
On Automated Theorem Proving
for Assertional and Refutational

Natural Deduction Systems

DIPLOMA THESIS

submitted in partial fulfillment of the requirements for the degree of

Diplom-Ingenieur

in

Software Engineering & Internet Computing

by

Michael Maurer
Registration Number 01634044

to the Faculty of Informatics

at the TU Wien

Advisor: Ao.Univ.Prof. Mag.rer.nat. Dr.techn. Hans Tompits

Vienna, 5th December, 2022
Michael Maurer Hans Tompits

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Michael Maurer

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Wien, 5. Dezember 2022
Michael Maurer

iii

Acknowledgements

My gratitude goes to all of the many people who helped bring this thesis to fruition, most
directly my supervisor Ao.Univ.Prof. Hans Tompits, whose suggestions and feedback
always kept me on track and ensured I knew what to do. I would also especially like to
thank my family and friends for remaining supportive and encouraging, and for giving
me the opportunity to devote the necessary time to this work. Finally, as my years as
a student draw to a close, I want to thank the general educational framework of the
TU Wien, which allowed me to obtain both an interest in this fascinating topic and the
knowledge to even begin tackling it.

v

Abstract

We investigate the use of automated theorem proving (ATP) techniques with regards to
two natural deduction systems for classical propositional logic. One is the well-known
assertional system following Gentzen and Jaśkowski, and the other is a refutational
system due to Tamminga. Based on the approaches used by existing ATPs for natural
deduction in the literature, we establish first a variant of the refutational system for
which a weak normalisation theorem holds, and then variants of both systems that ensure
loop-free derivations. We further implement and evaluate Hermes, a Prolog-based ATP
that searches for assertional and refutational natural deduction derivations in parallel.
Our observations show that this program is capable of producing remarkably human-like
derivations for both valid and refutable formulas, but its performance, particularly in
the refutational component, is not optimal due to the intensive backtracking required on
certain failed derivation paths.

vii

Kurzfassung

Diese Arbeit befasst sich mit den Einsatz von Techniken der automatisierten Beweis-
führung (“automated theorem proving”, kurz ATP) im Bezug auf zwei Systeme des
natürlichen Schließens für die klassische Aussagenlogik. Einerseits handelt es sich dabei
um das weithin bekannte assertive Beweissystem nach Gentzen und Jaśkowski, anderer-
seits um ein dazu komplementäres Verwerfungssystem nach Tamminga. Den Ansätzen
folgend, die sich in der Literatur bei bereits existierenden ATPs für natürliches Schließen
finden, erstellen wir zuerst eine Variante des Verwerfungssystems für die ein schwa-
ches Normalisierungstheorem gilt, gefolgt von Varianten beider Systeme mit denen die
Schleifenfreiheit der Beweise sichergestellt ist. Weiters implementieren und evaluieren
wir Hermes, einen Prolog-ATP der parallel nach Assertions- und Verwerfungsbeweisen
sucht. Aus unseren Beobachtungen geht hervor, dass sich mit einem solchen Programm
durchaus Beweise generieren lassen, die den von Menschen erstellten ähneln, jedoch ist
die Performanz insbesondere beim Generieren von Verwerfungsbeweisen nicht optimal,
da gewisse gescheiterte Suchpfade intensives Backtracking erforderlich machen.

ix

Contents

Abstract vii

Kurzfassung ix

Contents xi

1 Introduction 1

2 Background 3
2.1 Classical Propositional Logic . 3
2.2 Two Natural Deduction Systems . 5

3 Automated Theorem Proving with Natural Deduction 17
3.1 Existing ATPs . 18
3.2 Strategies . 29

4 Normal Derivations in N and N 31
4.1 Proof Approach . 31
4.2 The Assertional Case . 32
4.3 The Refutational Case . 44

5 Adapted Systems for Automation 63
5.1 Preliminaries . 64
5.2 The Assertional Case . 65
5.3 The Refutational Case . 76

6 Implementation 91
6.1 Overview . 91
6.2 Implementational Aspects . 93
6.3 Evaluation . 98

7 Conclusion 105

Bibliography 107

xi

CHAPTER 1
Introduction

Automated theorem provers (ATPs) are programs which, given a logical statement, attempt
to find a sequence of reasoning steps establishing the validity of that statement, with little
to no help from their human users. The applications for such systems are broad, ranging
from simply finding proofs of mathematical theorems to verifying the correctness of
programs, or even generating programs to match a certain specification [10, 33, 14]. The
basis for ATPs is formed by proof calculi which formalise the means of reasoning within a
certain logic. In particular, the resolution calculus [32] has seen much success in the area
of automated theorem proving, as its simplicity lends itself to efficient implementation [27].
Notable examples of resolution-based provers include Vampire [31] and E [35].

A downside of this development towards computing derivations in simple, compact calculi
like resolution is an often exceedingly large number of intermediate steps in the output
which a human who reasons about the same problem would not need to bother with,
making them difficult to read and interpret [30]. With rising demand for systems of
explainable artificial intelligence [34] that allow the user to understand the reasoning
process behind every decision, this limitation is especially significant, as it hinders the
application of ATPs in this area unless they are paired with some sort of translation
interface. A potential solution lies in the use of calculi designed specifically for human-
readability, for example a calculus in the style of natural deduction [18, 12]. Indeed, some
theorem provers for first-order logic utilising natural deduction systems were already
developed in the late 20th century [28, 2, 26, 23], and while such provers generally perform
worse than their well-established resolution counterparts, they have demonstrated greater
suitability for certain classes of problems [24].

The main contribution of this thesis is an ATP that produces derivations in a human-
readable style of natural deduction, but at the same time, we address a second shortcoming
of current state-of-the-art ATPs. Namely, they focus solely on proving validity or unsat-
isfiability, while their ability to determine satisfiability or non-validity, i.e., refutability,

1

1. Introduction

is generally limited to utilising SAT solving algorithms or saturating the search space—
approaches that may not always succeed and do not produce the kind of reasoning one
would expect from an automated theorem prover. We will instead be making use of
a much more direct way of proving refutability (and dually, statisfiability), namely a
refutation system, or complementary calculus.

The latter kind of calculus is a formal proof system structured much like a traditional (as-
sertional) calculus, but instead describes means of deducing the refutability of a statement.
The idea of complementary calculi goes back to Jan Łukasiewicz, who first introduced
them in connection with his work on Aristotelean syllogisms [20]. Refutation systems
have subsequently been introduced for a variety of different logics, like intuitionistic
logic [4], modal logics [13], and finite-valued logics [22, 1]. However, despite that the term
“non-theorem prover” already appears in a work on the topic by Tiomkin in 1988 [40], the
automation of complementary systems has so far only been explored by means of a Prolog
implementation of such calculi for three-valued logics due to Oetsch and Tompits [22], as
well as with a natural deduction proof-search procedure by Ferrari and Fiorentini [5] to
obtain countermodels when the assertional proof fails.

The system we introduce in this thesis, Hermes, is an ATP for classical propositional
logic which utilises both a traditional, assertional system of natural deduction and a
complementary, refutational system of natural deduction to obtain a human-readable proof
of either validity or refutability. The assertional calculus follows the original formulations
of Gentzen and Jaśkowski, while the refutational calculus is due to Tamminga [39]. Our
implementation builds on previous ATPs based on natural deduction by reusing strategies
found in those systems, extending them also to the refutational case due to the similar
structure of both calculi. A final evaluation of Hermes on selected propositional problems
measures not only the general performance of these strategies, but also how similar the
generated output truly is to a human-made derivation.

2

CHAPTER 2
Background

First of all, we must establish some fundamental definitions and notational conventions
regarding the type of logic we work with and the basic natural deduction calculi for
assertional and refutational reasoning.

2.1 Classical Propositional Logic
2.1.1 Syntax

Definition 1. The alphabet of CPL consists of a set P = {p0, p1, p2, p3, . . . } of proposi-
tional constants, the logical connectives ∧ (“conjunction”), ∨ (“disjunction”), → (“im-
plication”), ¬ (“negation”), � (“verum”), and ⊥ (“falsum”), and the parentheses “(”
and “)”. �

Definition 2. The set A of atomic formulas is given by

A = P ∪ {�, ⊥}.

�

Definition 3. The set F of propositional formulas is the smallest set subject to the
following conditions:

1. A ⊆ F ;

2. if F1, F2 ∈ F and ◦ ∈ {∧, ∨, →}, then (F1 ◦ F2) ∈ F ; and

3. if F ∈ F , then ¬F ∈ F .

�

3

2. Background

Definition 4. The degree of a propositional formula F ∈ F , symbolically deg(F), is
given by

deg(F) =

����
0, if F ∈ A,

deg(F �) + 1, if F = ¬F �,
max(deg(F1), deg(F2)) + 1, if F = F1 ◦ F2, ◦ ∈ {∧, ∨, →}.

.

�

2.1.2 Semantics

Definition 5. An intepretation I is a function whose domain is some subset PI of the
propositional constants and whose range is {0, 1}. �

Definition 6. Let I be an interpretation. Then, the valuation based on I, VI , is a
function that has as its domain the set of all formulas containing only propositional
constants from PI and as its range {0, 1}, and such the following conditions hold:

• VI(F) = I(F), if F ∈ PI ;

• VI(⊥) = 0;

• VI(�) = 1;

• VI(¬F) = 1 − VI(F);

• VI(F1 ∧ F2) = min(VI(F1), VI(F2));

• VI(F1 ∨ F2) = max(VI(F1), VI(F2));

• VI(F1 → F2) = 0 if VI(F1) = 1 and VI(F2) = 0, and VI(F1 → F2) = 1 otherwise.

�

If VI(F) = 1, then the interpretation I makes the formula F true (or F is true in I) and
is a model of F . Conversely, if VI(F) = 0, we say that I makes F false (or F is false in
I) and is a countermodel of F . A formula F is valid, symbolically |= F , if F is true in
every interpretation.

An interpretation is a model of a set Γ ⊆ F of formulas if it is a model of each element
of Γ, otherwise it is a countermodel.

Definition 7. A formula F is entailed by set Γ ⊆ F of formulas, symbolically Γ |= F , if
every model of Γ is also a model of F . �

4

2.2. Two Natural Deduction Systems

More generally, for a set Δ ⊆ F of formulas, Δ is entailed by Γ, symbolically Γ |= Δ, if
every model of Γ makes at least one formula of Δ true.

The inverse concept to entailment is refutation, which is central in the context of
complementary calculi.

Definition 8. A formula F is refuted by a set Γ ⊆ F of formulas, symbolically Γ |=

F ,
if there is an interpretation which is a model of every formula in Γ but a countermodel
of F . �

The more general form Γ |=Δ then means that there is an interpretation which is a
model of every formula in Γ and a countermodel of every formula in Δ. Clearly, Γ |= Δ
holds exactly when Γ |=Δ does not.

2.2 Two Natural Deduction Systems
2.2.1 Preliminaries
The purpose of natural deduction calculi, first introduced independently by Gerhard
Gentzen [12] and Stanislaw Jaśkowski [18] in 1934, is to formally recreate those patterns
of reasoning commonly employed by human mathematicians. Their most characteristic
feature is the ability to make an arbitrary assumption, perform a subdeduction in which
that assumption is treated like an already derived formula, and finally discharge the
assumption to gain new information that holds independently of it. This simple paradigm
allows for the straightforward recreation of techniques like proof by contradiction or
reasoning by cases.

The basic structure remains the same in both assertional and refutational natural
deduction systems. New formulas are introduced into a derivation either through the use
of inference rules or by making assumptions. An inference rule consists of zero or more
premisses and a single conclusion, the former being formulas that must already have been
derived to apply the rule and the latter being the formula obtained by doing so. In some
cases, side conditions may further restrict when it is possible to apply a rule. In natural
deduction, inference rules are commonly categorised as either introduction rules (whose
conclusion introduces a connective not present in the premisses) or elimination rules
(whose conclusion eliminates a connective present in the premisses), although certain
rules may also fall in neither category.

Assumptions are arbitrary formulas that can be introduced at will throughout a derivation,
and the most recently made assumption can be discharged at any point as well. The
portion of the derivation between introduction and dischargement of an assumption forms
a subdeduction in which the assumption is treated just like any other derived formula,
and the inside of the subdeduction is considered to be in the scope of that assumption.
Since it is always allowed to introduce an assumption, subdeductions can, of course, be
nested.

5

2. Background

A → B
u

A
w

B
→ E ¬B

v

⊥ ¬E

¬A
¬Iw

¬B → ¬A
→ Iv

(A → B) → (¬B → ¬A) → Iu

Gentzen (1935)

1. A → B

1.1. ¬B

1.1.1. A

1.1.1. B

1.1.1. ⊥
1.1. ¬A

1. ¬B → ¬A

(A → B) → (¬B → ¬A)

Jaśkowski (1934)

A → B

¬B

A

B

⊥
¬A

¬B → ¬A

(A → B) → (¬B → ¬A)
Jaśkowski (1929) [17]

Figure 2.1: Sample derivations in Gentzen- and Jaśkowski-style deduction.

While a formula F derived within the scope of an assumption A generally becomes
unavailable for use in the premisses of inference rules after A has been discharged, it is
possible for a rule to require F derived specifically in the scope of A, effectively making
the premiss a subdeduction beginning with A and ending on F (we thus also refer to
such premisses as subdeduction premisses). Through the use of rules with subdeduction
premisses, making assumptions allows us to derive new information that does not depend
on those assumptions.

To keep track of assumptions and their scopes, several different types of notations have
been used in the history of (assertional) natural deduction calculi. Figure 2.1 compares
those used in the foundational works of Gentzen and Jaśkowski on the example of a
derivation of (A → B) → (¬B → ¬A).

6

2.2. Two Natural Deduction Systems

1. A → B assumption
2. ¬B assumption
3. A assumption
4. B → E: 1, 3
5. ⊥ ¬E: 2, 4
6. ¬A ¬I: 2, 3–5
7. ¬B → ¬A → I: 2–6
8. (A → B) → (¬B → ¬A) → I: 1–7

Figure 2.2: Sample derivation in our notation.

Gentzen [12] depicted derivations as a tree-like structure having the final conclusion
at the root and assumptions at the leaves, with each assumption being labeled with a
letter on introduction that is also noted next to the rule that discharges it (by using
the subdeduction it started as its premiss). Jaśkowski [18] simply wrote the formulas
occuring in a derivation line by line and indicated assumption scopes, as well as the
nesting of subdeductions, with a number to the left of each formula. Also in Jaśkowski’s
work, we can find a variant of this notation he used previously in 1929, using simple
boxes drawn around groups of lines in the derivation to show the subdeductions. Similar
“boxed” notations later saw significant use by other authors [8, 9], and we too will be
using this type of notation for the assertional and refutational systems described in the
present chapter.

Our notation slightly extends Jaśkowski’s from 1929 through the addition of a column
to the left that simply tracks the line number, and a column to the right that shows by
what means each formula was derived and at which preceding lines the premisses can be
found. If a premiss is a subdeduction, its origin is written as i–j, where i and j are the
first and the final line of the subdeduction, respectively. As a result, the derivation of
(A → B) → (¬B → ¬A) now takes the form seen in Figure 2.2.

Inference rules will be specified in a similar way, for example the assertional introduction
rule for → is given as follows:

...
m A

...
n − 1 B

n A → B

→ I

Since the premiss is a subdeduction, it is shown in a box ranging from assumption A at

7

2. Background

line m to the formula B at line n − 1. Inbetween, and also before the premiss, the symbol
...

represents an arbitrary derivation of zero or more lines, subject to the condition that
no previously introduced assumptions are discharged within those lines. It is therefore
guaranteed that B is still in the scope of A, and in this case there can also be no
assumptions made after A still active, since we must discharge A after line n − 1 to apply
the rule. On the other hand, both subdeduction and conclusion may be nested within
any number of other assumptions, introduced (but not discharged) within the placeholder
before line m.

2.2.2 The Assertional Calculus N
In what follows, we will describe the inference rules that together form the assertional
natural deduction calculus denoted by N.
The simplest and most trivial rule is Triv, which lets us repeat a formula that has been
derived at a preceding line:

...
m F

...
n F

Triv

This rule is useful in order to increase the flexibility of other rules and reflects the human
process of recalling an assumption or an intermediate result, thus aiding a more natural
reasoning style.
Another common technique used by humans is a proof by contradiction, where an
assumption is made only to derive a contradiction within its scope and thereby showing
that the assumption must be false. In N, this type of reasoning is handled by the rule
CRF (“classical reductio ad falsum”) and by the rule ¬I, the introduction rule for the ¬
connective:

...
m ¬F

...
n − 1 ⊥

n F

CRF

...
m F

...
n − 1 ⊥

n ¬F

¬I

Contradictions are indicated by ⊥, as it is false in every interpretation and should not be
derivable unless our assumptions are flawed.
Introduction rules exist for all other connectives as well. In the case of ∧, we need both
of the subformulas occurring to the left and to the right of ∧ as premisses:

8

2.2. Two Natural Deduction Systems

...
m A

...
n − 1 B

n A ∧ B

∧ I1

...
m B

...
n − 1 A

n A ∧ B

∧ I2

For ∨, on the other hand, either subformula is sufficient by itself:

...
m A

...
n A ∨ B

∨ I1

...
m B

...
n A ∨ B

∨ I2

The → introduction rule is especially elegant and uses assumptions in perhaps the most
straightforward and intuitive manner:

...
m A

...
n − 1 B

n A → B

→ I

Even � possesses a dedicated introduction rule, but it requires no premisses since a
formula that is always true should be derivable no matter the context:

...
n �

�I

The other major category are elimination rules, which again exists for each connective.
The pair of ∧ elimination rules allows us to simply extract the subformula from either
side of ∧, since they must both be true:

...
m A ∧ B

...
n A

∧ E1

...
m A ∧ B

...
n B

∧ E2

While their introduction rules were quite similar, ∨ takes quite a different path from ∧
when it comes to elimination rules, implementing another common human proof approach

9

2. Background

by splitting the reasoning into two cases (i.e., subdeductions) that must both reach the
same conclusion:

...
k A ∨ B

k + 1 A
...

m F

m + 1 B
...

n − 1 F

n F

∨ E

The premiss at line k is referred to as the major premiss, and A∨ B as the major formula,
since it contains ∨, the characteristic connective of the rule. Correspondingly, the two
subdeductions are minor premisses and the two copies of F are minor formulas.
The connective → continues to receive very intuitive rules, in this case following the basic
reasoning technique of modus ponens to extract B from a major formula A → B via a
minor formula A:

...
m A → B

...
n − 1 A

n B

→ E

The contradictions we require in order to apply CRF and ¬I are most easily obtained
using the elimination rule for ¬, which takes a pair of contradictory formulas as its input
and concludes ⊥ from them:

...
k ¬F

...
m F

...
n ⊥

¬E

Another way to use ⊥, should it ever be encountered, is by using its own elimination rule
to derive an arbitrary formula, following the principle of ex falso quodlibet:

...
m ⊥

...
n F

⊥E

10

2.2. Two Natural Deduction Systems

Definition 9. A formula F is provable in N under assumptions Γ, symbolically Γ # F ,
if there exists a derivation using the rules in N whose final line contains F and is in the
scope of exactly all assumptions in Γ. �
Theorem 1. The calculus N is sound, i.e., if Γ # F , then Γ |= F .

Theorem 2. The calculus N is complete, i.e., if Γ |= F , then Γ # F .

Soundness and completeness proofs for assertional natural deduction systems can be
readily found in the literature, like, e.g., in the well-known textbook by Huth and
Ryan [16] (in fact, a proof for specifically the system N discussed here is detailed in the
bachelor’s thesis of the current author [21]).

2.2.3 The Refutational Calculus N
The refutational calculus N we introduce now is an adaption of a system discussed by
Allard M. Tamminga [39]. Its inference rules are quite similar to those found in N, but
before introducing them, we require some additional concepts regarding the assumption
scopes formulas can be in.

Definition 10. Let m and n (m ≤ n) be line numbers in a derivation used for N and
Fm the formula written on line m. We say that

(i) Fm is operative at line n if line m is within the scope of at least one assumption,
and line n is in the scope of all assumptions in whose scope line m is (i.e., lines m
and n share a box);

(ii) Fm is accessible at line n if neither line m nor line n are in the scope of any
assumptions; and

(iii) Fm is attainable at line n if it is operative or accessible at line n.

�

A universal side condition for all rules of N is that any premisses used must be attainable
at the line where the conclusion is written, with premisses of a subdeduction being treated
as belonging to the scope that contains them as a whole (since otherwise the additional
assumption would prevent their use entirely). Specifically, this means that, in contrast to
N, conclusions made without any assumptions cannot be used for inferences made after
introducing an assumption.
Being aware of this general restriction, we can now look at the rules themselves, beginning
with the Triv rule of N:

...
m F

...
n F

Triv

11

2. Background

Perhaps unsurprisingly, it does not differ at all from its assertional counterpart, as the
act of reusing already known information is independent of what we are ultimately trying
to prove.
On the other hand, a significant difference between N and N lies in the following two
rules exclusive to N, together known as the atomic rules:

...
n p

At
...

n ¬p
At

Both rules are subject to the side condition that p does not occur in any formula operative
at line n.
These rules allow us to freely introduce into the derivation any propositional constant p
or its negation ¬p, under the stipulation that p has not yet been used anywhere in the
operative formulas. This captures the simple fact that a lone propositional constant with
no other formula imposing restrictions on it can be assigned either truth value by an
interpretation, meaning both it and its negation always have countermodels and thus are
refutable. Interestingly, the side condition does not apply to accessible formulas, making
it possible to derive both p and ¬p side-by-side outside the scope of all assumptions,
but side conditions on other rules and the fact that these formulas cannot be used as
premisses once an assumption has been made averts contradictions from arising.
More familiar again are the rules which allow using proofs by contradiction in refutational
reasoning as well:

...
m ¬F

...
n − 1 �

n F

CRV

...
m F

...
n − 1 �

n ¬F

¬I

Where N indicated a contradiction with ⊥, the formula that can never be true, N uses
�, the formula that can never be false (and thus concluding its refutability points to a
problem in the assumptions). Accordingly, we now have a rule named CRV , for classical
reductio ad verum, paired with the ¬ introduction rule.
Continuing with the introduction rules, ∧ simply requires deriving the refutability of
either its immediate subformula, much like how ∨ works in the assertional case:

...
m A

...
n A ∧ B

∧ I1

...
m B

...
n A ∧ B

∧ I2

12

2.2. Two Natural Deduction Systems

Correspondingly, the introduction rules for ∨ do not exactly mirror the assertional ones
for ∧ but instead feature a subdeduction for the second premiss:

...
m A

m + 1 A
...

n − 1 B

n A ∨ B

∨ I1

...
m B

m + 1 B
...

n − 1 A

n A ∨ B

∨ I2

Not only must both A and B be derived, but one of the two must also be the conclusion
of a subdeduction having the other as its assumption. What may seem like a pointless
detour at first glance is actually necessary so that applications of ∨ introduction rules
outside the scope of all assumptions cannot be used to wrongfully establish the refutability
of formulas such as p ∨ ¬p.
For the → introduction rules, we make use of the equivalence between A → B and ¬A∨B
to reuse the structure from above:

...
m ¬A

m + 1 ¬A
...

n − 1 B

n A → B

→ I1

...
m B

m + 1 B
...

n − 1 ¬A

n A → B

→ I2

Finally, ⊥ takes the place of � as a formula that can unconditionally be introduced at
any point, being always false by definition:

...
n ⊥

⊥I

On the elimination rule side, we can observe another reversal of ∧ and ∨, with the former
now having the rule that implements case distinctions:

...
k A ∧ B

k + 1 A
...

m F

m + 1 B
...

n − 1 F

n F

∧ E

13

2. Background

On the other hand, eliminating a formula with ∨ gives us direct access to its subformulas,
and by the interpretation of → as a special case of ∨, we can use the same format of
elimination rules for it as well:

...
m A ∨ B

...
n A

∨ E1

...
m A ∨ B

...
n B

∨ E2

...
m A → B

...
n ¬A

→ E1

...
m A → B

...
n B

→ E2

Obtaining � is still mainly done through the elimination of contradictions, although
there is an added restriction in the form of the side condition that the formulas ¬F and
F in the rule below are operative at line n:

...
k ¬F

...
m F

...
n �

¬E

This specifically means that ¬E can never be used outside the scope of all assumptions,
where formulas would only be accessible, and so we avoid the derivation of incorrect
results from contradictions introduced using solely atomic rules with no assumptions.

Lastly, the � elimination rule lets us immediately declare any formula refutable in the
presence of a contradiction:

...
m �

...
n F

�E

Definition 11. A formula F is refutable in N under assumptions Γ, symbolically Γ $ F ,
if there exists a derivation using the rules in N whose final line contains F and is in the
scope of exactly all assumptions in Γ. �

The adequacy of derivations in N is not quite as direct a match between Γ $ F and
Γ |=F . Indeed, $ F holds exactly when |=F does, but a proof of this must also take
operative formulas other than assumptions into account.

14

2.2. Two Natural Deduction Systems

Definition 12. Let n refer to a line in a derivation in N. Then, Rn denotes the set of
formulas from lines m < n in the derivation that are operative at line n, plus the formula
at line n itself if it is an assumption. �

Theorem 3. The calculus N is sound, i.e., if Γn $ Fn and |=

Rn, then |=

Rn ∪ {Fn}.

In particular, since Γn = ∅ means that no formulas are operative at line n and therefore
Rn = ∅, it follows that, if $ Fn, then |=Fn.

