bessani. From byzantine consensus to bft state
machine replication: A latency-optimal transformation. In 2012 Ninth
European Dependable Computing Conference, pages 37–48, 2012.

125

http://natpryce.com/articles/000819.html
http://natpryce.com/articles/000819.html

[SBK+17] Marc Stevens, Elie Bursztein, Pierre Karpman, Ange Albertini, and
Yarik Markov. The first collision for full sha-1. In Jonathan Katz and
Hovav Shacham, editors, Advances in Cryptology – CRYPTO 2017, pages
570–596, Cham, 2017. Springer International Publishing.

[SLHK19] A. Shahaab, B. Lidgey, C. Hewage, and I. Khan. Applicability and
appropriateness of distributed ledgers consensus protocols in public and
private sectors: A systematic review. IEEE Access, 7:43622–43636, 2019.

[Som10] Ian Sommerville. Software Engineering. Addison-Wesley, Harlow, England,
9 edition, 2010.

[SSSJ19] Christian Sturm, Jonas Szalanczi, Stefan Schönig, and Stefan Jablonski.
A Lean Architecture for Blockchain Based Decentralized Process Execution,
pages 361–373. Springer International Publishing, Cham, 01 2019.

[Str19] Samuel Stratton. Literature reviews: Methods and applications. Prehos-
pital and Disaster Medicine, 34:347–349, 08 2019.

[SYZ+21] Xiaoqiang Sun, F. Richard Yu, Peng Zhang, Zhiwei Sun, Weixin Xie,
and Xiang Peng. A survey on zero-knowledge proof in blockchain. IEEE
Network, 35(4):198–205, 2021.

[Vog09] Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40—-44, 01
2009.

[VXBP19] Wattana Viriyasitavat, Li Da Xu, Zhuming Bi, and Vitara Pungpapong.
Blockchain and internet of things for modern business process in digital
economy—the state of the art. IEEE Transactions on Computational
Social Systems, 6(6):1420–1432, 2019.

[WEHG18] Florian Wessling, Christopher Ehmke, Marc Hesenius, and Volker Gruhn.
How much blockchain do you need? towards a concept for building hybrid
dapp architectures. In 2018 IEEE/ACM 1st International Workshop on
Emerging Trends in Software Engineering for Blockchain (WETSEB),
pages 44–47, 2018.

[WEMG19] Florian Wessling, Christopher Ehmke, Ole Meyer, and Volker Gruhn.
Towards blockchain tactics: Building hybrid decentralized software archi-
tectures. In 2019 IEEE International Conference on Software Architecture
Companion (ICSA-C), pages 234–237, 2019.

[Wes12a] Mathias Weske. Business Process Management Architectures, pages 333–
371. Springer Berlin Heidelberg, Berlin, Heidelberg, 2012.

[Wes12b] Mathias Weske. Introduction, pages 3–23. Springer Berlin Heidelberg,
Berlin, Heidelberg, 2012.

126

[Wes12c] Mathias Weske. Process Choreographies, pages 243–291. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[Wes12d] Mathias Weske. Process Orchestrations, pages 125–242. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2012.

[Wes12e] Mathias Weske. Properties of Business Processes, pages 293–329. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2012.

[WG18] Florian Wessling and Volker Gruhn. Engineering software architectures of
blockchain-oriented applications. In 2018 IEEE International Conference
on Software Architecture Companion (ICSA-C), pages 45–46, 2018.

[Woo22] Gavin Wood. Ethereum: A secure decentralised generalised transac-
tion ledger. [Online] Available: https://github.com/ethereum/
yellowpaper, 08 2022. (Accessed 2022-10-17).

[WXR+16] Ingo Weber, Xiwei Xu, Régis Riveret, Guido Governatori, Alexander
Ponomarev, and Jan Mendling. Untrusted business process monitoring
and execution using blockchain. In Marcello La Rosa, Peter Loos, and
Oscar Pastor, editors, Business Process Management, pages 329–347,
Cham, 2016. Springer International Publishing.

[WZ18] Maximilian Wohrer and Uwe Zdun. Smart contracts: security patterns in
the ethereum ecosystem and solidity. In 2018 International Workshop on
Blockchain Oriented Software Engineering (IWBOSE), pages 2–8, 2018.

[XWS+17] Xiwei Xu, Ingo Weber, Mark Staples, Liming Zhu, Jan Bosch, Len Bass,
Cesare Pautasso, and Paul Rimba. A taxonomy of blockchain-based
systems for architecture design. In 2017 IEEE International Conference
on Software Architecture (ICSA), pages 243–252, 2017.

[XWS19] Xiwei Xu, Ingo Weber, and Mark Staples. Blockchain Patterns, pages
113–148. Springer International Publishing, Cham, 2019.

[YJD09] Wang Yu, Chen Jianhua, and He Debiao. A new collision attack on
md5. In 2009 International Conference on Networks Security, Wireless
Communications and Trusted Computing, volume 2, pages 767–770, 2009.

[ZHJ04] Tewfik Ziadi, Loïc Hélouët, and Jean-Marc Jézéquel. Revisiting statechart
synthesis with an algebraic approach. In Proceedings. 26th International
Conference on Software Engineering, volume 26, pages 242–251, 06 2004.

127

https://github.com/ethereum/yellowpaper
https://github.com/ethereum/yellowpaper

	Kurzfassung
	Abstract
	Contents
	Introduction
	Aim of the Work
	Methodological Approach
	Structure of the Work

	Background
	Consensus
	Blockchain-oriented Software Engineering
	Onchain vs Offchain
	Business Process Management
	Baseline Protocol

	Related Work
	Literature Review Methodology
	Concept Comparison

	Time-travelling State Machines
	Design Science Methodology
	Proposed Concept
	Prototype Design
	Intrinsic Properties

	Evaluation
	Qualitative Analysis
	Static Analysis
	Scenario Simulations
	Integration with Camunda's Zeebe

	Conclusion
	List of Figures
	List of Tables
	List of Algorithms
	List of Listings
	Acronyms
	Bibliography

