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Abstract: A suitable scheme to continuously create inversion on an optical clock transition
with negligible perturbation is a key missing ingredient required to build an active optical atomic
clock. Repumping of the atoms on the narrow transition typically needs several pump lasers in a
multi step process involving several auxiliary levels. In general this creates large effective level
shifts and a line broadening, strongly limiting clock accuracy. Here we present an extensive
theoretical study for a realistic multi-level implementation in search of parameter regimes where
a sufficient inversion can be achieved with minimal perturbations. Fortunately we are able to
identify a useful operating regime, where the frequency shifts remain small and controllable,
only weakly perturbing the clock transition for useful pumping rates. For practical estimates of
the corresponding clock performance, we introduce a straightforward mapping of the multilevel
pump scheme to an effective energy shift and broadening of parameters for the reduced two-level
laser model system. This allows us to evaluate the resulting laser power and spectrum using
well-known methods.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

State of the art optical atomic lattice clocks achieve an excellent fractional stability of up to
6.6× 10−19 after one hour of averaging [1]. In a typical atomic clock a stable local laser oscillator
is compared to the reference transition frequency of trapped ultra-cold atoms. Technically the
local laser oscillator is stabilized by an ultra-stable macroscopic cavity with a very good short
time stability. Limitations of its stability originate from length fluctuations due to environmental
and thermal perturbations [2]. Currently, these perturbations are the central limiting factor of
the performance of passive atomic clocks on the short timescale. It has been proposed [3,4]
that active optical clocks, realized as so called superradiant lasers [3–31], can overcome this
limitation. In such a laser an ensemble of atoms with a narrow and stable transition is used as
gain medium inside an optical resonator. Since the cavity bandwidth is much broader than the
gain profile, the frequency of such a bad-cavity laser is primarily determined by the stability of
the resonance frequency of the gain medium which makes the system robust against cavity length
fluctuations.

Maintaining population inversion on the atomic clock transition is, of course, a necessary
ingredient required for continuous operation of an active optical clock laser. One possibility to
achieve this is to prepare the atoms in the upper lasing state outside of the active lasing region
and subsequently injecting them into the cavity. Such an approach is reminiscent of the hydrogen
maser [32,33]. In the optical regime this can be realized, for example, as an atomic beam laser
[3,18,34,35], where atoms in the upper lasing state traverse the cavity. However, a continuous
replenishment of cold atoms prepared in the upper lasing state with a large enough rate is a
challenging task [35]. By repumping the laser active atoms trapped within a magic wavelength

#445976 https://doi.org/10.1364/OE.445976
Journal © 2022 Received 18 Oct 2021; revised 17 Dec 2021; accepted 3 Jan 2022; published 7 Feb 2022

https://orcid.org/0000-0001-7013-5208
https://doi.org/10.1364/OA_License_v2#VOR-OA
https://crossmark.crossref.org/dialog/?doi=10.1364/OE.445976&amp;domain=pdf&amp;date_stamp=2022-02-07


Research Article Vol. 30, No. 4 / 14 Feb 2022 / Optics Express 5554

optical lattice inside the cavity [4–6,19,21,36,37], however, each atom can emit several photons
into the cavity. Thus for a continuous operation the atomic flux only needs to compensate the
lost atoms and hence can be significantly reduced. This could be e.g. achieved with an optical
conveyor lattice through the cavity [13,14,35,38,39]. The central challenge of this approach
are the perturbations of the clock atoms due to the presence of the repumping lasers. Typical
theoretical models dedicated to superradiant clock lasers with continuous repumping simply
assume an artificial transition rate modelled as inverse spontaneous decay from the ground to
the excited lasing state [4,11,19–21]. This introduces an effective homogeneous broadening of
the laser line but ignores all shifts and inhomogeneous broadening. To model this in a more
realistic scheme, however, one needs to introduce laser-induced transitions to some auxiliary
intermediate levels followed by a spontaneous decay to the upper lasing state. Naturally these
lasers will introduce differential light shifts in addition to decoherence on the clock transition.
For a non-uniform pump laser field distribution one, of course, gets inhomogeneous broadening.
Besides broadening and shifting the laser line, it will eventually modify the threshold and even
inhibit lasing. Frequency shifts lead to additional inaccuracy at least if they are not controllable
and precisely measurable, as the resulting laser frequency then differs from the bare atomic
transition. Luckily, as long as the inhomogeneous broadening is sufficiently small and symmetric,
the atoms with different energies still synchronize [7,15,30] and a narrow laser linewidth can be
maintained. Therefore, the design of high-performance active optical clocks with a continuous
repumping scheme requires the characterization, control and, if possible, minimization of the
induced shifts and resulting decoherence.

