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Kurzfassung

Cyber-Physical Production Systems (CPPSs), z. B. automatisierte Autofabriken, sind
flexible Systeme, die aus intelligenten Maschinen und Software bestehen und sich selbst-
ständig an wechselnde Anforderungen anpassen können. Ein CPPS produziert verwandte
Produkte mit einer gemeinsamen Plattform, aber unterschiedlichen Eigenschaften, z. B.
Autos in verschiedenen Konfigurationen, und bildet so eine Produktfamilie. Bei der
Planung von CPPSs entwerfen die Ingenieure das CPPS unter Berücksichtigung von
Produktfamilien. Daher modellieren sie die Produktionsprozesse für jedes Produkt und
ermitteln deren Gemeinsamkeiten und produktspezifische Variabilität für eine integrierte
Sicht auf die CPPS.
Die unzureichende Wissensdarstellung der Produktionsprozesse mit ihrer Variabilität
macht diese Identifizierung zeitaufwändig, fehleranfällig und schwer reproduzierbar. Wenn
sich die Produktfamilie weiterentwickelt, d. h. wenn sich die Anforderungen an das Pro-
dukt oder das CPPS ändern, führen die Ingenieure die Identifizierung der Variabilität in
der Regel von Grund auf neu durch. Darüber hinaus erschwert eine begrenzte Werkzeug-
unterstützung mit unklarer Semantik und ohne maschinenlesbare Struktur die Analyse
und das Testen und verhindert effiziente Prozessoptimierungen und Qualitätssicherung.
Diese Arbeit verwendet die Design-Science-Methodik, um den Model Variant Analysis
(MVA)-Ansatz zu entwickeln, der aus (i) dem MVA-Metamodell zur Verbesserung der
formalen Darstellung von Produktionsprozessen, (ii) einer Methode zur Identifizierung
und Verbesserung von Merkmalen und (iii) einer Variabilitätsanalyse auf der Grundlage
des Product-Process-Resource (PPR)-Ansatzes besteht.
In dieser Arbeit wird der MVA-Ansatz qualitativ evaluiert, wobei die identifizierten
Anforderungen mit den bereitgestellten Fähigkeiten verglichen werden. Dazu werden typi-
sche Anwendungsfälle aus dem CPPS-Engineering verwendet und es wird untersucht, wie
diese vom MVA-Ansatz profitieren können. Die Auswertung zeigt, dass der MVA-Ansatz
Fähigkeiten bietet, die CPPS-Ingenieure bei ihren typischen Planungsaktivitäten unter-
stützen. Die Evaluierung zeigt auch, dass das MVA-Metamodell sowie die Identifizierungs-
und Analyseansätze für andere Modelltypen geeignet sind.
Die Ergebnisse dieser Arbeit sollen ein wohldefiniertes Metamodell und strukturierte Mo-
dellanalyseansätze für Ingenieure bereitstellen. Allerdings ist eine empirische Evaluierung
mit Branchenexperten und einer breiteren Palette von Anwendungsfällen erforderlich,
um die Erkenntnisse zu erhärten.
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Abstract

Cyber-Physical Production Systems (CPPSs), such as automated car manufacturing
plants, are flexible systems, combined of smart machines and software, that can adapt to
changing requirements autonomously. A CPPS produces related products with a shared
platform but different characteristics, e.g., cars in different configurations, building a
product family. In CPPSs planning, engineers design the CPPS considering product
families. Therefore, they model production processes for each product and identify their
commonalities and product-specific variability for an integrated view on the CPPS.

Insufficient knowledge representation of production processes with their variability makes
this identification time-consuming, error-prone, and hard to reproduce. Furthermore,
if the product family evolves, i.e., product or CPPS requirements change, engineers
typically conduct the variability identification task from scratch. On top, limited tool
support with unclear semantics and without machine-readable structure makes analysis
and testing difficult, preventing efficient process optimizations and quality assurance.

This thesis uses the Design Science methodology to develop the Model Variant Analysis
(MVA) approach consisting of (i) the MVA metamodel to improve the formal representa-
tion of production processes, (ii) a feature identification and improvement method, and
(iii) a variability analysis based on the Product-Process-Resource (PPR) approach.

The thesis evaluates the MVA approach in a qualitative evaluation, comparing identified
requirements with the provided capabilities. Therefore, this thesis utilizes typical use
cases from CPPS engineering and investigates how they can benefit from the MVA
approach. The evaluation indicates that the MVA approach provides capabilities that
aid CPPS engineers in their typical planning activities. The evaluation also shows that
the MVA metamodel as well as the identification and analysis approaches are open for
other types of models.

The results of this thesis are envisioned to provide a well-defined metamodel and structured
model analysis approaches for CPPS engineers. However, an empirical evaluation with
industry experts and a broader range of use cases is required to harden the evidence.
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CHAPTER 1
Introduction

This chapter introduces the context of the work with a problem description and the
expected aims and results of this thesis. Finally, the structure of this work is presented.

1.1 Context
Cyber-Physical Production Systems (CPPSs), like autonomous automotive plants, are
highly integrated within their physical environment using sensors and software which is
why they can adapt autonomously to changing conditions [Monostori, 2014, Biffl et al.,
2017b]. Such CPPSs often produce a range of product variants, i.e., a product family [Van
der Linden et al., 2007]. Figure 1.1 shows an example of a CPPS from the automotive
manufacturing domain to assemble cars. The main aspects represented in a CPPS are
the Product-Process-Resource (PPR) concepts [Schleipen et al., 2015]. For instance, in
Figure 1.1, the product (red) is moved on a conveyor belt (process) to the working cells
where robots (resource) assemble the car step by step. Products in a product family
share a common platform but have specific additional features [Meyer and Utterback,
1992]. Kang et al. [1990] define a feature as “a prominent or distinctive user-visible
aspect, quality, or characteristic of a software system or systems.” Feature examples are
the color of a car or the type of rims.

The upper part of Figure 1.2 illustrates the basic principles of a production process to
prepare a burger with two examples. Each rectangle describes one production step. The
edges between the steps describe the flow of production. Regarding the first example (1)
in Figure 1.2, the first step of preparing a burger is to place the bottom of the burger
bun on the table, a plate, or a conveyor belt. Then the patty, cheese, and tomatoes are
placed onto the bun. Finally, the top of the burger bun completes the burger. Regarding
the second example (2) in Figure 1.2, the first step is again to place the bottom of the
burger bun on the table, on a plate, or on a conveyor belt. Then the patty, tomatoes,

1



1. Introduction

Figure 1.1: Automotive factory as an example of a CPPS with the product (red) that is
assembled in a process (indicated by the conveyor belt in yellow) using a working unit
(green) - (derivative of Tesla Robot Dance by Steve Jurvetson, used under CC-BY 2.0,
licensed under CC-BY 2.0 by Kristof Meixner).

and pickles are placed on the bun. Finally, the top of the burger bun again completes
the burger.
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Figure 1.2: Example of preparation processes (1 and 2) for Burgers with different toppings
and the combined production process (1+2) for both burger variants. Equal production
steps are colored red. Equal production steps but in different positions are colored blue.
White production steps are variant-specific and not part of the other one.

Obviously, some of the steps are equal (marked red in Figure 1.2), also regarding their
position in the production process, some of them are present in both production processes
but in a different position (marked blue), and some of the steps are only present in
one of the production processes (marked black and white). The description of product
variants regarding the production steps that the variants share (commonalities) and don’t
share (variability) can be described as variability modeling. Variability modeling is the
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1.2. Problem Description

systematic modeling and managing of commonalities and variability to achieve reuse,
reproducibility and to reduce maintenance effort [Bosch, 2001].

CPPSs engineering is a multidisciplinary process, where engineers of different domains
work together to plan and build a CPPS [Biffl et al., 2017a]. In the basic planning phase
of CPPSs, engineers have to create production processes for each product (of the product
family) that the CPPS should automate. Further, engineers have to merge all relevant
production processes together by identifying commonalities and variant-specific features
to derive an overall design of a CPPS. The lower part of Figure 1.2 illustrates the two
production processes merged together into a single model which is also called integrated
or superimposed model in the frame of this work.

Merging the production processes is trivial in the case of the presented burger product line,
because of only two production processes. However, merging and analyzing production
processes becomes time-consuming, error-prone, and hard to reproduce with an increasing
number of production processes Meixner et al. [2020c]. On top, the required knowledge
to suitably find commonalities to merge the processes is, on the one hand, scattered and
implicit and, on the other hand, insufficient regarding the representation. For instance,
engineers use large spreadsheets with a few hundred rows and columns to design and
merge individual production processes, due to the limitations of current tools Meixner
et al. [2020c].

1.2 Problem Description
CPPS engineering comprises the design, construction, and commissioning of the pro-
duction systems. Weber [2014] splits Production Systems Engineering (PSE) into nine
phases, with Phases 1-5 for planning and Phases 6-9 for implementation (cf. Figure 1.3).
Phases 1-2 concern the general project management activities to define the setting of
the engineering project. Phases 3-5 concern the basic planning, which results in cost
calculations, a rough concept of the production system and permit preparations that
serve as the basis for binding contracts to engineers and to implement a production
system. Phases 6-9 concern the detailed engineering of the CPPS, its implementation
and the commissioning.

This work focuses on Phase 3: Basic Engineering of the presented model by Weber [2014]
which involves Basic Planners, Production Process Engineers and Quality Engineers. The
selected phase is essential for subsequent phases because the rough concept of the CPPS
serves as basis for binding contracts. Planning errors that occur in this phase typically
lead to high costs in subsequent phases and possibly to contract violation.

The lower part of Figure 1.3 shows the identified engineering activities in the Engineering
Phase 3 with the identified challenges, respectively. Basic Planners design the production
processes with the product requirements set by the customer. The designed production
processes are then input for optimization and quality assurance, with the results being
integrated back into the production processes iteratively.

3



1. Introduction
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Figure 1.3: Challenges in the activities of basic engineering, based on [Weber, 2014].

This thesis focuses on the identified challenges in the activities of basic engineering
and, therefore, presents the involved stakeholders, their goals, and challenges within the
remainder of this subsection.

Basic Planners. Basic Planners are domain experts responsible for creating an initial
CPPS design based on product and customer requirements. With the provided prod-
uct requirements, basic planners create production processes with constraints between
products, processes and resources, which are further used to create an initial CPPS
design [Meixner et al., 2020c, Kathrein et al., 2018].

They strive for high-value solutions for customers and the engineering organization. Basic
planners want to reuse existing partial solutions, e.g., production steps, from past projects
to increase productivity [Biffl et al., 2021]. Therefore, they need to create and organize
solution parts in a structured way. For instance, the VDI 3695 - Part 3 [VDI, 2010]
describes a reference model to create reusable artifacts inside and across projects.

Meixner et al. [2019] reported practitioners in industry to use spreadsheets to represent
product variant matrices. Such a variant matrix comprises the product variants and their
features. For example, the rows represent the available features in a product family and
the columns describe the (final) product variants. Spreadsheets often have no predefined
structure and semantics, such that the structure can be different for each engineering
discipline or even in similar projects. The limitation of structure and semantics makes
spreadsheets difficult to process by humans and machines [Chambers and Scaffidi, 2010].

Table 1.1 shows a small example of a variant matrix for the Burger product line.
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Table 1.1: Variant Matrix Example of the Burger Product Line. Rows represent the
features while columns represent burger configurations.

The product line comprises four types of Burgers, Burger with Patty and Cheese, Burger
with Cheese, Burger with Cheese and Tomato and Burger with Patty and Tomato. The
rows contain the parts the burger is made of, i.e., the burger bun top and bottom
(common for all burgers) and the other parts Patty, Tomato, and Cheese. For each type
of burger, the respective features are marked with an X in the table. For example, Burger
with Patty and Cheese comprises the base (burger bun top and bottom) and two features
Patty and Cheese.

The burger product line has a rather small variant matrix. In [Meixner et al., 2019],
the authors describe a real-world variant matrix with around 300 rows and 45 columns
of a rocker switch product line. With the complexity of the variant matrix, the risk
of errors increases, e.g., taking feature assignment of the wrong row, especially with
the limitations of used tools, e.g., missing semantics and visualization capabilities in
spreadsheet tools [Pett et al., 2019, Chambers and Scaffidi, 2010].

The variant matrices are used to derive the production processes that forms the rough
concept of the CPPSs. Therefore, engineers manually identify commonalities of the
production processes by comparing the production process variants and transferring the
identified components into a component matrix within the same spreadsheets [Meixner
et al., 2020c].

The VDI 3682 [VDI, 2005] is a notation to model the concepts of the PPR approach. To
this end, the VDI 3682 allows describing and structure production processes with their
products and resources, readable both by humans and machines. Production processes
are represented as a sequence of process steps that transform one or more input-products
to an intermediary or final product using specific resources [VDI, 2005, Schleipen et al.,
2015]. Meixner et al. [2019] utitlized the approach to derive and visualize an integrated
model that combines multiple production processes, named superimposed PPR model.

However, the superimposed PPR model has limitations concerning the representation of
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1. Introduction

knowledge (C1.), i.e., concepts are not well-defined. Furthermore, the methods to evolve
the superimposed PPR model are limited (C2.), i.e., requires recalculation from scratch
every time an individual production process changes.

Production Process Optimizers. Production Process Optimizers are domain experts
who aim to improve production process efficiency. Among others, optimal utilization of
production processes is one way to increase efficiency [Weichert et al., 2019]. They analyze
production processes to identify possible bottlenecks or waste of resources. Bottlenecks
may be caused, e.g., by undersized machines with low throughput, which slows down the
entire production process. Oversized machines can otherwise process more units than
provided by the previous production step, which leads to high idle time-wasting energy
and resources.

Thus, the goal of Production Process Optimizers is to find a balance between throughput
and utilization to equally utilize components of the CPPS. They also try to find an
optimal order of production steps to find an optimal production process for each product
variant in the product line.

However, insufficient analysis capabilities of current tools (C3.), e.g., spreadsheet tools,
makes the utilization analysis error-prone and time-expensive. To reach their goal more
efficiently, Production Process Optimizers require analysis capabilities for production
processes with variability to find bottlenecks or oversized components in a CPPS. For
example, they have given a superimposed model to identify optimization opportunities
given the planned production volumes of the relevant products.

Quality Engineers Quality Engineers are domain experts whose goal is to ensure the
correct behavior of production steps in production processes. In software engineering,
the quality of software can be improved by using test automation, i.e., test cases are
defined by engineers and automatically executed when the software changes [Garousi
and Mäntylä, 2016]. Test cases are defined to show defects, especially if parts of the
software change. Regarding CPPS engineering, it is also desired to ensure that certain
parts of the CPPS, i.e., production processes, behave correctly. However, in contrast to
software engineering, the definition of test cases requires not only the knowledge of the
basic planner but also of the software engineer [Meixner et al., 2020b]. Especially for
models with variability, Quality Engineers ideally want to test all feature combinations.

However, due to the combinatorial explosion with the increasing number of features, it is
not feasible to test all feature combinations. Additionally, with spreadsheet tools, the
derivation of a representative set of feature combinations is error-prone and requires
significant human effort. This leads to insufficient testing capabilities for production
processes with variability (C4.).

Challenges To sum up, major challenges for engineers in the basic planning phase of
CPPSs include (c.f. Figure 1.3)

6



1.3. Aims and Results

(C1.) Insufficient knowledge representation of production processes with variability.

(C2.) Inefficient means to evolve production processes with variability.

(C3.) Insufficient analysis capabilities for production processes with variability.

(C4.) Insufficient testing capabilities for production processes with variability.

The following section presents details on the goal and the contributions of this work to
address these challenges.

1.3 Aims and Results
The goal of this thesis is the design and evaluation of knowledge representations of
production processes and methods to evolve, analyze, and test production processes to
address the aforementioned challenges. To reach this goal and address the challenges,
this thesis first derives research questions from the challenges, followed by the design for
the problem solution.

In detail, the key contributions to address the challenges and research questions are:

(Co1) The Model Variant Analysis (MVA) metamodel to represent superim-
posed PPR models with concepts to visualize variability, differences, analysis
results, and application-defined information. This contribution addresses challenge
(C1.) such that engineers are provided with a suitable metamodel to represent
knowledge of production processes with variability.

(Co2) The PPRVM Model Difference Analysis (PPRVM-MDA) approach to
find differences in PPR models that conform to the MVA metamodel. This contri-
bution addresses challenge (C3.) to provide a tool to analyze production processes
with variability.

(Co3) The PPRVM-FCI Add Variants (PPRVM-FCI-AV) approach to extend
the existing feature identification approaches by the ability to add production pro-
cesses to existing superimposed models. The PPRVM-FCI Add Variants (PPRVM-
FCI-AV) approach aims to provide an efficient tool for the evolution of production
processes with variability and thus addresses the challenge (C2.).

(Co4) The PPRVM-FCI Derive Variants (PPRVM-FCI-DV) approach to derive
production process variants from superimposed models. The PPRVM-FCI Derive
Variants (PPRVM-FCI-DV) approach derives representative sets of feature com-
binations from superimposed models that, among others, can be used for quality
assurance, and thus addresses challenge (C4.).

(Co5) The PPRVM Analysis Framework (PPRVM-ANALYSIS), with a proof of
concept analysis to calculate the utilization rate, that serves as the foundation for
future types for the analysis of production processes with variability. This analysis

7



1. Introduction

framework aims at providing a foundation to design analysis types for production
processes with variability, which addresses challenge (C4.).

The evaluation with typical engineering use cases and product lines from literature
indicates that the developed approach and tools provide valuable insight to production
process evolution and analysis. It showed that the MVA metamodel is suitable to
represent superimposed PPR models with variability and is open to other types of models,
like Unified Modeling Language (UML). The evaluation also showed a trend toward a
more efficient approach to evolve superimposed models.

A more thorough and extensive empirical evaluation is required to harden the results, due
to limited availability and number of industry experts and practitioners. Even though
this evaluation was conducted with representative use cases from literature and industry,
an evaluation with a broader range of use cases is recommended. Further, the evaluation
indicated that the visual representation of the analysis of the engineering models and
the superimposed model could be improved for usability to better guide the engineering
experts.

1.4 Thesis overview
The remainder of this thesis is structured as follows.

Chapter 2 outlines the state of the art in the field of variability modeling in CPPS
engineering and introduces the background of the concepts on which this thesis builds on.

Chapter 3 outlines the research questions of this thesis and the methodologies used to
address them.

Chapter 4 outlines case studies from literature and typical use cases of engineers in CPPS
engineering that are later used for evaluation.

Additionally, requirements were derived from the use cases, which significantly shape the
design of the MVA metamodel presented in Chapter 5.

Chapter 6 presents methods to evolve, analyze and test superimposed models.

Chapter 7 describes the evaluation method and results.

Chapter 8 discusses the evaluation results regarding the research questions and capabilities
raised in Chapters 3 and 4.

Finally, Chapter 9 concludes this thesis with the discussion of limitations and future
research work.
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CHAPTER 2
State of the Art

This chapter discusses the state of the art of approaches and methods relevant for this
thesis in related work.

2.1 Cyber-Physical Production Systems Engineering
The term Cyber-Physical System (CPS) was coined by Lee [2006], who defines it as
”integration of computation with physical processes”. Both, computation and physical
processes affect each other, leading to feedback loops. Lee [2006] describes numerous
application domains, like medical devices and systems, automotive systems, environmental
control and critical infrastructure control. Research interest gained traction between
2007 and 2009, as the analysis of publications for CPS by Cardin [2019] reveals. This
gain also led to several definitions in the product domain. Monostori [2014] defines
CPPSs as production systems interconnected with their environment using sensors and
software. CPPSs are considered to build the foundation of the fourth industrial revolution
[Monostori, 2014]. The Federal Ministry of Education and Research in Germany, coined
the term Industry 4.0 (I4.0) [Federal Ministry for Economic Affairs and Energy] to name
the fourth industrial revolution. The main goals are increased efficiency of factories, a
shorter production systems engineering cycle, and highly customizable customer-oriented
products. Monostori [2014] further defined the main characteristics of CPPSs to be smart,
connected, and responsive. CPPSs are, therefore, able to connect to external systems
and act autonomously on internal or external changes.

Weber [2014] splits the CPPS engineering process in two main segments Planning and
Decision Phase and Construction / Implementation Phase with several phases (c.f.
Figure 1.3). Each phase refines the results of the previous phase. The first phase is
concerned with the scope of the project and the feasibility of the CPPS. Subsequently,
engineers detail on possible solutions and select the most promising. The third phase,
comprises the basic design of the CPPS based on the selected, most promising, solution of
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the previous phase. This is the main phase of engineering, also called Basic Engineering
phase. With the basic design, permits are created and submitted within the next phase.
The fifth phase comprises the cost calculations for implementation and operation. These
calculations serve to decide on the investment. If the investment is approved, the next
engineering phase - Detail Engineering - starts. In this phase, the basic design of phase 3
is further refined to have commission ready planning assets of the CPPS. Phases 7 and 8
comprises the procurement of the components and the construction of the CPPS. The
engineering project ends with the ninth phase that comprises the commissioning of the
CPPS with a final, customer approved, report.
Within the Basic Engineering and the Detail Engineering phases, engineers of different
disciplines are involved. Mechanical, electrical and software engineers work in parallel to
plan certain elements of the CPPS leading to a multidisciplinary environment Biffl et al.
[2017a]. Each engineering discipline requires specific planning assets/perspectives of the
CPPS, e.g., software engineers focus on the software while electricians create wiring plans
of the CPPS components [Biffl et al., 2017a].
Due to the involvement of different engineering disciplines, also discipline-specific tools
are used that require domain knowledge to understand and interpret the planning assets
correctly. Especially, the correct interpretation of discipline-specific planning assets
is essential to verify project-level requirements, i.e., cost or progress. Unfortunately,
most domain-specific tools are not designed to seamlessly integrate with tools of other
disciplines [Moser and Biffl, 2011]. However, engineers of different disciplines have to
communicate their interfaces of shared concepts to ensure compatibility, e.g., the software
needs to understand and process the values of a sensor. Misconceptions within this
multidisciplinary environment bear the risk of costly errors if not identified early in
the process. For example, misunderstandings or implicit knowledge of engineers may
lead to incompatible interfaces of shared components, e.g., the software for the sensor is
incompatible with the hardware interface of the sensor s.t. the software cannot interpret
and process the values.
As previously described, CPPSs are considered as an integral part of Industry 4.0. Thus,
the Reference Architecture Model Industrie 4.0 (RAMI4.0) [ZVEI, 2016] was developed for
the interoperability of I4.0 components. The authors’ goal was to provide a standardized
model to describe I4.0 components. With standardization, it is possible to also have
interoperability outside the business border.
The model consists of three axes.