Theorem 4. The calculus N is complete, i.e., if |=

Fn, then $ Fn.

Proofs of soundness and completeness for this complementary calculus can be found
both in the original work by Tamminga [39] as well as in more detail in the author’s
aforementioned thesis [21].

15

CHAPTER 3
Automated Theorem Proving

with Natural Deduction

Several automated theorem provers utilising forms of natural deduction have been
implemented and described in the literature in the past. In order to discuss the design of
the ATP introduced in this thesis, Hermes, we now investigate some of these systems,
with particular focus on how they keep track of assumptions and which strategies guide
their application of natural deduction rules. Given this focus, the systems of interest are
those that use both assumptions in the style of natural deduction and rules similar to
the ones found in the natural deduction calculi originating from Gentzen and Jaśkowski,
including:

• Pollock’s Oscar (1990) [28];

• Pelletier’s Thinker (1992) [26];

• Dafa’s ANDP (1992) [2];

• Sieg’s and Byrnes’s ic-calculi (1998) [36]; and

• Ferrari’s and Fiorentini’s proof search procedure for CPL (2015) [5] and IPL
(2019) [6].

Not all of the above systems have actually been implemented as working ATPs, and we
have omitted at least one major natural deduction ATP, Muscadet [23]. Both of these
facts are because we are ultimately searching for descriptions of strategies that can be
used in automated proof search with natural deduction, which are provided in detail by
the selected works, and that is not available for Muscadet in any documentation we were
able to locate.

17

3. Automated Theorem Proving with Natural Deduction

3.1 Existing ATPs
3.1.1 Oscar
John Pollock’s Oscar [28] is an automated theorem prover that implements human-like
reasoning patterns. A central concept of this system is interest-driven reasoning, which
means that inference rules are not used whenever they are applicable, but only if doing
so goes towards the current “interest” or goal of the reasoning. The rules used by the
system are standard introduction and elimination rules of natural deduction, but they
are used in different ways: introduction rules appear in backwards reasoning form and
are applied to derive the premisses from the conclusions, while elimination rules appear
in (random) forward reasoning form and are used to derive conclusions from premisses.

The system is capable of both linear and non-linear reasoning, the latter of which most
closely resembles natural deduction with the use of assumptions and will be the focus of
our investigation.

For purely linear reasoning without assumptions, the proof procedure in Oscar utilises
multiple data structures:

• Input: initially given formulas that are adopted as beliefs from the start;

• Ultimate: formulas to be ultimately proven;

• Adoption-Queue: holds formulas to be newly adopted as beliefs, where an
Adoption-Queue element of the form �F, Π� denotes that formula F should be
adopted on the basis of the formula set Π (i.e., there is a rule that allows deriving
F from Π);

• Adoptions: formulas that have been adopted as beliefs;

• Interest-Queue: holds new goals in which to adopt interest, where an Interest-
Queue element of the form �F, Π0, Π, G� denotes that F is of interest in order to
derive G from Π, with Π0 denoting the set of unadopted formulas in Π \ {F};

• Interests: formulas that have been adopted as interests;

• Forset: keeps track of why the program is interested in formulas that have been
adopted as interests, using Interest-Queueelements; and

• Basis: holds a record of the reasoning that is later used to produce a deductive
proof.

After being initialized with Input and Ultimate, the steps for linear reasoning are
simply

1. For each F ∈ Ultimate, add �F, ∅, ∅, ∅� to Interest-Queue.

18

3.1. Existing ATPs

2. For each F ∈ Input, add F to Adoptions.

3. Repeat until Interest-Queue and Adoption-Queue are both empty:

a) If Interest-Queue is not empty, process it.
b) If Interest-Queue is empty and Adoption-Queue is not,

process Adoption-Queue.

When processing Interest-Queue, its first element �F, Π0, Π, G� is considered. If
neither F nor F (for F = ¬F �, F is F �, otherwise ¬F) have been adopted as beliefs, this
element is moved to Forset and we adopt interest in F . If F ∈ Adoptions, we instead
adopt interest in the first unadopted H ∈ Π0, or, if there are none, insert �G, Π� into
Adoption-Queue.

When adopting interest in a formula F , we also search the backwards reasoning rules for
one that can derive F from some set of formulas Π. If such a rule and Π are found, we
either immediately insert �F, Π� into Adoption-Queue if Π ⊆ Adoptions (as we can
immediately apply the rule in that case), or otherwise insert �H, Π0 \ {H}, Π, F � into
Interest-Queue, where Π0 are the unadopted members of Π and H the first element
of Π0.

Adoption-Queue is processed by moving the first member �F, Π� to Basis and then
applying the following steps in order:

1. Insert F into Adoptions.

2. Delete F from Ultimate.

3. If Ultimate empty, terminate.

4. Discharge interest in F . This involves taking every �F, Θ0, Θ, G� in Forset and
removing it. We also check the unadopted members of Θ0, denoted Θ∗, and either
insert �H, Θ∗ \ {H}, Θ, G� into Interest-Queue for the first H ∈ Θ∗ or �G, Θ�
into Adoption-Queue if there is no such H.

5. Check if adopting F completes the premisses Θ for any forwards reasoning rule
with conclusion G, and if so, insert �G, Θ� into Adoption-Queue.

6. Cancel interest in F (see below for details on cancelling interest).

7. If F �∈ Ultimate, cancel interest in F .

Cancelling interest in a formula F is a slightly sophisticated procedure that recursively
cleans up the interest in F as well as any formulas we were only interested in as a way to
get to F :

1. Delete F from Interests and Ultimate.

19

3. Automated Theorem Proving with Natural Deduction

2. Delete any elements of Interest-Queue with F as their first or last member.

3. Delete any elements of Forset with F as their last member. If the first member G
of such a deleted element now occurs neither in Ultimate nor as the first member
of any remaining Forset elements, cancel interest in G.

A notable strategic choice seen in both the application of backwards reasoning rules and
the interest discharging procedure is that additional formulas needed to fulfill an interest
as recorded in Forset are inserted into Interest-Queue one at a time, rather than all
at once. This means that when one of these required formulas cannot be proven, the
program will not waste time adopting interest in the others and simply terminate with
undischarged interests once the queues are fully processed.

So far, we have described only linear reasoning, but the extension to non-linear reason-
ing is quite easy. The simplest form of this kind of reasoning supported by Oscar is
conditionalisation, which corresponds to the → I rule of our natural deduction system
N. This requires reasoning within the scope of certain (possibly nested) assumptions,
which is achieved by simply giving each assumption scope A its own copy of the various
data structures—for example, Adoptions A holds the formulas that have been adopted
within A (and surrounding assumptions). A new data structure is Suppose A, which
contains the assumed formulas of the scopes up to and including A—different from plain
natural deduction, Oscar also allows for multiple formulas to be assumed in one and the
same scope (which is equivalent to assuming the conjunction of all those formulas in N).
The outermost scope is also technically considered an assumption, called Beliefs, and
Suppose Beliefs is empty.

Assumptions are created with both formulas to assume and formulas we aim to derive
under those assumptions, and Ultimate, Interest-Queue, and Adoption-Queue
are set up accordingly. However, if the formulas to assume are Γ and there already is an
assumption scope A so that (Suppose A) = Γ, the data structures of that existing scope
are extended instead of introducing the assumptions again.

Using assumptions also changes the form of elements in Interest-Queue and Forset
to �F, α, Π0, Π, G, A�. Here, α is used to mark which entries come from linear reasoning
rules (α = con) and which from conditionalisation (α = condit) and A is the assumption
scope in which we want to derive G. Π now consists of elements �H, A∗�, with A∗

being the assumption scope where we need H. Π0 are those �H, A∗� ∈ Π so that
H �∈ Adoptions A∗, except for �G, A�.
Conditionalisation is applied to formulas of the form F1 → F2 and begins by creating an
assumption A∗ starting with F1 and aiming for F2. Then, �F2, condit, ∅, {F2, A∗}, (F1 →
F2), A� is added to Interest-Queue A∗ and processing continues in A∗.

With the addition of assumptions, discharging interest is extended in order to allow
discharging assumptions once they have served their purpose. Recall that discharging
interest in a formula F in the linear reasoning case meant also removing the elements

20

3.1. Existing ATPs

of Forset with F as their first member and either adopting interest in the first of
the remaining formulas needed to deduce the last member G or adopting G if no
such formulas are left. This procedure remains the same for non-linear reasoning, but
afterwards processing continues in the scope of the assumption matching whatever formula
we adopted or adopted interest in. In particular, this means that as soon as we adopt
the formula for which the assumption was originally made, the scope of that assumption
is exited.

Another type of non-linear reasoning the program is capable of is reductio ad absurdum,
or proof by contradiction. We create an assumption F and try to derive F within its
scope, which also allows concluding it outside. A more complete technique is finding a
contradiction not between the assumption F and F , but between an arbitrary formula
and its negation. The program also attempts to find these contradictions by automatically
adopting interest in the negation of anything it adopts while in the scope of an assumption
made for reductio ad absurdum. To avoid overly deep nesting of such assumptions,
reductio ad absurdum is only used as a last resort.

Finally, reasoning by cases is applied when a formula F1 ∨ F2 is adopted. First an
assumption is created with F1, then once a new formula is adopted there we create
another assumption with F2 (but importantly not as a nested assumption) and try to
derive the same formula there. This gives us a situation where we have already adopted
F1 ∨ F2 and the newly derived formula follows from F1 and F2 independently, so we can
adopt that formula in the outer scope in the same fashion as the ∨E rule of N.

The overall control structure is to linearly process the active assumption (denoted Home,
where initially Home = Beliefs) until one of the following conditions triggers a move
to another assumption:

• Both Interest-Queue Home and Adoption-Queue Home are empty, so there
is nothing left to do and we exit to the containing scope.

• Some F ∈ Ultimate Home is adopted, i.e., the assumption reaches the goal it
was made for and we can continue to derive something new outside its scope.

• A new assumption is created due to a non-linear reasoning rule, so we continue
processing in the scope of that assumption.

Oscar is written in Common LISP.

3.1.2 Thinker
Thinker [26] was developed by Francis Pelletier in the 1980s as a system to generate
and present derivations in Fitch-style natural deduction [8], specifically in a system
for first-order logic with identity due to Kalish and Montague [19] (as our aim is to
build a prover for propositional logic only, we will focus on the portions relevant to that
fragment). This system provides introduction and elimination rules for each connective,

21

3. Automated Theorem Proving with Natural Deduction

plus rules to handle quantifiers and identity, and as a natural deduction system, it allows
for the introduction and dischargement of assumptions in order to form subdeductions.

The way such subdeductions are presented is special: they always begin with a line of the
form “show F ”, where F is the formula the subdeduction is meant to derive. Only when
this has been successfully done and the subdeduction has been completed is F actually
treated as a formula that has been deduced (an antecedent formula). The first line after
the “show F” is usually an assumption, but only the following specific assumptions are
allowed depending on F :

• If F is of the form F1 → F2, the assumption can be F1.

• If F is of the form ¬F1, the assumption can be F1.

• The assumption can always be ¬F .

To make F available as an antecedent formula that other rules can use for further
deduction, we need to complete the subdeduction and cancel the “show” line. There are
several conditions under which this is possible, two of which are relevant to propositional
logic:

• for any F , “show F” can be cancelled if the subdeduction directly (and not within
a nested subdeduction) contains the formula F , or contains both F � and ¬F � for
some formula F � (i.e., a contradiction);

• “show F1 → F2” can be cancelled if the subdeduction directly contains F2.

Completing a subdeduction makes it so that the lines following “show F” are boxed
and no longer antecedent, while the “show” line itself is cancelled and F does become
antecedent.

The system is implemented using three main data structures:

(i) Proofmatrix holds the produced derivation, including information such as justifi-
cations for each step or indications of boxing and cancelling.

(ii) Goalstack is simply a stack of (sub)goals that are to be shown, with the topmost
element always being the one Thinker is currently working on.

(iii) Antelines holds the currently antecedent lines.

The general proof process consists of adding to Antelines using the available deduction
rules until one of the subdeduction completion conditions is satisfied, at which point
the top Goalstack entry is popped from there and added to Antelines, while all
Antelines entries made after that goal was added to Goalstack are removed due to

22

3.1. Existing ATPs

boxing. Proofmatrix is updated along the way and printed out as the result once
Goalstack is empty. Should Thinker reach a state where Goalstack is non-empty but
no more inference steps are available to try, it will ask the user to help (by entering a new
antecedent formula or requesting that a certain goal is shown), albeit in fully automated
form the proof search would simply fail at that point.
A derivation of a formula F in Thinker begins with the line “show F”, which means
the derivation as a whole technically works just like the subdeductions described above.
Upon introduction of a “show” line, it is first checked if any splitting strategies can be
applied in order to immediately set new subgoals: F1 ↔ F2 can be shown by proving
F1 → F2 and F2 → F1, and F1 ∧ F2 by proving F1 and F2. If a splitting rule applies, the
new subgoals are proven sequentially and then joined with the appropriate introduction
rule. Otherwise, an assumption of one of the three allowed types is introduced depending
on the structure of F .
Whenever a new formula is introduced into the derivation, be it by assumption, by
applying a rule, or by cancelling a “show”, the function Onestep is called with the
newly added formula to check if this formula can be used to prove the current goal in a
single inference step. For example, if the formula F3 is introduced while trying to prove
F1 → F2, Onestep would check Antelines for F3 → F2, since this formula together
with F3 would allow applying the → elimination rule to derive F2, which is one of the
completion conditions for this goal. A similar function Simpleproof instead checks for a
one-step inference of the given formula using the currently available information, but this
function is only called in certain special cases, e.g. “show F1 → F2”—if Simpleproof
succeeds for F2, we can complete this goal with the found one-step inference without
even needing to introduce an assumption.
If Onestep fails, the next strategy is a mostly blind forward search that searches
Antelines for formulas that make it possible to apply one of the many rules of inference.
However, to avoid introducing additional complexity, only “simplifying” rules (i.e.,
elimination rules) are considered. As a last-ditch effort in case even this search cannot
find any rules to apply, Thinker will attempt to show specific goals that would make
further inference steps possible. For example, if Antelines contains the negation of an
implication or disjunction, that implication or disjunction will be set as the new subgoal
in order to cause a contradiction, which in turn would allow completion of the enveloping
subdeduction.
While the most recent versions of Thinker (from the late 1980s) were written in C, its
original version was written in Spitbol, a language focused on string pattern matching.
Thus, formulas are stored as strings, with a dedicated function for splitting non-atomic
formulas into their subformulas and determining the main connective. One of the main
tasks in the proof process is searching Antelines for certain types of formulas, which is
done with the help of templates—generalised formula strings which are used to look up all
matching formulas in constant time. Looking up a specific formula in the string-indexed
table, Antelines will provide information on where in the derivation that formula occurs,
while looking up a template will provide a list of formulas matching it (which can then

23

3. Automated Theorem Proving with Natural Deduction

be looked up in a second step). This is achieved by simply generating various matching
templates for each new formula and storing the formula at those indices in the table.
In addition to the main Antelines table, the program maintains circular linked lists
comprised of formulas with the same main connective, which are used by the “blind”
search strategies.

3.1.3 ANDP
The Automated Natural Deduction Prover (ANDP) [2, 3] is an “automated Gentzen
system” created by Li Dafa and Jia Peifa. The derivations constructed by this program
consist of goals Γ # F , which are linked with proof rules to form a complete reasoning
sequence for the final conclusion. The brief description given by Dafa and Peifa mainly
covers the handling of quantifiers, but also includes certain strategic considerations that
apply to propositional logic. The reasoning given for these strategies mainly draws from
experimental evidence.

The order in which ANDP attempts to use inference rules is meant to achieve short
derivations. The first step is bottom-up reasoning from the conclusion, where the rule to
apply is simply chosen based on the form of the goal to prove:

• Γ # A ∨ B: The new goal (above the old one) is Γ # ¬A → B, via the implication
rule.

• Γ # A → B: The new goal is Γ, A # B, via the conditional rule (corresponding to
→ I of N).

• Γ # A ∧ B: The two new goals are Γ # A and Γ # B, via the conjunction rule
(corresponding to ∧I of N).

• Γ # A ↔ B: The new goal is Γ # (A → B) ∧ (B → A), via the equivalence rule.

• Γ # ¬A: Attempt to push ¬ into A if possible, and make that the new goal.

Should this proof approach not succeed, the second step is to reason from top to bottom.
Here, the available inference rules are tried in a fixed order, although different descriptions
of the system disagree on the exact order, perhaps due to changes during development.
What all sources agree on is that propositional rules such as modus ponens (the N rule
→ E) or modus tollens are applied before quantifier rules, with the exception of case
distinctions, which are tried last. Each time a rule succeeds and produces a new goal,
the list of rules is again traversed from the start for that new goal.

The case-distinction rule, denoted by Cases, turns the disjuncts of a formula A ∨ B into
new hypotheses (i.e., assumptions), much like ∨E in N. This is done only as a last resort
to avoid lengthening the derivation with too many unneeded formulas produced from
these new assumptions, and even when Cases is applied, the disjunctions to which it is
applied are strategically prioritised:

24

3.1. Existing ATPs

1. Apply Cases to initial assumptions (provided with the user’s query).

2. Apply Cases to disjunctions from which it will not produce new constants.

3. Apply Cases to short formulas.

3.1.4 The ic-calculus Approach
Wilfried Sieg and John Byrnes [36] described a framework that allows searching for
normal natural deduction derivations, in which the conclusions of introduction rules are
never used as the major premisses of elimination rules (for a more detailed treatment
of this concept, see also Chapter 4). Their approach is based on intercalation calculi
(ic-calculi), which use the rules of natural deduction in certain restricted ways. While
their paper does not mention any actual implementation of automated proof search, the
design of the ic-calculi includes many strategies that would be useful for such a program.

An ic-calculus is defined by ic-rules, which operate on triples of the form α; β?G (ques-
tions), where α denotes the set of available assumptions, β is the set of formulas obtained
from α via the elimination rules for ∧ and →, and G is the goal currently being worked
towards. Since both α and β contain formulas available for use in further reasoning,
their concatenation is also often relevant and denoted as αβ. The separation is due to
negation rules and certain rules for predicate logic requiring premisses in α only.

Some strategies of the system can be encoded directly within the rules, as side conditions
restricting their application. Three examples of rules with such conditions are given in
the paper, although it is implied there could be more:

(i) α; β?G, φ1 ∧ φ2 ∈ αβ, φi �∈ αβ ⇒ α; β, φi?G (for i ∈ {1, 2}) (corresponds to ∧E1,
∧E2 of N);

(ii) α; β?G, φ1 ∨ φ2 ∈ αβ, φ1 �∈ αβ, φ2 �∈ αβ ⇒ α ∪ {φ1}; β?G and α ∪ {φ2}; β?G
(corresponds to ∨E of N);

(iii) α; β?G, φ1 → φ2 ∈ αβ, φ2 �∈ αβ, φ1 �= G ⇒ α; β?φ1 and α; β ∪ {φ2}?G (corresponds
to → E of N).

In all these cases, the side conditions simply prevent applying the rule in situations where
it would produce no new information. For the same purpose of avoiding repetition, the
two rules that model proof by contradiction (in N terms, ¬I and CRF) can never both
be applied to the same formula, as the ¬I equivalent is only usable with non-negated
formulas.

Applying ic-rules to an initial question α?G (with empty β omitted) yields an ic-tree
whose branches represent subquestions for α?G. The rules only allow for finitely many
subquestions to be formulated, and by evaluating the subquestions it is possible to find
either a normal derivation leading from α to G or a counterexample to the existence of
such a derivation.

25

3. Automated Theorem Proving with Natural Deduction

[A, Γ # A ↓] Id [Γ # A ↓]
[Γ # A ⇑] ↓⇑ [¬A, Γ # ⊥ ↓]

[Γ # A ⇑] ⊥EC

[Γ # A ⇑] [Γ # B ⇑]
[Γ # A ∧ B ⇑] ∧I

[Γ # A0 ∧ A1 ↓]
[Γ # Ak ↓] ∧Ek k ∈ {0, 1}

[Γ # Ak ⇑]
[Γ # A0 ∨ A1 ⇑] ∨Ik k ∈ {0, 1}

[Γ # A ∨ B ↓] [A, Γ # C ⇑] [B, Γ # C ⇑]
[Γ # C ⇑] ∨E

[A, Γ # B ⇑]
[Γ # A → B ⇑] → I

[Γ # A → B ↓] [Γ # A ⇑]
[Γ # B ↓] → E

Figure 3.1: The calculus Nc.

An ic-tree consists of two types of nodes: Question nodes and rule nodes, with the root
being the initial question node α?G. When processing a question node, it is first checked
if G ∈ αβ, and if so, the current branch is closed with the label “Y”. Otherwise, we add,
as children of the question node, rule nodes for each rule that can be applied to the
question without causing repetition, and the children of each rule node are the question
nodes resulting from that rule. If a question node has no applicable rules, the branch is
instead closed with the label “N”. Each new question node is processed in this way until
all branches are closed.

3.1.5 Ncr and Nbu
Mauro Ferrari and Camillo Fiorentini developed a natural deduction proof search pro-
cedure for classical propositional logic using a calculus Ncr [5]. They further refined
this approach with the calculus Nbu and evaluated an actual implementation in their
more recent work regarding intuitionistic propositional logic (IPL) [6], but we will first
consider Ncr alone and then briefly summarise relevant improvments from Nbu.

The procedure follows the same basic principle as ic-calculi, applying bottom-up reasoning
to conclusions and top-down reasoning to assumptions separately in order to build up
partial derivations that can then be joined together to make a normal natural deduction
derivation. This strategy is encoded in the calculus Nc, which operates on sequents of
the form Γ # F ⇑ or Γ # F ↓, with the arrow labels denoting them as part of bottom-up
and top-down reasoning, respectively. The rules of Nc are listed in Figure 3.1.

26

3.1. Existing ATPs

[Γ; H # H ↓; Δ;] Id [ΓH ; H # p ↓; p, Δ; Θ]
[H, Γ # p ⇑; Δ] ↓⇑ [ΓH ; H # ⊥ ↓; F, Δ; Θ]

[H, Γ # F ⇑; Δ] ⊥EI

[ΓH ; H # p ↓; F, p, Δ; Θ]
[H, Γ # F ⇑; p, Δ]

Rp
[Γ # D ⇑; F, ΔD]
[Γ # F ⇑; D, Δ] Rc D �∈ Fp

[Γ # A ⇑; Δ] [Γ # B ⇑; Δ]
[Γ # A ∧ B ⇑; Δ] ∧I

[Γ; H # A0 ∧ A1 ↓; Δ; Θ]
[Γ; H # Ak ↓; Δ; A1−k, Θ] ∧Ek k ∈ {0, 1}

[Γ # A ⇑; B, Δ]
[Γ # A ∨ B ⇑; Δ] ∨I

[ΓH ; H # A ∨ B ↓; F, Δ; Θ] [A, ΓH , Θ # F ⇑; Δ] [B, ΓH , Θ # F ⇑; Δ]
[H, Γ # F ⇑; Δ] ∨E

[A, Γ # B ⇑; Δ]
[Γ # A → B ⇑; Δ] → I

[Γ; H # A → B ↓; Δ; Θ] [Γ, Θ # A ⇑; Δ]
[Γ; H # B ↓; Δ; Θ] → E

p ∈ V, F ∈ Fp, ΛA = Λ \ A

Figure 3.2: The calculus Ncr.

Of special note are the coercion rule ↓⇑, the contradiction rule ⊥EC , the case distinction
rule ∨E, and the implication elimination rule → E. These rules mix the two directions
of reasoning, with ↓⇑ and ⊥EC serving as the primary ways to join partial derivations.
The rule ∨E can be used similarly but requires supplemental bottom-up premisses, and
→ E instead introduces some unfortunate additional complexity in top-down reasoning
by allowing it to cross back into the bottom-up direction. This is because even in a
normal derivation, the minor premiss of an elimination rule can still be derived by an
introduction rule, thus potentially requiring bottom-up reasoning.

This calculus is not well-suited for efficient proof search, as it can fall victim to loops
caused by repetition of assumptions and contains many backtrack points. An approach to
solve this involves tracking additional information in each sequent, replacing ⊥EC with
its intuitionistic counterpart ⊥EI , and introducing restart rules Rp and Rc to resume
a previously “paused” proof search on a stored formula. The result is the considerably
more complex calculus Ncr (“Nc with restart”), whose rules are listed in Figure 3.2.

Top-down sequents experience the most changes, now having a head formula H set apart
from the rest of their assumptions and tracking both a restart set Δ and a resource set
Θ. H is determined by the assumption from which the top-down derivation starts via

27

3. Automated Theorem Proving with Natural Deduction

[A, Γ ⇒ A ↓] Id [Γ ⇒ p ↓]
[Γ ⇒ p ↑l]

↓↑ p ∈ V [Γ ⇒ ⊥ ↓]
[Γ ⇒ F ↑l] ⊥E F ∈ V ∪ {⊥}

[Γ ⇒ A ↑l] [Γ ⇒ B ↑l]
[Γ ⇒ A ∧ B ↑l]

∧I
[Γ ⇒ A0 ∧ A1 ↓]

[Γ ⇒ Ak ↓] ∧Ek k ∈ {0, 1}

[Γ ⇒ Ak ↑b]
[Γ ⇒ A0 ∨ A1 ↑l]

∨Ik k ∈ {0, 1} [Γ ⇒ A → B ↓] [Γ ⇒ A ↑b]
[Γ ⇒ B ↓] → E

[Γ ⇒ A ∨ B ↓] [A, Γ ⇒ D ↑u] [B, Γ ⇒ D ↑u]
[Γ ⇒ D ↑u] ∨E

D ∈ V ∪ {⊥} or D = D0 ∨ D1
A �∈ Γ and B �∈ Γ

[Γ ⇒ B ↑l]
[Γ ⇒ A → B ↑l]

→ I1 A ∈ Γ
[A, Γ ⇒ B ↑u]

[Γ ⇒ A → B ↑l]
→ I2 A �∈ Γ

Figure 3.3: The calculus Nbu.

the Id rule and is intentionally made unavailable in certain areas of the derivation, Δ
is used by ⊥EI and the restart rules to pause and resume goals, and Θ stores unused
conjunction branches discarded by a ∧E rule that are made available as assumptions in
bottom-up premisses of top-down rules. The controlled use of resources facilitated by the
head formula and the resource set follows the LL-computation paradigm [11]. Bottom-up
sequents, however, are only extended with the restart set Δ. These adaptations prevent
infinite loops.