The conceptually simplest realistic repumping scheme, the so-called three-level scheme,
includes only a single intermediate level coherently coupled to the laser ground state, which
ideally directly decays to the upper lasing level on a short time scale. Its theoretical study
can be drastically simplified when the auxiliary level can be adiabatically eliminated, reducing
the model to an effective two-level system subject to an effective incoherent pump, as e.g. in
Lu+ ions [16]. The Stark shift of the lasing transition can be effectively added to the model.
However, in most metrology-relevant neutral atoms, as e.g. strontium or ytterbium, such an
ideal intermediate level does not exist and thus any realistic repumping scheme requires at least
two laser-induced transition steps to irreversibly excite the atoms from the lower to the upper
clock state. This has the advantage that one has more possibilities to obtain a desired pump
rate with minimal perturbation. However, it has also the disadvantage that, on the one hand,
an analytic procedure of adiabatic elimination is cumbersome, especially for systems with a
complex multilevel structure. On the other hand, a full numerical treatment, including all the
relevant levels in the laser model, significantly increases the computational cost. Especially in
time-domain simulations the characteristic time constants of the laser active and intermediate
states often differ by many orders of magnitude, requiring a large number of time steps to be
calculated.

Of course the numerical challenges become even more prominent for calculations beyond
the mean-field approximation as needed for reliable predictions of linewidth and stability. As
particularly useful models to tackle this, we will employ higher order cumulant expansion
methods [40,41]. Luckily we see that, as in the three level case, adiabatic elimination of the
intermediate levels can reduce these multi-level systems to a simplified effective two-level system
with sufficient accuracy.

In this paper we consider a quite general multi-level repumping scheme for neutral 88Sr. We
demonstrate that a proper choice of intensities and detunings of the pump lasers can lead to a
sufficiently high effective repumping rate while at the same time frequency shifts and decoherence
rates are kept small. To perform this analysis, we introduce a numerical method to reduce the
complex multi-level system to an effective two-level system. This work is organized as follows:
In Section 2 we review the simplified two-level model including incoherent repumping, and
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describe the generalized method used to reduce a multilevel system to a two-level one. In Section
3 we introduce a repumping scheme for trapped 88Sr and calculate the effective parameters of
the equivalent two-level system. The pumping scheme includes the two lasing states and four
intermediate states. In Section 4 we compare the effective two-level laser model with the full
six-level laser model.

2. Multistep excitation process as an effective two-level system

In this section we describe the method to eliminate the intermediate states in a multilevel scheme
with continuous repumping to an effective two-level system by using the eigenvalues of the
non-hermitian Hamiltonian. The requirement on this procedure is that the intermediates states
can be adiabatically eliminated. The motivation for this procedure is that the full laser system can
be numerically very extensive for multilevel systems, and a "conventional" adiabatic elimination
is often too cumbersome to be handled analytically. With our method we numerically calculate
first the appropriate parameters of an equivalent two-level atom, to use them afterwards in an
effective laser model. This has the additional advantage that this simplified model has already
been studied extensively [4,6,7,20,21].

To establish the correspondence between the effective two-level and the multilevel system, we
investigate first a two-level atom subjected to spontaneous decay, decoherence and incoherent
pumping. In the Heisenberg representation the averaged value of an operator Ô for an open
quantum system follows the equation

d⟨Ô⟩
dt
=

i
ℏ
⟨[Ĥ, Ô]⟩ + ⟨ ˆ̄L[Ô]⟩ (1)

where Ĥ is the Hamiltonian and ˆ̄L is the super-operator describing the dissipative processes.
Within the Born-Markov approximation ˆ̄L has the form

ˆ̄L[Ô] =
∑︂

j

Rj

2

(︂
2Ĵ†j ÔĴj − Ĵ†j ĴjÔ − ÔĴ†j Ĵj

)︂
, (2)

here Ĵj are the jump operators with the corresponding rates Rj. For our two-level atom in the
rotating frame of the unperturbed atomic transition frequency the Hamiltonian can be written as
Ĥ = ℏ(δ1σ̂11 + δ2σ̂22), where δ1 and δ2 are the shifts from the ground |1⟩ and excited clock state
|2⟩, respectively and σ̂ij = |i⟩⟨j |. The jump operators and corresponding rates of the dissipative
processes are listed in Table 1. The equations of motion for the operator averages ⟨σ̂ij⟩ of such a
two-level atom are

∂t⟨σ̂22⟩ = R⟨σ̂11⟩ − Γ12⟨σ̂22⟩ (3)

∂t⟨σ̂12⟩ = −
(︃
R + Γ12 + ν

2
+ iδ21

)︃
⟨σ̂12⟩, (4)

where δ21 = δ2 − δ1, and ν = ν1 + ν2. From (3) one can easily express the incoherent repumping
rate R via the ratio of the steady-state population as

R =
⟨σ̂22⟩
⟨σ̂11⟩ Γ12. (5)

To express the dephasing rates ν1 and ν2 we exploit the effective non-hermitian Hamiltonian

Ĥnh
eff = Ĥ − iℏ

2

∑︂
j

Rj Ĵ†j Ĵj, (6)
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as it is used e.g. in the Monte-Carlo wave function approach [42–44]. For our two-level system
this non-hermitian Hamiltonian has the form

Ĥnh
eff = ℏδ1σ̂11 + ℏδ2σ̂22 − iℏ

2
[Γ12σ̂22 + Rσ̂11 + ν1σ̂11 + ν2σ̂22)] , (7)

which is already diagonal with the complex eigenvalues

E1 = ℏ
[︃
δ1 − i

2
(R + ν1)

]︃
(8)

E2 = ℏ
[︃
δ2 − i

2
(Γ12 + ν2)

]︃
. (9)

Using these relations and Eq. (5) for the incoherent pump rate R, we can express the shifts and
decoherence rates via the eigenvalues of this effective Hamiltonian as:

δ1 = Re{E1}/ℏ
δ2 = Re{E2}/ℏ
ν1 = −2Im{E1}/ℏ − R
ν2 = −2Im{E2}/ℏ − Γ12

(10)

Table 1. Dissipative processes of the two-level
scheme.