1. Axis one (Hierarchy Levels) describes the hierarchy levels of standards for integrating
enterprise IT and control systems.

2. Axis two (Layers) describes the architectural layers of an asset and its functions,
communications abilities, and business behaviors.

3. Axis three (The Life Cycle & Value Stream) describes the lifecycle of the described
asset, from planning, and production until disposal.
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The contributions of this thesis are situated in the Type – Development phase of the Life
Cycle & Value Stream axis, since this thesis introduces methods to create planning assets
for production processes.

Further, this thesis aims at optimizing the reuse of planning assets. Thus, this thesis is
situated in the project-dependent and project-independent activities described by the
VDI 3695 [VDI, 2010]. The VDI 3695 is a guideline with the goal to support engineering
organizations in optimizing themselves regarding internal processes, quality assurance, and
risk management. The VDI 3695 provides a procedure model for project-dependent and
-independent activities, to formalize engineering processes. Project-dependent activities
describes task that are conducted within the scope of a specific project, e.g., tasks that
apply to a specific project. Project-independent activities describe tasks that are outside
the scope of a specific project, e.g., tasks that apply to multiple projects or the whole
organization.

2.2 Model-Driven Engineering in the CPPS Domain

Models are abstractions of reality, often only partially or tailored to fulfill a specific task
or to reach an agreement [Brambilla et al., 2017]. Traditionally in software engineering,
models are used to define tasks, visualize source code for understanding, and communicate
with stakeholders or customers [Brambilla et al., 2017].

In Model Driven Engineering (MDE), models are first-class citizens that drive the
engineering process - ”everything is a model” [Bézivin, 2005]. Models are the central
artifact for fast prototyping, simulations, testing, and code generation. [Brambilla et al.,
2017] Models are used, e.g., in the planning phase (e.g., Class-Diagrams in UML notation)
or to auto-generate parts of software [Fowler, 2018].

Production Processes as Models. In discrete manufacturing, products get assem-
bled from several parts and resources in several steps—called production steps. The
authors of [Gupta and Krishnan, 1998] define an Assembly Sequence (AS) as ”the sequence
in which the components of a product are assembled together to make up the finished
product” They emphasized, that ASs should be considered early in the design process,
especially when the production system should assemble more than one product. Similarly,
in process manufacturing, several production processes are required to craft a product.
For example, several processes, in a specific order, are required to brew beer from the
ingredients. The main distinction between discrete and process manufacturing is that
the final product of discrete manufacturing can be (theoretically) disassembled into its
parts while the final product of process manufacturing cannot be disassembled, e.g., due
to chemical processes [Cheng et al., 2017, Brush et al., 2022].

In this thesis, the term production process is used as a synonym for a sequence of assembly
steps and production steps.
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The PPR approach by Schleipen et al. [2015] in combination with the Formalized Process
Description (FPD) (VDI 3682) VDI [2005] is suitable to represent production processes,
defining the concepts of products, processes, resources, and their relationships. The
FPD (VDI 3682) VDI [2005] defines the semantics of Products, Processes, Resources,
Energy and their dependencies using directed edges. Furthermore, system limits represent
a system of interest. The graphical representation allows non-technical stakeholders
to discuss the planning assets of the production system. Especially, when it comes to
superimposed models, further described in Section 2.3.

Kathrein et al. [2019] extended the FPD (VDI 3682) VDI [2005] with the concepts of
abstract types and consistency constraints. They introduced abstract types, e.g., abstract
resources, to support basic engineers in early phases when there is not yet knowledge
on which resource type is used. Further, consistency constraints, e.g., which dimensions
of the grip are allowed to place the burger patty successfully on the burger, support
engineers in their decisions on the concrete machines.

With the increasing pace of market changes also production systems need to adapt quickly
to changing market needs [Biffl et al., 2017a]. Consistency constraints support engineers
to make decisions on parts of the CPPS to be adapted more quickly, e.g., if the dimension
of the grip is not in the allowed range for the adapted patty, the consistency constraint is
violated. Further, consistency constraints enable CPPS to self-adapt to changing market
needs within the limits of the used machines, e.g., robots or conveyor belts.

Meixner et al. [2020c] further enriched the FPD (VDI 3682) VDI [2005] to represent
superimposed PPR models. They introduced visual concepts to mark elements with
feature annotations and merge multiple variant models into a single model to support
engineers to get an overview of the whole CPPS. The feature annotations help engineers
to see commonalities and variable parts of the CPPS. However, the feature annotations
do not allow tracing back the model elements to their origin variant model.

Figure 2.1 shows three production processes of different rocker switch variants in extended
VDI 3682 [VDI, 2005, Meixner et al., 2019] notation. A Rocker Switch consists of a
socket with multiple contacts and one or more rockers. Variant 1 (leftmost in Figure 4.3)
shows a basic variant with two rockers glued to the socket. Variant 2 (second from left in
Figure 4.3) shows an advanced variant with only one rocker but two changeover contacts.
Variant 3 (third from left in Figure 4.3) extends the second variant with a neutral contact.
All three variants share some elements, like the socket, but also have distinct parts.

The rightmost model in Figure 4.3 shows the superimposed model resulting from combin-
ing the variants into a single production sequence. Black elements represent commonalities.
Optional features, annotated using a yellow-colored trapezoid with the corresponding
feature number in it. The annotated element is also highlighted with a yellow border.

This work uses the extended FPD (VDI 3682) to represent superimposed PPR models
with feature annotations.
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Figure 2.1: Three variants of the Rocker Switch product line (on the left) and the resulting
superimposed model (on the right) [Meixner et al., 2019] in extended VDI 3682 [VDI,
2005] notation. The superimposed model shows optional features in hatched orange and
annotates the corresponding features.

PPR Model Analysis. Difference analysis on code artifacts, i.e., formalized text, is
an integral part of software engineering [Zoubek et al., 2018, Schipper et al., 2009, Ohst
et al., 2003a]. Usually, a side-by-side view is used to compare two versions of the same
code artifact. Textual artifacts can be compared line by line to determine which parts of
the text changes, i.e., line addition, line removal [Hunt and MacIlroy, 1976].

Difference analysis on visual artifacts is different due to possibly hidden attributes of
elements that are not visualized, e.g., properties. Therefore, comparison manually may
only yield layout changes but may miss changes of properties that are not visualized
[Schipper et al., 2009]. Therefore, algorithmic support to calculate differences is crucial
for modern MDE.

Regarding differences on visual artifacts, multiple approaches were proposed lately.
Schipper et al. [2009] proposed a generic approach based on the widely used side-by-side
approach for textual artifacts using the Eclipse Modeling Framework (EMF). Brun and
Pierantonio [2008] introduced EMF Compare, a generic approach to calculate differences
on different types of models presented using UML models. Zoubek et al. [2018] emphasized
the importance of visualizing model differences and introduces a Unified Difference View
which shows both models that are compared, merged with highlights on the changes.
Brunelière et al. [2015] proposed an approach to have multiple views on a model using
the EMF. Ohst et al. [2003a], Schipper et al. [2009] and Zoubek et al. [2018] concluded
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that a smart and optimized placing algorithm is needed to maintain the mental map.
Therefore, they used either only manual or semi-automatic positioning, which uses the
information on positions that are known, i.e., appear in one or both models.

This work builds on research on model difference analysis [Ohst et al., 2003a, Schipper
et al., 2009, Zoubek et al., 2018, Brunelière et al., 2015] to design a model difference
algorithm for (superimposed) PPR models.

Tool Support Nowadays, modeling is supported by different tools. Drawing tools, like
Microsoft Visio1 or draw.io2, can be used to model production processes. However, these
tools only provide a visual representation of the models and do not provide a suitable
machine-readable format. On top, these tool often do not provide functionality to create
relationships between model elements, e.g., two models may represent the same artifact
but are not linked and therefore changes have to be made in both models.

The EMF [Steinberg et al., 2008] is a modeling framework built into the Eclipse Integrated
Development Environment (IDE)3. It provides software developers a toolkit to define a
relationship between the models and the implementation [Steinberg et al., 2008]. Models
are defined in Ecore, which is itself an EMF model and its own metamodel. Developers
can build their own applications upon Eclipse by defining the tool set and functionality
with the tools provided by the EMF. Compared to drawing tools, developers can provide
a visual and machine-readable representation of the models with EMF. However, the
definition of model types and the delivery of the tailored application requires significant
human effort of developers and engineers.

Another tool is the Model Design and Review Editor (MDRE) that was first presented
in [Prock et al., 2021]. It is a web-based application to create visual models with built-
in review capabilities. This editor comprises two core components, (i) the modeling
component and (ii) the review component. The big advantage of this tool is that the
model types can be defined using a configuration file in JavaScript Object Notation
(JSON). With this, basically every model type with nodes and edges can be represented.
Additionally, users can organize their models within projects to group related models.
Each project has a name, project owners and project members.

The modeling component of the MDRE allows end-users to create models of various types.
Each model has a user-defined name and a configuration assigned. Figure 2.2 shows
the user interface of the modeling component of the MDRE. The left sidebar is used
to manage general settings of the drawing area and contains a toolbox with available
nodes and edges (defined in the configuration assigned to this model). In the center of
the screen is the drawing area. New nodes can be added using drag-and-drop from the
sidebar to the drawing area. Nodes can be moved / resized by the user using the mouse
(click and drag) as well as multiple selected nodes can be grouped together. Nodes can

1https://www.microsoft.com/en-us/microsoft-365/visio/flowchart-software
2https://drawio-app.com/
3https://www.eclipse.org/ide/
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Figure 2.2: Screenshot of the MDRE Model Component

also have a parent-child relationship, if defined in the configuration. The right sidebar is
used (i) to manage attributes of nodes and edges, (ii) to list the edit history of the model,
and (iii) to manage properties of the model. Besides the name, description, and the
creation date, other attributes defined in the configuration can be modified. Within the
properties of the model, relationships to other models can be established, i.e., link from
one model to another. These relationships enable the system to automatically propagate
changes of model elements to linked models.

The review component provides engineers with a set of tools to review models as a whole
or partially. Engineers can leave comments on models under review to provide feedback
to modeling engineers. Since this work focuses on modeling, this component will not be
discussed further.

[Engelbrecht, 2021] extended the MDRE with coordination capabilities such that engineers
can link models together and make use of data propagation to automatically update
dependent models. Coordinated modeling can, for example, be used to model the same
artifact, e.g., a CPPS working cell, from different engineering views. For example,
electricians model the electric parts of the working cell, while mechanics model the
mechanical aspects of the working cell. With the coordination extension, both engineering
disciplines share the same data since the update on one view updates the respective other
view.

Within this thesis, the MDRE is extended with the proposed metamodel and engineering
approaches for evaluation purposes. This is due to the flexibility of this editor, i.e., the
definition of modeling languages in runtime configuration files. The PPR concepts of the
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FPD will be defined in a configuration file to be able to create PPR models within the
MDRE.

2.3 Variability Modeling in the CPPS Domain
Every product in a product family shares a common platform but has certain distinct
characteristics on top Meyer and Utterback [1992], also called features. Kang et al.
[1990] defines a feature as: A prominent or distinctive user-visible aspect, quality, or
characteristic of a software system or systems.

Variability Modeling is the systematic modeling and managing of commonalities and
variability [Bosch, 2001]. It is considered one of the most important activities for creating
and managing product families [Chen and Babar, 2011]. According to Czarnecki et al.
[2012], Feature Modeling and Decision Modeling are the most prominent approaches for
Variability Modeling.

Feature Modeling. Feature Modeling focuses on common features (used by all vari-
ants) and variant-specific features. It was introduced by Kang et al. [1990] in 1990 as
part of their work Feature-Oriented Domain Analysis (FODA). They describe a feature
model as a tree with the product as root and features as nodes and leaf nodes. Features
can be mandatory, optional, or alternative (c.f. Legend in Figure 2.3). Figure 2.3 shows a
feature model to configure a sandwich4 [Sprey and Sundermann, 2018]. Abstract feature
Bread is mandatory while Cheese, Meat and Vegetables are optional. One and only one
sub-feature of Bread has to be selected (xor or alternative), while multiple sub-features
of Meat can be selected (or). The selection of a set of features is also called configura-
tion. Configurations can be valid or invalid. Invalid configurations contain features that
violate feature constraints, e.g., Full Grain and Flatbread are selected but violate the
xor-constraint, i.e., one and only one has to be selected. In valid configurations, the set
of features satisfies all constraints.

This definition builds the basis of today’s Feature Modeling approaches [Czarnecki et al.,
2012]. Tools like FeatureIDE5 can be used to create feature models in a graphical model
editor.

Decision Modeling. Decision Modeling, introduced by McCabe et al. [1993] as part
of the Synthesis methodology, focuses on decisions that have to be made to configure a
valid product variant. Starting at a common product platform, engineers make decisions,
usually by answering questions [Schaefer et al., 2012], to select features to derive a product
variant. A decision model comprises product requirements, engineering decisions and the
relationship between them. Engineers usually visualize decision models in a tabular or
textual form [Czarnecki et al., 2012]. Figure 2.4 shows a decision model in tabular form.

4https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.
featureide.examples/featureide_examples/ExtendedFeatureModeling/Sandwich

5http://www.featureide.com/
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Figure 2.3: Example Sandwich Feature Model [Sprey and Sundermann, 2018] — in a
tree notation from FODA [Kang et al., 1990]

decision name description type range cardinality visible/relevant if
Bread Which bread to use for sandwich? Enum Full Grain | Flatbread | Toast 1:1

Vegetables Put vegetables on sandwich? Boolean true | false
Vegetables_Cucumber Put cucumbers on the sandwich? Boolean true | false Vegetables == true

Meat Which meat to put on sandwich? Enum Salami | Ham | Chicken Breast 1:3

Figure 2.4: Decision Model of Sandwich Example [Sprey and Sundermann, 2018] — in a
tabular notation [Czarnecki et al., 2012]
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Figure 2.5: Positive variability (compositional approach) refers to adding features to a
starting point to derive variants [Wille, 2019]

Positive and Negative Variability. Voelter and Groher [2007] introduced two con-
cepts, positive variability and negative variability. Positive variability (cf. Figure 2.5)
refers to a minimal starting point which gets iteratively extended by adding features.
Schaefer et al. [2012] calls this approach compositional approach. Negative variability (cf.
Figure 2.6) refers to removing parts of the model to derive a valid product configuration.
This means that all product variants are included within one model. Schaefer et al. [2012]
calls this approach annotative approach or superimposed variants. The initial model used,
is also called 150%-model.
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Figure 2.6: Negative variability (annotative approach) refers to removing features of a
150%-model to derive variants [Wille, 2019]

Lity et al. [2018] introduced 175% modeling as an extension to 150% modeling to also
capture the evolution over time. Therefore, they annotate model elements not only with
feature identifiers but also with element versions.

Creating such 150% or 175% models requires the identification of features in existing
artifacts, such as code and models.

Feature Identification and Superimposed Models The authors of [Ziadi et al.,
2012], introduced the algorithm FCIdentification to identify features from source code
using reverse engineering and UML class diagrams. Meixner et al. [2020c] used this
algorithm as a basis to create the PPR-FCI algorithm for Product-Process-Resource
Assembly Sequence (PPR AS) and to create annotative PPR variability models – called
Superimposed PPR Models.

The authors of [Martinez et al., 2015], also uses the FCIdentification algorithm by Ziadi
et al. [2012] in their tool But4Reuse6 to calculate features from engineering artifacts, like
images, source code, EMF models, or graphs.

In this thesis, the annotative approach is used to create superimposed PPR models using
the PPR-FCI as basis. This should help CPPS engineers to gain an overview, analyze
and further improve their model of the planned CPPS.

6https://but4reuse.github.io/
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CHAPTER 3
Research Questions and Approach

This chapter motivates the research questions and describes the research methodology.

3.1 Research Questions
Chapter 1 introduced challenges that engineers face in the basic planning phase of
CPPSs. Based on these challenges and gaps in research, we derived the following research
questions.

RQ1. MVA Metamodel. What metamodel facilitates the knowledge repre-
sentation required for manipulating the variability of production processes?

The main motivation for this research questions, is the insufficient knowledge represen-
tation of production processes with variability (C1). Especially for CPPS engineers, who
use non-specialized tools for tasks like comparing or combining production processes, due
to the limited availability of specialized tools. Insufficient semantics and visualization
possibilities of spreadsheet tools [Chambers and Scaffidi, 2010], further motivate this RQ.

To address RQ1, this thesis introduces the Model Variant Analysis (MVA) metamodel
to represent the required knowledge on (i) production processes as PPR models, (ii)
differences between two PPR models, (iii) superimposed PPR models, and (iv) results
of superimposed PPR model analysis.

In the context of RAMI4.0, it is beneficial to represent knowledge on products, processes,
and resources and their relationships explicitly to standardize planning assets across teams
within an organization. With the MVA metamodel, this thesis aims at less communication
overhead, increased efficiency and fewer errors.

RQ2. Model Difference Analysis. What semi-automated approach can effec-
tively identify differences between PPR models with variability? In Chapter 1,
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we identified that engineers face the challenge of having insufficient analysis capabilities
for production processes with variability (C3). Especially, but not exclusively, when
comparing production processes to find differences. However, the difference analysis of
PPR variant models is an integral step toward the superimposed model used to build the
CPPS. Thus, the main motivation of this RQ is to provide a difference analysis approach
to facilitate the comparison of production processes with variability.
To address RQ2, this thesis introduces the PPRVM Model Difference Analysis (PPRVM-
MDA) to support engineers in identifying differences between PPR models with variability,
i.e., superimposed PPR models. The PPRVM-MDA approach builds on the MVA
metamodel from RQ1 s.t. the approach is capable to process models that comply to the
MVA metamodel. Due to the automated identification of differences, the PPRVM-MDA
approach should reduce errors and the required engineering effort.

RQ3. Model Evolution. What semi-automated approach facilitates the evo-
lution and analysis of superimposed PPR models? The first part of this RQ
concerns the evolution of superimposed PPR models. As outlined in Section 2.1, the
design of CPPSs is an iterative process, starting with a rough concept that gets improved
and detailed iteratively. A superimposed PPR model is usually not created only once,
but extended and improved during engineering. However, in Chapter 1 we identified
that engineers face inefficient means to evolve production processes with variability (C2).
Especially, when engineers have to take an existing superimposed PPR model and inte-
grate further variants. On top, Quality Engineers face the challenge of having insufficient
test capabilities for production processes with variability (C4). Especially, due to non-
specialized tools, like spreadsheets, that makes the derivation of a representative set of
features to test, error-prone and inefficient.
The second part of this RQ concerns the analysis capabilities for superimposed PPR
models. As outlined in Chapter 1, Production Process Optimizer aim to improve pro-
duction process efficiency. However, we identified that Production Process Optimizer
face insufficient analysis capabilities for production processes with variability (C3) what
negatively affects their efficiency.
To address RQ3, this thesis proposes the PPR Variability Modeling (PPRVM)-Evolution
approach to facilitate extending superimposed PPR models, i.e., add further variant
models to an existing superimposed PPR model. On top, this approach facilitates the
derivation of representative feature sets from superimposed PPR models. Finally, the
PPRVM-Evolution approach provides a framework to define application-specific analysis
types. This thesis provides a proof of concept analysis for superimposed PPR models,
i.e., to analyze the CPPS component utilization in a superimposed PPR model based on
the planned production volume of the variant models.
In the context of the VDI 3695 [VDI, 2010], we aim at optimizing project-dependent and
project-independent analysis tasks using the PPRVM-Evolution approach. For example,
to analyze and improve superimposed PPR and PPR variant models to standardize
existing production processes for reuse in later projects.
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3.2 Methodology
We use the Design Science methodology by Hevner [2007] to answer the research questions
of this thesis. The Design Science framework consists of three cycles, as shown in
Figure 3.1.

           

          

    

        

   

       

    

   

            

           

       

        

            

      

      

       

     

                                             

          

     

         

          

      

      

     

              

                 

                           

                          

                    

                      

              

                       

                         

Figure 3.1: Design Science Approach based on [Hevner, 2007].

Relevance Cycle. The Relevance Cycle defines the context of the application and also
the acceptance criteria for the evaluation [Hevner, 2007]. The cycle may be conducted
multiple times, e.g., if field-testing does not provide the desired results, i.e., the designed
artifact does not fulfill the defined acceptance criteria.

We described challenges that engineers face in the basic planning phase of CPPSs in
Section 1.2. This thesis aims at addressing these challenges to support engineers in the
basic planning phase. Therefore, we derived research questions in the previous Section 3.1
and defined an evaluation process and the acceptance criteria in the following Chapter 7.

Rigor Cycle. The Rigor Cycle provides the required knowledge (past knowledge seen
as state of the art) for the design science project, and requires the design science project
to contribute to the knowledge base [Hevner, 2007].