Ncr is accompanied by a complementary calculus RNcr, which constructs derivations
starting from irreducible sequents—precisely those to which no Ncr rules are applicable.
This makes it possible to use a failing Ncr branch and turn it into a proof of refutability
for the formula it was trying to prove, thus eliminating the need to backtrack from failing
branches.

The calculus Nbu for intuitionistic propositional logic (see Figure 3.3) shares these
properties, but is overall simpler due to not requiring restart rules or supplementary
formula sets. Instead, its sequents feature labels b (blocked) and u (unblocked) which
restrict the use of ∨E, and both ∨E and → I (here split into → I1 and → I2) avoid
loops via straightforward side conditions preventing repetition of assumptions.

Evaluation of a Nbu implementation using the Java framework JTabWb [7] showed
performance similar to state-of-the-art IPL provers, though not outperforming them.

28

3.2. Strategies

3.2 Strategies
Towards the description of strategies relevant for the ATP presented in this thesis, Hermes,
we now consider which strategies are commonly used by the investigated systems, and
which of them can also be applied to a refutational natural deduction system.

3.2.1 Strategies for Assertional Provers
The most significant overlap appears to be in the fact that the different proof search
procedures all combine bottom-up and top-down reasoning in some way, usually using
introduction rules for the former and elimination rules for the latter. In fact, this
separation is central to the ic-calculi as well as to Ncr and Nbu, but even the older
systems Oscar and ANDP make use of reasoning in both directions. And while Thinker
builds its derivations entirely from top to bottom, the blind forward search procedure
used, after more sophisticated strategies have failed, is intentionally limited to only
using “simplifying” elimination rules, highlighting the fact that introduction rules are
less suitable for top-down reasoning.

Given a distinction between elimination and introduction rules, it also appears reasonable
to follow ic-calculi as well as Ncr and Nbu in their limitation to only producing normal
derivations, since this does not restrict completeness in any way and reduces the complexity
of proof search significantly by restricting the points where top-down and bottom-up
derivations can join together. However, extending this idea to the refutational system
will require us to establish that all N derivations can be reduced to normal derivations,
since, unlike for N, no such result exists yet in the literature.

While some systems do not make any mention of a specific order in which inference
rules should be applied, suggesting it may not be a major factor for the ability of a
natural deduction ATP to generate derivations in a timely fashion, there are still a
few observations to be made in this regard. In Thinker, when a new goal is introduced,
the program immediately attempts to split it into smaller subgoals, which intuitively
makes sense because it is often easier to perform two simple derivations instead of one
complex one. Once that is no longer possible, rules are applied based on their ability
to reach the goal immediately, and beyond that the search becomes random. In ANDP,
there is a fixed order in which rules are applied, with the major point of note that case
distinctions are saved for last because of the additional complexity they may introduce.
However, that may be related to the particular implementation of that system, since
Oscar, ic-calculi, Ncr, and Nbu all contain case distinction rules without explicitly taking
such precautions (although ic-calculi and Nbu instead feature a restriction where case
distinctions cannot introduce duplicate assumptions).

3.2.2 Considerations for the Refutational Case
The complementary natural deduction calculus N consists of rules that structurally
resemble those of assertional natural deduction systems. We therefore expect the strategies

29

3. Automated Theorem Proving with Natural Deduction

seen in the investigated provers to be applicable to this calculus as well, perhaps with
some adjustments.

One thing that can be translated very straightforwardly is reasoning by cases, as it
essentially implements the ∨E rule of N. The ∧E rule of N follows the exact same
scheme, so we simply have to switch the connective for which this type of reasoning is
applied. The same can be done with the matching introduction rules, although they
are not a significant factor in any strategies. On the other hand, the natural deduction
rule ∧I is relevant to the splitting rules of Thinker, but can at first glance not simply
be replaced by the two ∨ introduction rules found in N, since they each require a
subdeduction. However, this difference is only actually relevant when trying to apply
the rule outside the scope of all assumptions, because having derived both A and B
under the same assumptions, the Triv rule can always be used to pull one of them into a
nested subdeduction and so complete the required premisses. Even outside the scope
of all assumptions, this will usually be possible, unless we specifically have one disjunct
as a propositional constant (or its negation) derived by an atomic rule and the other
disjunct as a formula containing the same propositional constant, such as in the example
of p ∨ ¬p.

Perhaps the most significant difference between the rules of N and N is the handling of
→. Several of the investigated provers used conditionalisation as a major part of their
strategy, but this is not possible in the complementary system, where → introduction is
instead done in the same way as ∨ introduction.

On the other hand, the rules concerning ¬ only differ in terms of using � or ⊥, which are
not even present in any of the programs we looked at (they simply use the contradiction
itself in place of the symbol). Thus, it is safe to say that the use of these rules will not
significantly change in the refutational case.

Finally, unique to N are the two atomic rules that allow freely to introduce a fresh
propositional constant or its negation at any point. In top-down reasoning, these should
be avoided at all costs, as they can produce an arbitrary number of formulas from
absolutely no preconditions, but in bottom-up reasoning they can immediately provide us
with certain required premisses. However, this scheme must be used with caution—the
introduced propositional constants are not allowed to occur in any of the operative
lines before the line where the rule is applied, so when reasoning backwards from the
conclusion we risk locking ourselves out of formulas that would be necessary higher up in
the derivation.

30

CHAPTER 4
Normal Derivations in N and N

One way we can significantly restrict the search space of a natural deduction system is by
limiting ourselves to normal derivations, which obey the simple restriction that a formula
derived by an introduction rule cannot be used as the major premiss of an elimination
rule. The idea is that inferences of this form would always be redundant, since they can
only produce information that must already have been present to apply the introduction
rule in the first place.

As shown by Dag Prawitz [29], any derivation in an assertional natural deduction system
for first-order logic that is restricted by omitting the ∨ connective and the ∃ quantifier
can be converted to a normal derivation. Similar proofs for unrestricted systems were
later provided by Richard Statman [38] and Gunnar Stålmarck [37].

In what follows, we will adopt the proof method employed by Stålmarck to show that
derivations in N and a slightly modified variant of N are reducible to normal derivations,
meaning a restriction to only such derivations preserves completeness.

4.1 Proof Approach
First, we should more formally define the concept of a normal derivation for our purposes.

Definition 13. A maximum formula in a derivation in N or N is a formula that occurs
as both the conclusion of an introduction rule and the major premiss of an elimination
rule. �

Definition 14. A derivation in N or N is considered normal if it contains no maximum
formula. �

The basic idea of Stålmarck’s proof lies in reducing a given derivation to a normal
derivation through repeated applications of contractions, i.e., the elimination of repeated

31

4. Normal Derivations in N and N

formulas. If each of these contractions is guaranteed to measurably reduce the number
or degree of maximum formulas in the derivation, and any non-normal derivation has
some applicable contraction, then it must be possible to reduce any derivation to one
with zero maximum formulas. Formally, we assign each derivation δ a lexicographically
ordered tuple �nδ, mδ�, where nδ is the smallest natural number so that no maximum
formula in δ has a degree greater than nδ, and mδ is the number of maximum formulas
with degree nδ in the derivation. This tuple should become strictly smaller whenever we
use a contraction to remove a maximum formula from δ.

More precisely, this approach proves the so-called (weak) normalisation theorem, which
states that, for any given derivation, there is some sequence of reduction steps that ends
in a normal derivation. The strong normalisation theorem further asserts that every
sequence of reduction steps terminates in a normal derivation and has also been proven
for natural deduction, but since we merely need the guarantee that normal derivations can
represent all possible derivations, we will stick to the simpler proof of weak normalisation.

Further important notions are simplified derivations and direct derivations.

Definition 15. A derivation in N is simplified if each application of ∨E has the conclusion
⊥. Furthermore, a derivation in N is simplified if each application of ∧E has the conclu-
sion �. �

Definition 16. A derivation in N is direct if the premiss of each application of Triv is
an assumption. Furthermore, a derivation in N is direct if the premiss of each application
of Triv is either an assumption or the conclusion of an At or ¬At application. �

All contractions will be applied to simplified, direct derviations and preserve these
properties, which helps avoid major difficulties with case distinctions and the repetition
of formulas.

4.2 The Assertional Case
Recall that the introduction rules of N are

CRF , ∧I1, ∧I2, ∨I1, ∨I2, → I, and ¬I,

while the elimination rules are

∧E1, ∧E2, ∨E, ∧E, → E, and ¬E.

Note that CRV , despite not explicitly being an introduction rule by name, must also
be treated as one due to its ability to “hide” introduction rules within its subdeduction,
enabling clearly non-normal derivations such as the following:

32

4.2. The Assertional Case

...
i A given

...
j B given

j + 1 ¬(A ∧ B) assumption
j + 2 B Triv
j + 3 A ∧ B ∧I1: i, j + 2
j + 4 ⊥ ¬E: j + 1, j + 3
j + 5 A ∧ B CRF : j + 1–j + 4
j + 6 A ∧E1: j + 5

Theorem 5. Any derivation in N establishing Γ # F can be transformed to a normal
derivation in N with the same assumptions and conclusion.

For showing this theorem, as stated before, we will be working with simplified and direct
derivations. So, first we need to adapt a given derivation so that it fulfills these properties.
This can be achieved by means of contractions as discussed below.

• Consider the following derivation:

...
i A ∨ B given

i + 1 A assumption
...

j C given
j + 1 B assumption

...
k C given

k + 1 C ∨E: i, i + 1–j, j + 1–k

If C �= ⊥, replace the above derivation with the derivation depicted in Figure 4.1.

• If F at line i is not an assumption, replace

...
i F given

...
j F Triv: i

with
...

i F given
.

While this contraction at first glance appears to be merely deleting the lines after
i, note that the resulting derivation has to end on the same assumptions as the
original one. Therefore, any assumptions made after the original line i must be
moved before the new line i.

33

4. Normal Derivations in N and N

...
i ¬C assumption

...
j A ∨ B given

j + 1 A assumption
...

k C given
k + 1 ⊥ ¬E: i,k
k + 2 B assumption

...
l C given

l + 1 ⊥ ¬E: i, l
l + 2 ⊥ ∨E: j, j + 1–k + 2, k + 2–l + 1
l + 3 C CRF : i, l + 2

.

Figure 4.1: Derivation replacement for ∨E and C �= ⊥.

Lemma 1. Any derivation in N can be reduced to a derivation that is both simplified
and direct.

Proof. If the derivation is not simplified, it contains n1 > 0 applications of ∨E that have
a conclusion other than ⊥. Applying the first contraction listed above to remove such a
line instead introduces a ∨E application with conclusion ⊥, and only n1 − 1 applications
of ∨E with other conclusions (namely those that were not removed in this step) remain.
Therefore, we will have a simplified derivation after n1 applications of the contraction.

If the derivation is not direct, it contains n2 > 0 applications of Triv whose premiss is
not an assumption. Applying the second contraction listed above introduces no new lines
to the derivation, so the number of such Triv applications must now be n2 − 1, and n2
applications of the contraction yield a direct derivation.

The contraction to remove ∨E introduces no new instances of Triv with a non-assumption
premiss, and the contraction to remove Triv introduces no new instances of ∨E, which
means exhaustively applying both contractions in any order will ultimately yield a
simplified, direct derivation.

Next, we must define contractions for each case in which a maximum formula can occur,
so that applying any contraction to an appropriate maximum formula in the derivation δ
results in δ� with �nδ� , mδ�� < �nδ, mδ�. The simplest cases are those where a maximum
formula is introduced by an introduction rule and used as the major premiss for exactly
the corresponding elimination rule:

34

4.2. The Assertional Case

• Replace a derivation of the form

...
i A given

...
j B given

j + 1 A ∧ B ∧I1: i, j
j + 2 A ∧E1: i

with

...
i A given

Obviously, contractions of the same form can be used if we have ∧I2 instead of ∧I1
and/or ∧E2 instead of ∧E1. Just like with the Triv contraction above, assumptions
originally introduced between lines i and j must be moved so that the new derivation
still ends on all the right assumptions.

• Replace a derivation of the form

...
i A given

i + 1 A ∨ B ∨I1: i
i + 2 A assumption

...
j ⊥ given

j + 1 B assumption
...

k ⊥ given
k + 1 ⊥ ∨E: i + 1, i + 2–j, j + 1–k

with

...
i A given

...
j ⊥ given

.

For the case where ∧I2 is used to deduce the maximum formula, simply switch A
for B instead.

35

4. Normal Derivations in N and N

• Replace a derivation of the form

...
i A assumption

...
j B given

j + 1 A → B → I: i–j
...

k A given
k + 1 B → E: j + 1, k

with

...
i A given

...
j B given

• Replace a derivation of the form

...
i A assumption

...
j ⊥ given

j + 1 ¬A ¬I: i–j
...

k A given
k + 1 ⊥ ¬E: j + 1, k

with

...
i A given

...
j ⊥ given

In each of the previous contractions, it is immediately obvious that they outright remove
a maximum formula, as all lines of the resulting derivation already occur in the original
derivation and the line with the maximum formula is not among them. Thus, we have

36

4.2. The Assertional Case

either nδ� < nδ (in case it was the last maximum formula of degree nδ) or nδ� = nδ and
mδ� < mδ—either way, it holds that �nδ� , mδ�� < �nδ, mδ� by lexicographical ordering.
Things become a bit less simple once we also look at the contractions meant to remove
maximum formulas derived by CRF .

• Replace a derivation of the form

...
i ¬(A ∧ B) assumption

...
j ⊥ given

j + 1 A ∧ B CRF : i–j
j + 2 A ∧E1: j + 1

with
...

i ¬A assumption
i + 1 A ∧ B assumption
i + 2 A ∧E1: i + 1
i + 3 ⊥ ¬E: i, i + 2
i + 4 ¬(A ∧ B) ¬I: i + 1–i + 3

...
j ⊥ given

j + 1 A CRF : i–j

Once again, the case for ∧E2 merely uses B in place of A.

• Replace a derivation of the form

...
i ¬(A ∨ B) assumption

...
j ⊥ given

j + 1 A ∨ B CRF : i–j
j + 2 A assumption

...
k ⊥ given

k + 1 B assumption
...

l ⊥ given
l + 1 ⊥ ∨E: j + 1, j + 2–k, k + 1–l

37

4. Normal Derivations in N and N

with

...
i A ∨ B assumption

i + 1 A assumption
...

j ⊥ given
j + 1 B assumption

...
k ⊥ given

k + 1 ⊥ ∨E: i, i + 1–j, j + 1–k
k + 2 ¬(A ∨ B) ¬I: i–k + 1

...
l ⊥ given

• Replace a derivation of the form

...
i ¬(A → B) assumption

...
j ⊥ given

j + 1 A → B CRF : i–j
...

k A given
k + 1 B → E : j + 1, k

with

...
i ¬B assumption

i + 1 A → B assumption
...

j A given
j + 1 B → E: i + 1, j
j + 2 ⊥ ¬E: i, j + 1
j + 3 ¬(A → B) ¬I: i + 1–j + 2

...
k ⊥ given

k + 1 B CRF : i–k

38

4.2. The Assertional Case

• Replace a derivation of the form
...

i ¬¬A assumption
...

j ⊥ given
j + 1 ¬A CRF : i–j

...
k A given

k + 1 ⊥ ¬E : j + 1, k

with ...
i ¬A assumption

...
j A given

j + 1 ⊥ ¬E: i, j
i + 2 ¬¬A ¬I: i–j + 1

...
k ⊥ given

The common problem these contractions run into is that, while the maximum formula
under consideration is indeed removed, we also introduce a new instance of the introduc-
tion rule ¬I. If the conclusion of this rule is then used as the major premiss of a ¬E
application, that would make it a new maximum formula in δ� that was not present in δ.
Worse yet, due to the added ¬ connective, this new formula has a higher degree than the
one we removed, so we would actually end up with �nδ� , mδ�� > �nδ, mδ�—the opposite
of our aim.
Therefore, in addition to the proper contractions that simply remove maximum formulas,
we require an additional group of assumption contractions to preemptively clean up
derivations that would lead to the described scenario:

• Replace a derivation of the form
...

i ¬(A ∧ B) assumption
...

j A ∧ B given
j + 1 ⊥ ¬E: i, j

...
...

k ⊥ given
k + 1 A ∧ B CRF : i–k
k + 2 A ∧E1: k + 1

39

4. Normal Derivations in N and N

with

...
i ¬A assumption

i + 1 ¬(A ∧ B) assumption
...

j A ∧ B given
j + 1 A ∧E1: j
j + 2 ⊥ ¬E: i, j + 1

...
...

k ⊥ given
k + 1 A ∧ B CRF : i + 1–k
k + 2 A ∧E1: k + 1
k + 3 ⊥ ¬E: i, k + 2
k + 4 A CRF : i–k + 3

.

Here, the symbol
...
...

is used to indicate an arbitrary sequence of derivation steps in which one may dis-
charge previously introduced assumptions, in particular any assumptions introduced
within the lines i + 2 to j − 1.

To see the necessity of this, consider a derivation establishing {B, ¬A → ⊥} # A:

1. ¬A → ⊥ assumption
2. B assumption
3. ¬(A ∧ B) assumption
4. A assumption
5. A ∧ B ∧I2: 2, 4
6. ⊥ ¬E: 3, 5
7. ¬A ¬I: 4–6
8. ⊥ → E: 1, 7
9. A ∧ B CRF : 3–8
10. A ∧E1: 9

Since the assumption ¬(A ∧ B) would be replaced by the conclusion of an ¬I
application when using the proper contraction, and thus become a new maximum
formula, derivations of this form must be adapted as well.

• Replace a derivation of the form

40

4.2. The Assertional Case

...
i ¬(A ∨ B) assumption

...
j A ∨ B given

j + 1 ⊥ ¬E: i, j
...
...

k ⊥ given
k + 1 A ∨ B CRF : i–k
k + 2 A assumption

...
l ⊥ given

l + 1 B assumption
...

m ⊥ given
m + 1 ⊥ ∨E: k + 1, k + 2–l, l + 1–m

with
...

i ¬(A ∨ B) assumption
...

j A ∨ B given
j + 1 A assumption

...
k ⊥ given

k + 1 B assumption
...

l ⊥ given
l + 1 ⊥ ∨E: j, j + 1–k, k + 1–l

...
...

m ⊥ given
m + 1 A ∨ B CRF : i–m
m + 2 A assumption

...
n ⊥ given

n + 1 B assumption
...

o ⊥ given
o + 1 ⊥ ∨E: m + 1, m + 2–n, n + 1–o

41

4. Normal Derivations in N and N

• Replace a derivation of the form
...

i ¬¬A assumption
...

j ¬A given
j + 1 ⊥ ¬E: i, j

...
...

k ⊥ given
k + 1 ¬A CRF : i + 1–k

...
l A given

l + 1 ⊥ ¬E: k + 1, l

with
...

i ¬¬A assumption
...

j ¬A given
...

k A given
k + 1 ⊥ ¬E: j, k

...
...

l ⊥ given
l + 1 ¬A CRF : i–l

...
m A given

m + 1 ⊥ ¬E: l + 1, m

• Replace a derivation of the form
...

i ¬(A → B) assumption
...

j A → B given
j + 1 ⊥ ¬E: i, j

...
...

k ⊥ given
k + 1 A → B CRF : i–k

...
l A given

l + 1 B → E: k + 1, l

42

4.2. The Assertional Case

with
...

i ¬B assumption
i + 1 ¬(A → B) assumption

...
j A → B given

...
k A given

k + 1 B → E: j, k
k + 2 ⊥ ¬E: i, k + 1

...
...

l ⊥ given
l + 1 A → B CRF : i + 1–l

...
m A given

m + 1 B → E: l + 1, m
m + 2 ⊥ ¬E: i, m + 1
m + 3 B CRF : i–m + 2

These contractions do not immediately reduce the number of maximum formulas in the
derivation, and may in fact increase it via the additional elimination rule application
in the subdeduction. However, they cannot themselves introduce a maximum formula
with higher degree and let us avoid the cases where subsequent contractions would do so,
which is still a meaningful progress towards normalisation.

Having defined all the contractions, we can see immediately that applying them to a
simplified derivation will indeed always produce a simplified derivation, because none of
them introduce any lines in which ∨E is used to conclude a formula other than ⊥. Also,
applying them to a direct derivation will always produce a direct derivation because they
introduce no applications of Triv whose premiss is not an assumption.

What remains to be shown is that these contractions are sufficient to transform any
simplified and direct derivation into a normal derivation, which we will do in two steps.

Lemma 2. If δ is a simplified and direct derivation in N establishing Γ # F , there exists
a simplified and direct N derivation δ� with the same assumptions and conclusion in
which no assumption contractions are applicable to maximum formulas of degree nδ� , and
nδ� = nδ.

Proof. For an assumption contraction to be applicable to a maximum formula F , it must
be concluded by CRF , and the associated subdeduction with assumption ¬F must contain
an application of ¬E having that assumption as its major premiss. Each contraction
does remove such a ¬E application, but we cannot immediately say that this always

43

4. Normal Derivations in N and N

reduces the number of formulas in the derivation to which assumption contractions can be
applied, because the additional copy of F that possibly becomes a new maximum formula
may itself have been derived in a way that then demands an assumption contraction.
However, a derivation of finite length obviously cannot infinitely nest CRF applications,
and so reapplying the same contraction to the new maximum formula will eventually
give us a derivation with fewer assumption contractions left to apply.

We can therefore simply use the following approach: Take a maximum formula of degree
nδ to which an assumption contraction is applicable in δ, apply that contraction, and if
necessary apply it to the copy of F inside the subdeduction, repeating the process until
that formula is no longer a maximum formula that an assumption contraction can be
applied to. This gives us a new derivation δ1 with nδ1 = nδ and mδ1 ≥ mδ. Doing it
again with the next maximum formula of degree nδ to which an assumption contraction
is applicable gives us δ2, and so on for a sequence of derivations δ, δ1, δ2, . . . , δk. Our
previous observation tells us that this sequence is finite, nδk = nδ, and δk by definition
contains no maximum formulas of degree nδk to which an assumption contraction can be
applied, making it exactly the δ� we are after.

Lemma 3. Any simplified and direct derivation in N establishing Γ # F can be reduced
to a normal derivation showing Γ # F .

Proof. Let δ0 be the initial derivation. Then, δ0 contains exactly mδ0 maximum formulas
of degree nδ0 , and no maximum formulas with a degree greater than that. By Lemma 2,
we can obtain a derivation δ�

0 to which no assumption contractions are applicable, which
rules out all cases where applying a proper contraction to a maximum formula of degree
nδ�

0
(= nδ0) would produce one of higher degree.

Thus, we can now simply take a maximum formula of degree nδ�
0

in δ�
0 and apply the

applicable proper contraction to it, resulting in a derivation δ1 that has either nδ1 < nδ�
0
,

or nδ1 = nδ�
0

and mδ1 < mδ�
0
. In the first case, we again exhaustively apply the assumption

contractions to get δ�
1 and then continue with the next proper contraction to get δ2. In

the second case, we simply proceed to δ2 in the same way immediately, as there will still
be no applicable assumption contractions.

Repeating this process until no maximum formulas are left gives us a finite sequence
of derivations δ0, δ1, . . . , δk where �nδi+1 , mδi+1� < �nδi

, mδi
�. For the last element δk in

particular, the tuple is �0, 0�, meaning it contains no maximum formulas and is therefore
a normal derivation.

Now, by Lemma 1, any given derivation can be transformed to a simplified and direct
derivation, and by Lemma 3, that simplified and direct derivation can be transformed to
a normal derivation. This proves Theorem 5.

4.3 The Refutational Case
Trying to prove normalisation for the complementary calculus N would be a fruitless
effort for the simple reason that the opposite can very easily be demonstrated. Due to

44

4.3. The Refutational Case

the special requirements of the rules At and ¬At, as well as the fact that we cannot use
premisses from outside the scope of all assumptions while an assumption is active, some
derivations can only be made using a particular construction where a conclusion of ∨I1
becomes the major premiss of ∨E2, as seen in the example below.

1. ⊥ ⊥I

2. ⊥ assumption
3. ¬p0 ¬At
4. ¬p1 ¬At
5. p0 ∧ p1 assumption
6. p0 assumption
7. � ¬E: 3, 6
8. p1 assumption
9. � ¬E: 4, 8

10. � ∧E: 5, 6–7, 8–9
11. ¬(p0 ∧ p1) ¬I: 4–10
12. ⊥ ∨ ¬(p0 ∧ p1) ∨I1: 1, 2–11
13. ¬(p0 ∧ p1) ∨E2: 12

The usual normalisation approach here would be to simply use the derivation of ¬(p0 ∧p1)
that must exist within the premisses of ∨I1, but this derivation specifically requires the
presence of a “neutral” assumption like ⊥. Deriving ¬p0 and ¬p1 before assumptions are
made would mean they are not operative within the subderivations of ∧E where we need
them, and the assumption p0 ∧ p1 contains both propositional constants and thus blocks
the atomic rules for them once it is active.