# jump rate description

1 σ̂12 Γ12 decay from |2⟩ to |1⟩
2 σ̂21 R incoherent pumping from |1⟩ to |2⟩
3 σ̂11 ν1 dephasing on |1⟩
4 σ̂22 ν2 dephasing on |2⟩

Therefore, to reduce a driven multilevel system to an effective two-level system with incoherent
pumping, we perform the following steps: First, we calculate the steady-state values for ⟨σ̂11⟩
and ⟨σ̂22⟩, to obtain the effective repumping rate R from Eq. (5). For the validity of the adiabatic
elimination one should check that the condition 1 − ⟨σ̂11⟩ − ⟨σ̂22⟩ ≪ 1 is fulfilled at this
stage. Second, we diagonalize the effective non-hermitian Hamiltonian (6) to get the complex
eigenvalues E1 and E2. These eigenvalues correspond to the eigenstates with the highest overlap
with the unperturbed clock states |1⟩ and |2⟩. Using these eigenvalues we calculate the shifts
δ1 and δ2 and the decoherence rates ν1 and ν2 according to Eq. (10). In appendix A we apply
this method analytically to a three-level system, and compare it to the "conventional" adiabatic
elimination procedure. Note that the atoms are coupled to the cavity only on the weak |1⟩ ↔ |2⟩
transition, which will not be adiabatically eliminated. Therefore the atom-cavity coupling of
the reduced system is anyway retained and we can, in a good approximation, neglect the cavity
field and perform the adiabatic elimination on a single atom. However, this means that all higher
order correlations which include atomic transitions with intermediate levels are neglected. If
these correlations become relevant, the approximation might no longer be valid. Also direct
interaction between the atoms as well as any collective coupling of the atoms to the bath modes
are neglected.

3. Repumping scheme for bosonic strontium

In the following we present the concrete proposed repumping scheme based on the actual level
structure of 88Sr, see Fig. 1. In order to allow for superradiant lasing and to keep the anyway
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complicated system as simple as possible, we assume a fairly strong and homogeneous magnetic
field B = 0.18 T on the atoms, which induces an effective weak electric dipole coupling between
the states |1⟩ = 1S0 and |2⟩ = 3P0 with a spontaneous transition rate of Γ12 ≈ 2π · 1 mHz.
Naturally such a strong magnetic field splits the Zeeman sub-levels quite far, such that they can
be addressed independently. To obtain sufficient population in the upper clock state |2⟩ = 3P0
we consider the following processes: The atom is pumped coherently from the ground state
|1⟩ = 1S0 to |3⟩ = 3P1,m=−1 and then further to |4⟩ = 3S1,m=0. From there the atom can decay into
the upper lasing state |2⟩ as well as into the states |5⟩ = 3P2,m={−1,0,+1} and |6⟩ = 3P1,m=−1. Note
that the atoms can not decay from |4⟩ to 3P1,m=0, since this transition is forbidden by angular
momentum selection rules. Furthermore we combine here the three relevant Zeeman sub-levels
of the state 3P2 to one state |5⟩, this does not change the dynamics of the system, but one needs
to be aware that in real experiments three individual lasers are needed to repump the atoms from
these levels.

Fig. 1. Effective pump schemes: Figure (a) shows all relevant atomic levels involved in CW
pumping including the Zeeman sub-levels. Numbers show the level shifts for B = 0.18T.
The directly involved transitions are indicated by the red solid lines. Figure (b) depicts a
simplified six-level pump scheme with the relevant decay rates. (c) describes the resulting
reduced two-level laser model including the effective emerging incoherent pump rate R and
ground state Stark shift δ1. We also include an effective dephasing with rate ν on the lasing
transition. The cavity coupling is indicated by the dashed line between |1⟩ and |2⟩. The
decay rates are from [45].

The decay |4⟩ → |2⟩ is the desired final step in the excitation process. Since the state |5⟩ has a
lifetime even longer than the upper clock state, we need to additionally depopulate |5⟩ to avoid
trapping of too much population in this state. If the atoms decay into the state |6⟩, we can either
repump it back to the state |4⟩, or simply let it decay further to the ground state. Pumping from
the state |6⟩ would further increase the efficiency of the repumping process, but for simplicity we
just consider spontaneous decay to the ground state. The Hamiltonian for the pumped six-level
scheme (Fig. 1(b)) in the rotating frame of the pump lasers then is