This thesis started with a set of base papers and builds on well-grounded concepts as
described in Section 2. Among others, this thesis utilizes the FPD (VDI 3682) [VDI,
2005], its extension for superimposed PPR models by Meixner et al. [2019], the feature
identification algorithm for PPR models PPR-FCI by Meixner et al. [2020c], and the
algorithm provided by [Boubakir and Chaoui, 2018] to update a variability model given
a set of variant models. These concepts are used to address RQ2. and RQ3.
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3. Research Questions and Approach

This thesis goes beyond the state of the art and extends the scientific knowledge base
by providing the means to (i) effectively compare, (ii) efficiently extend, and to (iii)
effectively analyze superimposed PPR models.

Design Cycle. The Design Cycle is the heart of every design science project, with the
development and evaluation of an artifact. It includes the design of alternatives and their
evaluation against the requirements. This cycle iterates more often than the others to
refine the design of the artifact [Hevner, 2007].

This thesis introduces the MVA metamodel that provides the basis for the approaches to
compare (superimposed) PPR models (PPRVM-MDA), extend existing superimposed
PPR models (PPRVM-FCI-AV), derive variant PPR models using feature combinations
(PPRVM-Extraction), and to analyze superimposed PPR models (PPRVM-Analysis).

To automate selected steps of the proposed approaches, we design the Variability Modeling
Editor (VME) based on the MDRE. We evaluate the Variability Modeling Editor (VME)
in a feasibility study with the use cases presented in Chapter 4.
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CHAPTER 4
Illustrative Use Cases

This chapter presents three product lines used to evaluate the MVA metamodel and the
approaches presented in this thesis. Additionally, five use cases that engineers conduct in
the planning phase of CPPSs are described.

All presented use cases are used to evaluate RQ1 since each of them requires the MVA
metamodel for representation. UC-1 is further used to evaluate the PPRVM-MDA
approach, planned to address RQ2. RQ3 is evaluated using UC-3, UC-4 and UC-5. The
PPRVM-FCI-AV approach is built on UC-2 and UC-3 and evaluated using UC-3. The
PPRVM-FCI-DV approach is built on and evaluated using UC-4. The PPRVM Analysis
Framework (PPRVM-ANALYSIS) and the proof of concept Capacity Utilization Analysis
is evaluated using UC-5.

4.1 Product Lines
This section introduces three every day product lines of CPPS engineers that are used in
the use cases to create, evolve and analyse PPR models.

4.1.1 The Rocker Switch Product Line

Rocker Switches are everyday appliances widely used to control electronic devices, such
as the lighting in buildings or small devices like coffee makers. Due to their universal
application, these switches are manufactured in numerous variants Meixner et al. [2020c].
Figure 4.1 shows an example of a rocker switch and Figure 4.2 shows a schematic drawing
of a rocker switch.

Rocker switches differ in size and color, and in the number of circuits they control.
However, they can be assembled in similar production steps.
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4. Illustrative Use Cases

Figure 4.1: Rocker switch (Electronicgrup,
CC BY-SA 3.0 — https://w.wiki/4Drq).

Figure 4.2: Rocker Switch Schema

Insert

Socket 1 Pole 1

Socket w 
Contacts

Linefeed (1) Insert

Socket 1 Pole 1

Socket w 
Contacts

Linefeed (1)

Changeover
1 Neutral

Insert

Socket 1 Pole 1

Socket w 
Contacts

Linefeed (1)

Changeover
1

Insert/Glue

Rocker 1 (1)

Socket w 
Rockers

Linefeed (2)

Gluegun

Insert/Glue

Rocker 1 (1)

Socket w 
Rockers

Linefeed (2)

Gluegun

Insert/Glue

Rocker 1 (1)

Socket w 
Rockers

Linefeed (2)

Gluegun

Variant 1 Variant 2 Variant 3

Insert/Screw

Changeover 2

Socket w 
Changeover

Linefeed (3)

Screwdriver

Insert/Screw

Changeover 2

Socket w 
Changeover

Linefeed (3)

Screwdriver

Legende
Product

Resource

Process

Figure 4.3: Three Assembly Sequences of different rocker switch variants, based on
[Meixner et al., 2019]
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4.1. Product Lines

Figure 4.3 shows three production processes of different rocker switch variants in VDI 3682
notation. A Rocker Switch consists of a socket with multiple contacts and one or more
rockers. Variant 1 (leftmost in Figure 4.3) shows a basic variant with two rockers glued
to the socket. Variant 2 (middle in Figure 4.3) shows an advanced variant with only one
rocker but two changeover contacts. Variant 3 (rightmost in Figure 4.3) extends the
second variant with a neutral contact. All three variants share some elements, like the
socket, but also have distinct parts.

The Rocker Switch product line is best described in the literature on (superimposed)
PPR models, which allows us to compare our results. Therefore, this product line serves
as a running example in this thesis to describe the proposed engineering approaches.
Additionally, this product line was used to harden the results of the evaluation using the
Water Filter Product Line, introduced in the next section. The Rocker Switch product
line consists of ten variants, each with up to ten production steps. In total, this product
line consists of ten unique processes, 30 unique input/output products, and 12 unique
resources. This product line is considered medium-complex.

4.1.2 The Water Filter Product Line

Meixner et al. [2021] first described the Water Filter - NanoFilter ® product line in the
context of PPR models. The NanoFilter ® is an invention to purify unsafe water sources
like in Africa. To increase the range of applications, the filter is available in different
sizes (small and large) and with different filter types (charcoal bone and charcoal active).
In total, this product line consists of eight variants with up to 14 production steps. This
product line is also considered medium-complex and was selected due to

The authors published a feature model and a description in the PPR Domain-Specific
Language (DSL) [Meixner et al., 2020a] notation in an online repository1. The PPR DSL
was presented by [Meixner et al., 2020a] to represent PPR models with constraints in a
way that machines can process efficiently.

For the evaluation, the model description in the PPR DSL was used to recreate the
variants as MDRE variant models (available in an online repository2). This product line
is mainly used to evaluate the proposed MVA metamodel and the engineering approaches.

4.1.3 The Washing Machine Controller Product Line

This case study represents a product line for washing machine controllers in UML state
chart notation, published by Rubin and Chechik [2012]. The authors describe three
different controllers, comprising seven distinct states, and their respective superimposed
models combining Controller A+B and Controller A+B+C.

1https://github.com/tuw-qse/cpps-var-case-studies/tree/main/waterfilter
2https://bitbucket.org/tuw-qse/msc-thesis-cburger/src/master/

evaluation-models/02-water-filter/
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4. Illustrative Use Cases

Figure 4.4: The NanoFilter®[Model, 2022]

For the evaluation, the figures of the state charts [Rubin and Chechik, 2012] were used
to recreate them as MDRE models. The created MDRE models are available in an
online-resource3.

The purpose of this case study is to show that the proposed approaches are capable of
processing other models and are not custom-tailored to PPR models.

4.1.4 Summary

The presented production lines are input to the following engineering use cases. Each
of the use cases is first motivated by literature and described in Restricted Use Case
Modeling (RUCM) notation that specifies the context, scope, and the steps to conduct.
On top, each use case results in requirements that are input to the solution approach
design and the evaluation afterwards.

3https://bitbucket.org/tuw-qse/msc-thesis-cburger/src/master/
evaluation-models/04-uml-statechart/
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4.2. UC-1: Model Difference Analysis

4.2 UC-1: Model Difference Analysis
The use case model difference analysis originated from an industry partner and was
already abstracted as use case by Meixner et al. [2019]. This use case describes a typical
task of basic planners during the initial design of CPPSs, based on customer and product
requirements. This use case concerns RQ2. Model Difference Analysis, detailed in
Section 3.1.

4.2.1 Motivation

Basic planners create a high number of production processes in the planning phase of
CPPSs [Meixner et al., 2019]. During the design of new production processes, a key
capability is comparing production process variants to identify similarities and differences
of production process variants either designed in another project or in the current project.
In the context of the VDI 3695 [VDI, 2010] it is possible, that a very similar production
process was already designed in another project and generalized for reuse. CPPS engineers
in later phases can, for example, reuse machine parts, like robots and conveyor belts of
existing production processes.

The goal of this use case is to describe the task of identifying differences between PPR
models with a semi-automated process to reduce errors that result from overlooking
important aspects. Manual difference analysis is tedious and prone to error.

4.2.2 Use Case Definition in RUCM Notation

Table 4.1 represents this use case in RUCM notation [Jacobson, 1993], describing, among
others, the preconditions, actors, dependencies, and the basic and alternative steps for
executing this use case. The actors conduct the steps using the proposed solution for
model difference analysis of PPR models, described in Chapter 6. In Chapter 7, we
evaluate the fulfillment of the elicited requirements of this use case.

4.2.3 Elicited Requirements

The requirements derived from this use case focus on capabilities to analyze differences
of PPR models and to visualize the results.

UC-1.R1: PPR metamodel. Requirement UC-1.R1 defines that a suitable meta-
model should provide the foundation for basic planners to design ASs as PPR models
with their particular elements and relations.

UC-1.R2: Selection of two models to compare. This capability should allow
engineers to select the models they want to compare. These models have to follow the
same metamodel.
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4. Illustrative Use Cases

Use Case Name UC-1 Model Difference Analysis for a water filter product line.
Brief Description This use case represents the workflow of an engineer to compare PPR

models of the water filter product line.
Precondition A set of PPR models for a water filter product line exists.
Primary Actor Basic Planner.
Secondary Actors Further engineers, like Quality Engineers or Production Process Op-

timizer, who view the variant models or extract information from
the variant models. Further engineers who want to extract informa-
tion from the variant models, e.g., Production Process Optimizer look
for similarities in production process variants for sizing the required
components

Dependency No related use cases.
Generalization No generalization.
Basic Flow

1. Basic Planner chooses two models to compare.

2. Basic Planner chooses to view the differences in an integrated
manner.

3. Basic Planner chooses to highlight all types of differences.

4. The system shows an integrated model and highlights the differ-
ences, i.e., addition, deletion, change.

5. Basic Planner browses the model to see all differences.

Alternative Flows Alternative 1

2. Basic Planner chooses to view the differences in a side-by-side
manner.

4. The system shows both models side-by-side and highlights the
differences on both sides.

5. Basic Planner scrolls left model and see the corresponding ele-
ments in the right model.

Alternative 2

3. Basic Planner chooses not to see addition differences.

4. The system highlights deletion and change differences.

Alternative 3

6. Basic Planner chooses another target model.

Table 4.1: UC-1 - Model Difference Analysis for a water filter product line, in RUCM
notation. [Jacobson, 1993]
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4.3. UC-2: Superimposed PPR Model Creation

UC-1.R3: Highlight changes to provide visual feedback to engineers. Certain
types of changes, i.e., additions, deletions and modifications, have to be highlighted. This
capability should provide visual feedback to engineers that is easy to perceive. Engineers
may want to display only certain types of changes, so the change types must be switchable.

UC-1.R4: Efficient overview on model variants. Basic Planners usually design
a high number of variant models. Therefore, it is important, that engineers can compare
model variants efficiently. Thus, this requirement facilitates to change the models under
comparison quickly.

UC-1.R5: Side-by-side model comparison, integrated model comparison. This
requirement aims to address the efficiency of the model comparison result visualization.
The side-by-side view places both models beside and highlights differences in both models.
The integrated view combines both models into one and highlights differences in the
combined model. This results in the ability to switch between the views to have the most
appropriate view for different sizes of models.

UC-1.R6: Navigate comparison view of large models. PPR models can quickly
become considerable. For example, the previously described Rocker Switch product line
has up to 9 production steps within a single PPR model. Since the screen height is
limited with the vertical layout of PPR models, it is required to be able to navigate
inside the comparison view (side-by-side and integrated view).

This requirement facilitates navigating large models in the comparison view. This includes
the ability to zoom and move the viewport and move nodes. The latter is useful to
resolve overlaps.

4.3 UC-2: Superimposed PPR Model Creation
This use case emerged during the analysis of the work of Meixner et al. [2020c] and provides
the basis for the proposed approach of superimposed model improvement. Engineers
usually get product requirements from customers and have to design production processes
for each product that should be produced by the CPPS. Since they design a single
CPPS that can produce each product of the customer, they have to merge the designed
production processes into a single plan of the new CPPS. This use case describes a typical
task of basic planners to derive Feature Candidates (FCs) from production processes,
which are further used to detail the concrete CPPS modules. While this use case does
not contribute directly to a research question of this thesis, it is added for completeness
for further use cases that builds up on this use case.

4.3.1 Motivation
Basic planners need to find commonalities in the production processes relevant to the
planned CPPSs. Meixner et al. [2020c] identified, that this is mainly a manual approach
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4. Illustrative Use Cases

Use Case Name UC-2 Superimposed PPR Model Creation for a water filter product
line.

Brief Description This use case represents the workflow of an engineer to create a super-
imposed PPR model from a set of PPR variant models.

Precondition A set of PPR variant models for a water filter product line.
Primary Actor Basic Planner.
Secondary Actors None.
Dependency No related use cases.
Generalization None.
Basic Flow

1. Basic Planner selects a set of PPR variant models.

2. The System calculates the superimposed PPR model and shows
a preview of the superimposed PPR model with feature annota-
tions.

3. Basic Planner confirms the superimposed PPR model with the
identified features.

4. The System stores the superimposed PPR model and presents it
to the engineer.

Alternative Flows Alternative 1

3-4. IF the Basic Planner manually adjusts the identified features.

3. The Basic Planner adjusts the identified features, by
adding/deleting a node to/from an identified feature.

4. The system stores the superimposed PPR model, preserving
the customized features.

Table 4.2: UC-2 Superimposed PPR Model Creation for a water filter product line,
represented in RUCM notation.

that is prone to error and requires high engineering effort. Therefore, they proposed
a semi-automated approach to identify commonalities and variability—namely Feature
Candidate (FC)s. However, only a prototypical implementation is available Meixner et al.
[2020c] which is, at the time of writing, not integrated into an engineering tool.

While this thesis focuses on the improvement and analysis of superimposed models, this
use case is integral for completeness and builds the basis for the next use cases.

4.3.2 Use Case Definition in RUCM Notation

Table 4.2 represents this use case in RUCM notation. The steps are executed using the
described approach for superimposed models, depicted in Section 6.2.1. In Chapter 7, we
evaluate the fulfillment of the elicited requirements of this use case.
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4.3. UC-2: Superimposed PPR Model Creation

4.3.3 Elicited Requirements
The requirements derived from this use case focus on the creation and visualization of
superimposed models. Requirement UC-1.R1 also applies to this use case.

UC-2.R1: Select a set of PPR variant models. This capability should enable
engineers to select which variant models they want to use to calculate a superimposed
model.

UC-2.R2: Preview of identified feature candidates. Identified feature candidates
have to be presented to engineers before persisting the superimposed model.

UC-2.R3: Highlight nodes in optional features with markers. Nodes that are
comprised of optional features should be highlighted with a marker, s.t. they are
recognizable at first glance.

UC-2.R4: PPR metamodel representing a feature marker. The PPR meta-
model, required by use case UC-1, needs to be extended to highlight model elements of
identified feature candidates.

UC-2.R5: Persistent superimposed models. Superimposed models have to be
persistent and modifiable like any other model.

UC-2.R6: Linking of variant models and superimposed model to propagate
changes. Superimposed models have to be linked (bidirectional) to the variant models
used to create. This automates the propagation of changes from superimposed model to
variant models and vice-versa.

UC-2.R7: Manual adjustment of feature candidates. Engineers need the possi-
bility to adjust the identified feature candidates. This may be required due to specific
product requirements or the engineer’s experience.

UC-2.R8: Deterministic feature candidate calculation. Identified feature can-
didates need to be deterministic, i.e., the same set of variant models yield the same set
of feature candidates.

UC-2.R9: Select layers to show or hide. Superimposed models can become large.
For example, the previously described Rocker Switch product line, has up to ten production
process steps. Therefore, the capability to toggle layers facilitates showing/hiding
relevant/irrelevant variants of the model to simplify the editor’s view Model elements of
variant models are assigned to layers. Layers logically group together model elements
(nodes and edges). In this thesis, for example, model elements of the same originating
variant models are grouped together using layers.
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4. Illustrative Use Cases

4.4 UC-3: Superimposed PPR Model Evolution
This use case describes a usual task of basic planners to improve an existing superimposed
model by adding new variant models [Meixner et al., 2020c]. This use case supports RQ3.

— Model Evolution.

4.4.1 Motivation
Meixner et al. [2020c] proposed a semi-automated approach for feature candidate identi-
fication and a visualization concept for superimposed models. However, the proposed
approach is only capable to calculate feature candidates from scratch but is incapable of
adding new variant ASs to an existing set of feature candidates.

4.4.2 Use Case Definition in RUCM Notation
Table 4.3 represents this use case in RUCM notation, describing, among others, the
preconditions, actors, dependencies, and the basic and alternative steps for executing
this use case. The steps are executed using the described approach to add variants to an
existing superimposed model, described in Section 6.2.2. In Chapter 7, we evaluate the
fulfillment of the elicited requirements of this use case.

4.4.3 Elicited Requirements
The requirement derived from this use case focuses on the improvement of superimposed
models. Since this use case aims to be conducted using PPR models, requirement UC-1.R1
also applies to this use case. UC-2.R1 – UC-2.R9 also applies to this use case, since the
resulting model, after conducting this use case, is also a superimposed model.

UC-3.R1: Integration of variant models into an existing superimposed model.
It is required, that there is an algorithm that calculates feature candidates but preserves
existing feature candidates of the existing superimposed model.

4.5 UC-4: Superimposed PPR Model Variants
This use case emerged during analysis of [Meixner et al., 2020b]. It describes a typical
engineering task to derive a complete set of configurations from the superimposed model
that serves as input for further testing tasks. This use case supports RQ3 - Model
Evolution.

4.5.1 Motivation
Software Quality Assurance (SQA) is an integral part of software engineering to find and
reduce defects that can have severe effects. Therefore, it is important that all components
can be tested sufficiently. Meixner et al. [2020b] proposed an approach to generate test
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4.5. UC-4: Superimposed PPR Model Variants

Use Case Name UC-3 Superimposed PPR Model Evolution - Add a PPR Variant Model
to an existing Superimposed PPR Model for a water filter product line.

Brief Description This use case represents the workflow of an engineer to create a super-
imposed PPR model from a set of PPR variant models.

Precondition A superimposed PPR model for a water filter product line exists (UC-
2). A PPR variant model for a water filter product line exists which
was not used to create the superimposed PPR model.

Primary Actor Basic Planner.
Secondary Actors None.
Dependency UC-2
Generalization None.
Basic Flow

1. The Basic Planner opens the superimposed PPR model.

2. The Basic Planner chooses a PPR variant model to add to the
superimposed PPR model.

3. The System calculates the updated superimposed PPR model
and shows a preview of the updated superimposed PPR model
with feature annotations.

4. The Basic Planner confirms the superimposed PPR model with
the identified features.

5. The System updates the superimposed PPR model and presents
it to the engineer.

Alternative Flows -

Table 4.3: UC-3 Superimposed PPR Model Evolution - Add a PPR Variant Model to an
existing Superimposed PPR Model for a water filter product line, represented in RUCM
notation

cases from PPR models. The output of this use case may be used as input to production
testing.

Engineers may define constraints (requires, excludes) between feature candidates that
have a direct effect on the derived artifacts.

The goal of this use case is to support quality engineers to derive a (complete) set of
configurations (variant models) from an existing superimposed model.

4.5.2 Use Case Definition in RUCM Notation
Table 4.4 represents this use case in RUCM notation, describing, among others, the
preconditions, actors, dependencies, and the basic and alternative steps for executing this
use case. The steps are executed using the described approach to derive variants from an
existing superimposed model, described in Section 6.2.3. In Chapter 7, we evaluate the
fulfillment of the elicited requirements of this use case.
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4. Illustrative Use Cases

Use Case Name UC-4 Superimposed PPR Model Evolution - Derive Model Variants
from a Superimposed PPR Model for a water filter product line.

Brief Description This use case represents the workflow of an engineer to derive model
variants from a superimposed PPR model for a water filter product line.
The goal of this use case is, that Reuse-Engineers can derive model
variants and make them reusable, e.g., for other projects/products.

Precondition A superimposed PPR model for a water filter product line exists
(UC-2).

Primary Actor Quality Engineer.
Secondary Actors None.
Dependency UC-2
Generalization None.
Basic Flow

1. The Engineer opens the superimposed PPR model.

2. The Engineer chooses to derive model variants.

3. The System calculates relevant model variants that can be ex-
tracted from the superimposed PPR model and presents it to
the engineer.

4. The Engineer selects a set of model variants for extraction.

5. The System extracts the selected set of model variants and stores
them in independent models.

Alternative Flows Alternative 1

2. The engineer defines constraints on Features.

The use case continues with The Engineer chooses to derive model
variants.

Table 4.4: UC-4 Superimposed PPR Model Evolution - Derive Model Variants from a
Superimposed PPR Model for a water filter product line, represented in RUCM notation,

4.5.3 Elicited Requirements

UC-4.R1: Define feature constraints. Features may require other features or must
not be combined with other features. Therefore, this capability provides constraints that
can be defined between features.

UC-4.R2: Calculate possible configurations to derive. This capability provides
the calculation of valid configurations from feature candidates that can be used to derive
variant models. The calculation shall consider feature constraints.

UC-4.R3: Preview configurations. This capability provides engineers a preview of
the calculated possible configurations.
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4.6. UC-5: Superimposed PPR Model Analysis - Capacity Utilization

UC-4.R4: Persist derived variant models. Engineers can then select relevant
configurations, which get persisted by the system as stand-alone models.

4.6 UC-5: Superimposed PPR Model Analysis - Capacity
Utilization

This use case emerged during discussions with practitioners. It describes an engineering
task to analyze the utilization of processes in superimposed models. This use case
supports RQ3 - Model Evolution.

4.6.1 Motivation
Production Process Optimizers focus on improving the system under plan to optimize
throughput, energy consumption and costs, among others. Therefore, they analyze ASs
to find bottlenecks or waste of resources.