However, as this is the only scenario that does not fit the requirements of normal
derivations, we can instead consider the calculus NBOX , which is simply N extended
by the following rule with the side condition that line n is not in the scope of any
assumptions:

...
m ⊥

...
n − 1 F

n F

BOX

The soundness of this new rule is obvious from the fact that it is simply a shortcut for
the specific combination of ∨I1 and ∨E2 we are trying to avoid. We consider BOX to be
an introduction rule, i.e., its conclusion may not be the major premiss of an elimination
rule in a normal derivation.

In summary, NBOX has the introduction rules

45

4. Normal Derivations in N and N

BOX , CRV , ∧I1, ∧I2, ∨I1, ∨I2, → I1, → I2, and ¬I,

and the elimination rules

∧E, ∨E1, ∨E2, → E1, → E2, ¬E.

We do not count the atomic rules as introduction rules despite their role of introducing
new propositional constants, since they mostly do not interact with elimination rules.

Theorem 6. Any derivation in NBOX establishing Γ $ F can be transformed to a normal
derivation in NBOX with the same assumptions and conclusion.

Compared to the proof of the assertional case, the contractions here have some additional
complications due to the restriction of the refutational system against reusing formulas
from outside the scope of all assumptions once an assumption has been made. This
already becomes apparent in the contractions to make derivations simplified and direct:

• If in the derivation below C �= � and line k + 1 is in the scope of some assumption,
replace

...
i A ∧ B given

i + 1 A assumption
...

j C given
j + 1 B assumption

...
k C given

k + 1 C ∧E: i, i + 1–j, j + 1–k

with
...

i ¬C assumption
...

j A ∧ B given
j + 1 A assumption

...
k C given

k + 1 � ¬E: i, k
k + 2 A assumption

...
l C given

l + 1 � ¬E: i, l
l + 2 � ∧E: j, j + 1–k + 1, k + 2–l + 1
l + 3 C CRV : i–l + 2

46

4.3. The Refutational Case

Any applications of atomic rules after line i that conflict with the assumption ¬C
must be moved so they stand before that assumption, and Triv must be used to
recover them at the lines where they are needed.

• If in the derivation below C �= � and line k+1 is outside the scope of all assumptions,
replace

...
i A ∧ B given

i + 1 A assumption
...

j C given
j + 1 B assumption

...
k C given

k + 1 C ∧E: i, i + 1–j, j + 1–k

with

1. ⊥ assumption
...

i ¬C assumption
...

j A ∧ B given
j + 1 A assumption

...
k C given

k + 1 � ¬E: i, k
k + 2 A assumption

...
l C given

l + 1 � ¬E: i, l
l + 2 � ∧E: j, j + 1–k + 1, k + 2–l + 1
l + 3 C CRV : i–l + 2
l + 4 C BOX : 1–l + 3

Again, problematic applications of atomic rules after line i have to be moved up,
this time into the scope of the assumption ⊥ alone, which cannot be in conflict
with them since it contains no propositional constants.

• If F at line i is neither an assumption nor derived by At or ¬At, replace
47

4. Normal Derivations in N and N

...
i F given

...
j F Triv: i

with

...
i F given

Since the assumptions at the new line i must be the same as at the original line j,
some atomic rule applications may need to move upwards here as well.

In addition to taking special care of atomic rule applications that would move into
the scope of additional assumptions, the second contraction for ∧E requires placing a
derivation from outside the scope of all assumptions into the scope of an assumption
⊥, making use of the newly added BOX rule. This drastic change in context is, in fact,
possible without violating the side conditions of the atomic rules.

Lemma 4. For any derivation in NBOX establishing $ F , there also exists a derivation
in NBOX showing {⊥} $ F , and the operative formulas at the last line of that derivation
contain no propositional constants other than those in F .

Proof. Having a derivation with no assumptions is somewhat helpful, as it means F is
derived without relying on “unseen” information, limiting the shapes of possible inferences.
We also do not need to think much about the case where F is derived by BOX , since the
direct premiss of that rule is itself a subderivation {⊥} $ F .

For a closer inspection of the remaining cases, we proceed by induction on deg(F).

Base Case: deg(F) = 0. By soundness of NBOX , F cannot be �, so one of the following
cases applies:

• F = ⊥, making it always derivable by ⊥I, and also directly via the assumption ⊥.

• F is a propositional constant that could have been derived by At or by CRV . In
the former case, we can certainly still apply the At rule this way after adding the
assumption ⊥, because it does not contain any propositional constants. In the
latter case, the derivation consists of a single subderivation with assumption ¬F ,
which can be moved into the scope of ⊥ without conflicts because the formulas
within it were operative to begin with. The operative formulas at the end of the
new derivation are only the assumption ⊥ and F itself, so clearly the restriction on
operative propositional constants holds as well.

48

4.3. The Refutational Case

Induction Hypothesis: If 0 < deg(F) ≤ n − 1 and there is a derivation in NBOX
showing $ F , there is also a derivation in NBOX showing {⊥} $ F , and the operative
formulas at its last line contain no propositional constants other than those in F .

Induction Step: We distinguish by the outermost connective of F .

• If F has the form F1 ∧ F2, it is introduced by ∧I1, ∧I2, or CRV . If CRV , the
reasoning given in the base case is applicable regardless of what F looks like, so
we will disregard that case from here out. That leaves us with the ∧I rules, which
have as their premiss either F1 or F2. As both of these formulas are subformulas of
F , the needed one can be derived in the scope of ⊥ by the induction hypothesis,
and so {⊥} $ F1 ∧ F2 follows immediately, without any additional propositional
constants in the operative formulas.

• If F has the form F1 ∨ F2, it is derived by a ∨I rule. For ∨I1 in particular, that
means the premisses are F1 and a subderivation yielding F2 under the assumption
F1. We have {⊥} $ F1 by the induction hypothesis because F1 is a subformula of
F , and embedding the subderivation obviously does not pose any problems since
the formulas it contains were already operative within itself before, and are not
operative after discharging the assumption F1. For ∨I2, one only needs to switch
the formulas.

• If F has the form F1 → F2, it is derived by a → I rule. As those rules are shaped
just like the ∨I rules, except for the premiss F1 being replaced by ¬F1, we can
generally apply the same reasoning again. However, matters are complicated by
the fact that ¬F1 is a formula of the same degree as F1 → F2 in the particular case
where F2 is a propositional constant, ⊥, or �, so we do not always have guaranteed
directly by the induction hypothesis that there is an appropriate derivation of it.
But outside the scope of all assumptions, the final rule used to derive ¬F1 in the
original derivation must be CRV , ¬I, or ¬At, whose premisses do not feature any
formulas outside of subderivations, meaning there is no room for conflicts when
moved into the scope of ⊥ and the only formula made operative in the end is ¬F1.

• If F has the form ¬F1, it is derived by ¬I or by ¬At. Like CRV , the only premiss
of ¬I is a subderivation, so there are no newly operative formulas to worry about.
Moreover, ¬At, like At, requires no premisses and its side conditon cannot conflict
with the assumption ⊥.

Lemma 5. Any derivation in NBOX can be reduced to a derivation that is both simplified
and direct.

Proof. While the contractions are somewhat more complicated, the overall reduction
process does not significantly differ from the assertional case. Each use of a contraction to

49

4. Normal Derivations in N and N

remove an instance of ∧E with conclusion other than � from a non-simplified derivation
reduces the number of such ∧E instances, and each use of a contraction to remove
an instance of Triv with a premiss other than an assumption or atomic rule from an
indirect derivation reduces the number of such Triv instances. Furthermore, while the
contractions might introduce new instances of Triv to properly place formulas introduced
by atomic rules, these instances will always have as their premiss a formula introduced
by At or ¬At, meaning they do not interfere with directness.

It follows that exhaustively applying the contractions will produce a simplified and direct
NBOX derivation.

The proper contractions that remove combinations of matching introduction and elimina-
tion rules are described in what follows.

• Replace a derivation of the form

...
i A given

i + 1 A assumption
...

j B given
j + 1 A ∨ B ∨I1: i, i + 1–j
j + 2 A ∨E1: j + 1

with

...
i A given

The same contraction holds for the pair of ∨I2 and ∨E2, but the case where
introduction and elimination rules have different numbers (i.e., the formula at line
i is not the same as the final conclusion) demands a different approach.

• Replace a derivation of the form

...
i B given

i + 1 B assumption
...

j A given
j + 1 A ∨ B ∨I2: i, i + 1–j
j + 2 A ∨E1: j + 1

50

4.3. The Refutational Case

with

...
i B given

...
i A given

A pitfall to keep in mind with this and other contractions is that removing the
derivation of A from the scope of B may cause problems, even if we have B without
the need for an assumption. Specifically, if the derivation is now outside the scope
of all assumptions, rules applied within subderivations in that derivation may lose
access to their premisses, because a formula derived without assumptions is only
attainable as long as no assumptions are made.
In such cases, the BOX rule comes to our rescue and allows us to rewrite the
derivation accordingly:

1. ⊥ assumption
...

i B given
...

j A given
j + 1 A BOX : 1–j

By Lemma 4, moving the derivation of B into the scope of ⊥ is not only possible,
but also makes no formulas operative that contain propositional constants other
than those in B. This means any applications of the atomic rules in the derivation
of A are safe to embed, since they had to respect the assumption B in the original
derivation already, and we can apply the contraction with or without surrounding
assumptions.

• Replace a derivation of the form

...
i A given

i + 1 A ∧ B ∧I1: i
i + 2 A assumption

...
j � given

j + 1 B assumption
...

k � given
k + 1 � ∧E: i + 1, i + 2–j, j + 1–k

51

4. Normal Derivations in N and N

with

...
i A given

...
j � given

Obviously, we do not need to worry about the case where a derivation of � occurs
outside the scope of all assumptions, and thus there is no boxed version of this
contraction. To handle A∧B introduced by ∧I2, one must simply use the derivation
found in the other subderivation.

• Replace a derivation of the form

...
i ¬A given

i + 1 ¬A assumption
...

j B given
j + 1 A → B → I1: i, i + 1–j
j + 2 ¬A → E1: j + 1

with

...
i ¬A given

While the same approach also works for → E2, → E1 in particular causes some
trouble for our proof because, unlike all other elimination rules considered so far,
its conclusion ¬A is potentially of the same degree as A → B. Therefore, if it is
derived by an introduction rule on line i and later in the derivation used as the
major premiss of ¬E, we have not actually succeeded in reducing the overall degree
of maximum formulas by applying this contraction. However, this new maximum
formula would be removed with a different contraction (as its outermost connective
is ¬, not →) and that contraction does result in a lower-degree maximum formula
(if any), so we do still make progress.
To get around this, we can simply say that in the specific case where applying this
contraction produces a new maximum formula of the same degree, that formula
is immediately (i.e., within the same reduction step) removed by the appropriate
contraction, possibly preceded by (repeated) applications of the ¬ assumption
contraction.

• Replace a derivation of the form

52

4.3. The Refutational Case

...
i B given

i + 1 B assumption
...

j ¬A given
j + 1 A → B → I2: i, i + 1–j
j + 2 ¬A → E1: j + 1

with

...
i B given

...
i ¬A given

or

1. ⊥ assumption
...

i B given
...

j ¬A given
j + 1 ¬A BOX : 1–j

• Replace a derivation of the form
...

i A given
i + 1 A assumption

...
j � given

j + 1 ¬A ¬I: i + 1–j
j + 2 � ¬E: i, j + 1

with
...

i A given
...

j � given

We also have contractions to deal with maximum formulas introduced by CRV .

• Replace a derivation of the form
...

i ¬(A ∨ B) assumption
...

j � given
j + 1 A ∨ B CRV : i–j
j + 2 A ∨E1: j + 1

53

4. Normal Derivations in N and N

with ...
i ¬A assumption

i + 1 A ∨ B assumption
i + 2 A ∨E1: i + 1
i + 3 � ¬E: i, i + 2
i + 4 ¬(A ∨ B) ¬I: i + 1–i + 3

...
j � given

j + 1 A CRV : i–j

The derivation of � that was previously in the scope of ¬(A ∨ B) is now instead in
the scope of ¬A, but since A is a subformula of A ∨ B, this does not lead to any
issues with newly blocked propositional constants.

• Replace a derivation of the form
...

i ¬(A ∧ B) assumption
...

j � given
j + 1 A ∧ B CRV : i–j
j + 2 A assumption

...
k � given

k + 1 B assumption
...

l � given
l + 1 � ∧E: j + 1, j + 2–k, k + 1–l

with
...

i A ∧ B assumption
i + 1 A assumption

...
j � given

j + 1 B assumption
...

k � given
k + 1 � ∨E: i, i + 1–j, j + 1–k
k + 2 ¬(A ∧ B) ¬I: i–k + 1

...
l � given

.

54

4.3. The Refutational Case

The subderivation premisses of ∨E are now in the scope of an additional assumption
A ∨ B, which might make necessary applications of the atomic rules no longer legal.
We can fix this by moving all those atomic rule applications in the subderivation
with assumption A that use propositional constants only occuring in B to before
the A ∨ B assumption (which must still be in the scope of some assumption to be
able to derive � at all), and vice versa for the subderivation with assumption B.
Since two lines moved from different subderivations this way cannot share the same
propositional constant, no conflicts occur.

• Replace a derivation of the form
...

i ¬(A → B) assumption
...

j � given
j + 1 A → B CRV : i–j
j + 2 ¬A → E1: j + 1

with
...

i A assumption
i + 1 A → B assumption
i + 2 ¬A → E1: i + 1
i + 3 A Triv: i
i + 4 � ¬E: i + 2, i + 3
i + 5 ¬(A → B) ¬I: i + 1–i + 4

...
j � given

j + 1 ¬A ¬I: i–j

For → E2, use CRV in place of ¬I to derive B from a subderivation with assumption
¬B. The issue of the → E1 case where the conclusion is sometimes of the same
degree as the original maximum formula still remains, and is even more likely to
come up now since the result of the contraction always has ¬A derived by ¬I,
an introduction rule. The workaround remains immediately applying the proper
contraction to deal with the new maximum formula in the same step.

• Replace a derivation of the form
...

i A given
i + 1 ¬¬A assumption

...
j � given

j + 1 ¬A CRV : i + 1–j
j + 2 � ¬E: i, j + 1

55

4. Normal Derivations in N and N

with ...
i A given

i + 1 ¬A assumption
i + 2 � ¬E: i, i + 1
i + 3 ¬¬A ¬I: i + 1–i + 2

...
j � given

The rule ¬E is not available outside the scope of all assumptions, so in this case we
can be sure of the existence of surrounding assumptions and the final derivation of
� can be safely removed from its subderivation. Even if the derivation continued
past line j, we would not need to worry about new operative formulas blocking any
inferences afterwards, because having derived �, we can just get any formula by
�E as long as we remain in the same scope.

Replacing the assumption from the original CRV application can create a new maximum
formula with a higher degree if that assumption was the major premiss of a ¬E application,
so we need assumption contractions for such cases.

• Replace a derivation of the form
...

i ¬(A ∨ B) assumption
...

j A ∨ B given
j + 1 � ¬E: i, j

...
...

k � given
k + 1 A ∨ B CRV : i, k
k + 2 A ∨E1: k + 1

with ...
i ¬A assumption

i + 1 ¬(A ∨ B) assumption
...

j A ∨ B given
j + 1 A ∨E1: j
j + 2 � ¬E: i, j + 1

...
...

k � given
k + 1 A ∨ B CRV : i + 1–k
k + 2 A ∨E1: k + 1
k + 3 � ¬E: i, k + 2
k + 4 A CRV : i–k + 3

56

4.3. The Refutational Case

• Replace a derivation of the form
...

i ¬(A ∧ B) assumption
...

j A ∧ B given
j + 1 � ¬E: i, j

...
...

k � given
k + 1 A ∧ B CRV : i–k
k + 2 A assumption

...
l � given

l + 1 A assumption
...

m � given
m + 1 � ∧E: k + 1, k + 2–l, l + 1–m

with
...

i ¬(A ∧ B) assumption
...

j A ∧ B given
j + 1 A assumption

...
k � given

k + 1 B assumption
...

l � given
l + 1 � ∧E: j, j + 1–k, k + 1–l

...
...

m � given
m + 1 A ∧ B CRV : i–m
m + 2 A assumption

...
n � given

n + 1 B assumption
...

o � given
o + 1 � ∧E: m + 1, m + 2–n, n + 1–o

57

4. Normal Derivations in N and N

As we did for the corresponding proper contraction, conflicts between the assumption
¬(A ∨ B) and atomic rule applications within the ∧E subderivations must be
circumvented by moving the problematic lines before line i and recovering them
with Triv.

• Replace a derivation of the form

...
i ¬(A → B) assumption

...
j A → B given

j + 1 � ¬E: i, j
...
...

k � given
k + 1 A → B CRV : i–k
k + 2 ¬A → E1: k + 1

with

...
i A assumption

i + 1 ¬(A → B) assumption
...

j A → B given
j + 1 ¬A → E1: j
j + 2 A Triv: i
j + 3 � ¬E: j + 1, j + 2

...
...

k � given
k + 1 A → B CRV : i + 1–k
k + 2 ¬A → E1: k + 1
k + 3 A Triv: i
k + 4 � ¬E: k + 2, k + 3
k + 5 ¬A ¬I: i–k + 4

For → E2, use CRV in place of ¬I.

• Replace a derivation of the form

58

4.3. The Refutational Case

...
i ¬¬A assumption

...
j ¬A given

j + 1 � ¬E: i, j
...
...

k � given
k + 1 ¬A CRV : i + 1–j

...
l A given

l + 1 � ¬E: k + 1, l

with

...
i ¬¬A assumption

...
j ¬A given

...
k A given

k + 1 � ¬E: j, k
...
...

l � given
l + 1 ¬A CRV : i–l

...
m A given

m + 1 � ¬E: l + 1, m

Moving the derivation of A into the subderivation is safe here, because ¬A was oper-
ative in that portion of the original derivation, and contains the same propositional
constants as ¬¬A.

Making BOX an introduction rule obviously means we run the risk of having any formula
introduced with that rule be a maximum formula if it is the major premiss of some
elimination rule. Luckily, the proper contraction to fix this is quite simple and works
regardless of the shape of the formula.

• Replace a derivation of the form
...

i ⊥ assumption
...

j F given
j + 1 F BOX : i–j

...
k G elimination rule

with
...

i ⊥ assumption
...

j F given
...

k G elimination rule
k + 1 G BOX : i–k

59

4. Normal Derivations in N and N

Note that, after applying the contraction, it is still possible that F is a maximum formula
depending on the rule used to introduce it at line j. However, that rule cannot be BOX
due to the presence of an assumption, so we can resolve the issue with the same trick
from above of immediately contracting away the new maximum formula.

There are no contractions that introduce ∧E applications with conclusions other than �,
so just like in the assertional case, we can be sure simplified derivations remain simplified
with each contraction step. The same goes for the property of directness, since the only
Triv applications introduced have as their premiss either assumptions or atomic rule
conclusions.

Lemma 6. If δ is a simplified and direct derivation in NBOX showing Γ $ F , then
there exists a simplified and direct NBOX derivation δ� with the same assumptions and
conclusion in which no assumption contractions are applicable to maximum formulas of
degree nδ�, and nδ� = nδ.

Proof. Because applying an assumption contraction to an appropriate formula in δ (and
repeatedly applying it to the additional copy inside the subderivation, if necessary) gives
us a derivation with fewer maximum formulas of the same degree that have an applicable
assumption contraction, applying these contraction steps to as many maximum formulas
of degree nδ as possible gives us a finite sequence of derivations

δ, δ1, δ2, . . . , δk

with nδi+1 = nδi , where δk has no assumption contractions applicable. Thus, δk is the
required δ�.

Lemma 7. Any simplified and direct derivation in NBOX showing Γ $ F can be reduced
to a normal derivation showing Γ $ F .

Proof. Let δ0 be the initial derivation. Then δ0 contains exactly mδ0 maximum formulas
of degree nδ0 , and no maximum formulas with a degree greater than that. By Lemma 6,
we can obtain a derivation δ�

0 to which no assumption contractions are applicable, which
rules out all cases where applying a proper contraction to a maximum formula of degree
nδ�

0
(= nδ0) would produce one of higher degree.

Thus, we can now simply take a maximum formula of degree nδ�
0

in δ�
0 and apply the

applicable proper contraction to it, resulting in a derivation δ1 that has either nδ1 < nδ�
0
,

or nδ1 = nδ�
0

and mδ1 < mδ�
0
.

In the first case, we again exhaustively apply the assumptions contractions to get δ�
1

and then continue with the next proper contraction to get δ2. In the second case, we
simply proceed to δ2 in the same way immediately, as there will still be no applicable
assumption contractions.

Repeating this process until no maximum formulas are left gives us a finite sequence
of derivations δ0, δ1, . . . , δk where �nδi+1 , mδi+1� < �nδi

, mδi
�. For the last element δk in

60

4.3. The Refutational Case

particular, the tuple is �0, 0�, meaning it contains no maximum formulas and is therefore
a normal derivation.

By Lemma 5, a given derivation can be transformed to a simplified and direct derivation,
and by Lemma 7, that simplified and direct derivation can be transformed to a normal
derivation. This proves Theorem 6.

61

CHAPTER 5
Adapted Systems for Automation

The assertional and refutational systems of natural deduction we presented so far denote
their derivations in a “boxed” style similar to that used by Jaśkowski [17] and Fitch [8].
An essential component of this notation is using the Triv rule to repeat previously derived
formulas at the positions we need them to apply certain rules, which allows us to save
space and improve readability by not needing to re-derive premisses.

However, when constructing a proof in a bottom-up manner, as done in automated
systems, that Triv rule becomes somewhat problematic: How can we differentiate between
a premiss that needs to be derived fully and one that can simply be fetched with Triv, if
we do not yet know what the lines above the current one will look like once the proof is
complete? Certainly one could introduce book-keeping devices that help with making
that distinction as information becomes available, but from a programmatic standpoint it
is much simpler to follow a Gentzen-style tree notation where there is no relevant ordering
of lines and each occurrence of a formula independently includes the full derivation.

Also, while both systems specify the premisses and side conditions required to apply
their rules in a sound manner, they do not in any way account for the possibility of loops
and infinitely long proofs, which becomes a problem in an automated prover that we
ideally want to see terminate under all circumstances. For instance, case distinctions can
be nested as many times as we want because the major premiss will still be available in
either of the branching subdeductions. To illustrate, consider the attempt at showing
{p0 ∨ (p0 ∧ p1)} # p0 as given in Figure 5.1. Since it is possible to apply ∨E at any level,
it is perfectly legal for us to continue nesting as many subdeductions as we want in the
omitted portions. Of course, in this simple example, the issue could easily be resolved by
just using other rules—Triv and ∧E—with higher priority than ∨E, but that would not
prevent an automated prover from running into endless derivations of this form while
pursuing failing branches. This in turn would mean to never backtrack to find the correct
path, so we need to put measures in place to more strictly disallow pointless repetitions.

63

5. Adapted Systems for Automation

1. p0 ∨ (p0 ∧ p1) assumption
2. p0 assumption
3. p0 ∨ (p0 ∧ p1) Triv: 1
4. p0 assumption

...
j p0 ∨E

j + 1 p0 ∧ p1 assumption
...

m − 1 p0 ∨E
m p0 ∨E: 3, 4–j, j + 1–m − 1

m + 1 p0 ∧ p1 assumption
m + 2 p0 ∨ (p0 ∧ p1) Triv: 1
m + 3 p0 assumption

...
k p0 ∨E

k + 1 p0 ∧ p1 assumption
...

n − 2 p0 ∨E
n − 1 p0 ∨E: m + 2, m + 3–k, k + 1–n − 2

n p0 ∨E: 1, 2–m, m + 1–n − 1

Figure 5.1: A derivation for showing {p0 ∨ (p0 ∧ p1)} # p0.

5.1 Preliminaries

Before introducing the adapted calculi that address the concerns stated above, we will
discuss the general structure that will be used for both the assertional and refutational
case.

As seen in already existing natural deduction provers from the literature we reviewed in
Chapter 3, the general approach is to apply some rules bottom-up from the conclusion
and others top-down from the assumptions, constructing two or more partial derivation
trees that can then be joined together at common formulas. The design of our calculi
will also follow this pattern, but with the notable special property that the premisses
of top-down rules never require bottom-up rules in their derivations, and the crossover
between the two sets of rules thus goes in only one direction. This makes the systems
trivially loop-free so long as both the top-down and bottom-up rules are each loop-free
in isolation.

In what follows, we will use a Gentzen-style tree notation, but also follow Ferrari and

64

5.2. The Assertional Case

Fiorentini [5] in using labeled sequents rather than formulas for the nodes. These sequents
take the basic form Γ # F◦ for the assertional system and Γ $ F◦ for the refutational
one, with Γ denoting the currently active assumptions, F the formula derived at that
node, and ◦ ∈ {↑, ↓} labeling the sequent as being part of either the bottom-up (↑) or
top-down (↓) derivation. In the actual systems, the sequents also include components
for additional information that needs to be tracked throughout the derivation, but since
the requirements differ between the assertional and refutational case, we will omit these
components for now.