Ĥp = −∆3σ̂33 − ∆4σ̂44 − ∆5σ̂55 +Ω13(σ̂13 + σ̂31) +Ω34(σ̂34 + σ̂43) +Ω54(σ̂45 + σ̂54) (11)

with ∆3 = ∆13, ∆4 = ∆3 + ∆34 and ∆5 = ∆4 − ∆54. We define here ∆ij = ω
l
ij − ωij, ωij is

the resonance frequency on the atomic transition |i⟩ ↔ |j⟩, ωl
ij is the frequency of the pump

laser on this transition and Ωij the matrix element of the laser-induced transition. Dissipative
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processes for this pump scheme are described by the Liouvillian (2) with the parameters listed in
Table 2. These processes include all the relevant atomic decays, an effective phenomenological
dephasing of the clock transition, as well as the dephasing induced by the pump lasers due to
a finite linewidth. We want to mention here that the considered 6-level model is only valid
due to the strong magnetic field, which resolves the Zeeman sublevels. However, for a weaker
magnetic field, or also for fermionic 87Sr the method can still be applied as long as one includes
all relevant levels. Furthermore we should also note that in our scheme the atoms emit and
absorb approximately 22 photons on average in one repumping cycle. All these photons have a
wavelength around 700 nm which leads to heating of about 5 µK per cycle. Assuming an optical
lattice potential with a depth of kB · 30 µK, the atoms can emit a few photons into the cavity
before heated out of the trap. This could be significantly improved by additional cooling of the
atoms, e.g. on the narrow cyclic 3P2 ↔ 3D3 transition at a wavelength of 2.9 µm.

Table 2. Dissipative processes of the six-level pump scheme.

# jump rate description

1 σ̂12 Γ12 decay from |2⟩ to |1⟩
2 σ̂13 Γ13 decay from |3⟩ to |1⟩
3 σ̂34 Γ34 decay from |4⟩ to |3⟩
4 σ̂24 Γ24 decay from |4⟩ to |2⟩
5 σ̂54 Γ54 decay from |4⟩ to |5⟩
6 σ̂64 Γ64 decay from |4⟩ to |6⟩
7 σ̂16 Γ16 decay from |6⟩ to |1⟩
8 σ̂22 ν12 general dephasing on |1⟩ ↔ |2⟩
9 σ̂33 + σ̂44 + σ̂55 ν13 pump laser linewidth on |1⟩ ↔ |3⟩
10 σ̂44 + σ̂55 ν34 pump laser linewidth on |3⟩ ↔ |4⟩
11 σ̂55 ν54 pump laser linewidth on |4⟩ ↔ |5⟩

3.1. Scanning over repumping parameters

Using the method described in section 2 we analyze our Strontium six-level repumping scheme.
For high atom numbers N ≫ 1 an effective incoherent repumping rate R above Γ12 would already
be sufficient for superradiant lasing [4,15]. A larger rate, however, leads to a higher output power
and smaller linewidth, with an optimum at R = 2Ng2/κ [4]. Here g is the atom cavity coupling
constant and κ the photon decay rate through the cavity mirrors. We will focus on incoherent
repumping rates R>2π · 1 Hz, which is obviously much bigger than Γ12 = 2π · 1 mHz but not the
optimum for usual atom numbers and cavity parameters. The issue with too high repumping rates
is, that they usually require stronger pump fields which lead to bigger level shifts on the clock
transition. Shifts per se would not be a problem if they are constant and known. However, due to
uncertainties and fluctuations in the pump process, atoms at different positions might experience
different shifts, which leads to an effective inhomogeneous broadening of the ensemble. But as
long as the frequency distribution is small enough, the atoms can still synchronize and emit light
collectively on a single narrow line [7,15,30]. For an ensemble with an inhomogeneous frequency
broadening less than the incoherent pump rate R the atoms synchronize in the superradiant
regime. Note that the incoherent pumping reduces the coherence between the atoms, thus there
is also an upper bound of R + ν<4Ng2/κ [4,8,15] for the repumping rate.

Our aim is therefore to find parameters with an effective repumping rate R>2π · 1 Hz, but also
sufficiently small frequency shift changes of the clock transition for realistic fluctuations and
inaccuracies in the pump process. To this end we scan the effective repumping rate R and the
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ground state shift δ1 on the relevant system parameters. Note that we only get shifts of the lower
clock state in our model, since no pump laser couples to the upper clock state.

A parameter set to achieve the above goal is: Ω13 = 2π · 1.5 kHz, Ω34 = 2π · 3.3 MHz,
Ω54 = 2π · 100 kHz, ∆13 = −2π · 875 kHz, ∆34 = −2π · 5 MHz and ∆54 = −2π · 10 MHz.
The corresponding two-level system parameters are R ≈ 2π · 1.91 Hz, δ1 ≈ 2π · 5.21 mHz and
ν ≈ 2π · 3.93 Hz. These results are for pump laser linewidth of ν13 = ν34 = ν54 = 2π · 0.75 kHz
and a dephasing rate on the clock transition of ν = 2π · 1 Hz. We will use these parameters as
our "standard" parameters, i.e. whenever parameters are kept constant in scans we use these.

Figure 2 shows the dependence of the effective repumping rate R and the ground state shift
δ1 on the Rabi-frequencies Ω13 and Ω34 (upper row) as well as on the detunings ∆13 and ∆34
(lower row), when the other parameters are kept constant. We do not show here scans on ∆54
and Ω54, since the dependences of R and δ1 are very weak over a wide range of parameters, see
one-dimensional scans in appendix B. One can also see from these scans, that the dependence
of both, R and δ1, on Ω13 is quadratic. Therefore, the sensitivity of δ1 to variations of Ω13 is
proportional to δ1, which means one should choose a working point with δ1 close to zero (dark
blue regions in Fig. 2(b) and (e)), otherwise rather small fluctuations on Ω13 might lead to big
variations of δ1.