To prevent waste of resources, Production Process Optimizers need to analyze superim-
posed models to balance the utilization of the processes. Therefore, they have production
volumes for each variant as input to identify bottlenecks or under-utilized processes. The
results of the analysis may, for example, influence the order of ASs, i.e., a certain order
of ASs better utilizes the processes.

4.6.2 Use Case Definition in RUCM Notation
Table 4.5 represents this use case in RUCM notation, describing, among others, the
preconditions, actors, dependencies, and the basic and alternative steps for executing this
use case. The steps are executed using the described approach to derive variants from an
existing superimposed model, described in Section 6.3. In Chapter 7, we evaluate the
fulfillment of the elicited requirements of this use case.

4.6.3 Elicited Requirements
UC-5.R1: Visualization of the utilization of each model element. Engineers
need to see the utilization of a component at the first glance, like a heatmap provides.

UC-5.R2: Definition of planned production volume for each variant. The
utilization of all components can only be calculated if it is known how often a certain
variant is planned to be produced. Therefore, engineers need to define the planned
production volume for each variant.

4.7 Summary
This chapter introduced three product lines from the literature with low to medium
complexity that are later used to evaluate the approaches presented in the following
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4. Illustrative Use Cases

Use Case Name UC-5 Superimposed PPR Model Analysis - Capacity Utilization.
Brief Description This use case represents the workflow of an engineer to analyze the

component utilization in a superimposed PPR model. The goal of this
use case is, that Production Process Optimizer can identify low-/high-
utilized components to further optimize the production processes.

Precondition A superimposed PPR model exists (UC-2).
Primary Actor Production Process Optimizer
Secondary Actors -
Dependency No related use cases.
Generalization -
Basic Flow

1. The Production Process Optimizer opens the superimposed PPR
model.

2. The Production Process Optimizer chooses to analyze the com-
ponent utilization within this model.

3. The Production Process Optimizer enters the planned production
volume of each variant.

4. The System calculates the utilization of each component and
presents the result to the engineer by adding a heat-map overlay
to the model. High utilization is red-colored, low utilization is
blue-colored.

Alternative Flows -

Table 4.5: UC-5 Superimposed PPR Model Analysis - Capacity Utilization, represented
in RUCM notation

chapters. On top, this chapter presented five typical use cases of engineers in the basic
planning phase of CPPSs. In the next chapter, this thesis uses the identified requirements
of the use cases to design a metamodel to represent production processes with variability.
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CHAPTER 5
A Metamodel for

Model Variant Analysis

This section introduces the Model Variant Analysis (MVA) metamodel to represent and
manipulate models with variability. The MVA metamodel builds the foundation for the
approaches presented in the subsequent sections of this chapter.

The MVA metamodel is introduced step-wise, i.e., starting with the core (required by all
presented use cases) and extending the metamodel step-wise to support Model Difference
Analysis (MDA) and Model Evolution. Therefore, requirements of the metamodel were
derived from the use case requirements and grouped. Finally, the proposed metamodel is
introduced in the same step-wise manner.

5.1 Metamodel Requirements

In Chapter 4, we introduced five typical use cases for engineers in the planning phase
of CPPSs. For each use case, we derived requirements that a suitable metamodel for
variant analysis has to address.

To answer RQ1, we derived a set of requirements for the metamodel from the use case
requirements. Table 5.1 shows which metamodel requirements maps to which use case
requirement.

5.1.1 Core Requirements

This section defines the requirements for the core of the proposed metamodel. These
requirements need to be addressed to conduct all the presented use cases, in Chapter 4.
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5. A Metamodel for Model Variant Analysis

Metamodel
Requirements

Relevant Use Case
Requirements
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MM.R1: Represent Nodes ×
MM.R2: Represent Edges ×
MM.R3: Group Nodes and Edges ×
MM.R4: Node Linking ×
MM.R5: Parent-Child Relation ×
MM.R6: Properties ×
MM.R7: Generic Markers
MM.R8: Change Markers ×
MM.R9: Cross-Model Linking ×
MM.R10: Feature Marker × ×
MM.R11: Model Properties ×
MM.R12: Analysis Result Marker ×
MM.R13: Layers ×

Table 5.1: Mapping of Metamodel Requirements to relevant Use Case Requirements

MM.R1: Represent Nodes The metamodel shall support the definition of different
types of nodes. For example, regarding use case UC-1 such types are Products, Processes,
Resources and System Boundaries for PPR models.

MM.R2: Represent Edges The metamodel shall support the definition of different
kinds of links between nodes. For example, regarding use case UC-1, links are needed to
connect products and processes, and to connect processes and resources.

MM.R3: Group nodes and edges together as model. According to UC-1.R1,
the metamodel shall support the collection of nodes and edges into a Model to improve
the organization.

MM.R4: Linking of nodes using edges. The metamodel shall support linking two
nodes visually and to establish a relationship between them. This requirement addresses
use case requirement UC-1.R1, such that there is not only the possibility to represent
edges but also to semantically link nodes with edges.

MM.R5: Group nodes. According to UC-1.R1, the metamodel shall support the
definition of parent-child relationships between nodes, e.g., a relationship between a
system boundary and the process, resources, products comprising a production step.

MM.R6: Flexible definition of node and edge properties. The metamodel shall
support a flexible definition of certain characteristics or properties of PPR aspects.
For instance, a process Bake may have a property temperature which defines at what
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temperature it should be baked in the oven. This metamodel requirement addresses the
use case requirement UC-1.R1.

5.1.2 Model Difference Analysis Requirements

This section defines the requirements of the proposed metamodel to conduct use case
UC-2 - Superimposed PPR Model Creation, presented in Chapter 4.

MM.R7: Flexible definition of generic markers for application-specific use-
cases. The metamodel shall support the definition of generic markers to highlight nodes
or edges. Such markers can be individually defined for each application / DSL. For
example, task progress markers to mark model elements in a certain progress state: To
do, In Progress, In Review, Done.

MM.R8: Mark type of change on nodes and edges. UC-1 Model Difference
Analysis, presented in Section 4, assumes that differences are visually represented to
engineers. Therefore, the metamodel shall support the representation of changes, i.e.,
addition, deletion and modifications.

5.1.3 Model Evolution Requirements

This section defines the requirements of the metamodel to conduct the use cases UC-3,
UC-4 and UC-5, presented in Chapter 4.

MM.R9: Link model elements cross-model. The metamodel shall support the
definition of cross-model relationships to automatically propagate changes.

MM.R10: Mark membership of nodes and edges to features. The metamodel
shall enable the visual representation of model elements that belong to the base feature
or to an optional feature directly in the model.

MM.R11: Flexible definition of properties of models. Especially for analysis
purposes, engineers have to define certain properties on models. For instance, for PPR
variant models, engineers may want to define the planned production volume to analyze
profitability. Therefore, the metamodel shall support the definition of custom properties
on models.

MM.R12: Mark analysis results on nodes and edges. Model analysis requires
presenting results to engineers visually. Therefore, the metamodel shall support visual
markers for nodes or edges, e.g., in the form of a heatmap.
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Figure 5.1: MVA Core Metamodel

Concept Description
N ; Nt A Node of type t
E; Et(N1, N2) An Edge of type t between

two nodes N1 and N2
M ; M(N, E) A Model, consists of Nodes

and Edges
partOf(N1, N2) A part-of -relationship be-

tween two nodes N1 and
N2, i.e., N1 is part of N2.

p(N), p(E) A Property of a Node or
Edge

Table 5.2: Concepts of the MVA Metamodel
Core

MM.R13: Layers containing nodes and edges. Models can quickly become large,
especially superimposed models. Therefore, the metamodel shall support layers to which
nodes and edges are assigned. Layers may be used to declutter the model by toggling
the visibility of the layers (and the model elements, respectively).

5.2 Model Variant Analysis Metamodel
Based on the challenges, described in Section 1.2, and the elicited metamodel requirements,
we derived a set of key concepts to design, update and analyze PPR models with variability,
the Model Variant Analysis (MVA) metamodel. The MVA metamodel is introduced
step-wise, starting with the core and extensions for MDA, superimposed model creation,
and finally superimposed model evolution and analysis.

5.2.1 MVA Metamodel Core
The core of the MVA metamodel builds the graph-based basis for PPR modeling. The
single elements are described in the following paragraphs.

Table 5.2 gives an overview of the introduced concepts, which are described below.

Model. A Model consists of a set of Nodes and Edges. For example, in PPR models, a
model represents an assembly sequence of one or more products. This concept addresses
the metamodel requirement MM.R3.

Node. A Node represents an entity that can have Properties and Edges to other/from
other nodes. This concept addresses the metamodel requirement MM.R1. Nodes can have
another node as parent or multiple nodes as children specified by the part-of relationship,
which addresses the metamodel requirement MM.R5. For example, in PPR models, a
Node represents either a Product, a Process or a Resource, e.g., a screw (product), an
insert-and-position process, or a linefeed (resource) in an assembly sequence.
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Edge. An Edge represents a relationship between two nodes. Different types of edges
represent different types of relationships. For example, in PPR models, a directed edge
is used to indicate the order of assembly and a bidirectional edge between a resource and
a process indicates that the process needs this resource to work. This concept addresses
the metamodel requirement MM.R2.

Property. Nodes and edges can have properties to further describe it, e.g., a node
screw (of type product) may have a property length that describes the length of the screw
that has to be used. This concept addresses the metamodel requirement MM.R6.
This metamodel core already allows representing models such as PPR ASs or UML
state charts (see Chapter 7 for example models). The next section extends the MVA
metamodel core to support MDA.

5.2.2 MVA Metamodel Extension - Model Difference Analysis
The previous section introduced the core of the MVA metamodel to create arbitrary
graph-based models. In the planning phase of CPPSs, engineers need to compare models
to further improve/evolve the models. As described in Chapter 2 and Section 4.2,
differences have to be calculated and appropriately visualized. Therefore, the resulting
model should have annotations using markers to highlight differences (additions, deletions,
or modifications) on nodes and edges.
Figure 5.2 shows the elements that extend the MVA metamodel core to support MDA.
Table 5.3 show that this extension introduces two new concepts, which are described
below.

Generic Marker. Generic Markers are custom defined and application-specific marker
types that can be assigned to nodes and edges. This concept addresses the metamodel
requirement MM.R7.

Change Marker. A Change Marker is assigned to nodes and edges to indicate which
type of change addition, deletion, modification was applied. These markers are used to
visualize the differences between two models. This concept addresses the metamodel
requirement MM.R8.

5.2.3 MVA Metamodel Extension - Superimposed Model
To support the creation and improvement of superimposed models, we further extend
the metamodel. CPPS engineers require a proper representation to create and improve
superimposed models. Therefore, this extension introduces Feature Markers, Model Links,
and Layers.
Figure 5.3 shows the elements that extend the MVA metamodel core to support superim-
posed models. Table 5.4 show that this extension introduces three new concepts, which
are described below.
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Figure 5.2: MVA Metamodel with MDA Ex-
tension

Concept Description
GMt(N);
GMt(E)

A Generic Marker of type t
of a Node or Edge

CM(N);
CM(E)

A Change Marker of a Node
or Edge

Table 5.3: Concepts of the MDA extension
for the MVA metamodel

Feature Marker. A Feature Marker is assigned to nodes to indicate to highlight which
node belongs to which feature. This is required to distinguish between nodes of the base
feature (required by all variant models) and the optional features (required only by a
subset of variant models). This concept addresses the metamodel requirement MM.R10.

Model Link. A Model Link represents a link between two models. A model can
have multiple incoming and outgoing links defined. These links are used to link variant
models and superimposed models together, s.t. changes in the superimposed model are
propagated to variant models and to correctly calculate and visualize the utilization of the
components, e.g., using a heatmap. This concept addresses the metamodel requirement
MM.R9.

Layer. Layers are introduced for readability and are assigned a set of nodes and edges.
A Layer logically group nodes and edges within a model. Further, these layers are used
to declutter the modeling view by toggling the visibility of the corresponding nodes
and edges while working with the model. Each model can have an arbitrary number of
Layers. This concept addresses the metamodel requirement MM.R13. This thesis uses
this concept to toggle the visibility of nodes and edges of variant models in a superimposed
model to declutter the modeling view.

5.2.4 MVA Metamodel Extension - Superimposed Model Analysis

Production Process Optimizers aim to improve the production process efficiency, as
outlined in Section 1.2. For example, they may want to analyze the costs to reduce them,
to arrange the production steps to minimize idle time of components, or to minimize risks
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Figure 5.3: MVA metamodel with Superimposed
Model extension

Concept Description
FM(N) A Feature Marker of a

Node
ML;
ML(M1, M2)

A Model Link between
two models M1 and M2

L; L(N);
L(E)

A Layer containing
nodes and edges

Table 5.4: Concepts of the Superim-
posed Model extension for the MVA
metamodel

by moving high-risk production steps to the end of the production process. [Trojanowska
et al., 2018]

As shown in the typical use case UC-5, engineers require defining properties on models,
nodes, and edges which are further use to calculate some metrics. The analysis result
needs to be represented properly, either in a textual or visual form.

Properties of nodes and edges were already introduced in the core metamodel, while
properties on models are not included yet. Further, the metamodel lacks of a marker
type to represent the analysis result of a node or edge.

Figure 5.4 shows the elements that extend the MVA metamodel to support model analysis.
Table 5.5 show that this extension introduces two new concepts, which are described
below.

Analysis Marker. Analysis Markers are used to highlight nodes and edges that are
contained within the result set of a model analysis. This concept addresses metamodel
requirement MM.R12.

Model Property. A Model Property further describes a model, e.g., planned produc-
tion quantity, which defines how often it is planned to conduct an assembly sequence.
These properties can, among others, be used to analyze the component utilization of a
superimposed model. This concept addresses metamodel requirement MM.R11.
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Figure 5.4: MVA Metamodel with Model Analy-
sis extension

Concept Description
AMt(N);
AMt(E)

An Analysis Marker of
type t of a Node or Edge

mp(M) A Model Property of a
Model

ML;
ML(M1, M2)

A Model Link between
two models M1 and M2

Table 5.5: Concepts of the Model Evolu-
tion extension for the MVA metamodel

5.2.5 Full MVA Metamodel
To sum up, this thesis introduces the MVA metamodel using the concepts of graphs
as basis with extensions to (i) support MDA, (ii) superimposed models, and (iii) their
improvement and analysis.

Figure 5.5 shows the full MVA metamodel. Table 5.6 summarizes all introduced concepts
with the metamodel requirements that they address.
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Concept Concept Description Metamodel
Require-
ment

N ; Nt A Node of type t MM.R1
E; Et(N1, N2) An Edge of type t between two nodes N1 and

N2

MM.R2,
MM.R4

M ;
M(N, E, FM, CM, GM, AM)

A Model, consists of Nodes, Edges, Feature
Markers, Change Markers, Generic Markers
and Analysis Markers

MM.R3

partOf(N1, N2) A part-of -relationship between twe nodes N1
and N2, i.e., N1 is part of N2.

MM.R5

p(N), p(E) A Property of a Node or Edge MM.R6
GMt(N); GMt(E) A Generic Marker of type t of a Node or Edge MM.R7
CM(N); CM(E) A Change Marker of a Node or Edge MM.R8
ML; ML(M1, M2) A Model Link between two models M1 and

M2

MM.R9

FM(N) A Feature Marker of a Node MM.R10
mp(M) A Model Property of a Model MM.R11
AMt(N); AMt(E) An Analysis Marker of type t of a Node or

Edge
MM.R12

L; L(N); L(E) A Layer containing nodes and edges MM.R13

Table 5.6: Complete list of concepts of the MVA metamodel
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Figure 5.5: MVA Metamodel. Core elements are shown in black. Elements to support
model difference analysis are shown in green. Elements to support superimposed models
are shown in cyan. Elements to support analysis of (superimposed) models are shown in
violet
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CHAPTER 6
PPR Variability Modeling

Methods

This chapter introduces variability modeling methods (i) to compare PPR models, (ii)
to create and extend superimposed PPR models, (iii) to derive variant models from
superimposed PPR models, and (iv) to analyze superimposed PPR models.

At first, Section 6.1 introduces the Model Difference Analysis (MDA) method for PPR
models, which is based on the MVA metamodel, to address RQ2. Then, Section 6.2
describes the PPRVM-FCI Add Variants (PPRVM-FCI-AV) approach to iteratively
improve existing superimposed PPR models to address the first aspect of RQ3. Afterwards,
Section 6.2.3 describes the PPRVM-FCI Derive Variants (PPRVM-FCI-DV) approach to
derivce variant models from superimposed PPR models. Lastly, Section 6.3 introduces a
generic analysis framework to define different model analysis types to address the second
aspect of RQ3.

6.1 PPRVM-MDA - Model Difference Analysis
In Section 2.2 we discussed existing approaches to calculate differences of models. This
section introduces the PPRVM Model Difference Analysis (PPRVM-MDA) approach,
which identifies differences between two PPR models and builds on the previously defined
MVA metamodel. This approach is inspired by the work of [Zoubek et al., 2018] for
visualization and by the work of [Brun and Pierantonio, 2008] for calculation.

The PPRVM-MDA approach is optimized for PPR models, but also supports other
model types that conform to the MVA metamodel. This approach follows the framework
proposed by Brun and Pierantonio [2008] who split calculation and representation into
two separate steps. Thus, the Section 6.1.1, a model difference algorithm is presented,
and Section 6.1.2 presents the visualization of the results to the engineer.
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Attribute Description
name Arbitrary textual identifier of the model element. Does not need to be

unique in a model.
type The type of the model element, e.g., Product. The FPD defines the type

implicitly by the representation of the element, e.g., the type Product
is represented as circle. To be machine-readable, this type has to be
defined explicitly.

parent A link to the parent of a parent-child relationship between two nodes.
Used, for example, to associate model elements of types Product, Process,
Resource, or Energy to the system limit SystemBoundary.

attributes A list of user-defined attributes that represents properties of the node.
children A list of children belonging to the node.

Table 6.1: Attributes that extend the FPD (VDI 3682) [VDI, 2005]

To recap, the FPD (VDI 3682) [VDI, 2005] provides the means to create PPR models.
A PPR model is a Graph with Nodes, of different type, and Edges, of different type,
connecting the nodes. The FPD (VDI 3682) [VDI, 2005] defines five node types Product,
Energy, Process, Resource and System Limit and two edge types Flow and Usage. Each
node type has a unique identifier by definition.

In this thesis, we extend the concepts of the FPD VDI [2005] to have attributes besides the
unique identifier. This allows to provide further details on a model element, e.g., a node
of type Process named Bake Dough may have an attribute Temperature to give engineers
a hint on what temperature the dough has to be baked. This extension has a direct
effect on how to calculate differences. Table 6.1 presents the attributes introduced by this
thesis that are used in the following section to describe the calculation of differences.

6.1.1 Step 1: Difference Calculation
The calculation of differences of two PPR models is inspired by the work of [Brun and
Pierantonio, 2008] and custom tailored to the defined model elements and their properties.
Table 6.2 details the mapping from the concepts of the Formalized Process Description
(VDI 3682) to concepts of the MVA metamodel.

Equality Characteristics We previously defined the extension of the Formalized
Process Description VDI [2005], which has a direct effect on how to calculate differences.
Next, we define when elements are considered the equal.

In general, two model elements are considered equal if both elements have the same ID
regardless of other attributes.

In modeling, two models may have elements that represent the same object but have
different IDs, e.g., two engineers independently model the same objects. Therefore, it is
required that the algorithm finds equal objects even if the IDs are different. Weighting
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VDI 3682 Concept MVA Concept
Product Node
Energy Node
Process Node
Resource Node
System Limit Node
Flow Edge
Usage Edge

Table 6.2: Mapping from VDI 3682 [VDI, 2005] Concepts to MVA Concepts

Attribute Weight
name 10%
attributes 50%
parent 20%
children 20%

Table 6.3: Attribute Weight for Equality Score Calculation

of attributes is commonly used in other difference calculation approaches [Rubin and
Chechik, 2012, Kelter et al., 2005]. Thus, in this thesis, the other attributes name, type,
ID, parent, attributes and children have a weighted impact on the equality score
[0, 1]. Elements are considered equal if the equality score is above 0.8, i.e., 80 percent
of the data is equal. Obviously, model elements of different type cannot be equal at all.
Table 6.3 gives an overview on the attribute weights used to calculate equality. The list of
attributes is considered most important. The more attributes are equal, the higher is the
calculated equality score. The parent and the children are considered equally important,
while the name has the less impact on the equality score. This increases the chance to
find equal elements even if the model element has a different parent or different children.
Especially important for assembly sequences to find equal assembly steps even if the
order of steps is not the same. Due to the previous definition for type equality, the type
is not considered in the weighted score calculation.

Differences in positions are not considered at all to preserve the mental map of engi-
neers [Ohst et al., 2003b, Schipper et al., 2009, Diehl and Görg, 2002]. It would also
prevent to find similar assembly steps when in different order. Therefore, different
positions of the same model element is not considered by the algorithm. In practice, this
may lead to overlapping in the visualization, but can be compensated by giving engineers
the ability to modify the positioning within the result model. This issue and our solution
are further described in Section 6.1.2.

Model Difference Algorithm The designed algorithm to calculate differences in
PPR models is presented as pseudocode in Algorithm 6.1. It takes two PPR models M1
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and M2 as input and returns a set of operations to be applied to M1 to derive M2. This
algorithm handles three cases, which were identified the most common for PPR models:

1. Addition: Set of model elements (nodes or edges) that are present in M2 but not
in M1 (see Algorithm 6.1 line 2).

2. Deletion: Set of model elements that are present in M1 but not in M2 (see
Algorithm 6.1 line 3).

3. Modify: Set of model elements that are present in both models M1 and M2 but
have different parents in the respective model. (see Algorithm 6.1 line 4)

Each of these sets are then mapped to sets of operations with details including the
operation type (ADD, REMOVE or MODIFY ), the value of the given operation and a
path that operation has to be applied on (see Algorithm 6.1 lines 5-7). The structure of an
operation is based on the JavaScript Object Notation (JSON) Patch (RFC-6902) [Bryan
and Nottingham, 2013].