For example, using the basic notation just introduced, the ∧I and → I rules of N would
be written as follows:

Γ # A ↑ Γ # B ↑
Γ # A ∧ B ↑ ∧I

A, Γ # B ↑
Γ # A → B ↑ → I

Similarly, ∧E1 and → E become:

Γ # A ∧ B ↓
Γ # A ↓ ∧E1

Γ # A → B ↓ Γ # A ↓
Γ # B ↓ → E

In the → I example, we can see a simplified notation A, Γ # B instead of {A} ∪ Γ # B.
If Γ = ∅, this sequent could also be written A # B. To save some space and improve
readability, we will consistently use this notation for sets that occur in sequents.

5.2 The Assertional Case
The loop-free counterpart of the assertional natural deduction calculus N, denoted by
N∗, consists of the following inference rules.

F ∈ Γ
Γ # F ↓ Asm Γ # F ↓

Γ # F ; Δ ↑ ↓↑

The simplest rules are those that allow us to use assumptions in top-down reasoning
and top-down conclusions in bottom-up reasoning, thereby providing the joining points
between the multiple sources of information.

The extra component Δ on the bottom-up side of ↓↑ exists for loop avoidance and
contains the names of rules we want “blocked” in that derivation. This is most relevant
when using the ¬E rule in a bottom-up derivation:

Γ # ¬F ; Δ ↓ Γ # F ; �¬E�, Δ ↑ �¬E� �∈ Δ
Γ # ⊥; Δ ↑ ¬E

Without Δ, certain corner cases that allow an exact copy of the conclusion sequent to
appear in the bottom-up reasoning of the minor premiss could easily lead to an infinite

65

5. Adapted Systems for Automation

loop, as ¬E would be applicable again with the same premisses. We can in fact go as
far as disabling the rule entirely to avoid this, since ultimately there is no need to ever
derive ⊥ twice under the same assumptions.

Γ # �; Δ ↑ �I Γ # A; Δ ↑ Γ # B; Δ ↑
Γ # A ∧ B; Δ ↑ ∧I

Γ # A; Δ ↑
Γ # A ∨ B; Δ ↑ ∨I1

Γ # B; Δ ↑
Γ # A ∨ B; Δ ↑ ∨I2

A, Γ # B; ∅ ↑ A �∈ Γ
Γ # A → B; Δ ↑ → I

Γ # B; Δ ↑ A ∈ Γ
Γ # A → B; Δ ↑ → I∗

The above introduction rules function just like their counterparts in N, with no particular
side conditions to consider. However, → I has some noteworthy special features: it is split
into two variants, → I and → I∗, to avoid the introduction of redundant assumptions,
and when it does introduce an assumption, Δ is reset.

The rules that model indirect proofs do require some additional side conditions to cut off
useless derivations:

¬F, Γ # ⊥; ∅ ↑ F �= ⊥ F �= ¬F � ¬F �∈ Γ
Γ # F ; Δ ↑ CRF

F, Γ # ⊥; ∅ ↑ F �∈ Γ
Γ # ¬F ; Δ ↑ ¬I

For the elimination rules, only the ∧ ones can be straightforwardly adapted into top-down
rules.

Γ # A ∧ B ↓
Γ # A ↓ ∧E1

Γ # A ∧ B ↓
Γ # B ↓ ∧E2

On the other hand, ∨E requires two subdeductions as its minor premisses, making it
rather unsuitable for top-down reasoning. Therefore, despite being an elimination rule,
we adapt it into a bottom-up rule.

Γ # A ∨ B; Δ ↓ A, Γ # F ; ∅ ↑ B, Γ # F ; ∅ ↑ A �∈ Γ B �∈ Γ
Γ # F ; Δ ↑ ∨E

In view of the normalisation theorem, we can be sure the major premiss will only require
top-down reasoning, but the minor premisses still need to be processed bottom-up.

Ordinarily, the same would go for → E and its minor premiss, but we can actually use it
as a pure top-down rule by supplementing it with a second → elimination rule:

Γ # A → B ↓ Γ # A ↓
Γ # B ↓ → E

Γ # A → B ↓
Γ # ¬A ∨ B ↓ → E∨

66

5.2. The Assertional Case

Cases where → E would require bottom-up rules to derive its minor premiss can also be
handled by a combination of → E∨ and ∨E. While this roundabout method diminishes
the natural character of the system somewhat, it is very useful for avoiding loops, as it
removes the ability to cross from top-down reasoning into bottom-up reasoning.

Finally, ⊥E is adapted as a bottom-up rule simply because it can derive an infinite
amount of formulas (all of them, in fact) once the premiss ⊥ is present, which is not
particularly conducive to efficient top-down reasoning.

Γ # ⊥; �⊥E�, Δ ↑ F �= ⊥ �⊥E� �∈ Δ
Γ # F ; Δ ↑ ⊥E

The side conditions serve to explicitly disallow pointless repetition such as deriving ⊥
from ⊥, or using a ⊥E conclusion just to reach another ⊥.

5.2.1 Soundness
As soundness and completeness of N are known, the same properties can be proven for
N∗ via a translation to and from the original system. In the case of soundness, we must
show the “to” direction.

Theorem 7. For any derivation in N∗ with root sequent Γ # F ; Δ ↑, there exists a
derivation in N whose last line contains the formula F with active assumptions Γ.

Proof. The translation is straightforward, since most rules of N∗ also exist in N with
the same premisses and no side conditions. We can omit Asm and ↓↑ entirely since N
treats all formulas the same, regardless of how they were derived (although in some cases,
Asm may need to be translated to a Triv rule to fetch the assumption from the start
of the subdeduction). For applications of → I∗, we can easily wrap the derivation of
the premiss in a subdeduction to enable → I, since an additional assumption—let alone
an additional copy of one that is already present—cannot interfere with any rules of N.
Finally, the additional rule → E∨ can be replaced with this derivation:

...
i A → B given

i + 1 ¬(¬A ∨ B) assumption
i + 2 ¬A assumption
i + 3 ¬A ∨ B ∨I1: i + 2
i + 4 ⊥ ¬E: i + 1, i + 3
i + 5 A CRF : i + 2–i + 4
i + 6 B → E: i, i + 5
i + 7 ¬A ∨ B ∨I2: i + 6
i + 8 ⊥ ¬E: i + 1, i + 7
i + 9 ¬A ∨ B CRF : i + 1–i + 8

67

5. Adapted Systems for Automation

5.2.2 Completeness
To show completeness requires proving the “from” direction of the translation, which
is the more difficult one since we need to account for derivations that do not obey the
added side conditions. To simplify the task, we first ensure some flexibility with regards
to Γ and Δ.

Lemma 8. Given a derivation in N∗ with assumptions Γ and formula F at the root,
and a set of formulas Γ� ⊇ Γ, there exists a derivation in N∗ with assumptions Γ� and
formula F at the root.

Proof. The proof proceeds by induction on the depth d of the given derivation, defined
as the number of rule applications in the longest branch.

Base Case: d = 1. Thus, the root rule is either �I or Asm. The former obviously works
with any assumptions since it has neither premisses nor side conditions, and the latter
only requires F ∈ Γ�, which follows from the known F ∈ Γ.

Induction Hypothesis: For any derivation in N∗ with depth 1 < d ≤ n − 1 that
has assumptions Γ and formula F at the root, there exists a derivation in N∗ with
assumptions Γ� and formula F at the root, where Γ� ⊃ Γ.

Induction Step: We distinguish by the root rule.

• → I: If A ∈ Γ�, simply replace the root rule with → I∗, which becomes usable in
just such a case.

• CRF , ¬I: If Γ� does not contain ¬F or F , respectively, we can use it as substitute
for Γ without violating the side condition and obtain a sound derivation. Otherwise,
we have in the case of CRF that ¬F, Γ� # ⊥; ∅ ↑ by the induction hypothesis, which
by contraction gives us Γ� # ⊥; ∅ ↑ since ¬F ∈ Γ�. This premiss can be used to
derive Γ� # F ; ∅ ↑ by ⊥E, and the same approach works for ¬I. If ⊥E cannot be
used because there is already an application of it in the derivation of Γ� # ⊥; ∅ ↑, it
suffices to replace the conclusion of that application by F .

• ∨E: Suppose A ∈ Γ�. By the induction hypothesis, we have a derivation for
A, Γ� # F ; ∅ ↑ and hence Γ� # F ; ∅ ↑, which is exactly what we need. If B ∈ Γ�,
the same reasoning can be applied, and if A, B �∈ Γ�, we can simply replace all
occurrences of Γ with Γ� and not violate any side conditions.

• The remaining rules do not have side conditions that could conflict with additional
assumptions, so we can always just replace Γ with Γ� and be done.

Lemma 9. Given a derivation in N∗ with root sequent Γ # F ; Δ ↑ and a set of rule
names Δ� ⊆ Δ , there exists a derivation in N∗ with root sequent Γ # F ; Δ� ↑.

68

5.2. The Assertional Case

Proof. Since ¬E and ⊥E are the only rules that interact with Δ, and only to check for
the absence of a rule name, replacing all occurences Δ in the given derivation with Δ�

produces a sound derivation with the desired conclusion.

By the normalisation theorem, there is a corresponding normal derivation for any
derivation in N, so it is sufficient to only consider those normal derivations for our proof
of completeness.

Theorem 8. For any (simplified and direct) normal derivation in N whose last line
contains the formula F with active assumptions Γ, there exists a derivation in N∗ with
root sequent Γ # F ; ∅ ↑.

Proof. We proceed by induction on the length l of the N derivation.

Base Case: l = 1. Then, the formula F is either an assumption (and thus F ∈ Γ) or
was derived by �I. We get this N∗ derivation for the first case:

F ∈ Γ
Γ # F ↓ Asm

Γ # F ; ∅ ↑ ↓↑

And this one for the second:
Γ # �; ∅ ↑ �I

Induction Hypothesis: For any normal derivation in N with length 1 < l ≤ n − 1 that
has formula F and active assumptions Γ at line l, there exists a derivation in N∗ with
root sequent Γ # F ; ∅ ↑.

We further assert that any derivation in N that ends on an elimination rule corresponds
to a derivation in N∗ with root rule ↓↑, ∨E, or ⊥E.

Induction Step: We distinguish based on the rule used to derive the formula at line n,
which must be a rule with one or more premisses.

• Triv: The premiss is exactly the formula F in the scope of the assumptions in
Γ or some subset thereof, so by the induction hypothesis and Γ-weakening, we
automatically have a derivation in N∗ with root sequent Γ # F ; ∅ ↑.

• ∧I1, ∧I2, ∨I1, ∨I2, �I : For all of these rules, N∗ provides rules that require the
exact same premisses as bottom-up sequents with no side conditions, so extending
the derivation from those we have by the induction hypothesis is trivial.

• → I: If A �∈ Γ, we have the required premiss for → I by the induction hypothesis.
If instead A ∈ Γ, we can use → I∗, which has its premiss available by contraction.

69

5. Adapted Systems for Automation

• ⊥E: We have by the induction hypothesis a derivation ending on the sequent
Γ # ⊥; ∅ ↑. If F = ⊥, this already is the derivation we want, but otherwise we need
to change its root sequent to Γ # ⊥; �⊥E� ↑, which is no problem if the derivation
contains no application of ⊥E under the assumptions Γ. If it does, however, that
step must itself have the premiss Γ # ⊥; �⊥E� ↑ (or one that reduces to it by
Δ-weakening), and we merely need to swap out its conclusion.

• ∧E1, ∧E2: In either case, we have the formula A ∧ B as the sole premiss, which in
a normal derivation must have been obtained with an elimination rule. Thus the
N∗ derivation we get from the induction hypothesis has as its root rule either ↓↑,
⊥E, or ∨E. In the first case we have the sequent Γ # A ∧ B ↓ to easily extend the
derivation and in the second we can just swap out the conclusion of ⊥E. The final
case is significantly more complex and jointly involves multiple elimination rules,
so we will disregard it for now.

• → E: The major premiss is A → F and the minor premiss A. Since we are working
with a normal derivation, A → F must have been derived by an elimination rule,
so the induction hypothesis provides us with a N∗ derivation with root sequent
Γ # A → F ; ∅ ↑ and root rule ↓↑, ∨E, or ⊥E. Also by the induction hypothesis,
we have a N∗ derivation of Γ # A; ∅ ↑, but its root rule can be anything.
There are several cases to consider here, depending on the N∗ rule by which the
premisses are derived. In the simplest case, either of the two is ⊥E, as that means
the derivation also includes Γ # ⊥; �⊥E� ↑ and we can build a derivation for F like
this:

...
Γ # ⊥; �⊥E� ↑ given

Γ # F ; ∅ ↑ ⊥E

Otherwise, we are looking at one of the following combinations.

– Both derived by ↓↑. Then the derivations must include the sequents Γ # A →
F ↓ and Γ # A ↓, enabling this derivation of F .

...
Γ # A → F ↓ given

...
Γ # A ↓ given

Γ # F ↓ → E

Γ # F ; ∅ ↑ ↓↑

– A → F derived by ↓↑, A derived by a different rule. In this case, we can get
to F via ∨E. First, let δA be the derivation

¬A ∈ ¬A, Γ
¬A, Γ # ¬A ↓ Asm

...
¬A, Γ # A; �¬E�, �⊥E� ↑ given

¬A, Γ # ⊥; �⊥E� ↑ ¬E

¬A, Γ # F ; ∅ ↑ ⊥E
.

70

5.2. The Assertional Case

Then we have the following derivation that ends on Γ # F ; ∅ ↓:

...
Γ # A → F ↓ given

Γ # ¬A ∨ F ↓ → E∨ δA

F ∈ F, Γ
F, Γ # F ↓ Asm

F, Γ # F ; ∅ ↑ ↓↑
Γ # F ; ∅ ↑ ∨E

While we only get Γ # A; ∅ ↑ via the induction hypothesis, δA uses ¬A, Γ #
A; �¬E�, �⊥E� ↑. The additional assumption is not a problem since the system
permits Γ-weakening, but being unable to use ¬E and ⊥E under the same
assumptions may conflict with the contents of the given derivation. However,
if that derivation were to contain such an application of either rule, it would
already have ¬A, Γ # ⊥; Δ ↑ as its conclusion or premiss (Δ = ∅ or Δ = �⊥E�),
thus eliminating the need for a derivation of A entirely.
Another potential issue are the side conditions on ∨E, which would be violated
if ¬A ∈ Γ and/or F ∈ Γ. In such a case, the derivation from any subdeduction
whose assumption is already present can simply be used to directly obtain F .

– A → F derived by ∨E, A derived by any rule. This case will be addressed
later.

• ∨E: Since the normal derivations we are working with are also simplified, we
know that F = ⊥ here. The induction hypothesis gives us a N∗ derivation for
Γ # A ∨ B; ∅ ↑ ending on ↓↑, ∨E, or ⊥E, as well as for A, Γ # ⊥; ∅ ↑ and
B, Γ # ⊥; ∅ ↑ ending on any rule. The case where the major premiss was derived
by ⊥E is especially trivial here, and in the ↓↑ case we can also simply extend the
derivation, as seen below.

...
Γ # A ∨ B ↓ given

...
A, Γ # ⊥; ∅ ↑ given

...
B, Γ # ⊥; ∅ ↑ given

Γ # ⊥; ∅ ↑ ∨E

If A ∈ Γ or B ∈ Γ, we cannot apply the ∨E rule of N∗, but we also do not need
to: By the induction hypothesis, we have A, Γ # ⊥; ∅ ↑ and if A ∈ Γ that means by
contraction Γ # ⊥; ∅ ↑, which is what we ultimately want to derive.

• ¬E: By the induction hypothesis, we have the sequents Γ # F ; ∅ ↑ and Γ # ¬F ; ∅ ↑,
the latter derived by ↓↑, ∨E, or ⊥E. If ↑↓, the next inference step is straightforward:

...
Γ # ¬F ↓ given

...
Γ # F ; �¬E� ↑ given

Γ # ⊥; ∅ ↑ ¬E

However, the addition of �¬E� in the Δ component of the minor premiss may
conflict with the derivation of F we are given. In such a case, there is another ¬E

71

5. Adapted Systems for Automation

application further up concluding Γ # ⊥; ∅ ↑, which is exactly the conclusion we
want to reach anyway. With Γ # ¬F ; ∅ ↑ derived by ⊥E, we again simply need to
use the premiss of that rule directly, and we will investigate the ∨E case later.

• ¬I: If the side condition F �∈ Γ holds, we can simply apply ¬I to the available
premiss F, Γ # ⊥; ∅ ↑. Otherwise, that same premiss gives us Γ # ⊥; ∅ ↑ by
contraction, enabling the ⊥E rule.

• CRF : The cases where the side conditions hold and where only ¬F �∈ Γ is violated
work just like they did with ¬I. At first glance, the remaining conditions F �= ⊥
and F �= ¬F � seem harmless—the assumption ¬⊥ would not be useful anyway,
and ¬I already handles deriving negations by contradiction. However, we should
consider some corner cases where an assumption ¬⊥ or ¬¬F � could potentially
interact with other formulas in useful ways.

– F = ⊥, Γ = {¬⊥ → G, ¬G}. If we could use CRF with assumption ¬⊥, we
could unlock G for ¬E using → E, precisely because we have that specific
assumption. There is, however, also a derivation that does not use CRF at
all. Let δ be

¬¬⊥ ∈ ¬¬⊥, Γ
¬¬⊥, Γ # ¬¬⊥ ↓ Asm

⊥ ∈ ⊥, ¬¬⊥, Γ
⊥, ¬¬⊥, Γ # ⊥ ↓ Asm

⊥, ¬¬⊥, Γ # ⊥; ∅ ↑ ↓↑
¬¬⊥, Γ # ¬⊥; �¬E� ↑ ¬I

¬¬⊥, Γ # ⊥; ∅ ↑ ¬E
.

We can then construct the following derivation.

¬⊥ → G ∈ Γ
Γ # ¬⊥ → G; ∅ ↓ Asm

Γ # ¬¬⊥ ∨ G ↓ → E∨ δ

¬G ∈ G, Γ
G, Γ # ¬G; ∅ ↑ Asm

G ∈ G, Γ
G, Γ # G ↓ Asm

G, Γ # G; �¬E� ↑ ↓↑
G, Γ # ⊥; ∅ ↑ ¬E

Γ # ⊥; ∅ ↑ ∨E

– F = ¬F �, Γ = ¬¬F � → ⊥. Again, the required ⊥ is only unlockable using the
specific assumption CRF would produce if used disregarding its side condition,
and ¬I seemingly fails. But we can construct a roundabout alternate derivation,
beginning from a derivation δ�:

¬F � ∈ ¬F �, ¬¬¬F �, F �, Γ
¬F �, ¬¬¬F �, F �, Γ # ¬F � ↓ Asm

F � ∈ ¬F �, ¬¬¬F �, F �, Γ
¬F �, ¬¬¬F �, F �, Γ # F � ↓ Asm

¬F �, ¬¬¬F �, F �, Γ # F �; �¬E� ↑ ↓↑
¬F �, ¬¬¬F �, F �, Γ # ⊥; ∅ ↑ ¬E

¬¬¬F �, F �, Γ # ¬¬F �; �¬E� ↑ ¬I

72

5.2. The Assertional Case

Using δ�, we build the derivation δ as
¬¬¬F � ∈ ¬¬¬F �, F �, Γ

¬¬¬F �, F �, Γ # ¬¬¬F � ↓ Asm
δ�

¬¬¬F �, F �, Γ # ⊥; ∅ ↑ ¬E
,

and finally we use δ in the full derivation of Γ # ¬F �; ∅ ↑.
¬¬F � → ⊥ ∈ F �, Γ

F �, Γ # ¬¬F � → ⊥; ∅ ↓ Asm

F �, Γ # ¬¬¬F � ∨ ⊥ ↓ → E∨
δ

⊥ ∈ ⊥, F �, Γ
⊥, F �, Γ # ⊥ ↓ Asm

⊥, F �.Γ # ⊥; ∅ ↑ ↓↑
F �, Γ # ⊥; ∅ ↑ ∨E

Γ # ¬F �; ∅ ↑ ¬I

We still have to handle the cases where the major premiss of an elimination rule (specifi-
cally, ∧E1, ∧E2, → E, ∨E, or ¬E) is only made available by the induction hypothesis as
a bottom-up sequent derived by ∨E. Since any applications of ∨E and ¬E in the original
N derivation can only have conclusion ⊥, which cannot have any further elimination rules
applied to it, it follows that a major premiss Gk+1 �= ⊥ derived by ∨E after translation
must originally have come from an application of ∧E1, ∧E2, or → E, in turn requiring a
major premiss of the form Gk+1 ∧ Gk, Gk ∧ Gk+1, or Gk → Gk+1.

In the simplest case, we have a top-down sequent for this formula, however, we must also
consider the possibility that its derivation was already transformed to end on ∨E. We
established above that the two ∧E rules do not require such a transformation if they
have a top-down sequent for their major premiss, so another transformation to ∨E must
have happened further up in the derivation to make it necessary. On the other hand,
a transformation of → E can also be caused by not having a top-down sequent for the
minor premiss. Following this train of thought to its logical conclusion, we must by the
induction hypothesis have the sequents Γ # G0 → G1 ↓ (with Gi = (Gi ◦i · · · ◦k Gk+1),
◦i ∈ {∧, →}, for i ∈ {1, . . . , k}) and Γ # G0; ∅ ↑, which are the premisses of an initial
→ E application transformed to ∨E. To be precise, G1 can have other forms depending
on which ∧E rules are applied to decompose the formula as the derivation proceeds, but
for ease of notation, we will assume it is only ∧E2 so the subformula of interest is always
on the right side. We also have access to sequents Γ # Gi; ∅ ↑ for every i where ◦i = →,
since these connectives must originally have been eliminated via → E. Gk+1 itself, being
the major premiss of the elimination rule we need to transform, is one of F ∧ B, A ∧ F ,
A → F , A ∨ B, or ¬A (F = ⊥ in the last two cases).

Now recall the way → E is transformed to ∨E if the minor premiss is only available as a
bottom-up sequent. The derivation δA is

¬A ∈ ¬A, Γ
¬A, Γ # ¬A ↓ Asm

...
¬A, Γ # A; �¬E�, �⊥E� ↑ given

¬A, Γ # ⊥; �⊥E� ↑ ¬E

¬A, Γ # F ; ∅ ↑ ⊥E

73

5. Adapted Systems for Automation

and used as part of the full transformed derivation:

...
Γ # A → F ↓ given

Γ # ¬A ∨ F ↓ → E∨ δA

F ∈ F, Γ
F, Γ # F ↓ Asm

F, Γ # F ; ∅ ↑ ↓↑
Γ # F ; ∅ ↑ ∨E

,

We observe that such a derivation can easily have its conclusion F swapped out for
F �, provided F � is the conclusion of an applicable elimination rule with F as its major
premiss. Obviously δA can have its conclusion changed arbitrarily, and in the other
subdeduction, F is available as an assumption and thus can be used for any rule. This
method of replacement works even if we exchange the right subdeduction with another
nested derivation of the same form (because all we need to do is change its conclusion to
F � by this very method), and continues working to any nesting depth.

Equipped with all this information, we can produce a N∗ derivation of our desired
conclusion F . The root rule is ∨E and the structure is fairly similar to the transformed
→ E application shown above, with the first minor premiss being a familiar-looking
derivation δ1:

G0 ∈ ¬G0, Γ
¬G0, Γ # ¬G0 ↓ Asm

...
¬G0, Γ # G0; �¬E�, �⊥E� ↑ given

¬G0, Γ # ⊥; �⊥E� ↑ ¬E

¬G0, Γ # F ; ∅ ↑ ⊥E
.

However, the derivation for the second minor premiss, δ2, takes slightly different forms
depending on the elimination rule originally used to derive F and how many transforma-
tions to ∨E were required along the way. In any case, it consists of some sequence of
∧E1, ∧E2, → E, and/or ¬E used to derive F from Gj (j ∈ {1, . . . , k}), nested within
the right subdeduction of zero or more ∨E applications structured like one obtained from
transforming → E. This derivation can be obtained by deriving G1 from G0 → G1 as we
did in the basic → E case and then repeatedly swapping out the ∨E conclusion Gi for
Gi+1 (which follows from Gi by → E or ∧E2), finally going from Gk to just Gk+1, and
from there to F . Put together, the full derivation is

...
Γ # G0 → G ↓ given

Γ # ¬G0 ∨ G ↓ → E∨ δ1 δ2
Γ # F ; ∅ ↑ ∨E

.

In this derivation as well, we could replace F with any F � that follows from it by an
elimination rule, as the root rule is ∨E, the root rule of δ1 is ⊥E, and δ2 is a derivation
of the same form.

74

5.2. The Assertional Case

5.2.3 Loop-freeness

When following a derivation in N∗ from the root towards the leaves, any branch in which
a top-down rule occurs cannot have any bottom-up rules further up, as there is no way
to cross from top-down reasoning back into bottom-up reasoning. We can therefore be
assured our adapted system does not allow for infinite loops as long as none can occur
with only the bottom-up rules or only the top-down rules.

We first consider the bottom-up rules. �I and ↓↑ obviously leave no room for loops
simply by not having any premisses that can be derived by bottom-up rules, while ∧I,
∨I1, ∨I2, → I, and → I∗ are limited in their repetition because the formulas in their
premisses are subformulas of those in the conclusion.