Fig. 2. Parameter scans of the effective pump rate ' and the differential shift of the
lasing transition X1. In the upper row (a-c) we vary the amplitudes of the two pump
lasers and in the lower row (d-f) their frequency detuning. We are targeting regions of
sufficiently high pump rate and very low shift. The white contour line in the |X1 |-scans
depicts ' = 2c · 1 Hz. Figure (c) and (f) show a zoom in a parameter region with small
shifts |X1 | < 2c · 100 mHz. The white crosses indicate the parameters fixed in the other
plots.

parameters will be individual for each experimental setup, but they can be found fast with the242

above described method.243

4. Effective linewidth and shift in the reduced laser model244

In this section we calculate the spectrum of the superradiant laser, and demonstrate that our
six-level laser model can be replaced by an effective two-level one. The laser model is given by
# identical six-level atoms pumped inside an optical cavity. In the rotating frame of the pump
lasers and the unperturbed clock transition the Hamiltonian can be written as

�L6 = − Δc0
†0 +

#∑
:=1

[ − Δ3f̂
:
33 − Δ4f̂

:
44 − Δ5f̂

:
55 + 6(0†f̂:12 + 0f̂:21) (12)

+Ω13 (f̂:13 + f̂:31) +Ω34 (f̂:34 + f̂:43) +Ω54 (f̂:45 + f̂:54)
]
.

Here Δc = l12 − lc is the detuning between the clock transition frequency and the cavity245

resonance frequency, and 6 is the coupling coefficient between the cavity field and the clock246

transition. The dissipative processes for the atoms are listed in table 2. The dissipative processes247

of the cavity are according to table 3. Using that all atoms behave identically we derive second248

order cumulant equations [40, 41] for the system variables and the correlation function [49].249

However, we can use the adiabatic elimination from section 2 to numerically reduce the six-level250

atom lasing model into an effective two-level atom lasing model. This simplifies the model251

Fig. 2. Parameter scans of the effective pump rate R and the differential shift of the lasing
transition δ1. In the upper row (a-c) we vary the amplitudes of the two pump lasers and in
the lower row (d-f) their frequency detuning. We are targeting regions of sufficiently high
pump rate and very low shift. The white contour line in the |δ1 |-scans depicts R = 2π · 1 Hz.
Figure (c) and (f) show a zoom in a parameter region with small shifts |δ1 |<2π · 100 mHz.
The white crosses indicate the parameters fixed in the other plots.

From the subplots (a) and (d) of Fig. 2 we can see, that there are wide regions with an effective
repumping rate R>2π · 1 Hz. In the subplots (b) and (e) we plot the ground state shift and
additionally indicate the relevant regions with a white line, which shows the repumping of
R = 2π · 1 Hz. In the panel (c) we zoom into an appropriate region for the Rabi-frequency scan.
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We see that for our parameters a deviation in Ω34 of ±1.5% still has tolerable shifts. For Ω13 the
suitable range is much bigger.

In the panel (f) we show a proper region for the detuning scan. We chose an area with a
suitable range for ∆13 of 2π · 50 kHz and for ∆34 of 2π · 1.5 MHz. The reason to pick this region
is the following: To avoid Doppler shifts a magic wavelength optical lattice is needed to trap the
strontium atoms, but this lattice is in general only magic on the clock transition. This means for
the other transitions the upper and lower state are not equally shifted and therefore non-clock
transitions of atoms at different positions in the lattice have shifted resonance frequencies.
However, the lattice can also be made magic on the |1⟩ ↔ |3⟩ transition for a linearly polarized
field, if one chooses the correct angle between the polarization axis and the quantization axis
due to the static magnetic field [46]. Nonetheless, this does not work simultaneously on the
|3⟩ ↔ |4⟩ transition, which results in an effective inhomogeneous broadening of the transition
frequency ω34 and hence in a ∆34 distribution. According to recent theoretical estimations
[47], the scalar and tensor dynamic polarizabilities of the (5s6s)3S1 state at the 813 nm magic
wavelength lattice are α0(3S1) ≈ −9 × 102 a.u. (atomic units) and α2(3S1) ≈ 2 a.u., respectively.
In turn, the scalar polarizabilities of the lasing states |1⟩ and |2⟩ at the magic wavelength are equal
to a0(1S0) = a0(3P0) ≈ 2.8 × 102 a.u. [48]. A thermal distribution of the atoms over different
vibrational states and/or lattice sites with different potential depths will results into different
shifts of the level |4⟩. In particular, a temperature of T = 5 µK corresponds to a shift of level |4⟩
in the range of approximately 0.4 MHz, which directly results in a ∆34 distribution. Therefore we
need to choose parameters with a wide suitable range for ∆34, but we can pick a point with a
rather narrow range for ∆13.

In summary, the main result in this section is that it occurs to be possible to achieve a significant
repumping rate R together with a sufficient small and insensitive shift δ1. The optimal set of
parameters will be individual for each experimental setup, but they can be found fast with the
above described method.