Algorithm 6.1: Model Difference Algorithm for MVA Models, inspired by [Ru-
bin and Chechik, 2012, Brun and Pierantonio, 2008]

Input: Two PPR AS models M1 and M2, where each Mx is a set of model
elements

Output: DO, the set of operations to be applied to M1 to derive M2
1 DO = ∅;
2 MEadded = {mei|mei /∈ M1 ∧ mei ∈ M2};
3 MEremoved = {mei|mei ∈ M1 ∧ mei /∈ M2};
4 MEmodified = {mei|mei ∈ M2 \ {MEadded ∪ MEremoved} ∧ ∃mej ∈

similarModelElementsInModel(M2, mei) ∧
mej has different parent than mei}$;

5 DO := DO ∪ {mapToOperation(mei, ”added”)|mei ∈ MEadded};
6 DO := DO ∪ {mapToOperation(mei, ”removed”)|mei ∈ MEremoved};
7 DO := DO ∪ {mapToOperation(mei, ”modified”)|mei ∈ MEmodified};
8 return DO

Algorithm 6.2 formalizes the described similarity heuristics.

6.1.2 Step 2: Difference Visualization
The visualization aims at easing the identification of differences for engineers. Given two
PPR models, selected by the engineer, the algorithm previously described, calculates the
differences and returns a set of operations.

The PPRVM-MDA approach should display the differences (addition, deletion, modify)
(inspired by [Zoubek et al., 2018]) within the models, providing two different view options
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Algorithm 6.2: Similarity Heuristic of Model Difference Algorithm for MVA
Models
1 similarModelElementsInModel (M, m)

Input: A PPR AS model M and a model element m
Output: SME, the set of similar model elements to m in model M

2 SME := {mei|mei ∈ M ∧ calculateSimilarityOfModelElements(m, mi) ≥
0.8};

3 return SME

4 calculateSimilarityOfModelElements (m1, m2)
Input: Two model elements m1 and m2
Output: s, the similarity value

5 if m1.id = m2.id then
6 return 1.0
7 end
8 if m1.type = m2.type then
9 return 0.0

10 end
11 sname := 1.0;
12 if m1.name = m2.name then
13 sname := 0.0;
14 end
15 sparent = calculateSimilarityOfModelElements(m1.parent, m2.parent);
16 schildren := 1.0;
17 foreach mc1 ∈ m2.children do
18 mc2 := findFirstSimilarModelElement(mc1, m1.children);
19 schildren := schildren ∗ calculateSimilarityOfModelElements(mc1, mc2);
20 end
21 sattributes := numberOfEqualAttributes(m1.attributes,m2.attributes)

numberOfUniqueAttributes(m1.attributes,m2.attributes) ;
22 s := sattributes ∗ 0.5 + sparent ∗ 0.2 + sname ∗ 0.1 + schildren ∗ 0.2;
23 return s

51



6. PPR Variability Modeling Methods

Variant 1 Variant 2Model A Model B
Integrated Side-By-SideView

HighlightCompare Models Addition Deletion Modify

Figure 6.1: Concept of the integrated view of two models in the PPRVM-MDA

Integrated and Side-By-Side. The integrated view, as presented in Figure 6.1, combines
both models into a single model and highlights the differences. The layout of the first
model serves as basis for the merged layout to maintain the mental-map of the developers.
Schipper et al. [2009] defined such merge approach as incremental merge. With the
Side-By-Side view, as presented in Figure 6.2, the first model is presented on the left and
the second model on the right. To increase usability, both model views can be linked
(option Mirror Interactions) s.t. changing the viewport or the zoom-level is mirrored to
the respective other canvas.

In both views, engineers can easily change the models under comparison. This enables
engineers to compare product variants efficiently and without the need to go through the
initial model selection. Further, engineers can customize which operation types (addition,
deletion, modify) are highlighted.

Both views should allow moving model elements, changing the zoom-level and the position
of the viewport of the canvas.

As described in the previous section, the algorithm, and the visualization approach should
not lay out model elements automatically. Thus, the original positions of the model
elements, in their origin models, should be used. Since this can lead to overlapping model
elements, we require that it shall be possible to move model elements in both views.
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Variant 1 Variant 2Model A Model B
Integrated Side-By-SideView

Highlight Addition Deletion Modify

Compare Models Mirror Interactions (Zoom, Position)

Figure 6.2: Concept of the side-by-side view of two models in the PPRVM-MDA

6.2 PPRVM-Evolution - Superimposed Model
Improvement

The PPR Model Feature Candidate Identification (PPRVM-FCI) approach has limitations
regarding model improvement, i.e., cannot use a superimposed model as input to integrate
further variant models. Motivated by the typical engineering use case UC-3 - Superimposed
PPR Model Evolution (see Section 4.4), this thesis introduces the PPRVM-FCI-AV
approach to add variant models (PPR ASs) to an existing superimposed PPR model.

Further, this section deals with the derivation of variant models with feature combinations
(configuration) from a superimposed model. Motivated by use case UC-4 (see Section 4.5),
this gives engineers the ability to derive configurations based on feature constraints,
which is especially useful for quality engineers. Section 6.2.3 describes the integration of
an existing sampling algorithm.

6.2.1 Feature Identification and Superimposed Models
As previously described, the existing PPR-FCI approach by Meixner et al. [2020c] is
only suitable to calculate feature candidates from scratch. This thesis puts focus on
the integration of further model variants to an existing superimposed model, i.e., an
existing set of feature candidates. However, the PPR-FCI is used in this thesis to initially
calculate feature candidates to create a superimposed model. Therefore, some adaptions
are required to suite the MVA metamodel and the internal data structure of the MDRE.

This thesis follows the framework proposed by Brun and Pierantonio [2008] who splits
calculation and representation into two separate steps.
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Step 1: Calculation

In Section 2.3 we gave an overview about existing feature identification algorithms. We
also concluded that the PPR-FCI algorithm by Meixner et al. [2020c] suits our needs best.
The authors published a prototypical implementation of their algorithm in a GitHub
repository1. Adaptions to the algorithm were necessary to handle the data structures of
the MDRE.

Construction Primitives The PPR-FCI [Meixner et al., 2020c] algorithm is designed
to find commonalities and variability in a set of Construction Primitives (CPs). A CP
is the smallest unit which describes an element uniquely but allows finding similar (or
equal) elements. In general, as this approach is metamodel-independent, the data of
the construction primitives depends on the respective metamodel. However, due to the
architecture of the MDRE some properties are predefined such as the name for nodes and
source and target node of edges. Further, some internal properties like the model element
ID (nodes and edges) and ID of the parent (nodes only) are also contained within the
CP. This is because these properties are required for each model element to be handled
by the MDRE, regardless of the metamodel they belong to.

In case of PPR models, a CP of a Node consists of:

• id: The internal ID used by the MDRE and not defined by the engineer.

• parentId: The internal ID of the parent node used by the MDRE.

• name: The name of the node.

• attributes: A set of attributes with types defined in the metamodel and values
defined by the engineer.

• annotations: A set of annotations that belongs to the node.

However, only the properties name and attributes are considered for comparison.

A CP of an edge consists of:

• id: The internal ID used by the MDRE and not defined by the engineer.

• name: The name of the node.

• attributes: A set of attributes with types defined in the metamodel and values
defined by the engineer.

• annotations: A set of annotations that belongs to the node.

• sourceId: The internal ID of the source node.
1https://github.com/tuw-qse/ppr-fci
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Figure 6.3: Concept of the representation of a production step in superimposed PPR
models with feature annotation. Based on Meixner et al. [2019]

• targetId: The internal ID of the target node.

However, only the properties name and attributes are considered for comparison.

Feature Candidate Identification (FCI) algorithm for PPR models As already
mentioned, we use the PPR Feature Candidate Identification (PPR-FCI) proposed by
Meixner et al. [2020c] to calculate feature candidates of a set of models. The PPR-FCI
itself is based on the FCIdentificaton algorithm proposed by Ziadi et al. [2012]. The
PPR-FCI takes a set of models where each model is a set of CPs as input and returns a
set of feature candidates of the input models.

Due to how the MDRE works internally, an additional step is necessary to update the
internal IDs, especially of the source and target nodes of edges, to preserve the validity
of the resulting feature candidates.

Step 2: Superimposed Model Visualization

The visualization of the resulting feature candidates is essential to engineers. As described
in Section 2.3, there exists two different approaches of variability, namely annotative
and compositional variability. Due to the elicited use case requirements, the annotative
approach seemed promising.

Figure 6.3 presents the representation of an production step in a superimposed PPR
model based on Meixner et al. [2019]. In contrast to other approaches, like the one
used by But4Reuse [Martinez et al., 2014, Ziadi et al., 2012], this approach uses the
visualization concept Feature Annotation proposed by Meixner et al. [2019]. This concept
is used to mark which model element belongs to which feature. This can be seen in
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Figure 6.4: Concept of the Representation of Superimposed PPR Models with Feature
Annotations

Figure 6.3 where the input product Input Product (2) has a yellow-bordered trapezoid
with a light-yellow background and a number, representing the feature number, on the
top left of the element.

Figure 6.4 shows a concept for a modeling view that supports superimposed PPR models.
The view is split up in three areas (i) the toolbox on the left containing interaction
options, e.g., to add new model elements or save the model, (ii) the model canvas in
the center that renders the superimposed model with possibilities to manipulate (e.g.,
to move model elements) the model and (iii) a sidebar on the right that contains the
features of the model as list to provide an overview for large models where only parts of
the model fit into the model canvas.

The MDRE already provided the concept of layers, which allows metamodel designers to
define different layers and which node or edge types belong to exactly one layer. Layers
allow the engineer to toggle the visibility of model elements inside a layer. In this thesis,
the layer concept should be used to toggle the visibility of model elements belonging
to a specific variant which were previously selected to create the superimposed model.
Figure 6.5a shows layers defined by the metamodel, representing the current state in the
MDRE. Figure 6.5b shows a concept of layers defined by the metamodel and dynamically
defined by the selection of model variants which were used to create the superimposed
model. The General layer is introduced by the system and contains all model element
(types) not assigned to a user- or another application-defined layer.

6.2.2 Add Variants to Superimposed PPR Models
As described in Section 1.2, it is essential to engineers to add further variant models
to an existing superimposed model. Stakeholders may come up with new product
variants, which leads to new variant models created by engineers who later have to
adapt the existing superimposed model to include the new variant model. Unfortunately,
existing algorithms like the PPR-FCI by Meixner et al. [2020c] for PPR models and
FCIdentification by Ziadi et al. [2012] are designed to calculate the feature candidates
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(a) Screenshot of the list of layers in the
MDRE defined by the Metamodel Designer.

Visible Layers
General
Variant: Variant 1
Variant: Variant 2
Variant: Variant 3
Edges
Products

(b) Concept of layers of Superimposed PPR
Model, including dynamically layers defined
by the selected variant models.

Figure 6.5: List of Layers in the MDRE and extension introduced by PPRVM-MDA to
toggle visibility of model elements.

from scratch. Thus, adding a new variant requires repeating the feature candidate
calculation.

This thesis proposes the PPR-FCI-AV algorithm, inspired by [Boubakir and Chaoui,
2018], that takes an existing set of feature candidates and a set of CPs of the variant PPR
models to add. In an iterative process, each CP of the new variant models is processed
without the need to calculate all feature candidates from scratch. The algorithm handles
three possible cases:

Case 1: CP is only present in new variant model(s): This is the trivial case, which
introduces a new feature candidate since the CP is not present in existing feature
candidates. Figure 6.6 illustrates this case, showing three models, the starting point
on the left, the new variant model in the middle and the resulting superimposed
PPR model on the right. Starting point is a superimposed PPR model with three
features in total, the base feature Feature 0 and two optional features Feature 1
and Feature 2. A new variant PPR model introduces a new resource 5: Resource
element which introduces a new feature Feature 3 comprising this resource element.
This results in a superimposed PPR model with four features in total, the base
feature Feature 0 and three optional features Feature 1-3.

Case 2: CP is present in existing optional feature candidate(s) but not in new
variant model(s): In this case, a new feature candidate is created if the other CPs
in the same feature candidate the CP belongs to, are not present in the new variant
models. Otherwise, feature candidates remain the same. Figure 6.7 illustrates this
case, showing the base superimposed PPR model on the right, the new variant
PPR model in the middle and the resulting superimposed PPR model on the
right of the figure. The base superimposed PPR model has two features, the base
feature Feature 0 and one optional feature Feature 1. Feature 1 comprises two
model elements, 4: Product and 5: Resource. The variant PPR model to be added

57



6. PPR Variability Modeling Methods

Input Product
(1)

Process

Output
Product

Input Product
(2)

12

Feature 0 (Base Feature)
Process
Output Product

Feature 1
Input Product (2)

Feature 2
Input Product (1)

Process

Output
Product

Input Product
(2)

Resource+ =

Input Product
(1)

Process

Output
Product

Input Product
(2)

12

Feature 0 (Base Feature)
Process
Output Product

Feature 1
Input Product (2)

Feature 2
Input Product (1)

Resource

3

Feature 3
Resource

Figure 6.6: PPR-FCI-AV Case 1: Resource creates new Feature 3
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Figure 6.7: PPR-FCI-AV Case 2: Input Product (2) moves from Feature 1 to new Feature
Feature 2

does not have the model element 4: Product. Thus, the resulting superimposed
PPR model gets an additional feature Feature 2 comprising the model element 4:
Product and Feature 1 only comprises the model element 5: Resource.

Case 3: CP is present in base feature candidate but not in new variant model(s):
In this case, a new feature candidate is introduced and the CP removed from the
base feature candidate. Figure 6.8 illustrates this case, showing three models, the
initial superimposed PPR model on the left, the variant PPR model to be added
in the middle and the resulting superimposed PPR model on the right. The initial
superimposed PPR model has three features, the base feature Feature 0 and two
optional features Feature 1-2. The model element 5: Resource is comprised in the
base feature but not present in the variant PPR model that gets added. Thus, the
resulting superimposed PPR model gets a new feature Feature 3 comprising the
model element 5: Resource, which is not a part of the base feature anymore.

This algorithm reduces the calculation resources needed due to the iterative process to
add a new variant CPs to an existing set of feature candidates. In addition, changes to
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Figure 6.9: PPR-FCI-AV Edge Case: Product 3 introduces a new feature candidate s.t.
the user-defined feature candidate cannot be fully preserved.

the feature candidate set taken by the engineer, that would be lost at recalculation from
scratch, are considered. However, preserving user-defined feature candidates is not always
possible. For example, if some elements of a feature candidate introduce a new feature.
Figure 6.9 illustrates this edge case. The left-hand side shows the feature candidates after
the creation of the superimposed model. Feature Candidate 3 is user-defined, while the
system calculated the others. The right-hand side shows the result after adding another
variant which introduced a new feature candidate containing Product 3. Obviously,
user-defined feature candidates cannot be fully preserved if Case 2 occurs.

The described algorithm is formalized in Algorithm 6.3. Lines 5-6 describe Case 1, lines
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7-11 describe Case 2 and lines 12-15 describe Case 3. Lines 17-18 ensure that existing
feature numbers are preserved.

Algorithm 6.3: PPRVM-FCI Add Variants (PPRVM-FCI-AV) inspired by
[Boubakir and Chaoui, 2018]

Input: CPs of base feature CPb, a set FC = {FC1, ..., FCn} of optional feature
candidates, where each FCx is a tuple (fcn, CPn) of feature number fcn

and a set of construction primitives CP , and a set of PPR models
AllM = {M1, .., Mm}, where each My is a set of PPR CPs

Output: FCupdated, the set of feature candidates of the models including the
base feature

1 FCupdated = FC;
2 CPall = distinct list of construction primitives CPb ∪

(fci,CPi)∈F C
CPi;

3 CPoptional = CPall \ CPb;
4 foreach mi ∈ AllM do
5 cp = {cpj |cpj ∈ mi ∧ cpj /∈ CPall};
6 FCupdated = FCupdated ∪ {(|FCupdated| + 1, cp)};
7 foreach (fck, cpk) ∈ FC do
8 cp = cpk \ mi;
9 FCupdated = FCupdated ∪ {(|FCupdated| + 1, cpk \ cp)};

10 cpk = cpk \ cp;
11 end
12 cp = {cpj |cpj ∈ CPall ∧ cpj /∈ mi} ∩ CPb;
13 FCupdated = FCupdated ∪ {(|FCupdated|, cp)};
14 CPb = CPb \ cp;
15 CPall = CPall \ cp;
16 end
17 sort FCupdated by feature number ascending
18 reassign feature numbers in FCupdates to index + 1
19 return (0, CPb) ∪ FCupdated

6.2.3 Extract Variants from Superimposed Models
The last part for superimposed model improvement concerns extracting/derivation variant
models from existing superimposed models. As already mentioned in Chapters 1 and 4,
the derivation of variants from a superimposed model is an integral task while planning
CPPSs.

In the context of testing, the derivation of a representative set of configurations (variant
models) is important. Due to the fast-growing configuration space with each added
variant, it is important to retrieve a small but representative set of configurations that
covers each feature candidate at least once [Krieter et al., 2020].
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Figure 6.10: Architecture of the integration of the YASA

This thesis introduces the semi-automated approach PPRVM-FCI-DV to derive variant
models (configurations) from superimposed models that (i) automatically calculates
possible configurations, (ii) let the engineer choose which configurations to derive, and
(iii) automatically persists all selected configurations as models.

There exists a multitude of sampling techniques in the literature, as summarized in
Chapter 2. In this thesis, we utilize the yet another sampling algorithm (YASA) proposed
by Krieter et al. [2020] to derive a set of variant models. We chose YASA due to its
scalability capability for large configuration spaces and its availability as standalone Java
library2.

The YASA java library only supports a few input formats, with FeatureIDE XML among
others. Thus, we decided to map our superimposed PPR models to a feature model in
FeatureIDE XML format first. Afterwards, the XML data is provided to the Java library,
which outputs the sampled configuration in a Comma-separated values (CSV) format.

The integration of the YASA is loosely coupled to the VME, i.e., we introduced the
component Feature Modeling Service to wrap the FeatureIDE library with a standardized
Application Programming Interface (API). This approach allows changing the sampling
implementation easily, e.g., change from YASA provided by the FeatureIDE library to a
custom-tailored sampling algorithm. Figure 6.10 presents a schematic view on how the
YASA is integrated into the VME. The VME communicates with the Feature Modeling
Service through a JSON API which then transforms the input to a FeatureIDE XML
and calls the YASA sampler on the XML file. After the execution of the YASA finishes,
a CSV list with a set of configurations is returned, transformed by the Feature Modeling
Service back to a JSON format and sent back to the VME.

6.3 PPRVM-Evolution - Superimposed Model Analysis
To reasonably improve the superimposed models, engineers must be able to analyze the
superimposed models. For example, to find bottlenecks or to improve throughput.

This thesis introduces a generic analysis framework PPRVM-ANALYSIS for engineers
to define analysis-types. Further, we provide an exemplary analysis type to analyze
component utilization [Ragan, 1976] in superimposed models.

2https://github.com/FeatureIDE/FeatureIDE/tree/develop/plugins/de.ovgu.
featureide.fm.core/library
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Figure 6.11: Concept of the PPRVM-ANALYSIS framework. The framework separates
the concerns into the Frontend that handles the representations, and the Backend that
does the calculation.

The MDRE already provides the possibility to define arbitrary analysis types. However,
without the possibility to provide (user-defined) parameters. Therefore, the MDRE gets
extended with the following framework.

Figure 6.11 illustrates the concepts of the framework. The Backend module consists of a
ModelService that has multiple model analysis types (interface ModelAnalysis) registered.
This interface is used for the concrete analysis implementation.

The Frontend module consists of a ModelService that communicates with the backend
module and has a ModelAnalysisManager which is used to register analysis implemen-
tations. These analysis implementations are named ModelAnalysisConfiguration that
comprises a list of parameters of any type (ModelAnalysisParameter), a definition to
highlight model elements (ModelElementHighlight) that are part of the analysis result,
and a legend definition of the analysis result (ModelAnalysisLegend).

A concrete example for this analysis framework is provided in the following subsection.

6.3.1 Component Utilization in Superimposed (PPR) Models
This subsection describes a concrete example of a model analysis type with the previously
described analysis framework.

This example is motivated by typical engineering use case UC-5 - Superimposed PPR Model
Analysis - Capacity Utilization. Production process optimizer tries to identify bottlenecks,
waste of resources or energy. Therefore, they need to analyze the superimposed model
created and improved previously.

This concrete example analyzes the component utilization of all processes within the
superimposed model by providing the planned production volume of all model variants
(used to create the superimposed model). The goal is to visualize processes that are well
utilized, i.e., used for every variant and those which are under-utilized, e.g., only used for
a small set of variants with low production volume.
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Figure 6.12: Component Utilization Analysis as Example of the Usage of the PPRVM-
ANALYSIS Framework.

Figure 6.12 shows the introduced design of the interfaces provided by the framework.

The Backend module gets a concrete implementation of the ModelAnalysis interface—called
UtilizationModelAnalysis. This analysis implementation expects a list of the variant mod-
els and their respective production volume, besides the superimposed model. With the
production volumes provided, the Utilization Ratio (UR) for each process is calculated:

UR(p) = {countsm|m ∈ variantModels ∧ p ∈ m}
counts

(6.1)

The Frontend module gets a concrete model analysis configuration—called Superim-
posedModelUtilizationAnalysisConfiguration. This analysis configuration comprises two
parameters, (1) a list of the variant models, and (2) a list with the production volume of
each variant model. Further, a custom analysis legend (SiModelUtilizationResultLegend)
should be shown, and each process should get highlighted (SiModelUtilizationModelEle-
mentHighlight), with a color representing the utilization, in the editor.