However, this is not the case for ¬E, which can reintroduce an arbitrary amount of
complexity in its minor formula F . One could therefore imagine a scenario in which a
sequent with Γ # ⊥ occurs again in this branch, allowing application of ¬E with the
same premisses and thus an infinite loop:

¬(p ∨ ⊥) ∈ {¬(p ∨ ⊥), p}
{¬(p ∨ ⊥), p} # ¬(p ∨ ⊥) ↓ Asm

...
{¬(p ∨ ⊥), p} # ⊥; �¬E� ↑ ¬E?

{¬(p ∨ ⊥), p} # p ∨ ⊥; �¬E� ↑ ∨I2

{¬(p ∨ ⊥), p} # ⊥; ∅ ↑ ¬E

But as we can see, the �¬E� added to the Δ component of the sequents in the minor
premiss successfully handles this case by blocking the repeated application of ¬E. Instead
of getting lost on a failing search path, an automated prover would now be forced to
backtrack and try another rule such as ∨I1 instead, which quickly completes the derivation.

For CRF , ¬I, and ∨E, the side conditions preventing repeated assumptions serve to
prevent loops. Each of these rules can only be reapplied within a subdeduction among
its premisses if doing so would actually introduce a fresh assumption. This means CRF
and ¬I cannot be reused for the same formula, and ∨E cannot be applied with the same
major formula A ∨ B. The restriction to fresh assumptions is also important because
every new assumption resets Δ to ∅, so if there was a way to introduce them infinitely, it
would easily be possible to construct, for instance, a loop of repeated ⊥E applications in
deeper and deeper subdeductions. This is the reason why → I, despite already reducing
complexity bottom-up, must also be unable to repeat assumptions and instead let → I∗

handle such cases.

The loop-free nature of the top-down rules is apparent if we take into account that they
are applied starting from the assumptions, and their conclusions are either a subformula
of the major premiss (∨E1, ∨E2, → E) or a formula that cannot be further decomposed
with top-down rules (→ E∨).

75

5. Adapted Systems for Automation

5.3 The Refutational Case
The rules of N∗

BOX are quite similar to its assertional counterpart, beginning also with
the ones that bring assumptions into top-down reasoning and top-down conclusions into
bottom-up reasoning.

F k ∈ Γ
Γ $ F ↓ Asm

Γ $ F ↓
Γ $ F ; Δ; ∅ ↑ ↓↑

However, there are already some oddities apparent in these two basic rules. The assump-
tions in Γ are now also labeled with a unique integer k ∈ {1, . . . , |Γ|}, representing the
order in which they are nested, with k = 1 the outermost assumption. We refer to the
elements of a set structured this way as depth-labeled formulas, with k the depth. In the
bottom-up sequent, we can also see a wholly new component, which we will refer to as
Θ. This is a similar set consisting of elements P k, but P is specifically a propositional
constant or its negation and k ≥ 1 is an integer that, unlike with Γ, can appear multiple
times as a label in the same set.

Both of these changes are owed to a unique third source of information we must consider
in the complementary calculus, that being the atomic rules.

$ p; Δ; ∅ ↑ At∅ $ ¬p; Δ; ∅ ↑ ¬At∅

Γ �= ∅ fΓ(p) > 0
Γ $ p; Δ; pfΓ(p) ↑ At

Γ �= ∅ fΓ(p) > 0
Γ $ ¬p; Δ; ¬pfΓ(p) ↑ ¬At

These two rules have been split into four, one pair for outside the scope of all assumptions
and one we have to use once assumptions are present. All of them are bottom-up rules,
since rules with the ability to quite literally introduce formulas from nothing are best
treated like introduction rules.

In the absence of assumptions and therefore operative formulas, At∅ and ¬At∅ can be
applied whenever we want without having to care about any other elements of the context.
With assumptions, however, At and ¬At have to respect the side condition that only
fresh propositional constants can be assigned through them, which requires the help of
the new component Θ and a function fΓ(p) to keep track of what has already been used.

Definition 17. Let p be a propositional constant, Γ a set of depth-labeled formulas, and
Γp = {F k ∈ Γ | p occurs in F}. Then

fΓ(p) =
�

n − 1 if F n ∈ Γp, and Gm �∈ Γp for m < n

|Γ| otherwise

�

76

5.3. The Refutational Case

This function tells us the deepest level of our nested assumptions we can go into before
encountering a given propositional constant, being 0 if p already appears in the outermost
assumption scope, and equal to the total number of assumptions if it is truly fresh. This
gives us the ideal place to apply atomic rules without being blocked by an assumption,
but does not yet address the main difficulty that arises when moving from a linear
boxed notation to a tree notation: Operative formulas that could previously be discerned
simply by checking the lines above the current one may now also be found in neighboring
branches, and the information on which atomic rule applications they would hinder needs
to be transferred through the derivation. This purpose is served by the Θ component,
where formulas introduced by At and ¬At are collected and labeled with the assumption
depth at which we want to introduce them, making it possible to check for conflicts in
rules with multiple premisses. A welcome simplification is that, due to Triv allowing
unrestricted reuse of previously derived formulas in NBOX , we can always apply the
atomic rules at the very top of the assumption scope we want them in, meaning any
operative formulas not introduced by assumptions (which obviously need to come first)
or other atomic rule applications (which would mutually block each other no matter the
order) can be safely ignored.

Γ $ ⊥; Δ; ∅ ↑ ⊥I ⊥1 $ F ; ∅; Θ ↑
$ F ; Δ; Θ ↑ BOX

Γ $ A ∨ B ↓
Γ $ A ↓ ∨E1

Γ $ A ∨ B ↓
Γ $ B ↓ ∨E2

Γ $ A → B ↓
Γ $ ¬A ↓ → E1

Γ $ A → B ↓
Γ $ B ↓ → E2

Γ $ A; Δ; Θ ↑
Γ $ A ∧ B; Δ; Θ ↑ ∧I1

Γ $ B; Δ; Θ ↑
Γ $ A ∧ B; Δ; Θ ↑ ∧I2

Γ $ �; ��E�, Δ; Θ ↑ F �= � ��E� �∈ Δ
Γ $ F ; Δ; Θ ↑ �E

These rules can be brought over from the original system without any significant changes.

As previously mentioned, Θ becomes very relevant in the case of rules that require
multiple bottom-up premisses, whose derivations can independently use atomic rules that
may end up being in conflict.

Γ $ A; Δ; Θ1 ↑ A|Γ|+1, Γ $ B; ∅; Θ2 ↑ A �∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A ∨ B; Δ; Θ1 ∪ Θ2 ↑ ∨I1

Γ $ B; Δ; Θ1 ↑ B|Γ|+1Γ $ A; ∅; Θ2 ↑ B �∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A ∨ B; Δ; Θ1 ∪ Θ2 ↑ ∨I2

Γ $ A; Δ; Θ1 ↑ Γ $ B; Δ; Θ2 ↑ A ∈ Γ or B ∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A ∨ B; Δ; Θ1 ∪ Θ2 ↑ ∨I∗

77

5. Adapted Systems for Automation

Γ $ ¬A; Δ; Θ1 ↑ ¬A|Γ|+1, Γ $ B; ∅; Θ2 ↑ ¬A �∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A → B; Δ; Θ1 ∪ Θ2 ↑ → I1

Γ $ B; Δ; Θ1 ↑ B|Γ|+1, Γ $ ¬A; ∅; Θ2 ↑ B �∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A → B; Δ; Θ1 ∪ Θ2 ↑ → I2

Γ $ ¬A; Δ; Θ1 ↑ Γ $ B; Δ; Θ2 ↑ ¬A ∈ Γ or B ∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A → B; Δ; Θ1 ∪ Θ2 ↑ → I∗

BrCon(Θ1, Θ2, n) denotes the condition that there may be no pair of elements pj ∈
Θ1, ¬pk ∈ Θ2 or ¬pj ∈ Θ1, pk ∈ Θ2 such that j ≤ n and/or k ≤ n. Thus, the condition
BrCon(Θ1, Θ2, |Γ|) makes it so these branching rules can only be applied if there are no
contradictory atomic rule applications in either branch (unless they are hidden in deeper
assumption scopes on both sides), and Θ1 ∪ Θ2 in the conclusion ensures all recorded
atomic rule applications from both branches are passed on to subsequent rules.

The conditions of the form A �∈ Γ, here used as a shorthand for An �∈ Γ (with any n), are
to avoid repeated assumptions that could lead to infinite loops. However, we still want
to be able to introduce composite formulas with ∨ and → even if a required assumption
is already present, which is precisely what the additional variants ∨I∗ and → I∗ enable
us to do.

When it comes to branching rules, we obviously cannot forget ∧E and its total of three
different branches. With ΓA = A|Γ|+1, Γ and ΓB = B|Γ|+1, Γ, we have

Γ $ A ∧ B ↓ ΓA $ F ; ∅; Θ1 ΓB $ F ; ∅; Θ2 A �∈ Γ B �∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ F ; Δ; Θ1 ∪ Θ2 ↑ ∧E

.

Both minor premisses can have independent atomic rule applications within their newly
introduced subdeduction, but any that are instead placed in containing scopes must be
consistent with the other side. The major premiss, being represented by a top-down
sequent, cannot have any atomic rules in its derivation and is therefore irrelevant for this
condition.

The contradiction rules also introduce assumptions, but only along a single branch.

¬F |Γ|+1, Γ $ �; ∅; Θ ↑ F �= � F �= ¬F � ¬F �∈ Γ
Γ $ F ; Δ; Θ ↑ CRV

F |Γ|+1, Γ $ �; ∅; Θ ↑ F �∈ Γ
Γ $ ¬F ; Δ; Θ ↑ ¬I

Θ retains any elements from the subdeduction even after discharging the assumption,
since a neighboring branch could still contain a conflicting atomic rule application in a
shared assumption scope.

Finally, the ¬E rule contains the pitfall of being the only elimination rule whose major
premiss can be obtained directly by application of an atomic rule. Normal derivations do

78

5.3. The Refutational Case

not guard us against such a construction, and indeed the whole idea behind normalisation—
that elimination rules only produce information that must already be present if their
premisses can be derived with introduction rules—is effectively broken by having a rule
able to introduce the premiss from zero prior information. Therefore, N∗

BOX will have to
go out of its way to accommodate this not-quite-normal construction with a secondary
variation of the rule:

Γ $ ¬F ↓ Γ $ F ; �¬E�, Δ; Θ ↑ Γ �= ∅ �¬E� �∈ Δ
Γ $ �; Δ; Θ ↑ ¬E

Γ $ ¬p; Δ; ¬pk ↑ ¬At Γ $ p ↓ Γ �= ∅
Γ $ �; Δ; ¬pk ↑ ¬EAt

If the major premiss is a bottom-up sequent derived specifically by ¬At (it cannot be
¬At∅, since assumptions must be present to apply either ¬E), the formula is a negated
propositional constant ¬p. The minor premiss must then be exactly p, which conveniently
allows limiting its derivation to top-down reasoning only. This, in turn, lets us forgo use
of the Δ component for loop avoidance in this variation of the rule, since neither branch
can contain another copy of the conclusion sequent.

To better understand how the Θ component impacts proof search, let us consider a brief
example. Tamminga [39] himself gives this derivation of $ ((p → q) ∧ ¬p) → ¬q in his
original work:

1. ¬q ¬At
2. ¬q assumption
3. p At
4. (p → q) ∧ ¬p assumption
5. p → q assumption
6. q → E2: 5
7. � ¬E: 2, 6
8. ¬p assumption
9. p Triv: 3

10. � ¬E: 8, 9
11. � ∧E: 4, 5–7, 8–10
12. ¬((p → q) ∧ ¬q) ¬I: 4–11
13. ((p → q) ∧ ¬p) → ¬q → I2: 1, 2–12

Aside from the initial applications of atomic rules at lines 1 and 3, a key point here is
that the Triv application at line 9 repeats a conclusion of one such inference in a deeper
assumption scope, where it could not have been made directly due to (p → q) ∧ ¬p being

79

5. Adapted Systems for Automation

operative. The fact that the atomic rules can become blocked by additional assumptions
and necessitate constructions like this one is the main source of extra complexity in
N∗

BOX .

Now, a program trying to derive $ ((p → q)∧¬p) → ¬q in N∗
BOX would begin by looking

for rules it can apply to this formula in bottom-up direction—to speed things up, let us
say → I2 is selected for the first attempt. We obtain the following partial derivation:

$ ¬q; ∅; Θ1 ↑ ¬q1 $ ¬((p → q) ∧ ¬p); ∅; Θ2 ↑ BrCon(Θ1, Θ2, 0)
$ ((p → q) ∧ ¬p) → ¬q; ∅; Θ1 ∪ Θ2 ↑ → I2

Note that BrCon(Θ1, Θ2, 0) is trivially fulfilled because neither Θ set can contain a
formula with a depth label of 0 or below.

In the next step, we look for a way to derive the first premiss, and find:

$ ¬q; ∅; ∅ ↑ ¬At∅ ¬q1 $ ¬((p → q) ∧ ¬p); ∅; Θ2 ↑
$ ((p → q) ∧ ¬p) → ¬q; ∅; Θ2 ↑ → I2

We now know that Θ1 = ∅, and Θ2 consists of zero or more yet unknown elements at a
depth of at least 1.

What remains is the second premiss, which we tackle with the next inference step:

$ ¬q; ∅; ∅ ↑ ¬At∅
((p → q) ∧ ¬p)2, ¬q1 $ �; ∅; Θ2 ↑

¬q1 $ ¬((p → q) ∧ ¬p); ∅; Θ2 ↑ ¬I

$ ((p → q) ∧ ¬p) → ¬q; ∅; Θ2 ↑ → I2

To save space, we have omitted the evidently true side conditions of ¬I and → I2.

We could try to use ¬E on the assumption (¬q, 1), but since q already appears in that
very assumption, neither At nor any other rule can be used to derive it. Instead, we
define Γ to be the set of assumptions {((p → q) ∧ ¬p)2, ¬q1} and apply ∧E to construct
the following derivation δ (with the side condition BrCon(Θ3, Θ4, 2) omitted for brevity):

((p → q) ∧ ¬p)2 ∈ Γ
Γ $ (p → q) ∧ ¬p ↓ Asm (p → q)3, Γ $ �; ∅; Θ3 ↑ ¬p3, Γ $ �; ∅; Θ4 ↑

Γ $ �; ∅; Θ2 = (Θ3 ∪ Θ4) ↑ ∧E

Which makes the whole derivation

$ ¬q; ∅; ∅ ↑ ¬At∅
δ

¬q1 $ ¬((p → q) ∧ ¬p); ∅; Θ2 ↑ ¬I

$ ((p → q) ∧ ¬p) → ¬q; ∅; Θ2 ↑ → I2
.

The two branches of bottom-up reasoning in δ each represent a distinct subdeduction
with its own third assumption, and each of them can contain different elements with
depth exactly 3 in their respective Θ component.

80

5.3. The Refutational Case

All that is left is to derive �, first in the left branch as δ1:

¬q1 ∈ (p → q)3, Γ
(p → q)3, Γ $ ¬q ↓ Asm

(p → q)3 ∈ (p → q)3, Γ
(p → q)3, Γ $ p → q ↓ Asm

(p → q)3, Γ $ q ↓ → E2

(p → q)3, Γ $ q; �¬E�; ∅ ↑ ↓↑

(p → q)3, Γ $ �; ∅; Θ3 = ∅ ↑ ¬E

In view of the ↓↑ rule, we obtain the information that Θ3 = ∅.

The right branch requires the following δ2:

¬p3 ∈ ¬p3, Γ
¬p3, Γ $ ¬p ↓ Asm

¬p3, Γ �= ∅ f(¬p3,Γ)(p) = 1 > 0
¬p3, Γ $ p; �¬E�; p1 ↑ At

¬p3, Γ $ �; ∅; Θ4 = {p1} ↑ ¬E

Putting everything together, we have finally completed the derivation.

$ ¬q; ∅; ∅ ↑ ¬At∅

((p → q) ∧ ¬p)2 ∈ Γ
Γ $ (p → q) ∧ ¬p ↓ Asm

δ1 δ2
Γ $ �; ∅; Θ2 = (∅ ∪ Θ4) ↑ ∧E

¬q1 $ ¬((p → q) ∧ ¬p); ∅; Θ2 ↑ ¬I

$ ((p → q) ∧ ¬p) → ¬q; ∅; Θ2 ↑ → I2

Since Θ4 has now been specified exactly, figuring out what is contained in the remaining
Θ sets is merely a matter of propagating that information down the derivation.

Θ4 = {p1}
Θ3 = ∅
Θ2 = ∅ ∪ {p1} = {p1}
Θ1 = ∅

Therefore, the ∧E side condition BrCon(Θ3, Θ4, 2) means BrCon(∅, {p1}, 2) and is clearly
fulfilled.

5.3.1 Soundness
Soundness of N∗

BOX follows from soundness of NBOX if it is possible to translate all
derivations from the former system into the latter.

Theorem 9. For any derivation in N∗
BOX with root sequent Γ $ F ; Δ; Θ ↑ or Γ $ F ↓,

there exists a derivation in NBOX whose last line contains the formula F with active
assumptions Γ.

81

5. Adapted Systems for Automation

Proof. Because the handling of operative formulas and the atomic rules is so different,
this translation is significantly less obvious than it was for the assertional system. We
will show that our conditions are sufficient to emulate those from NBOX , by induction
on the depth d of the given derivation.

Base Case: d = 1. Thus, the root rule is one of ⊥I, Asm, At∅, ¬At∅, At, or ¬At.

• If ⊥I, we can directly use the corresponding rule of NBOX , embedded in the
assumptions from Γ (if any).

• If Asm, we introduce the assumptions from Γ and use Triv to place the desired one
on the final line.

• If At∅ or ¬At∅, then Γ = ∅, no formulas are operative by definition, and the At or
¬At rule of NBOX can be freely applied to derive the conclusion we want.

• If At or ¬At, then F = p or F = ¬p and there exists an integer 0 < fΓ(p) ≤ |Γ|.
After introducing exactly that number of assumptions (in ascending order of their
labeled depth), the corresponding rule of NBOX must still be applicable, because if
those assumptions included a formula F containing p, we would have F n ∈ Γp for
some n < fΓ(p), which would imply fΓ(p) ≤ n − 1 and thus be contradictory. After
introducing the remaining assumptions, Triv can be used to get F on the final line.

Induction Hypothesis: For any derivation in N∗
BOX with depth 1 < d ≤ n − 1 with

root sequent Γ $ F ; Δ; Θ ↑ or Γ $ F ↓, there exists a derivation in NBOX whose last
line contains the formula F with active assumptions Γ. Also, we can make the following
statements about applications of the atomic rules in the NBOX derivation:

• For each occurrence of At or ¬At outside the scope of all assumptions, there is an
application of At∅ or ¬At∅, respectively, in the N∗

BOX derivation.

• For each occurrence of At within the scope of one or more assumptions, there is an
application of At in the N∗

BOX derivation introducing a sequent Γ∗ $ p; Δ∗; pn ↑. Γ∗

is a set of assumptions including, but not limited to, all assumptions active at the
point of the At application in the NBOX derivation, p the introduced propositional
constant, and n exactly the number of assumptions in whose scope the line with At
is. Δ∗ represents the loop avoidance component, with the stipulation that Δ ⊆ Δ∗

if Γ∗ = Γ.

• For each occurrence of ¬At within the scope of one or more assumptions, there is an
application of ¬At in the N∗

BOX derivation introducing a sequent Γ∗ $ ¬p; Δ∗; ¬pn ↑,
with the symbols defined as above.

Induction Step: We make a case distinction at the root rule.

82

5.3. The Refutational Case

• ↓↑: From the premiss Γ $ F ↓, we have by the induction hypothesis a derivation in
NBOX ending on formula F with assumptions Γ, which is just what we need.

• BOX : The derivation of F under the assumption ⊥ we get from the induction
hypothesis can immediately be extended with the BOX rule of NBOX .

• ∧E1, ∧E2, → E1, → E2, ∧I1, ∧I2, �E, CRV , ¬I: For all these rules, we have a
derivation ending precisely on the one premiss needed to apply them.

• ∨I1: By the induction hypothesis, we have a derivation in NBOX of A in the scope
of the assumptions Γ, as well as one of B in the scope of assumptions A, Γ. In order
to extend these derivations to one of A∨B via ∨I1, we must place the subdeduction
concluding B below the line where A is derived. If Γ = ∅, doing so is easy, but
otherwise, the potential existence of atomic rules at any assumption level of either
derivation makes some careful interleaving necessary. Specifically, we take each line
concluded by At or ¬At in the derivation of B, except those within the scope of
the innermost assumption A, and insert it into the derivation of A so it stands
within the scope of exactly as many assumptions as before, and after any atomic
rule applications already present (duplicates are simply skipped if they are at the
same depth, otherwise the deeper one is replaced by Triv).
We can be sure doing so will not produce any conflicts, because by the induction
hypothesis, each line with At or ¬At in the derivation of A (within the scope
of at least one assumption) corresponds to a sequent Γ∗ $ p; Δ∗; pn ↑ or Γ∗ $
¬p; Δ∗; ¬pn ↑ derived by At or ¬At, respectively, and the same is true in the
derivation of B with an additional assumption A. If there was, for instance, both an
At application in the derivation of A concluding p at depth j and a ¬At application
in the derivation of B concluding ¬p at depth k, we would have pj ∈ Θ1, pk ∈ Θ2.
In this scenario, the only way to satisfy BrCon(Θ1, Θ2, |Γ|) is if j, k > |Γ|, which
translated to NBOX means the At application occurs in some subdeduction that
is closed before the conclusion A and p is no longer operative at that point, while
the ¬At application occurs after the assumption A immediately following that
conclusion. Therefore, deriving ¬p by ¬At is completely legal, and the same
reasoning applies if At and ¬At are switched.
It follows that, given that BrCon(Θ1, Θ2, |Γ|) must indeed be satisfied in the
derivation we are translating, interleaving the two given derivations in NBOX as
described is a safe process, and once we have done so, ∨I1 can be applied at the
line immediately following the subdeduction.

• ∨I2, → I1, → I2 all follow the same logic as ∨I1.

• ∨I∗: Things are slightly different in this case, as the induction hypothesis only
gives us derivations for A and B in the scope of Γ, while NBOX needs one of them
to have the other formula as an additional assumption. However, we also know
that A ∈ Γ or B ∈ Γ, so introducing that already present assumption a second time
will not lead to any new operative formulas that could interfere with atomic rules

83

5. Adapted Systems for Automation

and we can add it to the respective derivation with no issues. This then gives us
two derivations we can interleave and extend as we normally would for ∨I1 or ∨I2.

• → I∗: Works as above.

• ∧E: We have a derivation in NBOX of A ∧ B in the scope of Γ, and two of F with
an additional assumption A or B, respectively. Since no atomic rules can be used
in the derivation of a top-down sequent, we know by the induction hypothesis that
the derivation for the major premiss also contains none in its converted form. We
can therefore easily merge the derivation of F with the extra assumption A into
this derivation, placing all lines with At or ¬At right at the start of the appropriate
assumption scope, and then add the derivation of F with the extra assumption B by
the same interleaving tactic used before. The end result is the exact configuration
of lines needed to apply ∧E.

• ¬E, ¬EAt : Since one of the premisses is always a top-down sequent and thus
translates to a derivation that can have no atomic rules in it, merging it with the
other branch is a simple matter. All that needs to be done from there is adding a
line with � derived by ¬E at the end.

5.3.2 Completeness
The Γ-weakening lemma can be applied to N∗

BOX as well, though in a slightly altered
form to account for the special nature of derivations outside the scope of all assumptions.

Lemma 10. Given a derivation in N∗
BOX with assumptions Γ �= ∅ and formula F at the

root, and a set of depth-labeled formulas Γ� ⊇ Γ, there exists a derivation in N∗
BOX with

assumptions Γ� and formula F at the root.

Proof. By induction on the depth d of the given derivation.

Base Case: d = 1. Thus the root rule is one of ⊥I, Asm, At, or ¬At. The first two
have no conditions that could be hindered by the presence of additional assumptions,
but the atomic rules are not quite as obvious. If, for example, fΓ(p) > 0 and fΓ�(p) = 0,
we would have the issue that At can no longer be applied to derive p after exchanging Γ
for Γ�. However, this can be ruled out because fΓ�(p) = 0 would require the existence of
a formula P 1 ∈ Γ� containing p, while fΓ(p) > 0 simultaneously requires P 1 �∈ Γ. But the
depth labels on the assumptions are by definition unique and cover exactly the integers
{1, . . . , |Γ|}, so there must already be Q1 ∈ Γ so that Q does not contain p. Obviously,
P �= Q, and so we cannot have P 1 ∈ Γ�, as it would be a duplicate depth label. Therefore,
atomic rules can still be applied even with additional assumptions in place.

Induction Hypothesis: For any derivation in N∗
BOX with depth 1 < d ≤ n − 1 that

has assumptions Γ �= ∅ and formula F at the root, there exists a derivation in N∗
BOX

with assumptions Γ� and formula F at the root, where Γ� ⊃ Γ.

84

5.3. The Refutational Case

Induction Step: We distinguish by the root rule.

• CRV , ¬I: If an assumption is present that violates the side condition, we have
Γ� $ �; Δ; Θ ↑ by the induction hypothesis and contraction, which lets us proceed
by �E instead.

• ∧E: If A ∈ Γ�, we have, by contraction on A|Γ�|+1, Γ� $ F ; Δ; Θ ↑ the sequent
Γ� $ F ; Δ; Θ|Γ�| ↑, immediately resolving the issue. The same approach works for
B ∈ Γ�, and any other case simply does not violate side conditions in the first place.