4. Effective linewidth and shift in the reduced laser model

In this section we calculate the spectrum of the superradiant laser, and demonstrate that our
six-level laser model can be replaced by an effective two-level one. The laser model is given by
N identical six-level atoms pumped inside an optical cavity. In the rotating frame of the pump
lasers and the unperturbed clock transition the Hamiltonian can be written as

HL6 = − ∆ca†a +
N∑︂

k=1

[︁ − ∆3σ̂
k
33 − ∆4σ̂

k
44 − ∆5σ̂

k
55 + g(a†σ̂k

12 + aσ̂k
21)

+Ω13(σ̂k
13 + σ̂

k
31) +Ω34(σ̂k

34 + σ̂
k
43) +Ω54(σ̂k

45 + σ̂
k
54)

]︁
.

(12)

Here ∆c = ω12 − ωc is the detuning between the clock transition frequency and the cavity
resonance frequency, and g is the coupling coefficient between the cavity field and the clock
transition. The dissipative processes for the atoms are listed in Table 2. The dissipative processes
of the cavity are according to Table 3. Using that all atoms behave identically we derive second
order cumulant equations [40,41] for the system variables and the correlation function [49].
However, we can use the adiabatic elimination from section 2 to numerically reduce the six-level
atom lasing model into an effective two-level atom lasing model. This simplifies the model
drastically and increases the computational efficiency significantly. The Hamiltonian of this
two-level lasing model is

HL2 = −∆ca†a +
N∑︂

k=1

[︁ − δk1σ̂k
22 + gk(a†σ̂k

12 + aσ̂k
21)

]︁
(13)
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and the dissipative processes are given by Table 3 for the cavity and Table 1 for each of the N
atoms individually.

Table 3. Dissipative processes of the cavity field.

# jump rate description

1 a κ cavity photon losses

2 a†a η fluctuations of the cavity resonance frequency

In Fig. 3 we see the excellent agreement of the laser properties calculated from the effective
two-level lasing model and the six-level model for our standard parameters. We compared these
two models for many other relevant parameters, the laser properties (FWHM, δp, ⟨a†a⟩) always
agreed well. Furthermore, Fig. 3 indicates that a cavity dephasing up to η = κ/10 does not
significantly influence the spectrum, as expected for a superradiant laser. A comparison with the
case of no cavity dephasing (η = 0) showed essentially the same laser properties.

Fig. 3. Laser spectrum. Comparison of the the effective two-level model with the
full six-level model for a typical set of parameters. The laser properties are FWHM =
2π ·0.806 mHz (2π ·0.807 mHz for the six-level model), δp = −2π ·5.20 mHz (−2π ·5.21 mHz)
and an intra-cavity photon number of ⟨a†a⟩ = 2.16 (2.15), with an inaccuracy of the effective
model below 1%. The atom number is N = 2 · 105 and the cavity parameters are
κ = 2π · 75 kHz, g = 2π · 2 Hz and η = 2π · 7.5 kHz.

Finally, let us discuss the effect of the pump laser induced dephasing. The main mechanism of
such a dephasing is that the atoms pumped into the upper states |3⟩ and |4⟩ can decay into the
state |1⟩, instead of into the upper lasing state |2⟩, see also appendix A. Therefore, the dephasing
rate ν needs to be proportional to the effective incoherent repumping rate R. Since the only way
to get into the state |2⟩ is to decay from |4⟩ and since all other transitions are driven, the most
prominent process to end up in |1⟩ is via the decay into |6⟩, therefore we can estimate

ν ≈ R
Γ64
Γ24
+ ν12 ≈ 1.5R + ν12. (14)

For the parameters used in Fig. 3 we get a FWHM of ∼ 2π · 0.81 mHz. In comparison the
smallest linewidth we could theoretically get is 4g2/κ ≈ 2π · 0.21 mHz. With no dephasing at all
(ν = 0) this can, for these parameters, indeed be reached. Thus we see that the induced dephasing
has an impact on the spectrum which is not to be neglected, but it is still reasonable. Note that
the induced dephasing could e.g. be decreased in our case by additionally pumping the transition
|4⟩ ↔ |6⟩.
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5. Conclusions

On the example of bosonic strontium trapped in a magic wavelength optical lattice we show
that by choice of suitable pump laser parameters, it is possible to create significant population
inversion on the clock transition with only a rather small shift and broadening of the lasing
transition and the resulting active clock line. In particular we found a parameter regime where
the induced level shifts on the clock transition are small enough, such that the atoms can still
synchronize and thus emit light collectively in the superradiant regime, where cavity noise plays
no role. To perform our scans of the many parameters characterizing the complex multilevel
system, we have developed a fast numerical way to map the results to an effective two-level model,
which can be well interpreted. For a range of generic test cases we have seen that the spectral and
noise properties of these two models are in excellent agreement. The procedure can be adapted
straight forward to find suitable repumping parameter for 88Sr in a weaker magnetic field as well
as for fermionic 87Sr and other alkaline-earth atoms. The possibility to simultaneously cool the
atoms has been briefly mentioned, a further detailed investigation of this is planed to be done in
the future.