Figure 6.13 shows the visualization concept of the analysis result for the MDRE. The
toolbox and the sidebar remain the same, while the model canvas gets adapted to the
model analysis result. The processes gets highlighted with a colored border with the color
spectrum from blue to red, while blue means low-utilized and red means well-utilized.

color = hsl(20 + (1.0 − UR) ∗ 180 , 90%, 70%) (6.2)

A popup with the calculated UR is shown on mouse-over. At the bottom, there is the
legend for the analysis result describing the meaning of the color highlights.

Table 6.4 lists planned production volumes for three model variants of the water filter
product line. The first variant represents a small water tank with bone filter and has a
planned production volume of 1000 pieces. The second represents a small water tank
with bone filter and a nanofilter and has a planned production volume of 300 pieces. The
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Figure 6.13: Utilization Analysis - Visualization Concept

Variant Model Planned Production Volume
V1: Tank S with Bone Filter 1000
V2: Tank S with Bone and Nanofilter 300
V3: Tank XL with Bone 750

Table 6.4: Utilization Analysis - Model variants with planned production volumes

Process

Variant Model

V
1

V
2

V
3

U
R

hu
e

1: Mount Freshwater Tank × × × 1.00 20.0
6: Mount Water Tank × × × 1.00 20.0
14: Fill Filter Tank × × × 1.00 20.0
17: Mount Filter Tank × × × 1.00 20.0
22: Mount Tubes × × × 1.00 20.0
25: Mount Hull × 0.37 133.4
31: Mount Wastewater Tank × 0.15 173.0

Table 6.5: Utilization Analysis - Process nodes of Variant Models and their calculated
UR

last variant represents a XL water tank with bone filter and has a planned production
volume of 750 pieces.

The UR and hue of each process is calculated using Equations 6.1 and 6.2. Table 6.5
summarizes the calculated UR and hue of each process.
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CHAPTER 7
Evaluation

This chapter describes the evaluation of the proposed solution approach, described in
Chapter 6, using the illustrative use cases described in Chapter 4.

The remainder of this chapter is structured as follows. At first, the evaluation procedure
and the evaluation environment are described in Section 7.1 and Section 7.2. Then, each
subsequent section describes the evaluation of a use case.

7.1 Evaluation Procedure
The solution approach, described in Chapter 6, is evaluated in a qualitative feasibility
study using the three product lines and illustrative use cases presented in Chapter 4.

For each use case, one or more test cases are derived to compare the provided capabilities
to the requirements elicited for each use case. Each test case is executed and documented
using screenshots and explanations. Finally, where applicable the described capability
has to conform to the MVA metamodel, therefore a discussion about the conformity is
provided for each capability.

The evaluation results are accepted if the use cases can be conducted using the proposed
approaches.

7.2 Evaluation Environment
To conduct the evaluation, the MVA approach is integrated into the MDRE (c.f. Chap-
ter 2), building the Variability Modeling Editor (VME). The VME serves as prototype
for the evaluation of the MVA metamodel and the approaches, described in Chapter 7.
The following paragraphs describe further extensions made to the MDRE that were not
already covered in Chapter 6.
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MVA Model Configuration The modeling of PPR models in the VME requires a
configuration file that contains the definition of the PPR notation. Table 7.1 shows the
mapping of concepts provided by the FPD (VDI 3682) VDI [2005] to elements of the
MVA metamodel and to the VME.

VDI 3682 Concept MVA Concept VME Element Type
Product Node Product
Energy Node Energy
Process Node Process
Resource Node Resource
System Limit Node SystemBoundary
Flow Edge Unidirectional Edge
Usage Edge Bidirectional Edge

Table 7.1: Mapping from VDI 3682 [VDI, 2005] Concepts to MVA Concepts and to VME
Element Types

Model Links and Data Propagation Engelbrecht [2021] introduced links between
models to enable data propagation when one of the connected models changes. Engineers
can establish Model Links to control data propagation among multiple models. The
Model Links are unidirectional in general, but can also be defined bidirectional. However,
if defined bidirectional, cycles must be avoided, i.e., update each model only once.

In the MDRE, a model has a list of other model IDs representing the model links. For
the Data Propagation to work properly, model elements need to have the same ID in
all linked models. Unfortunately, the ID of a model element is randomly generated and
cannot be changed by Engineers. However, this limitation can be mitigated by using
the import function, that allows engineers to import model elements from other models
within the same project. Using this workaround preserves the ID.

The VME uses the model links to trace the origin of model elements in the superimposed
model. With the model links, the VME shows the dynamic layers for each variant model
used to create the superimposed model, as required in Section 6.2.1. On top, the model
links are used to provide the input fields to define the planned production volume for
variant models in the component utilization analysis, described in Section 6.3.1

The following sections describe the test cases and their conduction to evaluate the
proposed metamodel and approaches.

7.3 Capability 1: Model Difference Analysis
This section comprises the evaluation of the use case UC-1: Model Difference Analysis
(see Section 4.2). The use case describes a typical workflow of engineers to find differences
in PPR models.

66



7.3. Capability 1: Model Difference Analysis
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TC-1.1 × × × ×
TC-1.2 ×
TC-1.3 × × ×
TC-1.4 × × × ×

Table 7.2: Test cases used to evaluate UC-1: Model Difference Analysis (MDA)

The evaluation is conducted, as described in the previous Section 7.1, by conducting the
use case flows step-by-step in the technical prototype developed during this thesis.

7.3.1 Test Cases
Table 7.2 lists the three test cases to evaluate the use case UC-1: Model Difference
Analysis (MDA) with the respective use case requirements.

TC-1.1: Analyze differences of two related PPR models, created using a
clone-and-own approach, using the integrated view with all highlights en-
abled. This test case focuses on the usual flow of analyzing differences of two related
PPR models. In this test case, all change types are highlighted.

TC-1.2: Fast-switch source/target model. This test case focus on the ability to
quickly switch models under comparison.

TC-1.3: Switch from integrated to side-by-side view, navigate through the
model and toggle the visibility of change types. This test case focus on the
interaction with models under comparison. At first, the view is switched from integrated
to side-by-side. Then, the viewport is moved and zoomed out to see a different part of
the models. Lastly, the highlighting of deletion is turned off.

TC-1.4: Analyze differences of two related UML state chart models. This
test case represents the basic flow of the use case UC-1 but uses UML state chart (see
Section 4.1.3 for model description) models instead of PPR models. The goal of this test
case is to show that the PPRVM-MDA approach is also applicable to other modeling
metamodels than PPR.

This test case uses the variant models Controller A and Controller B of the Washing
Machine Controller product line.
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Figure 7.1: TC-1.1 - Screenshot of the variant model selection and the compare list in
the VME

7.3.2 Test Case Execution

TC-1.1: Analyze differences of two related PPR models, created using a
clone-and-own approach, using the integrated view with all highlights en-
abled. This test case is conducted using variant models of the Water Filter product
line (introduced in Chapter 4) and relates to the basic flow of the RUCM steps of UC-1
outlined in Table 4.1.

Figure 7.1 shows the selection of models to be compared. Models of the same metamodel
can be added to/removed from a compare list and finally be compared.

Figure 7.2 shows the resulting integrated comparison view. The view is divided into two
areas.

The area at the top (marked (1) in the figure) contains options for the comparison view,
i.e., which models to compare, which type of view to use, and which change types should
be highlighted.

The bottom area (marked (2) in the figure) contains the integrated model with the visual
feedback of differences.

In this specific case, the model Waterfilter Tank 5 contains a SystemBoundary with
process 23: Mount with two input products 24: Wastewater Tank XL and 25: Valve 2,
and an output product 26: Completed Wastewater Tank. Due to the fact, that the model
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Figure 7.2: TC-1.1 - Screenshot of the integrated comparison view in the VME

Waterfilter Tank 4 does not contain that elements, all mentioned elements and their
connecting edges are marked as deleted (red border).

Added elements are highlighted with a green border. In this specific case, the input
product 10: Charcoal Active is contained in model Waterfilter Tank 4 but not in model
Waterfilter Tank 5 thus highlighted as added (green border).

Section 7.3.3 discusses the compliance of the resulting model of this approach to the
MVA metamodel.

TC-1.2: Fast-switch source/target model. This test case is conducted using vari-
ant models of the Water Filter product line (introduced in Chapter 4) and relates to the
Alternative 3 flow of the RUCM steps of UC-1 outlined in Table 4.1.

Figure 7.3 shows the source model and target selection box with the possibility to choose
another model in the same project as target model. Only models within the same project,
and with the same metamodel, can be selected.

In this case, the target model is switched to Waterfilter Tank 6. The system recalculates
the differences between the models Waterfilter Tank 4 and Waterfilter Tank 6 and shows
the differences (as shown in Figure 7.4).

It is shown that the target or source model can be changed with one click, providing
engineers a fast method to compare multiple models easily.

TC-1.3: Switch from integrated to side-by-side view, navigate through the
model and toggle the visibility of change types. This test case is conducted using
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Figure 7.3: TC-1.2 - Screenshot of the target model selection box in the VME

Figure 7.4: TC-1.2 - Screenshot of the integrated comparison view with the changed
target model in the VME

Figure 7.5: TC-1.3 - Screenshot of the view options in the VME

variant models of the Water Filter product line (introduced in Chapter 4) and relates
to the alternative Alternative 1 and Alternative 2 flows of the RUCM steps of UC-1
outlined in Table 4.1.

In this test case, the engineer chooses to switch the differences view to have a side-by-side
view of both models instead of the integrated view. With the view options, engineers can
select which view to use (see Figure 7.5). Engineers can choose between an integrated
and a side-by-side view. The side-by-side view reveals another option to mirror the
movements of the viewport, i.e., if the viewport in the left model is changed, the viewport
of the right model automatically mirrors the change. This allows viewing the same
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7.3. Capability 1: Model Difference Analysis

(a) Side-by-side view with additions highlighted

(b) Side-by-side view without additions highlighted

Figure 7.6: TC-1.3 - Screenshot of the side-by-side comparison view with and without
highlighting additions in the VME

regions of both models.

Additionally, engineers can choose which change types they want to highlight: Additions,
Deletions and Modifications. In this case, the highlight of additions is disabled.

Figure 7.6 shows the side-by-side view of the two models compared without the high-
lighting of additions.
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Figure 7.7: TC-1.4 - Screenshot of the differences of the UML state charts Controller A
and Controller B in a side-by-side view

TC-1.4: Analyze differences of two related UML state chart models. The
steps of this test case are similar to those of TC-1.1 but with another type of VME
models.

Figure 7.7 shows the identified differences in a side-by-side view. It can be seen that
Controller B introduces a new state Waiting and does not have state Drying. Moreover,
the guards of states Washing and Unlocking are different in Controller B than in Controller
A.

7.3.3 Conformity to the MVA Metamodel
This section discusses the conformity of the result model of the PPRVM-MDA approach
to the MVA metamodel.

Figure 5.2 shows to which parts of the MVA metamodel the PPRVM-MDA result model
corresponds to. The result of the PPRVM-MDA approach is a Model comprising Nodes
and Edges with Change Markers.

Figure 7.2 presents four production steps represented by SystemBoundaries containing
one or more input Products, a Process, and one output Products. The input products are
connected to the processes, and the processes are connected to the output product with
an Unidirectional Edge. SystemBoundary, Product and Process corresponds to the Node
element in the MVA metamodel. Unidirectional Edge corresponds to the Edge element
in the MVA metamodel.

The MVA-metamodel defines, that a model can have zero or more nodes and edges. The
resulting model contains SystemBoundary, Product and Process that corresponds to the
Node element in the MVA metamodel.
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Each node can be part-of another node, according to the MVA metamodel. Figure 7.2
also shows that each Product and Process is contained within a SystemBoundary which
describes a parent-child relationship, e.g., the process 23: Mount is-part-of a System-
Boundary.

Each node or edge can have zero or one Change Marker, according to the MVA meta-
model. Figure 7.2 also shows that some products, processes, and system boundaries
are highlighted with either a green or a red border. The green or red borders represent
Change Markers of the types addition (green border) and deletion (red border). Each
green or red border belongs to exactly one node or edge.

This shows that the result model of the PPRVM-MDA approach conforms to the MVA
metamodel.

7.3.4 Evaluation Criteria
This section summarizes the characteristics of the PPRVM-MDA approach.

Reproducibility Compared to the manual comparison, the PPRVM-MDA approach
yields the same results with the same input models every time it is executed. Therefore,
the PPRVM-MDA approach yields reproducible results.

Soundness of the Comparison Test case TC-1.1 shows that the PPRVM-MDA
approach correctly identifies differences (addition, deletion) of two PPR models.

Flexibility Test case TC-1.4 shows that the PPRVM-MDA approach is open to other
types of models that comply to the VME metamodel.

7.4 Capability 2: Superimposed PPR Model Creation
This section comprises the evaluation of the use case UC-2: Superimposed PPR Model
Creation (see Section 4.3). This use case describes the typical workflow of engineers to
create a superimposed PPR model from a set of PPR variant models.

The evaluation is conducted, as described in the previous Section 7.1, by conducting the
use case flows step-by-step in the technical prototype developed during this thesis.

7.4.1 Test Cases
Table 7.2 lists the seven test cases, with the respective use case requirements, to evaluate
the use case UC-1: Model Difference Analysis (MDA).

TC-2.1 - Create a Superimposed PPR Model with suggested Feature Assign-
ments: This test case represents the basic flow of the use case UC-02 (see Table 4.2 for

73



7. Evaluation

Test Case
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TC-2.1 × × × × ×
TC-2.2 × × × ×
TC-2.3 × ×
TC-2.4 × ×
TC-2.5 ×
TC-2.6 × ×

Table 7.3: Test cases used to evaluate UC-2: Superimposed PPR Model Creation

use case description in RUCM notation). All variants of the Water Filter product line
are used.

TC-2.2 - Create a Superimposed PPR Model with customized Feature As-
signments: This test case represents the alternative flow 1 of the use case UC-2 -
Superimposed PPR Model Creation with a focus on the preservation of customized features
during the creation process. Variants 4 and 5 of the Water Filter product line are used.

TC-2.3 - Compare Superimposed PPR Models created with VME and But4Reuse:
This test case is executed twice, first in the VME, and second in another tool called
But4Reuse 1 and visualized with graphviz 2. Afterwards, the resulting superimposed PPR
models from both tools are compared. The goal of this test case is to show the soundness
of the comparison.

TC-2.4 - Repeatedly create a Superimposed PPR Model: This test case repre-
sents the basic flow of the use case UC-02 and is executed multiple times with the same
set of variant models. The goal of this test case is to show Reproducibility, i.e., the same
set of PPR variant models as input yields the same superimposed PPR model.

TC-2.5 - Create a Superimposed UML State-Chart Model: This test case
represents the basic flow of the use case UC-02, but uses UML State-Chart models
instead of PPR models. We recreated the UML state-chart models, originally described
by Rubin and Chechik [2012], with the VME. The goal of this test case is to show
soundness of the comparison and Flexbility. It shows that the proposed approaches are
also applicable to other engineering DSLs.

1https://but4reuse.github.io/, last accessed 2022-10-18
2https://graphviz.org/, last accessed 2022-10-18
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TC-2.6 - Toggle layers to adapt visibility of relevant parts of the superim-
posed PPR model This test case extends the basic flow of the use case UC-02 by
another step. After the superimposed PPR model is presented, the engineer can toggle
layers to declutter the modeling view.

7.4.2 Test Case Execution

The execution of the test cases TC-2.1 - TC-2.6 is described in the following paragraphs.

TC-2.1 - Create a Superimposed PPR Model with suggested Feature
Assignments

Engineers create superimposed PPR models in a three-step process.

1. Choose variant models At first, engineers select which variant models they want
to use. Our prototype allows selecting models in the same project which has the same
model configuration assigned. We assume that models with different model configurations
do not have enough elements in common to be able to calculate a superimposed model.

Figure 7.8 shows a screenshot of the variant selection of the VME. The application shows
available models as a list with details like name, and assigned model configuration (name
and version) and allows showing a preview of the model. This allows engineers to have
a look at the particular model if the name is not representative or the engineer is not
familiar with the model.

2. Feature Identification and Preview of the resulting Superimposed PPR
Model The application then calculates commonalities and variability and creates a
preview of the resulting superimposed model. Basically, this algorithm compares all
models to identify model elements (nodes and edges) that are present in the whole
set or only a subset of the selected variant models. The processing time is optimized
by processing the most frequent model elements first. Section 6.2.1 gives a detailed
description on the used algorithm.

The VME visualizes the resulting superimposed model to give engineers the ability to
modify the calculated features (cf. Figure 7.9). This may be useful, for example, if
engineers have experience with some kind of assembly sequence and know that a certain
way of feature assignment is more appropriate. Engineers can change the feature number
with a click on an element of the model, which opens a dialog to change the feature
number. The application adapts the feature list and the feature annotation automatically.
Model elements that are assigned to features get annotated in the model for engineers to
see the feature assignment at first sight. Currently, only nodes get annotated to increase
readability. Additionally, the application provides a list of calculated features, including
the base feature.
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Figure 7.8: TC-2.1 - Screenshot of the Variant Model Selection in the VME

3. Save Superimposed PPR Model Finally, engineers can name and save the
superimposed model. The application automatically links all variant models to the
superimposed model and vice versa. This gives engineers the ability to propagate changes
on elements in the variant or superimposed model to every model used to create the
superimposed model that contains these elements.

Figure 7.10 shows a screenshot of the resulting superimposed model inside the modeling
component of our prototype. The modeling component of our application handles
superimposed models like any other model, with a few exceptions:

1. Model elements with a feature number assigned are annotated with the feature
number.

2. The right sidebar contains a new tab Features which contains the list of features
and the ability to add variant models to the superimposed model (see Section 6.2.2)
and to extract variants models from the superimposed model (see Section 6.2.3).
This gives engineers an overview of all features in the model.

3. Feature assignments can be modified with a click on a button inside the right pane
that shows the properties of the selected model element. The dialog is the same
as in the creation process, and so is the automatic update of the features if the
feature number changes.
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7.4. Capability 2: Superimposed PPR Model Creation

Figure 7.9: TC-2.1 - Screenshot of the calculated Features and parts of the resulting
Superimposed PPR Model in the VME

TC-2.2 - Create a Superimposed PPR Model with customized Feature
Assignments.

The process to create a Superimposed PPR Model with Customized Feature Assignments
is mostly identical to TC-2.1 except for one step. At the second step Feature Identification
and Preview of the resulting Superimposed PPR Model, the product 2: Freshwater Tank S
is moved from Feature 2 into a new Feature 20. Therefore, engineers can click on model
elements to open a modal window to change the feature the model element is assigned
to. When saved, the new feature is created and the product is now assigned to the new
feature. Figure 7.11 shows screenshots of the feature customization, during the creation
of a superimposed PPR model, in the VME.
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Figure 7.10: TC-2.1 - Resulting Water Filter Superimposed PPR Model in the VME
Modeling Component

Figure 7.11: TC-2.2 - Feature Customization in the process of creating a superimposed
model
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TC-2.3 - Compare Superimposed PPR Models created with VME and
But4Reuse

To show that our approach yields the correct results, the superimposed PPR model
created with the VME is compared to the superimposed model that is generated by
But4Reuse. Therefore, it is necessary to export the variant models of the Water Filter
case study to GraphML3 to use the graphs adapter provided by But4Reuse.

To export the models to GraphML, we extended the in-built export function of the VME
to support GraphML. Figure 7.12 shows part of the resulting GraphML file.

Each VME model get mapped to a GraphML graph node, processes, resources, and
products get mapped to node elements and edges get mapped to edge elements.

Custom attribute names, prefixed with mdre: are introduced to preserve element proper-
ties throughout the But4Reuse feature identification process.

Due to the limitation of But4Reuse to not fully support subgraphs, we flattened the
model s.t. SystemBoundaries are not exported to the GraphML format.

After the export of all variant models, the superimposed model was created in the VME
and in But4Reuse simultaneously. To visualize the superimposed model created by
But4Reuse, we first converted the resulting graphml file to graphviz format and then used
graphviz to generate a visualization of the superimposed model as a PDF file.

Both approaches yielded the same semantically superimposed model, except that the
But4Reuse model does not contain System Boundaries. Further, the identified features
are in a different order. Table 7.4 describes the mapping between the feature numbers of
the VME and the block numbers of the But4Reuse tool.

The variant models, in both VME and graphml formats, and the resulting superimposed
models are available in an online-resource4.

TC-2.4 - Repeatedly create a Superimposed PPR Model.

This test case is conducted multiple times with all variants of theWater Filter case study.
The approach yielded the same feature candidates in all runs.

TC-2.5 - Create a Superimposed UML State-Chart Model

To show the flexibility of the proposed approach, a superimposed model is created from
three UML state chart variant models. The variant models represent washing machine
controllers, originally published by the authors of [Rubin and Chechik, 2012], and modeled
using the VME.

3http://graphml.graphdrawing.org/, last accessed 2022-06-23
4https://bitbucket.org/tuw-qse/msc-thesis-cburger/src/master/test-cases/

tc-2.3/
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Figure 7.12: TC-2.3 - GraphML Export of VME models

VME Feature Number But4Reuse Block Number
Feature 0 Block 00
Feature 1 Block 04
Feature 2 Block 05
Feature 3 Block 03
Feature 4 Block 01
Feature 5 Block 02
Feature 6 Block 08
Feature 7 Block 10
Feature 8 Block 09
Feature 9 Block 06
Feature 10 Block 11
Feature 11 Block 07

Table 7.4: Feature Mapping of the VME and But4Reuse
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Figure 7.13: TC-2.5 - Superimposed model of Controller A, B, C, based on [Rubin and
Chechik, 2012]

Figure 7.13 shows the resulting superimposed model. The proposed approach yields the
same result compared to the resulting model in [Rubin and Chechik, 2012] with a slightly
different visualization. The VME does not do well with multiple guards defined on the
same edge. This visualization issue is not part of this thesis and may be resolved in
future work.

This test case shows that the proposed approach not only works for PPR but also for
UML state chart models.