• ∨I1, ∨I2, → I1, → I2: If the original rule is blocked by A ∈ Γ� (for the ∨I rules),
¬A ∈ Γ� (for the → I) rules, or B ∈ Γ�, it also means the side conditions of ∨I∗ or
→ I∗ are fulfilled, so we can use the appropriate one out of those rules instead.

• No other rules (that have sequents as premisses) feature conditions that could
conflict with exchanging Γ for Γ�.

Theorem 10. For any (simplified and direct) normal derivation in NBOX whose last
line contains the formula F with active assumptions Γ, there exists a derivation in N∗

BOX
with root sequent Γ # F ; ∅; Θ ↑.

Proof. We proceed by induction on the length l of the NBOX derivation.

Base Case: l = 1. Then, the formula F can be an assumption, ⊥ derived by ⊥I, or
a propositional constant p or its negation ¬p derived by an atomic rule. The N∗

BOX
derivations for case one and two mirror the ones we already saw in the assertional system:

F n ∈ Γ
Γ # F ↓ Asm

Γ # F ; ∅; ∅ ↑ ↓↑ Γ # ⊥; ∅; ∅ ↑ ⊥I

For the atomic rules, we know that the derivation consists only of a single line and does
not have any space for assumptions before its conclusion, so Γ = ∅ and we can simply
use the rules designed specifically for that case.

p; ∅; ∅ ↑ At∅ # ¬p; ∅; ∅ ↑ ¬At∅

Induction Hypothesis: For a normal derivation in NBOX with length 1 < l ≤ n − 1
that has formula F and active assumptions Γ at line l, there exists a derivation in N∗

BOX
with root sequent Γ # F ; ∅; Θ ↑. If the original derivation ended on an elimination rule,
the root rule is ↓↑, ∧E (if F = �), or �E.

Induction Step: We distinguish by the final rule applied on line n of the derivation in
NBOX .

85

5. Adapted Systems for Automation

• Triv: We obtain directly from the induction hypothesis a N∗
BOX derivation Γ� $

F ; ∅; Θ ↑, with Γ� �= ∅ and Γ� ⊆ Γ. This immediately gives us Γ $ F ; ∅; Θ ↑ by
Γ-weakening.

• BOX : The induction hypothesis gives us a derivation ending on ⊥1 $ F ; ∅; Θ ↑, the
exact sequent needed to apply our own version of the BOX rule and complete the
derivation outside the scope of all assumptions.

• ⊥I: No different from the base case.

• At, ¬At: If Γ = ∅, we can use At∅ or ¬At∅ just like in the base case. Otherwise, we
know no assumption in Γ contains the propositional constant p (F = p or F = ¬p),
so it is safe to use the appropriate one of the following two derivations:

Γ # p; ∅; p|Γ| ↑ At
Γ # ¬p; ∅; ¬p|Γ| ↑ ¬At

• ∨E1, ∨E2, → E1, → E2: We are working with normal derivations, so the premiss
must have originally been derived by an elimination rule, giving us by the induction
hypothesis a derivation with root rule ↓↑ or �E. In the first case, we have the
top-down sequent we need as our sole premiss and can use ↓↑ to get a bottom-up
sequent again after applying the appropriate rule, and in the latter case all we need
to do is replace the conclusion of �E.

• ∧I1, ∧I2: As there are no special side conditions, we can always use the appropriate
rule in N∗

BOX as well.

• �E: If �E is not used under the exact assumptions Γ in the derivation of Γ $
�; ∅; Θ ↑ we have by the induction hypothesis, we can simply add ��E� to the Δ
component and use that sequent as our premiss. Otherwise, the conflicting rule
application must already have such a sequent as its premiss, and we can construct
our derivation of F by replacing the conclusion.

• ¬I: We have access to the bottom-up sequent F |Γ|+1, Γ $ �; ∅; Θ� ↑ by the induction
hypothesis, which is all we need if F �∈ Γ. Otherwise, we have the premiss
Γ $ �; ∅; Θ ↑ for �E by contraction and can simply use that rule instead.

• CRV : Violations of the side condition ¬F �∈ Γ can be handled as above. And unlike
in the assertional system, the lack of a top-down rule that can use new assumptions
to extract additional information from older assumption means there are not even
any cases where subdeduction assumptions ¬� or ¬¬F � would falsely appear to be
useful.

• ¬E: If the major premiss ¬F was derived by an elimination rule, the induction
hypothesis gives us either Γ $ �; ∅; Θ ↑, which is already the desired conclusion, or
Γ $ ¬F ↓, which is the exact sequent needed for the major premiss of ¬E in N∗

BOX .
In the latter case, we also have Γ $ F ; ∅; Θ for the minor premiss, but strictly

86

5.3. The Refutational Case

speaking need Γ $ F ; �¬E�; Θ. Any additional application of ¬E that would cause
a conflict in the derivation of this sequent would have as its conclusion Γ $ �; ∅; Θ ↑,
which, again, is exactly what we need.
If the major premiss was derived by a non-elimination rule, that rule can only be
¬At in a normal derivation, and F is a propositional constant p. In that case,
we can apply ¬EAt , but there must be a top-down sequent for the minor premiss
p available. Assume this is not the case: Then it follows from the induction
hypothesis that either the root rule is �E (enabling a trivial solution) or p was
not obtained by an elimination rule in the original derivation. With At not an
option due to the conflicting ¬At, the only way to obtain a propositional constant
by a non-elimination rule would be CRV , requiring a derivation of � under the
assumption ¬p.
Now recall that soundness in N, and by extension NBOX , is defined by the statement
“if |=

Rn, then |=

Rn∪{Fn}” where Fn denotes the formula at line n and Rn the set
of operative formulas at that line (excluding Fn itself, unless it is being introduced
as an assumption). There can be no countermodels for any set of formulas with � in
it, so deriving it in a sound manner is only possible if Rn also had no countermodels.
But because all rules adhere to this soundness condition, the only way to add to the
set of operative formulas so that Rn ∪ {Fn} has no countermodels even though Rn

had at least one is by introducing an assumption. Furthermore, the ¬p assumption
for CRV cannot have had this effect, as it was either introduced after deriving ¬p
by ¬At and did not contribute any new information, or introduced in a state where
no operative formula contained the propositional constant p, which should have
allowed us to preserve any existing countermodels by simply extending them with
the appropriate value for p. The only remaining possibility is that a contradiction
that allows deriving � was already present in the operative formulas before the
CRV subdeduction, so there is no need to use ¬E with major premiss ¬p in the
first place.

• ∨I1: For F = A ∨ B, we have given Γ $ A; ∅; Θ1 ↑ and A, Γ $ B; ∅; Θ2 ↑. Assuming
A �∈ Γ, we still need to ensure BrCon(Θ1, Θ2, |Γ|) holds, i.e., there may not be any
pair of At and ¬At using the same propositional constant, unless both occur in
independent assumption scopes at a depth greater than |Γ|. This is clearly true if
Γ = ∅ since |Γ| = 0 then, but other cases must be inspected more closely. Suppose
the derivation of the major premiss contains At introducing p, and the derivation of
the minor premiss contains ¬At introducing ¬p. If both happen in the scope of |Γ|
or fewer assumptions, they must have stood somewhere before the assumption A in
the original derivation, and would conflict with each other no matter which order
they are written. If At is outside that subdeduction and ¬At is inside, there is also
an obvious conflict, since p would be operative at the ¬At line. However, there is
also the possibility that At is applied in some arbitrary subdeduction during the
derivation of the minor premiss, and ¬At in the scope of |Γ| or fewer assumptions.
In such a case, the line with ¬At would have to stand below that subdeduction so

87

5. Adapted Systems for Automation

as to not block At, but would itself not be blocked because p would cease to be
operative before reaching it. Meanwhile, in N∗

BOX , the application of ¬At would
place ¬pk with k ≤ |Γ| into Θ2, where it would conflict with pj ∈ Θ1, even though
j > |Γ|.
We can resolve this issue by observing that a normal derivation never has to take
such a form. If At can be applied within some subdeduction in the derivation of the
minor premiss, that subdeduction’s assumption must be one that does not contain
p, and if ¬At can be applied at some point after that assumption is discharged,
p can also not appear in the conclusion of the rule that discharges it, or in any
assumptions in Γ. But any rule which could use p as a premiss, except for ¬E,
is an introduction rule with a conclusion that would contain p, and in a normal
derivation, the only further use for those conclusions would be introduction rules
that also would not remove p. In the case of ¬E, it would certainly be possible
that p is the minor premiss that together with ¬p lets us derive �, and from that a
final conclusion for the subdeduction which indeed does not contain p. However,
the major premiss ¬p would have to be derived by elimination rules starting from
some assumption containing p, which we already know are not present. So this
possibility can be ruled out as well, and we can only conclude that any derivation
using p introduced by At within the subdeduction does not actually connect to the
final conclusion of the subdeduction, meaning it can be removed without impacting
the overall derivation at all. And if we do that, we can just as well place the ¬At
application from after the subdeduction before it, restoring the standard form.
If At and ¬At are switched in the above scenario, so that ¬p is the formula we
are deriving inside the additional subdeduction, the ¬E case specifically is slightly
different in that a normal derivation could also use introduction rules to derive the
minor premiss p. However, we have previously shown that this is never actually
necessary, and so there is no problem.
In summary, the only case in which BrCon(Θ1, Θ2, |Γ|) would not hold can always
be transformed into a case where it does, and so ∨I1 can be applied without issue.
For the case where A ∈ Γ, we have a simple solution available in the form of ∨I∗,
since Γ $ B; ∅; Θ2 ↑ follows by contraction.

• ∨I2, → I1, → I2 all follow the same structure as ∨I1, and can be translated in the
same way.

• ∧E: The induction hypothesis gives us a sequent Γ $ A ∧ B; ∅; Θ ↑ derived by ↓↑ or
�E, as well as the sequents A, Γ $ �; ∅; Θ1 ↑ and B, Γ $ �; ∅; Θ2 ↑. If the bottom-
up sequent for the major premiss was derived by �E we already have Γ $ �; ∅; Θ ↑,
and if it was derived by ↓↑ we have a matching top-down sequent. If A ∈ Γ or
B ∈ Γ, then Γ $ �; ∅; Θ1 ↑ or Γ $ �; ∅; Θ2 ↑ follows by contraction, so the only
remaining side condition to watch out for is BrCon(Θ1, Θ2, |Γ|). Conveniently, the
top-down reasoning by which A ∧ B is derived has no room for atomic rules, so the
only problem can be conflicts between the two subdeduction branches. Specifically,

88

5.3. The Refutational Case

we need to avoid pairs of At and ¬At used on the same propositional constant p in
the scope of |Γ| or fewer assumptions—what happens at the bottom level of each
subdeduction does not affect the other side. Since the shape of ∧E in NBOX is
specifically so that the two subdeductions must stand directly beneath each other,
any atomic rule applications they need at shallower assumption levels must stand
before them, where they would necessarily be in conflict. Thus, no problematic
pair of these rules can exist and we can safely assume the condition holds.

5.3.3 Loop-freeness
With the ∧ introduction rules so closely mirroring the ∨ introduction rules of the
assertional system, there is of course the same kind of scenario that could potentially
lead to an infinite loop in bottom-up reasoning, which the Δ component prevents in the
same way:

¬(p ∧ �)2 ∈ {¬(p ∧ �)2, p1}
{¬(p ∧ �)2, p1} # ¬(p ∧ �) ↓ Asm

...
{¬(p ∧ �)2, p1} # �; �¬E�; Θ ↑ ¬E?

{¬(p ∧ �)2, p1} # p ∧ �; �¬E�; Θ ↑ ∧I2

{¬(p ∧ �)2, p1} # �; ∅; Θ ↑ ¬E

Otherwise, the loop-freeness of bottom-up reasoning is apparent. ∧I1, ∧I2, ∨I1, ∨I2,
→ I1, and → I2 all have subformulas of their conclusion as premisses, BOX and �E
cannot be applied in the derivation of their own premisses, and ∧E, CRV , and ¬I cannot
be repeated with the same assumptions in the subdeductions that form their premisses.
¬E is limited by Δ and thus reliant on other rules to introduce new assumptions, but
this condition does not apply to ¬EAt , since its only bottom-up premiss is always derived
with a single inference step.

The top-down rules are only able to extract subformulas from the given assumptions,
leaving no room for any loops.

89

CHAPTER 6
Implementation

Our automated theorem prover Hermes implements both N∗ and N∗
BOX , allowing it to

judge a given formula either provable (i.e., valid) or refutable and produce a natural
deduction derivation for this result.

6.1 Overview
6.1.1 System Architecture
Hermes is implemented using the logic programming language Prolog (more specifically,
SWI-Prolog [41]), which features built-in proof search and backtracking capabilities that
can be adapted for our purposes. Figure 6.1 outlines the key components of the program
and their interactions.

The sole point of user interaction is the module ndj, which receives a formula F and
outputs δ�F , a natural deduction derivation of its validity or refutability in a linear boxed
style similar to the one used in N and NBOX .

Internally, ndj concurrently calls the modules ndprovable and ndrefutable, which
are the actual implementations of N∗ and N∗

BOX , respectively. Proof search in both
modules starts from a bottom-up sequent with formula F and no assumptions, and calls
itself recursively with the premisses needed to derive its current goal by some appropriate
rule. Each time a new assumption is introduced and a subdeduction begins during this
process, the module tdc is used to generate the top-down closure TDC(Γ) from the current
assumptions Γ. This is a set of derivations containing all possible conclusions that can
be obtained from Γ using only top-down reasoning, which allows us to more efficiently
obtain the premisses needed for ↓↑ and similar rules.

Since N∗ and N∗
BOX are complementary as long as no assumptions are present, and both

systems are loop-free, exactly one of the concurrent calls made by ndj will eventually

91

6. Implementation

User

ndj

ndprovable ndrefutable

tdc

log_proof

F

“Is F valid?”

premisses

Γ TDC(Γ)

δF “Is F refutable?”

premisses

ΓTDC(Γ)

δF

δF

δ�F

δ�F

Figure 6.1: Architecture of Hermes.

succeed and yield a tree-style derivation δF showing either validity or refutability of F .
Finally, the module log_proof converts δF to its linear representation δ�F , which is the
more easily readable form we want to display to the user.

6.1.2 Input Format

The input formula F must be given as a term in prefix notation, e.g., a → (b ∧ c) would
be impl(a,and(b,c)). The symbols of propositional logic are translated as follows:

• A ∧ B: and(A,B);

• A ∨ B: or(A,B);

• A → B: impl(A,B);

• ¬F : neg(F);

• �: 1; and

• ⊥: 0.

Propositional constants are denoted by arbitrary atomic terms other than 1 and 0,
usually single lowercase characters.

92

6.2. Implementational Aspects

6.1.3 Output Format

The derivation δ�F uses a linear boxed notation, as it is easier to display and read compared
to tree-style derivations that very quickly explode in width. The notation is fairly similar
to what we used for N and NBOX , but has some differences to simplify conversion and
display. Most notably, boxes are not drawn fully, but only hinted by zero or more copies
of the character | written between the line number and the formula, representing the left
edges of the appropriate number of nested boxes. The assumption at the start of each
subdeduction is specially marked via a prefix *, and is repeated via Triv each time it
appears as the premiss of a bottom-up rule (even if the position of the assumption would
also allow using it directly). We also mostly retain rules unique to N∗ and N∗

BOX , such
as the versions of → I that do not require a subdeduction if the appropriate assumption
is already present. Similarly, instead of moving applications of the atomic rules so they
are correctly placed with regards to operative formulas in NBOX , we keep them at their
original assumption depth and only note as a suffix of the rule name the assumption
depth at which they are effectively applied (i.e., the value of fΓ(p) for the propositional
constant p in their conclusion).

As an example, for F = (p ∧ q) ∨ p, the program would judge the formula refutable and
output the following δ�F :

1. | *0 [asm]
2. | p [at^1]
3. | and(p,q) [and-i1: 2.]
4. | | *and(p,q) [asm]
5. | | p [at^1]
6. | or(and(p,q),p) [or-i1: 3., 4.-5.]
7. or(and(p,q),p) [box: 1.-6.]

6.2 Implementational Aspects

6.2.1 Data Structures

The internal representation of formulas used in the proof search uses the same prefix
notation as the input formula and the formulas contained in the output. The sets Γ,
Δ, and Θ are simple Prolog lists, with Θ specifically using the ordsets library to avoid
duplicates in Θ1 ∪ Θ2. While duplicates in Γ and Δ are, on a technical level, possible,
they are prevented by the structure of the rules in both N∗ and N∗

BOX , which explicitly
only introduce new members into these sets.

The tree-style derivation δF built internally is represented by the log, a recursive term of
the form (F,Rule,Asm,Prems), where F is the formula at the root of the derivation,
Rule the root rule, Asm the assumptions at the root, and Prems a list containing the
zero or more premisses of the root rule, each represented with a term of the same form.

93

6. Implementation

A simple derivation in N∗

p ∈ {p}
p # p ↓ Asm

p # p; ∅ ↑ ↓↑
p ∈ {p}
p # p ↓ Asm

p # p; ∅ ↑ ↓↑
p # p ∧ p; ∅ ↑ ∧I

p → (p ∧ p); ∅ ↑ → I

corresponds to the log

(impl(p,and(p,p)),impl-i,[],[
(and(p,p),and-i,[p],[

(p,tdbu,[p],[
(p,asm,[p],[])

]),
(p,tdbu,[p],[

(p,asm,[p],[])
])

])
]).

By tdbu, we refer to the top-down/bottom-up conversion rule ↓↑.

6.2.2 Efficient Backtracking
When traversing the vast search space presented by the many rules available in a natural
deduction system, we must expect to frequently encounter dead ends—paths along which
the derivation cannot be completed. In such an event, the program will backtrack to
the last point at which there are still different untried decisions available and try one
of them, and thanks to the loop-free nature of the underlying systems, this process will
eventually lead to a complete exploration of the search space. The time needed to do so
can be reduced significantly if we avoid redoing those decisions of which we know that
changing them will not make any difference.

In N∗, this is quite simple: Once we have a certain sequent Γ # F ; Δ ↑ or Γ # F ↓, how
exactly that sequent was derived has no bearing on subsequent inference steps. This
means there is no need to bother with backtracking into a derivation that has already
succeeded once, which we can ensure by wrapping each derivation step with the predicate
once.

Unfortunately, N∗
BOX is somewhat less accommodating, as the “how” of a top-down

derivation can very much make a difference whenever we reach a rule that branches into
two of them. For instance, the inference step

Γ $ A; Δ; Θ1 ↑ A, Γ $ B; Δ; Θ2 ↑ A �∈ Γ BrCon(Θ1, Θ2, |Γ|)
Γ $ A ∨ B; Δ; Θ1 ∪ Θ2

∨I1

94

6.2. Implementational Aspects

requires answering a grand total of four questions:

1. Is A �∈ Γ?

2. Is there a derivation of Γ $ A; Δ; Θ1 ↑?

3. Is there a derivation of A, Γ $ B; Δ; Θ2 ↑?

4. Does BrCon(Θ1, Θ2, |Γ|) hold?

In bottom-up proof search, we can always expect to have Γ fully instantiated before any
of the premisses are derived, but the Θ component is filled in the reverse direction and so
remains completely unknown until we have completed the derivation in which it appears.
Not checking the condition on Γ upfront would only lead to pointlessly wasting time
trying to derive the premisses and BrCon(Θ1, Θ2, |Γ|) must be checked at the end since
Prolog does not natively provide a way to preemptively impose the required constraint on
the unbound variables, so the only flexibility we have with this order would be swapping
around Steps 2 and 3.

The conundrum now is as follows: If Step 3 fails, there is no need to backtrack into Step 2,
since at this stage the reason for the failure is still unrelated to anything that happened
in the derivation of the other premiss. But if Step 4 fails, a different derivation of either
premiss could have a different Θ component that resolves the issue, and so backtracking
into both steps 2 and 3 becomes necessary for completeness. In other words, we would
have to eliminate the choice points left by Step 2 after a failure of Step 3, but retain
them if Step 3 succeeds.

We can, in fact, motivate Prolog to process our program in just this way by using a
specific combination of its built-in control structures:

1,
call((

2,
(3 *-> true ; !, false)

)),
4

The numbers 1-4 here act as stand-ins for the goals checking the respective condition.
The most important line is (3 *-> true ; !, false), which executes Step 3 (the
search for a derivation of A, Γ $ B; Δ; Θ2 ↑) in the condition part of the *-> predicate,
which unlike the plain -> predicate (not to be confused with the logical connective →)
leaves all choice points created on its left-hand side intact. Thus, if Step 3 succeeds, we
move to Step 4 while keeping the choice points from Step 2 and 3, and will backtrack to
them if we find BrCon(Θ1, Θ2, |Γ|) does not hold. However, if Step 3 fails, we instead
execute !, false, which will first use a cut (!) to prune all choice points created by

95

6. Implementation

Steps 2 and 3 (but no others, as call is opaque to the cut) and then trigger a failure,
backtracking to whatever previous choice points are available.

It is worth noting that choice points from Step 2 and 3 will also remain after Step 4 has
succeeded, meaning a failure in a subsequent Step could cause the program to attempt
searching for alternate derivations of Γ $ A; Δ; Θ1 ↑ or A, Γ $ B; Δ; Θ2 ↑. This may
actually be useful: The conclusion of ∨I1, for example, has Θ1 ∪ Θ2, so changing the Θ
component of one of its premisses may resolve a conflict in a rule using that conclusion
itself among its premisses.

While necessary for completeness when implementing N∗
BOX , enabling such extensive

backtracking into alternate derivation paths can have disastrous consequences with
regards to the quick termination we would ideally like to see. While loop-freeness
guarantees us all derivations are finite in length, and thus there is only a finite number
of derivations possible for each formula, that number is still potentially enormous. And
if those alternatives do no actually differ in the Θ component, the program will waste
inordinate amounts of time exploring them only to fail at the consistency check with
every single one.

To counteract this issue, we would have to predict in advance which alternate derivations
cannot impact Θ and avoid leaving choice points for them in the first place. One simple
measure is disregarding alternatives for a derivation by At or ¬At (by placing a cut
at the end of the respective clauses). In a simplified normal derivation, the only other
way to obtain p or ¬p is from an elimination rule (which we can simply check before
the atomic rules) or by CRV or ¬I. However, those rules need to find a contradiction
either by deriving their intended conclusion again under the opposite assumption, or by
already having a contradiction present without those assumptions. In the former case,
we would still need the atomic rule and thus not change Θ, and in the latter we could
just directly use the contradiction to begin with. So any alternative to such a derivation
would be useless to our backtracking efforts, and we can safely discard the choice point
right away. Similarly, any part of the derivation that ends on Θ = ∅ can be kept intact,
as no variation of it could possibly impact the consistency check of subsequent rules any
less. We can accomplish this behavior by simply adding (Ats = [] -> ! ; true)
at the end of each clause.

6.2.3 Top-Down Closures

For each instance of the ↓↑ rule, we need to find a derivation consisting solely of top-down
rules that ends on Γ # F ↓ or Γ $ F ↓, with Γ and F matching the respective conclusion.
Top-down rules, obviously, are not well-suited to being processed bottom-up starting
from the known F , so we must instead take each assumption in Γ, repeatedly apply
top-down rules, and hope to eventually find F . In the worst case, we would construct all
possible top-down derivations, only to then discard all but the one actually ending on
the correct F .

96

6.2. Implementational Aspects

To make this process a little less wasteful, we can instead do the work only once in advance
for each assumption scope, storing all found derivations in a top-down closure from which
↓↑ can simply pick without needing to conduct a proof search of its own. Formally, we
can define the top-down closure TDC(Γ) for N∗ as the smallest set of derivations such
that:

1. If F ∈ Γ, then Γ # F ↓ Asm∈ TDC(Γ).

2. Let R be a N∗ rule of the form

Γ # F1 ↓ · · · Γ # Fn ↓
Γ # F ↓ R

,

and δ1, . . . , δn derivations of Γ # F1 ↓, . . . , Γ # Fn ↓ (n ≥ 1). If {δ1, . . . , δn} ⊆
TDC(Γ), then also

δ1 · · · δn

Γ # F ↓ R ∈ TDC(Γ).

As already established, we do not actually care how exactly a sequent was derived, so
in practice this set can be further restricted by omitting duplicate derivations of the
same formula F . For the same reason, it makes sense to block backtracking into the
computation of the top-down closure by using once.

If we swap N∗ for N∗
BOX and # for $ in the above definition, it also works for the

refutational system. Even there, we do not need more than one derivation with the same
conclusion, because atomic rules do not factor into top-down reasoning.

Another advantage of always keeping the top-down derivable formulas in view is that we
can sometimes avoid redundant steps, which naturally leads to more readable derivations.
Specifically, we can replace side conditions of the form F �∈ Γ that prevent duplicate
assumptions with F �∈ TDC(Γ), since a formula directly derivable from an assumption
this way can be used in any place where we would use an assumption. This is especially
productive when applying ∨E of N∗ and ∧E of N∗

BOX , which can be reduced to just one
of their subdeductions. On the other hand, there is no meaning to this trick with rules
like → I of N∗, which also have a counterpart that does not introduce new assumptions,
and so we retain the original side condition for these rules.

6.2.4 Heuristic Rule Selection
Ideally, we do not want to backtrack at all, and instead just immediately choose the
correct rule at every fork in the road. This is clearly not realistic without the benefit
of hindsight, but perhaps some simple heuristics to guide our proof search will at least
improve the accuracy of rule selection.