Appendix A. Analytic adiabatic elimination on a three-level atom

Here we compare the "conventional" adiabatic elimination with the adiabatic elimination using
the eigenvalues of the non-hermitian Hamiltonian. We apply the two methods analytically on a
pumped three-level atom to eliminate the auxiliary level |3⟩.

The atom is coherently pumped on the transition |1⟩ ↔ |3⟩ with a Rabi frequency Ω and
laser detuning ∆3, see Fig. 4. We suppose that the Rabi frequency Ω as well as the decay and
decoherence rates associated with the state |3⟩ (Γ13, Γ23, ν3) are much larger than all the other
rates in the system, and that the total decay rate of level |3⟩ is much larger than Ω, therefore
the population of the level |3⟩ is much less than the populations of the levels |1⟩ and |2⟩. The
Hamiltonian of a single atom can be written as

Ĥ = ℏ(∆2σ̂22 + ∆3σ̂33) + ℏΩ(σ̂13 + σ̂31), (15)

where ∆2 is some shift from the unperturbed atomic transition frequency. Jump operators and
relaxation rates are listed in Table 4. Note that we neglect the interaction with the weak cavity
field, see section 2.

Fig. 4. Three-level scheme. The considered three-level scheme for the adiabatic elimination
of level |3⟩ is depicted. The atoms are coherently pumped on the transition |1⟩ ↔ |3⟩ and
the cavity couples on the transition |1⟩ ↔ |2⟩.

A.1. "Conventional" adiabatic elimination

First we perform an adiabatic elimination of the level |3⟩, in the "conventional" way, similar to
the one used in [16]. To this end we calculate the relevant equations for operator averages ⟨σ̂α,β⟩,
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Table 4. Dissipative processes of the
three-level atom.

# jump rate description

1 σ̂12 Γ12 decay from |2⟩ to |1⟩
2 σ̂13 Γ13 decay from |3⟩ to |1⟩
3 σ̂23 Γ23 decay from |3⟩ to |2⟩
4 σ̂11 ν0

1 dephasing on |1⟩
5 σ̂22 ν0

2 dephasing on |2⟩
6 σ̂33 ν0

3 dephasing on |3⟩

where α, β ∈ {1, 2, 3}:
d⟨σ̂22⟩

dt
= −Γ12⟨σ̂22⟩ + Γ23⟨σ̂33⟩ (16)

d⟨σ̂12⟩
dt

= −
(︄
Γ12 + ν

0
1 + ν

0
2

2
+ i∆2

)︄
⟨σ̂12⟩ + iΩ⟨σ̂32⟩ (17)

d⟨σ̂33⟩
dt

= iΩ⟨σ̂13 − σ̂31⟩ − Γ3⟨σ̂33⟩ (18)

d⟨σ̂13⟩
dt

= −
(︄
Γ3 + ν

0
1 + ν

0
3

2
+ i∆3

)︄
⟨σ̂13⟩ − iΩ⟨σ̂11 − σ̂33⟩ (19)

d⟨σ̂23⟩
dt

= −
(︄
Γ3 + Γ12 + ν

0
2 + ν

0
3

2
+ i∆3

)︄
⟨σ̂23⟩ − iΩ⟨σ̂21⟩ (20)

Here Γ3 = Γ13+Γ23 is the total decay rate of the intermediate state |3⟩. To perform the adiabatic
elimination of ⟨σ̂33⟩, ⟨σ̂23⟩, ⟨σ̂13⟩ we use Γ12 ≪ Γ3 and ν01 , ν02 ≪ ν03 as well as ⟨σ̂33⟩ ≪ ⟨σ̂11⟩.
Introducing

Γ
′ =
Γ3 + ν

0
3

2
≈ Γ3 + Γ12 + ν

0
2 + ν

0
3

2
≈ Γ3 + ν

0
1 + ν

0
3

2
(21)

we get

⟨σ̂13⟩ = −iΩ
Γ′ + i∆3

⟨σ̂11⟩ (22)

⟨σ̂23⟩ = −iΩ
Γ′ + i∆3

⟨σ̂21⟩ (23)

⟨σ̂33⟩ = 2Ω2

Γ3

Γ′

Γ′2 + ∆3
2 ⟨σ̂11⟩. (24)

Substituting these expressions into (16) – (17), and introducing the repumping rate R,
decoherence rate ν12 and effective shift ∆21 as

R =
Γ23
Γ3

2Ω2Γ′

Γ′2 + ∆3
2 (25)

ν12 = ν
0
1 + ν

0
2 +
Γ13
Γ3

2Ω2Γ′

Γ′2 + ∆3
2 (26)

∆21 = ∆2 +
Ω2∆3

Γ′2 + ∆3
2 (27)
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we can rewrite the Eqs. (16) and (17) as

d⟨σ̂22⟩
dt

= −Γ12⟨σ̂22⟩ + R⟨σ̂11⟩ (28)

d⟨σ̂12⟩
dt

= −
(︃
R + Γ12 + ν12

2
+ i∆21

)︃
⟨σ̂12⟩, (29)

similar to Eqs. (3) and (4).