TC-2.6 - Toggle layers to adapt visibility of relevant parts of the
superimposed PPR model

This test case uses the superimposed PPR model created in test case TC-1.

Figure 7.14 shows some available layers, in the VME modeling component, in the middle.
On the left side, there is an assembly step with input (2: Freshwater Tank XL) and output
products (4: Completed Freshwater Tank XL) that belongs to Feature 1, as annotated.
The right side, is the same assembly steps without the input and output products that
were marked as part of Feature 1 after hiding layer Variant: Tank 5.

7.4.3 Conformity to the MVA Metamodel
This section discusses the conformity of the result model of the PPRVM-FCI approach
to the MVA metamodel.

Figure 7.15 shows to which parts of the MVA metamodel the PPRVM-FCI result model
corresponds to. The result of the PPRVM-FCI approach is a Model comprising Layers
with Nodes and Edges having Properties, Feature Markers and Model Links.
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Figure 7.14: TC-2.6 - Hide Features of Superimposed PPR Model using the Layer Toggle
of the VME Modeling Component

Figure 7.10 presents the resulting superimposed PPR model in the VME modeling
component. The shown superimposed PPR model consists of Nodes and Edges that are
annotated with Feature Markers.

The MVA metamodel defines that each node or edge can have at most one feature marker.
Figure 7.10 also shows that each node and edge that corresponds to a feature has only
one feature marker.

Further, the MVA metamodel defines that nodes and edges can be part of zero or more
layers. Test case TC-2.6 shows that the layers enables engineers to hide/show nodes and
edges of certain variants. A node or edge is only hidden when all layers containing the
respective node or edge are deselected.

To sum up, this shows that the resulting superimposed PPR model conforms to the
proposed MVA metamodel.

This shows that the result model of the PPRVM-MDA approach conforms to the MVA
metamodel.

7.4.4 Evaluation Criteria

This section summarizes the characteristics of the PPRVM-FCI approach.

Reproducibility In comparison to the manual comparison, the PPRVM-FCI approach
yields the same feature candidates with the same input models every time it is executed.
Therefore, the PPRVM-FCI approach yields reproducible results.

Soundness of the Comparison Test case TC-2.3 shows that the PPRVM-FCI
approach correctly identifies commonalities and variability.
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Figure 7.15: Relevant parts of the MVA Metamodel for the PPRVM-FCI Approach

Flexibility Test case TC-2.5 shows that the PPRVM-FCI approach is applicable not
only to PPR but also to UML state chart models.

7.5 Capability 3: Superimposed PPR Model Evolution -
Add Variants

This section comprises the evaluation of the use case UC-3: Superimposed PPR Model
Evolution - Add a PPR Variant Model to an existing Superimposed PPR Model(see
Section 4.4). The use case describes a typical workflow of engineers to add variant models
to existing superimposed PPR models.

The evaluation is conducted, as described in the previous Section 7.1, by conducting the
use case flows step-by-step in the VME.

7.5.1 Test Cases
In the following, multiple test cases are described to evaluate the PPRVM-FCI-AV
approach given the described use case UC-3 - Superimposed PPR Model Evolution. The
test cases comprise the basic flow of the use cases and the three distinct cases and the
edge case described in Section 6.2.2.

TC-3.1 - Add a variant PPR model to an existing superimposed PPR model.
This test case represents the basic flow of the use case UC-3 - Superimposed PPR Model
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Evolution (see Section 4.4). The goal of this test case is to show that the proposed PPRVM-
FCI-AV algorithm is capable to integrate variant models into an existing superimposed
model.

This test case is executed from the viewpoint of a basic planner whose task is to integrate
a new model variant (Tank 8 ) into an existing superimposed PPR model already created
using Tank 1-7 of the Water Filter case study.

TC-3.2 - PPRVM-FCI-AV Case 1: CP is only present in new variant model(s).
This test case represents the basic flow of the use case UC-3 - Superimposed PPR Model
Evolution (see Section 4.4). The goal of this test case is to show Case 1 of the proposed
PPRVM-FCI-AV algorithm.

This test case is executed using the example model for Case 1, described in Section 6.2.2.

TC-3.3 - PPRVM-FCI-AV Case 2: CP is present in existing optional feature
candidate(s) but not in new variant model(s). This test case represents the basic
flow of the use case UC-3 - Superimposed PPR Model Evolution (see Section 4.4). The
goal of this test case is to show Case 2 of the proposed PPRVM-FCI-AV algorithm.

This test case is executed using the example model for Case 2, described in Section 6.2.2.

TC-3.4 - PPRVM-FCI-AV Case 3: CP is present in base feature candidate
but not in new variant model(s). This test case represents the basic flow of the
use case UC-3 - Superimposed PPR Model Evolution (see Section 4.4). The goal of this
test case is to show Case 3 of the proposed PPRVM-FCI-AV algorithm.

This test case is executed using the example model for Case 3, described in Section 6.2.2.

TC-3.5 - PPRVM-FCI-AV Edge Case: user-defined features cannot always be
preserved. This test case represents the basic flow of the use case UC-3 - Superimposed
PPR Model Evolution (see Section 4.4). The goal of this test case is to show the edge
case of the PPRVM-FCI-AV algorithm, described in Section 6.2.2.

This test case is executed using the example model for the edge case, described in
Section 6.2.2.

TC-3.6 - Adding variant models to an existing superimposed PPR model
yields the same feature candidates as creating a superimposed PPR model
from scratch The goal of this test case is to show that using a set of variant models
to create a superimposed PPR model yields the same feature candidates, i.e., model
elements are grouped together the same but maybe with different feature number, as
if the superimposed PPR model is created with a subset of variant models and later
extended with the variant models not used to create the superimposed PPR model. This
test case represents the basic flow of use case UC-3 - Superimposed PPR Model Evolution
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Figure 7.16: TC-3.1 - Screenshot of the Variant Model Selection in the VME. Only
models not already part of the Superimposed PPR model are shown.

(c.f. Section 4.4), uses all variant models of the Water Filter case study and is executed
multiple times. In total, it is executed 10 times with different order of variant models.
The order is determined using a random number sequence generator5 and the size of one
batch is determined by an 8-sided dice6.

7.5.2 Test Case Execution
The execution of the test cases TC-3.1 - TC-3.6 is described in the following paragraphs.

TC-3.1 - Add a variant PPR model to an existing superimposed PPR model.
Table 4.3 describes the steps the basic planner has to conduct to integrate the new tank
variant into the superimposed PPR model. We assume that the variant model of the
new tank variant is already created and ready to be integrated.

The engineer opens the existing superimposed PPR model in the VME and starts the
process to add a new variant. This process is similar to the creation of a superimposed
PPR model (c.f. Section 7.4) but the wizard only shows available models that are not
already part of the superimposed PPR model. Figure 7.16 shows the available models to
be integrated into the superimposed PPR model.

After the selection, the PPRVM-FCI-AV algorithm (c.f Algorithm 6.3) calculates the
new feature candidates and the VME presents the resulting superimposed PPR model to
the engineer. Similarly to the process to create a superimposed PPR model, the feature
candidates can be changed by the engineer before the model is saved. Figure 7.17 shows
the preview of the resulting superimposed PPR model with the new variant model Tank
8 integrated.

The next steps are equal to those of creating a superimposed PPR model (see Section 7.4).
5https://www.random.org/integer-sets/?sets=10&num=8&min=1&max=8&seqnos=on&

commas=on&order=index&format=html&rnd=new, last accessed 2022-03-27
6https://rollthedice.online/en/dice/d8, last accessed 2022-03-27
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Figure 7.17: TC-3.1 - Screenshot of the calculated Features and the resulting Superim-
posed PPR model in the VME.

Figure 7.18: TC-3.2 - PPRVM-FCI-AV Case 1 - Screenshot of the resulting superimposed
PPR model in the VME

TC-3.2 - PPRVM-FCI-AV Case 1: CP is only present in new variant model(s).
The steps of this test case are equal to the test case TC-3.1 but with tailored models to
show Case 1 of the PPRVM-FCI-AV approach.

Figure 7.18 shows the resulting superimposed PPR model with the calculated feature
candidates. It can be seen that the calculated features are equal to those described in
Section 6.2.2.
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Figure 7.19: TC-3.3 - PPRVM-FCI-AV Case 2 - Screenshot of the resulting superimposed
PPR model in the VME

TC-3.3 - PPRVM-FCI-AV Case 2: CP is present in existing optional feature
candidate(s) but not in new variant model(s). The steps of this test case are equal
to the test case TC-3.1 but with tailored models to show Case 2 of the PPRVM-FCI-AV
approach.

Figure 7.19 shows the resulting superimposed PPR model with the calculated feature
candidates. It can be seen that the calculated features are equal to those described in
Section 6.2.2.

TC-3.4 - PPRVM-FCI-AV Case 3: CP is present in base feature candidate
but not in new variant model(s). The steps of this test case are equal to the test
case TC-3.1 but with tailored models to show Case 3 of the PPRVM-FCI-AV approach.

Figure 7.19 shows the resulting superimposed PPR model with the calculated feature
candidates. It can be seen that the calculated features are equal to those described in
Section 6.2.2.

TC-3.5 - Preserve Customized Features The steps of this test case are equal to
the test case TC-3.1 but with tailored models to show the Edge Case (c.f. Section 6.2.2)
of the PPRVM-FCI-AV approach.

Figure 7.21 shows the resulting feature candidates. It can be seen that the feature
candidates could not be fully preserved, i.e., Product 3 introduced new feature Feature 4.
Section 6.2.2 describes the basic principle of this edge case.
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Figure 7.20: TC-3.4 - PPRVM-FCI-AV Case 3 - Screenshot of the resulting superimposed
PPR model in the VME

TC-3.6 - Adding a variant model to an existing superimposed PPR model
yields the same feature candidates as creating a superimposed PPR model
from scratch A superimposed model created with all eight variants of the Water Filter
case study is used as reference. The superimposed model has a base feature and eleven
optional features Feature 1-11.

As indicated previously, this case is executed ten times with the models of the Water
Filter case study in different order and in batches. The first batch describes the initial
creation of the superimposed model. Each subsequent batch describes the task of adding
a set of variant models to the existing superimposed model.

Table 7.5 shows ten sets, described by the batch size and the batches with the corre-
sponding model variant number(s). For example, Set 1 has a batch size of 6 s.t. the
total number of variant models (8) is split into batches of 6 variant models. Therefore,
set 1 comprises two batches, the first is the initial creation of the superimposed model
with variant models 4,8,3,6 and 7 and afterwards the superimposed model gets extended
using variant models 5,1 and 2.

The test case revealed, that each execution yields the same number of feature candidates
with the corresponding model elements but in a different order, e.g., Feature 1 in the
reference model corresponds to Feature 8 in the resulting superimposed model of Set 1.
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Figure 7.21: TC-3.4 - PPRVM-FCI-AV Edge Case. (1-2) are the base models used to
create the initial superimposed PPR model (3) with customized feature candidates, s.t.
Product 3, Process 3 and Resource 4 are contained in Feature 2. (4) is the model that
is added to the superimposed PPR model (3 ). (5) is the resulting superimposed PPR
model with Product 3 introducing a new feature candidate.
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Batch Size Batch 1 Batch 2 Batch 3 Batch 4
Set 1 6 4,8,3,6,7 5,1,2
Set 2 4 5,4,1,7 2,8,6,3
Set 3 8 5,1,7,6,4,3,2,8
Set 4 5 8,2,5,7,3 6,4,1
Set 5 7 1,3,7,2,4,6,8 5
Set 6 3 7,8,5 6,2,3 4,1
Set 7 6 3,7,1,2,6,8 5,4
Set 8 2 5,6 1,3 7,8 4,2
Set 9 3 8,5,1 7,2,3 6,4
Set 10 6 7,2,8,1,5,4 6,3

Table 7.5: TC-3.6 - Ten different combinations of variant models of the Water Filter
case study. Each set consists of the combination of variant models to initially create
the superimposed PPR model and one or more batches to add variant models to the
superimposed PPR model.

7.5.3 Conformity to the MVA Metamodel
Section 7.4.3 already describes the conformity to the MVA metamodel, since the PPRVM-
FCI-AV approach only updates an existing superimposed model but does not introduce
new concepts.

7.5.4 Evaluation Criteria
This section summarizes the characteristics of the PPRVM-FCI-AV approach.

Reproducibility, Soundness of the Comparison Test case TC-3.6 shows that the
PPRVM-FCI-AV approach repeatedly yields the same result, i.e., identifies same feature
candidates but sometimes in different order, compared to the PPRVM-FCI.

7.6 Capability 4: Superimposed PPR Model Evolution -
Derive Variants

This section comprises the evaluation of the use case UC-4: Superimposed PPR Model
Evolution - Derive Model Variants from a Superimposed PPR Model(see Section 4.5).
The use case describes a typical workflow of engineers to derive configurations (variant
models) from superimposed PPR models.

The evaluation is conducted, as described in the previous Section 7.1, by conducting the
use case flows step-by-step in the VME.

7.6.1 Test Cases
Table 7.6 lists the two test cases to evaluate the use case UC-4 with the respective use
case requirements.
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Test Case

Requirement

U
C

-4
.R

1

U
C

-4
.R

2

U
C

-4
.R

3

U
C

-4
.R

4

TC-4.1 × × ×
TC-4.2 ×

Table 7.6: Test cases used to evaluate UC-4: Superimposed PPR Model Evolution -
Derive Model Variants from a Superimposed PPR Model.

TC-4.1 - Derive suggested variant models from Superimposed PPR Model
This test case evaluates the basic flow of the use case UC-4 in the VME. It describes
a typical task of Production Process Optimizer or Quality Engineers to derive a set of
model variants from a superimposed PPR model. For Quality Engineers, it is required
that every feature is contained at least once.

TC-4.2 - Derive suggested variant models from Superimposed PPR Model
with defined Feature Constraints This test case focuses on the alternative flow of
the use case UC-4. Engineers define feature constraints before deriving variants from the
superimposed PPR model.

TC-4.3 - Derive suggested variant models from Superimposed PPR Model
with conflicting Feature Constraints defined This test case focuses on the alter-
native flow of the use case UC-4. The goal of this test case is to show that not all features
are contained at least once when conflicting feature constraints are defined.

7.6.2 Test Case Execution
TC-4.1 - Derive suggested variant models from Superimposed PPR Model
Engineers can start the derivation process by using the button provided within the
Features-sidebar in the superimposed model details view (see Figure 7.22a).

Engineers then get a list of available configurations to choose from (see Figure 7.22b).
They have the possibility to open a preview of the suggested models. Each line represents
one configuration that can be selected.

The selected configurations get stored within the same project, after the selection. The
models are named after the configuration.

TC-4.2 - Derive suggested variant models from Superimposed PPR Model
with defined Feature Constraints For this test case, the steps of Alternative 1 of
use case UC-4 (see RUCM notation of UC-4 in Table 4.4) are executed from the viewpoint
of a Quality Engineer.
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(a) Features sidebar with Ex-
tract variants button (b) Configuration Selection with Preview

Figure 7.22: TC-4.1 - Screenshots of the derivation Process

Feature constraints can be edited within the superimposed model. In the Features sidebar
on the right, there is a button for each feature (see Figure 7.23a) that opens a modal
window after a click. Within this modal window, there are two drop-downs to define
requires and exclude constraints for the selected feature. Figure 7.23b shows that Feature
1 requires Feature 2 but excludes Feature 3. These constraints have a direct impact on
the calculation of valid configurations by the YASA (described in Section 6.2.3)

Figure 7.23c shows the available configurations calculated by the YASA algorithm.
Compared to the available configurations of test case TC-4.1 there is no configuration
with both Feature 1 and Feature 3 (due to the defined excludes-constraint) It is also
notable, that Feature 1 is only present with Feature 2 (also due to the defined requires-
constraint).

Steps 4-5 of the use case UC-4 remains the same as for the previous test case.

TC-4.3 - Derive suggested variant models from Superimposed PPR Model
with conflicting Feature Constraints defined For this test case, the steps of
Alternative 1 of use case UC-4 (see RUCM notation of UC-4 in Table 4.4) are conducted
from the viewpoint of a Quality Engineer.

At first, feature constraints are defined. Feature 1 should require Feature 3 (see Fig-
ure 7.24a) and Feature 3 should exclude Feature 1 (see Figure 7.24b). Obviously, these
constraints are conflicting and lead to Feature 1 not present in any of the suggested
configurations (see Figure 7.24c).

In the current state of the VME there is no warning about conflicting feature constraints.
Neither in the editor at the time of definition, nor in the derivation process. Such a
feature was out of scope of this thesis and may be the subject of future work.
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7.6. Capability 4: Superimposed PPR Model Evolution - Derive Variants

(a) Features sidebar with buttons
to edit the constraints for each Fea-
ture

(b) Modal to define Feature Constraints. Feature 1 requires
Feature 2 but excludes Feature 3.

(c) Configuration Selection with Preview.

Figure 7.23: TC-4.2 - Screenshots of the derivation Process with defined Feature Con-
straints. Compared to TC-4.1 there is no configuration with Feature 1 and Feature 3
both present due to the defined excludes constraint.
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(a) Feature Constraint Modal with Feature 1
requires Feature 3.

(b) Feature Constraint Modal with Feature 3
excludes Feature 2.

(c) Configuration Selection with Preview. Feature 1 is not present in any
configuration due to the conflicting constraints.

Figure 7.24: TC-4.3 - Screenshots of the derivation Process with conflicting Feature
Constraints. Feature 1 requires Feature 3 but Feature 3 excludes Feature 1 results in
Feature 1 not present in any suggested configuration

7.6.3 Conformity to the MVA Metamodel

Section 7.3.3 already describes the conformity to the MVA metamodel, since the derived
models are simple PPR models.

7.7 Capability 5: Superimposed PPR Model Analysis

This section comprises the evaluation of the analysis framework proposed in Section 6.3
with use case UC-5: Superimposed PPR Model Analysis - Capacity Utilization(see
Section 4.6). The use case describes a typical workflow of engineers to analyze the process
utilization in superimposed PPR models.

The evaluation is conducted, as described in the previous Section 7.1, by conducting the
use case flows step-by-step in the VME.
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7.7. Capability 5: Superimposed PPR Model Analysis

Test Case

Requirement

U
C

-5
.R

1

U
C

-5
.R

2

TC-5.1 × ×
Table 7.7: Test cases used to evaluate UC-5: Superimposed PPR Model Analysis -
Capacity Utilization.

Variant Model Planned Production Volume
Tank 1 8,304
Tank 2 12,385
Tank 3 6,253
Tank 4 2,148
Tank 5 2,482
Tank 6 2,947
Tank 7 1,957
Tank 8 568

Table 7.8: TC-5.1 - Planned production volume of Water Filter Variants

7.7.1 Test Cases
Table 7.7 lists the two test cases to evaluate the proposed framework (see Section 6.3)
using the use case UC-5 with the respective use case requirements.

TC-5.1 - Analyze Capacity Utilization of Water Filter Case Study This test
case evaluates the basic flow of the use case UC-5 in the VME. It describes a typical
task of a Production Process Optimizer to analyze the utilization of processes in a
superimposed PPR model given planned production volumes for each variant (used to
create the superimposed model).

This test case is conducted using the Water Filter case study. The superimposed PPR
model was created using all eight variant models. Table 7.8 shows the planned production
volume for each variant. The planned production volumes were calculated using a random
number generator7.

7.7.2 Test Case Execution
TC-5.1 - Analyze Capacity Utilization of Water Filter Case Study For this
test case, the steps of the basic flow of use case UC-5 (see RUCM notation of UC-5 in

7https://www.random.org/integer-sets/?sets=1&num=8&min=100&max=20000&
seqnos=on&commas=on&order=index&format=html&rnd=id.2022-05-01-19-58, last ac-
cessed 2022-05-01

95

https://www.random.org/integer-sets/?sets=1&num=8&min=100&max=20000&seqnos=on&commas=on&order=index&format=html&rnd=id.2022-05-01-19-58
https://www.random.org/integer-sets/?sets=1&num=8&min=100&max=20000&seqnos=on&commas=on&order=index&format=html&rnd=id.2022-05-01-19-58
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Table 4.5) are executed from the viewpoint of a Production Process Optimizer.

At first, the engineer opens the superimposed PPR model and starts the analysis work-
flow. Therefore, the engineer selects the Analyse Model action shown in Figure 7.25a.
Figure 7.25b shows the modal that opens up. Engineers select the analysis type Su-
perimposed (PPR) Model Utilization, which is described in Section 6.1, and enters the
planned production volume for each variant model. Finally, the button Analyse starts
the analysis.

The analysis results are integrated into the model, s.t. model elements with an analysis
results are highlighted using a heat-map coloring schema. Figure 7.26b shows the
highlighted processes with the respective color of the UR. The VME also shows a legend
to map the colors to the respective UR. 0.000 or (0%) means no utilization at all, while
1.000 or (100%) means that the process is utilized in all variants. Engineers can get the
absolute utilization by moving the mouse over a process (c.f. Figure 7.26c)

7.7.3 Conformity to the MVA Metamodel
The conformity of the superimposed model itself, were already discussed in Section 7.4.3.

What leaves us with the discussion of the conformity of the analysis result to the MVA
metamodel.

Figure 5.4 shows the relevant parts of the MVA metamodel for model analysis.

Figure 7.25b shows the input fields to enter the planned production volume of each
variant model connected to the superimposed model. These fields correspond to the
concept of Model Properties of the MVA metamodel, since the entered value characterizes
the variant model.

Figure 7.26c shows the process 31: Mount Wastewater Tank with a colored border. The
colored border serves as a marker to highlight nodes and edges that are contained in the
analysis result. These markers with colored border conform to the concept of Analysis
Marker defined by the MVA metamodel.