Intuition suggests that, if multiple rules are applicable to a bottom-up sequent, we should
try to use the more specific ones first. For example, in N∗, given Γ # A ∧ B; Δ ↑, we

97

6. Implementation

would try deriving Γ # A; Δ ↑ and Γ # B; Δ ↑ for ∧I before ¬(A ∧ B), Γ # ⊥; ∅ ↑ for
CRF , because the former rule is only applicable to conjunctions while the latter can
produce any formula. Indeed, using CRF first would present the possibility of next trying
to derive ¬(A ∧ B), Γ # A ∧ B; Δ ↑ for ¬E, and if that inference is accomplished by
∧I, the CRF step inbetween would turn out to have been a needless detour. On the
other hand, leading with ∧I immediately focuses the search on subformulas A and B,
and since no bottom-up rules demand formulas of higher degree than their conclusion as
premisses (with the exception of ¬E in specific cases), A ∧ B is effectively off the table
in these branches. Thus a preference for more specific rules in bottom-up reasoning can
be expected to help in arriving at the most straightforward and natural derivations.

However, this approach alone does not actually make it more likely the first rule selected
will lead to a succesful derivation without backtracking. Doing so would require us
to predict which premisses are actually provable, which to some extent is possible by
exploiting the top-down closure that accompanies proof search. Matching the current
sequent to prove with the conclusion of some top-down derivation included in the closure
means immediately ending the branch successfully, so obviously ↓↑ should always be tried
before all other rules. We can go one step further by prioritizing rules such as the N∗

∨I1 and ∨I2, which require different premisses for the same conclusion and are equally
specific, based on whether or not a derivation of their respective premiss is included in
the top-down closure.

A bit of a special case is the BOX rule in NBOX . While its applicability to any formula
whatsoever would lead us to consider it with low priority according to our reasoning so
far, the more practical approach is actually to use BOX fairly early in the refutational
proof search, at least before the potentially backtracking-intensive ∨I and → I rules, so
that all further derivation steps take place within the scope of the assumption ⊥. This is
because some formulas are not derivable without using BOX and enabling full access
to atomic rules, while all formulas derivable without this step are also derivable with it.
Therefore, using BOX by default, despite seemingly introducing a redundant inference,
saves us from wasting time on all other rules first in those cases where it actually is
required.

6.3 Evaluation
We evaluate not only the performance of Hermes on selected propositional problems, but
also how much its derivations for individual formulas resemble those that have been
previously produced by humans.

6.3.1 Performance
While our system has no particular focus on speed, and relies far too heavily on extensive
backtracking to excel in that area, we still do want to ascertain its ability to produce
derivations of various formulas in “reasonable” time. Measurements of performance

98

6.3. Evaluation

1 2 3 4 5 6 7
1.00

10.00

100.00

1000.00

Runtime by degree

Valid
Refutable

Degree

R
un

tim
e

(m
s)

Figure 6.2: Runtime by degree.

also provide a useful quantitative metric by which we can compare the assertional and
refutational modules, which ties into our initial aim of seeing how well the strategies
known from assertional provers translate to a refutational system.

To this end, we have selected 17 valid and 13 refutable formulas with varying degrees of
complexity as input for the experimental evaluation of Hermes, listed in Table 6.1. The
valid ones are largely taken from Pelletier’s Seventy-Five Problems for Testing Automatic
Theorem Provers [25], which features several propositional problems built specifically
with natural provers in mind. The refutable ones include our running example from
Tamminga’s original work and some corruptions of valid formulas. Randomized formulas
from an online problem collection1 were also used in both categories. Table 6.2 shows
the results—both runtime of the program and length of the resulting derivation—for
valid formulas, and table 6.3 for refutable ones. All experiments were carried out by
calling the program through SWI-Prolog version 8.4.2 (threaded, 64 bits) on the same
machine (Dualcore Intel Pentium 2020M 2.4GHz with 4GB RAM and 2MB CPU cache).
Runtime was measured by wrapping the initial calls to ndprovable and ndrefutable
with Prolog’s call_time predicate, averaged over 3 runs, and capped at 15 seconds.
Formulas for which no derivation was found in this time are marked as “Unsolved”.

As visualized in Figures 6.2 and 6.3, the runtime of our test cases is more connected to
the length of the output derivation than to the degree of the input formula. This result
can be considered reflective of the great variety in inference rules and reasoning patterns
employed by natural deduction systems, making it so that some large formulas only
need to be processed partially while some small formulas require surprisingly roundabout
arguments. Derivation length more directly indicates the amount of work actually done,

1https://github.com/ferram/jtabwb_problems/.

99

https://github.com/ferram/jtabwb_problems/

6. Implementation

Table 6.1: Formulas used for evaluation.

Formula Degree Status
F1 p ∨ ¬p 2 Valid
F2 p ∧ ¬p 2 Refutable
F3 (p → p) ∧ (p → p) 2 Valid
F4 (p → q) ∨ (q → p) 2 Valid
F5 (p → q) → (q → p) 2 Refutable
F6 (p ∧ q) ∨ p 2 Refutable
F7 ((p → q) → p) → p 3 Valid
F8 ((p → q) → p) → q 3 Refutable
F9 ¬(p → q) → (q → p) 3 Valid

F10 ((p ∨ q) → (p ∨ r)) → (p ∨ (q → r)) 3 Valid
F11 ((p ∧ q) → (p ∧ r)) → (p ∧ (q → r)) 3 Refutable
F12 (¬p → p) ∧ (p → ¬p) 3 Refutable
F13 ((p → q) ∧ ¬p) → ¬q 3 Refutable
F14 q → (((r ∨ p) ∨ r) → (p ∨ (r ∧ q))) 4 Valid
F15 ((p → q) → (¬q → ¬p)) ∧ ((¬q → ¬p) → (p → q)) 4 Valid
F16 (¬¬p → p) ∧ (p → ¬¬p) 4 Valid
F17 (((p → q) → (¬p ∨ q)) ∧ ((¬p ∨ q) → (p → q)) 4 Valid
F18 ((¬p → q) → (¬q → p)) ∧ ((¬q → p) → (¬p → q)) 4 Valid
F19 (F �

19 → F ��
19) ∧ (F ��

19 → F �
19) 4 Valid

F �
19 = (p ∨ (q ∧ r))

F �
19 = ((p ∨ q) ∧ (p ∨ r))

F20 (((p → q) ∧ ¬p) → ¬q) → (¬q → ((p → q) ∧ ¬p)) 4 Refutable
F21 (((¬p → q) ∧ (¬p ∨ q)) → ((p ∨ ¬q) → (p → ¬q)) 4 Refutable
F22 (((p ∨ q) ∧ (¬p ∨ q)) ∧ (p ∨ ¬q)) → ¬(¬p ∨ ¬q) 5 Valid
F23 (((q → r) ∧ (r → (p ∧ q))) ∧ (p → (q ∨ r))) → 5 Valid

((p → q) ∧ (q → p))
F24 (F �

24 → F ��
24) ∧ (F ��

24 → F �
24) 5 Valid

F �
24 = ((p → q) ∧ (q → p))

F ��
24 = ((q ∨ ¬p) ∧ (¬q ∨ p))

F25 (((p → p) ∧ (p → p)) ∨ ((¬p → p) ∧ (p → ¬p))) → p 5 Refutable
F26 (F �

26 → F ��
26) ∧ (F ��

26 → F �
26) 6 Valid

F �
26 = (p ∧ (q → r)) → s

F ��
26 = ((¬p ∨ q) ∨ s) ∧ ((¬p ∨ ¬r) ∨ s)

F27 (F �
27 → F ��

27) ∧ (F ��
27 → F �

27) 6 Valid
F �

27 = ((((p → q) ∧ (q → p)) → r) ∧ (r → ((p → q) ∧ (q → p))))
F ��

27 = ((p → ((q → r) ∧ (r → q))) ∧ (((q → r) ∧ (r → q)) → p))
F28 ((¬(p ∧ ¬p) → p) ∧ (p → ¬(p ∧ ¬p))) ∧ ¬p 6 Refutable
F29 (p → F �

29) ∧ (F �
29 → p) 6 Refutable

F �
29 = (((p → p) ∧ (p → p)) ∨ ((¬p → p) ∧ (p → ¬p)))

F30 (F �
29 → p) ∧ (p → F �

29) 6 Refutable

100

6.3. Evaluation

Table 6.2: Test results on valid formulas.

Formula Runtime Lines
F1 7.54 ms 11
F3 12.29 ms 7
F4 12.58 ms 20
F7 9.67 ms 22
F9 14.02 ms 11
F10 63.91 ms 44
F14 27.49 ms 36
F15 9.98 ms 23
F16 7.91 ms 15
F17 8.48 ms 22
F18 8.35 ms 23
F19 16.78 ms 74
F22 9.54 ms 47
F23 10.47 ms 44
F24 13.04 ms 63
F26 19.90 ms 225
F27 63.93 ms 181

Table 6.3: Test results on refutable formulas.

Formula Runtime Lines
F2 5.03 ms 2
F5 8.10 ms 14
F6 7.93 ms 7
F8 8.22 ms 14
F11 8.20 ms 13
F12 8.04 ms 11
F13 8.37 ms 18
F20 8.49 ms 26
F21 508.19 ms 38
F25 10.63 ms 22
F28 8.05 ms 13
F29 Unsolved
F30 8.31 ms 23

but even this metric does not capture the significant effort of backtracking from failed
reasoning paths.

This hidden backtracking effort is also the explanation for the most striking outlier, the
refutable formula

F21 = (((¬p → q) ∧ (¬p ∨ q)) → ((p ∨ ¬q) → (p → ¬q))).

It takes the program over half a second to produce a derivation showing the refutability of
this formula, because the initial Θ1 and Θ2 for the premisses of its effective root rule → I1
(disregarding BOX) are in conflict. Therefore, we try to find an alternative derivation of
the second premiss ((p ∨ ¬q) → (p → ¬q)) to alter Θ2, and since this formula itself has
→ as its outermost connective, further branching is possible and compounds the issue.
In the case of F21, we still succeed in finding a derivation whose atomic rule applications
do not conflict with those of the other branch within somewhat reasonable time, but one
only needs to look at the unsolved F29 to see this is not guaranteed.

In fact, the two refutable formulas

F29 = (p → F �
29) ∧ (F �

29 → p),
F30 = (F �

29 → p) ∧ (p → F �
29)

demonstrate quite clearly how backtracking from failed branches is the major issue
hindering the performance of the refutational system. While proof search for F29 fails to

101

6. Implementation

0 50 100 150 200 250
1.00

10.00

100.00

1000.00

Runtime by derivation length

Valid
Refutable

Number of Lines

R
un

tim
e

(m
s)

Figure 6.3: Runtime by derivation length.

complete within the allotted 15 seconds, merely switching the conjuncts to produce F30
gives us a result in milliseconds. This is simply because ∧I1 is the first ∧ introduction
rule used by default, and (p → F �

29) happens to be a valid formula, so we must await the
failure of all possible derivation paths for it—including the countless variations that only
alter a Θ component—before finally considering the easily refutable (F �

29 → p).

More generally, we can observe that derivations of refutability tend to be found slightly
faster than their assertional counterparts, and are much shorter despite similarly complex
input formulas. This can likely be attributed to atomic rules as well, since they provide an
immediate way to complete a branch of reasoning once the formula has become reduced
to any propositional constant or its negation, without needing to rely on the presence
of specific assumptions. At the same time, these rules and the conflicts between them
in neighboring branches are the root cause of excessive runtime on certain refutable
formulas, making them a truly double-edged sword.

6.3.2 Naturalness

More than optimal performance, our aim in using natural deduction as the basis of an
ATP is to have it output derivations that employ human-like—and thus human-readable—
forms of reasoning. One easy way to judge this quality is comparing a derivation made
by the program to one independently made by a human for the same formula.

We first consider the assertional formula ((p → q)∧(p → r)) → (p → (q∧r)). Prawitz [29]
gives a straightforward derivation that can be rendered in N as follows:

102

6.3. Evaluation

1. (p → q) ∧ (p → r) assumption
2. p assumption
3. p → q ∧E1: 1
4. p Triv: 2
5. q → E: 3, 4
6. p → r ∧E2: 1
7. p Triv: 2
8. r → E: 6, 7
9. q ∧ r ∧I1: 5, 8

10. p → (q ∧ r) → I: 2–9
11. ((p → q) ∧ (p → r)) → (p → (q ∧ r)) → I: 1–10

The derivation given by the ndj module of Hermes is, after omitting some redundant
uses of Triv to get the premisses for the ∧ elimination rules, line for line identical to this
one.

On the refutational side, we can again resort to the derivation of ((p → q) ∧ ¬p) → ¬q
given by Tamminga [39]:

1. ¬q ¬At
2. ¬q assumption
3. p At
4. (p → q) ∧ ¬p assumption
5. p → q assumption
6. p → E2: 5
7. � ¬E: 2, 6
8. ¬p assumption
9. q Triv: 3

10. � ¬E: 8, 9
11. � ∧E: 4, 5–7, 8–10
12. ¬((p → q) ∧ ¬p) ¬I: 4–11
13. ((p → q) ∧ ¬p) → ¬q → I2: 1, 2–12

For the same formula, Hermes outputs a derivation that translates to NBOX as follows:

103

6. Implementation

1. ⊥ assumption
2. p At
3. ¬q ¬At
4. (p → q) ∧ ¬p assumption
5. p → q assumption
6. ¬p → E1: 5
7. p Triv: 2
8. � ¬E: 6, 7
9. ¬p assumption

10. p Triv: 2
11. � ¬E: 9, 10
12. � ∧E: 4, 5–8, 9–11
13. ¬((p → q) ∧ ¬p) ¬I: 4–12
14. ¬((p → q) ∧ ¬p) assumption
15. ¬q Triv: 3
16. ((p → q) ∧ ¬p) → ¬q → I1: 13, 14–15
17. ((p → q) ∧ ¬p) → ¬q BOX : 1–16

In this case, the program fails to find the short manual derivation due to first attempting
to use → I1, as neither side of the implication can be found within the top-down closure
directly. Also, the redundant layer of BOX that is added by default is, in fact, required
to make this derivation possible, since otherwise the atomic rules at line 2 and 3 would
not be legal to apply anywhere. These deviations result in a slightly longer and more
complex derivation, but notably, the core argument—obtaining ¬((p → q) ∧ ¬p) by ¬I,
∧E, and ¬E—remains intact, the only difference being the use of → E1 rather than
→ E2 at line 6.

Of course, even if the reasoning is fundamentally the same, additional lines and roundabout
ways to obtain premisses usually hinder readability, so it would be beneficial to somehow
motivate our system to take the short path as well. One possibility would be to prioritize
the side of → that has the lower degree so that the more complex formula receives
the benefit of the additional assumption, but it is questionable if this would be an
improvement in general, as we have already seen that the degree of a formula is not
necessarily related to the difficulty of deriving it. We could also more specifically always
try to use the → elimination rule that allows deriving the first premiss directly by an
atomic rule, but even this has potential to backfire if the resulting entry in Θ1 then
conflicts with something we need to derive the second premiss. Applying this particular
heuristic only while there are no assumptions present (and thus before even BOX) would
be safe and indeed resolve the issue at hand, but overall this is an adaptation that would
only be relevant on rare occasions.

104

CHAPTER 7
Conclusion

In this thesis, we have investigated the use of automated theorem proving for natural
deduction and its complementary calculus. In particular, through the joint implementation
Hermes, we have shown that the same general strategies can be employed to automate
both assertional and refutational proof search with such natural systems.

Of central importance to this is the fact that the weak normalisation theorem holds both
for the assertional natural deduction calculus N and for NBOX , a slightly altered version
of the refutational natural deduction calculus. By taking advantage of the existence of
normal derivations for any valid or refutable formula, respectively, we can apply the
well-established technique of splitting our proof search between bottom-up and top-down
reasoning fragments, thus restricting the search space significantly. Further tweaking of
these two normalisable systems gave us N∗ and N∗

BOX , which add the useful property of
loop-freeness to guarantee eventual termination of a proof search procedure.

A brief evaluation of Hermes demonstrated its ability to judge a given propositional
formula either valid or refutable, and to back up this judgment with a derivation that
quite closely resembles human patterns of reasoning. However, it also made apparent
that the system is far from optimal in terms of performance, particularly when it comes
to backtracking from failed paths in refutational proof search. Because N∗

BOX derivations
have to ensure that atomic rule applications in neighbouring branches do not contradict
each other, it becomes necessary to also explore alternate derivations for already succeeded
premisses in hopes that one of them avoids such a conflict, which quickly gets out of
hand. As a result, the practical applicability of our system is currently limited to fairly
simple propositional formulas.

An obvious direction for future research would therefore be to resolve these performance
issues and create an ATP that can produce natural deduction derivations for the validity
or refutability of even more complex formulas. For example, the excessive backtracking
on failing refutational paths could be addressed by finding ways to more strictly limit

105

7. Conclusion

the premisses for which we have to consider alternate derivations, or by implementing a
custom constraint that can be placed on the second premiss of a branching rule to ensure
atomic rules cannot be applied in a way that contradicts the first premiss to begin with.

Another significant step towards making the system suitable for applications such as
program verification is expanding it from propositional logic to first-order logic, which is
already supported by many existing natural deduction ATPs. However, the refutational
aspect becomes problematic here: Since first-order logic is only semi-decidable, a calculus
that derives exactly those first-order formulas that are not valid cannot possibly be
complete. Therefore, if we wanted to expand the capabilities of our ATP while retaining
its theoretical completeness, we would have to limit ourselves to some still decidable
fragment of the logic, such as two-variable first-order logic [15]. There is, however, also a
possibility that accepting this incompleteness and the existence of formulas for which no
conclusion can ever be reached would still result in a practically useful system—after all,
the many purely assertional first-order provers already operate under this fundamental
limitation.

106

Bibliography

[1] M. Bogojeski and H. Tompits. On sequent-type rejection calculi for many-valued
logics. In M. Urbański, T. Skura, and P. Łupkowski, editors, Reasoning: Games,
Cognition, Logic, pages 193–207. College Publications, 2020.

[2] L. Dafa. A natural deduction automated theorem proving system. In D. Kapur,
editor, Proceedings of the 11th International Conference on Automated Deduction
(CADE-11), volume 607 of Lecture Notes in Computer Science, pages 668–672.
Springer, 1992.

[3] L. Dafa and J. Peifa. Automated natural deduction prover and experiments. In
D. Galmiche, editor, Proceedings of the 6th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX ’97), volume
1227 of Lecture Notes in Computer Science, pages 153–157. Springer, 1997.

[4] R. Dutkiewizc. The method of axiomatic rejection for the intuitionistic propositional
logic. Studia Logica, 48(4):449–459, 1989.

[5] M. Ferrari and C. Fiorentini. Proof-search in natural deduction calculus for classical
propositional logic. In Proceedings of the 24th International Conference on Automated
Reasoning with Analytic Tableaux and Related Methods (TABLEAUX 2015), volume
9323 of Lecture Notes in Computer Science, pages 237–252. Springer, 2015.

[6] M. Ferrari and C. Fiorentini. Goal-oriented proof-search in natural deduction for
intuitionistic propositional logic. Journal of Automated Reasoning, 62(1):127–167,
2019.

[7] M. Ferrari, C. Fiorentini, G. Fiorino, L. Giordano, V. Gliozzi, A. Pettorossi, and
G. L. Pozzato. JTabWb: A Java framework for implementing terminating sequent
and tableau calculi. Fundamenta Informaticae, 150(1):119–142, 2017.

[8] F. Fitch. Symbolic Logic: An Introduction. Ronald Press, 1952.

[9] M. Fitting. Proof Methods for Modal and Intuitionistic Logics, volume 169 of
Synthese Library. Springer, 1983.

[10] M. Fitting. First-Order Logic and Automated Theorem Proving. Springer, 2nd
edition, 1996.

107

[11] D. M. Gabbay and N. Olivetti. Goal-Directed Proof Theory, volume 21 of Applied
Logic Series. Springer, 2000.

[12] G. Gentzen. Untersuchungen über das logische Schließen I. Mathematische Zeitschrift,
39(1):176–210, 1935.

[13] V. Goranko. Refutation systems in modal logic. Studia Logica, 53(2):299–324, 1994.

[14] J. Harrison. Handbook of Practical Logic and Automated Reasoning. Cambridge
University Press, 2009.

[15] L. Henkin. Logical systems containing only a finite number of symbols. Report,
Department of Mathematics, University of Montreal, 1967.

[16] M. Huth and M. Ryan. Logic in Computer Science: Modelling and Reasoning about
Systems. Cambridge University Press, 2nd edition, 2004.

[17] S. Jaśkowski. Teoria dedukcji oparta na regu lach za lożeniowych. In Księga
pamiątkowa pierwszego polskiego zjazdu matematycznego 1927, page 36. Polish
Mathematical Society, 1929.

[18] S. Jaśkowski. On the rules of suppositions in formal logic. Studia Logica, 1(1):5–32,
1934.

[19] D. Kalish and R. Montague. Logic: Techniques of Formal Reasoning. Harcourt
Brace Jovanovich, 1964.

[20] J. Łukasiewicz. Aristotle’s Syllogistic From the Standpoint of Modern Formal Logic.
Clarendon Press, 2nd edition, 1957.

[21] M. Maurer. Assertional and refutational natural deduction systems for classical
logic. Bachelor’s thesis, TU Wien, 2020.

[22] J. Oetsch and H. Tompits. Gentzen-type refutation systems for three-valued logics
with an application to disproving strong equivalence. In J.P. Delgrande and W. Faber,
editors, Proceedings of the 11th International Conference on Logic Programming
and Nonmonotonic Reasoning (LPNMR 2011), volume 6645 of Lecture Notes in
Computer Science, pages 254–259. Springer, 2011.

[23] D. Pastre. MUSCADET: An automatic theorem proving system using knowledge
and metaknowledge in mathematics. Artificial Intelligence, 38(3):257–318, 1989.

[24] D. Pastre. Strong and weak points of the MUSCADET theorem prover: Examples
from CASC-JC. AI Communications, 15:147–160, 2002.

[25] F. J. Pelletier. Seventy-five problems for testing automatic theorem provers. Journal
of Automated Reasoning, 2(2):191–216, 1986.

108

[26] F. J. Pelletier. Automated natural deduction in Thinker. Studia Logica, 60:3–43,
1998.

[27] D. A. Plaisted. History and prospects for first-order automated deduction. In A. P.
Felty and A. Middeldorp, editors, Proceedings of the 25th International Conference
on Automated Deduction (CADE-25), volume 9195 of Lecture Notes in Computer
Science, pages 3–28. Springer, 2015.

[28] J. L. Pollock. Interest driven suppositional reasoning. Journal of Automated
Reasoning, 6(4):419–461, 1990.

[29] D. Prawitz. Natural Deduction: A Proof-Theoretical Study. Dover Publications,
1965.

[30] T. Racharak and S. Tojo. On explanation of propositional logic-based argumentation
system. In A. P. Rocha, L. Steels, and J. van den Herik, editors, Proceedings of the
13th International Conference on Agents and Artificial Intelligence (ICAART 2021),
volume 2, pages 323–332. SCITEPRESS, 2021.

[31] A. Riazanov and A. Voronkov. Vampire. In H. Ganzinger, editor, Proceedings of the
16th International Conference on Automated Deduction (CADE-16), volume 1632 of
Lecture Notes in Computer Science, pages 292–296. Springer, 1999.

[32] J. A. Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

[33] J.A. Robinson and A. Voronkov, editors. Handbook of Automated Reasoning, Volumes
I and II. North Holland, 2001.

[34] W. Samek, G. Montavon, A. Vedaldi, L.K. Hansen, and K.-R. Müller, editors.
Explainable AI: Interpreting, Explaining and Visualizing Deep Learning, volume
11700 of Lecture Notes in Computer Science. Springer, 2019.

[35] S. Schulz, S. Cruanes, and P. Vukmirović. Faster, higher, stronger: E 2.3. In
P. Fontaine, editor, Proceedings of the 27th International Conference on Automated
Deduction (CADE-27), volume 11716 of Lecture Notes in Computer Science, pages
495–507. Springer, 2019.

[36] W. Sieg and J. Byrnes. Normal natural deduction proofs (in classical logic). Studia
Logica, 60(1):67–106, 1998.

[37] G. Stålmarck. Normalization theorems for full first order classical natural deduction.
Journal of Symbolic Logic, 56(1):129–149, 1991.

[38] R. Statman. Structural Complexity of Proofs. Dissertation, Stanford University,
1974.

109

[39] A.M. Tamminga. Logics of rejection: Two systems of natural deduction. Logique et
Analyse, 37(146):169–208, 1994.

[40] M. Tiomkin. Proving unprovability. In Proceedings of the 3rd Annual Symposium
on Logic in Computer Science (LICS ’88), pages 22–26, 1988.

[41] J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager. SWI-Prolog. Theory and
Practice of Logic Programming, 12(1-2):67–96, 2012.

110

	Abstract
	Kurzfassung
	Contents
	Introduction
	Background
	Classical Propositional Logic
	Two Natural Deduction Systems

	Automated Theorem Proving with Natural Deduction
	Existing ATPs
	Strategies

	Normal Derivations in N and N
	Proof Approach
	The Assertional Case
	The Refutational Case

	Adapted Systems for Automation
	Preliminaries
	The Assertional Case
	The Refutational Case

	Implementation
	Overview
	Implementational Aspects
	Evaluation

	Conclusion
	Bibliography