A.2. Adiabatic elimination using the eigenvalues of the non-hermitian Hamiltonian

Now we apply the procedure described in the end of Section 2. The simplicity of the considered
3-level scheme allows to follow this method analytically. The expression for the repumping rate
R, see Eq. (5), can be obtained from the steady-state expression of ⟨σ̂22⟩ and ⟨σ̂33⟩,

⟨σ̂22⟩ = Γ23
Γ12

⟨σ̂33⟩ = Γ23
Γ12

2Ω2Γ′

Γ(Γ′2 + ∆3
2) ⟨σ̂11⟩. (30)

The result is the same as in (25).
To determine the light shift and decoherence rate, one has to diagonalize the effective non-

Hermitian Hamiltonian of our 3-level system in the absence of the cavity field. The Hamiltonian
reads

Ĥnh
eff = Ĥ − iℏ

2

∑︂
j

Rj Ĵ†j Ĵj

= ℏ(δ2σ̂22 + ∆3σ̂33 +Ω[σ̂13 + σ̂31]) − iℏ
2

[︁
Γ12σ̂22 + Γσ̂33 + ν

0
1 σ̂11 + ν

0
2 σ̂22 + ν

0
3 σ̂33)

]︁
(31)

with the eigenvalues
E2
ℏ
= ∆2 − i

2
(Γ12 + ν

0
2 ) (32)

E1,3

ℏ
=
∆3 − iΓ′

2

⎧⎪⎪⎨
⎪⎪⎩

1 ∓
√︄

1 +
4Ω2 + 2iν01 (∆3 − iΓ′)

(∆3 − iΓ′)2
⎫⎪⎪⎬
⎪⎪⎭

, (33)

where Γ′ is defined in (21), and we neglected Γ12, ν01 and ν02 in comparison with Γ′. For ν01 ,Ω ≪ Γ′
we can perform a Taylor expansion on the term [4Ω2 + 2iν01 (∆3 − iΓ′)]/(∆3 − iΓ′)2 ≪ 1 and find

E1
ℏ

≈ −Ω
2(∆3 + iΓ′)
∆3

2 + Γ′2
− iν01

2
. (34)

Using expressions (10), we get

∆1 = − Ω2∆3

Γ′2 + ∆3
2 (35)

ν1 = ν
0
1 +

2Γ′Ω2

Γ′2 + ∆3
2 − R = ν01 +

Γ13
Γ

2Ω2Γ′

Γ′2 + ∆3
2 . (36)

Similarly, from (32) follows ν2 = ν02 . Therefore we obtain

ν12 = ν1 + ν2 = ν
0
1 + ν

0
2 +
Γ13
Γ

2Ω2Γ′

Γ′2 + ∆3
2 (37)
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∆21 = ∆2 − ∆1 = ∆2 +
Ω2∆3

Γ′2 + ∆3
2 , (38)

this coincides with (26) and (27). Thus, we can see that th adiabatic elimination in such a 3-level
system performed with the help of the diagonalization of the effective non-Hermitian Hamiltonian
gives the same result as a "conventional" adiabatic elimination.

Appendix B. One dimensional parameter scans

To get a better insight of the dependence on the different repumping parameters we show here
one dimensional scans. Figure 5 shows scans on the Rabi-frequencies and Fig. 6 on the detunings
for R and δ1. The scans on Ω13, Fig. 5(a) and (d), show a quadratic dependence of R and δ1 on
the relevant regions of Ω13 with a constant prefactor depending on the other system parameters.
A proper choice of parameters can reduce the prefactor of the ground state shift by orders of
magnitudes, while the pump rate prefactor stays almost the same. For the Ω34-scans, Fig. 5(b)
and (e), we find only a relative small area at approximately Ω34 ≈ 2π · 3.3 MHz (see inset) where
a repumping rate R>2π · 1 Hz can be achieved and the range of the shift |δ1 | is sufficiently
small. For Ω54, Fig. 5(c) and (f), on the other hand, all values below 2π · 1 MHz have an almost
constant R and δ1. But note that for smaller values of Ω54 more population is trapped in |5⟩, this
is undesired since less population will contribute to lasing. However, for our parameters this gets
only relevant for Ω54<2π · 1 kHz.

Fig. 5. Line shift (upper row) and pump rate (lower row) scans for varying pump amplitudes
close to optimal operation conditions. The dependence of the ground state shift and the
repumping rate on the Rabi frequencies is shown with insets of interesting regions. The
parameters when kept constant are our standard parameters from section 3.1.

As we know from section 3.1 ∆13 can be controlled much more precisely than ∆34 due to the
magic wavelength lattice, therefore we choose a parameter regime in which changes of ∆34 are
far less important. Figure 6 illustrates this very well. Differences in ∆13 of ±2π · 25 kHz lead
to shifts of ±2π · 50 mHz, whereas changes of ±2π · 0.75 MHz in ∆34 lead only to shifts in a
range of approximately 2π · 40 mHz, see Fig. 6(a) and (b) respectively. For the ∆54 dependency,
Fig. 6(c) and (f), we find that R and δ1 do not significantly change for detunings between −2π · 15
and −2π · 6 MHz. Thus ∆54 does not need to be precisely controlled.
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Fig. 6. Line shift (upper row) and pump rate (lower row) scans for varying pump detunings
close to optimal operation conditions. The dependence of the ground state shift and the
repumping rate on the detunings is shown with insets of interesting regions. The parameters
when kept constant are our standard parameters from section 3.1.
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