To summarize, the definition of the planned production volumes and the superimposed
model with marker to show the analysis results, conforms to the MVA metamodel.
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7.7. Capability 5: Superimposed PPR Model Analysis

(a) Location of Model Analysis Option

(b) Modal to select Model Analysis Type with
Input fields for Planned Production Volume

Figure 7.25: TC-5.1 - Screenshots of the Analysis Process in the VME
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(a) Model Analysis Result Legend at the bottom of the Modeling Component
in the VME

(b) The Processes are highlighted with a colored border representing the
Utilization Ratio (UR)

(c) A tooltip shows the absolute UR

Figure 7.26: TC-5.1 - Screenshots of the Analysis Result
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CHAPTER 8
Discussion

This chapter connects the results of this thesis with the evaluation and discusses the
fulfillment of the research questions. Additionally, this chapter outlines the limitations of
the proposed approaches.

8.1 RQ1: Model Variability Analysis Metamodel
The aim of research question RQ1. MVA Metamodel. What metamodel facilitates the
knowledge representation required for manipulating the variability of production processes?
was to find a suitable metamodel to not only visually represent production processes
with variability for engineers, but also to have the production processes with variability
in a machine-readable format.

This research question was motivated by the lack of an existing metamodel to represent
production processes with concepts for feature annotations and model analysis (e.g.,
difference and utilization analysis). We assumed that such a metamodel provides a
structured notation of production processes (and superimposed models) to be both
human- and machine-readable.

During a basic literature search, we found the notation of the FPD [VDI, 2005] most
promising. Especially, because of the extensions made regarding constraints and super-
imposed models [Kathrein et al., 2019, Meixner et al., 2019]. However, in contrast to
AutomationML (what we found as the second notation), the FPD provides only visual
representation but no hint on data structures.

Thus, this thesis introduced the Model Variant Analysis (MVA) metamodel that builds on
the concept of graphs to model PPR models in VDI 3682 [VDI, 2005] notation. Further,
we introduced concepts to support (i) the visualization of differences of two models
(Model Difference Analysis (MDA)), (ii) the visualization of superimposed (PPR) models,
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and (iii) the visualization of analysis results, i.e., mark model elements depending on
the analysis result.

The MVA metamodel was evaluated using the use cases described in Chapter 4. In the
evaluation of the metamodel we conducted the three approaches, i.e., PPRVM-MDA (cf.
Section 6.1), PPRVM-FCI-AV (cf. Section 6.2.2), PPRVM-FCI-DV(c.f. Section 6.2.3),
PPRVM-ANALYSIS (cf. Section 6.3). The evaluation indicated that the MVA metamodel
is also suitable for other types of graph-based models, at least for UML state charts.

This thesis goes beyond the state of the art Meixner et al. [2019], Schleipen et al. [2015]
by introducing the MVA metamodel to address challenge C1 - Insufficient knowledge
representation of production processes with variability.

8.2 RQ2: Model Difference Analysis
The MVA metamodel provides the means to visualize PPR variant and superimposed
models. To take full advantage of the metamodel, engineers need approaches to work
with instance models that correspond to the metamodel.

Thus, the research question RQ2. Model Difference Analysis. What semi-automated
approach can effectively identify differences between PPR models with variability? aimed at
the design of an approach to identify differences of PPR variant models and superimposed
PPR models. This research question was motivated due to the characteristics of PPR
models, i.e., model elements can have properties that are not visually represented,
introduced by the VDI 3682 [VDI, 2005] notation making simple visual comparison
unsuitable.

We found many comparison and visualization techniques in the literature, which are
described in detail in Chapter 2. However, we found [Brun and Pierantonio, 2008] and
[Zoubek et al., 2018] most promising regarding algorithm design and visualization.

With the characteristics of PPR models, the requirements derived from use case UC-1, and
the literature of existing difference comparison and visualization techniques, we designed
the semi-automated PPRVM Model Difference Analysis (PPRVM-MDA) approach. The
PPRVM-MDA approach takes two models, that conform to the MVA metamodel, as
input and returns a list of operations to apply to the first model to get the second model.
Further, the PPRVM-MDA approach automates the calculation and visualization step
but leaves the model selection upfront and the result analysis afterward to the engineers.

Within this thesis, we integrated the PPRVM-MDA approach into the VME which is a
web-based engineering tool based on the MDRE[Prock et al., 2021].

The PPRVM-MDA approach was evaluated with the use case UC-1, described in Chapter 4,
in a qualitative feasibility study. Based on the requirements resulting from the use case,
test cases were defined. The execution of the test cases has shown that the PPRVM-MDA
approach meets all the requirements of the use case UC-1.

100



8.3. RQ3: Model Evolution

With the proposed approach, this thesis extends the research knowledge base Zoubek
et al. [2018] by providing a tool for engineers in the CPPS domain to improve the overall
quality of created models, especially in organizations following the guidelines of the
VDI 3695.

Limitations The PPRVM-MDA approach is a solid model difference analysis approach
that works with a variety of graph-based model types. However, the visualization of
changes may be improved to improve usability.

For example, with large models, the navigation of the models can become tedious since
there is no indicator of changes outside the visible part of the models. This affects both,
the integrated view and the side-by-side view. In [Zoubek et al., 2018], the authors,
propose the Merged off-screen indicators, which would improve usability considerably
when integrated. However, the integration of these indicators was beyond the scope of
this work.

Another limitation is, that the placement of model elements in the integrated view is
not automatic to preserve the mental map of the engineers, which is considered crucial
[Zoubek et al., 2018, Schipper et al., 2009, Ohst et al., 2003a]. In this work, the first model
is used as the basis for the positions of the model elements, and the model elements of
the second model are added. This may lead to overlapping of model elements. Although
model elements can be moved during MDA, a smart and optimized placement algorithm
would improve usability.

8.3 RQ3: Model Evolution
The third research question of this thesis, RQ3. Model Evolution. What semi-automated
approach facilitates the evolution and analysis of superimposed PPR models?, aimed at
different semi-automated approaches to support engineers to extend and analyze existing
superimposed PPR models.

Incremental Feature Identification. We found that existing approaches for feature
identification and superimposed models [Meixner et al., 2020c, Ziadi et al., 2012] only
allow engineers to identify features from scratch and can not incrementally extend the
identified features. In CPPS engineering, production processes can become considerable
and with a high number of variants [Meixner et al., 2020c], the feature identification
requires significant computational effort. It is desired to optimize computational effort
for feature identification, s.t. newly identified features of new variant models are merged
into the existing set of features of the superimposed model.

To optimize the computational effort, this thesis introduced the PPRVM-FCI Add
Variants (PPRVM-FCI-AV) approach inspired by the work of [Boubakir and Chaoui,
2018]. The PPRVM-FCI-AV approach considers three cases. Case 1 considers model
elements that are not yet part of the superimposed PPR model. Case 2 considers model
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elements that are present in the base feature of the superimposed PPR model. Case 3
considers model elements that are present in optional features of the superimposed PPR
model. Depending on the case, either a new feature candidate is created or an existing
feature candidate is split into two feature candidates.

The evaluation procedure of the PPRVM-FCI-AV is the same as of the PPRVM-MDA
approach. Test cases were derived from the requirements of the use cases UC-2 and
UC-3. The execution of the test cases has shown that the PPRVM-FCI-AV approach
meets all requirements of the use cases UC-2 and UC-3.

Additionally, we compared the computational steps and time for creating the superimposed
PPR model from scratch with the incremental feature identification. Figure 8.1 shows the
comparison of the computational steps on the left and the required computation time on
the right of the Rocker Switch product line. It shows, that, in total, the combination of
PPRVM-FCI and the PPRVM-FCI-AV requires more computational steps. The PPRVM-
FCI takes 1.427 steps constantly, to create the superimposed PPR model from scratch,
while the incremental feature identification using the PPRVM-FCI-AV takes a median
of 1.626 steps. The range of steps can be explained by the order in which the model
variants were added. The number of steps depends on which case is hit. The comparison
of the required computational time shows that the incremental feature identification
(PPRVM-FCI + PPRVM-FCI-AV) takes slightly less time than the calculation from
scratch (PPRVM-FCI only).

Figure 8.2 shows the comparison of the computational steps on the left and the required
computation time on the right of the Water Filter product line. In this case, the
computational steps are similar at the median, and it also shows that incremental feature
identification takes less time at the median, but varies more depending on the case.

To sum up, two medium complex case studies suggest that both approaches require
similar steps and time to compute the feature candidates of the superimposed PPR
model.

Derivation of Variant Models. In this thesis, model evolution also includes the
derivation of variant models from superimposed models. Thus, this thesis introduced
the PPRVM-FCI Derive Variants (PPRVM-FCI-DV) approach that supports engineers
in the extraction of variant models from a superimposed model. The approach takes a
superimposed model and uses the YASA sampling algorithm to calculate a representative
set of feature candidates, and the resulting variant models are presented to engineers.
Engineers can choose variant models that the approach automatically persists as VME
models. The calculation of the representative set of feature candidates and the persisting
as VME models is fully automated, while the selection of variant models is left to the
engineers, which makes the PPRVM-FCI-DV approach semi-automated.

This approach is important, especially for quality engineers who can extract a repre-
sentative set, i.e., each feature is covered at least once, of variant models and persist
them in the VME. Engineers can use the derived variant models, for example, for testing
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Figure 8.1: Rocker Switch Product Line - Steps and Timing - Comparison of the
calculation of the feature candidates of all variant models from scratch (blue) and the
incremental feature identification (red)
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Figure 8.2: Water Filter Product Line - Steps and Timing - Comparison of the calculation
of the feature candidates of all variant models from scratch (blue) and the incremental
feature identification (red)
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[Meixner et al., 2020b] or export them in data formats of other engineering tools, e.g.,
GraphML or FeatureIDE.

Due to the loosely coupled integration of the YASA sampling algorithm, it is easily
possible to change the used sampling algorithm for other purposes, e.g., to create variant
models of all combination of features.

Like the others, this approach was evaluated using test cases derived from the requirements
of use case UC-4. The execution of the test cases has shown that the PPRVM-FCI-DV
approach meets all requirements of the use case UC-3.

Model Analysis beyond Difference Analysis. The sizing of CPPS components
is an integral task of Production Process Optimizer to find the optimal utilization of
components required in the production processes. Thus, this thesis introduced the
PPRVM Analysis Framework (PPRVM-ANALYSIS) which is a generic framework for
model analysis in the VME.

To support Production Process Optimizer in their work, this thesis, further, introduced
an example analysis using the PPRVM-ANALYSIS framework. The analysis comprises
the utilization of superimposed PPR models, especially the utilization of process model
elements. Within the VME, it enables engineers to take a superimposed PPR model,
input the planned production volume of each variant (that were used to create the
superimposed model), e.g., variant one of the Rocker Switch will be produced 1000 times,
variant two 500 times, and so on. Subsequently, the VME calculates the utilization ratio
and visualizes it directly in the superimposed PPR model by highlighting processes with
a color depending on the utilization value.

The automatic calculation of the utilization ratio, makes this approach semi-automated,
since the input values have to be given by the engineers.

This approach has also been evaluated using test cases derived from the requirements of
use case UC-5. The execution of the test cases has shown that the PPRVM-ANALYSIS
framework and the utilization analysis approach meets all requirements of the use case
UC-5.

Limitations The proposed approaches for PPR variability modeling provide a solid
tool set for a wide variety of models. However, the approaches have their limitations.

The PPRVM-FCI-AV approach can preserve custom feature assignments up to a certain
point. However, engineers currently cannot trace visually how the approach splits the
features when adding variants. Currently, the list of features presented to the engineer is
the same as for creating a superimposed model from scratch and does not highlight split
features.

A limitation of the PPRVM-FCI-DV approach is, that currently, and due to the use of
the YASA sampling algorithm, it is not possible to specify a custom feature combination
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to be derived as a feature model. However, using another sampling algorithm would
release this limitation.

Summary Overall, the proposed approaches improve the state of the art. The PPRVM-
FCI-AV approach improves the state of the art [Meixner et al., 2020c, Ziadi et al., 2012]
by providing a semi-automated tool for engineers to extend an existing superimposed
model with variant models without the need to calculate the superimposed model from
scratch. Since engineers can customize features, the risk of loosing the customization is
reduced to a single case.

The PPRVM-FCI-DV approach extends the research knowledge [Garousi and Mäntylä,
2016, Meixner et al., 2020b] by providing a semi-automated approach to derive variant
models from superimposed models to address challenge C4 - Insufficient testing capabilities
for production processes with variability. Finally, the PPRVM-ANALYSIS framework
extends the research knowledge by providing a semi-automated approach to analyze
superimposed PPR models.

8.4 Limitations
The following limitations apply to the thesis.

The proposed approaches were evaluated using three case studies from two different
authors. Therefore, there is a risk that our results contain errors that are already present
in the origin work. Nevertheless, one of the three case studies originated from another
author. Thus, it is likely that the approaches bring similar results in other case studies.
Further, the case studies are abstracted from the real world and, therefore, bear the risk
of being too abstract which may influence the results of more advanced case studies.

The evaluation of the test cases using the proposed approaches were conducted by
the author of the thesis. However, one supervisor conducted several of the test cases
in a workshop to reproduce partial results of the evaluation. This provided a careful
supervision of the test cases. However, an evaluation with a larger audience . . .

In this work, the computation steps and timing for the combined use of the PPRVM-FCI
and PPRVM-FCI-AV approach was compared to the use of PPRVM-FCI each time a
superimposed model needs to be created. A trend toward more steps, but less time,
can be observed. However, with only two medium-complex case studies, this trend
is not representative because they may be outliers. A deeper evaluation using more
representative case studies have to be conducted to make a valid statement on the
efficiency of the approach.
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CHAPTER 9
Conclusion and Future Work

This chapter summarizes the conducted work for this thesis and presents topics that
remain as future work due to the limited scope of the thesis.

9.1 Conclusion
CPPSs are software-intensive production systems that are capable of autonomously
adapting to changes in their environment, and are therefore seen as an integral part of
Industry 4.0 [Federal Ministry for Economic Affairs and Energy]. The planning phase of
CPPSs is characterized by several disciplines working together to build and integrate
the physical devices and the required software. Engineers in the basic planning phase
design a rough concept of CPPSs that supports all relevant production processes based
on the product line requirements. Therefore, engineers have to identify commonalities
and variability of the product processes they created for each relevant product.

This identification is time-consuming, error-prone, and hard to reproduce due to insuffi-
cient knowledge representation of production processes with their variability. Furthermore,
the limitations of current means to evolve the product family, i.e., product requirements
change, requires engineers to conduct the identification of commonalities and variability
from scratch. On top, non-specialized tools like spreadsheets without clear semantics
impede optimization or analysis tasks for production process optimizer or quality engi-
neers. Therefore, the goal of this thesis is to lay the foundation to support engineers
in the basic planning phase of CPPSs to reduce errors, increase reproducibility, and
reduce manual effort. To achieve this aim, this thesis outlines several typical use cases of
CPPS engineers in the basic planning phase from literature and an industry partner in
Chapter 4, which are used for evaluation.

In this thesis, the Design Science methodology was used to identify and investigate
shortcomings in the design and analysis of production processes in the context of CPPS
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engineering. The FPD [VDI, 2005] and its extensions [Kathrein et al., 2019, Meixner
et al., 2020c] already provide a solid basis for visualization of PPR models with variability.
However, these approaches have no underlying formal metamodel with support for model
analysis and feature annotation. Additionally, we found opportunities for optimization in
the calculation of superimposed models, especially regarding the evolution of superimposed
models, i.e., the iterative extension of superimposed models. To evaluate the results of
this thesis, a technical prototype is provided that builds on the already available Model
Design and Review Editor (MDRE). The proposed metamodel and the approaches are
evaluated in a qualitative approach, comparing identified requirements of the use cases
with the provided capabilities of the prototype. The typical use cases were conducted
step-by-step in the prototype and documented with screenshots and resulting models.
The evaluation results in a set of capabilities the software prototype, the metamodel, and
the approaches provide to CPPS engineers.
Based on the findings during literature research and the requirements derived from the
use cases of CPPS engineers, this thesis proposes the Model Variant Analysis (MVA)
metamodel and approaches to design, evolve and analyze (superimposed) PPR models.
With the MVA metamodel, this thesis addresses the insufficient knowledge representation
for production processes that is human and machine-readable. The MVA metamodel
is graph-based, making nodes and edges first-class citizens with concepts for feature
annotation and model analysis result visualization. It allows the designing of production
processes, the annotation of features used for superimposed models, and the visualization
of model analysis results, like model difference, i.e., comparison of two models, and
utilization analysis, i.e., analyzing the utilization of production processes.
To support engineers in identifying commonalities and variability, this thesis proposes the
PPRVM Model Difference Analysis (PPRVM-MDA) approach that gives engineers the
ability to compare (superimposed) PPR models to find differences. The Model Difference
Analysis (MDA) is an integral task of engineers during the design and optimization of
production processes of CPPSs.
The PPRVM-FCI Add Variants (PPRVM-FCI-AV) approach is one of the major con-
tributions of this work. During literature research, this thesis identified that feature
identification and superimposed model calculation by existing approaches [Ziadi et al.,
2012, Meixner et al., 2020c] are always conducted from scratch. This means that every
time an engineer needs to adapt the superimposed model, the calculation is done from
scratch. Thus, the PPRVM-FCI-AV approach extends the existing approaches [Meixner
et al., 2020c, Ziadi et al., 2012] to be able to take an existing superimposed model and
extend it with other production processes. The PPRVM-FCI-AV approach is inspired by
the work of Boubakir and Chaoui [2018], who incrementally calculate a variability model
from model variants.
Further, this thesis introduces the PPRVM-FCI Derive Variants (PPRVM-FCI-DV)
approach and the PPRVM Analysis Framework (PPRVM-ANALYSIS) to assist engineers
in optimization tasks and quality assurance. The PPRVM-FCI-DV approach enables
engineers to derive variant models from superimposed models. Therefore, engineers can
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define constraints between features that are considered by the PPRVM-FCI-DV. This
approach is useful to derive a representative set of variant models with each feature
covered, e.g., for testing.

Finally, this thesis introduces the PPRVM-ANALYSIS framework which provides ex-
tendible analysis capabilities to engineers. This thesis presents the calculation of the
utilization rate of processes as a proof of concept of the framework. The utilization
calculation enables, engineers to define the planned production volume of certain products
that are planned to be produced by the CPPS and returns the results as colored overlays
of the processes.

For evaluating the proposed metamodel and the approaches, a software prototype was
created. The Variability Modeling Editor (VME) is a software prototype based on the
existing engineering tool Model Design and Review Editor (MDRE) [Prock et al., 2021]
with the proposed MVA metamodel and the engineering approaches integrated. The
evaluation was done using the software prototype by conducting the use cases step-by-
step, resulting in capabilities the VME provides to aid CPPS engineers. The evaluation
shows that typical use cases of CPPS engineers, elicited from literature and an industry
partner, profit off the proposed metamodel and approaches. It further shows that the
MVA metamodel and the approaches are open to other types of models.

Overall, the evaluation results seem promising to be applicable in the field of CPPS
engineering to support engineers in the basic planning phase of CPPSs. However, due to
the limited scope of this thesis, further evaluation, i.e., with experts from industry and
more use cases is required to harden the evidence.

Referring back to the stakeholders introduced in Section 1.2, each group of stakeholders
can take up the results of this work.

Practitioners in the CPPS industry can use the VME to conduct tasks like modeling,
optimizing and analyzing of their planning assets, like production processes. Basic
Planners can use the VME to model production processes as PPR models. Additionally,
they can create and extend superimposed PPR models of the planned CPPSs to deliver a
rough design to the following engineering phases. Production Process Optimizers can use
the VME to analyze (superimposed) PPR models created by basic planners and provide
optimization feedback to subsequent engineering phases. Quality Engineers can use the
derivation capabilities of the VME to derive a representative set of variant models and
provide them to other tools, e.g., for testing.

Researchers can take up the results of this thesis to build upon and improve these
results or derive other approaches, maybe also based on the future work presented in the
next section.

Software Engineers can improve or extend the VME prototype to improve existing or
integrate advanced approaches that aid engineers in planning CPPSs. For example, to
integrate new analysis types using the proposed PPRVM-ANALYSIS framework.
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9.2 Future Work
This section outlines opportunities for future work that partly results from the limitations
outlined in Chapter 8.

Empirical Evidence The qualitative evaluation of the MVA approach was conducted
with representative product lines and use cases abstracted from industry. Nevertheless,
in the future, the approach needs to be evaluated with a broader range of product lines
of different size. Furthermore, the approach should be thoroughly evaluated by industry
partners and further practitioners from the industry.

Find Variability in Production Step Order in PPR Models The FPD (VDI 3682)
introduces the concept of system limit to logically represent a process step comprising
a process, products and resources. In this thesis, the SystemBoundary node is the
counterpart in the PPR DSL of the VME. The PPRVM-FCI approach considers this
relationship only in the comparison of CPs but not to check if whole production steps are
equal, including all products, resources, and the process. Thus, a possible extension is to
modify the PPRVM-FCI approach to also find whole production steps that are equal
but, e.g., in a different order in the production process.

Constraints and Verification This thesis utilizes constraints on features, based
on [Kathrein et al., 2019, Meixner et al., 2021], that allows engineers to define which
features are incompatible with each other or required by another feature. Currently,
these constraints are only considered in the PPRVM-FCI-DV approach at the time of the
feature set calculation. A possible extension is to use these constraints also on production
process steps (SystemBoundaries) to validate if there is any constraint violation. For
example, engineers may define that a certain production process step must not follow a
specific other, e.g., placing a topping on a cake before the cake is baked.

Improve Navigation of Large Models. Since the Variability Modeling Editor
(VME) is only a prototype, some usability aspects can be improved. For example,
the navigation of large models during the MDA. Large models exceed the viewport
rapidly, which requires engineers to scroll through the model to see all differences. A
possible extension is to create either a mini map which indicates the location on the
model with changes highlighted or to show off-screen indicators like in [Zoubek et al.,
2018].
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